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Preface

The one year Joint Industry Research Project "Fitness for Purpose Evaluation of
Cracked Critical Structural Details (CSD) in Tankers" was initiated in 1993 by the
Department of Naval Architecture & Offshore Engineering, University of California at
Berkeley as an extension of the projects "Structural Maintenance for New and Existing
Ships" and “Ship Structural Maintenance”. The objective of this project is to develop
engineering guidelines and procedures to help ship repair engineers, port superintendents
and surveyors make evaluations of the fitness for purpose of cracked Critical Structural

Details (CSD) in tankers.

This project was made possible by the following sponsoring organizations:
-American Bureau of Shipping «Chevron Shipping Cooperation i
-Mitsubishi Heavy Industries -Newport News Shipbuilding & Dry Dock Co.

sShip Structure Committee

This report, documents a load shedding model for fracture mechanics analysis of

cracked critical structural details (CSD): in tankers.
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Chapter 1

Introduction
1.1 Objective

The objective of this study was to calibrate a load shedding model for

fracture mechanics analysis of cracked Critical Structural Details (CSD) in ‘tankers.

This study was intended to establish empirical formula to describe the effects

of load shedding in the propagation of cracks in cracked CSD in tankers.
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Fig 1.1 Description of Load Shedding Effects
Fig. 1.1 shows the typical load shedding effects in the propagation of cracks in
cracked CSD in tankers. Here, a is the crack size. ao is the inital crack size. ac is the

critical crack size.




1.2 Scope

This report documents the sources of load shedding in cracked CSD, the
development and verification of empirical formula to characterize load shedding and

applies the load shedding effects in general fracture mechanics analysis.
This report addresses the following questions -

What is load shedding and how does it effect crack propagation ?
How can we analyze and model load shedding and its effects ?

How can we verify and calibrate a load shedding model ?

During the this study, a literature survey was conducted which focused on lToad
shedding odels for tubular joints i offshore structures. Based on results from the
literature survey, a théoretical and nuincrical study for load shedding was conducted and
verified with experimental data. A general formula for load shedding was proposed based

on this verification. This formula was applied to several CSD in tankers.
1.3 Background

Load shedding is a stress redistribution: for cracked structures due to the boundary

conditions and adjacent elements during the crack propagation,

The two edge cracked plates in Fig 1.2 are subjected to cyclic tensile loadings. The
magnitudes of the two loadings are such that the crack opening stresses are identical. The

crack in plate A propagates at an increasing rate until the critical crack length is reached



(Fig 1.1 : without load shedding curve). The crack in plate B propagates at a slower rate
because as the crack gets larger, a portion of the loading is transferred to the support

provided at the right vertical edge (Fig 1.1 :-with load shedding curve).
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Fig 1.2 Description of the Load Shedding due to Boundary Conditions.

A comparable mechanism of load shedding is illustrated in Fig 1.3. As the crack in
plate B propagates to the vertical stiffener, the stiffener will act to absorb the loading. The

crack propagation.rate will be reduced.

f

Fig 1.3 Description of Load shedding due to adjacent structures



Thus, load shedding is the process in which crack-section loading is re-distributed

to othér adjacent elements and components.

1.4 Previous Research

Previous research on load shedding effects has been focused mainly on the stress
redistribution of offshore tubular joints. In this case, the stress flow through a tubular joint
is strongly affected by the presence of a crack. As a crack is growing through the tubular
joints' high stress region, the load is redistributed w less stressed parts of the joint. This

load shedding effect is important for fracture mechanics modeling e.g. Fig 1.4

 Load shedding
1.0 r§ o g i -
08+ T~ \N_e'WmayRaju Plate
8 ) o
06" Tubular Joine A
0‘#4 T \ - %
021 '
sr/soo'0 RS- : , . ot

.02t 02 04 06 98- 10
-0.4+ o . =7 ., .:.o:. : Y ‘
0.6p - 7T .
0.8 -

L

Fig 1.4 Load Shedding Study in Offshore Tubular Joints.

In Fig 1.4, a/t is the ratio of the crack depth and plate thickness. so is the hot spot
stress on ¢rack initiation site. sris the crack opening stress on the crack tip when the crack
propagates. One cdrve is the sress ratio (crack opening stress/hot spot stress) which is
computed by finite element analysis (FEA) for Newman-Raju plate'. Another curve is the

real crack opening stress for tubular joints. This curve is computed by FEA for different

* Newman-Raju plate is a flat plate with a central crack. The stress intensity factor for this case is called Newman-Raju solution. Iis
widely applied in compultation of stress intensity factors of tubular joints



crack depth, a/t . The difference between these two curves is due to the redistribution. of
the stress. In this figure, the dashed line is the stress on the top of the plate, and the dotted,

1s line the stress on the bottom of the plate. The crack propagates from top to bottom..

The previous research on load shedding for offshore tubular joints is summarized

as follows :

Forbes [1992] proposed a model for tubular joints where experimerital data for the
stress relaxation is applied to a flat platé with. specific boundary conditions to simulate the

stiffness of a cylindrical shell. Good correspondence with test data was. obtained.

Haswell [1992] explored load shedding using finite element analysis (FEA)
methods. Computed values for the stress intensity factor at discrete values a/t (crack depth
to plate thickness ratio) was. correlated with a "Degree of Bending" parameter (DoB).
DoB is. the ratio St/Sss. where So Susare the bending stress and hotspot stress respectively.
A linear model for the Newman-Raju solution was assumed. where A and B are regression
coefficients derived for selected values of a/t. Analysis showed that the stress intensity
factor depends not only on DoB parameter, but is substantially influericed by the structural

geometry of the joint.

Aaghaakouchak, et al. [1989] proposed a simplified load shedding model for
tubular joints where the hot Spot siress was separated into a membrane and a bending

component. The membrane stress, om, was assumed to be unaffected by the crack. The

bending component was allowed to decrease linearly with crack length, This model was

shown to give stress intensity factors in good correspondence with experimental values
derived from crack growth rates in tubular joints. But the analysis were only limited to one

value of the aspect ratio, (ratio of crack dcpth: to crack width) which was a/2¢c=0.1.




1.5 Approach
This study was organized into the following six tasks:

Task 1 - Perform a literature review
Task 2 - Perform a numerical study of stress intensity factors for general cracked

problem.

Task 3 - Perform a theoretical study of stress intensity factors for general cracked
problems

Task 4 - Calibrate a general load shedding model for use in the computation of
stress intensity factors based on the results from the theoretical study, numerical
study, and existing experimental data

Task 5 - Apply the load shedding model to the computation of the stress intensity
factors for the cracked structural details.

Task 6 - Develop and summarize empirical load shedding analytical expression for

different CSD.
1.6 Summary

The following summarizes the answers to the key questions posed at the beginning

of this study.
What is Load Shedding and how does it affect crack propagation?

Crack growth through the plate thickness in a plane weld is illustrated in Fig. 1.5
where a is the crack length and N is the number of cycles to fatigue failure (Note the

extremely rapid acceleration of growth after the crack has reached a certain length). This




is typical for crack growth in plane unstiffened structures, where cracks will tend to
advance with a straight crack front (small aspect ratio). The accelefation of crack growth
then reflects the Paris’ power-law. The similar behavior is seen. for cracks growing from

tut-outs in unstiffened structures Fig. 1.6.and1.7.
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Fig 1.5 Fatigue Crack Growth from a Cruciform Joint
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Fig 1.6 : Stress distribution for a crack initiated from a cut-out

For cracks growing from a cut-out, a short crack will sense the hotspot stress at
the cut-out as a homogeneous field. A long crack will sense the average stress, but with

the cut-out as a part of the crack, leading to an accelerated crack growth rate. (Fig 1.7)
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Fig 1.7: Crack growth from a circular cut-out in a plate

A consequence of this is that for the geometries in Fig 1.6 and 1.7, any significant
size weld defect will have a very detrimental effect on fatigue life. Moreover, the time to
failure after the crack reaches a detectable size may be too short for ingpections to be
reliable. Therefore, the potential for 4 sudden loss of load carrying capacity of single

members should be considered iin design.

For stiffened members: in tankers, the progress of crack growth is somewhat
different. Fig 1.8 shows a typical crack growing in a stiffened plate. In this case,
redistribution of stresses to the stiffeners and other adjacent members will take -place
during crack growth. the stiffeners may arrest the crack growth entirely. The net effect is a
reduction in stress intensity (Fig 1.8b), and a retardation of growth rate when the crack tip
approaches a stiffener (Fig 1.8¢). This general effect of stiffening and load shedding is one

reason why fatigue cracks can be tolerated to some extent in tanker structures (Fig 1.8d).
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Fig 1.8 Fatigue Loaded Stiffened Plate
a) Crack Growing Perpendicular to the Stiffeners.

b) Stress Intensity factor for a crack growing perpendicular to the stiffeners in the

stiffened panel
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Fig 1.8 Fatigue Loaded Stiffened Plate

Fig 1.8 ¢) Crack growth rate for stiffened panel

d) Crack growth for an unstiffened plate and stiffened plate

In Fig 1.8d, the dashed line is for unstiffenéd plate, and the plain line is for

stiffened plate. The difference between these two lines is due to load shedding



‘The difference between unstiffened plates which are studied extensively in general

fracture mechanics.and stiffened plates which are used in tanker structures is 3

1)These plates between. thie stiffeners are redundantly restrained by
stiffeners, and

2)There are stress concentrations for crack initiations due to stiffeners.

From the previous disc ssions, we can define load shedding precisely as :

Load shedding is the stress redistribution for statically indeternmiinate
cracked structures due to the redundant boundary conditions and adjacent elements

when cracks grow under the arbitrary stress field.

This definition iffiplies that load shedding is the stress redistribution under three

restrictions, They are

1 - Statically indeterminate cracked structures,
2.-Redundant boundary conditions, and

3 - Afbitrary stress fields.

How can we analysis and model load shedding and its effects ?

From the precise definition of load shedding, It can be concluded that a
methodology or solution for stress intensity factors should be included two factors which
contribute, to Toad shedding. One is the stress redistribution due to the redundant boundary

condjtions. The othier 1s the stress gradient due to. an arbitrary stress field, The arbitrary

10



stress ficld is caused by local stress concentrations. That is to say that the stress gradient

factor 1s the factor which represents the local stress concentration effects.

How can we calibrate and verify a load shedding model ?

The calibration was based on a numerical study, a theoretical study, and an

experimental study.

The load shedding model was calibrated through two factors which contributed to
the stress intensity factor's computation. That i§ stress redistribution factor and Stress

gradient factor,

"The stress redistribution factor was calibrated based. on the results from FEA and:

experimental tests.

‘The stress gradient factor was calibrated using the Green function method®, FEA
and experimental data.

The calibration and verification will be addressed in detail in subsequent chapters.

How can we develop the empirical formula for load shedding ?

The empirical stress gradient factors for different details were derived based on

results from a parameteric study of different details with different dimensions.

* Green function method is a general numerical method to compute 3tress intensity factors forcracked
structures




‘The empirical stress redistribution factors for different details were derived from

theoretical study and experiment data for general cracked structures.

1.7 Report

This report is divided into six additional chapters. Chapter 2 discusses the FEA for
cracked CSD. Chapter 3 summarizes the Newman Raju equation for the stress intensity
factors for surface cracks. Chapter 4 discusses the calibration of the load shedding model
for surface cracks, Chapter 5 develops a load shedding calibration for through thickness
cracks. Chapter 6 proposes empirical formula for load shedding effects in different CSD,
Chapter 7 is the application of the load shedding model in a cracked CSD in a 165,000

DWT tanker. Chapter 8 is a summary and conclusion.
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Chapter 2

Finite Element Analysis

2.1 Introduction

Finite element analysis (FEA) is one of the most applicable numerical methods in
the study of the crack problems. In order to develop and calibrate. a load shedding model, |
several finite element approaches: were employed. The following ptesents a displacement
approach with mon-singular elesnents and a siress approach with mon-singular elements.

These. two approaches were employed in this development, |
2.2 Displacement approach

The displacement method with non-singular elements involves a correlation of the
fipite element nodal point displacement with the well known Crack-tip displacement

equations. For mode-I crack’, the displacement equations can be given as :

=5

r '
u;=2b =h(6.v) (2.1)

* Mode-I crack is the crack due o tensile loads




where Ki is a function of the geometry of the body containing the crack and of the applied

-
cos%(l -2v+sin? 9-)
= - for plane strain (2.2)
sin g(2 - 2v-cos’ 9—)
2 2

L. -
- -

|
|
1
loading conditions.The term f; (6, v) is: |
I
|
|
|
\
\
|

6 1-v 5] 0
cos -2-(-1+— +sin 5)
f = v for plane stress (2.3)

sin g(—z—— cos? g)
2 1+v 2

Rearranging the above equation, and substituting nodal displacements, u:, at some

point (r,0) close to the crack tip (Fig 2.1), a quantity K, can be computed :

K; =\/§G[fi<e, Vlu; (2.4)

|

|

|

|

|

|

|
From plots of K; as a function of r for fixed values of 6 and a particular displacement {
|

component (u* or v*), an estimate of Ki can be made by extrapolating back to r-> 0. At
this stage, one must observe that nodal displacements are rather inaccurate at an
infinitesimal distance from the crack. This limitation can be overcome by refining the mesh
near the crack-tip. With a suitably refined mesh, it is possible to use tangent extrapolation

to estimate the stress intensity factor. (Fig. 2.2)

2.3 Stress Approach

The stress approach with non-singular elements involves a correlation of the finite

element nodal or Gauss point stresses with the crack-tip stress equations, as follows:

Ll T

|

|

|
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¢ |
o, = —=f;(8) (2.5) |
|
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Fig 2.2 Variation of K; with r/a for a finite crack in a plate.
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Rearranging the above equation gives:

2nar

M= Wcu (2.6)

with M=1,11,or Il depending upon the examined mode.

Nodal point stress oy * in the vicinity of the crack-tip can be substituted in
equation 2.5 and 2.6 So that values of K}, can be obtained: Again, from plots of Ky asa
function of t near the crack-tip for fixed 8 and a particular stress component, an estimate

of Km can be made. In view of ‘the inability of the convenfional constant strain elements to

represent the stress singularity condition at the crack-tip, the K;,, curves for r > 0 must

again be extrapolated back to r=0.

2.4 Example

In ordef to ilfustrate the finite element analysis for crack problems. A series study

for a cracked. plate is conducted. Fig 2.3 shows the geometry, dimension.
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Fig 2.4 Finite Element Analysis for & Cracked Plate
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The finite element analysis was carried out for two boundary conditions and two

load cases (see Fig 2.5)

Load Case :

Fig 2.5 Boundary conditions and load cases for proposed cracked plate
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Fig 2.6 Hot spot stress vs Crack Length for different Boundary Conditions
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In this analysis, 3-D solid element is used to model the plate. The analysis is

carried out under different boundary conditions and load cases.

In Fig 2.6, the effects of boundary conditions for crack opening stress for the plate
under uniform tension is displayed. This effects is not significant in the figure. The reason
may be as follows:

1 - The crack is far away from the boundary conditions. The ratio of crack length

to plate width (a/w) is very small. The fixed right side of plate does not absorb

more loading during the crack propagation.

2 - The crack is propagated under the uniform tension. For the load case of

uniform tension, the stress redistribution effects is not significant.

In Fig 2.7, the crack opening stress under load case 2 is displayed. One line is the
crack opening stress for the cracked plate with a fixed side. The other line is the crack
opening stress for the cracked plate with the free side. There is a trend for rél‘atively large
difference between these two lines. This difference is due to the load shedding factor. The
reason that the difference is small in this faigue is that the ratio of the crack length to plate

width (a/b) is small for this case (a/b=0.05).

In Fig 2.8, The comparison of the SIF from analytical results (Newman-Raju
Equation) and from numerical results (FEA) is displayed. The data on series 1 is the SIF

for a small cracked plate with a free boundary side from FEA. The data on series 2 is the

SIF from analytical solution. The data on series 3 is the SIF for a small cracked plate with
a fixed boundary side from FEA. The data on series 4 is the SIF for a large cracked plate
with a free boundary side. The data on series 5 is the SIF for a large cracked plate with a

fixed boundary side from FEA. The data on series 6 is the SIF for a small cracked plate
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with a simply-supported boundary side from FEA. The data on series 7 is the SIF for a
large cracked plate with a simply-supported boundary side from FEA.

It has been shown from Fig 2.8 that all these SIF are nearly the same. The reason
may be :

1 - The crack is subjected to a uniform stress field. There is no stress gradient

along the crack.

2 - The ratio of the crack length to plate width is small. For example, in a small

cracked plate, a/b < 0.1 (a is the crack length, b is the plate width). Thus, the

boundary side is far away from the crack. The load shedding can be neglected.

3 - The crack is subjected to pure tension. The stress redistribution under tension

is not as important as that under bending.
2.5 Summary

Finite element analysis (FEA) is one of the most applicable numerical methods in
the study of the crack problems. In order to develop and calibrate a load shedding model,
several finite element approaches were employed in this project. This chapter presents a
displacement approach with non-singular elements and a stress approach with non-singular

elements which were employed in the load shedding development.

A numerical example was carried out to compare the analytical results and FEA
results. It has been found that these two approaches can provide the same results (Fig
2.8). Based on the analysis in this chapter, experience has been gained to be used in the

further development of load shedding model in Chapter 4 and 5.
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Chapter 3

Newman-Raju Equation

3.1 Introduction

In the past ten years, various semi-analytical models for the computation of stress
intensity factors (SIF) have been proposed. Newman-Raju equation is the one which is
widely used in the computation of surface cracks. Newman-Raju equation is a semi-

analytical model for a cracked plate with finite width. (Fig 3.1)

17
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Fig 3.1 Surface Crack in a Finite Plate




3.2 Newman-Raju Equation

Newman-Raju [1981] proposed a semi-empirical equation for the SIF for a surface
crack ( part-through crack é.g. Fig 3.1) in a finite plate subjected to tension and bending

loads. The stress-intensity factor equation for combined tension and bending loads is :

K = (ot + How) \/% F(a/t,ale,c/b,q) (3.1)

with
o= remote uniform-tension stress (Fig 3.2a)
ob = remote uniform outer-fiber bending stress (Fig 3.2b)
H = function, depend on g, a/t, a/c
a = depth of surface crack
Q = shape factor for elliptical crack
F = stress intensity boundary-correction factor
t = plate thickness
¢ = half-length of surface crack
b = half-width of cracked plate

@ = parametric angle of the ellipse

The factor Q takes into account the effect of crack front curvature, i.e. crack

shape. A useful approximation for Q has been developed by Rawe (J.G.Merkle et. 1973):

1.65

Q =1 + 1.464(a/c) alc< 1 3.2)




The functions F and H are defined so that the boundary correction factor for
tension is equal to F and the cormection factor for bending is equal to the product of F and

H.

The function F was obtained from a systematic curve-fitting procedure by using
double-series polynomials in terms of a/c,a/t, and angular functions of ¢. The function F

was taken to be :

F = [M1 + M2(a/t)’ + Ms(a/t)*|fogfow (3.3)
where :
Mi= 1.13 - 0.09(a/t) (3.3a)
0.89

M:2=-0.54 + m (3.3b)

Ma= 015 —— 5 4.0 3.3
3=0.5-065 + (arg) + 1401.0-02) (3.3c)

g=1+[0.1+0.35(3)*(1 - sing)’ (=1forp=x2)  (3.3d)

The function fq an angular function from the embedded elliptical-crack solution is :

1/4

Jo=[( ?‘ Ycos’p + sinz(p] (=1 for @ = n/2) (3.4)

The function f., a finite width correction factor is :

nca

fo= [sec 1 (35)

The function H is of the form :

H = Hi + (H2 - Hi) sin®p (=H: for ¢ = n/2) (3.6)
where :

p=02+-+067 (3.62)

Hi=1-0347-0.115(7) (3.6b)
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Ha=1+Gi(5)+ Go(3) (3.6¢)

In this equation for Ha:

Gi=-1.22-0.12 | (3.6d)
Gz = 0.5 - 1.05(2 )™ + 0.47(2)" (3.6¢)

The remote bending stress, ob, and tension stress, O, in the equation for the stress

intensity factor refer to the pure bending or tension stress.
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Fig 3.2 Surface-Cracked Plate Subjected to Tension or Bending Loads

3.3 Summary

The Newman-Raju equation has been summarized. It should be noted that the

Newman-Raju equation can only be applied in the statically determinate cases although

there is a boundary correction factor in this equation. The application of the Newman-Raju
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equation to CSD in tankers which s statically indeterminate can be a problem. In this case,
as a crack grows, the portion of the loadings of the cracked section is likely to vary due to
the possibility of multiple-load paths. This results in a stress redistribution due to
redundant boundary effects. Another problem is that the Newman-Raju equation is only
valid for pure tension, linear bending or the tension and bending combination. It is
different from the real stress field in cracked CSD where the stress field is arbitrary due to

the local stress concentrations.
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Chapter 4

Calibration for Surface Crack

4.1 Introduction

In the past ten years, various semi-analytical models for the computation of SIF
have been proposed. Newman-Raju equation is the one for the computation of surface
cracks or part-through thickness cracks. The Newman-Raju solution is only valid for
finite plate with free ends. When the equation is applied for cracked CSD in tankers, the
load shedding effects which are due to stress gradient from the local geometry and
redistribution from the structural redundancy should be included. It's the objective of this
chapter to define and calibrate a load shedding model for application in tanker

CSD.

The FEA procedure for crack problem is discussed in chapter 2. The Newman-
Raju equation is presented at in chapter 3. Based on the Newman-Raju equation and FEA,

a calibrated load shedding model is proposed and verified in this chapter.

When the Newman-Raju equation is applied to ship CSD, two factors should be

considered. One is the stress gradient accounting for the real stress field which is different




from uniform tension or pure bending. The other is the boundary effects which accounts

for the degree of structural redundancy. |

4.2 Calibration for Boundary Effects

Newman-Raju equation has been derived from the case of cracks in bodies where
the loading is applied at three free ends or the statically determinate structure. If some
degrees of redundancy are introduced in a structure, the local stiffness of cracked section
changes as the crack grows. In general the decrease of local stiffness reduces the force and

moments in the cracked section which results in a reduction in SIF.

To study the effects of the boundary conditions, a series of flat plates containing an
edge crack were analyzed under different boundary conditions. Extremely fine meshes
were used around the crack tip to simulate the crack tip singularity and the results of
stresses were used to calculate the SIF by Equation 2.5. Fig 4.1 shows an example of the

FE mesh used for analysis of the edge cracked plate under different boundary conditions.

The finite analysis was conducted under several load cases. Fig 4.2 shows the

typical load cases.

This plate was analyzed under four different boundary conditions shown in Fig 4.1
and Fig 4.2. In configuration (1) only one end of the plate was fixed. Two types of loading
were applied to the free end of this configuration. 'They were pure axial force and pure
bending moment. In configuration (2), both ends of the plate were simply supported. In
configuration (3), one end of the plate was fixed and the other end was restrained against
vertical transition. Finally, in configuration (4), one end was fixed and the other end was

restrained against rotation and vertical translation.



(b) (c)

(d) (e)

Fig 4.1 Edge cracked plate under different boundary conditions
a) FEA Mesh
b) Boundary condition 1, one end fixed

c) Boundary condition 2, both ends simply supported

e) Boundary condition 3, one end fixed and other end simply supported

f) Boundary condition 4, one fixed and other end restrained against

rotation and vertical displacement.

(Fv)
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(b) Configuration 1 2 (c) Configuration 2
2 4
E 43 ll 3
(d) Configuration 3 (e) Configuration 4

Fig 4.2 Edge Crack Plate under Four Different Load Cases
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Four types of loading were applied-to configuration (2), (3) and (4) as shown in
Fig 4.2. For each load case only one point load were applied, which was either parallel or
normal to the plate axis, was applied to the structure. Load cases (3) and (4) were
identical to load cases (1) and (2), but in the former cases the point loads were applied
two elements away from the crack to eliminate numerical error due to the application
loads close to the crack. Load cases (1) and (3) produced a combination of axial force and
bending moment at the crack section of the uncracked body. Load cases (2) and (4)

produced a bending moment only.

Analyses of different configurations was carried out for the non-dimensionalized
crack sizes, a/T. The results of crack displacement were used to calculate the mode I
stress intensity factors, K. In order to make a comparison between the variation of SIF
under different configurations as the crack length increased, they were normalized by
dividing the SIF for any crack length (K) to the SIF for the standard crack length, which

was 1/3 of plate width (K1), for the same configuration.

Fig 4.3 shows the variation of stress intensity factors as a function of crack length

in configuration (1), in Fig 4.2, when the plate is subjected to pure tension and bending.

Fig 4.4 shows the variations for different load cases in configuration (2). For load
cases (1) and (2) which produce pure tension or bending at the crack section, the SIFs in
both configurations are almost the same. Load case (3) which produces slightly different
bending and tension at the crack section, compared to load case (1), closely follows the
variation due to load case (1). Load case (4), which also produces only a bending moment
at the crack section, follows exactly the variation due to load case (2) and shows that the
application of the load to the crack face, has not caused significant numerical error for

load case (2)
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Fig 4.4 Variation of SIFs for the Edge Cracked Plate Configuration (2)

The SIF variation for the various load cases for the edge-cracked plate, in

configuration (3), is shown in Fig. 4.5. This figure shows that the presence of a degree oﬁ
|
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redundancy has significantly decreased the rate of SIF increase as a function of relative
depth a/t. The variation of SIF for load case (2) which produces only a bending moment at
the crack section, is directly comparable with similar load cases in configurations (1) and

(2) which show a substantial reduction in the rate of SIF increase.
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T

Fig 4.5 Variation of SIFs for the Edge Cracked Plate, Configuration (3)

Fig 4.6 shows the same set of results for configuration (4), which shows a further

reduction in the rate of SIF increase, compared to configuration (3).

For load case (2) which produced only a bending moment at the cracked section
for all the configurations, the stress intensity calibration factors, Y were calculated using

the equation:

Y= m (4.1

where o is the maximum bending stress at crack section in the uncracked body.
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The variation of Y factors vs the crack size for all configurations are shown in Fig
4.7. The figure shows that the results for the first two configurations, which are statically
determinate, are almost identical. However, for the other two statically indeterminate

configurations they are substantially lower, especially for farger cracks.

Fig 4.6 Variation of SIFs for the Edge Cracked Plate, Configuration (4)
Examination of the deformed shapes and the reductions in the cracked structures
suggests that as the crack length increases, the behavior of the cracked section in
configurations (3) and (4) approaches that of a hinge reducing the bending moment

transferred through the section to zero.

Fig 4.8 compares the deformed shapes of the uncracked body and also the cracked

body of configuration (4) when the crack length is 80% of the plate width for the second

load case.
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Fig 4.8 Deformed Shapes of the Plate with Fixed Ends Subjected to Bending
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The results of the reactions at supports, obtained from FEA, showed that as the
crack size increased, the moment at the fixed end of the plates in configurations (3) and
(4) increased. In these cases, the bending moments carried across the cracked section were
calculated using the support reactions and equilibrium equations.- The results showed that
the bending moment carried across the cracked section decreased as the crack size

increased.

The ratio of fixed end bending moment to the initial value of uncracked section is
plotted in Fig 4.9. This ratio shows that as the crack size increases, the local flexibility of

the cracked section increases and the section behavior approaches that of a hinge.

The ratio of bending moment carried across the cracked section, M, to the bending
moment in the uncracked body, Mo, is plotted in Fig 4.10. The figure shows a continuos
reduction in the bending moment transmitted across this section as the crack length

increases.
Based on Fig 4.10, a general moment release model was proposed :

For a/t < 0.25 F =0 4.2)

a r
7, =il (_)
For a/t > 0.25 t 4.3)
For r = 1, it's a linear moment release model. For r=2, it is a parabolic moment release

model.
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4.3 Calibration for Stress Gradient Effects |

As we discussed about Newman-Raju equation early, the correction with regard to |

the actual stress gradients has to be made in order to account arbitrary stress distribution.

The stress gradient correction factor F can be derived from known solutions for

K. This solution of a crack stress field problem can be visualized as a two step process.

Step 1. The stress distribution problem is solved in a manner satisfying the
boundary conditions (displacements, stresses) but with the crack considered |

absent.

Step 2. To this stress field is superposed another stress field which cancels any

|

stresses acting directly across the crack along the line of the crack. |

?

Step 1 is a non-singular elasticity problem and can be solved by a FEM analysis.

As the addition of a non-singular stress field (a(x), Step 1) does not affect the value of K (

caused by -o(x), Step 2) the resulting K will be identical with that obtained from Step 2.

To evaluate K from Step 2, an influence (Green's) function method is employed.

An influence function can be defined as : |

Gi(b,a) = “I;Kn’(b,a) (4.4)

where Kip=duetoaloadPatx=b !

P = load per unit sheet thickness / width
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Hence, Gi(b,a) is the Kt value arising from a unit force (per unit thickness/width)
applied at abscissa x = b. Gi(b,a) is independent of loading and depends merely on all the
geometry parameters of the cracked body. If a solution for the stress intensity factor is
known for any particular load system, then this information is sufficient to determine the

stress intensity factor for any other load system.

A pressure p(x) applied on an infinitesimal surface t (or W) dx results in an
infinitesimal stress factor :
dKu(x,a) = Gi(x,a)p(x)dx (4.5)

Thus, the Ki resulting from the total crack surface loading is :

Ki= }Gl(x,a)p(x)dx (4.6)
0

In a part- through crack case the computation of the stress gradient corrector Fa

maight be based on the following solution of the problem shown in Fig.4.11 :

2P 1
](l = F(b/ .
‘\’na ‘\[l—(b/a)z (b/a) (47

Therefore the influence function in this case is :

2 1

With the condition of p(x) = o(x), yields (Fig 4.12) :

a
Ki= ;zt'\/n_'l [o0) Fextaydx (4.9)
0

where o(x) can be obtained from a FEA.
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Fig 4.11 Calculation of K-Value by a Pair of Splitting Forces applied to the Crack Surface
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Stress Distribution

Fig 4.12 Stress Distribution along a crack

The stress distribution could be represented by a polynomial expression and could
be intergrated analytically. Consider a single edge crack in a finite width plate; the crack is
subjected to various polynomial stress distribution represented by :

o) S5, x (4.10)

c n=0

The stress intensity factor for such a stress distribution can be easily determined by
superposition of the basic stress intensity factor solutions due to power stress distributions

with a unified form :

K = Fo/na (4.11)
the non-dimensional stress intensity factor F can be determined by :
N
F= Ss,+F, (4.12)
n=0

where Sn are the stress polynomial coefficients and Fn is the factor determined by power

stress series.
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The stress intensity factor for power stress series was computed by Eq. 4.9 and

Table 4.1 summarizes the results.

For the case of an edge crack described here the effect of the stress gradient on the

stress surface correction factor Fs can be included in Fc in the following way.

