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Abstract 
 
This paper contributes to literature by showing how travellers that make normatively 
rational choices exhibit inertia during a series of risky choices. Our analyses complement 
other studies that conceive inertia as the result of boundedly rational or even non-deliberate, 
habitual decision-making. We start by presenting a model of risky travel choice based on 
Bayesian Expected Utility maximization premises. We show how inertia emerges due to a 
learning-based lock-in effect: travellers learn about risky attributes such as travel times and 
costs by observing the performance of a chosen alternative. Given risk aversion this implies 
that repeatedly choosing the same alternative from an initial set of equally risky alternatives 
is a rewarding strategy. We then extend our model to capture forward-looking behaviour 
and the availability of travel information: we show how inertia grows somewhat slower 
among forward-looking travellers, and how the provision of multimodal pre-trip travel 
information may somewhat reduce inertia growth, to the extent that it is reliable. 
Combining our findings with the large body of literature on inertia emerging from 
boundedly rational and habitual behavior, we argue that expectations regarding the 
potential of travel demand measures to counter inertia should be modest at best. 
 
Keywords:  Inertia, Bayesian learning, risk aversion, lock-in effects, mode choice. 
 
 
 
1. Introduction 
 
For many years, there has been a considerable interest among travel behavior researchers in 
understanding inertia (see Gärling & Axhausen (2003) for a relatively recent overview). As 
a result, many studies have illuminated the role of inertia in the context of route-choices 
(e.g. Mahmassani & Chang, 1987; Jou et al., 2005; Srinivasan & Mahmassani, 2000; 
Bogers et al., 2005) and especially mode-choices (e.g. Aarts et al., 1997; Aarts & 
Dijksterhuis, 2000; Cantillo et al., 2007; Eriksson et al., 2008; Gardner, 2009). This amount 
of effort put into understanding traveler inertia reflects transportation policy-makers’ 
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ambitions to change travel behavior away from established patterns with an aim to increase 
the efficiency and sustainability of transport network usage (e.g. Ministry of Transport, 
Public Works and Water Management, 2002; Department of Transport, 2004; Commission 
of the European Communities, 2007). Such behavioral adaptation is by definition difficult 
to achieve when travelers are inert (e.g. Gärling et al., 2002; Chorus et al., 2006a). 

Predominantly, the travel behavior research community frames inertia as resulting 
from bounded rationality and/or habitual behavior: exploring and testing new travel options 
consumes time, effort and attention. Since time, effort and attention are scarce resources 
(Simon, 1978; Shugan, 1980; Payne et al., 1993), most inertia-models postulate that it is a 
good decision-strategy to stick with an alternative that one knows to perform reasonably 
well, whereas one could also try to find the best performing option for each new trip.  
 In this paper we show that the emergence and growth of inertia can be explained 
without making these assumptions of bounded rationality or effort-accuracy trade-offs: we 
show that even travelers that (behave as if they) consider alternative travel options for each 
trip, maximize Expected Utility and learn from past observations in a strictly Bayesian 
manner, exhibit inertia, as long as i) they dislike risk and ii) part of the quality of travel 
alternatives is only revealed upon usage. In other words: even travelers that live up to high 
standards of ‘unbounded’ rationality2 are shown to prefer sticking to an alternative that is 
chosen before, purely because it has been chosen before. The intuition behind this result 
can be put as follows: travelers learn about a travel mode’s quality by observing the 
performance of a chosen alternative (see, for example, Chorus et al. (2007) for an empirical 
underpinning of this intuitive claim). Given risk aversion this implies that repeatedly 
choosing the same alternative from an initial set of equally risky alternatives is a rewarding 
strategy. We formally derive this learning-based cognitive lock-in effect within the context 
of Bayesian, Expected Utility maximizing travel-choices. We also show that inertia grows 
faster when risk and risk aversion increases.  

In addition, we illustrate how forward-looking travelers are somewhat less inclined 
to develop inertia than those who are only focused on the current trip. The intuition behind 
this finding can be put as follows: learning by means of observation is most effective when 
the level of knowledge about an alternative is relatively low. As a result, a forward looking 
traveler knows that exploring relatively unknown alternatives (being the opposite of inertia) 
pays off as it may lead to substantial gains in utility (note that a similar result was obtained 
by Arentze & Timmermans (2005) in the context of destination choices). However, we also 
show that the presence of even small levels of risk aversion will strongly diminish the 
negative effect of forward-looking behavior on inertia strength. We proceed by illustrating 
how the costless provision of multimodal travel information may slow down inertia 
emergence to the extent that the information is considered reliable: when reliable 
information about all alternatives is available, the role of making observations for the sake 
of learning becomes irrelevant, and the learning-based cognitive lock-in effect described 
above vanishes. 

                                                 
2 We define a choice process as unboundedly rational, or from here on, rational, when it involves i) the 
consideration of all alternatives available in the choice set, ii) Expected Utility maximization-based evaluation 
and iii) Bayesian learning. A more detailed discussion of what constitutes rationality (a hotly debated topic 
throughout the social sciences) is outside the scope of this paper, and can be found in, for example, March 
(1988). 
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Finally, as a case study, we show how our model predicts that the forced temporary 
abandonment of a current travel mode may help break inertia to the extent that a) the  
quality of the current alternative is uncertain in the eyes of the traveler, and b) an 
alternative travel mode performs satisfactory. This result is fully in line with empirical 
literature. We will argue that this suggests that our model of rational inertia can help 
explain empirically observed inertia patterns that have predominantly been interpreted in 
light of boundedly rational or habitual behavior.  

The paper’s scope is determined as follows: first, in line with most inertia-related 
research and policy-making, we focus on a travel mode choice between a car and a train 
option. However, obtained results are informative for other, multinomial, contexts as well – 
for example involving travelers’ departure time- and route-choices. Second, we assume that 
travelers hold subjective probabilities with respect to the performance, or quality, of an 
alternative. Quality is conceived as a composite function of tastes, and of different quality-
aspects, some of which are ‘tangible’ (e.g. travel times, costs) whereas others are less 
tangible (e.g. scenery, crowdedness in a train). By making observations, the traveler gets an 
increasingly good idea of how much he likes an alternative. Specifically, we consider the 
situation where a traveler faces a trip towards a new destination for the first time, so that 
uncertainty about the quality of travel alternatives is due to a lack of experience with the 
alternatives, rather than being due to day-to day variability. Third, as discussed above, we 
focus on rational behavior. This does not imply that we believe that boundedly rational or 
habitual mechanisms are less important for the understanding of traveler inertia. The 
motivation underlying our focus is that we wish to contribute to the abundant body of 
literature relating to inertia by adopting a different, more normative perspective. As will be 
seen further below, our findings provide additional support for the general result obtained 
in most of the studies that adopt a boundedly rational or habitual perspective: inertia is 
difficult to avoid, and difficult to break.  

