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Abstract

Understanding the hidden organizational principles existing in the human brain
was always one of the great challenges in Neuroscience. To uncover the way the
brain functions, advancements in the fields of Medical Imaging and Computational
Science have been of great importance. Powerful imaging tools, such as functional
magnetic resonance imaging (fMRI) and positron emission tomography (PET),
have already enabled scanning the whole brain volume and visualizing the brain
functioning, both at rest and during task execution, to a significant degree. How-
ever, several limitations especially in spatiotemporal resolution led to the need for
further advancements in the field of functional imaging. An alternative technique,
that overcomes most of the previously existing problems, is functional ultrasound
(fUS). fUS is capable of imaging even the microvasculature blood-flow dynamics
in response to brain activation with high spatiotemporal resolution. The wealth of
fUS-acquired data calls for advanced data-analytic methods to uncover new infor-
mation, beyond the well-applied simple univariant correlation method. This is the
main goal of this MSc thesis, to use a proper analysis technique, mainly borrowed
from the same-principle fMRI technique, in order to produce powerful inferences.
For this reason, a detailed literature review regarding fUS imaging and fMRI anal-
ysis methods is introduced. Then, the main analysis part is focused on the In-
dependent Component Analysis (ICA) method, trying to segregate the brain into
spatially independent components that share a similar activity response. Here, the
whole processing pipeline is established, describing all the necessary preprocessing
steps along with ICA parameters and approaches (single- and group-ICA) using the
ICASSO software package. As a post-processing step, functional images-to-Allen
brain atlas registration is also performed in order to identify the different regions
represented in the ICA-derived spatial components. The effectiveness of the meth-
ods is assessed based on the collected results on different datasets, obtained from
2D visual-stimulation as well as 3D resting-state experiments conducted on mice at
the Neuroscience department of the Erasmus MC. As a conclusion, ICA was able
to separate different anatomical and functional sub-networks. More specifically,
from the visual-stimulation experiments, brain regions such as Lateral geniculate
nucleus (LGN) that play a role in the visual pathway are identified, while from
the resting-state the spatial continuity of different regions is confirmed.
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Introduction 1
The biological brain is a network consisting of a large number of different function-
ally and structurally interconnected regions. Each region has its own function, but
they are all continuously communicating and sharing information with each other.
Technological progress over the years has led to a plethora of computational meth-
ods and tools in the field of imaging that contributed to improved visualization
of brain activity as well as to the inference of possible conclusions regarding its
internal connections. These connections constitute one of the fundamental ques-
tions that neuroscientists are keen on investigating. In other words, they wish to
explore where the brain is activated, its regions’ interconnections and how these
functionally connected brain regions interact with each other when triggered by
executing a task or by a direct stimulus.

Despite the variety of imaging techniques currently available, in this work, a
new promising method, functional ultrasound (fUS), will be presented as well as
its large potential for unveiling neuronal activation and functional connectivity of
spatially distributed brain regions.

1.1 Motivation and Problem Statement

Brain functional activation can be derived either directly by imaging the electrical
activity of neurons (by using techniques like voltage-sensitive dyes, calcium imag-
ing, electroencephalography mapping) or indirectly by detecting changes in blood
flow [1]. These hemodynamic changes are known to be induced by neurovascular
coupling, that is local perfusion alterations in the blood vessels located near the
activated neurons in response to an increase in neuronal activity. This kind of
information can be collected by methods of functional imaging. Some well-known
methods used are functional magnetic resonance imaging (fMRI), positron emis-
sion tomography (PET), intrinsic optical imaging, photoacoustic imaging or near
infrared spectroscopy (NIRS). In addition, more recently, the functional ultrasound
(fUS) method (well-described by [2], [1], [3]) is capable of detecting and imaging
the cerebral blood volume (CBV) over the entire brain area.

Methods based on optics provide the highest temporal resolution (∼ 10ms) and
spatial resolution, ranging from some sub-millimeters, with intrinsic optical imag-
ing, to micrometers with two-photon microscopy. However, optical methods come
at the cost of removing an area of the skull in order for the light to penetrate tissue
and these are only capable of investigating the cortex. On the contrary, methods
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based on photo-acoustics can penetrate in a deeper level, but their penetration is
still poor (∼ 1mm). Until recently, the only methods that could image the brain in
a depth suitable to detect brain activation were fMRI and PET. PET uses injected
radioactive and biologically active tracers, so to image brain molecular processes
in three dimensions. Nevertheless, PET suffers from a poor spatial resolution and
must be combined with a complementary anatomical imaging modality, such as
MRI or Computed Tomography (CT).

The spatial-resolution issue is solved in case of fMRI. fMRI constitutes one of
the most well-applied techniques inferring neuronal activation from an increase
in the blood-oxygen level-dependent (BOLD) signal. The BOLD signal reflects
inhomogeneities in the magnetic field due to changes in the level of blood oxygen,
relying on the magnetization difference between oxy- and deoxy-haemoglobin in
order to generate the fMRI signal.

Nevertheless, fMRI faces several limitations. Apart from the fact that it is quite
expensive and also not applicable in several cases (e.g. in an operating theater
to monitor the brain function), the issue of temporal resolution is of paramount
importance. For instance, in research, for imaging small animals, high magnetic
fields are needed to achieve high spatial resolutions in the order of 150 − 300µm,
but that comes at the cost of a substantial decrease in temporal resolution and/or
Signal-to-Noise Ratio (SNR).

Another promising candidate that seems to have the potential to complement
these existing techniques is functional ultrasound (fUS) [2], [1], [3]. Instead of
using conventional Doppler ultrasound, fUS is preferred as its high frame rate
improves the sensitivity and allows the imaging of smaller than the major cerebral
arteries. Thus, it is a good, low cost, candidate for real-time and in-depth imaging
of brain hemodynamic functions without the need for contrast agents. It is very
crucial to capture the blood motion in these small vessel branches because in such
depth motion is considered to be modulated by local neuronal activity, as further
described in Chapter 2.