F
Fo=1723
That is :
. N
FG = 7% nz

(4.13)

(4.14)

Table 4.1 Stress intensity factor Fn for a single edge crack in a finite width plate

with crack face power loading : o(x)/a=x"

where;

t : plate width

40)

n

o 0 1 9 3 4 5 o

001 11226]  6826-08]  5.25£05]  4.40E-07]  386E09|  3.48E-11| 3.19E13

0.05 11402  3.45E-02] 1.32603] 554£05] 2.42E-06] 1.09€-07| 5.00E-09|

0.1 1180  7.09e-02] 5.40£-03] 450£:04] 393605 3.536-06| 3.23E-07)

0.2 13672  1.56E-01|  2.326-02] 381603 6.060E-04] 1.18E-04] 2.14E-05)

0.3 1.6602| 268601  578E-02] 1.40£-02] 358E-03|  9.50E-04| 2.58E-04

0.4 2113 425601 1.JBEO1[371E02)  1.256-02]  4.34E-03] 1.56E-03]

05 28241 6.63E01| 220E-01| B.AOE-02| 3.45E-02]  1.48E-02| 6.55E-03|

5 0.6 40333] 1.06E+00] 4.01E-01 1.78E-01|  B.52E-02]  4.30E-02| 2.24E-02)

0.7 6.3558] 1.816+00]  7.59E01]  3.75€-01]  2.03E-01 117601 6.94E-02]

0.75 8.4537| 2.49E+00| 1.09€+00] S561E-01]  3.926-01 1.93E-01] 1.226-00

08 11.9548]  3.626400] 1.63£+00] 8.776-01] 521E-01] 3.308-01| 2.18E-01

0.85 18.6264|  5.78E+00| 2.68E+00] 1.40E+00] ©.156-01] 6.01E-01| 4.14E-00

09 346348 1.10E401] 520E+00] 2.96E+00| 1.87E+00] 1.27E+00| 9.03E-0)
a=a/t, and




In order to apply Newman - Raju's empirical stress intensity factor equation in the

case of an arbitrary stress field the following transformations have to be made.

For tension stresses - F is replaced by F*Fg,at
For bending stresses - F is replaced by F*Fg,ab
- H is replaced by H/FG,nb

Fq,at and Fa,ab are correction factors, which account for the difference between a
uniform and a non-uniform tension or bending stress distribution in the crack growth
plane. These factors are calculated using the above equation with the actual through
thickness stress distributions ( tension for Fg,at and bending for Fg,ab). A calculation for

pure bending provided the extraction on the effect of this distribution and gave Fa,nb.

4.4 Xu-Bea (X-B) Modification

Two correction factors have been developed for the Newman-Raju equation. One
is the stress redistribution factor, Fr, which accounts for the boundary effects on stress
redistribution. Another is the stress gradient factor, Fa. which accounts for the real stress

distribution. It is assumed that these two factors are not correlated.

The modified Newman-Raju equation taking the load shedding into account (X-B

madification) is as follows :

For tension stresses, F is replaced by FFg,at, the modified Newman-Raju equation
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K=oy ‘,%F(a /t,a/c,cib,@)FG.a1 (4.15)

Fo,at is the correction factor which accounts for the difference between a uniform and a

non-uniform tension stress distribution.

For bending stresses, F is replaced by FFa,ab and H is replaced by HFr/Fa,nb.
Fo,ab are bending stress gradient correction factor which accounts for the difference
between a uniform and a non-uniform bending stress distribution in the crack growth
plane. A linear bending stress distribution (pure bending) provided the extraction of the
effect of this distribution and gave Fo,nb. Fr is the stress tedistribution correction factor

due to boundary effects :

K = HF,; 0 ’%F(a/t,a/c,c/b,m)FG,ah ! FG,nb (4.16)

For the bending and tension combination, the following general expression is

proposed as the modification of Newman-Raju equation : .

F g
K = [FG a0 +( G-“%G ) HFrop L[ F@/tasec/be) (417)

|
|
4.5 Verification :
|
|

The proposed X-B model has been verified from the existing literature and
experimental data. Due to the lack of the experimental data for ship CSD, the
experimental data on the load shedding of tubular joints has been utilized. The

experimental data is from the published references. [Forbes, et. 1992]

The experimental stress infensity factors were determined on the basis of measured
fatigue growth rates in tubular welded specimen. The geometry and dimensions of the

specimens are shown in Fig 4.12. The experiments reported are two specimens. One is
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under cyclic axial loading and one under cyclic in-plane bending. The stress ratio, R, for
the axially loaded specimen was 0.16 and the R-ratio for the in-plane bending specimen
was 0.05.

The specimens were tested under constant amplitude at a frequency of 2.5 to 3 Hz.
Fatigue cracks were measured periodically using the Direct Current Potential Drop
technique and the Alternating Current Potential Drop technique at Memorial University in
St. John's, Newfoundland while the in-plane bending specimen was tested at the University

of Waterloo.

Fatigue cracks 0.5mm deep were detected early of the crown position in the in
plane bending specimen. In the axially loaded specimen, the crack initiated and grew at the
saddle. All the fatigue cracks initiated along the weld toe and then propagated through the

chord wall material.

The periodic crack measurements made it possible to measure both the crack
depth, a, and the crack length, 2c, as a function of the number of load cycles, N. The
results were used to derive an experimental relation between the crack depth, a, and crack

growth rate, da/dN.

The corresponding stress intensity factor values were determined from the Paris

equation.

1
AK = [lx Ea—]m
C dN (4.18)

The Paris equation constants were C=6.2 x10-2 and m=3. The final results were

given in terms of the geometrical stress intensity correction factor Y :

43




743DIA
< | D 62
= J_A A
I Iy
762 —>! ! i€ 457 0. BRACE
Sl ‘l’ { i ) 1946 (5)
L e a3 j — a
A (19 = |
1067DIAY [~ _ _ _ _,______1_‘___‘L.
| V 11 N
\ 4 > | & 250 L
|
914 0.D ,
CHORD |
<€ ‘ >
l€<——— 2896 (5) —————>

Fig 4.12 Geometry and Dimension of Tested Tubular Joint ( Unit mm )
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Fig 4.13 Comparision between Experimental Results and Newman-Raju Solution

for Tubular Joint under Axial Loading
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Fig 4.14 Comparision between Experimental Results and Newman-raju Solution

for Tubular Joint under Pure Bending
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The variation of the geometrical Y factor as a function of the crack depth is shown

Y (4.19)

in Fig 4.13-4.14. The experimental data is compared with Newman-Raju solution. It has
been shown that there is a considerable difference between experimental results and
Newman solution. It was found that it under-estimated the stress intensity factor for
tension in 0< a/t < 0.3. However, high over-estimation of the stress intensity factor based

on the Newman-Raju solution occurred for 0.3 < a/t < 1.0.

As discussed early, the major differences between a crack in a flat plate and similar

cracks in a tubular joint / critical structural detail are due to stress redistribution factor

which is from different boundary conditions and stress gradient factor which is from real
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stress distribution. Newman-Raju Equation was derived from statically determinate flat
plate configurations where the same moments and nominal loads were transferred through
the cracked section regardless of the crack size and the stiffness of the cracked section
under the tension and bending combination. In the case of tubular joints / critical structural
detail, first the crown/saddle bending moments and the stresses driving the crack growth
depend on the cracked section stiffness and as consequence they are depend on the crack
size, second the real stress distribution is different from tension and bending combination.
Therefore, the input of the initial linear combination of tension and bending stress is over-

estimated. (See Fig 4.13-4.14). This is the load shedding defined in Chapter 1.

Based on X-B load shedding model, the stress intensity factors were recomputed

from Equations 4.15 and 4.16.

Stress Gradient Correction

The stress intensity factor considering the stress gradient factor was computed by
Equation 4.13. The Newman-Raju stress field and real stress field was shown in Fig 4.15.
Sr is the stress distribution along the crack depth. sn is the nominal stress. The comparison
between the experimental results, Newman-Raju solution and X-B model considering the

stress gradient factor only is plotted in Figs 4.16 and 4.17.

In Fig 4.16 4.17, The results from X-B model with stress gradient factor fitted the
experimental data extremely well for 0 < a/t < 0.3. This could be concluded that stress
gradient effect is much more important for small crack . For 0.3 < a/t < 1.0, the results
from X-B model with stress gradient factor didn't fitted well with the experimental data. It

could be explained as follows:
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The stress gradient factor represented the effects of local stress concentration
factor. This effect can be neglected for deep crack (0.3 < a/t < 1.0) since the crack tip was

far away from the local notch.

; 3.0r = \

[ I
—  Real Stress Field
— — =— = Newman - Raju stress field

sr/sn
1.0 tension
0.0
]
-1.0 1 G | 1 1 N 1 " 1 " >~
0.0 0.2 0.4 0.6 0.8 1.0
] ) Ciack depth/plate thickness a/l

Fig 4.15 Nondimensional Stress Distribution for Stress Gradient factor calculation
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Fig 4.16 Experimental and Theortical calibration of Y for T-Joint under Tension
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Fig 4.17 Experimental and Theoretical Calibration of Y for T-Joint under Bending

Stress Redistribution Correction

Two stress redistribution model were used. One is the parabolic moment release

model, the other is the linear moment release model.

The parabolic model is :

ron1-(3)
r t

The linear model is

‘ a
Fr"’(?)

(4.20)

(4.21)

For these two stress redistribution models, the stress intensity factor considering

the stress gradient and stress redistribution was computed and plotted in Fig 4.18 for T-

Joint under bending.
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Fig 4.18 Experimental and modified Theoretical Results for T-Joint under Bending

In Fig 4.18, The results of X-B model with stress gradient fitted the experimental
data for 0 < a/t < 0.25. But they didn't fit the experimental data for 0.25 < a/t < 1.0. With
the additional correction factor, stress redistribution factor, the results of X-B model fitted
the experimental data for 0.3 < a/t < 0.8. Thus, we could conclude a load shedding model

as follows :

For 0 < a/t < 0.3, the stress gradient factor should be included in Newman-Raju
equation while the stress redistribution factor can be neglected because the local nonlinear
notch stress factor is important for small cracks while the stress redistribution is small for

small cracks.
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For 0.3 < a/t < 0.9, the stress redistribution factor and stress gradient factor should
be included together in Newman-Raju equation because the stress redistribution is

important for large cracks.
4.6 Summary

The application of plate model predictions of SIF should take two additional
factors into account. One is the stress gradient factor which is due to real stress
distribution in ship CSD. The other is the stress redistribution factor which is due to

applied boundary conditions or adjacent elements.

This chapter presented a modified Newman-Raju equation (X-B model) for SIF
computation in cracked CSD in .tankers. The model was calibrated by numerical analysis
and verified by the experimental data. Several empirical formula for stress gradient factors
and stress redistribution factors was proposed for several welded joints for application to

cracked CSD in the next chapters.

The proposed load shedding model is relatively simple. Several other factors

should be addressed. These factors will be discussed briefly in appendix B.
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Chapter 5

Calibration for Through Crack

5.1 Introduction

Chapter 4 developed and verified a load shedding model for Newman-Raju

Equation which is valid for surface cracks. But, through - thickness cracks are another ‘

fatigue cracking problem for Ship CSD. The Newman-Raju equation can not applied in
through crack cases. Thus, a Hybrid method [7] has been applied to compute the stress
intensity factors for through thickness crack. The load shedding model based on Hybrid

method is developed and verified in this chapter.
5.2 Hybrid Method

The problem of estimating the SIF, K, for the case of a through thickness crack
can be solved by using the hybrid method. This development has taken the stress gradient
correction factor FG into account. It is therefore necessary to apply stress redistribution

factor only in Hybrid method. Based on Hybrid method, the SIF can be written as:

K = onJmaF (5.1)
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Here, F is a function of the stress gradient correction factor, Fa, and the finite

width correction factor, Fw, only :
K = o\[ta Fo Fw (5.2)

The computation of Fg in the case of a through crack might be based on a
solution of the problem shown in Fig. 5.1

As described in Chapter 4, the stress gradient correction factor can be determined
by using a superposition method combined with an influence (Green's) function method.
The following solution for the stress intensity factor for a crack in an infinite sheet
subjected to a pair of splitting forces, which do not have to be at the center of the crack
has been used.

P a+b P a-b

K+a=_. K—a=
! \/It_a a-b or g \/TE a+b (5.3)

This yields the following expression of Fo :
} or

n A A . R 2 . 2
FG=loZ{gtlr:arcsin&—arcsinh+\/l—(h) +J1—(—‘) }
T =] O | a a a a
- 5.4)

where b in (-a, +a)

Fc can be determined by polynomial stress series which is presented in Chapter 4.
The finite width correction factor Fw can be calculated using the general methods

defined in Reference [7].

5.3 Calibration Model

The load shedding model for through-cracks is based on that for surface cracks. It
includes the stress redistribution factor in Equation 5.1 to take the boundary effects into

account. The proposed model is :
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K = (o + Frop )Jna *Fy, * Fg (5.5)

where Fc = 1-ka the stress redistribution factor,
‘
k is the linear release model parameter,
Om is the membrane stress, and |
Ob is the bending stress.

The linear release model parameter k can be determined from FEA which is
presented in Section 4.2. Based on the experience in this project, k value can be selected |

from (0.85-1.15) for 0.3 < a/b < 0.9 (Fig 5.2).

5.4 Summary

This chapter discusses the load shedding in through crack cases. The hybrid
method for stress intensity factors of through thickness cracks is presented at first. The |
load shedding model is proposed based on the experience from surface cracks. The'y

calibrated model only considers stress redistribution factor since the stress gradient

factors is already included in Hybrid method.
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Fig 5.2 Load Shedding for through crack case
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Chapter 6

Calibrated Empirical Formula

6.1 Introduction

A load shedding model was presented and verified in previous chapters. Based on
the proposed model, a stress redistribution factor and a stress gradient factor are two new
factors in this model. This chapter proposes several empirical formulas of these two
factors for welded joints. The following have been considered in this chapter : plates
with welded-on flat side gussets, non-load carrying transverse and longitudinal
attachments, and lap joints with fillet welds. Parametric - formulae have been

established for stress gradient factors, FG. and stress redistribution factor, Fr.

When the proposed calibrated model is applied in the SIF computation of welded
joints, the typical through thickness stress distribution in welded joints can be classified

into three components. (Fig 6.1) The total stress is separated into three parts: membrane

stress, Om, the shell bending stress, on, which is linearly distributed, and the nonlinear peak

stress, op(x), which is due to the local notch.




For a given stress distribution, o(x), for x=0 at one surface and x=t at through

thickness, an analytical separation can be developed :

0p -t Ta(x)+ dx

2 (6.1a)
X=t t
Op=—* [ o(x)*(==-x)*dx
t xo 2 (6.1b)
Up(x)' O(x) - Oy ~ Op(x) (6.1c)
Notch stress = om+ ob+ op
I

Fig 6.1 Stres components in welded joint

Based on the above stress distribution, the stress intensity factor for welded joints

has been computed and compared with available experimental data.

6.2 Plates with welded-on Flat Side Gussets

The first study was performed for the structural detail and crack configuration of a

plate with a welded-on flat gusset. The cracks emanate as usually experienced, from the

weld toe (Fig 6.2)
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Fig 6.2 Plate under tension with welded-on lateral flat gusset

|
For the finite element modeling of the specimen, two dimensional plane |

quadrilateral isoparametric elements were used. The analysis was carried out for plane

stress because of the limited thickness range used in welds of this detail.

The welds at the end of the gussets were assumed to have a leg fength equal to the

gusset thickness and a weld profile angle of 45 degree. (Fig 6.2)

B 1444

L

vy 222/

Stress Concentration Reference Configuration

Fig 6.3 Real Structure and Reference Structure
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In order to study this detail, the stress distribution at the uncracked specimen was
first determined and then, using the reference crack configuration, the new stress intensity
factors was calculated based on the stress distribution with load shedding model. The
attraction of ih«is method is that for the calculation of numerous stress intensity factors

along the crack path, only a single finite element analysis is required.
Stress Gradient Factor

In this detail, the welded-on gusset introduces an additional eccentricity which
creates a nonlinear stress by which the stresses in the weld transition are reduced. By
reasons of conservatism, the bending action was suppressed by zeroing the displacements

of the plate opposite to the gusset in the direction transverse to the load.

The objective of this study was to conduct the numerical simulation of the gusset
effects on stress intensity factors. The numerical example is designed as a plate with width
of 200mm, a gusset length of 200mm and a gusset height of 100 mm. The length of the

gusset was varied from 10 to 800 mm and the height from 15 to 200mm.

Based on Equations in Chapter 4, the Fg is computed and plotted in Fig 6.4 for
different gusset height and Fig 6.5 for different gusset length. The effects of the gusset

height and length can determined from these figures.

The effect of length of the gusset for the stress gradient factor is displayed in Fig
6.4. At short gussets, the curves tend to a limit. At very long gussets, this is obvious also
the case. No significant high value for Fi beyond the curve for 800 mm are expected. The

effect of gusset height (Fig 6.5) results in a different sitwation. The Fa values at 100 and at
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200 mm are close together. At higher gussets, no higher FG values are expected. On the
other hand, the effect of the gusset vanishes with the reduction of height of gusset. The
effect of wall thickness of gusset is that F values diminish at smaller thickness. With the

reduction of thickness, the effects of length and height decrease.

Based on the above analysis, the following formulae is proposed as:

Fo - C+(2) : (62)

where :
log(10/C= -0.2979+0.04406*(L/W)-0.005056* (L/W)*
+0.2084*(H/W)-0.1291*(H/W)’ (6.3)

k= 0.2643 + 0.02848*(H/W) (6.4)

L=800
= " Ls400

I Fo

O =N LHOWOV® O

0 0010020085 01 02 051 2 6§ 10 20 50 100

Crack Depth

Fig 6.4 Stress Gradient Factor Vs Gusset Length for Plate with Welded on Gusset Plate
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Fig 6.5 Stress Gradient Factor Vs Gusset Height for Plate with Welded on Gusset Plate

This equation does not cover the effects of the thickness ratio of gusset and plate.

In the real applications, they aregenerally approximately equal thickness. If there are

thinner gussets, this formulation will be conservative.

Stress Redistribution Factor

The stress redistribution model is derived based on the reference configuration (Fig
6.3). Based on the analysis in Chapter 4, the stress redistribution factor is proposed as :

Fr=0 for a/t < 0.25

Fr=1-(at)’  fora/t > 0.25

r=1or2 (6.5)

6.3 Transverse Non-load carrying Attachment

Fig 6.6 shows the typical transverse non-loadcarrying attachment while Table 6.1
is the variation of dimensions and validity range (transv. att.). The stress gradient factor is

computed by the equations in Chapter 4
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.} Dimension Min Max
H/T 0.2 1 \
W/T 0.2 1
theta 15 60
AT 0.175 0.72
_KI‘ = 0.125 2(4)

Table 6.1 Variation of Dimensions for Transverse Non-Loading Carrying Attachment

A 7
\Y

‘ H-7 8
AR
\ A

Fig 6.7 Transverse non-load carrying attachment

The stress Gradient Factor was defined as:

k
a
Fo=C+(3)

C=0.8068 - 0.1554(H/T) + 0.0429(H/T)* + 0.0794(W/T)
k= -0.1993 - 0.1839(H/T) + 0.0495(H/T)? + 0.0815(W/T) (6.6)

The stress redistribution factor was defined as:
Fr=0 for a/t < 0.25
Fr=1-(at)’  forat > 0.25 (6.7)

60




6.4 Longitudinal Non-load carrying attachment

Fig 6.8 shows the geometry of the typical longitudinal non-load carrying
attachment. Table 6.2 is the variation of dimensions and validity range. The stress gradient

factor is computed by equations in Chapter 4 and plotted in Fig 6.9. The empirical stress

gradient factor was defined as:

a)
"G'C'(ﬂ

k

C=0.9089 - 0.2357(t/T) + 0.0249(L/T) + 0.00038(L/T)?
+ 0.0186(B/T) - 1.1414(8/T)
k=-0.02285 + 0.0167(/T) - 0.3863(48/n) + 0.123(48/n)® (6.8)

The stress redistribution factor was calibrated as:

Fr:l-(a/t)2 fora/t < 0.25

Fr=1-ant for a/t > 0.25 (6.9)

Fig 6.7 Longitudinal non-load carrying attachment
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Table 6.2 Variation of Dimensions and Validity Range (Long. Att.)

Dimensions Min | Max
T b 40
B/T 2.5 40
t/T 0.25 2
46/n _0.670* 1.33
0 ==
+
1 ~ utem
L 3 | - m . n
i - Ut
k| - UT-28
|
' i ———HH—
\Ot 08 O£ 02 \CE -0 \CE-00
OCrack depth o/1
_ _ 1

Fig 6.8a Long. attach : Effect of att. Length L/T
In Fig 6.8, it is clear that the variation of the ratio of the wall thickness t/T has a

clear effect (Fig 6.8a). The thicker the attachment, the higher the stress gradient factor.

The effect of the attachment length also appears from the results. From a length L/T =
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2.5 the stress gradient factor rises constant, but at 10-20 an asymptotic effect is

encountered.

The variation of the plate with B/T shows a significant effect (Fig 6.8c). The
wider the plate, the more local and sharp the stress concentration. The higher stress
gradient factor. The extreme will be reached at an infinitely wide plate. Whether or not
there is asymptotic effect near a width of B/T = 10 can not be decided from the current
analysis. At the other side, at small widths the joint type more and more approaches that
of a thick transverse attachment with a low stress concentration and a lower stress
gradient factor. This gives an indication that at longitudinal attachments near the plate
edge or at flat side gussets, the larger distance to the plate edge might be decisive

parameter.

10
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?: | —oat-©
i o [ Ta gy
4 - WT-28
) 34]
|
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|
<r !
1 e
WE-0I LOE-02 1Yo 3o} \0E <00
Crach copth /7

Fig 6.8b Long. att : Effect of Plate Width B/T
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Fig 6.8c Long. attach Effects of Plate Width B/T
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Fig 6.8d Long. attach : Effect of Welded Angle Theta

Fig 6.8 Effect of Dimensional Parameters at Non-Load Carrying Longitudinal

Attachment,.




6.5 Lap Joints with Fillet Welds

Fig 6.9 shows a typical lap joint. The variation of the dimensional parameters
suggests an effect of the wall thickness ratio t/T. However, wall thickness can not be
varied independently from the weld legs H and W. Small thicknesses at the overlapping

plate require small weld legs H and put the variation parameters out of balance.

There is a clear effect of the weld throat (Fig 6.10a). In the proposed formula, it
is represented in terms of the weld legs H and W. The same applies to the effect of the
weld angle. The overlap length at the main plate gives an additional support to the lap
plates and restricts the bending displacement by contact. This is typically effective at a

small overlap.

Based on the results from Fig 6.10, the stress gradient factor and stress

redistribution factor 1s defined as:

k
a
F; = c.(?) 6.10)

C=1.021 - 0.3772(H/T) + 0.1844(H/T)2 - 0.0187(W/T)2

-0.1856(U/T) + 0.1362(U/T)? (6.11)
k=-0.4535 - 0.1121(H/T) + 0.3409(W/T) - 0.0824(W/T)?
+0.0877(U/T) - 0.0417(U/T)? (6.12)
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The stress redistribution factor was calibrated as:
Fr=1-(at)>  for a/t <0.25
Fr=1-aft for a/t > 0.25

Fig 6.9 Lap Joint

(6.13)
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Fig 6.10a Lap Joint : Effect of Wall thickness T
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Fig 6.10b Lap Joint : Effect of overlap length U/T
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Fig 6.10c Lap Joint : Effect of weld throat A/T
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Fig 6.10d Lap Joint : Effect of weld angle theta

Fig 6.10 Effect of dimensional parameters at lap joints

6.6 Summary

This chapter presents empirical formulas for the stress gradient factors and stress
redistribution factors associated with ship CSD. It should be pointed out that the formula

for stress redistribution factors need be further verified for the lap joint.

These empirical formula will provide a strong tool in fracture mechanics

modeling for cracked CSD in tankers.
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Chapter 7

Application

7.1 Introduction

In the previous Chapters, a general load shedding formula was calibrated and
verified. Some empirical formulas were proposed for different welded joints for CSD in
tankers. This Chapter will present the application of these formulas in CSD in a 165,000
DWT tanker.

7.2 165,000 DWT Tanker

The proposed tanker was studied in SMP 1 [5] and Fitness for Purpose Analysis
[7]. The characteristics for this tanker are summarized in Table 7.1. The general

arrangement is shown in Fig 7.1, and Fig 7.2 is the midsection.

7.3 Critical Structural Details (CSD)

The proposed CSD was one of the CSDs in SMP I project. It is the sideshell
longitudinal 33 on tank 4. The geometry configuration and dimension are shown in Fig

1.3.




Fig 7.1 General arrangement for a 165,000 DWT tanker.

DWT 165.,000)
LOA 274.2m

LBP 262.1m
Breadth 52.7m

Depth 22.9m

Draft 17.4m
Construction |Single Hull

Table 7.1 Overall Dimensions for the 165,000 DWT Tanker

7.4 Previous Studies

A detailed fatigue analysis based on S-N curves was conducted during SMP 1 for

this CSD [5]. During this project, the fitness for purpose analysis for this cracked CSD |

|
\

was performed based on the equivalent S-N approach [7]. Following summarized some '

results from fitness for purpose analysis.
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Fig 7.2 Midsection for a 165,000 DWT tanker
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The proposed fitness for purpose analysis was conducted based on the following steps.

1 - Definition of structural detail and crack location.

2 - Computation of the transfer function for the ship. The transfer functions are
computed for the two load cases. Full load and Ballast and for several wave
headings and speeds based on the proposed travel routines and sea environment.
3 - Determination of the stress vectors at the Hotspots from finite element analysis.
Estimation of the long-term distribution of the stress range G at a hotspot. This
estimation is based on a specified travel routine for given Madsen zones and
specified maneuvering philosophy.

4 - Determination of the initial crack size for given hotshot

5 - Determination of the critical crack size for given hot-spot based on material
toughness or durability requirement.

6 - Determination of the stress intensity factors for given hot-spots at the

specified CSD




7 - Construction of the equivalent S-N curves for the hot-spot in given CSD.
8 - Determination of the remaining fatigue life based on the long-term extreme

stress range and constructed equivalent S-N curves.

zﬁi ¥ - vv»v’”“

I Al =FE ik

"
|

_,—__*_—_*__’_—_—
’J/—
/\—/
] 12 12
+ |
| 18 ol 6.5
=z A
| 2 125
!
\_
Frame Spacing B 5120 mm
Longitudinal Spacing 890 mm

Fig 7.3 Configuration for Detail in Sideshell 32- 36.

72




The development of equivalent S-N curves is one of the key step in this procedure.
Based on the procedure in Reference 7, the equivalent S-N curve for two hot spot had

been constructed (Fig 7.4). Fig 7.5 shows the results for hot spot B.

Fig 7.5 CSD Hot spots and Corresponding Specimens

Curve 1 Curve2 Curveld
1
= asiii i
a d i“' Curve 4
o 10 = Initisl crack length
5 S SShSSE
2 u syl a % Curve 1 = 0.25mm
! 10
= Curve 2 = 0.5mm
3
]0] gl Curve3= 1 mm
T i EE% Curved = 4 mm
, i ' I
¥ 2 3 & & 7
1 10 10 10 10 i0 10 10 10
Number of Cycles

Fig 7.5 Equivalent S-N curves for Hotspot B
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The probability of failure for the remaining 10 year service is displayed in Fig 7.6.

The uncertainty is this analysis is shown in Table 7.2.

Fabrication and Assembly 1.2 i 0.2

SeaState Characterization 1.1 __03

Wave Loads 08 0.2

Determination of Loads 0.9 0.3

SCF , 1.0 0.3
__Median Bias Cov Bias

Total _ 0.95 0.63

Table 7.2 Uncertainty Modeling in Fitness for Purpose Analysis

0.01

0.1 1 10
Initiol crack length

Fig 7.6 Probability of Failure during the Remaining 10 Years Serive Life
in Fitness for Purpose Analysis. (Load Shedding is not included)
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The results here did not take load shedding effects in to account.

7.4 Load Shedding Effects

When the load shedding effects is taken into account, the equivalent S-N curves

has to be re-constructed. The following is the mathematical formulation.

Based on the Paris equation, the crack growth da/dN can be calculated as:

dN 7.1

Here C and m are material constants, and AK s the range of stress intensity factor.

It is known that the part-through crack was considered in hot spot B [7]. Based on

the general formula for stress intensity factors with X-B model, AK can be expressed as :

K =[Fo.0, +(Fg. / Fo ) * HE, l‘/EF(a /talc,c/b,)
¥ Q 7.2)

The ratio of the Newman-Raju SIF to the X-B SIF can be derived approximately

as :

Kx-s - Fx_p =[1-(1-F,)eDoB]eF;
Kus Feg 7.3)

where ;
Fr:  Stress redistribution factor
Fo: Stess gradient factor

DoB  Degree of Bending which is the ratio of the bending stress to hot

spot stress.




From equations (7.1), (7.2) and (7.3), the equivalent S-N curves with load

shedding effects is derived for constant stress range as : ,

f 1 : da
da/dN C-(Ac)“‘ (2 )m |
Ac (1.4)
|
or: |
% da 1
Noes = !da/dN Ce(AC)"
7.5)
where :
¥ da 1 % da
;[(AK) -nm/2..-[am/2.Fm E
(7.6) }
|
Thus, Based on equation (7.3), the modified S-N curves with X-B load shedding !
model can be derived as : |
|
N ==de dadN “C 1,(:, m A
. da/ *(40) an
where : |
L .= 1 .‘I' da
X-B ~ 12 m
™2 a2 [F.\'-n o(1-(1-F,)e DoB)FG]rrl . a8)

while the original equivalent S-N curves development is expressed as :

iy I.IN—R

New = Jda/dN = Ce(A0)" e

.= 1 .‘J' da
N-R nle .‘am/z.[FN—R]m

(7.10)
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The load shedding effects can be expressed as :

Ny_r(A0)" - In_g - Nnr
Nx-s(A0)™ Iy.p Ny (7.11)

The equations 7.7, 7.8 is hard to derive an close form solution. The numerical
analysis is being implemented in the computer program FRACTURE. Here, a simplified

study about the load shedding effects on equivalent S-N curve development is performed.
7.5 Effects of Fr

Suppose we only consider Fr effects, and- Fx-r, Fe are separated variables during

=s-N
the crack propagation, the mean effects of Fr can be defined as Fr ~ and approximated as

NX-B - Ix_B - 'F‘f-.\' _ 1‘ 3 da

Nys  Inr ar -2 .{[1—(1-F,)-DoB]‘“

(7.12)

The mean effects is supposed to be the effect of the stress distribution on fatigue life.
: =S-N

Thus, for linear moment release model and m=3, The Fr  is derived as :

2-DoB

—=S-N .
F. =(1.3-DoB) [—2(1 “DoB)

This effects is displayed in Fig 7.7.