The remainder of this paper is organized as follows: section 2 presents a model of 
Bayesian Expected Utility-maximizing travel mode-choice behavior, and formally shows 
how inertia emerges when travelers dislike risk. Section 3 extends this model to incorporate 
forward-looking behavior, and shows how the balance between forward-looking and risk 
aversion determines the level of inertia. In section 4, we discuss how the presence of 
multimodal travel information impacts inertia strength, depending on the anticipated 
reliability of the information. Section 5 presents a case study concerning the impact of a 
forced highway closure on car inertia. Section 6 presents conclusions, reflections, and 
possible avenues for further research. 

 
 

2. Inertia among Bayesian, Expected Utility-maximizing travelers 
 
2.1. A model of Bayesian, Expected Utility-maximizing travel mode-choice behavior 
Consider a traveler that has changed jobs and faces a choice between two travel modes – 
car and train – for his daily commute towards his new job location. The quality x of each 
mode – being a function of tastes and attributes that are relevant to the traveler – is 
anticipated by the traveler as a risky variable given the absence of experience with both 
modes in the context of the changed commute destination. Assume that car and train quality 
are both anticipated in terms of a normal distribution whose mean ( x̂ ) and variance (VAR ) 
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represent expected quality and quality uncertainty: ( )t
carf x  = ( )ˆ ,t t

car carN x VAR , 

=( )t
trainf x ( )ˆ ,t

train trainN x VARt , where t denotes trip number (or day number, when we 

assume that each day a trip is made). Note that although many other distributions may be 
used here, the normal distribution is convenient when specifying a Bayesian learning 
process. In line with previous studies in transportation (Allen et al., 1985; Harker & Hong, 
1994; Lam & Small, 2001; Liu et al., 2007), and to keep the tractability of subsequent 
derivations at a reasonable level, we assume that the traveler evaluates travel modes based 
on a mean-variance linearization3 of Expected Utility (EU). In the context of non-forward-
looking behavior, EU is equated with instantaneous Expected Utility ( : with the term 
instantaneous, we mean to reflect that the utility of a particular travel mode is only based on 
its anticipated performance during the current trip): 

EU

 
ˆt t

x car VAR car
t

carEU x VAβ β= ⋅ − ⋅ R ˆt t
train x train VAR

t
trainEU xβ β= ⋅ − ⋅VAR,     (1). 

 
Here, xβ  and VARβ  are nonnegative, the latter reflecting the level of risk aversion4. In line 
with empirical evidence (e.g. Hey, 1995) and theoretical arguments (e.g. Manski, 1977), we 
assume that the traveler’s choice behavior is – to some extent – unstable. In other words, 
the traveler possibly chooses differently in two consecutive choice situations, even when 
they are exactly the same in terms of levels of quality (uncertainty) associated with the two 
modes. We capture this behavioral volatility by adding to the travel modes’ utility iid error 
terms t

carε  and t
trainε , drawn from an Extreme Value Type I distribution with variance 2 6π . 

This specification results in the standard binary logit formulation of probabilities 
 and , where ( )rtP y c= a ( )tP y train= ty  denotes the option chosen during trip t.  

Upon choosing one of the travel modes (e.g. the car mode) and executing the trip, 
the traveler makes an observation ( t

carx ) of the mode’s quality. The traveler knows that this 
observation will help him provide a more accurate assessment of the mode’s quality. 
However, the traveler also believes that he is unable to make a perfectly reliable assessment 
of an alternative’s quality by making only one observation (remember that quality is 
defined as a function of the traveler’s tastes and a number of tangible and less tangible 
quality-aspects). Formally, assume that a quality observation is a noisy signal of actual 

quality car  in the sense that ( )t t
car carf x x = ( )obsx ,carN x VAR . That is, the traveler believes 

that, if the actual quality-level equals carx , observed quality during trip t is normally 
distributed with mean equaling carx  (in other words: he believes observations provide 

                                                 
3 Note that in the context of normally distributed quality-levels, and assuming that the function mapping 
quality to utility is exponential (implying Constant Absolute Risk Aversion), Expected Utility is in fact given 
by a mean-variance formulation (de Palma and Picard, 2006a, b). 
4 As a referee pointed out, it has been shown that risk aversion may be affected by learning processes (e.g. 
Erev & Barron, 2005). However, in this paper we assume that risk aversion parameters are static over time, 
and have an effect on learning dynamics. The study of the inverse relationship is considered an interesting 
avenue for further research. 
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unbias

etween the car and the train mode, hence the absence 

er m

ed measurements of actual quality), and variance equaling obsVAR . The magnitude of 

obsVAR  reflects the extent to which the traveler believes that an observation of quality 
during the execution of an alternative is an unreliable measurement of actual quality. In 
other words: higher levels of obsVAR  reflect that the traveler distrusts his own observations 
and believes that it takes time to ‘get to know’ the alternative and appreciate its quality. We 
assume that VAR  does not difobs

of a mode-specific superscript.  
Given these assumptions, the travelers updated perception of quality of the car 

mode, aft ade trip t using the car mode and having observed a quality level t
car

fer b

having x , 

denoted ( )1t t
car carf x x+ , is given by applying Bayes’ Theorem5 (e.g. Edwards et al., 1963):  

( ) (1 1ˆ ,t t t
car carx N x+ += )1t

carVAR + , where: carx

 

f

 

( ) ( )
( ) ( )

1 1

1 1

ˆt t t
car car obs car

t

VAR x VAR x

VAR VAR

− −

− −

⋅ + ⋅

+
 and 1

t
t car1ˆ t

carx + = obs

obsVAR

per

car obs

car t
car

VAR VARVAR
VAR

+ ⋅
=

+
  (2). 

ceptions of quality are 
ved quality). 

tion (in the remainder of this paper, unless stated otherwise, we 
onsider car-inertia): 

 

                                                