An illustration of the main brain functional imaging techniques1 regarding tem-
poral resolution, spatial resolution and portability is given in figure 1.1, taken from
[5]. fUS appears to be in the center of the chart, addressing the shortcomings of
fMRI and optical methods as well as whole-brain imaging and microscopy.

Furthermore, in order to acquire unique insights into brain functions and de-
rive data-interpretation conclusions, the recorded data need to be processed using
proper computational algorithms. Due to being in the early days of fUS-based
brain imaging, it is assumed and investigated that algorithms could be borrowed
from those that have already been implemented on fMRI pipelines, as the main
principles remain the same. In this work, we started our exploration by adopting
the Independent Component Analysis (ICA) method for trying to uncover new

1Another intuitive classification has been given by [4] including several in vivo microvascular imaging
techniques.
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Figure 1.1: A comparison of the main brain functional-imaging techniques on a
three-axis chart comparing temporal resolution, spatial resolution and portability.
These techniques are also distinguished between whole-brain and localized-brain

imaging [5].

information extracted from fUS data. In the absence of prior art and the novelty
of the modality, we opted for ICA which (a) makes no prior assumptions on data
structure and (b) has been successfully used in fMRI.

1.2 Thesis Research Statement

Due to the limited number of papers published on fUS for brain imaging, and the
fact that their focus was mostly on examining its performance, this thesis addresses
the current gap in the analysis of fUS data. This work requires research in multiple
areas including fUS, fMRI and data-analysis methods making the selected topic
very exploratory and multidisciplinary.

After extensive research work on all these areas, the current thesis is focused
on the method of ICA decomposition. ICA is investigated, considering that it
has already been used successfully in various fMRI applications in order to fi-
nally segregate the brain into different functional and anatomical components. In
more detail, the whole processing pipeline for using the ICA algorithm is explored,
configuring all the necessary preprocessing and ICA parameters. Then, its effec-
tiveness is checked by inspecting the analysis results from multiple experiments,
such as 2D visual-stimulation and 3D resting-state experiments. In the case of
visual-input where five different datasets are available, firstly the reproducibility
of the ICA components is checked. Secondly, the ICA findings are compared in
space and time. The spatial components are assessed according to the atlas-based
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anatomical regions, while the temporal components according to the ground-truth
stimulus pattern. Finally, in the case of 3D resting-state dataset the ICA compo-
nents are examined for their spatial continuity in adjacent brain slices.

1.2.1 Thesis Goal

The purpose of this thesis work can be summarized as follows:
“How can applying ICA on the microvasculature blood-flow information cap-

tured by fUS, can lead to conclusions regarding brain activations and deactivations
and subsequently, help distinguish the different anatomical regions therein.”

1.3 Thesis Outline

The thesis work is organized in six chapters. Chapter 2 will give a theoretical
background on some of the basic concepts that are used in this work. For instance,
the physical principles of fUS and the proposed ICA data-analysis method are
mainly described.

Chapter 3 includes a concise review on the existing reseach and clinical appli-
cations of fUS in Neuroscience.

Chapter 4 focuses on invastigating the whole ICA processing pipeline that will
be applied on fUS data. The appropriate preprocessing steps are established while
the ICA optimal parameters are extensively explored.

Chapter 5 presents evaluation results of running ICA on different 2D and 3D
datasets. The components extracted from both ICA and Group-ICA analysis are
inspected as well as the decomposed brain regions are anatomically examined.

Finally, Section 6 concludes this work summarizing the experimental observa-
tions attained and proposes interesting topics to be explored in the future.
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Background 2
This chapter introduces all the essential concepts on which this work will be based.
The main focuses of this work, fUS imaging method followed by the data-analysis
ICA method, are presented. In more detail, fUS advantages, physical principles
and processing procedure are described in Section 2.1, while the ICA methodology
is presented in Section 2.2.

2.1 fUS

The fUS method relies on ultrafast power-Doppler imaging (PDI, producing the
also called µDoppler images) which gives the opportunity to detect blood flow
in very small vessels in order to measure cerebral blood volume (CBV), or in
other words the number of moving red blood cells in the sample volume. In
power-Doppler imaging, we can take advantage of the Doppler frequency shift
of the ultrasound wave caused by the moving red blood cells, shown in figure
2.1. Consequently, the measured signal power of the Doppler-shifted ultrasound is
proportional to the volume of moving blood. In other words, an increase in blood
volume locally induces a higher power of the Doppler-shifted ultrasound signal
which is reflected from the larger number of moving erythrocytes (i.e. red blood
cells) in the imaged microvasculature.

These changes in CBV are further associated with activated neurons in the
specific area due to neurovascular coupling. The link between local neural activity
and the resulting changes in the cerebral blood flow is defined as neurovascular
coupling (NVC). This homeostatic physiological phenomenon assures the necessary
blood supply in case of a metabolic demand, translated into increased neuronal
activity in a specific area. Thus, through neurovascular control mechanisms, blood
flow also increases in order to provide the essential amount of oxygen and nutrients
to cover the energy needs of the local cells.

fUS is preferred over conventional Doppler ultrasound as it improves the sen-
sitivity and it also allows the imaging of smaller than the major cerebral arteries.
Thus, it is a good, low-cost, candidate for real-time and in-depth imaging of brain
hemodynamic functions without the need for contrast agents. Penetrating even
deeper into smaller branches of blood vessels provides us with more reliable data
regarding the neurovascular-coupling phenomena, as the detection of smaller shift
changes is more probable to be connected and modulated by neuronal activity.

In contrast to conventional ultrasound where focused beams are used, ultrafast
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Figure 2.1: Doppler Principles: The probe transmits ultrasound waves and when these
waves strike a moving structure (e.g. red blood cells), their frequency is shifted. The

induced frequency shift is proportional to the velocity of the moving red blood cells. [6]

imaging can be performed by emitting a single plane-wave to the medium at a
very high frame rate (firing rate), ranging from several hundred Hz up to around
38kHz depending on the imaging depth. The method of plane-wave imaging is
used as the most efficient way to increase frame rate, at the expense of image
contrast and spatial resolution.