In Fig 7.7, the x-axis is the DoB which is the ratio of the bending stress to hot spot
stress. the y-axis is the ratio of the fatigue life with load shedding to that without the load

shedding. That is Nx-s/N~.R. It is clear that Fr has strong effects on fatigue life when the
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DoB is larger. For the CSD in the proposed 165,000 DWT tanker, DoB is approximated

as 0.6 in previous analysis [5], thus, fatigue residual life is increased about 60 %.

Nx-B/N

03 04 05 06 07 08 09 1
DoB

Fig 7.7 Effects of Fr on Fatigue Life

Thus, the probability of failure during the next 10 years can be approximated in Fig
7.9 with this simple stress redistribution effects. The probability of failure is significantly

reduced as the result of load shedding, and the results seem to be more rational.

] T
=
e
/ -
B '
£ 0.1
[
0.01
0.1 1 10
Initial Crack Size

Fig 7.8 Probability of failure during 10 years Remaining Service for initial Crack size

ai=0.25mm,0.5mm, 1 mm,4mm. (With Stress Redistribution at DoB=0.6)
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7.6 Effects of Fc

Suppose we only consider effects of Fc, and FnR, Fr are separated variables durin g
crack propagation. The mean effects of Fc during the crack propagation can be defined

N
Fo and approximated as :

In-g ~Nnr SIE
Ix-s  Nxp (7.14)

This mean effects is supposed to the effects of the stress gradient factor on fatigue life.

Thus, . we can derived as :

FE.N - 1 o £ da

-2 ko (7.15)

where :

)
G (7.16)

p.q: empirical parameters
m=3

Thus, we have :

P (-9 (7.17)

Since the development of equivalent S-N curves for cracked CSD in the proposed
165,000 DWT tanker is based on the Hybrid method where Fo has already been taken into

account, the equation (7.17) need not be applied to the cracked CSD in the proposed

tanker.




7.7 Summary

A general load shedding formula is applied to the study of the fatigue life of a
cracked CSD in a 165,000 DWT tanker. This model is applied to the general development
of equivalent S-N curves for cracked CSD in tankers. The effects of stress redistribution
factor and stress gradient factor on fatigue life has been studied. A simplified method for
these effects is proposed together with the complex method. The load shedding effects on
the fatigue life of proposed CSD has been conducted in the simplified approach. The

results has shown that load shedding may increase fatigue life more than 60%.
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Chapter 8

Conclusions and Future Studies

~ 8.1 Conclusion

It can be concluded from this study that load shedding is the stress
redistribution for statically indeterminate cracked structure due to redundant

boundary conditions or adjacent elements when a crack grows under an arbitrary

stress field.

There are two additional factors which should be included in Newman-Raju
equation for surface cracks. They are :

1)) stress redistribution due to redundant boundary conditions, and

2) stress gradient factor due to the local stress concentration.

The general formula for these two factors were developed, calibrated and verified

as:

8.1




)
T (8.2)

where :
Fc stress gradient factor,
C,k  empirical parameters,
a crack depth,
T thickness,
Fr stress redistribution factor,

r parameter based on linear or parabolic moment release model.

One additional factor, a stress redistribution factor should be included in Hybrid

method for through cracks. The general formulae developed and calibrated was :

F, =1-ka (8.3)
where:
F: stress redistribution factor,
k empirical parameter, and
a crack depth

Several empirical formulas for stress redistribution factors and stress gradient
factors were proposed for different welded details for application to analysis of ship CSD.

It need be further calibrated based on more experimental data.

8.2 Future Studies

It should be pointed out that the topic in this report is only about a single crack in

a detail under redundant conditions. If one considers interactions with adjacent structures
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or cracks, several other factors influence load shedding. For example, multiple crack
effects, stiffener effects (broken or unbroken). These need be further studied. Background

on some of these aspects is provided in appendix.
The following future studies are suggested based on results from this project.
Extension and verification of the load shedding formulae for through thickness
cracks. A fatigue crack propagation test for ship CSD is recommended for this study.

Based on analytical study, numerical study and experimental study, the load shedding

formulae for through thick crack can be verified.

83




Appendix A

References

1. Newman, J.C. and Raju, 1.C, " An empirical stress intensity factor equation for the
surface crack", Engineering Fracture Mechanics, vol. 15, 1981, pp. 185-192

2. J.Forbes, G.Glinka, and D.J.Bumns, "Fracture Mechanics Analysis of Fatigue Cracks
and Load Shedding in Tubular Welded Joints", Proceedings of 11th International
Conference on Offshore Mechanics and Arctic Engineering, Vol. 2, 1992, pp307-313

3. A. Aaghaakouchak, G.Glinka, and S.Dharmavasan, "A Load Shedding Model for
Fracture Mechanics Analysis of Fatigue Cracks in Tubular Joints", Proceedings of
8th International Conference on Offs_horc Mechanics and Arctic Engineering, Vol. 2,
1989, pp159-165

4. J.V.Haswell, " A General Fracture Mechanics Model for a Cracked Tubular Joint
Derived from the Results of a Finite Element Parametric Study", Proceedings of 11th
International Conference on Offshore Mechanics and Arctic Engineering, Vol. 2, 1992,
pp267-274

5 Tao Xu and Robert, G Bea, "Fitness for Purpose Analysis Procedure for Cracked
Critical Structural Details (CSD) in Tankers", Report SMP I 2-1 Ship Structural
Maintenance Project, 1994. Dept. of Naval Architecture & Offshore Engineering,
University of California at Berkeley, Berkeley, CA 94720




6. Tao Xu and Robert,G Bea, "FRACTURE - A Computer Code for Crack Growth
Analysis of Cracked Critical Structural Details (CSD) in Tankers", Report SMP 111
2-3 Ship Structural Maintenance Project, 1994. Dept. of Naval Architecture & Offshore
Engineering, University of California at Berkeley, Berkeley, CA 94720

7. S.A.Meguid, "Engineering Fracture Mechanics", Elsevier Applied Science, 1989

8. DJ.Cartwright and D.P. Rooke, "Approximate Stress Intensity Factors
Compounded from Known Solutions", Engineering Fracture Mechanics, Vol. 6 563-
571, 1974

9. H.Neuber, "Theory of Notch Stresses", Springer, Berlin (1958). Translation series
AEC-1r-4547, U.S. Atomic Energy Commission.

10. Niu X and Glinka G, "Stress Intensity Factors for Semi-Elliptical Surface Cracks

in Welded Joints", International Journal of Fracture, 1988

85




Appendix B

The following notes are about the multiple crack effects and stiffener effects which
are the load shedding contribution in tanker panel structure. The methodology which is;
primarily developed here is different from the previous approaches for local structural
details. The further development about the relation between these methodology is

recommended.




Appendix B

B-1 - Multiple Cracks

There are a number of situations where multiple cracks occur. For example,
cracks arise at the cutouts. Only a few solutions are available for stress intensity factors
for multiply-cracked finite bodies. Accurate mathematical analyses are complex and
time-consuming to apply to such cases. However, if high accuracy is not required for a
given application, a simple approach based on the concept of "Load Relief" may be

adequate.

It is known that under certain loading conditions the stress concentration effect of
multiple parallel notches is less than that of a single notch [Neuber 1974]. In fact, a
design procedure in which additional notches are provided primarily to effect a
redistribution of the stresses is called "load-relieving notches". Neuber investigated this
effect and suggested a concept that he referred to as the coefficient of "load relief" for
notches. A similar concept to be called the "load relief factor" may be appropriate to
opening mode stress intensity factors for multiple cracks in stress bodies. This "Load

Relief" factor can be included in the load shedding formulae.




The load relief factor F can generally be defined as the stress intensity factor of

multiple-cracked, infinite body (K,),, . divided by the stress intensity factor of a single

cracked body (K|),  Of the same geometry and loading conditions. Hence for the Mode |

stress intensity factors the load relief factor is given by :

F= (KI )m,o /(Kl)s,eo (B'l)
where F is known for an infinite (or semi-infinite) body it is then assumed that the same
value of F applies to a finite cracked body with similar geometry and loading conditions,

ie:

(K me = Fe(Kpse (B-2)
where (K,), is the stress intensity factor for a single-cracked finite body of the same

loading conditions as that included in the determination of F and (K;)p, ¢ is the required

solution for the same finite body with multiple cracks. (Fig B-1)
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Fig B-1 Schematic showing method of obtaining stress intensity factor for an infinite array

of internally-pressurized central paralle] cracks in an infinitely long strip of finite width
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The substitution of eqn [B-1] into eqn [B-2] gives

K
(Kior = G2 K ®-3)

This factor can be included in Newman-Raju equation or Hybrid method by

simply multiplying F.

Although the formulae is easy, the computation of (K, ), is difficult due to the

difficulty in the calculation of (K, ), .
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B-2 - Stiffener Effects

Stiffener are frequently attached to plates used in tanker stucture to improve the
strength and the stability and to provide a means of slowing down or arresting the growth
of cracks in plate. The opening mode stress intensity factor is less in the vicinity of an
intact stiffener because the load is concentrated in the stiffener and hence the stress is
lower in the plate. However, if the stiffener breaks under the load, the stress inensity

factor increase dramatically.

Stress intensity factor for simple CSD / joints was presented in previous reports.
But they are not directly applicable to the stiffener panels of typical tanker structures.
The compounding method described here is a versatile and quick way of extending these
solutions for the CSD / joints to other, more complex configurations for which the stress

intensity factors are not known.

If a cracked structural has several boundaries, (e.g. holes) other cracks or edges;
the computation for stress intensity factors is more complex since all these will influence
the stress intensity factor at the tip of the crack under the study. The main principle of the
componding model is to obtain the solution by separating the complex configuration into
a number of simpler ancilary configurations which have known solutions. Each ancillary
configuration will usually, contain only one boundary which interacts with the crack. The
contributions from each ancillary configuration are compounded according to the
following formula: _

K,=K+Z(K,-K)+K, (B-4)




where Kr is the resultant stress intensity factor with all the boundaries present, Kn is the
stress intensity factor with only the nth boundary present, K is the stress intensity factor
in the absence of all boundaries and Ke is the contribution which may be present due to
boundary-boundaru interaction. It is convient to express the compounding formula in
terms of normalized stress intensity factors Q(=K /K) since many of the known ancillary

solutions are given in this form. Then

Q,=1+§(Qn -1)+Q, (B-5)

°

The difficulty in the compounding technique is the evaluation of Qe which is the
term of the boundary-boundary interaction effects. This effect is different from the
boundary effects for load shedding. Such effects are not included in the modified
Newman-Raju equation or Hybrid-method. Thus, previous method is a special case of the

compounding when boundary -boundary interaction effects are negligible.

The evaluation of Qe can be in terms of the residual stress fields at the boundaries
by using Schwarz alternating technique. [Schwarz 1974]. The residaul stresses were
originially ignored in the derivation of fracture mechanics equations which is based on
the principle of superposition. For many problems Qe is small and can be ignored. For

problems which is important, approximate method have been developed for evaluating it.

The magintude of the boundary-boundary interactions can be estimated by
calculating the stress intensity factors from known equation from which the alternative
solutfons are available [Cartwright 1982]. The magnitude of Qe was found to be depend
on the number and type of boundaries; it increased as the number of boundaries increases
and as the crack approached a boundary. Straight boundaries had more effect than curved

boundaries such as holes, and other cracks had a smaller effect than holes.
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The simple compounding procedure of adding together the effects of the

individual boundaries needs to be modified if the crack crosses one of the boundaries ora
crack beneath a stiffener. Before the effect of other boundaries can be considered, the
crack plus the boundary it crosses must be replaced by an equivalent crack which then

interacts with the other boundaries. If the stress intensity factor Ko when only the

boundary the crack crosses is present, then the equivalent crack length a' is given b
ry P q 4 g y

Ko\ )
a'= (—E"-) a=Qga (B-6)

The effects of the other boundaries on the original crack plus boundary is now(
considered to be the same as the effects on the equivalent crack, In order to calculate thel
effects, the distances of the other boundaries from the equivalent crack must be‘[
determined. These distances are determined subjected to the condition that each boundaryi
must be the same distance from the nearer tip of the equivalent crack in each ancillary

configuration as it was in the original configuration. The compounding formula is then

modified to :

K, =K, + X(K,-Kg)+K, (B-7) |

n#0
where Kn' is the stress intensity factor for the equivalent crack in the presence of the nth§

boundary condition only. The above equation can be written in terms of the normalized

stress intensity factors and becomes :

Q, = Qo1+ £(Q, -H+Q.] (B-8) |
nz0
where Q, =K, /K,. With these modifed formulae the stress intensity factor can bel

I
calcualted for stiffener panels. Based on the previous studies, the boundary-boundary

interaction is small.
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In some case, bounary-boundary interactions can not be neglected, for instance a
crack at the edge of a hole which is near another boundary. A measure of the interaction
may be obtained from the difference in the stress concentration factor Kt at the edge of
the hole in the uncracked configuartion with and without other boundaries. If the change
in Kt is significant then the boundary-boundary inetraction Qe in the cracked

configuration will also be significant.

In the following the principles of compounding are applied to determine the stress
intensity factor for a periodically stiffened, loaded panel with a series of collinear, equal-

length cracks centred on each of the stiffeners. This is typically shown in Fig B-2.

The problem considered contains an infinite series of cracks, of length 2a centred
on and perpendicular to stiffeners that are a distance b apart. The panel is subjected to a
uniform stress o remote from the crack; the stresses in the stiffeners, in order to maintain
strain compatibility, is (Es/E)o where E and Es are the Young's modulus of the panle and
stiffener respectively. The ancillary configurations required, in general, are :

(1) a crack centred about a stiffener which may be broken or unbroken, .

(2) a crack near to an unbroken stiffener, and

(3) three collinear cracks in a uniformly stressed panel.

If tip A of the crack at stiffener So in Fig 1 is the tip under consideration and
stiffeners to the right of A are labelled with positive integers and stiffeners to the left
with negative integers, then eqn [B-3] has been shown to become

K, =Ko+ I (K, -Kg)+ T(K_4, -K,) (B-9)

nel n>0

The stress intensity factors Ko, Ks,n' and K_ . are defined as follows:
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Ko is for a crack of length 2a in ancillary configuration (1);

Ks,n' is for a crack of length 2a,(=2QZ2a) whose centre is a distance bv’o’n from !

the nth stiffener as in ancillary configuration (2); j

and l('c 4n iS @ crack of length Za'o located symmetrically between two cracks of

length 23‘,(:20321) as in ancillary configuration (3).

The equivalent cracks of length 2an' are obtained by replacing each |

crack/stiffener pair by a crack with the same stress intensity factor; the length an' is given

in terms of an by eqn [1] with Qn replacing Qo and the distance between crack centres |
do,n is given by :

|
|

do,—8p—3,=b-2a (B-10)
Qn is the normalized stress intensity factor for a crack of length 2aa centred on stiffener
Sn in a panel with no other stiffeners or cracks present. In this periodic configuration as=a
for all n. If all the stiffeners are unbroken ther Qn=Qo for all n, but if So is broken then ‘

all the Qus are equal for n# 0 and Qu > Qn.

Because of the periodicity of the stiffeners eqn [1] can be simplified since \
l(0""' z (Ks.n-KO)=Kp (B'll) ‘

n=0

where Kp the stress intensity factor for a crack centred about one of the stiffeners in a

periodic set. !

All these K values can be found from previous studies or hybrid method, thus the

Kp can be determined. ‘
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Preface

The one year Joint Industry Research Project "Fitness for Purpose Evaluation of
Cracked Critical Structural Details (CSD) in Tankers" was initiated in 1993 by the
Department of Naval Architecture & Offshore Engineering, University of California at
Berkeley as an extension of the projects "Structural Maintenance for New and Existing
Ships" and "Ship Structural Maintenance". The objective of this project is to develop
engineering guidelines and procedures to help ship repair engineers, port superintendents
and surveyors make evaluations of the fitness for purpose of cracked Critical Structural

Details (CSD) in tankers.

This project was made possible by the following sponsoring organizations:
-American Bureau of Shipping -Chevron Shipping Cooperation
-Mitsubishi Heavy Industries -Newport News Shipbuilding & Dry Dock Co.
-Ship Structure Committee |

This report documents a fitness for purpose analysis procedure of cracked critical

structural details (CSD) in tankers.
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Summary
Objective

The objective of this project is to develop engineering guidelines and
procedures to help ship repair engineers, port superintendents, and surveyors make
evaluations of the fitness for purpose of cracked critical structural details (CSD) in

tankers.

This project is the the third phase of the Joint Industry Research Project
"Structural Maintenance for New and Existing Ships"(SMP) which has been
conducted by Department of Naval Architecture & Offshore Engineering, University of

California at Berkeley.

A general fatigue analysis procedure was developed and updated during SMPI and
SMPII. This provided the naval architect with the necessary information to reduce the
chances of experiencing unexpected fatigue damage in CSD in tankers. The SMP fatigue
analysis should not be expected to result in a perfectly crack free tanker. The
uncertainties and variabilities associated with the fatigue analysis and economics
associated with the cyclic stress reduction will not allow a perfectly crack free tanker to be
practical. Sufficient durability for the cracked critical structural details (CSD) in tankers
and its associated maintenance are the principle objective of this fitness for purpose

analysis.




Fitness for Purpose Procedure

A general fitness for purpose evaluation for cracked CSD in tankers has been

developed during this project. The procedure can be summarized as follows:

1) Identification of the specific critical structural details (CSD) where cracks
occur based on previous experience, inspections or the SMP fatigue analyses
based on traditional S-N curves.

2) Inspection of these details to define the initial crack size (ao) to be used in
the remaining life analysis.

3) Determination of the fracture toughness value of the steel plate used in the
CSD to derive the final critical crack length. The final critical crack length is
the length that a crack must reach before the crack can propagate in a brittle
fracture mode.

4) Development of equivalent S-N curves for cracked CSD based on the
initial crack length and final critical crack length.

5) Based on the long term fatigue loading and equivalent S-N curves, the
residual fatigue life for cracked CSD can be evaluated.

6) Based on the estimated residual life, the inspection and repair program

can be established for extended safe and reliable service.

The application of the proposed procedure has been illustration with evaluation of

cracked CSD in a 165,000 DWT single hull tanker.




Scope

The fitness for purpose procedure developed during this project is based on
fracture mechanics. This report documents in detail the linear fracture mechanics based
methods used to derive the fitness for purpose procedure. The report is divided into seven
chapters.

Chapter 1 introduces fatigue cracking in tankers with the overview of the previous
projects.

Chapter 2 summarizes the linear fracture mechanics methods. The general theory
and principles of the crack growth are briefly described. The models for crack growth
calculation of large CSD are described. The procedure for evaluating fatigue life due to
constant and random loading are outlined.

Chapter 3 addresses the computation of Stress Intensity Factors (SIF). It presents
the hybrid method for evaluation of SIF. The hybrid method is a combination of an
influence function method and a superposition methods. It employs available solutions for
two- and three dimensional crack problems. From these, the influence of different factors
affecting the stress intensity factor, K are separated and used to " compose" an estimation
of K in actual structural details.

Chapter 4 documents the numerical methodology for the S-N curve development.
This method includes the local notch approach for the estimation of the crack initiation
phase and the fracture mechanics approach for the crack propagation phase. The cracked
CSD S-N curves are developed based on fracture mechanics in the crack propagation
phase.

Chapter 5 contains a discussion about the long-term fatigue loading. A new

analytical formula for a wide banded loading process is derived. The load sequence is

il




briefly discussed. A damage model is presented to enable aan evaluation of sequence
fatigue damage.

Chapter 6 presents a fitness for purpose analysis of a cracked CSD in a 165,000
DWT single hull tanker. It is shown that fitness for purpose procedure can provide a
rational procedure to help engineers make repair and maintenance decision for cracked
CSD in tankers.

Chapter 7 summarizes results from this study and makes recommendations for

future work.




Chapter 1

Introduction

1.1 Background

In the present generation of very large crude carriers (VLCC), fatigue related
cracks in critical structural details (CSD) constitute one of the single largest maintenance
problems associated with these ships. The fundamental reason for fatigue cracking is
excessive high cyclic stresses in CSD. There are two fundamental ways to reduce fatigue
cracking: (1) reduce the numbers of cyclic loads and (2) reduce the magnitude of cyclic
stresses. In general, there are not too many ways to reduce the number of high cyclic
loads although slowing the ship down avoiding the bad weather, and choosing headings
in severe seas can minimize the cyclic loads. The most effective way to reduce fatigue
cracking is to reduce the stress levels in the CSD. This can be accomplished by a variety
of structural strategies such as increasing the scantlings of the steel sections, providing
gradual changes in stiffness of intersections, providing balanced stiffness and strength in
connections to eliminate "secondary stresses", improving weld profiles (to provide
gradual changes in stiffness), reducing fabrication misalignments and more effective and
efficient detail design. These approaches were addressed in detail in previous SMP I and

SMP II projects. [1.1-1.2]




A general fatigue analysis procedure was developed and updated in SMP I and
SMP 11 project to provide the marine engineer with the necessary information to reduce
the chances of experiencing unexpected fatigue cracking and provide an acceptable
degree of "durability" in the CSD. But the fatigue analysis should not be expected to
result in a perfectly crack free tankers. The uncertainties and variabilities associated with
the fatigue analysis and economics associated with cyclic stress reductions will not allow
a perfectly crack free tanker to be practically realized. Sufficient durability for the
cracked CSD and its associated maintenance planning are the principle objective of this

SMP 1l project.

The Joint Industry Project "Fitness for Purpose Evaluation for Cracked
Critical Structural Details (CSD) in Tankers" is the extension of the research of the
fatigue damage evaluation in SMP I and SMP 11 project. The objective of this project is
to develop engineering guidelines and procedures to help ship repair engineers, port
superintendents, and surveyors make evaluations of the fitness for purpose of
cracked CSD in tankers. The main focus is on the residual life of the cracked CSD

in tankers[1.3].

1.2 Fatigue Cracks in Tanker Structures

Based on the results from the previous SMP [ & 11 projects, Something of the
order of 40% to 50% of cracks in the class of VLCC studied were located in the
connection between side shell longitudinal and transverse frames[1.1]. A typical example

of crack locations is shown in Fig. 1.1.




Fig 1.1 Cracks in Sideshell Longitudinal CSD

Most of the fatigue cracks of side longitudinal occur in the region between fully
loaded water line and ballast water line. This region is basically the highly cyclic and

dynamic loading area. This is due to the high fluctuating hydrostatic and hydrodynamic

pressure on sideshell waterline (Fig. 1.2).

A /’\; sideshell presure

_/QVA_ bottom pressure

Fig. 1.2 Schematical pressure load on bottom or sideshell
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The cracks normally start at welded connections between side shell longitudinal |
and supporting stiffeners or brackets. Cracks most frequently initiate in the weld heat

affected zone or poor fabricated sections, poor welded sections and poor aligned sections.

Fig. 1.3 is typical illustration of the fatigue crack initiation and growth of CSD in

tankers.
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Fig 1.3 Crack initiation and Growth of CSD in Tankers




1.3 Fitness for Purpose Evaluation Procedure

The general fitness for purpose procedure developed during this project can be

summarized as follows:

1) Identification of the specific critical structural details (CSD) where cracks
occur based on previous experience, inspections or the SMP fatigue analyses
based on traditional S-N curves.

2) Inspection of these details to define the initial crack size (a0) to be used in
the remaining life analysis.

3) Determination of the fracture toughness value of the steel plate used in the
CSD to derive the final critical crack length. The final critical erack length is
the length that a crack must reach before the crack can propagate in a brittle
fracture mode.

4) Development of equivalent S-N curves for cracked CSD based on the
initial crack length and final critical crack length.

5) Based on the long term fatigue loading and equivalent S-N curves, the
residual fatigue life for cracked CSD can be evaluated.

6) Based on the estimated residual life, the inspection and repair program

can be established for extended safe and reliable service.

Many factors related to the fatigue crack growth process are variable, indefinite,
or unknown, leading to large uncertainties. As the result of the uncertainties, the safety of
the considered tanker against fatigue failure should be evaluated in a probabilistic sense.

An advanced reliability analysis for fatigue cracks and its maintenance would be




addressed in the subsequent reports. In this report, a deterministic linear fracture

mechanics procedure is developed as the basis for the probabilistic development.

This report is divided into seven chapters. Chapter 1 is the introduction. Chapter 2
describes the linear fracture mechanics method. Chapter 3 discusses the evaluation of |
stress intensity factor. Chapter 4 documents the development of the equivalent S-N ,
curves based on the linear fracture mechanics. Chapter 5 addresses the long-term fatigue !
loading. Chapter 6 applies the detailed fitness for purpose evaluation procedure fori

cracked CSD in 165,000 DWT tanker. Chapter 6 summarizes the results from this study
|

and recommends future on this topic. ‘
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Chapter 2

Linear Fracture Mechanics

2.1 Introduction

During cyclic loading, a crack can propagate at stress levels well below the static
fracture stress. This fatigue problem is usually treated by use of a fatigue analysis based
on Cyclic Stress Range - Number of Cycles to Failure (S-N) and the well known Miner-
Palmgren hypothesis. However, this problem may be treated in a more versatile way
through the use of fracture mechanics. In this chapter, fracture mechanics models will be

described and developed for the estimation of crack growth and fatigue life of ship CSD.

First, the general theory and principles of crack growth are described. Second,
actual models for crack growth calculations of large scale CSD are described. Third,
methods and procedures for estimating fatigue life due to constant and random loading

are outlined.

2.2 Crack Growth and Fatigue Life
2.2.1 Crack Growth

A brief review of the procedures for calculating crack growth will be discussed in

this




section, however, only aspects which are related to this work will be addressed in detail.

2.2.2 Crack Mechanisms

On the basis of a re-analysis of crack propagation data obtained by several
investigators, Paris and Erdogan [2.1] suggested that the most relevant parameter to
describe the fatigue crack growth was the range of stress intensity factor, AK, where:

AK = K max- K min 2.1

Kmax and Kmin are the value of stress intensity factor, K, at the upper and lower limit.

stresses of cyclic loading.

As discussed in chapter 3, the stress intensity factor, K, is a single term parameter
which describes the stress condition adjacent to the crack tip. In most fatigue crack
propagation situations, cracking will occur under linear elastic and quasi-elastic
conditions, and the size of any plastic zone at the crack tip will be small compared to the
crack length and the actual plate thickness. Under such circumstances, the stresses and

strain condition at the crack tip can be described by the stress intensity parameter.

However, it is not generally applicable to define the cyclic stress intensity factor
(AK) by use of the upper and lower limit stresses, because the crack growth rate is
dependent on some other factors such as mean stress level, residual stress and
environments (e.g. corrosion). Problems associated with these factors will be considered

later in this chapter while the stress intensity factor evaluation is addressed in Chapter 3.

On the macroscopic scale, at which cracks are treated in this study, fatigue
fracture surfaces are generally flat and smooth in appearance. They tend to grow as

model-I (Fig 2.1) cracks irrespective of initial orientation, so attention is mainly confined




to this mode. Other modes (Fig 2.1) can occur when a crack follows a plane of weakness
or is initiated at a notch with large shear stresses and/or in a biaxial stress field. Such
cracks can be treated as if they were mode-1 cracks, where the opening mode-I stresses
are taken as the maximum principal applied stresses. This simplification is justified by
the fact that a crack subjected to different crack opening modes is found to propagate
perpendicular to the direction of the maximum principal stress [2-2]. But the maximum
stress can not be defined as fatigue stress for real CSD in tankers due to its complex
stress fields in such details. Generally, fatigue stress for CSD is defined as the stress

which is normal to the crack direction. [2-1].

mode II Sliding mode

mode I Opening Mode mode III tearing mode

Fig 2.1 Three Cracking Mode

In Fig. 2.2 a schematic crack growth rate curve is shown. Three distinct regions
are indicated : the well-known threshold region (crack initiation), intermediate region

(stable growth) and the failure region (unstable growth).

Threshold ! Int.e‘rmedi'at.eI I
log(da/dN) | Region | Region A ure
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| I region) |
| |
log(aK)

Fig. 2.2 Schematic crack growth rate curve showing the variation of

crack propagation rate (da/dN) with cyclic stress intensity factors
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The variation of da/dN with AK is rather complicated, being sigmoidal in form
(log-log plot) and bounded at extremes by values of AKuw and AKc, ( ie the threshold

value and the critical value) of AK respectively.

The different regions are associated with the following crack growth stages.

- crack initiation
- stable crack growth

- final fracture (unstable crack growth)

At sufficiently low stress intensity range, there is no crack growth. The
corresponding value of stress intensity factor is called the threshold stress intensity factor

range (AKuw).

‘At intermediate values of K, there is an approximate linear relationship between

crack growth rate and AK on a log-log scale.

As the stress intensity factor approaches the fracture toughness of the material,
the growth rate increases sharply, and becomes an asymptotic value of (AK) for an

infinite crack growth rate, i.e. an instable crack length is reached.

2.2.3 Crack Propagation Laws

A large number of crack propagation laws have been developed [2.2-2.5], the

majority can be described in the form:

da/dN = K(AK, AK,,,Kc)H(a,R) 2.2)

11




where "J

AK - range of cyclic stress intensity factor }
AKn - threshold stress intensity range |
R - stress ratio

a - crack length \

F,H - are usually power functions }

Most of the proposed relations are attempting to model one or more of the crack
propagation regions, hence they might include effects of threshold values - and critical

values of the stress intensity factor.

In general the crack growth rate will also be dependent on:

- stress ratio, |
- material strength, |
- material type,

- environments, \
- load type and nature of loads, and

- frequency of loading, |

Crack propagation is dependent on a variety of different parameters. Many
relations for predicting the growth rate have been developed. The majority include
empirical crack growth parameters, which must be evaluated for the actual material and

circumstances.

Many attempts have been made to derive a theoretical law for fatigue crack |

growth, but none of the proposed expression have a general application. For engineering i
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problems, the simple knowledge that (da/dN) is a function of (AK) will often be
sufficient. Therefore, the crack propagation relationship is more often deduced from test

data.

Semi-empirical laws have been derived from empirical data, and each one is valid
for certain scope which can be represented from these data. The scatter for crack
propagation test data is very large. It can be concluded [2-2] that there is little basis for
arguments about the usefulness of different proposed empirical laws. Many of them have
certain merits in a limited region or for a particular set of test data. Therefore no one
proposed empirical law for (da/dN) versus (AK) can be taken to have significant

advantage over the others.

Paris and Erdogan [2-2] suggested the following simple relation:

da /dN = C(AK)™ (2.3)

where C and m are material parameters for a given material and environment. This
expression becomes a straight line in a log-log graph, (Fig. 2.1), The slope of the line
represents the material parameter m, and the intersection with the ordinate-axis
represents the parameter C. This equation is found to provide an adequate description of
the behavior for the mid-range of growth rates. However, the equation has been found to
have wide practical application for analyzing cracks in as-welded steel structures, where
small initial cracks always are present in or nearby welds. Under such circumstances, the
crack initiation stage is negligible, and the major part of the total fatigue life is occupied
by the crack growth stage, i.e. the mid region, which is adequately described by Paris-
Erdogan relation. The failure region will be very short for almost all practical

calculations. Hence it can be negligible due to the rapid increasing growth rate.