 
In words: updated quality perceptions are a weighted average of prior beliefs and observed 
quality. Weights reflect perceived reliability of prior beliefs and observations, respectively: 

hen the traveler distrusts (trusts) his own observations, updated w
relatively close to initially anticipated quality (obser
 
2.2. Inertia: underlying behavioral mechanisms 
Before analyzing the behavioral mechanisms underlying inertia among rational travelers, it 
is of much importance to clearly define what we mean by the term itself. Although it is 
tempting to define inertia in terms of a decision-maker repeatedly choosing the same 
alternative, the reason for this repetition may in fact be that the anticipated (expected) 
quality of an alternative is much higher than that of its competitors. As a result, defining 
inertia in terms of repetition alone is not very meaningful. Intuitively, we want to define 
inertia in a way that acknowledges that the mere action of choosing a particular alternative 
makes it more probable that the alternative is chosen again on the next day. In the context 
of the model presented above we can formalize this intuition as follows: a traveler exhibits 
inertia when the probability of choosing car over train during day t+1 is higher than the 
same probability during day t, under the condition that a) car is chosen during trip t and b) 
the level of car quality that was observed during the trip matches the expected level of 
quality. Inertia strength is defined in terms of the difference between these two choice 
robabilities. In notap

c

 
5 Note that since the early 1990s, Bayes’ Theorem has been used extensively to model how travelers learn 
from making observations (e.g. Kaysi, 1991; Jha et al., 1998 ; Chen & Mahmassani, 2004; Sun et al., 2005, 
Arentze & Timmermans, 2005; Chancelier et al., 2007). 
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Definition 1a: A traveler exhibits inertia when ( )1 ˆ,t t t
car carP y car y car x x+ = = = t

)
 > 

 or, in expected utility terms, when ( tP y car= ( )1 ˆ,t t t t
car car carEU y car x x+ = =  –

( )1 ˆ,t t t t
train car carEU y car x x+ = =  > . t t

car trainEU EU⎡ ⎤−⎣ ⎦
 
Definition 1b: Inertia strength equals ( )1 ˆ,t t t t ( )tP y car=car carP y car y car x x+ = = = – . 

Alternatively, inertia strength, defined in terms of expected utilities, equals: 

( ) ( )1 1ˆ ˆ, ,t t t t t t t t
car car car train car carEU y car x x EU y car x x+ +⎡ ⎤= = − = =⎣ ⎦  – t t

car traiEU EU n⎡ ⎤−⎣ ⎦ . 

 
Note that by providing these definitions we contribute to the literature on traveler inertia, 
where inertia is mostly defined rather loosely in terms of repetitive behavior, or lack of 
willingness to switch to alternative routes and modes. Having defined inertia (strength), we 
can now explore when, to what extent and why the rational traveler presented in section 2.1 
exhibits inertia. We do so by deriving two results. 
 
Result 1: Under the condition that VARβ ,  and  are all strictly positive, the 
rational traveler presented in section 2.1 exhibits inertia. Inertia strength – defined in terms 
of expected utilities – equals 

t
carVAR obsVAR

( ) ( )2t t
VAR carVARβ ⋅ +carVAR obsVAR . 

 
See the Appendix for a derivation of this result. The intuition behind the first part of this 
result is as stated in the introduction: the rational traveler learns about risky quality by 
observing the quality of a chosen travel mode. Given risk aversion this implies that 
choosing a travel mode, and observing that quality is as expected, leads to less quality 
uncertainty (and: higher utility) during the next trip: inertia arises as a cognitive lock-in 
effect. The intuition behind the second part of result 1 is as follows: it is obvious that a 
higher degree of risk aversion ( VARβ ) and increased uncertainty ( ) will both lead to 
more pronounced lock-in effect. The effect of observation unreliability ( ) on inertia 
strength can be explained as follows: remember that the key driver of inertia among rational 
travelers is the opportunity to learn from observations (in combination with risk aversion). 
Now, higher values of  imply that observed quality during trip t is perceived by the 
traveler as a relatively unreliable signal of actual quality, which in turn implies that less 
weight is attached to these observations in the traveler’s Bayesian learning process. As a 
result, to the extent that the traveler perceives observations to be unreliable signals, there is 
little opportunity for learning and the cognitive lock-in effect causing inertia is suppressed. 

t
carVAR

obsVAR

obsVAR

 
Result 2: Under the condition a) that VARβ ,  and  are all strictly positive, and 
b) that the observed level of quality is Δ units lower than expected, a choice for the car 
mode during day t implies an increased choice probability for the car mode during day t+1 

as long as 

t
carVAR obsVAR

x
VAR t

carVAR
ββ ⋅Δ

> .  
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See the Appendix for a derivation of this result. The intuition behind it is as follows: even 
when quality is lower than expected, the fact that quality uncertainty is reduced by learning 
from observations may imply a net gain in utility. Higher levels of initial uncertainty and of 
risk aversion imply higher gains. However, when the disappointment in terms of quality – 
or the traveler’s marginal valuation of quality – are too large, the net gain becomes a net 
loss and the probability that the traveler chooses the car-mode is lower during trip t+1 than 
it was during trip t.  
 
 
3. Inertia among forward-looking travelers 
 
3.1.  A model of (myopic) forward-looking travel mode-choice behavior 
Until now, we have assumed that the expected utility (EU) associated with choosing a 
travel mode-alternative is a function of anticipated mean and variance during the current 
trip t alone (hence: instantaneous Expected Utility). We now present a formulation of 
forward-looking travel choice-behavior that acknowledges that (the traveler anticipates 
that) choosing a particular mode during the current trip has consequences (because of 
anticipated learning dynamics) for the anticipated instantaneous Expected Utility that may 
be derived from the next trip. In short: we assume that a traveler, when planning trip t, 
knows that the observation of the chosen mode’s quality during that trip may help him 
derive more utility from his mode choice during trip t+1. We choose to adopt this myopic 
(i.e. focused on the next day only) perspective instead of the perspective of a traveler that is 
infinitely forward-looking to keep the tractability of the model at a reasonable level. Note 
that the myopically forward-looking perspective is often used in travel behavior research 
(e.g. Arentze & Timmermans, 2005; Chorus et al., 2006b) as well as in choice models used 
in adjacent fields (e.g. Gabaix et al., 2006; Chorus & Timmermans, 2008), and can be 
interpreted as an extreme case of hyperbolic discounting (Laibson, 1997) as well. 
 The myopically forward-looking traveler maximizes (linearized) Expected Utility, 
where a travel mode’s Expected Utility is the sum of the instantaneous Expected Utility 
defined in (1), and the product of a forward-looking parameter γ  and the anticipated 
instantaneous Expected Utility associated with the next trip (which in turn is conditional on 
having chosen the considered travel mode during the current trip): 
 

( )

( )

1

1

t t t t
car car

t t t t
train train

EU EU EU y car

EU EU EU y train

γ

γ

+

+

= + ⋅ =

= + ⋅ =

         (3). 

