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Abstract 
 

 

An accurate representation of water retention curves is important for various reasons. 
Traditional models already exist for the representation of these curves, with one of them being 

the van Genuchten model. When soil parameters are available, the van Genuchten model can 
be used to plot water retention curves. However, when these soil parameters are not available, 

regression can be performed to estimate and predict the water retention curves. Commonly, 
the Non-Linear Least Squares regression method is used in combination with a certain water 

retention model. Problems arise for inhomogeneous soils as the traditional water retention 
models tend to break down.  

To improve the representation of water retention curves, Gaussian Process regression 
will be implemented. This method will be combined with the Non-Linear Least Squares 

method to obtain new representations of water retention curves. These new curves are better 
in terms of curve fit and uncertainty, when compared to the traditional method. These 

comparisons can be made visually, by observing the plots and their confidence intervals, as 
well as quantitatively by computing the log-likelihoods of the different methods. When 

comparing the results of the log-likelihood computations for both methods, it follows that the 
value of the log-likelihood is greater for water retention data with correlated residuals. In the 
case where the residuals are uncorrelated, the log-likelihoods are equal for both methods and 

no improvements are observed. 
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1 

Introduction 

 
Being able to determine the soil moisture content along the soil depth and 

understanding the soil water flow in various soils is key in improving the efficiency and 

performance in processes related to water management. Soil data is applied in useful and 
important processes, such as determining the optimal irrigation frequency as well as the 

irrigation amount, which allows for efficient crop growth. Another important application 
is the analysis of soil aggregate stability, where the resisting ability of soil aggregates is 

evaluated when exposed to external forces.  
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1.1. Soil Moisture Content 
The soil moisture content, also denoted as θ, for a particular soil is determined by the 

volume of water that is contained in a soil. It is defined as the volume of the water in a soil 

sample over the total volume of the soil sample. The soil moisture content is closely related 
to the suction pressure that occurs in the soil pores and can have values between 0 and 1. 

In normal circumstances, water is attracted by soil particles and sucked into the soil pores. 
This creates a suction pressure as water is held by these pores against gravity. This 

phenomenon is called capillarity and is caused by adhesive as well as cohesive forces 
(Schoups, 2019). The relation between soil moisture content and suction pressure, 

characterises the water retaining ability of a soil layer. To empty a pore, a pressure needs 
to be applied that is greater than the capillary force. This again changes the moisture 

content of the particular soil. When a soil is fully saturated with water, the capillary force 
is equal to zero. However, when the pores are emptied, and the soil becomes drier, a larger 

suction occurs, meaning the capillary force increases.  

 

1.2. Water Retention Curves 
The relation between the water pressure and the moisture content can be represented 

through water retention curves, where the water pressure can be plotted against the 
moisture content. A conventional method to represent water retention curves, is by 

plotting the water pressure logarithmically instead of linearly. The y-axis ticks are then 
the pF values of the soil which is equal to the logarithm to base 10 of the water pressures 

in centimetres. pF curves can also be plotted with the x-axis and y-axis reversed. This gives 
a pF curve with the moisture content on the  vertical axis and the logarithmic water 

pressure on the horizontal axis.   

 

1.3. Conventional Methods  
There are various methods to represent water retention curves. Conventional parametric 

models are the van Genuchten model and the Brooks-Corey model, in which characteristic 
soil parameters are used as the input of the model and the moisture content is the output 

(van Genuchten, Leij, & Yates, 1991). When these soil parameters are not known, it is not 
possible to obtain the moisture content directly and an alternative approach has to be 

implemented to represent the water retention curve. This alternative approach represents 
the water retention curves by performing traditional parametric non-linear regression 

analysis on the model through measured data points.  
A useful tool that makes use of this principle, is the RETC (RETention Curve) 

computer program which analyses and predicts the soil water retention and the hydraulic 
properties for unsaturated soils (van Genuchten, Leij, & Yates, 1991). With RETC, a choice 
can be made between multiple models which can be used to perform an analysis. These 

parametric models are the Brooks-Corey model (1964), the van Genuchten model (1990), 
the lognormal distribution model of Kosugi (1996) and the dual-permeability model of 

Durner (1994). The RETC program takes known datapoints as input in order to perform 
its parametric non-linear regression analysis. Next to the water retention curve, the RETC 

program allows for the computation of the theoretical pore-size distribution models of 
Mualem (1976) and Burdine (1953), in order to predict the unsaturated hydraulic 

conductivity from observed soil water retention data (van Genuchten, Simunek, Leij, & 
Sejna, 1998).  
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While these conventional approaches work fairly well for homogeneous soils, it 

breaks down if the soil has a more composite structure as is often the case. Another 
common issue is the lack of data points where non-linear regression can be implemented 

on, which results in less accurate water retention curves. However, the main problem with 
the parametric non-linear regression method, is the lack of flexibility of the water 

retention curve fit. It forces the curve fit to be in a certain shape and therefore might lead 
to systematic errors when the plotted water retention data deviates from the used 

parametric model.  These issues call for a more reliable and robust method for predicting 
water retention curves.  

 

1.4. Non-Parametric Regression 
In order to make better predictions and representations of water retention curves in less 
trivial soils, a new method needs to be investigated. This new method needs to have the 

property of being flexible to make better predictions of new data points. A regression 
method that satisfies this demand is non-parametric regression analysis. In contrast to 

parametric regression analysis, non-parametric regression analysis is based on either 
being distribution free or on  having the distribution’s parameters unspecified.  

Gaussian Process regression is a well-known example of non-parametric 
regression. It is an interpolation method for which the values, that are interpolated 

between known values, are modelled by a Gaussian Process. This method is more 
commonly applied in situations where only little is known and fewer assumptions can be 
made, which makes it a more robust model (Winterstein, 2016).  

Gaussian Processes have been applied in many branches of science. It was 
originally implemented in geostatistics, where observations for some spatially related 

points, either in 2D or in 3D, were collected and the values for the remaining unknown 
points are estimated. This process is also called kriging (Snelson, 2006). In the finance 

field, the Gaussian Process is used in combination with the Brownian Motion concept to 
model and predict financial markets (Anonymous, 2019). Lastly, the Gaussian process is 

commonly used in Machine Learning applications as has been researched prominently by 
Williams and Rasmussen (Rasmussen & Williams, 2006). 

 

1.5. Research Question 
As the Gaussian Process regression technique has both the properties of being robust and 
flexible, it might serve as a good solution to the water retention curve problem that occurs 

for composite soils with traditional parametric non-linear regression. This leads to the 
following research question: 

Can the representation of water retention curves be improved with the help of 
Gaussian Processes, in terms of curve fitting and uncertainty analysis?  

The goal of this thesis is to assess the value of the more flexible non-parametric 
Gaussian Process Model for water retention curves. This will be done by representing 

water retention curves with the help of a Gaussian Process model and compare it to the 
traditional parametric soil water flow model from van Genuchten.  

 
In Chapter 2, water retention curves will be discussed together with widely used 

models and data sources for the representation of these curves. In Chapter 3, traditional 
non-linear regression using the Least Squares method will be explained. Furthermore, 

different software possibilities, such as the RETC program and the Optimize.curve_fit 
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function of SciPy, will be discussed to obtain water retention curves, based on certain 

models, through the traditional non-linear regression. Chapter 4 will explain the use of 
the Gaussian Process model as a way to generate an optimal fit through the observations. 