13




2.2.4 Parameters m and C |

As discussed early, the parameters C and m are not strictly material constants, |
since they depend on factors as the stress conditions and the environments. The value of ]‘
C and m, for any particular material and set of conditions, have to be defined
experimentally. Many attempts have been made to obtain an empirical relationship
between C and m. In general the proposed relations are of the kind |
C=AeB™ (2.4) ;
where A and B are constants for a particular type of material and set of conditions.
Experimental results on steels tested in air at R=0, indicates that log(C) is linearly related

to m. Based on the re analysis of several published crack propagation test results of

structural steels, Gurney [2-3] obtained the following relation:

C=(1.315x107")/(895.4)™ (2.5)

By inserting this into Eq. (2.3),

da /dN =1.315x107(AK /895.4)" (2.6)
which implies that all (da/dN - AK) relations for all steels pass through the point da/dN
=1.315 x 10™ -mm/cycle at Ak=895.4 N/mm*2. At present it is not known what defines
the value of m and C for any particular material. For structural steels m usually lies in the

range 2.4 to 3.6 [2.4]). The value m=3 is the one that is frequently assumed for design

purposes.

Generally, one may state that when AK is less than 895.4 N/mm>*?, smaller ratei
for propagation is obtained by an increasing m. As most of the life of a crack is spent ati

short cracks, a larger m will be beneficial at low AK. |
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2.2.5 Mean Stress and Residual Stress

The effect of mean stress level on fatigue crack propagation can be studied by
using the stress ratio parameter R, where R is equal to Omin/Omax, Omin and Omax are the

minimum and maximum values of the fluctuating stress.

Several investigations have been conducted to study the effect of mean stress,
(see e.g. [2-4,2-5]). Many models have been proposed, both theoretical and empirical [2-

4,2-5}, but none of them are generally valid.

The general effect of mean stress level is shown in Fig. 2.3.

log(da/d‘N)A

- >
0 log(AK) |

Fig. 2.3 Effect of Stress Ratio on Crack Growth Rates

High stress ratios tend to reduce the threshold value and to increase the crack growth rate
at a given value of the stress intensity range. Tanker structures may experience both
negative and positive mean stress levels. In the case of partly negative stresses, the

growth rates seem to follow the range of the positive part of the cycle.
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AK Ao
AK . =K = _=—</7taF 2.7
eff max 1-R 1-R ( )

This indicates that the negative part of a load cycle is non-damaging. It is generally

assumed that crack closure is responsible for this effect.

However, it might be concluded the effect of mean stress level becomes insignificant due

to residual stresses [2-5,2-6].
Residual stresses in structures may be categorized into two types

- short range stresses, and

- long range stresses

Short range stresses or welding residual stresses exists only in and close to welds,
and are self-balanced over the cross section of the member. The stresses are caused by
the heat input during welding, and thermal contraction of part of the cross section under
restraint from cooler portions. Such short range stress are always associated with small

member end displacements.

Long-range stresses are associated with large deflections and rotations , and are
self-balancing within the detail and its adjacent details. These stresses are usually induced
during fabrication process, whereby welding shrinkage, local heating, mechanical

restraint, and brute forces (e.g. to imposed align misaligned sections) are main sources.
Very little is known about residual stresses, but measurements show that short

range stresses are usually of yield magnitude with large through thickness gradients, see

e.g. [2-6], while long range stresses can be assumed approximately equal to 25% of the

16
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yield stress[2-6]. Short range stresses may easily be reduced by heat treatment, while
long-term stresses which are associated with large strain energy due to large deflections
and rotations are not easily reduced by heat treatment or other residual stress reducing
techniques. As a consequence, residual stresses will always be present in tanker

structures, and can never thought to be be taken lower than 25% of yield magnitude[2-6].

Residual stresses will significantly affect the mean stress level in welded steel
structures. The level will almost always be at yield stress tension in and near by welds,
where fatigue cracks in as-welded structures are most likely to occur. The stress range
will pulsate downwards from yield stress tension, i.e. at a high stress ratio. As a
consequence, the effect of mean stress.level due to static applied loads becomes

insignificant in crack growth calculation for as-welded structures.

On this basis, the so-called stress range approach has heen adopted in realistic
fatigue crack growth calculations, implying that the whole stress range or stress intensity
factor range is taken as effective. The effects of mean stress level and residual stresses
are implicitly taken care of by adopting crack growth parameters (C,m) obtained

experimentally at high stress ratios and/or at high stress levels.

2.3 Fatigue Crack Growth Modeling
2.3.1 Surface Crack Growth Stage

Crack growth in most types of welded steel materials can be adequately
characterized by the well-known Paris-Erdogan relationship. The growth modeled by this

relation is a strong function of the cyclic stress intensity factor (AK). This factor depends

on geometry and load configurations and has to be determined for the actual case.
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Of special interest in fatigue crack growth problems are part through-surface
cracks, which usually are initiated from crack like defects at the weld toe or nearby the
welds and weld affected zone. Such cracks are often found to grow with a semi-elliptical
crack front, hence such cracks become of special interest in crack growth problems.
Unfortunately no closed form analytical stress intensity solution is available for this case.
Nevertheless, approximate solutions can be obtained by adding basic solutions [2:7-2.9].
Complex configurations are considered to be a combination of a number of separate
simple configurations with separate boundary conditions which have known stress
intensity factors. The stress intensity factors for the simple configurations are then added
to obtain the required solution. Using this technique, and the well known superposition
principle [2.5], stress intensity factor estimates at the deepest point of a semi-elliptical
crack can be obtained from empirical stress intensity factor equations and the closed form

edge crack influence results.

Using this method, problems with complex stress gradients in the plate-depth
direction can be solved. This method has successfully been applied in earlier works e.g.

[2.10-2.11].

However, the method is only capable of handling a single degree of freedom
crack growth. Hence, it becomes dependent on empirical relations of crack shapes (aspect
ratio -a/c; crack depth a to crack width c) for deriving reliable and accurate crack growth
results. The empirical relations are usually obtained from lab test of small specimens
with a certain local and global geometry. As a result, the applicability of each set of data
becomes an important limitation when it comes to large scale structural problems. In
particular, one must count on large limitations in performing generalized analyses, due to

limited availability of data and large resources required to derive such data.
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In order to overcome these limitations in performing generalized analyses of large
scale problems, a two degrees of freedom crack growth model must be developed, which

can account for complex crack surface loading.

Semi-elliptical cracks requires two length dimensions for their characterization, a
and ¢, (Fig. 2.5). In reality, as indicated above, cracks can change shape as they grow, [2-
12] that is, as a and c increases, the value of b=a/c, changes. The manner in which b
changes will depend on the initial crack shape, the geometry and the applied stress
distribution. In all cases, it appears that the aspect ratio, b, will tend toward the value that
produces a constant stress intensity range AK along the crack periphery. However, this
equilibrium value of b will depend on the nature of the applied stress. Hence it may vary

during the crack growth process [2-12,2-13].

The rate at which b extends will depend on the cyclic value of k along the crack
front, as well as the fatigue crack growth characteristics of the material, i.e. values of C

and m in Paris equation [2-12,2-13].

The stress intensity factor to be employed must be carefully defined, because K
varies along the crack front. Considerations of local growth rate controlled by the local
value of K along the crack front would be analytical prohibitive and probably unrealistic
[2-9,2-12]. Semi-elliptical cracks would not necessarily remain semi-elliptical, and stress
intensity factor solutions for non-elliptical cracks would be required, Therefore, it will be
assumed that the growth of a and C need only to be considered, with appropriate

selection of the controlling stress intensity factors.

A two degrees of freedom crack growth model for semi-elliptical cracks may be

utilized using two different stress intensity approaches:
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i) The growth in the depth direction is controlled by the cyclic value of K at
the point of maximum crack penetration, and the growth of C is controlled by the cyclic

K at the surface. This is called the local K approach.

ii) The growth in the two directions are controlled separately by some

average stress intensities along the crack front.

Suggested average values are the "RMS-average" associated with each degree of
freedom a and C. This seems to be a more realistic assumption than the use of simply
local values. Therefore, these "RMS-average" values will be assumed to govern the rate

of growth of a and C.

The suitability of using RMS-average stress intensity factors can be judged from
experimental evidence. Cruse, et. all. [2-11,2-14] provide comparisons of theoretical and

experimental results which suggestes that such values are reasonable.

Further discussions concerning this approach can be found in [2-11,2-13]. An
advantage of this formulation is that the RMS-average values can be evaluated for
arbitrary stresses on the crack plane by the use of influence functions [2-11,2-13,2-15].
These functions can be evaluated from information on the opening displacements on the
crack surface for an arbitrary state of stress, solutions for basic problems are given in the
literature, Basically, the RMS-average values are denoted by a "bar" over the K, and are

defined as follows:

Rt = oK (0)d[4a, (o) (28)
K?= Aj\ ZKz(go)d[AAc(w)] (2.9)
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These equations will be discussed in detail in Chapter 3 and coded in computer

program FRACTURE [2-10].

The use of local values of K would require considerably more numerical stress
analyses for each crack length and stress system of interest, due to the fact that these
values can not be evaluated by the simple use of influence function (or similar
approaches) which can be integrated over the cracked surface to give the stress intensity

in question.

One basic question arises; whether a local or average stress intensity factor should
be used for prediction of fatigue crack growth. The same question yields the prediction of
unstable fracture. This question will not be discussed in detail in this work. It is only
noted that the two different values of the stress intensity factor are very much alike and

does not differ significantly [2-12].

In accordance with the foregoing considerations, a two degree of freedom model
of crack growth can be established by the use of Paris equation, and the crack growth can

be taken to be governed by the following equations(Fig. 2.4) :

da/dN = C,AKz (2.10)
dc/dN = C AK? (2.11)
where subscript a and ¢ denotes the depth and width direction respectively. Ca and Cc are
assumed to be equal.
For each crack increment in the depth direction a corresponding increment in the

width direction can be estimated:

21




Cc AK
=—-—c [ -1
Ac Ca(AK,) Aa (2.12)

Applying this procedure, the crack shape development can be predicted in analytical

terms.

As discussed , Ka and Kc depend on the aspect ratio a/c (among other things) so
that the growth in the depth and length dimension are still coupled. This model is coded

in FRACTURE [2-10].

Alternative approaches for predicting the crack growth are suggested in the
literature, e.g. [2-12,2-13]. One approach that has been proposed is to use a different
crack growth "law" for growth along the surface versus growth in the depth direction.

Discussions concerning this approach can be found in [2-12,2-17].

Fig. 2.5 Semi-elliptical Surface Crack with Two Degrees of Freedom
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2.3.2 Through Thickness Crack Growth Stage

Fatigue crack growth for grow stage are also modeled by use of Paris equation.
For the simple case of a symmetric crack surface loading, (Fig. 2.5), the stress intensity
factor range becomes equal at both crack tips. This problem may be modeled with a

single degree of freedom; only growth in one length dimension needs to be considered.

Aa = C(AK)™ AN (2.13)

The total crack length advance becomes 2Aa.

T Applied Load

l Applied load

Fig 2.6 Through Thickness Crack with Symmetric Crack Surface Loading

In the case of an unsymmetric or arbitrary state of stress, the stress intensity
factor range will be different at the two crack tips (Fig. 2.7). The growth then becomes
unsymmetric: a different crack advance at the two crack tips. The center line of the crack
will not remain at the initial position; it will now move towards the crack side with

largest crack growth. See Fig. 2.7 where this growth behavior is illustrated.
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Fig. 2.7 Through Thickness Crack with Arbitrary State of Stress Characterized by a Two
Degree of Freedom Model

This crack growth process requires a two degrees of freedom model for its
characterization. A similar procedure as indicated for the surface crack can be utilized.
However, the calculation method becomes different because of the unsymmetric growth.
The stress intensity factor, hence also the crack growth increments must be estimated by

use of an alternative procedure. The following expressions yield for an arbitrary crack

increment:
R = C(AK g (ay +0, 5Aaf,;‘ +0, smf;‘,Asf"))"'.AN (2.14)
Aa] =C(AK | (ap+0,5a" +0,54a;", As'™))™ . AN (2.15)
. 0’ 5 i-1 0, 5 -1 ) Asi-l .
pai =(AK,_(a0 + AaiR_l + Aa:__l ;_1))mAaiz 2.16)
AKp(ap+0,5Aap" +0,5Aa ", As"™")
Ast = Aag ;AaL (217
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L Aag +4a; (2.18)

a.=a
0 2

where subscript i denotes iteration number, subscript R and L denotes right-an

left crack tip respectively, and Ao is the incremental movement of the central line, e.g.

Fig. 1.6.

The iteration is stopped when the following considerations are satisfied;

-For > Al
Aag =Aap  when |Aaj -Aaj|<e,
Aa = Aay

- For R <hal
AaR =Aa;1

Aa; = Aa]  when |Aa} -Aajl|<e,
-Aa; >0 Aa, >0
where e: is an infinitesimal test value. The iteration must start with the crack

length ao and incremental value of N.

Through thickness cracks may propagate away from the welding zone associated
with large residual welding stresses. As a result, the effect of mean stress level or residual
stress may change, and complicate the calculations. Thus, an equivalent stress intensity

range must be determined by use of the stress ratio parameter R.

Material parameters (C and m) derived experimentally at the actual stressed

condition must then be used.
A further complication is that more than one crack mode may be involved. This

type of problem will not be considered in this project. This study is limited to problems

involving a dominant mode-I crack opening configuration.
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This problem may be solved by an equivalent stress intensity approach involving
the derivation of stress intensity factors for all the crack deformation modes acting. This
will also include the derivation of the path of crack. This problem has been a topic of

extensive research for the last years, and basic theory can be found in textbooks{2-9].

2.4 Fatigue Life

One might subdivide the entire fatigue life in a crack initiation period (Ni), a

crack growth period (Np) and a final fracture period (N), i.e.

NT=Ni+ Np+N; (2.19)
as was discussed in previous, the crack initiation period in as-welded structures usually
occupies a small part of the total life, hence it can be neglected. So aiso for the final
fracture period. Neglecting the contribution from these regions will for most cases lead to

small errors, in the conservative direction.

This method is usually called the engineering approach, and crack growth
behavior is simplified as shown in Fig. 2.8. The entire crack growth is assumed to follow

the Paris-Erdogan relation in all the three distinct regions.

The value of the parameters C and m are chosen in accordance with the condition
of each application. Under constant amplitude loading one may introduce a certain
threshold value. At stress intensity factor ranges below this value there will be no crack
growth. A distinct cut off level can hardly be justified under random amplitude loading.
Some (AK) value will be above, and some below the threshold for the initial crack. A

certain crack growth will take place.
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2.4.1 Constant Amplitude Loading :

Having established the crack growth relation and corresponding parameters one
may estimate the time or number of cycles required to grow a crack from one size to

another.

a
dN,, = 32 (2.20)

where (dNi-2) is number of cycles, (dai-2) the actual crack increment and where subscript

(A) indicates the actual crack growth relation.

log(da/dN)

' - >
MK log(AK)

Fig. 2.8 Engineering Approximation of Crack Growth Ratess in as Welded Steels

Applying the Paris-Erdogan relation and integrating over the entire crack

propagation stage :

% da
Ny=[—— 2.20
T f C(AK)™ (2.20)
where (N7) is the total life, (ai) the initial crack length and (af) the final crack

length.
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In the case of a very simple analytic expression of (AK), one may obtain a closed
form solution, but generally the integration must be performed numerically. The stress
intensity factor is a complex parameter, which is dependent on a large number of
parameters, and must usually be evaluated by numerical methods; hence, also the crack

growth.

2.4.2 Random Amplitude Loading :

Most structures are subjected to varying amplitude loads, this complicates the

predication of fatigue life and crack growth of structural problems. The complexity
associated with random loading are the definition of load cycle, the cycle counting and

interaction effects.

Random loads may be subdivided into two broad classes: -1) narrow banded, and

2) wide banded random loading.

Methods for random process theory [2-14,2-15] must be used for the
characterization of such load histories. These in general assumes a stationary process,
that is, the statistical characteristics do not alter with time. The narrow-band random
loading is the simplest. Under such loading, a cycle does not differ much from its
predecessor. The definition of load cycle and the counting of them becomes easy by use
of the theory of an stationary and Gaussian stochastic process, which is commonly used
for the load characterization of marine structures subjected to ocean waves. In addition
the effect of interaction become small for this type of loading [2-20]. More information

about the random loading will be discussed in Chapter 3.
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One common method of predicting crack growth life is to assume that each cycle
causes the same amount of growth as if it were applied as part of a sequence of loads of
constant amplitude. The Paris - Erdogan relation must be solved for the crack length,
rather than number of cycles to failure. This cycle-by-cycle approach is given in terms of

crack length (an) after N cycles as follows:

a,=a;+3 A, (2.21)

i=1

the crack length increment (Aaj) in cycle No j is given as:

Aa; = (3—;),- = C,[C(AK}")] (2.22)

where ai is the initial crack length and where Ci is an interaction coefficient. Thus the
interaction coefficient modifies the constant amplitude growth rate to account for

interaction, i.e. the effect of acceleration or retardation.

It has been found that the most dominant imeractiop effect is the retardation
effect caused by overloads and/or peak loading [2-20]. However, the benefit of including
effects of interaction is very uncertain, in general it should be included on the basis of
both theoretical and experimental studies of the actual random loading. Hence also
sources causing interaction may be included, e.g. stress history irregularity, crack
geometry, crack orientation, environment, residual stresses, frequency and material

properties and so on.
When the loading can be assumed to be narrow banded, as for ocean wave

loading, the effects of interaction are limited, and the concept of the equivalent constant

amplitude stress range which will give the same amount of fatigue crack growth on the
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average as the random amplitude stress range history it replaces [2-21]. The equivalent

constant amplitude stress range can be expressed as Fig. 2.9:

fA!(Acn AfA!(AO‘u)

b)

* {ax(AT)

dac 4o

Fig. 2.9 Stress Range Distribution (a) and Histogram (b)

AG, =[]fs(Ac)s(Ac) e dAc]
0

or as:
K
Ao, ={Xfar (Ao P17

i=l

where:

f,z (Aa; )= probability density function of stress range (Ao)

fi = frequency of occurrence of stress range "i" (Ac;)
k = number of histogram class intervals
ni = number of cycles within interval "i"
Nt = total number of cycles
Aci = midpoint of histogram interval "i"
B = empirical or calibration constant
Usually
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B = 3 RMC (root-mean-cube) stress range

B = 2 RMS (root-mean-square) stress range

The exponent f is the slope of the crack growth curve, i.e. m in the Paris Erdogan

relation.

This approach becomes identical to the Miner-Palmgren rule, usually used in the
so called "S-N approach” to fatigue. The following conditions must be assumed for the
cracked CSD in tankers.

- no fatigue limit

- interaction effects are negligible

- the slope of the crack growth curve is the same as the absolute value of the

inverse slope of the S-N curve.
The equivalent stress range approach has been used in many analysis of fatigue
crack growth and is found to give good results when applied to welded steel structures[2-

12). This approach will be mainly used in this study while the discussion about its

limitation will be addressed in Chapter 5.

2.5 Summary and Conclusion

This chapter presents a brief review of the linear fracture mechanics.
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The general theory and principles of crack growth are described at the beginning.
The crack mechanism, propagation is discussed here. Residual and mean stress effects

are outlined with the discussion about different material parameter.

The actual model for crack growth analysis for critical structural details (CSD) in
tankers is addressed later. It describes the computation methodologies for surface crack
and through thickness crack. Several models such as 2-D crack growth model, RMS

model are discussed and compared.
Finally, the fatigue life prediction based on fracture mechanics is discussed in

detail. It focuses on the study of the crack growth under random loading. The

methodology about the crack growth under random loading is outlined.
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Chapter 3

Stress Intensity Factors

3.1 Introduction

Fracture mechanics analgfsis and principles forms the basis for predicting the
residual strength and fatigue life of a cracked CSD. A prerequisite for any such analysis is
the knowledge of the stress intensity factor, K, for the problems under consideration. A
large effort has been devoted into the computation of stress intensity factors during the
last decades. Commonly used methods are empirical solutions, numerical analysis (e.g.
finite element analysis), and superposition and influence-function method (Hybrid

method).

This chapter presents the hybrid method for the computation of K for welded

joints.
3.2 Stress Intensity Factors for Joints.

The method used in computing the stress intensity factor for joints in CSD is
basically a superposition and influence-function method. It employs available solutions for
two- and three- dimensional crack problems. From these the influence of different factors

affecting K are separated and used to compose an estimate of K [3-1,3-2,3-5,3-8).




3.2.1 General Expression for K

The stress intensity factor can be expressed in a general form as :

K =KgF (3.1)

where :

Ks = stress intensity factor pertaining to "standard case".

F = correction factor that modifies Ks to account for the actual
configuration of the local geometry and crack geometry as
compared to the standard case.
The standard case for 2-D is a through crack of length 2a in an infinite plate with a
remote uniform tensile stress acting normal to the crack. (Fig. 3.1!). The standard K

solution is
KB2 =04 T2 (3.2)

The standard 3-D case is an elliptical crack embedded in an infinite solid subjected
to uniform tension (Fig. 3.2). The stress intensity factor along the boundary of the
elliptical crack is (Mode I):

2
Kps = (2 cos? g +sin? 9)°* (3.3)
¢ cC

where @ is the complete elliptical integral and is given by: \

1Al the figures in chapter 3 are at the end of the chapter ‘
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0.5
o= | {1—(1—2—;—)sin2¢} dé (3.4)

It is shown that Ky, (relating to a-straight curve front) differs from K (relating

to an elliptic, i.e. a curved crack front) by the expression :

?:;(:—:-cos2 @ +sin’ @)° (3.5)
which accounts for the effect of the crack shape (a/2c) and position () on the crack
front.

A practical joint case usually differs from a standard case due to

- boundary effects , and

- stress gradients

Boundary- or, finite-dimension-, effects are taken into account through correction

factor, as illustrated in Fig. 3.3

The "two dimensional crack” of Fig. 3.3b differs from the standard case of Fig.

3.1, by a finite width, this is taken into account through Fu.

The "two-dimensional crack" case of Fig. 3.3b differs from the standard case of
Fig. 3.1 due to finite thickness and the crack emanation from a free surface. These are

accounted through factors Fr and Fs respectively.

The "three-dimensional crack” case of Fig. 3.3c differs from the basic case of Fig.
3.2 as the crack emanates from a free surface, and as the body has a finite width and finite

thickness. These deviations from the basic case are accounted for through the factors Fs,

Fw and Fr.
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The "two-dimensional crack" case of Fig. 3.4 differs from the basic case of Fig. 3.1 |

by the sheet curvature. It's taken into account through Fc.

Stress concentrations are synonymous with stress gradients. This stress condition
is an important deviation from a basic case, and must be taken into account through a

correction factor Fa.

Fatigue cracks may obtain various shapes (Fig. 3.3), €.g. the crack front may be
straight or curved. The curvature (crack shape) is an important parameter influencing K.
Thus, it is essential that this effects should be accounted for through a factor Fe. (elliptic

shape factor). The solution for the 3-D standard case of Fig. 3.2 includes the effect of

crack shape through expression (3.5). A curved crack front (a/2c > 0) specializes to a

straight one as a/2c -> 0. The ¢ (and Fe) -> 1, and accordingly the standard stress |
intensity factors for the two- and three-dimensional case can be unified through thei
expression :

KB =0+ TtaFE (3.6)

The standard solutions are elastic. Local plasticity around the crack tip may occur, '

however, and is in fact a prerequisite for fatigue cracking to occur. The effect of this
|
plasticity on K is normally insignificant. However, the effect can be generally be taken into

. !
account through a plasticity correction factor Fp. !

Implementing the above correction factors, F may generally be expressed as |

F=F,oF;eF, eF-eF;eF, 3.7
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Finally, K may be conveniently expressed as :

K=0cJnaeF (3.8)
by including FE in the factor F, i.e.:
or
F=FgeF eF;eF,
ie Fp=Fg*Fs*Fr*Fy (3.9)
In the above expressions :
Fg = basic crack shape factor,
FB = boundary correction factor, encompassing the total boundary,
Fs = front face correction factor, accounting for a free surface behind the crack
front,
Fr = back face or finite thickness correction factor, accounting for a free surface
ahead the crack front,
Fw = finite width correction factor, accounting for a free surface ahead of the
crack front,
Fc = cylindrical shell (i.e. curvature) correction factor,

Fo = stress gradient correction factor,

Fp = crack tip plasticity correction factor.
3.2.2 The basic crack shape factor - Fe

This factor takes into account the effect of crack front curvature, i.e., crack shape.
It stems from Irwins solution for an elliptical flaw, embedded in an infinite elastic solid
subject to uniform tension given in Eq. (3.3). Hence, the resulting Fe for any position

along the crack front, describe by angle ¢ to the major axis (Figs 3.2,3.5) is :
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2

1 . '
?p-(%?cosz O +sin 2 (p)°'25

(3.10)

This equation was derived on the basis of uniform tension across the crack surface.

While it may argued that gradients will modify the result, this consideration is taken into
account by the FG correction described later. Likewise, this equation was derived for a
crack embedded in an infinite elastic solid. Hence, it may be expected that the free surfaces
encountered in practical case (finite body) will influence Fe. Thus, Fe can be interpreted as
a factor that accounts for the (elliptical) crack shape without encompassing the complete
shape-effect, only the related to the standard case. Parts of the effects are included in the
Fs., Fr- and Fo. estimates, as these are functions of a/2c. Hence, FE is maintained in its
original (i.e. standard case) form for stress intensity estimates. The dependence of Fe on
crack shape is shown in Fig. 3.6.

¢ is the complete elliptical integral of the second kind, as given in:
= 2 0.5
o= [ {1-(1-—)sin“$; dd (3.11)
0 c”

A good approximation is obtained through the expression :

¢ ={1+4.5945(a 1 2¢)¢°}* (3.12)

hence,

=0.5

Fe = {1+4.5945(a / 2¢)'*} (3.13)

3.2.3 The Free Front Surface Correction Factor - Fs

This factor accounts for a free surface at the "mouth” of the cracks. (Fig. 3.3).

Several expressions are proposed for the crack shape influence on Fs. A reasonable

relation provides intermediate values is [3.6]
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]

F; =1.122-0.18(a / 2c) (3.14)
| while the curved function in Fig. 3.8 provides upper bounds.
3.2.4 The Finite Thickness Correction Factor - Fr

This factor (also called "the back free surface correction factor") accounts for the

effect of a finite plate thickness, i.e. a free surface ahead of the crack front (see Fig. 3.3).

It depends on :
- crack geometry (size, shape),
- bending conditions (free, restrained) during cracking,
- crack opening stress distribution, and

- position on crack front.

Surface cracks are among the most common flaws in welded CSD. Consequently

accurate stress intensity factors for such cracks are needed for reliable prediction of crack
growth rates and fracture strengths. However, exact solutions are not available, but
several solutions have been obtained by approximate methods. These solutions differ
considerably. In reference [3.7] it was shown that the estimates compared varied by 6 per
cent when a/2c > 0.3 and a/t < 0.5. Beyond these ranges deviations might exceed 100 per

cent. Thus deviations are particularly large for small (a/2¢) - ratios. ‘

Two of the closed-form expressions available for uniform tension loading are :

when a/2c =0 (3.15a)

when a/2c =0 (3.15b)
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These are the forms most frequently cited in the literature, although in later years
very often in modified version, [3.8]. They pertain to the symmetrical crack cases
presented in Fig. 3.9, case 1 and 2.

These two expressions are also applicable to non-symmetrical crack configurations
where bending is prevented by imposed boundary conditions. Hence, the strips in Fig. 3.9,
case 1' and 2', are comparable to those in case 1 and 2. In ship CSD the roller supports

might be provided by a web and /or stiffener.

Fr for an edge crack (a/2c =0, see Fig. 3.3) is quite sensitive to whether or not the
section is permitted to bend as crack growth occurs. The bending tendency is natural for

any strip in which crack growth is not symmetrical with respect to the strip centerline.

Bending amplifies the back surface correction - particularly at high values of a/t
where more bending occurs. If the rollers on either strip of Fig. 3.9, case 1' and 2', are

removed, the back surface correction must be modified, according to case 3.

It should be noted that the solution for case 3 is valid only when the displacement
of the strip is free from constraint. In actual structures, any connected structural member
is under constraints imposed by connections. When a crack occurs in a certain component,
its compliance increases and load and deformation are redistributed between members.
(Load shedding which will be discussed later in this project). Thus, the boundary condition

is not displacement-free but displacement-limited.

Other examples of displacement constrained strips with a single edge crack are

given in case 4 and 5. The in-plane transverse displacement at infinity is restrained.
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In case 4 the local in-plane transverse displacement near the cracked section is not

restrained, while it is in case 5.

The Fr - expressions pertaining to the above cases are given as following [3.8,3.9]

-Case 1;
F; =[1-0.025(a /b)? +0.06(a / b)*] ! (3.16)
icosE
2b
surface crack : b=t
subsurface crack : b=t/2
-Case 2;
4 wa
(1-0.122cos " —)
b
Fr = 2b 2—tanE (3.17)
1.122 ma 2b
Single crack : b=t
Double crack : b=t/2
-Case 3;
0.752+2.02(a /b)+0.37(1=sin 22)? | =—ro
F = — 2b J—tan— (3.18)
1.122cos =2 ma  2b
2b
b=t
-Cas;’, 4
_ 2 3
F. - [1.122-0.561(a/b)+0.085(a / b)* +0.180(a / b) (3.19)
, 1.122\/1-a/b
=t
-Case 5;
12b na
F; = [—tan—
= 2 (3.20)
b=t

43




|

!
The above expressions are plotted in Fig. 3.10 which clearly shows the effect of

1

|

displacement constraint. '
|

Within the computer program FRACTURE [3.9], the user decides which of these

cases is closest to the actual case, and has the option to choose the appropriate Fr among

the solutions for these cases.

For semi-elliptic surface cracks (a/2c >0), the net ligament on either side of the
crack inhibits bending, and significantly limits the crack from sensing the upcoming free)
surface. Therefore, any amplifications due to bending effects are likely to be small or
negligible, as long as the crack is small compared to the cross sectional area of the body.'
Hence the choice between bending and no bending depends on the structural details as.
well as how the crack is growing (i.e. the crack shape). Fatigue crack growth at welded
cover plates, stiffeners, gusset plates and other common girder attachments in ship
structure is rarely symmetrical. Yet, bending is usually limited by virtue of the girder web
and/or the attachment itself. Thus, no bending corrections are considered to be most

applicable in typical ship structures. \

The Fr - estimates adopted here, for semi-elliptic surface cracks are shown in Fig.,

|

3.11 [3.7). These pertain to the deepest point on the crack front. (i.e. point A in Figure
3.7.

: : . : |
It should be pointed out that all Fr corrections mentioned are strictly valid only in

cases of uniform tension stress.




3.2.5 The Finite width Correction Factor - Fw

This correction factor accounts for the effect of finite width on K for a through
crack. It is analogous to Fr for a part-through crack when a/2c=0 and, hence, the same

expressions are used to estimate Fw by merely replacing t with W (plate width).