 
When γ  approaches zero, the traveler is only concerned with the current trip, and (3) 
reduces to (1). When γ  approaches one, the traveler is concerned with making a good 
choice during the next trip as much as he is concerned with the current trip’s utility. The 
anticipated instantaneous Expected Utility associated with the next trip, conditional on 
having chosen a particular travel mode during the current trip, is denoted as: 
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( ) ( ){ } ( )

( ) ( ){ } ( )

1 1

1 1

max ,

max ,

t t t t t t t
car car train car car

t
car

t t t t t t t
car train train train train

t
train

EU y car EU x EU f x dx
x

EU y train EU EU x f x dx
x

+ +

+ +

⎡ ⎤= = ⋅
⎣ ⎦

⎡ ⎤= = ⋅
⎣ ⎦

∫

∫

  (4). 

 
Here, ( )1 1ˆt t t t

car car x car VAR carEU x x VARβ β+ += ⋅ − ⋅ 1+  and ( )1 1ˆt t t t
train train x train VAR trainEU x x VARβ β 1+ + += ⋅ − ⋅ , 

where updated perceptions of quality (uncertainty) are as defined in (2). In words, the 
traveler knows that when choosing a travel mode (e.g. the car mode) during trip t, he will 
make a noisy observation of its quality t

carx  – of course, he does not know what quality 

level he will observe, hence the integration over ( )t
carf x . He also knows that he will use 

this noisy observation to update his beliefs about car quality, and that he will base his 
choice between the car and train mode during the next trip on these updated beliefs. The 
traveler’s beliefs regarding what level of quality he will observe during trip t equal his 
initial beliefs about car quality, that is: ( ) ( )t t

carcarf x f= x .  
Finally, note that the right-hand-side of (4) implies that it is assumed that a travel 

mode’s anticipated instantaneous Expected Utility during trip t+1, conditional on choosing 
the other mode during day t, equals the instantaneous Expected Utility during trip t. This 
assumption follows from the notion that travelers are assumed to only learn about a mode’s 
quality by means of direct observation6. Choice probabilities are given by using the binary 
logit model presented in section 2.1. Upon choosing one of the travel modes, a noisy 
observation is made of the quality of the chosen mode, leading to updated beliefs regarding 
the chosen mode’s quality. 
 
3.2. Inertia among myopically forward-looking travelers (simulation) 
Because the integrals over ( t

car )f x  and ( )t
trainf x  do not have a closed form solution we 

discuss inertia among forward-looking travelers by means of a numerical simulation. 
Importantly, because shown numerical simulation outcomes partly depend on arbitrarily 
chosen values for relevant variables, we will be as careful and conservative as possible 
when interpreting obtained simulation results. Assume the following settings: 

, that is: expected quality of both the car and the train mode, as anticipated 
when planning trip t, equals zero. Furthermore, 
ˆ ˆ 0t t

car trainx x= =

5t t
car trainVAR VAR= = , implying that during 

trip t, both car and train quality are anticipated to fall, with a probability of 67% (95%), 
within the interval [-5,5] ( [-10,10] ). Quality is evaluated in terms of one util per unit 
( xβ =1). Finally, obsVAR = 2.5. Given these settings, the following result is obtained (note 
that a series of sensitivity analyses show that the result is robust with respect to varying one 
or more of the above parameter settings): 
 

                                                 
6 The next section shows how this assumption may be relaxed to acknowledge the role of secondary learning 
from travel information. 
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Result 3a: For small magnitudes of VARβ , higher values of γ  imply lower levels of inertia 
strength, potentially leading to negative inertia.  
 
Result 3b: For higher values of VARβ , inertia strength increases, and the effect of γ  on 
inertia vanishes. 
 
Figure 1 illustrates these results ( VARβ  is varied from 0 to 1 (this latter extreme being the 
value of xβ ), while simultaneously γ  is also varied from 0 to 1). The dependent variable, 
inertia strength, is measured (in line with definition 1) in terms of the probability that car is 
chosen during trip t+1, given a choice for the car during trip t and an associated observation 
of car quality that exactly matches expectations, minus the probability of choosing the car 
during trip t (which equals 50%). Integration over the density functions that represent what 
observations the traveler expects to make when choosing a particular mode is performed by 
means of Monte Carlo simulation (100 pseudo-random draws are made from each density 
function – sensitivity analysis showed that this number is sufficiently high). Software 
package GAUSS 7.0 is used for performing the simulation. 

It is immediately seen that, as stated in result 3, the negative effect of γ  on inertia 
strength only becomes noticeable when the degree of risk aversion approaches zero. For 
these low levels of risk aversion, positive values of γ  may lead to negative levels of inertia 
strength (a choice for the car mode during trip t leads to a reduction in probability of 
choosing the car mode again during the next trip). However, when risk aversion grows, the 
negative effect of γ  on inertia strength rapidly decreases.  

The intuition behind these results is as follows: in the absence of (substantial levels 
of) risk aversion, the traveler is predominantly concerned with choosing the mode with 
highest expected quality. Given the Bayesian learning process defined in section 2.1, the 
observation of car quality during trip t results in an improved estimate of expected car 
quality (although expected quality itself is unchanged, given that ˆt

car car
tx x= ). As a result, 

when planning trip t+1, the traveler is still indifferent between the two modes in terms of 
expected quality, but he does face a choice between on the one hand a further decrease in 
car quality uncertainty (implied by a choice for the car mode), and on the other hand a 
decrease in train quality uncertainty (implied by a choice for the train mode). Intuition, as 
well as Bayes’ Theorem, state that the latter decrease in uncertainty will be larger than the 
former, because a second observation of an uncertain phenomenon provides less 
information than the first observation. As a result, when planning trip t+1, a traveler that 
has chosen the car mode during trip t knows that he should choose the train mode during 
trip t+1 if he wants to be as sure as possible that he will make the right choice, in terms of 
maximizing expected quality, during trip t+2.  