In Chapter 5, the regression methods discussed in Chapters 3 & 4 will be applied on water 
retention data in order to obtain water retention curves. These methods and results will 

also be compared to each other in order to determine the added value of the Gaussian 
Process method on modelling water retention curves. In chapter 6 a general discussion on 

the research and results is presented and finally, a conclusion is drawn in Chapter 7. 
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2 

Water Retention Curves 

 
Water retention curves, or pF curves, allow for clear visualization and 

understanding of the relation between the soil moisture content and the corresponding 
water pressure or hydraulic head as shown in Figure 2.1. Over the years, different models 

have been introduced for the computation and representation of these pF curves. In this 
chapter, the most important and relevant models will be presented and explained further 

in detail. Also, the data source that is used for the analysis of water retention curves will 
be discussed along with its properties.  
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Figure 2.1: Example of a water retention curve, also known as a pF curve, for a certain soil with 

the logarithm to base 10 of the water pressures on the vertical axis and the moisture content on the horizontal 
axis. Different pF values have different effects on the water uptake of plants. Generally, a pF value of 4.2 

corresponds to the wilting point where the suction is too strong for the plant root to uptake water and a pF 

value of 2.0 corresponds to the field capacity which is the amount of soil moisture content held in the soil 
after excess water has drained away and the rate of downward movement has decreased. Source: (Schoups, 

2019) 

 

2.1. Water Retention Models 
Various water retention models already exist, including the Brooks-Corey model (1964), 
the van Genuchten model (1990), the lognormal distribution model of Kosugi (1996) and 

the dual-permeability model of Durner (1994) (van Genuchten, Simunek, Leij, & Sejna, 
1998). Figure 2.2 presents the water retention curves for different models. This shows that 

models differ in smoothness of the curves as well as in accuracy and fit. In this thesis, only 
the van Genuchten model and the Brooks-Corey model will be discussed, as they are 

generally used the most in real life applications due to their simplicity and attractive 
mathematical characteristics (van Genuchten, Leij, & Yates, 1991). 

 

Figure 2.2: Different models fitted to measured water retention data. The red circles represent the 

measurements. Source: (Seki, 2007) 
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2.1.1. Brooks-Corey Model 
The Brooks-Corey model (1964), is one of the most popular models for representing water 

retention curves. It describes the course of the moisture content as a function of the water 
pressure head in a soil.  

                            

𝜃 = {
 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟)(𝛼|ℎ|)

−𝜆
 , (𝛼ℎ > 1)

𝜃𝑠                                       , (𝛼ℎ ≤ 1)
} (1)

          

In equation 1, the Brooks-Corey function is given. The Brooks-Corey function is a 
conditional function, meaning its function value depends on the value of  the product of α 

and h, where α is an empirical parameter with its unit defined as one over the length or 
(cm-1) and h denotes the soil water pressure head in cm. The inverse of α is equal to the 

air entry value, which is the suction value that must be exceeded before air recedes into 
the soil pores. Furthermore, the residual moisture content is denoted by θr.  It specifies 

the maximum amount of water in a soil that will not contribute to liquid flow because of 
blockage from the flow paths or strong adsorption onto the solid phase (Luckner, van 

Genuchten, & Nielsen, 1989). It is the moisture content in a soil at which the change in 
moisture content approaches zero due to the increase of the water pressure head h. The 

residual moisture content is not necessarily the smallest possible moisture content in a 
soil, as the soil can dry out to moisture contents lower than the residual moisture content 

in extremely dry regions. The saturated moisture content, or satiated moisture content, is 
denoted by θs. This is defined as the maximum soil moisture content. This maximum soil 

moisture content is 5% – 10% smaller than the soil porosity, due to trapped air in the soil 
pores that is unable to escape. Finally, λ is the pore-size distribution parameter. This 
parameter influences the shape of the water retention curve by affecting the slope of the 

curve. 
Figure 2.3 shows the mean values of Brooks-Corey soil water retention parameters 

for different types of soils. It can be noticed that these soil types have different pore-size 
distribution index values. This is reflected in the water retention curves for different soils 

as can be seen in Figure 2.4. Initially, the soil sample is fully saturated and the moisture 
content is at its maximum for its particular soil type. As the pressure increases, the 

moisture content decreases. However, the rate at which the moisture content decreases is 
higher for sand than for clay loam. This is due to the fact that the pore-size distribution 

index value for sand is greater than for clay.  



                                                                                                                            2. Water Retention Curves 
 
 

8 
 

 

 

Figure 2.3: Brooks-Corey soil water retention parameters for different soil types. These parameters 

include porosity, hydraulic conductivity, residual moisture content, air-entry pressure or displacement 

pressure and pore-size distribution index.  Source: (Schoups, 2019) 

 

  
Figure 2.4: Brooks-Corey model for water retention curves for sand, loam and clay loam. The water 

pressure is plotted logarithmically. The moisture content only starts to decrease when the water pressure 
exceeds the suction pressure of the soils. The value of the residual moisture content of a particular soil is 

approximately equal to the value of the vertical asymptote of the water retention curve. This shows that 

when the residual moisture content is reached, it remains fairly constant even though pressure is increased. 
Source: (Schoups, 2019)  
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2.1.2. Van Genuchten Model 
The van Genuchten model came many years after the Brooks-Corey model and describes 

the same phenomena only in a different form and with some different parameters. The 
main reason for a change in the equation form is to improve the representation of water 

retention curves when they near saturation. The van Genuchten equation can be 
considered a smooth function, meaning it can be continuously differentiated. Many other 
models have been proposed as well, but they were mathematically too complicated to be 

implemented in predictive pore-size distribution models for the hydraulic conductivity. 
The attractive mathematical properties of the van Genuchten model, together with the 

relatively smoothness of the function, is what makes the van Genuchten model a valuable 
model that has been used widely. An important difference with the Brooks-Corey model 

is that it has only one expression for the moisture content, unlike the conditional function 
that is the Brooks-Corey function. For the analysis of the different regression methods in 

this thesis, only the van Genuchten model will be considered for parametric non-linear 
regression.  

In general, the effective degree of saturation or reduced moisture content, is the 
proportion of the prevailing suction that actually contributes to the effective stress. This 

can be expressed as in equation 2. 
 

𝑆𝑒 =
𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
(2) 

             

with Se being the effective degree of saturation. The van Genuchten model gives another 
expression for the effective degree of saturation as can be seen in equation 3. 

      

𝑆𝑒 =
1

[1 + (𝛼|ℎ|)
𝑛

]
𝑚 (3) 

 

By inserting equation 2 to into equation 3, an expression is derived for the moisture 
content as a function of the water pressure head, shown in equation 4. This expression is 

known as the van Genuchten equation.  

      

𝜃(ℎ) = 𝜃𝑟 +
𝜃𝑠  − 𝜃𝑟

[1 + (𝛼|ℎ|)
𝑛

]
𝑚 (4) 

 

The parameters α, n & m are empirical constants that influence the shape of the water 
retention curve. The constants n & m can be related to each other for simplicity reasons. 

Different models have been set up to describe the relation between the two parameters. 
Therefore, the relation between n & m, depends on which conductivity model is being 

used. The Burdine conductivity model (1953) presents the relation as m = 1 – 2/n while 
the Mualem conductivity model (1976) describes this as m = 1 – 1/n. The Mualem 
conductivity model has proved itself to perform the best for most soils. For this reason, 

the Mualem conductivity model will be applied in further analysis of the van Genuchten 
model. Ultimately, by applying the Mualem conductivity model to the van Genuchten 
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water retention model, the modified van Genuchten equation is generated as can be seen 

in equation 5 (van Genuchten, Leij, & Yates, 1991). 

 

𝜃(ℎ) = 𝜃𝑟 +
𝜃𝑠  − 𝜃𝑟

[1 + (𝛼|ℎ|)
𝑛

]
1−1/𝑛

(5) 

 
where: 

θ(h) is the moisture content as a function of the water pressure head [-] 

θr is the residual moisture content [-] 

θs is the saturated  moisture content [-] 

α is related to the inverse of the air entry suction [cm-1], with α > 0 

h is the water pressure head [cm], and 

n is a measure of the pore-size distribution [-], with n > 1 

 

2.2. UNSODA 
Water retention curves can be represented by either knowing the soil parameters of a 
certain model, or by having some observed data which can be used to fit a model through. 