In [2], a first experimental comparison between the PDIs obtained by fUS and
conventional ultrasound is investigated on the rat brain. The tests showed that
detection sensitivity increased by a factor of 47 in case of fUS, as the minimal
intensity IBmin (minimum blood volume) that can be detected decreased by that
factor. That value is proportional to noise intensity and inversely proportional to
the number of sample images, which decreases and increases, respectively, in fUS
tests.

2.1.1 Physiological-Parameter Extraction

In all functional-imaging modalities, being aware of which physiological parameter
is measured, as well as its range and the assumptions made, is of paramount
importance as that can facilitate the interpretation of the acquired data. The most
relevant hemodynamic parameters that are usually reflected in a Doppler image
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are blood volume, blood velocity, and flow direction. However, the association
of these three parameters with the mean intensity of the Doppler signal which is
measured in a PDI, is not trivial and is not taken into account.

Instead, and according to the literature, the values measured in power Doppler
are proportional to cerebral blood volume (CBV), that is the number of moving
RBCs in the sample volume. That concept is considered valid under the assump-
tion that the hematocrit is constant in time and all the possible variations of RBC
backscattering properties (e.g. shear rate - rate of velocity change) are ignored.

Furthermore, it should be clearly noted that there is a detection limit regarding
the RBCs whose velocity can be detected. This limit exists because of the clutter
filter that is used to reject the slow-moving tissue signal [7]. Thus, slow-moving
RBC echoes are cut off as well. The detectable axial blood velocity is dependent
on the applied filter. For instance, on that paper, for a 75Hz filter, the detectable
velocitiy has to be higher than 4mm/s. As a result, blood inside capillaries, the
smallest diameter vessels (< 10µm), is not detected by the µDoppler. Nevertheless,
in some publications, it is reported that CBV in small arterioles is detectable.
That fact is important because arterioles significantly contribute to the regulation
of blood volume as a response to an activation at a fine local level.

That makes CBV a significant parameter to be captured for functional imag-
ing. It is also already used by other modalities, such as intrinsic optical imaging or
CBV-weighted fMRI (based on the vascular injection of iron oxide particles). As
reported by [8], [9], CBV-based fMRI is often preferred to BOLD-fMRI in cases
of small animal studies. The reason behind this is that the two measured signals
originate in different parts of the vascular network. The CBV-weighted method
is more sensitive to localize signals at feeding arterioles. There, the neurovascu-
lar coupling phenomena are more reflected according to many studies, like [10],
as arteries and arterioles supply the essential nutrients to the activated neurons.
Specifically, the proportion of CBV measured in arteries and veins is 3/1. On
the contrary, the BOLD-based signal is mainly detected at venules and its arterial
component can be diminished [11].

2.1.2 Fast fUS Processing

As already mentioned, ultrafast imaging can be performed by emitting only a
single plane-wave pulse and scanning the whole field of view. However, the quality
of the obtained image is quite low because the wave is not focused but spread in
the whole scanning area. To overcome that limitation, the advanced fUS technique
can give a solution by emitting a set of different-angled plane-waves. In that way,
the frame rate is decreased by the number of angles in order to increase image
contrast and resolution.

The main steps of the whole acquisition and processing procedure and the result
of a PDI are illustrated in figure 2.2 and are followingly described. In the figure,
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Figure 2.2: A schematic description of the processing procedure during conventional
Doppler (top row) and µDoppler (bottom row) modes [1]. (a) Experimental setup: The
probe is placed on top of the cranial window. (b) Acquisition sequence: The image is
captured block by block using focused waves. (c) Signal processing: A high-pass filter
is applied to reject tissue-motion and then the mean intensity is calculated from the
blood signal. (d) Example of a conventionally acquired PDI. (e) Same experimental

setup. (f) Acquisition sequence: Plane-waves of different angles construct a
compounded image. A PDI is then resulted after 320 compounded images. (g) Same

signal processing. (h) Example of a µDoppler (high frame-rate PDI) image.

that procedure is compared to that of conventional ultrasound.
More specifically, for fUS acquisition, a number of tilted plane-waves is emitted,

and the raw backscattered echoes are firstly beamformed (each using a parallel
beamforming procedure) to a set of images that is then coherently summed in
a composite image called a compound ultrasonic image. Each compound image
constitutes an image frame of the final dataset, containing a sample of the signal
for each pixel. These images have better contrast, resolution and reduced noise
levels opposite to conventional ultrasound - although using much more emitted
waves - or to single plane-waves, that are quite unfocused.

Then, the compounded, beamformed frames are filtered in parallel in order
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to distinguish between blood and slow-moving tissue signals. Because of cardiac
pulsatility and respiration, tissue motion cannot be ignored. As indicated by their
different spectral characteristics, an initial idea, proposed in the first fUS paper
by [2], was to use a high-pass filter in order to cut off the tissue low frequencies.
However, that frequency threshold is not always easily defined. A more promising
solution was given later on by [4] regarding the use of a Singular Value Decompo-
sition (SVD) method. This method could benefit from the temporal and spatial
differences between the motion of blood, tissue as well as noise.

As a result, regarding the information contained in a PDI, the value of a pixel
is calculated as the mean intensity of the Doppler signal in that pixel at a given
time:

I(x, z) =
1

N

N∑
i=1

s2F (x, z, ti) (2.1)

where I is Power Doppler intensity; x, z, coordinates of the pixel in the imaging
plane; N is the number of samples acquired; sF is the amplitude of the compound
B-mode image after filtering; ti time, where ti = i/fsamp, i = 1..N and fsamp the
frame rate.

2.2 ICA Analysis Method

At this point of the report, after having explained the imaging modality used, the
main method used for data analysis, the Independent Component Analysis (ICA)
will be described. I cover ICA-related topics including the definition as well as
underlying principles and assumptions, important for the rest of the thesis.