3.2.6 The Curvature Correction Factor -Fc

This factor accounts for the effect of the curvature of cylindrical shell upon the flat

plate solution for K for a through crack. It may be expressed as [3.10] :

F.=G, +2§G,, (3.21)

where Gm = contribution due to membrane stresses
Gb = contribution due to secondary bending stresses (due to the cracking)
z = distance from shell "mid plane"

t = shell thickness

that is,
- On the outer surface : z=+1/2 ; Fc=Gm + Go
- On the inner surface : z=-t/2 ; Fc= Gm - Go
- On the shell mid plane :z =0 ; Fo= Gm

Gm and G are functions of a / /Rt (Fig. 3.12), where

2a = length of circumferential through crack (perpendicular to the cylinder axis)
R = radius of cylinder (tube)

In the computer program, Fc is set equal to its mean value, i.e. Fc = Gm.
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3.2.7 The Stress Gradient Correction Factor - Fc

This factor (also called " the geometry correction factor") accounts for non-

uniform crack opening stresses. i.e. stress field gradients at the crack locus [3.1-3.4,3.7].

The gradients may be due to e.g. non-uniform applied stress (such as bending) or stress

1
concentration caused by detail body. This stress gradient should not be confused with that 1
|
which occurs at the crack tip. Fc represents a more global condition which is not i

acknowledged by a strength of materials analysis.

Fa is conveniently derived from known solutions for K in the following manner.

The solution of a crack stress field problem can be visualized as a two-step process

{3.7,3.8) (Fig. 3.13):

1. The stress distribution problem is solved in a manner satisfying the boundary

conditions ( displacements, stresses) but with the crack considered absent.

2. To this stress field is superposed another stress field which cancels any stresses

acting directly across the crack along the line of the crack.

Step 1 is a non-singular elasticity problem and can be solved by a FEM analysis.
As the addition of a non-singular stress field (a(x), Step 1) does not affect the value of K

( caused by -o(x), Step 2) the resulting K will be identical with that obtained from Step

2.

To evaluate K from Step 2, an influence (Green's) function method is employed.

An influence function can be defined as :
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G,(b,a)= %K,P(b,a) 3.22

where Kip= due to a load P at x = b, and

P =load per unit sheet thickness / width

Hence, Gi(b,a) is the Ki value arising from a unit force (per unit thickness/width)
applied at abscissa x = b. Gi(b,a) is independent of loading and depends merely on all the
‘geometry parameters of the cracked body. If a solution for the stress intensity factor is
known for any particular load system, then this information is sufficient to determine the

stress intensity factor for any other load system.

A pressure p(x) applied on an infinitesimal surface t( or W) dx results in an

infinitesimal stress factor :
dK,(x,a) = G(x,a)e® p(x)dx (3.23)

Thus, the Ki resulting from the total crack surface loading is

K, = |G, (x,a)® p(x)dx (3.24)
0

In the actual case p(x) = -0(x) = crack opening stresses (mode I). Hence, the
stress distribution in step 1, although being a non-singular distribution, affects the strength
of the singularity through this integral. The most significant general feature of G is the
inverse square root singularity at the crack tip. This indicates that the stresses near the
crack tip exerts a much greater influence on the strength of the singularity than the stresses

far from it.
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Values of K for intermediate crack sizes and the corresponding gradient correction

factors can be computed by a simply repeating Step 2 for any desired crack size.

In a part- through crack case the computation of the stress gradient corrector Fg }‘

might be based on the following solution of the problem shown in Fig.3.14 [3.8] : \

K =—Pe——1 ___oF(b/a) (3.25)

“Vma i-(b/a) ‘

Therefore the influence function in this case is :

2 el eE(b/a) (3.26) |

Jra  fi-(b/a)’

G =

With the condition of p(x) = o(x), yields ‘

J?:Z._] J;(_j)x_ol-‘(x/a)dx (3.27)

where o(x) can be obtained from a FEM analysis.

The stress distribution could be represented by a polynomial expression and could

be integrated analytically. However it is more convenient to use a discretized stress

distribution and the above equation then may be reformulated as : |

n — bi‘l o
K, =~ Vi s 2 3, « F(b, /a)dx (3.28)

f dx
T i=l ' b, va< —b2 . ‘
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where ovi = stress in block no.

bi = 1/2(bi + bi+1)

The integration is carried out over the block width, and the summation over the
number of blocks. After factoring out the nominal stress o , applied remotely from the
crack, integration leads to :

K,=ocnae {'72; Zn:h' F(b, /a)dx[arcsin fl‘:."l}

i=1

n .
oV e (EE T ew,)
Mi=1 ©
=oJnaeF (3.28)
where wbi = weight of block no. "i".

In the underlying case of Fig. 3.15, i.e. an edge crack is a semi-infinite body, Fr =
FE = 1.0 according to the present terminology. Then F corresponds to Fs® Fg (Fp: = 1.0),

and hence, the stress gradient correction factor may isolated as :

F
E. = 3.29
a=g (329)

Fsdepends on the stress distribution, and is equal to 1.122 for the case of uniform stresses
acting over the whole area of an edge crack. A non-uniform stress-field with the stress
peak at the surface accentuates the free surface effect, as indicated by the weight function

in Fig.3.14. Thus, by expressing the gradient factor as :

Fo=—n (3.30)
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the stress gradient effect on Fs is included in Fc. The resulting expression used in

computing Fc in the case of an edge crack might then be written as :

F; = 2 i{ﬁil-‘(a/a)-[amin Dist _ aresin b—‘]} (3.31)
11227 ial © a a

The computation of Fc in the case of a through crack might be based on a

solution of the problem in Fig. 3.16 [3.8] :

2p a
K =rre——— 3.32
Al g v e 3 (3.32)

which is an exact solution in the case of symmetrically distributed opening stresses. A
comparison of this Egs. and part through thickness Eqs shows that they differ by the
factor F(b/a), which thus is a factor accounting for the free surface effect.

Fa for this case might be expressed as :

Fg = 2 an{gi[arcsin Dist _ aresin ~b—‘]} (3.33)
Mi=t{ C a a

with b € (0, +a)

For more general case in Fig. 3.17 which is not symmetry in the stresses, i.e.

K, __p Jatb

»  Jna VaFb

This case yields the following expression for Fc :

(Fo)sa = % i{%[armin b;—*'- arcsin %: \/1 - (9;;')2 + \/1 = (%)2 ]} (3.34)

i=1




where b € (-a,+a)

It should be noted that the Fc - estimate for a part-through crack is conservative
when a/2c >0. The conservatism increase as the stress concentration and the crack front

curvature increase.
3.2.8 The Plasticity Correction Factor - Fe

This correction factor accounts for the effect of crack tip plasticity on AK. Irwin
suggested that the effect of small plastic zones corresponding to an apparent increase of
the elastic crack length by an increment (rp) equal to half the plastic zone size (Rp).

The plastic zone size may be written as [3.7] :

R, = x(AK-)2 (3.35)

Oy

where AK = stress intensity factor range
¢, = monotonic, uniaxial yield stress
x = coefficient depending on
- type of loading, i.e. monotonic/ cyclic
- stress state , i.e. plane stress/plane strain

Thus, the crack length correction is :

x AK,,
'2-(;7) (3.36)

I, =
AK might be expressed as :

AK = Ac/na o F, (3.37)
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where F1 = product of all correction factors except Fp

Taking plasticity into account, the corrected AK then is

AK® = Ac,/n(a +1,)oF,

= Aovna 1+-2";(%5)2 oF, (3.38)

y

Accordingly, the plasticity correction factor might be expressed as :

F, = /1+1(13-5)2-Fl (3.39)
2a Sy

The plastic zone size coefficient x is an input parameter to the program. Interesting values
for x are :
x=1/24n  ;cyclic plane strain

x=1/8=n ; cyclic plane stress

Fp will usually be close to one for fatigue crack propagation under nominally
elastic stresses. It is very often ignored in high-cycle fatigue situations. However, it should
be noted that crack tip plasticity affects crack growth (and fatigue life) more than it affects

AK. This is because AK is typically raised to the power 3 in the crack growth equation.

3.3 Stress Intensity Factor for Cutout

Determination of the stress intensity factor for a cutout is relatively complicated. A

cavity (pore) model is used to approximate it. stress intensity factor for a penny-shaped
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crack (in an infinite solid) with normal stress distribution having circular symmetry [3.9] is

' o(r)r
‘\/_-OJa —l'

zJ-———Zcb, T;dr

T ai=1 b, 2— 2

"J_{;;?:ZG[J—]"
2 767 - Ja? -6, )

7t a I-I (o)
~oJmaeF ek, (no boundaries) (3.40)
For a Penny-shaped crack  -> a/2c=0.5 -> Fe=2/m

FC,:-z{—(Ja ~b? —fa? bii,} (3.41)

adi=

The sttress intensity factor for a penny-shaped crack emanating from a spherical

cavity (pore) :
K= 2 aj‘&dr (3.42)
Jra, r a2 ¢
where : 2ae = effectively crack length (Fig.3.20)
o(r) = stress distribution at spherical cavity, i.e. [3.11]
and

a(r)=[1+0. 2237(%)3 +0.81 82(%)5]0 (3.43)

where o = nominal stress at the cavity




Thus the crack-and-pore geometry (Fig3.20a) is treated as a penny-shaped crack
with radius a. (Fig.3.20b) to approximate the crack cutout. Stress concentration effect due

to the pore is accounted for employing the above equation in computing the block

stresses.

3.4 Summary and Conclusion

This chapter presents the hybrid methodology for the computation of the stress
intensity factors. The hybrid method is basically an influence function - and a superposition
method. It employs available solutions for two- and three dimensional crack problems.
From these the influence of different factors affecting K are separated and used to

compose an estimate of K for actual case as :

K =o+na *[[F, 4.44

where Fi are correction factors for different influences
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Fig. 3.1 Two-dimensional standard case : Through crack in an infinite

sheet subjected to uniform tension

Fig. 3.2 Three-dimensional standard case : Embedded elliptical crack

in an infinite solid subjected to uniform tension.
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a) "Through" Crack

Fs

b) "Edge" Crack

¢) "Surface" crack
Fig. 3.3 Plate Cross-Section with various Crack Geometries.

Free Surface and Related Correction Factors




Fig. 3.4 Through Crack in a Curved Sheet

R
QA

Fig. 3.5 Crack Front as Given by the Angle ¢
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Fig 3.6 The Basic (elliptic) Shape Correction Factor

Fig 3.7 Semi-elliptic Surface Crack
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Fig. 3.10 The Finite Thickness Correction Factor Straight Crack Front (a/2c=0)
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Fig. 3.14 Calculation of K-value by a pair of Splitting Forces applied to the Crack Surface
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Stress Distribution

K, = %Jn?i%{cbf(si /a)earcsin(x /a)[p }

bi=1/2(b; +b,,y)

Fig. 3.15 Discretized stress distribution
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Fig 3.16 Two Pairs of Splitting Forces on a Through Crack in an Infinite Sheet

Fig. 3.17 One Pair of Splitting Forces on a Through Crack in an Infinite Sheet
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i’-‘ig. 3.18 Stages of Crack Growth

Fig. 3.19 Phases of Crack Growth in Stage 1
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Fig 3.20 Penny-shaped Crack emanating from Spherical Cavity
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Chapter 4

S-N Curve Development

4.1 Introduction

The conventional S-N fatigue design method based on the Miner's damage
accumulation rule is applicable to tanker CSD with the S-N selections determined by
fatigue experiments. More reliable prediction of the fatigue resistance of CSD may be
achieved by testing real CSD that represent the actual condition of fabrication, loading
and enviroment as far as possible. Due to the expense of these tests, small specimens test
are conducted to deine the S-N relationship. However, numerical method can provide an
complimentary approach to estimate the fatigue resistance of the structural details. In the

following, such a methodology is presented.

In the following, a numerical method of the prediction of the fatigue behavior of
CSD is presented which allows one to classify structural details with a few tests. This
method includes the local notch approach for the estimation of the crack initiation phase,

-

and the fracture mechanics for the crack propagation phase.




4.2 Development of General S-N Curves

The objective of the following development is to determine the Ao - Nt curve

numerically.

The total fatigue life Nt of a structural detail is considered to be composed of the
crack initiation phase Ni and the consequent crack propagation phase that is limited by the

failure of the structure. (Fig. 4.1)

N, =N;+N, (4.1)
Crack Length a
Critical Crack Length/
e Failure
a0 L _ _ _ _ |

e N o N N

Crack Initiation| Crack Propagation

¢ P

Nt=Ni+Np |

Fig. 4.1 Total Fatigue Life Nt
The crack initiation phase is described by the local notch approach and assumed to
be limited by the formulation of the initial crack size ao. The crack initiation phase yields

the part Ni of the total fatigue life N.
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The residual number of the load cycles Np is considered to be produced by crack
propagation starting with the initial crack size ao. The crack growth is modeled with the
Paris equation. The crack propagation phase is limited by the formulation of the critical
crack size acie which is determined by material property. It's usually recognized that the
crack initiation can be neglected for welded structures. But it's still documented here in

order to present a general approach.
4.2.1 Crack Initiation Phase

The local notch approach method is used for determining the crack initiation life

Ni of a detail until a crack size ao is achieved.

It is assumed that the fatigue behavior of the material at a structural detail, where
due to notch effects high local strains will form and the initiation of cracks is expected,
can be represented by the fatigue behavior of small test specimen with an equivalent

strain history.

For the case of a fatigue loading with the mean stress o, =0 the material
behavior can be described by the cyclic stress-strain curve o, —€,, the strain wholer curve

D . — N;, (Fig. 4.2). As a damage parameter in general, the factor :

Doos = Jo.c.E (4.2)

according to Smith, Watson, Topper [4.7]

The determination of the local stresses and strains at a fatigue detail is usually

determined by the Neuber's rule, Fig.4.3
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(6,64 ) oo = KiAG, A

where K is the elastic notch factor

K, = AC it
Ac

determined by finite element analysis.

(4.3)

4.4)
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Fig. 4.2 Description of material Behavior

In using this equation Ao,y —N,; curves can be produced for details with

different elastic notch factor Ke.(Fig. 4.4)
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Fig. 4.3 Neuler Rule
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Ac- Ni curve of a detail

Fig 4.4 Determination of a Detail Ac - N, Curve
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4.2.2 Crack Propagation Phase

The fatigue life, Np, after crack initiation is determined by linear fracture
mechanics (Paris-equation). The residual life is determined as the crack propagates from

the initial crack size, ai, to the critical size, acrit, that cause failure (see Fig. 4.5).

CmckLength a
Critical Crack Length
acrit Failure
I
ai |
4’
Np N
¢ —>

Fig. 4.5 Fatigue Life Np

In linear elastic fracture mechanics, the behavior of a crack is characterized by the
stress intensity factor, K. The evaluation of the stress intensity factors is presented in the
previous chapter. From the knowledge of the range of K occurring at the crack tip, an

estimate of the growth can be made.

The stress intensity factor for a classical center through-thickness crack in an

infinite plate is given by :

K, =AcVra (4.5)

where a is the crack length, and Ao is the uniformly applied far field stress.

75




The stress intensity factor for a crack in a finite geometry can be written in the |
following general form: ‘
K =FK, (4.6) !

where F is called the total correction factor and is a function of the crack length and

dimensions of structural and crack geometry.

|

It is usual to assume that the growth of a crack is according to Paris’ law, i.e : {
|

da/dN = C(AK)™ 47

where da/dN is the crack growth rate per cycle; AK is the range of stress intensity factor!

occurring at the crack tip, and C and m are material constants.
Substitution of Equations (4.5) and (4.6) into Equation (4.7) leads to :

da /dN = C(AcF+/na)™ (4.8)

Prediction of total number of cycles, N, required to grow the crack from an initial
length of ai to the final length of ar can be obtained by directly integrating above,
Equation, or : l

1 a—m/ZF—m

Cnm/Z I:: da (4'9)

N= By

|

The above integration can easily be carried out if the applied stress range Ao and

. . . q |

the normalized stress intensity factor are constant. However, in general, the load the
tanker structure experienced is not constant; and except for few crack geometry, isi“

almost always a function of the crack length. These make the direct integration difficulu‘
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Therefore, a numerical integration technique is normally used in predicting the total

crack growth cycles, N.

4.3 Development of Cracked S-N Curves

As discussed earlier, the fracture mechanics analysis can be applied in the fatigue
crack propagation analysis to provide insight into the crack growth of CSD. The
conventional fracture mechanics approach presented in chapter 2 and 3 is somehow
cumbersome to use. A strong incentive exists to simplify the approach to make it

practicable to predict the remaining fatigue life of cracked CSD.

Based on Paris Equation, we can derive the following expression under the

constant loading:

1 da I
= > = 4.9
P C.ACmT[m/Z .{am/-.Fm Cl(Ac)m ( )
where 1 is the following integral:
3 da .
'fi o =] (4.10)
This yields further:

I
A =m 4.1
o /Cl.Np (4.11)

and

logAc=—llong—llogCl+llogl (4.12)
m m m
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logAc = AlogN; +B(a;) (4.13)

This is the equation for cracked S-N curves. From the different initial crack size
(the inspection size ainsp), equivalent S-N curves for cracked detail can be constructed.

(See Fig. 4.6)

logas A

al>a2>a3

a3

a2
al

> logN

Fig 4.6 Equivalent Cracked S-N Curves

4.5 Numerical Example

This procedure is applied to determine the Ac —N, numerical for the following

two cases. The first case is the determination of the general S-N curve for non-welded
details (e.g. CSD cutout edges). The second case is the determination of cracked S-N

curves for welded details (e.g. CSD bracket toe).

4.5.1 Case 1: Finite-Width Plate with a Transverse Hole

This detail can approximate the cutout geometry in ship CSD. Fig 4.7 is the

typical geometry and dimension of the test detail. Based on detailed finite element
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analysis [4.9], the notch stress factor was determined (See Fig. 4.8). The material curve
for crack initiation was chosen from Fig. 4.2. The stress intensity factors for crack
propagation is determined by hybrid method and shown in Fig 4.9 The numerical
procedure presented early was carried out to determine the fatigue resistance (Fig 4.10).

The results was compared with the fatigue test results [4-2].

Ki=2.53 HOtSpOt

400 KN

750
1500 >

Fig 4.7 Dimensions of the Finite Width Plate with Transverse Hole under Axial Loading

25 . 2 ~mn § mown - o amie o © - —— o ———— —— ——— — = ——o —

23

2

Kt

1.9

15
0 01 02 03 0.4 0.5 06 07 08

a Radius

Fig 4.8 Notch Stress Factor determined by Finite Element Analysis
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Stress Intensity Factor
‘ 3.42

[
3.4}
3.38%

/K133

3.32 ‘ |
a3 2
Ki= :rra)1
3.28 q
3.26 "

0.25 0.5 1 2 s
Crack Depth a

Fig 4.9 Stress Intensity Factor for Crack around the hole

1000 . = ==
100 i~
—H =T z - Experimental
Ao ' 2 o Cog]eputed
10 !

1 LI

10000 100000 100000 100000
| Number of Cycles Nt 0 00

Fig 4.10 Numerical Fatigue Resistance and Experimental Fatigue Resistance

The solid sequences are the experimental point while the open sequence are the

numerical resistance. It is seen that the results are comparable. The difference is about 3%

between the experimental and numerical results.

The initial crack length, ai, that defines the crack initiation and propagation can be

chosen to provide a good fit with the experimental data. This example is selected with

ai=0.25 mm.

We can calculate the fraction for the crack initiation phase and propagation phase.
The results are shown in Fig 4.11
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Ni+Np

NI/(Ni+Np)

Fig. 4.11 Ratios of the Crack Initiation Phase and Crack Propagation Phase

Most of the fatigue life for this detail is from the crack initiation phase since it is a

non-welded details. For general welded details, the crack propagation phase is dominant.

4.5.2 Case 2 Longitudinal Non Loading Carrying Joint

An analysis was performed for the fatigue specimen with a longitudinal non load
carrying joint. The configuration is shown in Fig. 4.12. The dimensions for this specimen
are given in Fig. 4.13. . It's assumed that the steel grade is A36. The analysis is performed

for cracked S-N curves.

Fig 4.11 Configuration and Geometry of the Specimen
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Fig 4.14 Stress Distribution along the Crack
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Fig 4.15 Equivalent S-N curves for non load carrying joint with initial crack

length ai = 0.25mm, Imm, 4mm

The stress distribution was determined by finite element analysis and is shown in
Fig 4.14. The stress intensity factor was computed based on the determined stress
distribution and was plotted in Fig 4.12. Based on the stress intensity factors, the cracked

S-N curves were constructed

The equivalent S-N curves are shown in Fig 4.15. The critical crack length was
defined as a through thickness crack. Verification of the developed equivalent S-N curves

will be discussed in Chapter 6.

4.6 Summary

This chapter presents a numerical procedure for S-N curve development for CSD.
The proposed procedure is divided into two phases : 1) Crack initiation, and 2) crack
propagation. In crack initiation phase, the local notch is applied for the estimation of the

initial life. In crack propagation phase, fracture mechanics is used to determine the
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propagation life. Based on the methodology for crack propagation, the equivalent S-N

curves for cracked CSD have been constructed.

Two numerical example were developed to illustrate the methodology. It was
found that the crack initiation stage is major part of the fatigue life for non-welded

details. The propagation stage contains the major portion of fatigue life for welded

details.
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Chapter 5

The Fatigue Loading Process

5.1 Loading Process

In Chapter 4, the methodology of the numerical development of S-N curve for
non-welded and welded CSD was presented. Meanwhile, there are a lot S-N experiment

data available. The fatigue analysis can be performed based on S-N curves.

In this approach, the fatigue strength is expressed through the S-N relation which
gives the number of stress cycles ( N ) with stress range ( Ao ) necessary to cause failure.
The S-N curves can be obtained from laboratory testing in which a specimen is subjected
to cyclic loading until fracture. The new numerical development of S-N curves were
documented in Chapter 4. However, most of the S-N curves are defined based on constant
amplitude loading. The existing experimental based S-N curves are based on statistical
analysis of experimental data. They are fitted with a linear or piece wise linear line to the
logi0Ac and logioN data. The line is usually defined as the mean curve with a parallel shift

to the feft of two standard deviations of logioN due to the data variance. The S-N curves

are of the form:

logyo N = logypa-26,,, n —mlog,,AS (5.1)
NAS™ = C, (5.2)




where: AS = stress range
N = number of cycles to failure
a = constant relating to the mean S-N curve
ologioN = standard deviation of the logio N
m = inverse slope of the S-N curve
log10C1 = logioa - 2alogioN
Often a stress range threshold Aoo is included in the S-N curve. For stress levels

below this threshold, no damage is assumed to occur (and an infinite life is assumed).

It should be realized that the S-N approach, though still widely used in design
applications, does not deal with any of the physical phenomena within the material. For
example, it doesn't separate the crack initiation from the propagation stage, and only the

total life to fracture is considered.

Tanker structures are subjected to environmental loading which are random in
nature. Therefore, the wave induced stresses during the service time are of varying range.
Most of S-N curves are derived considering constant stress range, the calculation of
fatigue damage under stochastic loading is commonly performed by the Miner-Palmgren

linear damage accumulation model.

In this model, it's assumed that the damage on structure per load cycle is constant

at a given stress range and equal to :

D, = (5.3)

N(AS;)
where N(AS;) is the number of cycles to failure at stress range ASi. The total damage

accumulated in time, t, is obtained by summing the fraction of damage to the structure

caused by each stress range and corresponding cycles :
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N 1

D=3

& N(@as,) (54)

where N(7) is the total number of stress cycles at time <.

The weakness of the preceding hypothesis is obvious. The most significant
shortcoming of the Palmgren-Miner hypothesis is that it does not account for sequence
effects; that is, it assumes that damage caused by a stress cycle is independent of where it

occurs in the load history.

Based on S-N curve, the damage D is written as:
N AST

= G

(5.5)

The stress caused by wave loads vary with time and can be considered as a
stochastic process. Since stress range is defined as the difference between maximum and
minimum value of the stress process in a cycle, the stress range is considered as random
variable. The sum is also a random variable. If N(7) is sufficiently large and the stress are

partially correlated, the uncertainty of the sum is small and can be replaced by'its expected

value. Thus the cumulative damage is written as:

D= CLE[N(t)]E[AS'“] (5.6)

1
For tankers, it is common practice to divide the whole travel routine into several
seastates while the stress process for every seastate is referred as stationary Gaussian
process and the stress range follows a Rayleigh distribution. The proceeding equation can

thus written as:

E[N(1)] = vt (5.7)
E[AS™]= (242)"T(1 +%)o"‘ (5.8)
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1 (A,
- |22 5.9
Vo 2\ A, (59)

o=4A, (5.10)

where:

vo = mean rate of cycles of the stress process,

o = standard deviation of the stress process, and

Ai = i-th stress spectral moment.

The long-term variation of the travel routines can be approximated by a series of
stationary short term sea states. In this case, the total damage can be obtained by
Palmgren-Miner rule over all the sea states. It should be pointed out that load sequence

was neglected here.

T
D=0 5.11
: (5.11)
n=—(2‘f) T(1+-IE Shp; G A (5:12)
T 2 K j L L]

where:
fk = fraction of time in the k-th sea state,
pj = probability of occurrence of j-th main wave direction, and
)\.ou,).’kj = zero and second stress spectrum moment in k-th sea state and j-th
direction.
It is found that the wave induced long-term stress range under the narrow-banded

condition can be described as a Weibull distribution[5.5] :

F;(AS) =1-e™(45/A” (5.13)
where A and B are the scale and shape distribution parameters in the Weibull stress range

distribution function. Then :
E[AS™]= A"T(1 +1“B-) (5.14)

The fatigue damage can be formulated as :
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Yo ( B)

5.2 Wide-Band Load Process

The foregoing discussion is based on the assumption of narrow banded stress
process,. When the stress process is wide banded, tﬁe foregoing procedure gives a
conservative estimation of the mean damage. In order to reduce the conservation of the
narrow banded assumption, a damage correction factor p(m,f) should be found to actual

S-N curve parameter, m, and spectral density distribution in frequency dominion f, which

is defined as :

D,g =p(m,f)Dyp
SQB = p(m’ f)S:B

Based on Wirsching and Light ‘s study from Rain Flow Counting (RFC) method,

an empirical approximation was suggested as following[5-2] :

p(m, f) = a(m)+[1-a(m)}(1-v1-a? )™

where :
a(m)=0.926 -0.033m
b(m)=1.587m -2.323

However, analysis by Lutes [5-4] has shown that Wirsching's formula has its

limitations.

(5.15)

(5.16)
(5.17)

(5.18)

(5.19)
(5.20)

When the regularity is known, a theoretical approximation to p(m,f) can be found.

Jiao and Moan [5-5] proposed the approximate formula based on the combinations of
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narrow-banded Gaussian process. [5-5). Here, A new analytical formula for the correction

factor is proposed.

According to Rice [5-10), the distribution of local maxim of a unit-variance wide-

banded Gaussian process follows

£(S) = ——— J2_1: exp(- 5 2)+ Jl ¢ [1+erf(T—“ )] xp(——) (5.21)

where :
erf( ) is error function. Bandwidth ranges varies from O to 1.
S is the peak stress,
€ is the bandwidth, and

o is the variance of the stress process.

To find the cumulative damage, all local maxim above zero are counted. A stress
cycle is defined as the load history between two consecutive load maxim with the range of
the double numerical magnitude of the first peak amplitude. The number of stress cycles is
therefore reduced because the stress reversals corresponding to local maxim below zero
are ignored. However, larger weights are given to large stress ranges since all small stress

reversals are counted as much larger ones. So this approach is regarded as conservative.

Fatigue damage under the above assumption and Miner's rule can be derived as:

..ZlN(S ) = KE (5.22)
The expected damagc
K [ES"'] I:(" —8" (5.23)

The stress range based on the local maxim is then 2S and

S™ = [(25)"£(S)ds (5.24)
)
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Substituting Eq(S 21) into Eq(S 24), we have:

S“‘-j(ZS) «/ﬁ exp(— Z:ZSZ)dS

g™
=(24J2 m—
(2420) 20%¢?

1-€*[ S_vi
J2o
For the first term in Eq. (5.25), we used I'(n)= jt""e"dt and t=
0
obtained:
5 = J29)" ——exp(- —S s
0 Jch 20°¢

= (2420)" ST

For the second term of the Eq. (5.25), we defined
V1-¢

g(S) =[1+erf( S

oo s )
and :
sm+1 2
(p(S)= 202 vi= :

~ 7 2
222

(5.25)

2

we
o'E

(5.26)

(5.27)

(5.28)

Using [g(x)o(x)dx = g(x,,)]o(x)dx, if g(x) is a linear function and xm is the
0 0

center of weight of | o(x)dx.
0

Since the function @(x) is nearly equal to zero after S > 3o and g(x) can be

approximate as a linear function from S=0 to S=3a0. it is possible to deduce the second

term as:
;j: ) \Il—az[l+erf(7§— 1:5.)]<=,)(p(— _
_Jl— Se m+2
== +ef{me— )](zf g

-

where Sw is the center of weight of jS"" -S—zexp(— -S-—,)dS g
o O© 20°
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o oM+l 2

S +3 |
| 7‘”‘!’(- ?)ds I‘(m2 )
S =2 3 = ﬁ = (5.30) ]‘
\J ogm S m+2
j—exp(— —)dS I'( > ) ]
00 |
S 2
By letti erf we have:
y ngB= (J— 8 )
-(Zfo) [ m+l 1+B I.(m+2 (5.31)
J— V1-
The average number of positive maxim in time period T is :
N, = v, T[f(S)dS (5.32)
0
1+a
=—v,T 5.33
—Vo (5.33)
where:
1-¢? (5.34)
The expected damage is therefore
NS™ :
Dug = =p(m,f)Dyg (5.35)
where p(m,f) is :
m +]
I‘( —)
1+a ™ L1+ 5
,f) = vi-¢* 5.36

5.3 Load Sequence

The traditional fatigue analysis based on S-N curves or Paris Erdogen Equation do
not take into account so called interaction effects due to irregularity of loading, which is
included in random loading while the tanker loading is a random process. In contrast to
the constant-amplitude loading, the increment of fatigue growth depends in general not
only on the present crack size and applied load, but also on the preceding load- history.
Load interaction or sequence effects have influence on the fatigue crack growth rate and,

consequently, fatigue life.
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One of the important interaction effects (recognized in the early 1960s) is the
retardation in the fatigue growth following a sufficiently large tensile overload. (see Fig.
5.1). Crack retardation remains in effects for some period after the overloading. The
number of cycles in the retarded growth has been shown to be related to the plastic zone
size developed due to the overload. The larger the plastic zone generated by the overload,

the longer the crack growth retardation remains in effect.