The UNsaturated SOil hydraulic DAtabase, or UNSODA, is a database that contains 
unsaturated hydraulic data and other soil properties. This database contains measured 

soil water retention, hydraulic conductivity, and water diffusivity data, as well as 
pedological information of some 790 soil samples from around the world (National 

Agriculture Library, 2015). The database can be accessed with Microsoft Access. It 
contains various relations between the unsaturated soil moisture content and another 
property, such as the conductivity, the diffusivity and the water pressure head. For this 

thesis, only the relation between the moisture content and the water pressure head will be 
considered, as only this relation is relevant for water retention curves.  

A distinction can be made in field drying, field wetting, lab drying and lab wetting. 
Drying implies that the analysis on a particular soil sample is saturated initially and the 

measurements are done while draining the soil sample. Wetting involves the soil sample 
to be drained initially. Measurements are done while wetting the soil sample. This process 

can be executed in the lab under controlled conditions on a relatively small soil sample, or 
in the field on an actual soil layer (Rao, 2011).  

Figure 2.5 shows a setup for determining the moisture content of a soil as a 
function of the pressure. When the pressure is increased, the moisture content in the soil 

decreases as air enters the soil pores and pushes the water out. The water is subsequently 
collected and measured at discrete pressure values. Every pressure value corresponds to 

a certain moisture content. This results in a dataset with a certain pressure head and a 
certain moisture content.  
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Figure 2.5: Lab wetting setup. Air pressure is applied to a saturated soil sample. Water that is draining 

out of the soil sample is collected in a burette. Source: (Schoups, 2019) 

 

 UNSODA contains a large number of (moisture content vs pressure head) 
measurements done under varying circumstances as previously mentioned. However, 

some measurement techniques have little or no data available. This is the case for the field 
wetting technique. No data is available for this technique. The field drying technique 

however contains 2621 datapoints. For measurements done under laboratory conditions, 
more datapoints are available. Lab wetting contains 528 datapoints while lab drying 

contains 8066 datapoints. A statistical analysis is presented in the form of a pie chart in 
Figure 2.6. 
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Figure 2.6: Different measurement techniques with a corresponding portion of available datapoints. 

Each datapoint is a certain moisture content with a corresponding pressure head. Field wetting contains no 
data while lab drying contains a large amount of data. Retrieved from the UNSODA database. 
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3 

Non-Linear Regression 

 
Non-linear regression is a common technique in representing water retention 

curves.  Water retention curves can already be modelled by using the existing models of 
van Genuchten or Brooks-Corey. However, these models require soil hydraulic 

parameters as an input. As these soil parameters might not always be available, it is 
necessary that these models and their model parameters are estimated. This can be done 

by performing measurements on soil samples while draining or wetting the soil to obtain 
water retention data points. By applying non-linear regression to these measured water 

retention data points, the van Genuchten model and the Brooks-Corey model can be 
approximated by predicting the unknown soil parameters as accurate as possible. 
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3.1. Non-linear Least-Squares 
The principle behind the RETC algorithm is the Non-Linear Least Squares regression 
method. This method can also be implemented in Python which is useful for the analysis 

of water retention curves with the use of Gaussian Process regression. This allows for a 
qualitative comparison between the Non-Linear Least Squares regression method and the 

Gaussian Process regression method.  
Non-linear Least Squares is a form of Least Squares analysis which is used for 

fitting observations with a non-linear model. The Least Squares method is based on the 
principle of minimizing the sum of the squares of the residual, where the residuals are 

defined as the difference between the observed values and the fitted values of the model 
(Boyd, 2016). The residuals ri can therefore be denoted as: 

 

𝑟𝑖 = 𝑦𝑖  −  𝑓(𝑥𝑖 , 𝜷) (6) 

where xi and yi are the x and y value of datapoint i and β is the vector that contains the 
model parameters that need to be estimated. The Least Squares method minimizes the 
sum of these squared residual for every datapoint which means minimizing: 

∑ 𝑟𝑖
2 = ∑|𝑦𝑖 − 𝑓(𝑥𝑖, 𝜷)|𝟐

𝑛

𝑖=1

𝑛

𝑖=1

(7) 

For linear models, this minimization and therefore the parameter estimation can be 

performed by applying the closed form of the parameter estimation equation, which is 
given by equation 8 (Stansbury, 2012). 

𝜷 ̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝒚 (8) 

where the estimated parameters vector is denoted by β̂, the X matrix denotes the design 
matrix and the y vector contains the observed values of the data points.  

 
However, this closed form is not always applicable for non-linear models. The 

parameters can be estimated by starting with an initial guess for the parameters and 
iteratively adjusting the parameters while computing the sum of the residuals. The best 

parameters for the non-linear model are the parameters which give the smallest value for 
the sum of the squares. These parameters can subsequently be used to plot the optimal 

model through the datapoints.  
The Non-Linear Least Squares regression method is based on some assumptions. 

The residuals (or errors) are normally distributed with: 

1. μ = 0 

2. σ2 = constant 

3. no correlation between the errors 

where μ is the mean or expected value and σ2 is the variance of the normal distribution. 

This can also be denoted as following: 

𝑋~𝒩(0, 𝝈𝟐) (9) 

where the residuals are denoted as the random variable X. 
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The variance σ2can be determined by calculating the Mean Squared Error or MSE. 

The MSE is defined as the mean of the squares of the residuals/errors. Equation 10 
presents the mathematical from of the MSE.  

 

𝜎2  =  MSE  =  
1

𝑛
∑ 𝑟𝑖

2

𝑛

𝑖=1

=
1

𝑛
∑|𝑦𝑖 − 𝑓(𝑥𝑖, 𝜷)|2

𝑛

𝑖=1

(10) 

 
When the MSE is computed, the 95% confidence interval can be computed and 

plotted with optimal fit as well . This interval is an estimate for the true value of a model. 
There is 95% certainty that a certain function value of the model is within that interval. 

For a normal distribution, the 95% interval approximates twice the standard deviation σ, 

where the standard deviation is equal to the square root of the variance σ2 . The equation 

for the 95% interval is shown in equation 10. Figure 3.1 shows the 95% confidence interval 
on a normal distribution with mean 0. 

 

95%𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ≈ ±2 ∗ 𝜎 = ± 2 ∗ √MSE = ±2 ∗ √
1

𝑛
∑ 𝑟𝑖

2

𝑛

𝑖=1

 =  ±2 ∗ √
1

𝑛
∑|𝑦𝑖 − 𝑓(𝑥𝑖, 𝜷)|

2
𝑛

𝑖=1

(11) 

 

  

Figure 3.1: A normal distribution with mean 0 and standard deviation σ. The 95% confidence interval is 

the area between -2σ and 2σ. Source: (Toews, 2007) 

 

3.2. RETC  
The Retention Curve (RETC) computer program is a commonly used program, based on 

the Least Squares method, for analysing the hydraulic properties of various unsaturated 
soils (van Genuchten, Leij, & Yates, 1991). 

 In order to predict water retention curves through RETC, some information is 
needed. First, the type of model for the water retention curve is needed. The models that 

can be applied are the Brooks-Corey model (1964), the van Genuchten model (1990), the 
lognormal distribution model of Kosugi (1996) and the dual-permeability model of Durner 
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(1994). As already stated, the focus will be on the Brooks-Corey model and the van 
Genuchten model which have been discussed in Sections (2.1.1) and (2.1.2), respectively. 

It is necessary for the van Genuchten water retention model that a relation between the 
parameters m and n is chosen. The two options are the Burdine assumption which states 

that m = 1 – 2/n and the Mualem assumption which states that m = 1 – 1/n. These 
assumptions have an effect on the shape of the water retention curve. Additionally, a 
conductivity model can be selected when certain soil properties need to be computed. 