2.2.1 Introduction

ICA is a data-driven and blind-source-separation method which does not require
any prior information or a previously defined model. This means that, by at-
tempting to find common feature patterns within data, it can reveal networks that
cannot be easily modeled without any assumed anatomically-based information.
So, task-relevant as well as task-unrelated networks are discovered and may lead
to connections that could not have been assumed based on theoretical principles.

2.2.2 Methodology

The basic theoretical concept underlying ICA is the unmixing of a multivariate
signal into multiple independent sub-components, using a linear model [12], [13]. In
other words, its goal is to decompose the vectorized two-dimensional matrix of the
stuck of measured image data (ICA input vector’s dimensions are time by pixels)
into two other matrices, the time courses and the associated spatial maps of the
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underlying “hidden” signal sources (components), whose combination can produce
the actual measured signal. Without the independence constraint, the equation
2.2 (which is also called as a matrix factorizatrion in the literature) has infinite
number of solutions. So, ICA models the data as a fixed number of spatially or
temporally independent components (ICA dimensionality), which then are linearly
mixed [13]. The produced model will not include any noise term, since the noise
is assumed here to have an unknown distribution and it can only be treated as a
nuisance.

The ICA linear model is described by:

Y = A ·X (2.2)

where Y is the 2D space-time matrix of the collected fUS data, A is a mixing
matrix and X is the matrix of the sources or independent components. If we
denote with W = A−1 the weighting matrix, then it is called the unmixing or
separating matrix. So, by observing only the X data, both A and X have to
be estimated. To achieve that, some important assumptions need to be made.
The main assumptions are that the estimated sources are statistically mutually
independent and are non-Gaussian.

Regarding to the sources’ independence, spatial or temporal independence can
be also assumed. In the first case, spatial ICA (sICA) takes into account the sparse
distributed nature of the spatial patterns, whereas in the second case, temporal
ICA (tICA) the temporal evolution of a small number of pixels in a region of
interest. In most works, sICA is the preferable way to apply ICA as spatially
distributed and temporally coherent brain networks are often the research goal of
fMRI studies. Then, equation 2.2, more specifically, is formed as

Yt,j =
K∑
k=1

At,k ·Xk,j (2.3)

where Y is the matrix of the collected data, of dimension equal to the number of
time points (t = 1, ..., T ) by the number of pixels (j = 1, ..., J), A is a mixing matrix
of dimension equal to the number of time points by the number of independent
components - ICs (k = 1, ..., K), and X is the matrix of the sources of dimension
equal to the number of ICs by the number of pixels. Then, the extracted spatial
maps and their time-series are described by matrices X and A, respectively, shown
also in figure 2.3. In tICA, the content of the two matrices is reversed.

In [15], a way to exploit both spatial and temporal independence was proposed,
where tICA was applied to regions of interest that were first determined by sICA,
yielding a set of temporally independent modes.
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Figure 2.3: sICA model [14]

2.2.3 ICA Assumptions - Ambiguities

A number of challenges have to be addressed when an ICA approach is applied
for standard fMRI data analysis. That is achieved by choosing some parameters
as initial assumptions. Some of the most common assumptions that seem logical
also in the context of fUS are as follows:

• The fundamental assumption in ICA is that the independent components
must be non-Gaussian distributed. Typically, the signals of interest in fMRI
are focal and thus have a sub-Gaussian spatial distribution (with the prob-
ability distribution having a strong tail decay property). However, the ar-
tifactual signals will be more varied and potentially super-Gaussian (with
probability density functions - PDFs - heavier-tailed and peakier than the
Gaussian). These interesting distribution types, sub-Gaussian and super-
Gaussian sources can be extracted from ICA. The Gaussian signals cannot
be separated so Gaussian physiological noise can be included in the extracted
components and it can contaminate them.

• ICA is a stochastic algorithm which means that its output components may
not be the same during every run and may appear in a different order, inde-
pendently of the task-relevance. This is happening since the unmixing ma-
trix W is iteratively updated until the optimization measure, like maximum
non-gaussianity, is achieved. With the iterative procedure being a stochastic
gradient-based optimization, W is usually initialized with random numbers
at the beginning of the iteration, introducing randomness into the decom-
position. Thus, ICA does not provide any information about the ordering
or the variances of its components, which makes it impossible to distinguish
strong and weak components. Some solutions are given in [13], including
the computing of components’ variance, or cross-correlation of each compo-
nent’s time-course with the behavioral experiment pattern for ordering the
correlation coefficients.
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As far as the ICA algorithm is concerned, there are various ways for the
signals to be separated and the ICA model to be estimated. The main ap-
proaches used are maximum non-gaussianity, minimum mutual information
and maximum likelihood. The typical way for measuring non-gaussianity is
by using the value of kurtosis (or the fourth-order cumulant) or optimally
by negentropy (negative entropy or differential entropy), that is based on the
entropy-concept of information theory. Negentropy can be implemented with
great difficulty, but it can be approximated by higher-order statistics which
for instance is used in the well-known Fast-ICA [16] and Jade [17] algorithm.
Moreover, the way of maximizing likelihood relates to the concept of infomax
principle, used by the Infomax algorithm [18].

• The number of components (model order) is a free parameter defined em-
pirically or estimated. According to [19], a way to estimate the order is by
using information-theoretic approaches, such as Akaike’s information crite-
rion (AIC) [20], minimum description length (MDL) criterion [21] and the
Bayesian information criterion (BIC) [22]. In the same work, the software
package ICASSO was also suggested to analyze the independent component
(IC) estimates at different orders. ICASSO [23] is a clustering software pro-
viding an explorative visualization method for investigating the relations be-
tween estimates after running ICA multiple times1. The authors showed
that the overestimation of the number of selected components can decrease
the stability of the IC estimates as the task-related components may not be
compact but unnecessarily split in more than one.

• Before applying an ICA algorithm, it is commonly necessary to do some pre-
processing on the input data. The main two preprocessing methods that
make the ICA application better conditioned are data centering and whiten-
ing. These two methods make input data zero-mean as well as uncorrelated
and with unit variances, respectively. One popular method for whitening
is PCA. The aformentioned methods along with several others are further
described in Section 4.4.4.