In the presence of substantial levels of risk aversion, the argumentation changes. 
First, as was shown in section 2, higher levels of risk aversion lead to higher levels of 
inertia strength due to the learning-based cognitive lock-in effect. Second, the intuition 
behind the result that when risk aversion is non-negligible the effect of γ  on inertia 
strength rapidly approaches zero, is as follows: a risk averse traveler, having chosen a 
particular travel mode during trip t, has developed a preference for this mode as a result of 
the learning-based cognitive lock-in effect. When planning trip t+1, the traveler anticipates 
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(to the extent that he is forward-looking) that a choice for the other mode will bring the 
uncertainty level of that mode to the same level as that of the mode chosen during trip t. 
However, he also knows that he is able to further decrease the uncertainty associated with 
the mode chosen during trip t, by again choosing this mode during trip t+1. To the extent 
that risk aversion is present, this additional decrease in uncertainty counterbalances the 
potential gains in terms of getting a better estimate of expected quality, resulting from 
choosing a different mode during trip t+1. As a result, in the presence of risk aversion, 
increasingly forward looking behavior does not lead to lower inertia strength. 

 
Figure 1: Inertia among forward looking travelers 

 
Note that this interplay between the presence of forward-looking behavior and the presence 
of risk aversion can also be interpreted in terms of the combination of two competing 
perspectives on the value of information (the information resulting from making an 
observation (primary learning)). One perspective postulates that the value of information 
lies in its potential to help make better choices in future choice situations: information value 
being conceptualized as the difference between the anticipated expected utility of future 
choice situations with and without having received the information. A different perspective 
postulates that information value lies in its potential to reduce risk: information value is 
then conceptualized, in the context of our mode-choice example, as the difference between 
the expected utility associated with risky quality and the utility associated with expected 
quality. The former perspective implies that (anticipated) learning from observations leads 
to variety seeking, while the latter perspective implies that learning from observations leads 
to inertia. When combined, as is the case in this section, it is their mutual interplay that 
determines whether or not inertia prevails. 
 
 
4. Inertia in the presence of multimodal travel information 
 
Until here, we have assumed that travel choices are made in the absence of information. 
Clearly, broadening this assumption towards acknowledging the presence of information 
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would lead to a better correspondence with most actual choice situations faced by travelers 
nowadays. Specifically, recent years have seen a great increase in personalized multi-modal 
information, referring to multiple quality-related attributes such as travel times and costs by 
car, and travel times, waiting times, costs and seat availability in Public Transport (e.g. 
Kenyon & Lyons, 2003; Chorus et al., In Press). In this section, we study how the presence 
of pre-trip personalized multimodal information about travel mode-quality impacts inertia 
emergence. 
 
4.1. A model of travel choice behavior in the presence of multimodal travel information 
Assume, without loss of generality, that pre-trip information becomes available (or: noticed 
by the traveler) after the traveler has made the first trip t towards his new working location. 
Assume that he has chosen to use the car mode for this first trip. When planning trip t+1,  
the traveler receives multimodal quality information in the form of messages 1t

carx +  and 1t
trainx + . 

As a result, his beliefs concerning the quality of both the car and the train mode (the former 
of these already updated once as a result of observed car quality during trip t) are updated.  

Assume that the traveler believes that the information provider is unable to 
faultlessly assess quality (e.g. because the information provider is only partially able to 
correctly assess the traveler’s tastes). Specifically, we postulate that 

( )1t
car carf x x+ = ( ,car IN x VAR )  and that ( )1t

train trainf x x+ = ( ),train IN x VAR ,  being a 

measure of anticipated information unreliability. This formulation implies that information 
is perceived to be unbiased (i.e.: the expected quality message equals expected quality). 
Note that we assume that there are no differences between car and train information in 
terms of anticipated unreliability. As a result, reception of information leads to the 

following updates in quality anticipations: 

IVAR

( ) ( )1 1 1
cVAR+ 1ˆ, ,t t t t t

car car car car arf x x x N x+ + +=  and 

( )1t t
train trainf x x+  = ( )1ˆ ,t

train trainN x VAR+ 1t+ , where: 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 11 1 1 1
1 1

1 1 11

1 1 1
1 1

1 1
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ˆ
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− − +
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⋅ + ⋅ ⋅
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I

t
train I

R
VAR VAR+

  (5). 

 
Here, 1ˆ t

carx +  and 1t
carVAR +  are as defined in (2). Note the difference in superscripts between the 

car and train-mode: for the car-mode, the updated quality perceptions are a combination of 
the received message and perceived quality after having chosen the car mode during trip t 
(which itself is a combination of initial anticipations and observed quality). For the train 
mode, the updated quality perception is simply a combination of the received message and 
initial quality anticipations.  
 For a non-forward looking traveler, the story ends here. However, to the extent that 
the traveler is concerned – when planning trip t – with the instantaneous utility to be 
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derived from trip t+1, the presence of information has a second order effect: the traveler, 
when planning trip t, anticipates that he will receive travel information again before trip t+1 
and that this information will lead him to once again update his perceptions before planning 
trip t+1. Of course, he does not know beforehand what messages he will receive. However, 
he does know that there is a formal relationship between on the one hand the probability of 
receiving particular messages 1t

carx +  and 1t
trainx +  when planning trip t+1 and on the other hand 

his anticipation of car and train quality after having made trip t, in combination with his 
anticipation of information reliability.  

This relationship can be illustrated as follows: take for example the situation where 
quality equates travel time. Given a lack of experience, the traveler is uncertain about the 
travel time for a given trip, but he thinks it will probably be somewhere between 50 and 75 
minutes. When acquiring travel time information, and given that he believes the 
information to be very reliable, the traveler will attach a very low probability to the 
occurrence of a message saying that the actual travel time is, say, 10 minutes or 280 
minutes, but he will attach a far higher probability to the occurrence of messages from the 
50-75 minutes interval. On the other hand, when the traveler believes that the information is 
very unreliable, he will indeed anticipate the reception of messages that saying that the 
travel time is (much) lower than 50 minutes, or (much) higher than 75 minutes. 