These properties include the diffusivity and the conductivity, which then can be plotted.  
 After specifying the preferred model and its settings, an initial estimate is done for 

the soil parameters that will be estimated with this program. These parameters are θr,  θs,  
α, n and Ks. The definition of the first four parameters can be found equation 5. The soil 

parameter Ks, which is defined as the saturated conductivity, quantifies the ability of a 
certain soil to conduct water when it is subjected to a hydraulic gradient. A higher 

saturated conductivity corresponds to an easier movement of water through soil pores of 
a saturated soil. These initial values can be estimated simultaneously in RETC by choosing 

a soil type with already appointed estimations for these soil parameters. A more advanced 
method is offered by RETC by means of neural network prediction. When soil ratios and 

other input parameters are known, a more accurate initial estimation of the soil hydraulic 
parameters is performed.  

Finally, the water retention data is inputted by inserting the water pressure head 
and the corresponding moisture content and the outputs can be evaluated. The RETC 
program produces an ASCI file and a graph as outputs. The ASCI file contains the 

numerical data of the performed analysis. Most importantly, it presents the final results 
of the soil parameters estimation which were estimated through Non-Linear Least 

Squares analysis.  
 

3.3. Optimize Curve Fit in Python 
The SciPy package in Python contains the Optimize.curve_fit function which uses non-

linear regression to fit a function to observed datapoints. First, a model is defined with 
unknown parameters that need to be estimated. It takes the observed x and y datapoints 

as input in the form of an array. Finally, the best parameters are determined by iteration.  
 For the water retention curves, the van Genuchten model with the Mualem 

assumption is defined in Python with the soil parameters unknown as shown in equation 
5. The unknown parameters that need to be estimated are θr,  θs, α and n. For each 

parameters, initial values and boundaries are defined. The boundaries are necessary for 
the fitted model to estimate realistic parameters. θr is the residual moisture content 

which can theoretically only take values between 0 and 1. In practice however, the value 
for the residual moisture content is generally slightly larger than 0 and never equal to 1. 
These values can differ for different soil types. The same boundaries apply for the 

saturated moisture content θs, which is between 0 and 1 as well. Furthermore, α is 
required to be larger than 0. This is due to the definition of parameter α, which is 

defined as the inverse of the air entry value. In the case that α is smaller than 0, it is 
implied that the air entry value is negative, which is physically impossible. Lastly, the 

parameter n has the property of being larger than 1 as it the based on the Mualem 
assumption for the relation between the parameters m and n.  

 Finally, the optimal parameters can be extracted from the Optimize.curve_fit 
function. These optimal parameters can subsequently be used to plot the water retention 

curve. Additionally, equation 11 can afterwards be used to compute and plot the 95% 
interval around the optimal fit. 
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4 

Gaussian Process Regression 

 
The lack of flexibility of traditional water retention regression methods leads to the 

search of more flexible methods. With Gaussian Process regression having these 
characteristics, it might serve as a possible solution to the problem of models breaking 

down for composite soils. In this chapter, the theory behind Gaussian Processes will be 
discussed as well as the methodology for modelling water retention curves with the help 

of Gaussian Processes. Additionally, the GPy package in Python for Gaussian Process 
regression will be discussed.  
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4.1. Gaussian Process Theory 
A stochastic process is a collection of random variables that is indexed by time or space. 

When such a process is Gaussian, it is called a Gaussian Process and it can therefore be 
defined as a collection of random variables where every collection of these variables has a 

multivariate normal distribution (Rasmussen & Williams, 2006). Gaussian Process 
regression is a data interpolation method for which the interpolated values are modelled 

by a Gaussian Process. This type of regression results in a mean fit line that attempts to 
optimally fit through observables. Additionally, it also results in a confidence interval 

around this mean fit that can fluctuate dependent on the certainty of the Gaussian Process 
on the mean function output value. 

A Gaussian Process is completely defined by its mean function and covariance 
function. For a one-dimensional normal distribution, a mean value and a variance can be 
determined. The mean value is equal to the expected value and the variance is related to 

the deviation of this expected value. For a multivariate Gaussian distribution, this mean 
function is a vector in k dimensions that contains the mean values of k random variables. 

This means that in a bivariate case where there are two random variables, the mean 
function vector contains two values which are the mean values of each normal distribution 

of each random variable. Instead of a variance, the Gaussian Process has a covariance 
function which represents the correlation between the variables. This covariance function 

is also called the kernel function. The three assumptions made for the Non-Linear Least 
Squares method in Chapter 3 are not made for the Gaussian Processes. Instead, the 

following three assumptions are made. 
 

The residuals (or errors) are normally distributed with: 

1. μ = 0  

2. σ2 ≠ constant 

3. correlation exists between the errors 

 

When the Gaussian Process is denoted as f(x), the mean function of the Gaussian 
Process is denoted as m(x), the kernel function is defined as k(x, x′) where x and x′ denote 

the locations of some input points, and the following can be stated: 
 

𝑚(𝐱) = 𝔼[𝑓(𝐱)] (12) 

 

𝑘(𝐱, 𝐱′) = 𝔼[(f(x) − 𝑚(𝐱))(f(𝐱′) − 𝑚(𝐱′))] (13) 

 
Equations 12 and 13 present the expressions for the mean function and the kernel function 

for the Gaussian Process, respectively. The symbol 𝔼 denotes the expected value of the 

argument in between the brackets. The Gaussian Process denoted by f(x) can be defined 
as following: 

 

𝑓(𝐱)  ~   𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′)) (14) 

 

which states that the stochastic process is Gaussian distributed with a mean function m(x) 

and a kernel function k(x, x′). It is common to take the mean function to zero for 
notational simplicity. This means that the behaviour of the Gaussian Process is completely 
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defined by the covariance or kernel function. By implementing this assumption in 
equation 14, the following simplified expression for the Gaussian Process is obtained: 

 

𝑓(𝐱)  ~   𝒢𝒫(𝟎, 𝑘(𝐱, 𝐱′)) (15) 
 

The assumptions made for the Least Squares method are not made for the Gaussian 

Process method. Even though that the mean is set to zero for notational simplicity, it is 
not necessary to do so. Furthermore, the variance is not a fixed value which is the case for 

the Least Squares method.  
There exist many different kernel functions, such as the Periodic kernel, the Linear 

kernel, the Matérn kernel and the Squared Exponential kernel (Duvenaud, 2014). Kernels 
can even be combined through addition or multiplication. In this thesis, only the Squared 

Exponential kernel will be discussed as it is the default kernel for Gaussian Processes 
(Duvenaud, 2014). The Squared Exponential (SE) kernel, also called the Radial Basic 

Function (RBF) kernel or Gaussian kernel, is a covariance function that specifies the 
correlation between random variables.  Equation 16 presents this kernel function.  

 

𝑘𝑆𝐸(𝐱, 𝐱′) = 𝜎𝟐 𝑒
− 

(|𝐱 − 𝐱′|)
𝟐

𝟐ℓ𝟐 (16)
 

 

For the Squared Exponential kernel function, as shown in equation 16, there are 

two parameters, namely the output variance σ2 and the length scale ℓ. These parameters 

are also called hyperparameters (Rasmussen & Williams, 2006). The value of the output 

variance determines the deviation of the function from the expected value. Similar to the 
variance of a univariate normal distribution, it is basically a scale factor. The characteristic 

length scale determines how much two points at location x and x′ can influence each other 
when they have a certain distance between them. It influences the smoothness of the 
function. While small length scales result in quick changing function values and therefore 

rough functions, large length scales result in slow changing smooth functions. In Figure 
4.1, the effect of the length scale on the smoothness of the fit can be seen, with the larger 

length scale corresponding to the smoother function. Common methods to determine the 
hyperparameters of the kernel are the maximization of the marginal log-likelihood or the 

cross validation method (Rasmussen & Williams, 2006). In Section 4.2, optimization of 
the hyperparameters with the use of the marginal log-likelihood in python, is discussed. 
 