2.2.4 ICA Approaches

Two strategies are commonly used in studies where multiple subjects are involved
[24]. In the first strategy, ICA is applied separately on each subject’s signals
(single-ICA) [25]. The second strategy is called Group-ICA. Group-ICA is applied
on the whole set of group data.

1The way ICASSO can be used for selecting the number of components is described in more detail
in Section 4.4.4
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2.2.4.1 Group-ICA Approach

Apart from the variability arisen from the different discussed parameters2 of the
ICA algorithm, there is also inter-subject variability in the results derived from
single-ICA runs. So, a Group ICA approach is reasonable to be applied in order to
find reproducible components after combining data from different subjects. Group
analysis of fMRI is another important strategy for studying specific conditions
within or between groups of subjects and draw inferences between them.

However, the application of ICA to different subjects in a group is not so
straightforward. After single-ICA, each subject’s sources will be sorted in a differ-
ent way, having different mixing matrices. In 2001, the first approach for applying
ICA to multi-subject data was published by [25], followed later by a series of other
approaches by [26], [27], [28], [29].

The stages for implementing Group ICA include data-reduction, forward-
estimation and back-reconstruction, then followed by a statistical analysis of out-
put results.

Data-reduction stage: It is typically performed using a two-stage PCA. One
PCA at single-subject level and a second one at group level. After having the
results of the first PCA, that can be performed in a common space or individually
to each subject, the data is concatenated temporally or spatially.

Forward-estimation stage: There are at least five approaches, gathered in
the following schematic figure 2.4. The existing approaches mainly differ in the
way the multi-subject data is organized before being input to the ICA and in
some assumptions regarding how group estimates are computed and what output
is eventually extracted (for example, single-subject contributions, group averages,
etc).

Figure 2.4: Five Group ICA Approaches: a) single-ICA on each subject, followed by
correlation or clustering, b) temporal concatenation followed by an aggregate ICA

analysis and a back-reconstruction step to compute subject-specific maps and
timecourses, c) spatial concatenation or d) pre-averaging prior to ICA, and e)

tensor-based approaches stack the data into a cube

2The ICA parameters will be further discussed in Section 4.4.3
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The first method shown performs single-ICA to every subject and then attempt
to combine these into group results post hoc, for example using spatial correlation
or clustering between components.

All the other methods, mentioned above and shown in figure 2.4, include an ICA
computed directly on group data. The temporal concatenation approach allows for
unique time-courses for each subject but assumes common group maps, whereas
the spatial concatenation approach allows for unique maps but assumes common
time-courses. The fourth method, that includes pre-averaging all subjects’ data
and performing ICA on the mean dataset, constitutes the least computational
method. However, it makes a strong assumption that all subjects have both com-
mon time courses (TCs) and spatial maps (SMs). The fifth approach attempts to
make no assumptions between subjects. It is based on a three-dimensional ten-
sor to estimate a single spatial, temporal, and subject-specific “mode” for each
component.

Back-reconstruction stage: The subject-specific TCs and SMs are estimated
by back-projection using inverse PCA projection [24] or regression-based methods
[30].

14



Related Work 3
In this chapter, the literature behind fUS imaging and data-analysis methods
is going to be explored. In Section 3.1, an overview of the fUS-related works
is presented, revealing a big gap in more advanced analysis methods in Section
3.2. That led to the need for further exploration on data-analysis methods. The
methods that have already been reported in fMRI studies are reviewed in Section
3.3, leading also to the motivation regarding the choice of ICA.

3.1 Applications of fUS in Neuroscience

The development of robust fUS imaging can have a wide range of possible appli-
cations. It has already been studied for small animal models, like rodents (mice
and rats), small mammals as well as in human clinical experiments. More recently,
the first experiments on non-human primates were demonstrated in [31]. In this
section, we will briefly summarize the work done on functional brain imaging with
fUS. Most of the following described scientific publications are well reviewed also
in [5]. Additionally, in the current survey, we have compiled a cumulative table
of papers on fUS (Table 3.1) regarding details about every experiment and fUS
set-up parameters.

3.1.1 Research Use

In [2], the first in vivo proof of this concept was shown by imaging micro-vascular
changes in the trepanned brain of anesthetized rat adults during whisker stimu-
lation or induced epileptic seizures. During whisker-stimulation experiments, the
related regions were discovered after constructing activation maps by correlating
the stimulus pattern used and the time-series of each pixel. In the same study,
another very important asset of fUS was exploited which is its compatibility with
other techniques commonly used, like electrophysiological recordings. For instance,
fUS was easily combined with EEG recordings to study the epilepsy disorder. Ac-
tivation maps were constructed in case of artificially epileptic rats. In that case,
different activation patterns were apparent, all related to the theoretically con-
nected cortex and thalamus regions.

In [32], the fUS method was extended to portable systems and applied to awake
and mobile rats, using a small ultrasonic probe fixed on the rat head, a method
called mobile fUS (or mfUS). The testing on awake mice is important as the use
of anesthesia excludes behavioral and cognitive experiments and raises questions
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Figure 3.1: Example results from [35]. Left: Averaged spatial map of cortical regions
correlated to the right S1HL+M1 seed region. Middle: Anatomical regions used for FC

analysis. Right: Correlation matrix showing FC

about modification of neuronal metabolism and cerebral blood flow, according
to [46]. Then, mfUS was further combined with electroencephalographic activity
(EEG) for investigating the detected hemodynamic brain states on both spatial-
navigation tasks and absence seizures, in case of epileptic rats, over repeated and
prolonged periods of time, for acquiring 3D images. At the same year, another
study, [4], achieved to generate 3D fUS imaging as well as to propose a novel
tomographic strategy for 4D (3D images in time) imaging. It is worth noting that
the study contains a compact summary table regarding the in vivo microvascular
imaging technique. Moreover, in [38], 3D functional images of the whole rat brain
activity were successfully obtained during a visual-task stimulus, and the influence
of the activated regions was examined with changes made in some of the stimulus
parameters.