Fig. 5.1 Load Sequence during the Crack Propagation
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Various model were proposed for the fatigue crack growth under the random
loading such as Cycle-by-Cycle (Non interactive) Prediction, Crack Closure Model of
Elber (Elber), Wheeler model (Wheeler) and so on. The above approach which is
discussed in section 2.2 is based on the equivalent stress intensity factor concept for
different sea state. In this approach, the root mean square (rms) value of the sea state was

proposed for this purpose, i.e., AK=AKnns. In this case, the fatigue crack growth

equation is postulated in the form :

da
N C(AK )™ (5.37)

Based on previous studies [5-2], the equivalent stress intensity factor approach can
predict the reasonable results for fatigue crack growth under the random loading for

different loading order or sequence. Fig 5.2 shows the typical results.
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Fig 5.2 Crack Growth under different load sequence for the same RMS
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Based on Fig. 5.2, we may conclude that the equivalent stress intensity factor
approach for one sea state can predict the rational and reasonable fatigue crack growth or

the load sequence can be neglected in this approach for one sea state.

The reason for the success of this approach is still unknown. It may be significant
that the crack growth exponent is close to two for the materials used in the studies
(making the RMS a particularly appropriate measure). The load block may also been short
enough that sequence effects would be minimal [Schijve, et.al.,1970]. But the simplicity of
the method and its success in the application of the specific sea state makes it attractive.
But the lack of any physical basis for its validity admits the possibility that it may be

inaccurate in the application of the tanker's whole travel routines.

In general, random loading are always divided into segments with stationary
behavior in each segment. Sequenceless crack growth prediction is done by the RMS
approach in each segment and summing over the relative amount of time spent in each
type of segment. This is typical approach which is presented in section 5.1 to study the
fatigue in oil tankers. It is highly probable, however, that the transition from one segment
(sea state) to another can introduce crack growth sequence effects, especially if the
transition involves a change in the overall magnitude of the load peaks. Veers,
Winterstein, Nelson and Comell [5-5] has conducted the simulation of the crack growth

for this problem.

For oil tankers, Although the RMS approach can have the reasonable result for
one sea state, the load sequence between different sea state is still a problem. To some
extent, it's more important in the fatigue of tanker structure since tanker travel through

different sea states during its service travel routine. It was. obvious that Palmgren-Miner
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Damage model or Paris-Erdogan Crack Growth Model can not take the load sequence
into account since both of them have no memory effects. It's impossible to conduct the
simulation for tanker structure. Thus, a new damage accumulation model was proposed
for this purpose. The new model which is called "Henry Damage Model" was first
introduced in early 1950s. [5-6]. The validity of this model is still unclear due to the lack

of the sufficient experimental data.

5.3.1 Henry Damage Model

The accumulative damage theory proposed by Henry [5-6] is based on the concept
that S-N curve is shifted as fatigue damage accumulates and that fatigue damage is defined
as the ratio of the reduction in fatigue limit to the origin fatigue limit of the virgin material.

That is :

(5.38)

where A = damage

Fo=origin fatigue limit, and

F = fatigue limit after damage.

In the development of the Henry theory, it's assumed that the virgin S-N curve
could be represented by the equation of an eqgivlateral hyperbola referred to the stress axis
and a line pass through Fo parallel to the cycle axis as the asymptotes of the hyperbola.

Then the equation assumed for S-N has the form
N = 0
" S-F,

(5.39)

where N = number of cycles to failure at stress ed amplitude S
S = completely reversed amplitude of applied stress
Ko = material constant, and

Fo = original fatigue limit.
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It's implied that no damage is occurred by operation at cyclic stress levels below the
fatigue limit. Henry further assumed that the S-N curve after damage could be represented

by the equation of equivalateral hyperbola where
K .
N,

- (5.40)

where Nr = number of sceinaring cycles to failure at stress amplitude S
S = completed reversed amplitude of the applied stress,
K = material constant, and

F = damage failure limit (reduced from Fo)

Based on experimental data, Henry further assented that it's a roximately true
pe ry PP y

that :

K _F
Lo b 5.41
X, T, (5.41)

Based on the above assumption, the damage relationship proposed by Henry [5-6]
was developed as follows: If n cycles of stress amplitude S are applied to a specimen, the

remaining life Nr at that stress amplitude is given by :

N,=N-n (5.42)
where N is the total number of cycles required to procedure failure of the virgin material

)
when subjected to stress amplitude S

Thus ; K
N -: = F (5.43)
TNNET, .
I’N_:—KO—O(S-F) (5.45)
o K S-F, F S-F
l'%=E;s-—r-?=§(s-lg) (5.46)




5(1-%)
F= (5.47)
S-F n
( F, 0)"'(1-§)

This equation is one useful form of the Henry theory. It gives an expression for the
current value E of the fatigue limit after n cycles of stress amplitude S have been applied.
If the total number of cycles to failure was originally N at stress level S and original
fatigue limit was Fo. Then :

n
S(1-~ ﬁ)

o (S-R)+R(-3)

(5.48)

where A = damage fraction,
n = number of cycles applied at stress amplitude S,
N = number of cycles to failure,
Fo = original fatigue limit, and

So = applied stress amplitude.

5.3.2 Load Sequence between Different Sea States

The Henry theory can be extended to study the load sequence for different sea
states. Based on the equivalent mean stress approach which was developed in section 2.2
and 2.3,the sequence of different stress levels in different sea states can be studied by
applying F and A successively in the order of the applied stress levels for different sea
states. In this sequence procedure, the value of Fo must be updated after the application of
each equivalent stress amplitude for each sea state. Thus, a sequence of values for fatigue
limit would be obtained, say Fo, Fi, F2, ... where Fo is the original fatigue limit after

applying n1 cycles of the equivalent stress level Si for sea state 1, and so on.
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5.4 Numerical Example:

In this section, a numerical example for wide banded loading process is conducted.

The load sequence effects are not studied due to the time and data limitations.

The numerical comparision was made between Wirsching Formula (Eq. 5.18-
5.20), Numerical Integration of Rice Formula (Eq. 5.21) and New proposed model (Eq.
5.36). The analysis was performed at m=3 with different irregularity factors, a, from 0 to

1 (Table 5.1).

The numerical comparision was shown in Fig. 5.4. The analysis was performed at
m=3 with different irregularity factor (Table 5.1). It has been found that the new model
(Eq. 5.36) is better than Wirsching formula when the irregularity factor is larger (Fig 5.4)
It has been demonstrated that the new model is a good approximation while Wirsching

formula (Eq. 5.18-5.21) is relative conservative.
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Fig 5.4 Numerical and Analytical Comparison
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m 3 3 3

3

3

3

3

a 0.202 | 0.345 | 0.504

0.639

0.737

0.803

[

0.848

0.878

0.899

1.0

Table 5.1 Analysis Parameters

5.5 Summary and Conclusions

This chapter discussed the fatigue loading process. The general approximation of

the wide-banded process was presented and tested by the numerical example. The loading

sequence was discussed briefly. The Henry damage model was presented to describe the

sequence fatigue damage. Due to the lack of the experimental data, this model is only an

illustration. More detailed discussion about load sequence in crack propagation is beyond

the scope of this work.

101




5.6 References

5.1 Miles, J.W. On Structural Fatigue Under Random Loading. Joumal of
Aeronautical Science 21 1954

5.2 S.T. Rolf, J.M. Barsom. Fracture and Fatigue Control in Structures. Printice Hall,
1977

5.3 Henry et A Cumulative Fatigue Damage Model ASME Proceeding 1954

5.4 P.S. Veers, S.R. Wintersein, D.V. Nelson, and C.A. Cornell. Variable Amplitude
Load Model for Fatigue Damage and Crack Growth. In Symposium on Development
of Fatigue Loading Spectra ASTM, Cincinnati, Ohio, April 1987

5.5 P.W.Wirsching, M.C.Light. Fatigue under Wide Band Random Stresses. Journal of
Structural Division, ASCE 1980

5.6 D.Ritchie, P.A.J. Van Der Veer, and K.Smith. Fatigue Crack Growth under Broad
Band Stationary and Non-stationary Random Loading. In Steel in Marine Structures,
June 1987

5.8 Jiao Fatigue Crack Growth under Random Loading with Inspection Updating.
Dr. Ing Dissertation. Dept. of Marine Structures, Norway Institue of Technology. Norway
5.9 R.Bell, O.Vosikovsky Fatigue Life Prediction of Welded Joints for Offshore
Structures Under Variable Amplitude Loading. Journal of Offshore Mechanics and
Arntic Engineering May 1993

102




Chapter 6

Fitness for Purpose Analysis
6.1 Introduction

The objective of this project is to develop an engineering procedure to make
fitness for purpose evaluations for cracked CSD in tankers. Based on the methodology
developed in previous chapters, a general fitness for purpose procedure for cracked CSD

has been developed as follows :

1) Determination of the long-term loading for the residual or extended life.

2) Identification of the specific CSD where cracks occur based on the previous
experience and data-base or the fatigue life determined by the traditional S-N
curves.

3) Inspection of these CSD to determine the appropriate initial crack size ao, to be
used in remaining life analysis.

4) Determination of the fracture toughness value of the steel plate used in CSD
under the study to find the critical crack length. The critical crack length is the
length that a créck must reach before the crack can propagate for brittle fracture.
5) Select the equivalent S-N curves for the cracked CSD to evaluate the residual

life based on long-term loading. (Fig 6.1)
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Fig 6.2 General arrangement for a 165,000 DWT tanker.

DWT 165,000
LOA 274.2m

LBP 262.1m
Breadth 52.7_n_1

Depth 22.9m

Draft 17.4m
Construction [Single Hull

104

Table 6.1 Overall Dimensions for the 165,000 DWT Tanker




6) Based on the estimated residual life, the inspection and repair can be established

V for safe and reliable service.
‘l

JAE g > fougtern Loading| AloghS  Cracked SN Curve
' al<a2<ad

2
vE

Weibull Distrbution 8N

Residual Life for Cracked CSD

Fig 6.1 Remaining Life Estimation based on Fitness for Purpose Evaluation.

This chapter addresses in detail a fitness for purpose analysis for cracked CSD in a

165,000 DWT single-hull tanker.

6.2 165,000 DWT Tanker

The proposed analysis is performed for three details in 165,000 DWT single hull
tanker which was studied in SMP 1. The characteristics for this tanker are summarized in

Table 6.1. The general arrangement is shown in Fig 6.2 and Fig 6.3 is the midsection.
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Fig 6.3 Midsection for a 165,000 DWT tanker

The ship operated almost exclusively on the TAPS trade route between California
and Alaska. This route passes through the Madsen zones 6,7,13,14,22. Fig 6.4 shows
these Marseden zones and some common courses and definitions. Information about this
ship's maneuvering has been obtained from the operator. For the given trade route from
California to Valdez and back in general no course changes due to bad weather are made.
Speed is reduced only for the worst sea conditions. Table 6.3 summaries the information

about the maneuvering philosophy.

The previous fatigue studies have been conducted in order to verify the SMP

software [6.1}. The objective of this chapter is to perform the verification study of the

fitness for purpose procedure developed in this project.
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f

Harbour Time | 6.26
Zone 6  2.46
Zone7 1.75 |
| Zone 13 1.80 |
Zone 14 1.48
Zone 22 1.25
| Total 15
Speed,
Maneuvering:

Table 6.2 Travel Route for a 165,000 DWT Tanker

i

LC1:Laden 55 %
Steering Speed 206m/s
Cruising Speed 790m/s.
LC2: Ballast 4%
Steering Speed 206m/s
Cruising Speed 823m/s
Course Change for Hs: 12,12, 12
Cruising Speed ChangeforHs | 9, 8, 9
Steering Speed Changefor Hs | 10, 9, 10

Table 6.3 Maneuvering Philosophy for 165,000 DWT Tanker
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The proposed analysis is conducted based on the following steps. \
1 - Definition of structural detail and crack location.
2 - Computation of the transfer function for the ship. The transfer functions are l
computed for the two load cases. Full load and Ballast and for several wave |

headings and speeds based on the proposed travel routines and sea environment. |

3 - Determination of the stress vectors at the Hotspots from finite element analysis.

- Estimation of the long-term distribution of the stress range o at a hotspot. This

estimation is based on a specified travel routine for given Madsen zones and

\
specified maneuvering philosophy. \

4 - Determination of the initial crack size for given hotshot
5 - Determination of the critical crack size for given hot-spot based on material ~
toughness or durability requirement. !

6 - Determination of the stress intensity factors for given hot-spots at the specified |

CSD

g l
7 - Construction of the equivalent S-N curves for the hot-spot in given CSD. 1
8 - Determination of the remaining fatigue life based on the long-term extreme ]
|
|

stress range and constructed equivalent S-N curves.

The above procedure will be addressed in detail in the next sections. |

6.3 Critical Structural Details |

The critical structural details were selected based on the detailed fatigue data-base |

analysis. [6-1]. The sideshell longitudinal 32-36 (Fig 6.2) on tank 4 are selected as the

analysis CSD. We selected one detail as the numerical example. The geometry |

configuration and dimension are shown in Fig 6.4 ' |

|
|
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Fig 6.4 Configuration for Detail in Sideshell 32- 36.
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6.4 Transfer Function

the transfer function for bending under full load conditions.
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Fig 6.5 Transfer Function for Proposed 165,000 DWT Tanker
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The ship motion analysis based on strip theory [6-2] was performed to generate
the transfer function for bending and hydrodynamic pressures in various headings. In

addition, the accerlations generated by the ship motion were used to determine inner

|

pressures. the detail analysis procedure and results are presented in [6-1]. Fig 6.5 shows

|




6.5 Stress Vectors

Based on the detail geometry shown in Figs 6.4, finite element models have been |

l

developed in previous SMP project. The finite element mesh and stress contours are

shown in Fig 6.6 6.7a, and 6.7b. The stress vector for two unit load cases was computed

and shown in Table 6.4.
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Fig 6.6 Finite Element Mesh for Proposed CSD
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Table 6.4 Stress Vectors for Proposed CSD
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Fig 6.7a Stress Contour for CSD due to Unit Axial Force
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Fig 6.7b Stress Contour for CSD under Unit Pressure
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6.6 Long-term Stress Range

The long-term stress range is one of the key issues for the fitness for purpose \

analysis. Assuming that the ship is a linear system, the total response in a seaway can be

described by a super-position of the response to all regular wave componenets that |

constitute the irregular sea. Given the linearity, the ship response is a stationary, ergodic

but not necessarily a narrow banded Gaussian process. The long-term stress range can be

estimated.

6.6.1 Enviromental Modeling

For a specified sailing route, the relative time period within each Mardsen zone is

estimated, and the frequency of the occurrence of difference of different sea state is

N
(Hs’ Tz)lifelime = ‘le'i (Hs’ Tz)i

where (Hs,Tz)i is the scatter diagram for the i-th Mardsen zone, mi the fraction of the

lifetime which the ship is in Mardsen zone i and N the total number of zones passed by

ship over its lifetime. For the proposed 165,000 DWT tanker, Table 6.5 shows the tme

spent in port and in each of the Madsen zone.

Time (Years)
Harbour Time 3.255
Marsden Zone
6 1.7463
7 1.258
13| 1.297
14 1.276
22 1.051
Residal Life 10|

11

Table 6.5 Voyage Profile for Residual Life of 10 years.
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For a specified short-term sea state (Hs,Tz), the wave spectrum under the

assumption of stationarity is derived as:

S(w) = ABw e~ 5" (6.2)
where
1
A=0.25(H3)? (6.3)
B= (0.81727,—“)‘ (6.4)

z

In order to account for the energy spreading in different directions for short
crested sea. Short crested sea waves was described by a two-dimensional directional

spectrum as follows:

S, (w,8) =S, (w)w(b) (6.5)
where w(.) is the spreading function and the spreading angle from the main wave

componenet direction.
6.6.2 Wave Response

A linear assumption for ship is made to evaluate the wave response. The transfer
function modeling the response due to a sinusoidal wave with a unit amplitude for
different frequencies is obtained from the strip theory. For the proposed 165,000 DWT
tanker, it's shown in Fig 6.5. The estimated transfer function is however, only valid for a
specified ship velocity V, wave heading angle and loading condition. For example, Fig 6.5

shows the full load condition for different speed with a frequency range.

For the fatigue or fitness for purpose analysis, it is the combined stress response

effect on the investigated detail that is sought. The local stress response is a combined
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effect of different Joad response as horizational and veritcal bending moments, external

water pressure, and internal cargo inertia pressure.

Based on the linear model assumption, a combined local stress response transfer
function for all the sepcified types of stress response can be obtained. The combined
transfer function describes the combined directional stress response due to a unit wave
excitation. This means that even a non-linear combination of the separate stress responses

can be evaluated applying a linear frequency analysis by deriving the combined transfer

function for the different response directly.

The response spectrum of the ship based on the linear model is directly given by

the wave spectrum.
Sc(wel hs’ lZ’V’e’ 1) =FHG (welv’ e’ l)lz Sf] (welhs1 tz’ v’e) (6'6)

where we is the encoutered wave frequency and |[Hg(we)]| is the modulus of the transfer

function.
6.6.3 Operational Philosophy

In severe states, it's common to change the speed and course of the ship in order to
reduce the wave induced repsonse such as slamming and large roll motions. Therefore, the

effects of the manewvering should therefore be included in the response analysis.

The combined effect of course change (relative to the main wave heading

direction) and speed reduction as a function of the significant wave height is modeled as

fug, (V:80lL b, t,) = fygn (V80,1 bt Mg (8]l hgst,) (6.7)
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where fy, (8o]1,h,,t,) defines the density function for course selection as a function of

significant wave height, and the conditional density of speed. The detailed procedure was

described in {6.1].
6.6.4 Short-term Response Statistics

Under the assumption of a stationary, zero mean Gaussian process within each
seastate, the response process is also a stationary zero mean Gaussian process. For a

narrow banded process, the peak is Rayleigh distributed
2

) (6.8)

a
F (a)=1-exp(-
p(3) xp( 2my

where mo is the spectral meonet of the zero order, which is equal to the mean square of
the process. It should be emphased that the distribution is conditional on Hs,Tz,v,0 and L.
The rate of peaks with each time period is approximated by the rate of zero crossings mo.

VvV, RV =— |[—= (6.9)

In fatigue analysis, the stress range distribution is twice the amplitude leading the

following stress range distribution for narrow banded process

2
) (6.10)

Fps(s) =1 exp(-—
8 [¢]

6.6.5 Long-term Response Statistics

The long-term peak distribution of the response effect over the lifetime is obtained

by unconditioning the short term distribution

Fp(a) = J JJJJ;h.-‘.»lve'VFp(a!hs’tz7v’e’ l)fvs (V»e‘ll’ hs’tz)x :
H,T,L8V

fH_T'(h_.l')fL(])dVdedldtzdhs (6-1])
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Vb,118v is @ weighing factor which expresses the relative rate of response peaks within
each sea state. fyg(v,6]l,h,,t,) accounts for the effect of maneuvering in heavy weather
with respect to sailing speed and relative heading angle. f; (I) is the discrete distribution of

loading conditions and fust: is the two-dimensional description of the sea state experienced

by the ship over the lifetime.

The above equation is too complicated to be applicable in engineering problems.
Therefore, an equivelent long-term Weibull distribution is calibrated to the simulated

outcome of the Monte Carlo simulation outcome for equation.

The Weibull distribution for fatigue analysis is fitted to the long-term stress range

distribution.
Flongas (8) = 1-exp(=(s/ A)®) (6.12)
The fitting of the Weibull parameters are based on the 0.95 and 0.99 fractile

values, which approximately divides the contribution to the fatigue damage (E(S™)) into

three areas of equal magnitude,

k-1 Ina,os—In A
where
g = (=1n0.95) (6.14)
In(-in 0.99)
The expression for the m'th moment of the stress range is then further :
E[c"]= A"’I‘(1+%)=c}'j(ln N)"’”Bl'(1+%) (6.15)

The average rate of stress cylces over the lifetime is found in the simulation
procedure for the evaluation of the long-term response distribution :
1N
Vo = _zl\'hs,xz,l,e,v,i (6.16)
=
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where v, is the rate of stress cycles for the specified short term condition i and N is the
number of simulations used in evaluating the integral. The number of stress cyles the ship

is exposed to its lifetime TL is then
Npeak = VoYL Ty (6.17)

where r. models the fraction of the lifetime the ship is expected to be at sea.

Based on the above procedure, the Weibull parameters for the long-term stress
range is computed under the transfer function and stress vectors which is presented in

section 6.3 and 6.4. The computational results are in Table 6.6.

Detail Parameter A _Parameter B Zero Crossing Rate
Detail A 3.3416 07538 | 0.12041
\
Detail B 0.8234 0.7538 0.12038

Table 6.6 Long-term stress range for fitness for purpose analysis

6.8 Cracked S-N Curve

6.8.1 Stress Intensity Factor

In order to obtain S-N Curves for the critical structural details (CSD) using the
procedure described in chapter 4, the stress intensity factors for these details have to be
found. A way to compute the stress intensity factors for corresponding specimen is
proposed based on the fatigue classification . Fig 6.8 is the general fatigue classification

for CSD in tankers.

119




Fig 6.8 Fatigue Classification for CSD in Tankers.
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Based on the fatigue classification in Fig 6.8, two stress intensity factors have to be'
computed in order to construct the equivalent S-N curves for the fitness for purpose

analysis for the proposed detail. (Fig 6.9)

Fig 6.9 Proposed CSD and Corresponding Specimens
The FEA analysis for the corresponding specimen was conducted to determine the
stress distribution around the crack. Fig 6.10 -6.14 is the stress distribution along the
crack for the specimens. Based on the stress distribution, the stress intensity factors are
computed for these specimens. It is assumed that these values are the approximate values !

\
for the stress intensity factors for the hotspots on proposed CSD. ‘

\ L2 Hotspot !

400 KN

750

1500

Fig. 6.10 Geometry and Dimension for Specimen A
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Stress Intensity Factor for Longitudinal Non load
carrying Joint
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Fig 6.15 Stress Intensity Factor for Specimen B

6.8.2 Initial and Critical Crack Length

Inital crcak length and critical crack length are required to determine the equivalent
S-N curves for cracked CSD. As discussed in chapter 2, the crack propagation is a two
dimensional problem with crack depth and crack length. This leads to consideration for
equivalent S-N curves. One is based on the crack depth while the other is based on crack
length. Here, we used crack depth as the criteria to derive the equivalent S-N curve for the
longitudinal non load carrying joint (Specimen B), and crack length as the criteria for the
plate with a hole (Specimen A). We assume that the initial cracks are 0.25mm 0.5mm

1mm and 4mm. The critical crack length is 14mm which is the plate thickness.
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6.8.3 S-N Curves for Cracked CSD

As we discussed early, the fracture mechanics analysis can be applied in the fatigue
crack propagation analysis to provide insight into the crack growth and to set in-service
inspection and repair program. A conventional fracture mechanics approach which is
presented early is somehow cumbersome to use in inspection, maintenance and repair.
Therefore, a strong intensive exists to simplify the approach to make it practicable to
predict the remaining fatigue life of cracked detail.

Based on Paris Equation, we can derive the following expression under the

constant loading:

N, = e om e e = ST (617)
where | is the following integral:

:J(a"”:d—il-‘“’ =1 (6.18)
This yields further:

1
Ac = 6.19
""c,.N,, (6.19)

and

log Ao =—ilong —--]—IogC1 +—l-logl
m m m

log Ac = AlogN, +B(a,) (6.20)

which is the equation for cracked S-N curves. From the different initial crack size
(the inspection size ainsp), the equivalent S-N curves for cracked detail was constructed. In

this calcualtion, the material parameter m and C is selected as :




m=3
_ 1.315x10™

= ST (6.21)

Based on the following parameters and stress inetsnity factors which is calculated

early, the equivalent S-N curves are constructed .

Curve 1 Curve2 Curved
1
; 3 = i
3 . Curve 4
o 10 £ z = Initial crack length
? 1 If = = I f
o I T~ 1 19 R d 1
2 2 =a syl " A Curve 1 = 0.25mm
ﬁ 10 e 2 = = =ss
5 T : ] Curve2 = 0.5mm
&
'IO] : s | Curve3=1mm
T e - R
il i it ﬁ | Curved4=4 mm |
: Hﬁ ] ? 3 2 5 @ 7 &
1 10 10 10 10 10 10 10 10
Number of Cycles
Fig 6.15 Equivalent S-N curves for Specimen A (Plate with a hole)
Curvel urve2 Curve3
10 E =
1 L A
3 Curve 4
o
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Fig 6.16 Equivalent S-N curves for Specimen B
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~ Fig 6.16 and 6.17 is the equivalent S-N curves for a cracked longitudinal Joint and
plate with a hole. It can be seen that curves for the plate with a hole is higher than that for
longitudinal joint since the stress intensity factor for the plate is lower. If these curves are

compared with the corresponding original fatigue S-N curves [6-6], we can see that these

curves are inuch lower.
6.9 Remaining Life

Thé fatigue remaing life was computed by the updated fatigue evaluation software
developed in SMP project.The uncertainties associated with cracked S-N curves are
assumed to be the same as original S-N curves [6-1]. These are shown in Table 6.7. The
S-N curves used in the analysis are the equivalent S-N curves developed in Fig. 6.16 and

6.17. The long-term stress range is from Table 6.6.

Frabrication and Assembly 1.2 7 0.2 _
SeaState Characterization 1.1 0.3
Wave Loads 0.8 0.2
Determination of Loads 0.9 ! 0.3
SCF 1.0 | 03
Median Bias Cov Bias
Total 0.95 0.63

Table 6.7 Uncertainty Modeling in Fitness for Purpose Analysis
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Fig 6.18-6.19 shows the probability of failure during the remaining 10 years with
the initial crack depth 0.25mm,0.5mm,1mm and 2mm. It can be seen that the probability

of failure for hotspot on sideshell longitudinal intersection with the initial crack size ao=

4mm is 88% which is very high if the critical crack ac=14 mm. That means that the

propose detail not fit the purpose to extend another 10 years although the probability of

failure for cutout is lower.

Another interesting point is that the probability of failure with the initial crack size
a0 =0.25 mm is 7% which is equivalent for results from traditional S-N analysis [6-1]. It
may conclude that 0.25mm may be the good assumption for the initial crack size of weld

details.

The probability of failure for cutout is lower. One reason may be due to the small

long-term stress range. One may be due to its stress intensity factors.

The proposed analysis is based on the equivalent S-N approach which the residual
life is determined by the cracked S-N curves. Thus, the uncertainty described here (Table
6.7) is the uncertainty modeling for long-term stress range while the fracture uncertainty
is described through the uncertainty for equivalent S-N curves with standard deviation 0.3.
It may not be enough for fracture behavior. The more rational modeling for fracture
should be further developed to describe in detail about the uncertainty of critical crack,
stress intensity factors and so on. This will be developed by probabilistic fracture

mechanics and documented in subsequent report.

129




1.40E-03

1.20€-03

1.00E-03

8.00E-04

6.00E-04

4.00E-04

2.00E-04

0.00E+00

Fig 6.18 Probability of Failure During the Remaining 10 Years for Hot Spot around

i

.

0.1

=====T==a

"'-i-
+
1 10
Initial Crack Length (mm)

Cutout
l | T
— L )
rd
: ”
—
- —
- ]
|
”
» ”
0.1 -
g ¥
i
0.0
0.1 ! 10

initial crack length

Fig 6.19 Probability of Failure during the Remaining 10 Years for Hotspot

on Sideshell Longitudinal Intersection

130




Based on the proposed analysis, several conclusions can be derived:

1) Equivalent S-N curves for cracked CSD are sensitive to the initial crack length
while they are less sensitive for the critical crack length if it's well defined.

2) Equivalent S-N curve approach can provide rational results with enough
accuracy.

3) In this study, the initial crack depth and through thickness crack depth are used
to derive an equivalent S-N curve. It's well known that fatigue crack is two
dimensional problem with crack depth and crack length. It may be more
appropriate to derive S-N from crack length although the final critical crack length
is hard to determine due to complex CSD in tankers.

4) Evaluation of stress intensity factors is the key issue for this approach. Hybrid
method is developed to compute the stress intensity factors for general joints. In
order to reduce the computation effects, the stress imensiﬁy factors are determined
for corresponding fatigue specimens for general CSD. This may lead into some
uncertainties. Meanwhile, load shedding is another issue which may result in some

uncertainties. These issues will be addressed later.

6.10 Summary

The proposed fitness for purpose analysis has been conducted for the CSD in a

165,000 DWT tanker. It has shown that the proposed procedure can help naval architect

make the evaluation about cracked CSD rapidly. The proposed fitness for purpose

procedure is :

1 - Definition of structural detail and crack location.
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2 - Computation of the transfer function for the ship. The transfer functions are

computed for the two load cases. Full load and Ballast and for several wave

headings and speeds based on the proposed travel routines and sea environment.

3 - Determination of the stress vectors at the Hotspots from finite element analysis.
- Estimation of the long-term distribution of the stress range o at a hotspot. This
estimation is based on a specified travel routine for given Madsen zones and
specified maneuvering philosophy.

4 - Determination of the initial crack size for given hotshot

5 - Determination of the critical crack size for given hot-spot based on material

toughness or durability requirement.

6 - Determination of the stress intensity factors for given hot-spots at the specified |
CSD |
7 - Construction of the equivalent S-N curves for the hot-spot in given CSD. |
8 -'Determination of the remaining fatigue life based on the long-term extreme \

stress range and constructed equivalent S-N curves. |
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Chapter 7

Conclusions

The purpose of this project to establish a general fitness for purpose analysis for
cracked critical structural details (CSD) in tankers. Particular emphasis was paid to
evaluation of the stress intensity factor and development of S-N curves for cracked CSD

in tankers

The fitness for purpose procedure developed herein can provide a sufficient basis
for naval architects to make rapid decision for maintenance and repair of the cracked CSD

in tankers.

The S-N curve for cracked CSD is the key issue for the fitness for purpose
analysis. The methodology for the development of cracked S-N curves provide high
accuracy in application. But the determination of the input parameters such as final critical
crack length, material toughness and stress intensity factors may lead to considerable

uncertainties.

The stress intensity factor (SIF) evaluation is the key in fracture mechanics. The
hybrid method is one of the most efficient methods to determine the SIF with high
accuracy. It only employs one finite element analysis to determine the stress gradients.
However, this method is still conservative due to the load shedding and complex due to

requirements for FEA with extremely fine mesh.




The long-term fatigue loading may be one of the most important uncertainty
resources for fatigue analysis and fitness for purpose analysis. A new model for wide-
banded process can predict more accurate results than previous models. The load
sequence effects on crack growth for large CSD is still unclear although it is widely

believed that this effects is not important in comparision with other factors.

It can be concluded that there are three major uncertainties in fitness for purpose
analysis. One is critical crack length, one is long-term fatigue loading, and one is stress
intensity factors. The study of SIF for cracked CSD to calibrate the rational analytical
formula including load shedding has been conducted during this project. This will

documented in a subsequent report.