Figure 4.1: Two fits through datapoints. The left plot shows the fit with a small length scale and the right 

plot shows the fit with a larger length scale. Source: (Evelinag, 2014) 
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The SE kernel also possesses the input distance argument, denoted by x - x′. This 
is the distance between the x-coordinates of two input points. The output variance 

together with the length scale and the distance between two input points determine the 
value of the Squared Exponential kernel function and therefore influence the output 

function. Generally speaking, when two input points are close to each other, it is expected 
that their corresponding output points are close to each other as well.  

For a clear understanding of the kernel function presented in equation 16, two 
extreme scenarios can be viewed. In the first scenario, the locations of two input 

datapoints are similar to each other which means that x - x′ = 0. This results in the output 

variance multiplied by the exponential of zero which is equal to σ2. In the second scenario 

where two input datapoints are infinitely far apart from each other, the argument becomes 

the exponential of negative infinity which approaches to 0. This indicates that a covariance 
value of 0 corresponds to no correlation between these points and a covariance function 

value equal to σ2 corresponds to a high correlation between these points. The covariance 

function value usually lies between these two extreme values.   

 The kernel function implies a distribution over functions. The reason for this is 
that a function can be treated as an infinite long vector with its values being equal to every 

single input point. A distribution can be assigned to this infinite long vector which results 
in a multivariate distribution. Samples can be drawn from this distribution by selecting a 

finite set of input points stored in vector X and setting up the covariance matrix by 
inserting the entries of this vector X in the kernel function at x and x′ in equation 16. The 

resulting n x n covariance matrix is presented in equation 17, with n being the amount of 
known input training points. In short, the K(X,X) matrix is obtained after implementing 

the covariance function to n input training points X. 
 

𝐾(𝑿, 𝑿) = [
𝑘𝑆𝐸(𝑋1, 𝑋1) ⋯ 𝑘𝑆𝐸(𝑋1, 𝑋𝑛)

⋮ ⋱ ⋮
𝑘𝑆𝐸(𝑋𝑛, 𝑋1) ⋯ 𝑘𝑆𝐸(𝑋𝑛, 𝑋𝑛)

] (17) 

 

With the obtained covariance matrix, a random Gaussian vector sample f can be 
generated, which is normally distributed with a mean vector equal to zero and a covariance 

matrix, as shown in equation 18. 
 

𝐟  ~  𝒩(𝟎, 𝐾(𝑿, 𝑿)) (18) 

 
This vector sample contains the values from the Gaussian Process that correspond to the 
input values. The Gaussian vector can subsequently be plotted against these input values 

to obtain the prior, which is the probability distribution before any actual data has been 
introduced and is solely defined by the kernel function. More of these samples can be 

drawn and plotted as can be seen in Figure 4.2.  
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Figure 4.2: An example of 5 random samples drawn from a Gaussian Process with a Squared Exponential 

kernel function. Source: (Roelants, 2019) 

 
 After defining the prior, a posterior can be created when some data is given. The 

posterior is the conditional probability distribution after data has been considered. It can 
be used to estimate the expected value and the probability of this expected value. For the 

prior, we already had n observed data points (X, f) which are the training points. Vector 
X contains the input data of these training points and vector f contains the corresponding 

function values. Predictions can now be made for n ͙ data points which are also called the 

test points (X ͙ , f ͙ ). The subscript asterisk denotes that the points are test points which 
are points that are unknown and need to be estimated. Next to the test points, there are 
also training points which are known points that are used to estimate the test points. The 

training points are denoted without an asterisk. This means that the values in vector f ͙ will 

be predicted given the training data (X , f) and the input variable X ͙ which corresponds to 
the test points or the points that will be predicted. In mathematical notation, this can be 

stated as  p(f ͙ |f, X, X ͙ ) which translates to the probability density of  the predictions f ͙  

given f, X and X ͙ . Since f and f ͙ both come from the same function, it can be stated that 
they are jointly Gaussian which means that they must have a multivariate normal 

distribution (Roelants, 2019). This is shown in equation 19. 
 

[ 
𝐟
𝐟 ͙

 ]  ~  𝒩 (𝟎, [
𝐾(𝑿, 𝑿) + 𝜎𝑛

2𝐼  𝐾(𝑿, 𝑿 ͙)

𝐾(𝑿 ͙, 𝑿) 𝐾(𝑿 ͙, 𝐗 ͙)
] ) (19) 

 

where K(X, X) denotes the n x n matrix of the covariances evaluated at the training points 

and obtained by applying the kernel function to these points. Similarly,  K(X, X ͙ ) denotes 

the n x n ͙ matrix of the covariances evaluated at all pairs of training and test points. The 

matrices K(X ͙ , X) and K(X ͙ , X ͙ ) follow this same logic. The noise variance is denoted by 

σn
2. This noise variance represents the noisy observations that are realistically present and 

that need to be taken into account. In the case of water retention curves, it represents the 
accuracy at which the moisture content can be measured based on the given data. It is 

written in the form of an n x n identity matrix.  
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 Ultimately, the following Gaussian Process regression equations can be deducted 
by using the Gaussian Identities (Rasmussen & Williams, 2006). 

 

𝐟 ͙ | 𝑿, 𝐟, 𝑿 ͙  ~  𝒩 (𝐟 ͙̅, 𝑐𝑜𝑣(𝐟 ͙)) (20) 

 
 

𝑚𝑒𝑎𝑛(𝐟 ͙)  =  𝐟 ͙̅ = 𝐾(𝑿 ͙, 𝑿)[𝐾(𝑿, 𝑿) + 𝜎𝑛
2𝐼]−𝟏𝐟 (21) 

 

𝑐𝑜𝑣(𝐟 ͙) = 𝐾(𝑿 ͙, 𝑿 ͙) − 𝐾(𝑿 ͙, 𝑿)[𝐾(𝑿, 𝑿) + 𝜎𝑛
2𝐼]−𝟏𝐾(𝑿, 𝑿 ͙) (22) 

 

In equation 21, the mean is denoted by f¯ ͙ which is used to plot the fit through the data 
points. The covariance of the mean is presented in equation 22. This can be used to plot 
the confidence interval around the mean fit for a certain model. An example can be found 

in Figure 4.3, which shows the optimal mean fit through some datapoints together with a 
confidence interval. It can be noticed that this confidence interval decreases in size when 

the density of the different datapoints is higher. This is because there is more certainty 
around these points that the true value lies in a certain interval, which is intuitively correct 

as well. When there are no datapoints nearby, the size of the confidence interval increases 
as there is less certainty. Thus, when there is few data available to confirm the predicted 

mean fit, the degree of certainty that this mean fit is true decreases.  

 

 

Figure 4.3:  The posterior for a number of datapoints in the form of a sinusoid with some noise. The red 

line represents the optimal mean fit through the observed data points. The pink interval represents the 
confidence interval equal to twice the standard deviation. The size of the interval fluctuates throughout. The 

black dots represent the observed data through which GP regression is performed upon. Source: (Roelants, 

2019)  
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4.2. GPy Machine Learning Algorithm 
GPy is a Gaussian Process framework written in Python that can be used for the 

application of Gaussian Process regression (Sheffield ML Group, 2015). It was developed 
by the Sheffield Machine Learning group under the Department of Computer Science of 

the University of Sheffield.  It can be downloaded as a ZIP file and subsequently imported 
in a Python notebook.  

 First, some training data is needed together with an interval where the data is 
plotted on. Next, a kernel function needs to be defined that will be used for the regression 

model. GPy offers a wide range of kernels, including but not limited to the Squared 
Exponential kernel, the Periodic kernel and the Matérn kernel. Together with the kernel, 

the initial length scale and variance for the chosen kernel can be determined. The Gaussian 
Process regression model can thereafter be extracted.  