As far as the fUS post-processing analysis is concerned, in [35], apart from the
detection of the functionally correlated contralateral cortical areas when activated
by electrical stimulation of the right and left sciatic nerve, a new insight about
fUS was tested. That was the identification of intrinsic functional-connectivity
(FC) patterns derived from the above experiment using a seed-based and an SVD
data-driven approach on each pixel’s time-series, without using information re-
garding the stimulation pattern as before. In other words, functionally and/or
anatomically connected regions were investigated for showing similar changes in
the spontaneous fUS signals. An example of the results collected in that study is
shown in figure 3.1. The results were similar to those obtained after resting-state
fMRI (rs-fMRI). Additionally, the paper concludes that fUS is a promising method
to be performed complementary to fMRI in clinical applications. During the same
year, the same scientific team investigated the odor-activated zones in response to
two different odorants. The spatial-activation maps were created after correlating
the fUS signals with the stimulation pattern.

Despite the aforementioned resolution drawbacks of non-invasive fUS, non-
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invasive methods were further investigated by [37] with the use of a contrast agent
in rats, such as inert gas microbubbles for enhancing the fUS signals, and also
without by [40] in mice and young rats. In the latter study, imaging of the en-
tire brain under anesthesia through the intact skull and skin, and without any
contrast agents was performed, possibly giving the opportunity for future lon-
gitudinal3 studies of brain vascularization. Moreover, fUS has been tested on a
thinned-skull window [35] as an alternative choice for both the fully non-invasive
and also the craniotomy methods. The advantage of the less invasive thinning
procedure is significant compared to a complete craniotomy as it facilitates the
conductance of longitudinal studies as well, yet the low image quality becomes a
problem over time [34]. Thus, the superior performance of a craniotomy commonly
dominates.

Apart from the physiological stimuli mostly used, electrical stimuli were also
employed in the work of [34]. The spatio-temporal evolution of the CBV hemo-
dynamic response function (HRF, that is, the obtained fUS signal response) was
investigated in response to sensory-evoked electrical stimulus in the thinned-skull
rat forepaw for different time durations. It was noted that even for short stimuli,
for example for a single pulse, significant hemodynamic changes can be observed.

Furthermore, as already mentioned, fUS studies have been successfully applied
on different species rather than only on rodents and humans. Small mammals,
such as rabbits [44], have been used while they underwent cardiac arrest and a
cardiopulmonary resuscitation. Also, pigeons [45] were tested during auditory and
visual experiments as well as ferrets during auditory stimulation. The most recent
study (2019) was on monkeys [31] whose hemodynamic responses were visualized
during cognitive tasks. In that study, the analysis method of Multi-Voxel Pattern
Analysis (MVPA) was used to decode the stimulus frequency from the hemody-
namic signal.

3.1.2 Clinical Use

Beyond research purposes, fUS is also a promising method applied in clinical prac-
tice. In [39], fUS was used to image task-evoked brain activation during tumor
surgery after opening the skull and the dura mater of the patients, while in [33],
fUS was used to scan brains of awake newborns. The first work concluded that,
after stimulation induced by motor and sensory tasks, a steady signal increase in
the associated cortical area was observed in a range of 20% compared to baseline.
Also, fUS was successfully applied on both awake and anaesthetized patients. On
the other hand, in the latter study, an extensive spectral analysis of the signal
in each pixel was performed via a fast Fourier transform, for computing blood
parameters, such as the maximum speed and the time to systolic peak. Recently,
another work conducted by [41] was about brain activity in human newborns. In

3involving continuous or repeated measures
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that study, fUS was accompanied by EEG in order to discriminate sleep states, and
also during interictal periods to determine the ictal foci of the newborns’ seizures.

3.2 Literature Shortcomings in fUS-data Analysis

fUS research has essentially started in 2011 through the seminal work of [2]. To
date, there is a limited number of papers published, but they are rapidly increas-
ing as more and more research teams around the world are involved with fUS
imaging and search its potential uses. Most works first focus on investigating fUS
performance and optimizing parameters for different experimental conditions. For
instance, fUS works described in [40], [36], [38], [34], [47], mainly examined the sen-
sitivity in capturing coarse-grained sensory hemodynamic responses. Then, only
a few studies have proceeded to a first-level analysis, exploring brain connectivity
using mainly correlation or statistical methods, with [35] being the first one, and
later on followed by others, like [47], [38], [31]. Then, beyond the time domain,
a spectral analysis in the frequency domain was done in [33]. Thus, the previ-
ous review-section 3.1 on fUS work revealed a big gap in more advanced analysis
methods.

3.3 fMRI-data Analysis Methods

To fill this gap and exploit other aspects of the data, I also reviewed what it
is mostly reported in studies regarding the similar-principle technique of fMRI.
Detailed review studies on fMRI analysis methods have been conducted by [48],
[49], [50], [51]. Table 3.2 summarizes some of the main methods used for fMRI
analysis. On its horizontal axis, the various computational methods used for fMRI-
signal analysis are shown, while on its vertical axis appears a grouping of their
characteristics. Here, we are interested in methods applied to both task-based and
resting-state experimen ts, so the type of experiment will not play a significant
role. The remaining characteristics that are presented on the table will be mainly
examined.