As a result of this relationship, the traveler’s anticipations of what message he might 
receive when planning trip t+1 differ between the two modes, since his anticipation of 
messages is conditional on the anticipated observation to be made during trip t. In notation, 
the traveler knows that, should he for example choose the car mode during trip t and make 
an observation t

carx , his anticipations of what messages 1t
carx +  and 1t

trainx +  he will receive when 
planning trip t+1 are:  
 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

1

1 1 

t t t t t t t
car car car car car car car

txcar

t t t t t t
train car train train train train

txtrain

1f x x f x x f x x dx

f x x f x x f x dx

+ + + +

+

+ +

⎡ ⎤= ⋅⎣ ⎦

⎡ ⎤= ⋅⎣ ⎦

∫

∫

+

     (6). 

 
Here, ( 1t t

car car )f x x+  is as presented in (2). Furthermore, in line with the argument presented 

right before equation (5), ( )1 1t t
car carf x x+ +  = ( )1,t

car IN x VAR+  and ( )1t t
train trainf x x+  = 

( ,t
train IN x VAR ) . Finally, note that ( )1t t

car trainf x x+  and ( )1t t
train trainf x x+  are derived in the 

same fashion as ( )1t t
car carf x x+  and ( )1t t

train carf x x+ .  

Given these anticipated probabilities of receiving particular messages, we can 
derive the forward-looking traveler’s anticipation of instantaneous Expected Utility 
associated trip t+1, conditional on having made a particular observation during trip t: 
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(7). 
 
Conditional instantaneous Expected Utilities are derived by applying the updating rule 
given in (5) and entering updated perceptions in (1). Substituting (7) in (4) and 
subsequently substituting (4) and (1) in (3) gives the Expected Utilities for the two modes. 
Based on these Expected Utilities, choice probabilities are derived using the binary logit 
model presented in section 2.1. Upon choosing one of the travel modes, based on these 
anticipations of quality observations during trip t and resulting messages to be received 
when planning tip t+1, a noisy observation is made of the quality of the chosen mode, 
leading to updated beliefs regarding the chosen mode’s quality.  
 
4.2. Inertia in the presence of multimodal travel information (simulation) 
Because the derivation of choice probabilities among forward-looking travelers in the 
presence of information involves the evaluation of several integrals without a closed form 
solution, we study inertia by mans of numerical simulation. Assume the following settings: 
like in section 3.2, ,  ˆ ˆ 0t t

car trainx x= = 5t t
car trainVAR VAR= = , = 2.5 and obsVAR xβ =1. Risk 

aversion parameter VARβ  = 0.25. Given these settings, the following results are obtained 
(note that a series of sensitivity analyses show that these results are robust7 with respect to 
varying one or more of the above parameter settings): 
 
Result 4a: Inertia strength is an increasing function of information unreliability ( ). 
For large magnitudes of , higher values of 

IVAR

IVAR γ  imply lower levels of inertia strength.  
 
Result 4b: For small values of  (implying reliable information), the effect of IVAR γ  on 
inertia strength vanishes. 
 
Figure 2 illustrates this result.  is varied from 0 to 5 (this latter extreme being the 
value of  and  which implies that the information is anticipated to be equally 
unreliable as the traveler’s own initial knowledge. Simultaneously, 

IVAR
t
carVAR t

trainVAR
γ  is varied from 0 to 1. 

The dependent variable, inertia strength, is measured (in line with definition 1) in terms of 
the probability that car is chosen during trip t+1 (given a choice for the car mode during trip 

                                                 
7 An exception is the level of risk aversion: as was established in result 3b, high levels of risk aversion imply 
that the effect of γ  becomes negligible, irrespective of the value of . IVAR
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t and an associated observation of car quality that exactly matches a priori expectations) 
minus the probability of choosing the car during trip t (which equals 50%). Integration over 
the density functions that represent what observations the traveler expects to make when 
choosing a particular mode is performed by means of Monte Carlo simulation (100 pseudo-
random draws for each density). Messages are also simulated by making 100 pseudo-
random draws from the pdfs presented in (6). Crucially, to reflect that the traveler 
anticipates that received messages are conditional on his (potentially updated) perceptions 
of quality after having made a trip (see (6)), messages are conditioned on anticipated 
quality levels. That is, for each possible quality level drawn, 100 messages are drawn, 
which results in 10,000 messages being drawn in total. Sensitivity analyses showed that 
these numbers were sufficiently high. Figure 2 shows simulated levels of inertia strength 
(note that the scale of the Z-axis differs from that in Figure 1). 
 

 
Figure 2: Inertia in the presence of multimodal travel information 

 
The positive effect of information unreliability on inertia strength is clearly visible. The 
intuition behind this result is straightforward: as discussed in section 2.2, inertia arises from 
a lock-in effect based on travelers’ ability to learn from observing a chosen mode’s quality 
level. However, these observations becomes less important when information becomes 
more and more reliable, and as a result the cognitive lock-in effect causing inertia becomes 
less pronounced. Take the extreme situation where a traveler believes that he will receive 
fully reliable information at the start of each trip: in that case, paying attention to quality 
levels observed during trips made is of no use as it does not add to the learning process. As 
a result, the cognitive lock-in effect based on learning from observations vanishes. 

When information is unreliable, the negative effect of γ  on inertia strength is 
clearly visible as well. This effect is in line with result 3a as illustrated in Figure 1 (note 
that to the extent that information is anticipated to be unreliable, the ‘with information’ case 
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becomes equivalent to the ‘without information’ case): forward-looking travelers are 
relatively prone to explore new alternatives, because they know that observing their quality 
levels helps them achieve higher levels of expected quality in future choices. To the extent 
that information is anticipated to be reliable, the effect of γ  on inertia strength rapidly 
diminishes because reliable information not only diminishes the usefulness of observing 
quality during the current trip, but also the usefulness of anticipated observations during the 
next trip (the traveler knows that information will also be available during the next trip). 

Two final remarks are in place here. First, it is obvious that any impact of 
multimodal travel information on car inertia is conditional on car-drivers’ (passive or 
active) acquisition of this information. In this light, it should be noted that information 
acquisition is not costless: even when the information is provided for free, empirical 
research shows that the non-monetary costs associated with acquiring the information (in 
terms of effort, attention, time) are generally perceived as high, leading to relatively low 
usage levels (e.g. Chorus et al., In Press). As shown by Aarts et al. (1997), this holds 
especially for the situation where travelers are provided with information about another 
than their usual alternative. In sum, these studies show that the findings presented in this 
section provide an upper bound for the actual impact of the provision of multimodal 
information on car inertia. 