As we know, many factors related to the fatigue crack growth process are variable,
indefinite, or unknown, leading to large uncertainties. As the result of the uncertainties,
the durability of the considered tanker against fatigue is more likely to evaluate in a

probabilistic sense. This will be addressed in a subsequent report.
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Preface

The one year Joint Industry Research Project "Fitness for Purpose Evaluation

of Cracked Critical Structural Details (CSD) in Tankers" was initiated in 1993
by the Department of Naval Architecture & Offshore Engineering, University of California
at Berkeley as an extension of the projects "Structural Maintenance for New and
Existing Ships" and "Ship Structural Maintenance". The objective of this project is
to develop engineering guidelines and procedures to help ship repair engineers, port
superintendents and surveyors make evaluations of the fitness for purpose of cracked

Critical Structural Details (CSD) in tankers.

This project was made possible by the following sponsoring organizations:
-American Bureau of Shipping -Chevron Shipping Cooperation
-Mitsubishi Heavy Industries -Newport News Shipbuilding & Dry Dock Co.
-Ship Structure Committee

This report documents the theoretical background with the computer program

FRACTURE.
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Chapter 1

Introduction

Based on the previous studies and previous SMP I & II projects, fatigue cracks }
were usually located in internal structural details. The typical fatigue cracks in details are

shown in Fig. 1.1

In general, fatigue cracks are occurred in CSD within two different categories. One !
\
is the structural cutout, another one is the joint. For these two different categories, the |

computation of the stress intensity factors is different in FRACTURE.

This report is divided into five chapters. Chapter 1 is the introduction. Chapter 2
documents the stress intensity factor's computation. Chapter 3 addresses the crack growth

and fatigue life computation. Chapter 4 is the user's manual. Chapter 5 is the program

versatility.
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Chapter 2
Stress Intensity Factors

2.1 Stress Intensity Factors for Joints.

The method used in computing the stress intensity factor for joints in CSD is

basically an influence function - and a superposition method. It employs available solutions

for two- and three- dimensional crack problems. From these the influence of different

factors affecting K are separated and used to "compose" and estimate of K in actual case.

(1-8)
General Expression for K

The stress intensity factor can be expressed in a general form as

K =KgF

where :

KB = stress intensity factor pertaining to "standard case".

2.1)




F = correction factor that modifies KB to account for the actual
configuration of the local geometry and crack geometry as
compared to the standard case.
The standard case for 2-D is a through crack of length 2a in an infinite plate with a
remote uniform tensile stress acting normal to the crack. (Fig. 2.1). The standard K

solution is
Kg, =oJna (2.2)

The standard 3-D case is an elliptical crack embedded in an infinite solid subjected
to uniform tension (Fig. 2.2). The stress intensity factor along the boundary of the elliptical

crack is (Mode I):

2
Kgs = S (i,-cos2 @ +sin? @)% (2.3)
3

where @ is the complete elliptical integral and is given by:

nl2 0.5

Q= f{l—(l—%:—)sinzcb} do (2.4)

[]
It is shown that Ky, (relating to a straight curve front) differs from Kg; (relating to
an elliptic, i.e. a curved crack front) by the expression

2
%z-cos2 ¢ +sin?@)** (2.5)

-Q/LH

which accounts for the effect of the crack shape (a/2c) and position (¢) on the crack front.




A practical joint case usually differs from a standard case due to
- boundary effects
- stress gradients

Boundary- or, finite-dimension-, effects are taken into account through correction

factor, as illustrated in Fig. 2.3

The "two dimensional crack” of Fig. 2.3a differs from the standard case of Fig.

2.1, by a finite width, this is taken into account through Fuw.

The "two-dimensional crack" case of Fig. 2.3b differs from the standard case of
Fig. 2.1 due to finite thickness and the crack emanation from a free surface. These are

accounted through factors Fr and Fs respectively.

The "three-dimensional crack" case of Fig. 2.3c differs from the basic case of Fig.
2.2 as the crack emanates from a free surface, and as the body has a finite width and finite

thickness. These deviations from the basic case are accounted for through the factors Fs,

Fw and FT.

The "two-dimensional crack” case of Fig. 2.4 differs from the basic case of Fig. 1

by the sheet curvature. It's taken into account through Fc.

Stress concentration are synonymous with stress gradients. This stress condition is
an important deviation from a basic case, and must be taken into account through a
correction factor Fa.

Fatigue cracks may obtain various shapes (Fig. 2.3), e.g. the crack front may be
straight or curved. The curvature (crack shape) is an important parameter influencing K.
Thus, it is essential that this effects should be accounted for through a factor FE. (elliptic

8
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shape factor). The solution for the 3-D standard case of Fig. 2.2 includes the effect of crack
2

shape through expression 1—(a#cos2 ¢+sin’9)?¥. A curved crack front (a/2c > 0)
P cC

specializes to a straight one as a/2c -> 0. The @ (and FE) -> 1, and accordingly the standard
stress intensity factors for the two- and three-dimensional case, these two can be unified

through the expression

The standard solutions are elastic. Local plasticity around the crack tip may occur,
however, and is in fact a prerequisite for fatigue cracking to occur. The effect of this
plasticity on K is normally insignificant. However, the effect can be generally be taken into

account through a plasticity correction factor Fp.

Implementing the above correction factors, F may generally be expressed as

F=F,*F;*Fy*F.*F; *F, Q2.7

or
F=Fy*F. *F;*Fp (2.8)
i.e. Fg=F *Fr*Fy (2.9)

Finally, K may be conveniently expressed as

K=oJma*F (2.10)
In the above expressions
Fg = basic crack shape factor
FB = boundary correction factor, encompassing the total boundary (i.e. free

surface) effect




Fs = front face correction factor, accounting for a free surface behind the crack

front.

F1 = back face or finite thickness correction factor, accounting for a free surface

ahead the crack front.

Fw = finite width correction factor, accounting for a free surface ahead of the

crack front.

Fc = cylindrical shell (i.e. curvature) correction factor
Fa = stress gradient correction factor

Fp = crack tip plasticity correction factor.

The basic crack shape factor - Fe

This factor takes into account the effect of crack front curvature, i.e., crack shape.

It stems from Irwin's solution for an elliptical flaw, embedded in an infinite elastic solid

subject to uniform tension. Hence, the resulting FE for any position along the crack front,

describe by angle ¢ to the major axis (Figs 2.2,2.5) is

-e’L*-'
=

5 cos? @ + sin* ¢)*® (2.12)

This equation was derived on the basis of uniform tension across the crack surface
while it may argued that gradients will modify the result, that is taken into account by the
Fa correction later described. Likewise, this equation was derived for a crack embedded in
an infinite elastic solid. Hence, it may be expected that the free surfaces encountered in
practical case (finite body) will influence Fe. Thus, FE can be interpreted as a factor that
accounts for the (elliptical) crack shape without encompassing the complete shape-effect,
only these related to the standard case. Parts of these effects are included in the Fs., Fr-and

Fa- estimates, as these are functions of a/2c. Hence, Ft is maintained in its original (i.e.
10




standard case) form for stress intensity estimates. The dependence of FE on crack shape is

shown in Fig. 2.6.

¢ is the complete elliptical integral of the second kind, as given in

x/2 0.5

Q= f{l -(1- i)sin’d)} d¢ (2.13)
1 C

} \
A good approximation is obtained through the expression

@ = {1+4.5945(a/ 20)"}"* (2.14)

hence,

-0.5

Fe = {1+4.5945(a/ 2)"*} (2.15)

The Front Free Surface Correction Factor - Fs
This factor accounts for a free surface at the "mouth" of the crack. (Fig. 2.3).

Several expressions are proposed for the crack shape influence on Fs. A reasonable relation

provides intermediate values is [6]

Fg =1.122-0.18(a / 2¢) (2.16)

while the curved function in Fig. 2.8 provides upper bounds.
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The Finite Thickness Correction Factor - Fr

This factor (also called "the back free surface correction factor") accounts for the
effect of a finite plate thickness, i.e. a free surface ahead of the crack front (see Fig. 2.3). It
depends on

- crack geometry (size, shape)

- bending conditions (free, restrained, during cracking)

- crack opening stress distribution

- position on crack front

Surface cracks are among the most common flaws in many structures.
Consequently accurate stress intensity factors for such cracks are needed for reliable
prediction of crack growth rates and fracture strengths. However, exact solutions are not
available, but several solutions have been obtained by approximate methods and these
solutions differ considerably. In [7] it was shown that the estimates compared varied by 6
per cent when a/2¢c > 0.3 and a/t < 0.5. Beyond these ranges deviations might exceed 100

per cent. More, deviations are particularly large for small (a/2c) - ratios.

Two of the closed-form expressions available for uniform tension loading are

Fr = _sec e when a/2¢c =0 (2.17)
2t ma

Fp = J—tan — when a/2c =0 (2.18)
na 2t

12




These are the forms most frequently cited in the literature, although in later years
very often in modified versions, [8). They pertain to the symmetrical crack cases presented

in Fig. 9, case 1 and 2.

These two expressions are also applicable to non-symmetrical crack configurations
where bending is prevented by imposed boundary conditions. Hence, the strips in Fig. 9,
case 1' and 2!, are comparable to those in case 1 and 2. At real ship structural details the

roller supports might be provided by a web and /or stiffener.

FT for an edge crack (a/2c =0, see Fig. 2.3) is quite sensitive to whether or not the
section is permitted to bend as crack growth occurs. The bending tendency is natural for

any strip in which crack growth is not symmetrical with respect to the strip centerline.

Bending amplifies the back surface correction - particularly at high values of a/t
where more bending occurs. If the rollers on either strip of Fig. 2.9, case 1' and 2/, are

removed, the back surface correctionr must be modified, according to case 3.

It should be noted that the solution for case 3 is valid only when the displacement of
the strip is free from constraint. In actual structures, any connected structural member is
under constraints imposed by connections. When a crack occurs in a certain component, its
compliance increases. The load and deformation are redistributed between members. (L<;ad
shedding which will be discussed later in this project). Thus, the boundary condition is not

displacement-free but displacement-limited.

Other examples of displacement constrained strips with a single edge crack are

given in case 4 and 5. The in-plane transverse displacement at infinity is restrained.

13




In case 4 the local in-plane transverse displacement near the cracked section is not

restrained, while it is in case 5.

The FT - expressions pertaining to the above cases are given as following [8,9]

-Case 1;
Fr =[1-0.025(a / b)* +0.06(a /b)*] ! (2.19)
Fﬁ'
2b
surface crack : b=t
subsurface crack : b=t/2
-Case 2;
na
(1+0.122cos* — 55
Fr = 2b 1’—tan = (2.20)
1.122 ma 2b
Single crack : b=t
Double crack : b=t/2
-Case 3;
o A 4
0.752+2.02(a/b)+0.37(1 - sin—)° 2b o
F, = — 2b | [Zpan™ (2.21)
1.122cos = na  2b
2b
b=t
-Case 4;
iy 2 3
F, - 1.122-0.561(a/b) + 0.085(a/b)* +0.180(a / b) (2.22)
1.1224/1-a/b
=t
-Case §5;
2b na
F; = . J—tan —
T Ym " 2 (2.23)

b=t
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The above expressions are plotted in Fig. 2.10 which clearly shows the effect of
displacement constraint.

Within the computer program, the user decides which of the case is closest to the
actual case, and has the option to choose the appropriate FT among the solutions for these
cases.

For semi-elliptic surface cracks (a/2c >0), the net ligament on either side of the
crack inhibits bending, and significantly limits the crack from sensing the upcoming free
surface. Therefore, any amplifications due to bending effects are likely to be small or
negligible, as long as the crack is small compared to the cross sectional area of the body.
Hence the choice between bending and no bending depends on the structural details as well
as how the crack is growing (i.e. the crack shape). Fatigue crack growth at welded cover
plates, stiffeners, gusset plates and other common girder attachments in ship structure is
rarely symmetrical. Yet, bending is usually limited by virtue of the girder web and/or the
attachment itself. Thus, no bending corrections are considered to be most applicable in

typical ship structures.

The FT - estimates adopted here, for semi-elliptic surface cracks are shown in Fig.

2.11 [7]. These pertain to the deepest point on the crack front. (i.e. point A in Figure 7).

It should be pointed out that all Fr corrections mentioned are strictly valid only in

cases of uniform tension stress.

The Finite width Correction Factor - Fw

This correction factor accounts for the effect of finite width on K for a through
crack. It is analogous to F1 for a part-through crack when a/2c=0 and, hence, the same
expressions are used to estimate Fw by merely replacing t with W (plate width).

15




The Curvature Correction Factor -Fc

This factor accounts for the effect of the curvature of cylindrical shell upon the flat

plate solution for K for a through crack. It may be expressed as [10]

F.=G, + 2f—G,, (2.24)

where Gm = contribution due to membrane stresses
Gy = contribution due to secondary bending stresses (due to the cracking)
z = distance from shell "mid plane"

t = shell thickness

that is,
- On the outer surface : z=+t/2 ; Fc= Gm + Gb
- On the inner surface : z=-t/2 ; Fo= Gm - Go
- On the shell mid plane :z=0 ; Fc= Gm

Gm and Gb are functions of a / 4Rt (fig. 2.12), where
2a = length of circumferential through crack (perpendicular to the cylinder axis)
R = radius of cylinder (tube)

In the computer program, Fc is set equal to its mean value, i.e. FCc = Gm.

The Stress Gradient Correction Factor - Fg

This factor (also called " the geometry correction factor") accounts for non-uniform
crack opening stresses. i.c. stress field gradients at the crack locus [1-4,7]. The gradients
may be due to e.g. non-uniform applied stress (such as bending) or stress concentration

caused by detail body. This stress gradient should not be confused with that which occurs

16




at the crack tip. F represents a more global condition which is not acknowledged by a

strength of materials analysis.

FG is conveniently derived from known solutions for K in the following manner.
The solution of a crack stress field problem can be visualized as a two-step process [7,8),

Fig. 2.13

1. The stress distribution problem is solved in a manner satisfying the boundary

conditions ( displacements, stresses) but with the crack considered absent.

2. To this stress field is superposed another stress field which cancels any stresses

acting directly across the crack along the line of the crack.

Step 1 is a non-singular elasticity problem and can be solved by a FEM analysis. As
the addition of a non-singular stress field (o(x), Step 1) does not affect the value of K (
caused by -o(x), Step 2) the resulting K will be identical with that obtained from Step 2.

To evaluate K from Step 2, an influence (Green's) function method is employed.

An influence function can be defined as

Gy(b,a) = %Kmma) (2.25)

where Kir=duetoaloadPatx=b

P = load per unit sheet thickness / width

Hence, Gi(b,a) is the Ki value arising from a unit force (per unit thickness/width)
applied at abscissa x = b. Gi(b,a) is independent of loading and depends merely on all the

geometry parameters of the cracked body. If a solution for the stress intensity factor is
17




known for any particular load system, then this information is sufficient to determine the

stress intensity factor for any other load system.

A pressure p(x) applied on an infinitesimal surface t( or W) dx results in an

infinitesimal stress factor.
dK,(x,a) = G;(x,a) * p(x)dx (2.26)

Thus, the Ki resulting from the total crack surface loading is -

K, - fG,(x,a) * p(x)dx (2.27)
[]

In the éctual case p(x) = -a(x) = crack opening stresses (mode I). Hence, the stress
distribution in step 1, although being a non-singulér distribution, affects the strength of the
singularity through this integral. The most significant general feature of G is the inverse
square root singularity at the crack tip. This indicates that the stresses near the crack tip

exerts a much greater influence on the strength of the singularity than the stresses far from

it.

Values of K for intermediate crack sizes and the corresponding gradient correction

factors can be computed by a simply repeating Step 2 for any desired crack size.

In a part- through crack case the computation of the stress gradient corrector F6
might be based on the following solution of the problem shown in fig. 2.14 [8]
2p 1

¢ F(b/ 2.28
Jra fi-(b/a)’ ©rw 229

K[=

18




Therefore the influence function in this case is

2 1
Gy = —2e F(b/ 2.29
' dma fic(b/a) (b/a) e

With the condition of p(x) = o(x), yields

2 o(x) .
= \na f ¢ e F(x/a)dx (2.30)

where o(x) can be obtained from a FEM analysis.

The stress distribution could be represented by a polynomial expression and could
be integrated analytically. However it is more convenient to use a discretized stress

distribution and the above equation then may be reformulated as

b.
2w — “ dx
K =‘\/m°— .‘F‘b-/ d e 2.31
: nz,_ otk ) x!\/a‘-bz { )

where ob = stress in block no. "i"

bi = 1/2(bi + bis1)

The integration is carried out over the block width, and the summation over the
number of blocks. After factoring out the nominal stress o, applied remotely from the

crack, integration leads to

= o4fma * {—2 b« F(b; /a)dx[arcsm—]b }
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-0 23 e, ) |

i=1 O

=oJm *F (2.32)

where wbi = weight of block no. "i". '

|
In the underlying case of Fig. 2.15, i.e. an edge crack is a semi-infinite body, F1 = ‘
FE = 1.0 according to the present terminology. Then F corresponds to Fs® Fc (Fp: = 1.0), ‘

and hence, the stress gradient correction factor may isolated as

F, =£- (2.33) 1

Fsdepends on the stress distribution, and is equal to 1.122 for the case of uniform stresses
acting over the whole area of an edge crack. A non-uniform stress-field with the stress peak
at the surface accentuates the free surface effect, as indicated by the weight function in Fig.

2.14. Thus, by expressing the gradient factor as |

F
F- =
G 1122

(2.33)

the stress gradient effect on Fs is included in Fa. The resulting expression used in

computing FG in the case of an edge crack might then be written as \

Fo = —2— 3" {25 F(b /)« faresin 2t~ arcsin ] (2:34)
112214 | © e a

The computation of Fa in the case of a through crack might be based on a solution

of the problem in Fig. 2.16 [8],

20




(2.35)

2p a
K, = —
' Jna v b’

which is an exact solution in the case of symmetrically distributed opening stresses. A
comparison of this Egs. and part through thickness Equation shows that they differ by the
factor F(b/a), which thus is a factor accounting for the free surface effect.

FG for this case might be expressed as

a

= —2{ b [arcsm arcsmp—]} (2.36)

“with  bE(0, +a)

For more general case in Fig. 2.17 which is not symmetry in the stresses, i.e.

p |[azb
Jm a+b

(2.37)

This case yields the following expression for Fa :

(Fe).. =—Z{ [arcsm b arcsinﬁ—T-\/l—(b¢*'-)2 t\/l—('b—i)zl}
| o a a a

(2.38)

where b € (-a,+a)

It should be noted that the FG - estimate for a part-through crack is conservative
when a/2c >0. The conservatism increase as the stress concentration and the crack front

curvature increase.
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The Plasticity Correction Factor - Fr

This correction factor accounts for the effect of crack tip plasticity on AK. Irwin
suggested that the effect of small plastic zones corresponding to an apparent increase of the
elastic crack length by an increment (rp) equal to half the plastic zone size (Rp).

The plastic zone size may be written as [7]

AK,

R, =x(=— (2:39)
y

where AK = stress intensity factor range

o, = monotonic, uniaxial yield stress

x = coefficient depending on
- type of loading, i.e. monotonic/ cyclic
- stress state , i.e. plane stress/plane strain

Thus, the crack length correction is

x AK .,
= 5(_ i (2.40)
9y
AK might be expressed as
AK = Ac+fna * F, (2.41)

where F1 = product of all correction factors except Fp

Taking plasticity into account, the corrected AK then is

AK* = Ao fi(a+1,)*F,




AK)2 *F, (2.42)
y

= Ao.Jna 1+%(

Accordingly, the plasticity correction factor might be expressed as

x AK., .
F, = 1+§-a—( y) K (2.43)

The plastic zone size coefficient x is an input parameter to the program. Interesting values
for x are
k =1/24n  ;cyclic plane strain

k=1/8xn ; cyclic plane stress

Fp will usually be close to one for fatigue crack propagation under nominally elastic
stresses. It is very often ignored in high-cycle fatigue situations. However, it should be
noted that crack tip plasticity affects crack growth (and fatigue life) more than it affects AK.

This is because AK is typically raised to the power 3 in the crack growth equation.
2.2 Stress Intensity Factor for Cutout
Stress intensity factor for cutout is relatively complicated. We use cavity (pore)

model to approximate it. stress intensity factor for a penny-shaped crack (in an infinite

solid) with normal stress distribution having circular symmetry [9]:

a(Dr
f el o

1——2%-[\/: r
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~./_{——2 S R AR }

NaAi-1 O
22 “b2, |
na{n ajisl o [\I;l .Ja '”J}
saJna*Fg *F; (no boundaries) (2.44)

Penny-shaped crack ->a/2c=0.5 -> Fe=2/n

-_2{_(¢= b7 - aT = } (2.45)

Stress intensity factor for a penny-shaped crack emanating from a spherical cavity (pore)

a(r)e r
(2.46)
obse

where 2a. = effectively crack length (Fig. 2.20)

o(r) = stress distribution at spherical cavity, i.e. [11]
R Rys
o(r)=[1+0.2237(—)" + 0.8182(—)" Jo (2.47)
F r
where o = nominal stress at the cavity
Thus the crack-and-pore geometry (Fig. 2.20a) is treated as a penny-shaped crack

with radius ae (Fig. 2.20b) to approximate the crack cutout. Stress concentration effect due

to the pore is accounted for employing the above equation in computing the block stresses.
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Fig. 2.1 Two-dimensional standard case : Through crack in an infinite

sheet subjected to uniform tension

M
|
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i
«—

a

e
—F=1

Section A-A

Fig. 2.2 Three-dimensional standard case : Embedded elliptical crack

in an infinite solid subjected to uniform tension.
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Fig. 2.3 Plate Cross-Section with various Crack Geometries.

Free Surface and Related Correction Factors
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Fig. 2.4 Through Crack in a Curved Sheet

Fig. 2.5 Crack Front as Given by the Angle ¢
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Fig. 2.6 The basic (elliptic) shape correction factor

Fig. 2.7 Semi-elliptic Surface Crack
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Fig. 2.10 The Finite Thickness Correction Factor Straight Crack Front (a/2c =0)
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Fig.2.10 The Finite Thickness Correction Factor Curved Crack Front (a2¢ >0)
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Stress Distribution

K, = V7 3{0, F(B: /a)earcsin(x /a)t }

n i=l

bi=1/2(b, +

bio])

Fig. 2.15 Discretized stress distribution
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Fig. 2.17 One Pair of Splitting Forces on 2 Through Crack in an Infinite Sheet
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Fig. 218 Stages of Growth

Fig. 2.19 Phases of Growth in Stage 1
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Fig. 2.21 Penny-shaped Crack emanating from Spherical Cavity
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Chapter 3

Crack Growth and Fatigue Life |

3.1 Crack Growth |

1

|

|
In the computer program, Paris' equation is used to estimate the rate of growth. We
can make various estimates concerning crack growth, e.g. the time or number of cycles

required to grow a crack from one size to another.

a, \

da
N = J (da.dN) (3.1) |

This is necessary for fitness for purpose evaluation when the structure is in service.
|

\
E.g. a crack may be detected and reported through the in-service inspection program, and

|
decisions have to be taken whether this crack should be stopped, or allowed to grow to a

\
certain length. The program has the option for printout of a table of a vs N, |

3.2 Fatigue Life |

Fatigue initiation is neglected in the program. |
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Constant Amplitude Fatigue Life |

The crack propagation part of the fatigue life may be expressed as

N, a
N = [dN= -9 _ (3.2)
P . J (da/dN)
where ai = initial crack length (depth). Input to the program

ar = final (critical) crack length (depth). Input, or computed in the program.
By inserting the relevant expression for crack growth rate, one can obtain an
estimate of the fatigue crack propagation life. Thus by employing the Paris' equation one

gets

a3

da

NP = J C(AK)m (33)

The computer program offers the option of superposing the effect of several ( < 4)

stress distributions. Hence, the following computation is conducted.

For Each Stress Distribution:

(K/0); = Jma °F, (3.4)
(Kmin )j = (omin )J .(K/G)J (3.5)
(Kmax)j = (omax)j *K /o)j (3.6)
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Superposition:

Kmin=j%(Kmin)j in<4 }
Kpax -Jg(K,..,x),- in<d 3.7) |

Effective Stress Intensity factor Range ‘

|

If Kmin < O then Kmin: = f Kemin, where f (0. -1.). The factor f is given as input, anq

offers the possibility to truncate the negative part of (AK). |

AK = Kmax - Kmin (3'8)

Number of cycles in crack growth stage j

1 ~ da
. W e—— 3.9 "
J C J (AK)m ( ) ‘

L3

The integral is evaluated numerically. |
Fatigue Life

k

(3.10) |
j=1

where k = no. of crack growth stages.
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Chapter 4

User's Manual

4.1 File or Terminal Input

Upon the startup of the Fracture Program the choice is requested whether to
perform the input from a file or from the terminal. The following screen is shown:
If you want to read data from a file, type 1
If you want to read data from the terminal, type 2
The program will only accept the integer values 1 or 2.
File Input
A standard file input is provided in Appendix which is the same format as the

terminal input.

4,2 Material Data

This module has the purpose to specify the CSD's material data. The user is
requested to input the following material data
Please enter the following material data:

1) Crack growth parameter C

2) Crack growth parameter m
43




3) Yield stress [NN/m2]
4) Fracture Toughness [MN/M#**1.5]

Please enter the values

The user inputs the above four data in the column.

4.3 Geometry Data

This module has the purpose to read the CSD's geometry data. The following is

shown on the screen:
Please enter the following geometry data :
1) initial crack depth [m]}
2) Aspect ratio, i.e. A/2C
3) Plate thickness [m}
4) Plate width [m]
Please’enter the values:

The user is requested to input the data in the column

4.4 Stress Data

This module is supposed to read fatigue stress data. The following is shown on the

screen:

Please enter the following stress data
1) Nominal stress range [MN/m2]
(Actual fatigue Loading)

2) Stress ratio




3) Nominal stress [MN/m2]

(For Stress Intensity Factor)

4) No. of elements in through thickness distribution

5) No. of elements in plate width stress distribution

This user is requested to enter the above data in column. It should be noted that the

difference between the nominal stress range and nominal stress.

4.5 Stress Distribution

Based on the number of the elements which is inputted in the above module, the
stress distribution along the crack is requested as following:
For the stress distribution along the crack depth:
Please enter N rows of stress data
1) Nominal stress in crack plane /through thickness distribution
[MN/m2]
2) Corresponding distance from the plate surface M]
please enter row 1
The user is requested to input the stress distribution along the crack depth here.
For the stress distribution along the crack length:
Please enter N rows of stress data
1) Nominal stress in crack plane /plate width distribution
2) corresponding distance from crack centerline [m]
Please enter row 1

The user is requested to input the stress distribution along the crack width here.
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4.6 Compute Module

Several options are provided in fracture analysis. The following dialog is used to

enter the choice:

Please choose the following 6 options:

1) Option 1
‘ Continuous aspect ratio 0
| Constant aspect ratio 1
2) Option 2
Crack growth from one surface only 1
Crack growth from both surface 2
3) Option 3
Printout of SIF 1
No printout 0
4) Option 4
One growth phase through thickness 1
Two growth phase through thickness 2
5) Option 5
Print A-N Relation 1
A-N Relation not printed 0
6) Option 6
Longitudinal Weld 1
Transverse Weld 2
Cutout 0

The user is to specify the above options to start the program.
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Chapter S

Program Versatility

5.1 Material

Steel, other metallic materials
Please note: Empirical crack shape relations in the existing version are only

related to steel. For other application, it need be modified.
5.2 Loading

- Constant amplitude

- Variable amplitude, bu equivalent stress range

- Nominal load for stress intensity factor 5 axial
, bending
, mixed

5.3 Stress Distribution

- Several ( < 4) stress distribution. might be input

- Loading stress
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- Residual Stress (e.g. due to welding)

- Compressive stresses taken into account

5.4 Geometry

- Plated Joint

- Tubular Joint

5.5 Detail Geometry

- Welding joints
stiffener ; longitudinal

transverse ; ringer stiffeners

5.6 Crack Initiation Sites

- Weld toe
- Weld root
- Cavities (spherical, i.e. pore)

Please note this is the model for cutout.

5.7 Crack Type

- Surface crack
- Subsurface crack a/2c = const = (0.0 - 0.5)
- Through crack




5.8 Crack Geometry

- Straight crack front (a/2c = 0)
- Curved crack front (a/2c > 0)
- Fixed shape (const a/2c) during growth

- Continuously varying shape during growth

- Crack growth from one or two plate surface.

5.9 Crack Growth Stage

- Two stages of growth (Fig. 2.18)
1) Growth as a part-through crack

2) Growth as a through crack

5.10 Failure Modes

- Yielding
- Fracture (Kmax=Kc)

- af = afinal S an input.
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Preface

The one year Joint Industry Research Project "Fitness for Purpose Evaluation of
Cracked Critical Structural Details (CSD) in Tankers" was initiated in 1993 by the
Department of Naval Architecture & Offshore Engineering, University of California at
Berkeley as an extension of the projects "Structural Maintenance for New and Existing
Ships" and "Ship Structural Maintenance". The objective of this project is to develop
engineering guidelines and procedures to help ship repair engineers, port superintendents
and surveyors make evaluations of the fitness for purpose of cracked Critical Structural
Details (CSD) in tankers.

This project was made possible by the following sponsoring organizations:
-American Bureau of Shipping -Chevron Shipping Cooperation
-Mitsubishi Heavy Industries -Newport News Shipbuilding & Dry Dock Co.
-U. S. Coast Guard

This report documents the background about the computer code "Pro-IMR"-A

Computer Program for Probability-based Inspection Planning.



Chapter 1

1.1 Introduction

There is an increasing need today to evaluate the fatigue strength of hull structures
along with the increasing use of new structural design, new material aimed at longer life
and low cost. In order to achieve a longer service life for hull structures in the expectation
of a ship service life of 15 to 20 years or even longer, Inspection, Maintenance and Repair
(IMR) program is considered to be very important. Particularly when a ship is to be
operated for a long period at high levels of safety and reliability, an IMR plan from the
outset of ship design and construction is important. Unfournately, the field of IMR
techniques is an area that lags significantly behind highly developed computer technology

for fatigue analysis.

1.2 Scope

Fatigue damage is considered to be initiated in a structure when the smallest size
measurable crack develops, whether or not it is detected. The fatigue process in a
structure member consists of crack initiation, followed by crack propagation and the
resulting member strength degradation. Periodic inspection of fatigue sensitive structures
have been common practice in order to maintain the reliability of the structures at the
desired pre specified level. If a fatigue crack is detected by inspection, the cracked detail is

repaired or replaced.




This report presents documentation about the computer code Pro-IMR - A
Computer Program for Probability-based IMR planning. In Pro-IMR, the inspection
procedures are based on POD (probability of detection) curves, detail stress and
inspection repair histories. The inspection intervals are intended to keep the reliability at
predetermined design levels.

This report is divided into five chapters. Chapter 1 is the general introduction.
Chapter 2 addresses the theory about the probability-based inspection planning. Chapter 3
is the user's manual. Chapter 4 is the numerical examples and Chapter S is the summary

and conclusion.