GPy also allows for optimization of the model through the marginal log-likelihood 

method which is based on the principle of choosing the model parameters that maximize 
the likelihood function. The likelihood function represents how likely particular 

parameter values are, given some measured data. After this optimization process, new 
model parameters are defined that usually result in a better fit and a smaller confidence 

interval. It also prints the value of the marginal log-likelihood, which can be compared to 
its value before optimization. A higher marginal log-likelihood corresponds to an 

improvement in fit and confidence interval. In Figure 4.4, an example can be found that 
shows the effects of optimization in GPy on the predicted model for a number of 

datapoints.  

 

 

Figure 4.4:  The upper plot shows the GP regression before optimization of the model parameters σ2 & ℓ. 

The lower plot represents the GP regression after optimization. Source: (Bailey, 2016) 
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4.3. GPy for Water Retention Curves 
Fitting water retention data with the Least Squares method leads to residuals which are 

defined as the difference between the fitted line and the actual observed datapoints. This 
is presented in equation 6. When these residuals show some sort of pattern, it might be 

interesting to fit a Gaussian Process model through these points. The flexibility of the 
Gaussian Process regression model usually results in an accurate fit of these residuals as 

it does not follow a certain model or form. When this fitted line is added to the fitted water 
retention model described in Section (3.3), it might lead to an improvement of the fit and 

confidence interval.  
 The benefits of combining Gaussian Processes and Non-Linear Least Squares for 

the representation of water retention curves, can be assessed both visually and 
quantitatively. When the model fits better and smoother through the datapoints and when 
the confidence interval is smaller, it can be stated that the regression model indeed 

improved. Quantitatively, this can be analysed by computing the log-likelihood of the fit 
before and after the implementation of Gaussian Processes. Equation 22 presents the 

equation for computing the log-likelihood in the scenario where only the Non-Linear Least 
Squares method is considered.  

 

𝑙𝑜𝑔-𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = ∑ log (
1

𝜎√2𝜋
𝑒

−
1
2 (

𝑥𝑖−𝜇
𝜎 )

2

)

𝑛

𝑖=1

(22) 

 

 
where log denotes the natural logarithm and:  

σ is the standard deviation which can be calculated from equation 10 
x is the function value of an observed datapoint 
μ is the mean of model, represented by the fitted line 

 
 

This can be computed in Python with the norm.logpdf function from the SciPy Stats 
package. When implementing the Gaussian Process regression model, the marginal log-

likelihood can be automatically computed with GPy. 
 

The log-likelihood values for the two models can then be compared to each other 
to determine whether the model actually improved. As already stated, a higher log-

likelihood corresponds to a better fit. This means that the log-likelihood of the model 
where Gaussian Processes are implemented should be higher than the log-likelihood of 

the Least Squares model in order to state that with the help of Gaussian Processes, water 
retention curves improve indeed. This will be the focus in Chapter 5, where Gaussian 

Processes for water retention curves will be evaluated on the basis of datasets extracted 
from the UNSODA soil database.  
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5 

Results 

 
For the evaluation of Gaussian Processes for water retention curves, comparisons 

need to be made with the traditional approaches of representing water retention curves. 
This needs to be done on the basis of actual water retention data in order to be able to 

draw a correct conclusion. The datasets that will be used are originating from the 
UNSODA soil hydraulic database as discussed in Section (2.2). With the use of these 

datasets, water retention curves can be plotted and ultimately compared for each 
regression model.   
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5.1. Used Datasets 
The UNSODA database contains many datasets in various categories as is illustrated in 

Figure 2.6. Many datasets are numerically fairly similar to each other. The following  four 
datasets, presented in Tables 1 up until 4, were retrieved from the UNSODA database and 

will be used to analyse the different regression models for the water retention curves. 
These four datasets have been chosen carefully to be dissimilar to each other, so that a 

qualitative analysis can be performed on different types and shapes of water retention 
curves.  

 

 

 

Table 1 
Dataset 1: 25 Measurements for Moisture Content and  
Pressure Head. 
 

 

No. 
Pressure head 

[cm] 
Moisture content 

[-] 
No. 

Pressure head 
[cm] 

Moisture content 
[-] 

1 1 0.578 14 200 0.545 

2 2 0.577 15 300 0.537 

3 3 0.576 16 500 0.524 

4 5 0.574 17 700 0.513 

5 7 0.573 18 1000 0.500 

6 10 0.572 19 1500 0.482 

7 15 0.570 20 2000 0.468 

8 20 0.568 21 3000 0.448 

9 30 0.566 22 5000 0.425 

10 50 0.562 23 7000 0.414 

11 70 0.559 24 10000 0.396 

12 100 0.555 25 15000 0.378 

13 150 0.549  

Note: Measurements done under laboratory drying conditions. Retrieved from the UNSODA database.  

Table 2 
Dataset 2: 13 Measurements for Moisture Content 
and Pressure Head. 

 

   

No. 
Pressure head 

[cm] 
Moisture content 

[-] 
No. 

Pressure head 
[cm] 

Moisture 
content [-] 

1 1 0.447 8 345 0.319 

2 5 0.434 9 690 0.308 

3 10 0.417 10 2000 0.299 

4 20 0.398 11 5000 0.297 

5 40 0.378 12 10000 0.296 

6 80 0.362 13 15000 0.294 

7 160 0.335  

Note: Measurements done under laboratory drying conditions. Retrieved from the UNSODA database. 
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5.2. RETC Results 
The datasets from Section 5.1 can be used in the RETC program to obtain the soil hydraulic 
parameters for a particular model and to plot this model as discussed in Section (3.2). The 

estimated values of the soil parameters for the datasets 1 up until 4 can be seen in Figure 
5.1. The values of these soil parameters are subsequently used for plotting the water 

retention curve. These plots can be represented in different ways based on the scale that 
is used for the horizontal axis and for the vertical axis. The water retention curves for the 

datasets 1 up until 4 are presented in Figure 5.2.  
The plots in Figures 5.2 show some poor water retention curves, even though the 

points are fairly well fitted.  Figure 5.1a shows a table with the estimated soil parameters 
for the plot in Figure 5.2a. Here, the estimation for θr seems to be missing. This can be 
explained by looking at Figure 5.2a, where it can be seen that the gradient of the curve 

becomes larger in absolute value when the pressure head increases. This means that the 
moisture content decreases significantly when only little extra water pressure is occurring. 

Due to the fact that a soil will remain at least some moisture inside its pores, which is equal 
to the residual moisture content, a water retention curve should asymptotically approach 

this residual moisture content. As the plot in Figure 5.2a does not do this, no residual 

Table 3 
Dataset 3: 9 Measurements for Moisture Content 
and Pressure Head. 

 

   

No. 
Pressure head 

[cm] 
Moisture content 

[-] 
No. 

Pressure head 
[cm] 

Moisture 
content [-] 

1 1 0.474 6 500 0.417 

2 2 0.469 7 1000 0.410 

3 19 0.431 8 5000 0.396 

4 48 0.427 9 15500 0.385 

5 200 0.423  

Note: Measurements done under laboratory drying conditions. Retrieved from the UNSODA database. 

    

Table 4 
Dataset 4: Measurements for Moisture Content 
 and Pressure Head. 

 

No. 
Pressure head 

[cm] 
Moisture content 

[-] 
No. 

Pressure head 
[cm] 

Moisture 
content [-] 

1 5 0.355 9 300 0.297 

2 10 0.354 10 350 0.282 

3 20 0.353 11 500 0.271 

4 30 0.350 12 1000 0.308 

5 40 0.344 13 2000 0.281 

6 50 0.344 14 4000 0.281 

7 100 0.321 15 15000 0.268 

8 200 0.301  

Note: Measurements done under laboratory drying conditions. Retrieved from the UNSODA database. 
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moisture content value can be determined. This means that the plotted water retention 
curve in Figure 5.2a is unrealistic and therefore inaccurate.  