Second, as pointed out by a referee, it has been shown empirically that the provision 
of travel information to travelers may impact their level of risk aversion. Depending on the 
nature of the information (whether or not it is dynamic, and depending on whether it 
informs travelers about one or more of the moments of the distribution of quality (or travel 
times), travelers may become more or less risk averse (Avineri & Prashker, 2006; Ben-Elia 
et al., 2008; Bogers, 2009). This cause-effect relationship is not studied in this paper, but 
may be addressed in further (empirical) research. 
 
 
5. A case study: Impact of a forced highway closure on car inertia 
 
Whereas the previous three sections focused on the reasons underlying inertia among 
rational travelers, this section uses the developed model of rational inertia to study the 
impact – in terms of reducing car inertia – of a forced highway closure. The aim of this 
analysis not to obtain new results (as is discussed below, the effects of highway-closures on 
car inertia have been investigated in-depth using empirical data), but to show how these 
empirical results can be explained by our model of inertia emergence among rational 
travelers.  

It is empirically well established, and in line with intuition, that a forced change of 
travel mode during a brief period of time has the potential to reduce inertia strength (Fujii et 
al., 2001; Fujii & Gärling, 2003; Fujii & Kitamura, 2003). Specifically, Fujii and coauthors 
found that car drivers, after being forced to abandon their usual car-route during an eight 
day highway closure exhibited less inertia with respect to the car mode than they did before 
the closure. Public transport use after the closure (immediately after as well as one year 
after the closure) was highest among those car-drivers that either used the car mode 
relatively infrequently beforehand (Fujii et al., 2001) or were offered free bus tickets (Fujii 
& Kitamura, 2003). The cited studies have in common that they interpret inertia as resulting 
from habitual behavior (“goal-directed automaticity”), among car-drivers that are “unlikely 
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to think of public transport as an alternative”. In contrast, our model of traveler behavior 
postulates that travelers – irrespective of their inertia level – always consider both the car 
and the train mode when making a travel choice. In an attempt to study whether our model 
of rational inertia can explain the findings of Fujii and coauthors, we perform a numerical 
simulation. We assume the absence of pre-trip multimodal quality-related information. 

Assume the following settings: ˆ ˆ 0t t
car trainx x= = , that is: expected quality of both the 

car and the train mode, as anticipated when planning trip t, equals zero. Furthermore, 
. Quality is evaluated in terms of one util per unit (5t

trainVAR = xβ =1), as is quality 
uncertainty ( VARβ =1). Finally, = 2.5 and obsVAR γ  = 0. 8 The dependent variable is the 
probability that car is chosen during trip t+1, given a (forced) choice for the train during 
trip t. We simultaneously vary anticipated uncertainty concerning car quality under normal 
conditions ( , between 2.5 and 5) and the observed train quality during the forced 
execution of the train alternative during day t (

t
carVAR

t
trainx , between -10 and 10). Note that values 

of  close to 2.5 represent the situation where repeated car use in the past has led to a 
relatively large reduction in uncertainty. In contrast, values of  close to 5 (= ) 
imply that no learning has taken place yet. In sum, low (high) values of  reflect the 
presence (absence) of car inertia before occurrence of the highway closure. Higher values 
of 

t
carVAR

t
train

t
carVAR t

trainVAR
t
carVAR

x  represent situations similar to the situation described in Fujii & Kitamura (2003) 
where car-drivers were offered free bus tickets. Note that because n , any 
preference for the car mode before the highway closure results solely from the relatively 
small uncertainty surrounding its quality. Figure 3 shows how the probability of choosing 
the car mode after the forced one-day train choice depends on car uncertainty before the 
highway closure (being a proxy for inertia strength) and on train quality observed during 
the forced train choice

ˆ ˆt t
car traix x= 0=

9.  
Shown relations are fully in line with intuition and the empirical results obtained by 

Fujii and co-workers: a) lower levels of car uncertainty (being a result from inert behavior 
in the past) are associated with higher probabilities of returning to the car mode after the 
forced change; b) higher levels of observed train quality lead to lower probabilities of 
returning to the car mode after the forced change. As a further illustration, Figure 4 plots 
the difference between the probability of choosing the car mode before and after the 
highway closure, again as a function of car uncertainty before the highway closure and train 
quality observed during the highway closure. It becomes clear that when the observed train 
quality is much lower than expected, the probability of choosing the car mode after the 
highway closure will in fact be higher than the corresponding probability before the closure 
(this is reflected in negative values of the dependent variable10). This is especially the case 
among travelers who were relatively uncertain about car quality before the highway-
closure.  

                                                 
8 Note that sensitivity analysis regarding the value of γ  showed that variation between zero and one did not 
affect the overall result obtained from the simulation – which is in line with result 3b. 
9 Again, integration over the density functions is performed by means of Monte Carlo simulation (involving 
100 pseudo-random draws for each density function). 
10 Note that we do not go into the precise magnitude of this difference, since it depends on simulation settings. 
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Figure 3: Car probabilities after a one-day highway closure 

 

 
Figure 4: Difference in car probabilities before and after a one-day highway closure 

 
Again, these results are fully in line with intuition as well as empirical literature – for 
example, it is well established that when drivers divert from their usual route or mode, 
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based on positive information (expectations) about an alternative, a subsequent negative 
experience heavily affects their propensity to divert again in the future (e.g. Bonsall et al., 
2004; Chen et al., 1999; Srinivasan and Mahmassani, 2000; Jou et al. 2005). 