In practice, in fMRI studies the first idea is to process the data with simple
univariate analysis methods. With widely-applied methods, such as t-tests, cor-
relation analysis (seed- or stimulus-based) and the General Linear Model (GLM),
each brain voxel is examined independently, and its intensity differences are mea-
sured and interpreted irrespectively of all the other voxels. The first two methods
have been widely used in fUS studies, but it is commonly claimed that the derived
results have not yielded robust and definitive conclusions, because these strongly
depend on the a priori selected region of interest (ROI) used as a reference for the
other pixels. This is valid especially in neuroscientific studies, given that the brain
is a system with complex organization and tight interconnections between differ-
ent cortical regions. The third-mentioned method, GLM, has not been applied
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Characterists/Methods T-test GLM PPI SEM DCM GCM MVPA Correlation-based PCA ICA FCMA Graph Theory

Resting-state fMRI x x x x x x x x x x
Task-based fMRI x x x x x x x x x x x x

Functional Connectivity x x x x x x x
Effective Connectivity x x x x x

No a priori data x x x x x x x
A priori data available x x x x x

Model-based x x x x x x x x
Data-driven x x x x

Table 3.2: This table summarizes some of the main methods used for fMRI methods:
T-test, General Linear Model (GLM), Psychophysiological interactions (PPI),

Structural Equation Modeling (SEM), Dynamic Causal Modelling (DCM), Granger
Causality Mapping (GCM), Correlation-based methods, Multi-voxel Pattern Analysis
(MVPA), Principal Component Analysis (PCA), Independent Component Analysis

(ICA), Full correlation matrix analysis (FCMA), Graph Theory

yet, because the determination of the model’s parameters, such as experimental
paradigm (stimulus pattern) and motion (noise) patterns, is necessary. Since it is
a model-based method, we can only study the activation that we have modeled
for and, besides, the existing brain models are not so well-parametrized. As also
proven for fMRI, traditional GLM-based analysis is not so sensitive in detecting
task-related changes in fMRI signals compared to data-driven methods, such as
spatial Independent component analysis (sICA), which performs much better [52].

A comparison between GLM and sICA for fMRI data is shown in figure 3.2,
depicting clearly the GLM-requirement for a reference temporal-model (design ma-
trix) in contrast to sICA. Additionally, the fact that in most studies, an experimen-
tal task condition modulates the activity pattern among multiple distinct voxels
makes the application of multivariate and data-driven methods a more appropri-
ate way of analysis. Thus, it would be more beneficial to statistically examine
simultaneously different groups of voxels instead of intensity values on a per-voxel
basis. These are the main reasons that we need more advanced analysis methods
in the case of fUS, moving to multivariate and data-driven methods.

Furthermore, considering that the brain is organized into a number of different
functional networks, an optimal analysis technique would be able to distinguish
these networks and extract the common signals of each one directly from the data.
The ICA method has been already utilized for various fMRI applications resulting
to a significant degree of understanding the hidden spatiotemporal network struc-
tures in the brain. Thus, ICA seems as a good candidate to be tested on fUS data
as well. As already described, FC constitutes the analysis of correlations between
measured function of distinct regions of the brain. By evaluating the calculated
correlations, some forms of associations between different voxels or regions can be
uncovered as well as activated and deactivated brain areas can be identified.

Thus, a method that would lead to FC conclusions was considered a strong
initial argument for the proposed fUS data-analysis. In the current work, I am
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Figure 3.2: A comparison between GLM and sICA showing their different
data-modelling. [12]

not considering approaches for effective (dynamic) connectivity leading to direc-
tional and causal relationships among brain regions, such as dynamic causal mod-
eling (DCM), Granger causality mapping (GCM), structural equation modeling
(SEM), psychophysiological interaction (PPI), graphical causal modelling (GCM),
dynamic Bayesian networks, and switching linear dynamic systems [49], [53].

Compared to other methods used for FC inferences (shown in Table 3.2), ICA
is regarded as preferable to PCA in fMRI cases, where the intention is to estimate
only a number of linearly uncorrelated components and not the independent ones.
Both properties are valid when the multivariate normality assumption is met, that
is not the case with fMRI and fUS data. The spatial independence enforced upon
components is a more appropriate assumption for blind-source separation of the
data compared to PCA: Spatial ICA demands only that components’ time-courses
not be highly co-linear, resulting in a more biologically plausible systems model
than that derived from a PCA decomposition where the analysis enforces orthogo-
nality between time courses, precluding the detection of signals which are partially
associated in the temporal domain. The above statement is also supported by [54]
for fMRI cases, so the same is expected for the same-principle fUS cases.

Regarding Multi-Voxel Pattern Analysis (MVPA) and Full correlation matrix
analysis (FCMA), although these methods seem quite promising for fMRI, and
subsequently for fUS, they are very computationally demanding and data- and
memory-intensive, as they need large datasets [55].
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Moreover, approaches based on graph theory are very computationally complex,
compared to ICA, making the application on the whole brain currently intractable
[56]. Thus, the computational complexity, along with the size of data which is
quite high, preventing these from being the first choice for multivariate analysis.
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Materials and Methods 4
Alterations of neural activity may be affected by asking the subject to perform
a task designed to target a specific cognitive process or can also evoked sponta-
neously while the subject is resting in the absence of conscious mentation, that
is called resting state. These two types of functional experiments, task-based and
resting state, were conducted on mice and further analyzed using the ICA method.
In this Chapter the imaging and experimental-setup parameters of all the experi-
ments are given, and the overall analysis strategy is described. Regarding the ICA
algorithm, all of the free parameters, assumptions as well as any pre-processing and
processing steps are explained and justified in great detail. A set of five datasets
obtained from a 2D visual-stimulation experiment was used for testing reliability
and reproducibility of the ICA significant results.

4.1 fUS Set-up and Imaging Parameters

For the recording of the functional ultrasound data, an ultrafast ultrasonic device,
Vantage 64-LE, was used as well as a 30MHz linear array transducer in order to
obtain the angled plane-wave images. The transducer of the system was placed on
top of the brain, after part of the skull was removed, cleansed, and covered with
a plastic acoustic window (that fits the cranial window) as well as a gel to couple
the ultrasound to the skull. In this work, all the experiments were conducted on
awake mice.

For the experiments, we used 14 angled (−5 to 5 degrees) plane waves with a
Pulse Repetition Frequency (PRF) of 8 kHz. After every transmitted wave, the
raw backscattered echoes are firstly beamformed to a set of images that is then,
coherently summed to maintain high temporal resolution, forming a compound
image. Afterwards, the temporal resolution is PRF/Na = 8000/14 = 571.43Hz.
Finally, a total of 120 compound images were used to compute one Power Doppler
image (PDI), resulting in a final temporal resolution of 4.7619Hz.