In Figure 5.2c, the plot does not look like a typical water retention curve as well. 
This is partly caused by an incorrect estimation of α, which is unusually large as can be 

seen in Figure 5.1c. Due to the specification of the water retention curve model, the RETC 
program still attempts to fit a curve through the points by estimating the soil parameters 

for the model even though that these estimated parameters are not always physically 
possible. The estimated value for θr seems to be missing for plot c as well. This can be 

explained by looking at the plot in Figure 5.2c.  The fitted retention curve in this figure 
shows that the curve does not asymptotically approach any value when the water pressure 

increases as it keeps decreasing with a constant rate. Similar to plot a, this explains why 
the value for the residual moisture content θr is missing. This goes to show that when too 

little data is available or when the data deviates from the norm, an adequate water 
retention curve is difficult to be obtained with the RETC program. 

 

 
Figure 5.1: In RETC estimated hydraulic soil parameters for dataset 1 (a), dataset 2 (b), dataset 3 (c) and 

dataset 4 (d). The used water retention curve model for all datasets is the van Genuchten model in 
combination with the Mualem assumption for the relation between m and n. The final estimates for the soil 

parameters are stated under ‘Value’. 
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Figure 5.2: In RETC fitted water retention curves for dataset 1 (a), dataset 2 (b), dataset 3 (c) and dataset 

4 (d), represented by the black line. The red circles indicate the measured water retention data points. The 

used water retention curve model for all datasets is the van Genuchten model in combination with the 
Mualem assumption for the relation between m and n.  

 

5.3. SciPy Curve Fit Results 
The same principle behind the RETC program can be implemented in Python as discussed 

in Section (3.3). First, the optimal soil parameters can be extracted from the 
Optimize.curve_fit function. These optimal parameters can subsequently be used to plot 

the water retention curve. This process is done for the datasets 1 up until 4, which  can be 
found in Tables 1 up until 4, respectively. The estimated soil parameters are presented in 

Table 5. The plots for these datasets are presented in Figure 5.3. The Python code for the 
Non-Linear Least Squares regression method using SciPy Curve Fit can be found in 

Appendix A. 
The plots in Figure 5.3 are fairly similar to the RETC plots in Figure 5.2 as the same 

method and technique is used for fitting a model through the observed datapoints. Similar 
to the RETC program, the water retention model also breaks down for datasets 1 & 3, as 
can be seen in both the plots and the soil parameters. However, the estimated parameters 

are deviating slightly from the parameters that were estimated in the RETC program. An 
explanation for this is that different initial values are used for the RETC program and the 



                                                                                                                                                           5. Results 
 

30 
 

Python script. Furthermore, the number of iterations is also different for the two methods. 
In general, the water retention curves of the two methods are fairly similar. For practical 

reasons however, the Python scripts will be used instead of RETC for the comparison 
between the Non-Linear Least Squares method described in Chapter 3 and the Gaussian 

Process regression method described in Chapter 4.  

 

 

Figure 5.3: Water retention curves, with estimated parameters with the use of Python’s SciPy package 

and function Optimize.curve_fit for dataset 1 (a), dataset 2 (b), dataset 3 (c) and dataset 4 (d). A 95% 

confidence interval has been plotted around the fitted functions which is defined as twice the standard 

deviation. The blue line represents the fitted function for the optimal parameters. The red dots represent the 
measured water retention data points. The functions have been plotted with a logarithmic scale for the 

horizontal axis.  

Table 5 
Estimated Soil Parameters obtained with the SciPy Optimize.curve_fit function in Python for Datasets 1 
up until 4. 

 
Dataset θr [-] θs [-] α [L-1] n[-] 

1 0.0 0.5723 0.003 1.107 

2 0.252 0.4543 0.1875 1.23 

3 0.248 0.4768 1.0 1.053 

4 0.247 0.3629 0.0348 1.338 
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5.4. GPy Results 
In Section (4.3), the method for representing water retention curves with the help of 

Gaussian Processes is described. This will be done with the GPy framework in Python. The 
Python code that is used for Section 5.4 can be found in Appendix B.  

First, the residuals of the Non-Linear Least Squares fit described in Section 3.3 
need to be computed. Figure 5.4 shows the plots of these residuals for datasets 1 up until 

4. Subsequently, Gaussian Process regression can be performed on these residual 
datapoints in order to obtain a fit through these points. This is illustrated in Figure 5.5. 

Notice that in plot d in Figure 5.5, no fit is obtained through the datapoints. The mean fit 
remains at zero throughout. The reason for this is that the errors are too random and no 

structure or pattern is recognized in contrast to plots a, b and c. This also leads to a larger 
confidence interval as there is weak correlation between the datapoints.  

 

 

Figure 5.4: Plots of the residuals for dataset 1 (a), dataset 2 (b), dataset 3 (c) and dataset 4 (d). The black 

horizontal line represents the zero line. Residuals above this line represent a larger value of the 

measurements than the Least Squares fit and vice versa.   
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Figure 5.5: Plots of the Gaussian Process fits, from GPy, through the residuals for dataset 1 (a), dataset 2 

(b), dataset 3 (c) and dataset 4 (d). The red circles represent the residual datapoints and the green line 
represents the optimal mean fit through these points. The light blue area around the mean fit represents the 

95% confidence interval.   

 

For the final step, the mean fits from Figure 5.5 will be added to the mean fits in 
figure 5.3 for each dataset. This will result in new water retention fits with different 
confidence intervals as illustrated in Figure 5.6. Furthermore, Table 6 presents the 

Gaussian Process model parameters σ2, ℓ and σn
2 for the four datasets after optimization, 

as discussed in Section (4.2). Here, σ2 represents the Squared Exponential Kernel 

variance, ℓ represents the Squared Exponential Kernel length scale and σn
2 represents the 

Gaussian noise variance which is the measurement error. These optimized model 
parameters correspond to the plots illustrated in Figure 5.6.  

 

Table 6 
Optimized model parameters extracted from GPy for Datasets 1 up until 4. 

 

Dataset σ2 ℓ σn
2 

1 9.79e-06 0.51 1.0e-06 

2 4.84e-05 0.75 4.48e-06 

3 3.15e-05 0.58 1.0e-06 

4 1.56e-12 12.96 1.1e-04 
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Figure 5.6: Water retention curves estimated with the combination of Python’s Optimize.curve_fit  

function and the GPy framework for Gaussian Process regression analysis, for dataset 1 (a), dataset 2 (b), 

dataset 3 (c) and dataset 4 (d). A 95% confidence interval has been plotted around the fitted functions. The 

blue line represents the fitted line. The red dots represent the measured water retention data points. The 
functions have been plotted with a logarithmic scale for the horizontal axis.  

 

 

5.5. Comparing Results from Least Squares and GPy  
Now that the water retention curves have been computed and plotted for both methods, it 
is possible to compare them in order to draw a conclusion on whether water retention 

curves can be improved with the help of Gaussian Processes. Figure 5.7 up until 5.10 
present the water retention curves for both methods next to each other for datasets 1 up 

until 4, respectively.  
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Figure 5.7: Different water retention curves for dataset 1. Plot 5.7a represents the Non-Linear Least 

Squares method for representing water retention curves. Plot 5.7b represents the Non-Linear Least Squares 
method combined with the Gaussian Process regression method for representing water retention curves. A 

95% confidence interval has been plotted around the fitted functions. The blue line represents the fitted line. 

The red dots represent the measured water retention data points. The functions have been plotted with a 
logarithmic scale for the horizontal axis. 