“
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Chapter 2

Inspection Planning

2.1 Introduction

In the previous chapter, the effect of periodic inspection on fatigue reliability was
examined. This chapter present the procedure for the probability-based inspection
planning for tanker structures so as to maintain the reliability at a predesign level through
the lifetime. In order to simplify the procedure, several assumption was further made

based on the model developed in the previous studies [2.2].

Section 2.2 discusses the POD (Probability of Detection) Curves. Section 2.3
describes the analytical models used and the various assumptions employed in this
analysis. In section 2.4, analytical intepretation of inspection is given. Section 2.5 and 2.6
are associated with the determination of appropriate inspection intervals so that the

structural reliability is kept at the desired level.




\
2.2 POD Function E
|

The quality of the inspections are modeled through the probability of detecting an
existing crack where the probability for crack detection depends on the size of the crack,
the inspection method applied, and the experience of the inspection team. The inspection
quality is commonly defined through the probability of crack detection (POD) curve,

modeling the detection probability as a function of the size of the crack, P(Dla).

Information concerning detectable lengths of cracks in marine industry is still a -
little although several research are being conducted now. [2.1,2.2] But the information in
airframe industry has been available in the literature for some time. [2.3,2.4] It is
concluded from both marine industry and airframe industry that several factors will
influence the chances of detection, such as the capability and attitude of the inspector, the
geometry of the structure, the environment in which the inspection is performed, and the
location of orientation of the flaw as well as the size. It is also realized that no inspection
procedure can provide a hundred percent assurance that all cracks larger than some

prescribed, limited size will be detected.

The reset crack length after an inspection, ainsp which is the largest crack that can
pass undetected through the inspection system, must be specified in terms of a high i
confidence that a given percentage of all cracks larger than ain will be found. Generally it ‘
requires 90 percent probability of detection with 95 percent confidence level.

As we discussed early, the capability of an inspection procedure is thus defined in l
terms as the probability of detection (POD) for all cracks of a given length, and is ‘
evaluated as the proportion of cracks that would be detected by the procedure when ‘
applied by professional inspectors to a population of structural details in specified

environment. (Fig. 2.1)




Probability of Detection

0 4 8 12 16 20 24
Crack Growth (mm)

Fig 2.1 Example Application of Log Odds-Regression Analysis
As described previously, the detection probability for a given crack length involves
considerable statistical variability. The distribution of detection probabilities at a given
crack length is illustrated in Fig. 2.2. The curve connecting the average values of the
detection probabilities for all crack lengths is defined as the POD(a) function. Hence, the
POD(a) function is a function which passes through the mean of detection probabilities at

each crack length. Consequently, many individual cracks will have detection probabilities

below the POD(a) value.
M
POD(a)=J pfa(p)dp
0 /
2 . fa(p)
k=]
<
&
c
8
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8
|
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Fig 2.2 Probability Density Function of Crack Detection Proabilities at a Crack Length
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The information on POD functions is needed in the reliability analysis of structures

under scheduled inspection maintenance. It is also crucial for the determination of the
inspection interval. To establish the POD function from experimental test results, a

functional form should be assumed. The so-called log odds or log logistic model has been

investigated extensively.

POD(a) = {1+ exp[-%(%)]}" 2.1

\
in which POD(a) is the probability of detecting crack size a, and g and © are parameters. |

|
l
Let aos be the median crack detection capability, i.e., the crack length associated
with a 50% detection probability, POD(ac.s) = 0.5. Then, it follows from Eq. 2.1 that:
u = ln ao_s 2.2

in which € is the crack length below which a crack can not be detected by the inspection.
Again, o and P are constants, representing the bandwidth and central location of the POﬂ
function respectively. |

Another POD function, referred to the Weibull function, has also been used: l

POD(a)=0 a<e

- l—exp[—(-a'[;—e)“ ] a>e 23 [

As mentioned previously, the POD function is a unit step function at ainsp for aw

ideal inspection, i.e., |
POD(a) = 0 a< ainsp |

=1 a> ainsp 24 |

Such an ideal POD function can be obtained from exponential function by setting €

= ainsp, b ->0 and a ->°< '

In the computer code Prob-IMR, the Weibull function was used. ’




2.3 Basic Assumptions

The following assumption are made for the purpose of this study:

In each structural memeber there is only one hotspot where a crack can initiate
All structural memebers are inspected immediately after initiation of service and
at the time of each scheduled inspection. If a memeber is found not to be intact,
the following action is taken:

If a crack is detected in a member, that member is repaired and regains its initial
strength charcateristics

if a member is found to have failed, it is replaced by a new one

The entire inspection history of each member is considered to be known at the
current inspection

For fatigue crack initiation, the time to crack initiation (TTCI) denoted by t is
assumed to be a random variable with a density function following the Weibull
distribution

%-(—é)““-exp[.—%)“] 2.5

The uncertainty in the TTCI is introduced by the scale parameter f8. Hence, Eq.

f.(1p) =

2.5 indicates a Weibull density condition to a given value of

Fc(tIB)=1—exr>[—(%)"] 26

For fatigue propagation, fracture mechanics theory is used to determine the length
of a propagating crack under random loading. It's assumed that the crack grows

according to:




da
e C,(AK)*> =C,(Sevma)’ =ca 2.7

Integrating Eq. 2.7 from the initial crack length ao at the TTCI=tc up to the

current crack length a(t-tc) at time t, the following result is obtained:

function is conditional to a given value of d. The minimum detectable crack length is

a(t—t.lc)=agyexplc(t—t,)] 2.8

The uncertainty in fatigue crack propagation is introduced by parameter c. There

fore the crack Iength is conditional to a given value c.

The probability of detecting a fatigue crack at lengtha at time of inspection is
D(ald)=1-exp[~d(a—ag)] 29

The uncertainty is introduced by parameter d. Thus the probability dection

denoted by ao.

7.

If a crack is detected in a member at time of inspection, the crack length is
assumed to be accurately measured.
Failure of a member occurs when random stress exceeds the strength of the
member for the first time. There are two cases :
Failure before the crack initiation
The failure rate is constant depending on the random stress on the hotspot as
h(t) = h, =exp(r) 2.10
Failure after the crack initiation
The failure rate also depends on the crack size, on which the member's residual
strength depends.
h(t) = expq(t—t.)+r] 2.11
For the sake of simplicity, parameters r and q are assumed to be deterministic.
the reliability of a member before crack initiation during the service (Ti, t) is

denoted by U(t-Th) and given by

10




10.

Ut-T,) =exp{—}h(r)dt} = exp{—}hod‘t} 2.12
T, T,

or

U(t-T,)=exp{-(t—T,)eexp(r)} t<t, 2.13
where T is the time of service initiation for the member under consideration;
this implies that member was repaired or replaced at the time of 1-th inspection
The reliability of a member after crack initiation during the service period from
tc to t is denoted by V(t-tc) and given by

V-t )= exp{—}h(‘c)dt} = exp{— }expw[q(r -r1,)+rldT) 2.14

L3 L3

or
V(t-t. )= exp{—%[exp{q(t —t.)+r1}—exp{r}l} 2.15

The probability of detecting member failure at the time of inspection is equal to
one if such a failure exists

No stress redistribution is considered in the structure

2.4 Inspection Event

At the time of j-th inspection, Tj, of the certain member (with the knowledge that

this member was repaired or replaced immediately as a result of the 1-th inspection

performed at time Ti (1 < j-1) or this member initiate service at Ti denoting the beginning

of the service for the structure). The possible inspection events are:

1.

{A:j,]} = event that failure occurs during the timeinterval [Tj-1,T;}
This event consists of the two events

E1,j = event that the member fails before the crack initiation

11




E2,j = event that the member fails after the crack initiation

2. {Bi(aj) : j,1} = event that the member is found not to have failed at the time of

the j-th inspection Tj and a crack of length aj and aj+daj is detected in the member.

It's defined alternatively as Es,j

3. {B2:j,1} = event that the member is found not have failed at the time of the j-th
inspection Tj and no crack is detected in the member.
Eas,j = event that member does not fail in the time interval [Tj1,Tj] and no crack
exists in the member at T;
Es,j = event that member doesn't fail in the time interval [Tj1,T;) and a crack

Exists in the member which is not detected.

2.5 Event Probability

Event E1,j

Event Ei,j consists of two exclusive events, E‘,"j and l':‘.',"j which are defined as
1 1; = event that a crack initiates after T; and the member fails before crack
initiation between [T;1,Tj]. The probability Py is

P; = {1-F.(T; - T;IB)} « {(U(T; - Ty)} 2.16

where {1-Fc(T;-TilB} is the probability that crack will initiate after Tj and {U(Ti1-Th)-
U(T-Ti)} is the probability that the member will fail during [T;1,Ti]. This is the
conditional probability given that a crack initiate after Tj.
2 E‘l’ ; =event thata crack iniates at some time instant t in the time interval [Tj1,Tj}
and the member fails before crack initiation sometime during the interval [Ti,t}. The
probability Py; of event Ey; is given by:

PP, =f,(t-TIB)} ¢ (U(T,, - T,)-U(t-T))) 2.17

12




where fc(t-Tiip) dt denotes the probability that a crack will initiate during the time
interval [t,t+dt] and {U(T;1-Th)-U(t-Th)} denotes the probability that the member will fail
during the interval [Tj1,t].

The probability P1,j of the Evenet Eu,jis given by:
P =P +P)

={1-F,(T; - T, )} s {U(T,, -T)) - U(T, - T)))

T,
+ [£.(t-TIB) o (U(T,, - T,) - U(t—Ty))dt 2.18

T,

Event E2,;

Event Ez,; consists of two events, E3 ; and E'z"j defined as:

1 2j = event that a crack initiates at some time instant t in the time interval

[Ti,Tis1] (=1,....,j-2) and the crack is not detected during all the subsequent inspections
(from inspection at time Ti+1 up to inspection at time Tj1 inclusive) and the member fails

sometime during the time interval [T;1,Tj]

The probability P;; of event E3; is given by:

i~2Tos
P, =§ gfc(t-'ﬁhﬂ)'{U(t—T.)-[V(T.rl -t)=V(T;-1)]

i—1
O ﬁ{l—D(a(Tk —ticld)}]dt) 2.19

k=i+l

where fc(t-TilB) denotes the probability that a crack will initiate during the time interval

[t,t+dt], U(t-Th) denotes the probability that the member will survive during the time
interval [T51,Tj] and [V(T;_, —t) — V(T; - t)] denotes the nondetectable probability during

[Ti, Tis1] (i=1,2,.....-2).

13
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1
Event E3; }
|
E3j = event that the member is found not to have failed at the time of the j-th
inspection T; and a crack of length between aj and aj+daj is detected in the member. !
The, the probability p3daj of Event Es; is given by |

p3'jdaj = pa"’(a")da'l = fc(tc —’n’B)dtc ® U(tc "Tl) ® V(Tj - tc)

0[ ﬁ{l —3eD(a(T, —tlc)l d)}]o D(a jWcld) 2.20
k=1+1
where

1. a
t=T;=-In(=})
0

and d=1forT, >t

d=0for T, <t

da. |
dt, =1L ida = — |
da. (caj) ‘

J
and f,(t,—T,IB)dt, denotes the probability that a crack will initiate during the time

interval [t ,t. +dt_}, U(t, — T;) denotes the probability that a member will survive during
the time interval [T;,t.], V(T;—t.) denotes the probability that a member will survivei
during the time interval [t,T;], {I—&e¢D(a(T, ~t.lc)ld)}denotes the probability that a:|
crack will not be detected at inspection Tk and D(a jlc)ld) denotes the probability that a
crack will be detected at inspection T;. 1
\

Event E4,j |

Es,j = event that member does not fail and no crack existis in member at time of]

inspection Tij. ‘
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The probability Ps,j of event Ea,jis given by:
P,; ={1-F(T;-TIB)}e U(T;-T)) 2.21
where {1-Fc(T;-TilB) denotes the probability that a crack initiate after Tj and U(T;-Th)

denotes the probability that a member will survive the time interval [Ti,Tj).
Event Es,;j

Event Es,j is defined as follows:

Es,j=event that member does not fail, and a crack exists in the member which is
not detected at the time of inspection Tij

The probability Ps,j of event Es,j is given by:

=1 T
P;J = Jgi _!fc(t—TllB).{U([—TI)O[V(Tj —t)]

-1
of [1{1-D(@(T, -tic)d)}idt) 222

k=i+]
where fc(t-TiB)dt denotes the probability that a crack will initiate during time interval
[t,t+dt], U(t-Th) denotes the probability that a member will survive during time interval
[Tit], V(Tj-t) denotes the probability that a member will survive during time imcrva_l
[t,Tjland {1-D(a(Tk-tic)id)} denotes the probability that a crack will not detected at
inspection T«

Finally, the probabilities of events {A : j, 1}, {B1(aj) : j, 1} and {B2: j,1} are given

by
P{A:j,]}=P;+P,;

P{Bl (a, ):J,l} = P3'jdaj
P(B,:},1} = P, +Ps, 223

15




2.6 Reliability of Member after J-th Inspection
2.6.1 Member Repaired at J-th Inspection

It is assumed that members are repaired or replaced at the j-th inspection in case
of event {A:j,1} or {B1(aj):j,1}. The reliability R(t*,Repair) of a member is given by the
sum of the following two probabilities : a) the probability that a member will not fail
during the time interval [Tj, t*] and a crack will initiate after t* and b) the probability
that a crack will initiate during time interval [T;, t*], but the member will not fail during

the same time interval.

R(t*: Repain)={1-F,(t*-T;|B)} e U(t*-T;)

+tj‘ f.(t=T;IB)e U(t—T,)e V(t*-t)dt 2.24
T,

where {1-Fc(t*-TilB)} denotes the probability that a crack will initiate after t*, U{t*-T;}
denotes the probability that a member will survive time interval [Tjt*] denotes the
probability that a member will survive time interval [Tit*], fc(t-Tilp)dt denotes the
probability that a crack will initiate during time interval [t,t+dt],U(t-T;) denotes the
probability that a member will survive time interval [Tjt] and V(t*-t) denotes the

probability that a member will survive during time interval [t,t*]

16
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2.6.2 Members Not Repaired at j-th Inspection

It is known that members are not repaired at the j-th inspection in caes of event
{B2:j,1}

The reliability R(t*: No repair) of a member is given by the sum of following
three probabilities (written as Z) divided by (Ps,j+Ps,j) which represents the probability of

event {B2:j,1}:

a Probability that member will not fail during the time interval [Ti,t*] and crack
will initiate after t*

b Probability that a crack will initiate during time interval [Tj,t*], but member will
not fail during time interval [T1,t*]

c Probability that crack initiates at some time instant ¢ during time interval [Ti,Ti+1}
(i=l,...,j-1) and this crack si not detected during all subsequent inspections (from
inspection at time Ti+1 to inspection at time Tj inclusive) and member will not fail
during time interval [T,t*].

Hence,

Z
R(t*: No Repair) = —— 2.25
P4.j + PS.]

which:
Z={1-F,(t*-T,IB)}e U@*-T,)

+'ffc(t-T,|B)-U(t-T.)oV(t*—t)dt
T.

)
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i=l T, k=i+l

|

|

1 Ty j \
+34 [ £.(t-TIB) e U(t—T,)e V(t*-0)[ [1(1-8D(a(T, —dc)d)lde) |
! |

2.26 |
where {1-Fc(t*-TilB)} denotes the probability that a crack will initiate after t*. U(t*-Th)
denotes the probability that a member will survive time interval [Ta,t*], fC(t—TIlﬁ)d‘t
denotes the probability that a crack will initiate during time interval [t,t+dt], U(t-T?
denotes the probability that a member will survive time interval [Th,t], V(t*-t) denotes th(le
probability that a member will survive time interval [t,t*] and {1-D(a(T k-tic)id)} denotes
the probability that a crack will not detected at inspection Tk. Note that R(t*;No Repair)
indicates the probability of event A that a member survives time interval [Tj,t*] givcr}
\

event B that has not been replaced or repaired at the j-th inspection. Therel.

;P{AB}=P{A}P{BIA} where P{AB}=Z, P{A}=P4,j+Ps,j and P{BIA }=R(t*:No Repair) ‘l‘

2.7 Bayesian Analysis
2.7.1 Uncertain Parameters and Their Prior Density Function

In thsi study, B,d and c are considered as possible sources of the uncertainty.
Initially, a uniform distribution is assumed for the three uncertain parameters having the

following jointly uniform density function: |

f°(B.d,c) = P P 1_ I =) =constant  2.27 i
where 5
Buin <B <P |
dy, Sdsd ;
Coin S €S Cpax 2.28 |
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2.7.2 Likihood Function as Result of J-th Inspection

The likelihood function LFj for the entire structure as a result of the j-th

inspection is expressed as follows:

M
LF, =] LE™ 2.29

m=l
where LFj(m) is the likelihood function as a results of the j-th inspection for member m
and M is the total number of members in the structure.

For a typical member rﬁ, assume that replacement due to failure or repair due to a
detected crack occured at the time of inspections Ti,Tw,....,Tr where r indicates the
number of times the member has been repaired or replaced before the j-th inspection,
and:

h<lk<..<Ir<j 2.30

It is pointed out that Ii,l2,.....Ir are all known at the time of the j-th inspection
since the whole inspection history of each member is considered to be known. It is also
noted

Ir<j-1 2.31

Then, the likelihood function as a result of the j-th inspection for member is given by

LF, = P, {X:j,Ir) ¢ [T, {Y:1,. 1, ) 2.32
k=1

It is noted that 11,]2,...,Ir as well as r usually take certain values unique to each memeber.
In the above equation. X stands for either A or Bi(aj) or B2 depending on the
result of the j-th inspection for member m. Specifically, if at the time of the j-th

inspection, member m is found to have failed, then X stands for Bi(aj) and if member is
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found to have a crack of length between aj and aj+daj, then X stands for Bi(a;) and ‘if
member is found intact, then X stands for B2. Also, in the above equation, Y stands for
either A or Bi(ax) depending on the result of the k-th inspection for member A‘\
Specifically, if at the time of the k-th inspection, memebr m is found to have failed, the%n
Y stands for A and if member m is found to have a crack of length between alk and
ax+dai, then Y stands for Bi(ax). Finally, for the case where memeber m is found intacl:t
at all inspections prior to the j-th inspection, the product appearing in the above cquatioln
is equal to 1 and the above equation takes the form:
LE™ =P, (X:],1,) 2.33

\
Note that lo denotes the time of initiation of service for the structure. }
l

2.7.3 Poster Joint Density Function of Uncertain Parameters |

The poster joint density function of the three uncertain parameters immediately

|
after the j-th inspection is : i

}

234

I

LF,f°B.d,c)

£1(B,d,c) = 5——
T T(Numcrator)dﬁd(d)dc

Bran G Coon |

|

2.7.4 Reliability of Entire Structure at Time t* |
|
|

|
The reliability of the entire structure consisting of M members at time t* after the

j-th inspection is denoted by and is given by:

B" "cn
Ra@ =T T TR, (4B.d,c)ipd(d)dc 235 |
Brsn e Sin

where:

20




S M M
Ry (t¥B,c,d) ={ l"l R, (t*:Re pair)}{ ]'f R, (t*:NoRe pair)} 2.36
m=1

m=]
where M1 = number of members being repaired or replaced at the j-th inspection.
Mz=number of members found intact at the j-th inspection and Mi+M2=M in the
equation 2.36, Rm(t*: Repair) and Rm(t*: No Repair) are identical with the reliabilities
R(t*: Repair) and R(t*: No Repair) defined in egs 6.24 and 6.25 respectively. The

subscript m is used to indicate that these reliabilities are associated with member m.

2.7.5 Time Tj+1 for (j+1)-th Inspection

If the reliability of the entire structure is specified to be not less than a value

Rdesign, find t* such that
Ry (t*) =R i 2.37

Then the time Tj+1 of the (j+1)-th inspection is found as the minimum value of t* which

satisfies the above equation.

2.8 Tanker Structures

2.8.1 Introduction

The structures considered in the section 2.2-2.6 consists of structural components
subjected to the same level of stress intensity which is different from tanker structures. In
this chapter, the tanker structures are assumed to consist of several classes of
componenents to represent the stress intensity level in tankers: class Ai compoenents

subjected to the highest stress level Ai, class Ai-1 compoenents subjected to the stress
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level Ai-1 which is lower than Ai. Class Ai-2, Ai-3,..... »Al and so on where Ai>Ai-1>Ai-

2>....>Al

2.8.2 Bayesian Analysis

The reliability of the group of structural components subjected to stress intensity
level J at time t* after the j-th inspection is denoted by R, (t*) and is given by

_— Brum mm Crm
Rms)= [ [ | Ry, (t4B,.d,c)f’ B.d,c)dB,d(d)dc,  2.38

Byoin unin €y

where J=Ai,Ai-1,...A1 and

Ry, (14B;,d,c)) = {T‘i’ R, (t*Re pair)}{hﬁ’Rm, (t*:NoRepair)} 2.39
m=1

m=l

where Mi,j=number of memebrs of group J being replaced or repaired at the j-th
inspection, M2,; = number of members of group J found intact at the j-th inspection, and
Mu+M2z = Ms = number of members in group J. The posterior joint density function of

the three uncertain parameters of group J immediately after the j-th inspection is given
by:

LF; x 7 (B;.d,c;)

£)(B;,d,¢)) = g—g—i 2.40
T § (Numerator)dp,d(d)dc,
Bsmn Yo €
therefore, the structural reliability of the entire structure can be estiamted as:
Ry(t*)= [IRy, (1% 2.41
J=ii-,.)

Time Ty+1 of the (j+1)-th inspection can then be estiamted with the aid of Eq. 2.37
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2.9 Summary and Conclusion

This chapter presents the procedure for the probability-based inspection planning
5o as to maintain the reliability at a prespecified design level throughout the life. For this
purpose, a Bayesian approach is applied to treat the various certainties. The uncertainties
considered in this chapter is a) fatigue crack initiation time, b) fatigue crack propagation
rate and c) probability of crack detection. Assuming uniform prior density function for
the unknown parameters for these uncertainties, the inspection results are used in
accordance with Bayes Theorem to upgrade the prior density function. A general
mathematical formulation is given where a detailed record of the entire inspection
history, including repair and replacement records for each and every member, is

" available.
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Chapter 3

User's Manual

3.1 Terminal Input

Upon the startup of the Pro-IMR Program, the choice is requested whether or not

to perform the reliability. The following screen is shown:
Calculation of the reliability after all inspections ? Yes=1

The program only accept the integers 1 or 0. The loop will be quit by typing 0

which cause the program to terminate.

3.2 Main Module

This module has the purpose to specify the main data for the inspection

procedure. The user is requested to input the following data
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Number of time steps after each inspection

The program need information to divide the inspection interval into several time
step so that the reliability can be calculated at each step to form the reliability curve
during the interval.

Corresponding time step

For the reliability analysis during the inspection interval, this parameter need be

specified in order to determine the step number.

Number of members (Max=1000)

This is required to input the total number of the details (or hotspots) to perform

the reliability analysis. The maximum number should be less than 100.
Integration points (Max=11)
This is required for the integration. The maximum number for the code should be

less than 11. Meanwhile, It should be pointed out that this number should be odd |

number.
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Inspections (Max=15)

This is the total inspection numbers in the inspection history. The program can

only accept the integer number which is less than 15.
3.3 Uncertain Module

This module requires the input for the uncertain parameter b, c, e.
Increments in b,c,e, respectively (Max=7)

These three numbers should be odd numbers and less than seven. It's the
increments for the uncertain parameter b, ¢, ¢ under certain range. b is the uncertainty in
crack initiation time. ¢ is the uncertainty in crack propagation. e is the uncértainty in
probability of detecting a fatigue crack of length a at the time of inspection.

Member classes (Max=3)

The total inspected members can be divided in to certain groups with the same

stress level. This is the input for the number of stress levels. It should be pointed out that

the number which is larger than 3 may be out of the memory.

Minimum value of b for member class No. i

This requires the user to input the minimum value for the uncertain parameter b.
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Maximum value of b for member class No. i

This requires the user to input the maximum value for the uncertain parameter b

This two values can determine the uncertain range for parameter b.

Exponent in crack initiation distribution

The user is required to input the shape parameter for the initial crack distribution

which is modeled as Weibull distribution

Crack length at initiation

Here, the initial crack length is required to be as an input.

Minimum value of ¢ for member class No.i

This requires the user to input the minimum value for the uncertain parameter ¢
for member class No. i since the POD may be different for different groups of members.

|
|
|

Maximum value of ¢ for member class No. i

|

This requires the user to input the maximum value for the uncertain parameter ¢
for member class No. i since the POD may be different for different groups of members.
This two values can determine the uncertain range for parameter ¢ for member

class i..
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Exponent in crack initiation distribution

The user is required to input the shape parameter for the initial crack distribution
which is modeled as Weibull distribution
Minimum value of d for member class No. i

This requires the user to input the minimum value for the uncertain parameter ¢
for member class No. i since the crack growth parameters may be different for different
groups of members.

Maximum value of d for member class No. i

This requires the user to input the maximum value for the uncertain parameter d
for member class No. i since the crack growth parameters may be different for different
groups of members.

This two values can determine the uncertain range for parameter ¢ for member

class i..

Minimum crack length to be detected

This is the minimum crack length which can be detected during the inspections.
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Step size in crack length detection

This is crack increments in the crack detection da (see Chapter 2 for detail)
Crack length factor in member failure rate

This input specify the member's failure as a function as the crack length.
Member failure rate without corrosion and cracks

This input is the parameter for the failure rate without crack and corrosion.

Usually, it's determined by the experience to be around 0.9
Corraosion factor in member failure rate for two years period.

This specifies the corrosion effects for the failure rate.

3.4 Inspection Module
This module input the data about inspection history.
Time instant for inspection No.j

This requires the input for the inspection time at the inspection interval. For

example, inspection interval i is divided into 5 time steps. So the step 5 is the end of the
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inspection interval i. The next inspection i+1 is usually assumed to be performed around

5 so that we can assume that the time instant for inspection i+1 is 4.9.
Number of inspecteq members

The user need specify the total of the inspected members.
Number of Members found failed

The user need specify the number of the failed members which is found during

the inspection.
Number of Members with cracks..

It requires the number of the cracked members which is detected during

inspection as the input here.
Member numbers inspected

This is the process which number the members which is inspected in a certain

order. It requires an input array.

Members found failed

This is the process which number the members which is found to be failed during

the inspection in a certain order. It requires an input array.
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Members with cracks are detected

This is the process which number the members which is found to be cracked

during the inspection in a certain order. It requires an input array.
Crack length measured in member ng().

For each crack member ng(i), the specified crack length for this member is

required to be input here.

3.5 Summary and Conclusion

This chapter presents the user's manual for the computer program Pro-IMR. The

input data will be illustrated in the numerical example in next chapter.
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Chapter 4

Numerical Illustration

The numerical illustration was carried out to verify the validity and effectiveness
of Bayesian analysis to determine inspection intervals and uncertain parameters. The
example is from Reference 4.1 so that the program validity can be verified. It's assumed
that the structure have 100 hotspots (Mt=100). Of the total, 20 are subjected to stress

intensity level A, 30 to B and 50 to C.

The design life is 25 years and the desired minimum reliability level of the

structure throughout its service life is 0.8 (Rdesign = 0.8).

Two uncertain parametér § and ¢ are examined now. The true values of the
uncertain parameters as well as their assumed ranges are shown in Table 4.1, along with

the values of the deterministic parameters appearing in the problem.
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Item t Model
' Value
Design Life (years) I 25
Min Regquired Reliability Rdesign 0.8 |

Stress Intensity Level A B C
Stress S 0.95 0.8S
Stress Range Ac Ac Ac
Number of Structural Members 20 30 50
M=100
Parameters in PDF of TTCI 20 2.0 20

o 30 45 65

B(Years) True Value (20—40) (35-55) (55-75)
Assumed Range

Parameter of Crack Propagation 2.0 2.0 20

b | 0.6 0.486 0.384

C True Value \ (0.4-0.8)  (0.286-0.686) (0.184-0.584)
Assumed Range 10 (0.4) 10 (0.4) 10 (0.4)

Initial Crack Length a0 mm 0.01 0.01 0.01
(in) -15 -8.25 -9
Parameter in POD d 0.9 0.729 0.576
Parameter in Failure Rate r

- q

Table 4.1 Parameter Values of Numerical Example [Ref. 4.1]
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Before the updating analysis, the particular case where both uncertain parameters
(B and c) assume their true value is conducted. The inspection schedule is in Table 4.2

while the corresponding structural reliability for the entire structure is plotted in Fig 4.1.

Inspection No. Inspection Time

1 8.3
12.1
15.3

20.9
23.6

2
3
4 18.2
5
6

Table 4.2 Inspection Schedule for the True Value

The updating analysis is conducted later. The results are displayed in Table 4.3
which include the inspection schedule, number of failed members in each stress intensity
level and number and length of detected cracks in each stress intensity level. The
estimation of true P and c immediately after the sixth inspection is a_ccomplished
reasonable well for stress intensity level A. This is due to that 8 cracks were found during
the first six inspections. However, the same did not apply to the stress intensity levels B
and C since only 7 and 3 cracks were found respectively. The analysis results from Pro-
IMR is nearly the same as the results in Shinozuka's study. (Ref. 4.1). The inspection

schedule and reliability which is from the Pro-IMR analysis is plotted in Fig. 4.2.
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Inspection | Inspection No.of No. of Detected Crack Length
No. Time:T | Failed Detected Cracks (mm)
Members
1 8.2 0 A[1], B{1] { A[132],B[55]
2 11.6 0 Al2] W A[11,213]
3 14.2 0 Alll A[82]
4 16.6 0 B{3], C[1} B[160,168,70], C[178]
| 5 19.1 0 Al2},B[1] A[57,255},B[138]
| 6 215 Cll] @ A[2],B[2],C[2] A[132,98],B[63,365],C[131,165]
7 23.9 0 ; A[3], C[1] A[35,752.42].C[74]
Stress Intensity Level : A, B and C 1in =25.4 mm

(a); Failure after crack initiation
(b); Failure before crack initiation

Table 4.3 Inspection Schedule and Results from Pro-IMR

Inspection Schedule for True Values (Ref. 4.1)

oo I

061
051
04 1
g 0371

021
011t
0 b + 3 & —

0 5 10 15 20 25

Time

Fig 4.1 Inspection Schedule and Reliability for True B and c (Ref.4.1)
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The average number of inspections required to maintain the specified reliability

level for 25 years is equal to 6.8. This value should be compared with 6.0 which is the

number of inspections when the true values of B and ¢ are known.

Amqer=y

0.7 1
0.61
0.5¢
0.47
0371
0.271
0.1

Inpsection Schedule for Uncertain Parameters

] i ‘

0
0

5 10 15 20 25
Time

Fig 4.2 Inspection Schedule for Uncertain Parameter B and ¢
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Chapter 5

Conclusion

A general computer code for the probability-based inspection planning has been
developed in this project. This report documents the technical background and user's
manual for the code. The numerical example is presented to compare with the previous
results. It has been shown that the proposed code is more efficient than the previous

studies since there is no simulation there.
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