 
 

6. Conclusions and discussion 
 
This paper shows how travelers that make rational choices exhibit inertia when faced with 
risky mode choice-situations, due to a learning-based lock-in effect. We also show how the 
interplay between forward-looking behavior and risk aversion determines the level of 
inertia. In addition, we show how the costless provision of multimodal travel information 
may slow down inertia emergence, but only to the extent that the information is considered 
reliable. As a case study, we show how our model predicts that a forced highway closure 
may help break inertia to the extent that an alternative train alternative performs 
satisfactory and car inertia strength is limited – a result that is fully in line with empirical 
literature. 
 The main message that this paper tries to convey is that the postulates of bounded 
rationality (sticking to a good enough alternative that has been chosen before arises from 
the wish to save effort, time and attention) are not necessary to explain inertia in a travel 
mode choice context. We show that inertia emerges rapidly and forcefully among travelers 
that live up to high standards of ‘unbounded’ rationality: they consider all alternatives 
available in their choice set, evaluate by means of Expected Utility maximization and learn 
from past observations and information in a Bayesian manner. Of course, there is no reason 
to conclude from the theoretical analysis presented here that inertia has little to do with 
bounded rationality – on the contrary: we acknowledge the intuitive and empirically well 
established notion of inertia arising from travelers’ wish to economize on cognitive 
resources. In fact, we believe that actual patterns of traveler inertia are the result of an 
interplay between boundedly and ‘unboundedly’ rational behavioral phenomena. 
 From a theoretical perspective, we believe that a particularly fruitful direction for 
further research would be to incorporate the notion that quality uncertainty may not only 
result from a lack of experience, but also from day-to-day variability. While the assumption 
that quality uncertainty solely arises from a lack of experience is computationally efficient 
(see for example Kaysi (1991), Jha et al. (1998) and Chen & Mahmassani (2004) for recent 
examples), it actually implies that making repeated observations will in the long run 
eliminate uncertainty. However, when day-to-day variability is present this implication is 
not realistic, as for example Jha et al. (1998) acknowledge. Instead, in that case repeated 
observations enable a traveler to learn actual day-to-day variability in quality, which should 
be reflected in an additional quality-variance term that gradually approaches actual quality-
variance. We consider the treatment of day-to-day variability impacts on inertia emergence 
as an important avenue for further research, although the increased behavioral realism 
associated with incorporating day-to-day quality variability is likely to come at the price of 
substantial increases in model intractability. 
 Notwithstanding that the presented model leaves room for theoretical model 
extensions like the one discussed directly above, we consider empirical testing to be the 
paramount direction for further research. In terms of data collection, basically two 
alternative courses of action are possible: one is to observe choices in a hypothetical choice 
experiment, preferably using a carefully designed incentive structure to control preferences 
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– see Denant-Boèmont & Petiot (2003) and Han et al. (2007) for recent examples in a travel 
behavior context. The other one is to collect panel data sets of choice behavior observed in 
real life, ideally enriched with data concerning travelers’ anticipations of uncertainty, 
information reliability and so on. The (dis-)advantages of both approaches are obvious, and 
a trade-off between efficiency (in terms of the needed data-collection effort) and validity 
must be made. In terms of model estimation, the identification of inertia from repeated 
choices is not trivial, given endogeneity issues and the fact that it is by definition difficult 
to distinguish whether a repeated choice for a particular alternative follows from its 
perceived superiority or from some form of inertia. However, recent developments in 
discrete choice theory will help enable the needed analyses (Cantillo et al., 2007). 
Hopefully, such empirical analyses will in time highlight the role of bounded and 
unbounded rationality in explaining and predicting travelers’ repeated choice-behavior.  
 To conclude, we believe that the results and overall conclusion we present here have 
an important practical implication: they suggest that inertia might be even more difficult to 
‘break’ then we thought. Whereas transport policy-makers often implicitly assume that 
helping make travelers choose in a more ‘rational’ way (e.g. by providing travel 
information; see Chorus et al. (2006a) for an overview of such attempts) will reduce inertia, 
our results suggest that such an approach will not be very helpful. On the other hand, our 
analyses do highlight the potential of other measures that have been proposed in the past, 
such as the promotion of alternative (sustainable) travel modes when travelers are forced to 
abandon their usual mode. Our model of rational behavioral inertia suggests that travelers 
may be quite good in quickly learning ‘good’ habits. 
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Appendix: derivations of results 1 and 2 
 
Derivation of result 1. 
By definition, the rational traveler exhibits inertia when 

( ) ( )ˆ t t
car trainEU EU1 1ˆ, ,t t t t t t t t

car car car train car carEU y car x x EU y car x x+ +⎡ ⎤= = − = =⎣ ⎦  > ⎡ ⎤−⎣ ⎦ . Because 

anticipated train quality and train quality uncertainty are unaffected by a traveler’s choice 
for the car-mode,  equals t

trainEU ( )t1 ˆ,t t t
train car carEU y car x x+ = = . As a result, the traveler 

exhibits inertia when ( )1 ˆ,t t t t
carEU +

car cary car x x= =  > t
carEU . Defining Expected Utilities in 

terms of a mean-variance linearization gives the following rewrite: 

ˆ
t
car
t
car

VAR
VAR
⋅
+

t obs
x car VAR

obs

VARx
VAR

β β⋅ − ⋅ t > ˆ t
x car VAR carx VARβ β⋅ − ⋅ . This inequality can be rearranged 

as follows: 
( )2t

ca
t
car

VAR
VAR +

r
VAR

obsVAR
β ⋅  > 0. Under the condition that VARβ ,  and  

are all strictly positive, this condition holds, and inertia is established. By definition, inertia 
strength under the condition that quality is as expected, in terms of expected utilities, equals 

t
carVAR obsVAR
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( )1 ˆ,t t t t t
car car car trainEU y car x x EU+⎡ ⎤

⎦
t t
car trainEU EU= = −⎣  – ⎡ ⎤−⎣ ⎦ . It is directly seen that this 

difference equals 
( )2t

car
VAR t

car obs

VAR
VAR VAR

β ⋅
+

.  

 
Derivation of result 2. 
When the observed level of quality is Δ units lower than expected, and given iid errors, a 
choice for the car mode during day t implies an increased choice probability for the car 
during day t+1 when ( ) ( )1 1ˆ ˆ, ,t t t t t t

car c train car carEU y car x y car x x+ +⎡ ⎤t t
ar carx EU= = −Δ − = = −Δ⎣ ⎦

⎤⎦

 > 

. Because anticipated train quality and train quality uncertainty are 

unaffected by a traveler’s choice for the car-mode,  equals 

t t
car trainEU EU⎡ −⎣

t
trainEU

( )
)

1 ˆ,t t t t
train car carEU y car x x+ = = −

(
Δ . As a result, the above condition reduces to 

1 ˆ,t t t t
car car carEU y car x x+ = = − Δ  > . Defining Expected Utilities in terms of a mean-

variance linearization presented gives: 
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carVAR⋅  > 0. Manipulating gives: 
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β β> ⋅Δ ⋅ . After further manipulation, this in 

turn reduces to: x
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⋅Δ .  
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