 

 

 
Figure 5.8: Different water retention curves for dataset 2. Plot 5.8a represents the Non-Linear Least 

Squares method for representing water retention curves. Plot 5.8b represents the Non-Linear Least Squares 

method combined with the Gaussian Process regression method for representing water retention curves. A 

95% confidence interval has been plotted around the fitted functions. The blue line represents the fitted line. 
The red dots represent the measured water retention data points. The functions have been plotted with a 

logarithmic scale for the horizontal axis. 
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Figure 5.9: Different water retention curves for dataset 3. Plot 5.9a represents the Non-Linear Least 

Squares method for representing water retention curves. Plot 5.9b represents the Non-Linear Least Squares 

method combined with the Gaussian Process regression method for representing water retention curves. A 

95% confidence interval has been plotted around the fitted functions. The blue line represents the fitted line. 
The red dots represent the measured water retention data points. The functions have been plotted with a 

logarithmic scale for the horizontal axis. 

 

 

 
Figure 5.10: Different water retention curves for dataset 4. Plot 5.10a represents the Non-Linear Least 

Squares method for representing water retention curves. Plot 5.10b represents the Non-Linear Least 

Squares method combined with the Gaussian Process regression method for representing water retention 
curves. A 95% confidence interval has been plotted around the fitted functions. The blue line represents the 

fitted line. The red dots represent the measured water retention data points. The functions have been plotted 
with a logarithmic scale for the horizontal axis. 
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 Figures 5.7 up until 5.10 allow for a clear visual comparison between the two water 
retention curve representation methods. For dataset 1, the implementation of Gaussian 

Processes did result visually in a better fit and a better confidence interval as can be seen 
in Figure 5.7. However, because the traditional method already resulted in a good fit, the 

implementation of Gaussian Processes did not result in major improvements. However, 
the water retention curve models did improve for datasets 2 and 3 as is illustrated in 

Figure 5.8 and 5.9. Figure 5.9a shows a bad representation of a water retention curve with 
too much uncertainty. When the Gaussian Process regression method is applied on this 

dataset, the curve significantly improves as is shown in Figure 5.9b. Also, the confidence 
interval is decreased in size which means that the uncertainty has decreased as well. 

Finally, dataset 4 can be evaluated which corresponds to Figure 5.10. The plots and the 
confidence intervals seem quite similar to each other. This was expected as the mean fit of 

the residuals was equal to zero. When this mean of zero is added to the Least Squares 
model, no changes are made. This means that when the residuals are weakly correlated, 

Gaussian Processes have no impact on the model, which is intuitively correct as Gaussian 
Processes depend on the correlation between training points as discussed in Chapter 4.  
 Next to the visual evaluation of the regression methods, a quantitative evaluation 

also exists. The models can be compared quantitatively by computing the log-likelihood 
of the fits as mentioned in Section 4.3. Table 7 presents the log-likelihoods of each model 

for the datasets 1 up until 4. The Python code that was used for the computation of these 
values can be found in Appendix C. It appears that for datasets 1 up until 3, the 

implementation of Gaussian Process regression, indeed improved the water retention 
curves, as the log-likelihood values for this model are higher which is shown in Table 7. 

For dataset 4, the log-likelihood did not increase but stayed the same. This means that the 
fit did not improve or worsen when Gaussian Process regression was implemented. This 

confirms the visual assessment made previously regarding Figure 5.10.  
 

 

Table 7 

Log-Likelihoods for the Non-Linear Least Squares Regression Model and the Gaussian Process Regression 

Model, for Datasets 1 up until 4. 
 

Dataset 
Log-Likelihood with only Least 
Squares 

Log-Likelihood with Gaussian 
Processes 

1 109.89 126.29 

2 47.16 52.96 

3 33.52 37.44 

4 46.86 46.86 
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6 

Discussion 

 
For this research, Gaussian Process regression was performed on the residuals that 

resulted from Non-Linear Least Squares regression. Subsequently, the fit obtained from 
this method was added to the Non-Linear Least Squares fit in order to obtain a new fit 

together with a new confidence interval. It appears that in most cases, the implementation 
of Gaussian Process regression on the representation of water retention curves, is 

beneficial. The flexible property of the Gaussian Process model plays an important factor 
in the improvement of water retention curves.  
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A suggestion for further research, is to perform Gaussian Process regression on 
water retention data instead of the residuals that resulted from Least Squares fit. The 

water retention fit will then be completely determined by the Gaussian Process. An 
obstacle for this method is that the physical limitations of water retention curves are not 

considered. An example of a physical limitation is that the moisture content cannot 
increase when the pressure that pushes the water out of the soil pores also increases. This 

can however be solved by implementing constraints to the Gaussian Process regression 
model, which forces the fit to follow a logical path. A question that arises from this 

approach, is the accuracy and validity of such a fit when these constraints are 
implemented. This also needs to be investigated.   

Furthermore, the analysis in this report was performed on four datasets. These 
datasets were retrieved by conducting experiments under laboratory drying conditions. 

Even though that these datasets represent a large portion of the water retention data 
available, it might be valuable to perform this analysis on a larger number of datasets and 

under different types of experimental conditions. A different soil database can be 
consulted as the UNSODA soil hydraulic database does not contain sufficient qualitative 
datasets for all the measurement techniques.  

Finally, it would be interesting to make use of different models for the Non-Linear 
Least Squares method. In this report, the model that was used for the Non-Linear Least 

Squares method, is the van Genuchten model. This model was then combined with the 
Gaussian Process regression model in order to obtain a final fit. Different models that can 

be considered include the Brooks-Corey model and the lognormal distribution model of 
Kosugi, discussed in Section (2.1). 
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7 

Conclusion 

 
The aim of this report was to investigate whether water retention curves can be 

improved with the help of Gaussian Processes. Due to the breakdown of traditional models 
in certain situations, Gaussian Process regression analysis was performed to evaluate the 

improvement of water retention curve representations in terms of curve fitting and 
uncertainty analysis. This method was then compared to the Non-Linear Least Squares 

method in order to draw a valid conclusion on the effects of Gaussian Processes for water 
retention curves.  
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For this analysis, four datasets from the UNSODA soil hydraulic database have 
been used to plot the water retention curves for the two different methods. Next to the 

water retention curve fits, the 95% confidence intervals and the log-likelihoods of the two 
methods have been computed as well.  

For three out of four datasets, the implementation of Gaussian Processes did 
improve the representation of water retention curves. This is visible in the pF curve plots, 

where the fitted lines pass through the points more accurately. The water retention curve 
corresponding to dataset 3, significantly improved as the shape of this curve represented 

a more realistic water retention curve. Furthermore, the 95% confidence intervals did 
improve as well for the first three datasets. This improvement presents itself in the form 

of a smaller confidence interval and thus less uncertainty of the mean fit, and in a 
fluctuating confidence interval. This fluctuating confidence interval shows that when 

more data is introduced around a certain point, the uncertainty decreases and vice versa.  
For the fourth dataset, the implementation of Gaussian Processes had no effect on 

the representation of water retention curves. The reason for this, is that the residuals 
showed weak correlation and that the Gaussian Process regression model could not fit a 
useful line through these points.  

The log-likelihoods of the two methods for the datasets confirm these evaluations. 
The log-likelihood for the first three datasets is greater for the method with Gaussian 

Processes, while the log-likelihood for the last dataset is equal for both methods. As the 
log-likelihood represents how good a certain fit is, it can be stated that the water retention 

curves for the first three datasets did improve and that the water retention curve for the 
last dataset remained the same. 

It can be concluded that for datasets with some degree of correlation between the 
residuals, Gaussian Processes do improve the representation of water retention curves in 

terms of curve fitting and uncertainty analysis. This finding will contribute to improving 
the modelling of water flow through soils. 
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A  
SciPy Curve Fit  

Python code for Non-Linear Least Squares Regression with the use of the SciPy Optimize 
Curve Fit package, for datasets 1 up until 4. 
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B  
GPy for Gaussian Process 

Regression 

Python code for Gaussian Process Non-Linear Regression with the use of the GPy 

package, for datasets 1 up until 4. 
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C  
Log-likelihood Python Code  

Python code for computing the Log-likelihood of the Gaussian Process Regression model 
and the Non-Linear Least Squares Regression model, for datasets 1 up until 4. 
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