4.2 Functional Experiments

4.2.1 Task-based Experiments

In fMRI studies, task-based or stimulus-driven experiments have been widely ex-
plored in order to offer a deeper understanding of the brain functioning. Using
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the relative changes from baseline in the collected signal during a given task, or in
response to a stimulus, can straightforwardly lead to inferences regarding several
activated and deactivated brain areas.

A typical task-based experiment employs sensory stimuli, such as visual or
auditory stimulus, for a fixed duration of time, in which case a large number of
PDIs can be acquired.

4.2.1.1 Visual-stimulation Paradigm

Here, the well-studied visual stimulation was applied, where the vision-related
regions are going to be further investigated. Several visual-stimulation experiments
took place, by showing images in one or both screens which were located in front
of the mouse. Consequently, one or both mouse’s eyes and visual fields were
stimulated, respectively.

Moreover, the visual experiments were recorded both on a single coronal slice
(2D-dataset) and on multiple coronal slices (3D-dataset). In the 2D fUS acquisition
set-up, one mouse was used and a total of 5 datasets per experiment were recorded,
each one consisted of 1143 time-frames representing a duration of 240s. Regarding
the stimulation pattern, the subject (mouse) performed a task in a block design
paradigm, which means that the stimulation pattern included blocks of both rest
(“off”) and task (“on”) periods. The stimulation was a set of 8 grey images shown
on a computer monitor for 5 seconds, followed by 10 “dead” seconds where the
screen went blank, and repeated after that.

A visual example of the mean of the collected PDIs in a fUS visual-stimulation
dataset is depicted in figure 4.1.

4.2.1.2 Visual-information Chain Pathway

The visual-stimulation experiments are commonly used in literature, as they can
be easily carried out by providing a physical visual input. A stimulus, such as
displaying an image, can be applied in one visual field or simultaneously in both
visual fields to test the way neural activation in different brain regions is influenced.

Moreover, during such a visual task, neural activation can be evaluated by
taking into account the well-studied visual pathway and the known brain regions
which are chiefly involved [57]. A schematic illustration of the processing pathway
of visual information is given in figure 4.2. This complex pathway begins with
the collection of photons on the retina. Visual information travels along the optic
nerves, is pre-processed in sub-cortical relays, such as the left and right Lateral
Geniculate Nuclei (LGN) or the Superior Colliculus (SC), and is finally processed
in the Visual Cortex. The so-processed information is then sent to other cerebral
areas that will for instance trigger an action or a memorization. These regions
were well-reported in case of fMRI, for example in [58] and [59].
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Figure 4.1: Mean of PDI frames in the visual-stimulation experiment. The vasculature
structure of a mouse brain is shown.

Figure 4.2: Mouse visual pathway, showing direct (solid arrows) and indirect (dashed
arrows) retinal projections [57]

Especially in the case of fUS, visual-stimulation studies are generally preferred
for another reason as well. Through the open skull, the (task-related) visual cortex
is easily accessible for acquiring functional images.
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4.2.2 Resting-state Experiments

Resting-state experiments also took place, providing new insights on the functional
architecture of healthy brains. That type of studies investigates synchronous ac-
tivations – between regions that are spatially distributed across the brain– occur-
ring in the absence of a task or stimulus. Therefore, resting-state experiments are
widely tested as they require the least effort of the subjects involved.

With these experiments we focus on the discovery of functional networks across
the whole brain, as opposed to distinct functional areas that are activated, for
example, by a specific visual stimulus paradigm. On the other hand, this means
that the ground-truth of the stimulation pattern is missing, leading to a difficulty
in evaluating the obtained functional networks.

In recent years, the resting-state fMRI (rs-fMRI) experiments have gained in
popularity and are used to identify resting-state networks (RSNs), so fUS resting-
state experiments is useful to be also examined. In addition, the characterization
of consistent and robust resting state networks are still quite unexplored, espe-
cially in rodent models. Some examples of a fMRI work revealing the functionally
connected mouse brain regions mappings was given in [60], [61], [62].

Here, a 3D dataset was collected comprising images from 18 coronal slices,
insted of only one. The whole experiments lasted for 6, 300seconds, obtaining
approximately 2000 images (PDIs) in each slice position.

A summary of all the experiments conducted and used for the thesis’ data
analysis is given in Table 4.1.

Experiment 2D/3D Number of mice Number of trials/datasets

Visual-stimulation (both-side screen) 2D 1 5
Visual-stimulation (single-side screen) 2D 1 5

Resting-state 3D 1 1

Table 4.1: Summary of experiments and datasets employed in the current thesis.

4.3 Overall Analysis Strategy

4.3.1 Input Data

A set of five datasets obtained from a 2D visual-stimulation experiment is used
for determining and testing the selected parameters. Each dataset contains a set
of 1143 frames or PDIs capturing the vascularization of one specific (2D) coronal
slice. An illustration of the information contained in a PDI is shown in figure 4.1.
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4.3.2 Data Pre-processing

As done with fMRI signals, fUS signals have to be preprocessed before being
analyzed. So, prior to ICA, the raw data should be subjected to preprocessing
methods, such as those included in a standard SPM (Statistical Parametric Map-
ping) pipeline1, since the main principles of fUS and fMRI are similar. The choices
of the preprocessing parameters and steps is investigated to discover the most ap-
propriate preprocessing pipelines.

In every neuroscientific study, the types of pre-processing methods, as described
in [63], as well as the order that they will be used should be chosen appropriately
as they can be influenced by several aspects, such as the type of stimulus, the
experimental hypothesis, and the acquisition environment.

The preprocessing pipeline finally adopted and the configuration of the optimal
parameters are described in more detail in Section 4.4.4.

4.3.3 ICA Analysis

Both single- and group-ICA strategies are commonly used in studies where multiple
datasets are available. In the first strategy, ICA is applied separately on each
subject’s signals, and afterwards the relationship between subjects’ - or within a
single subject’s recordings - independent components is examined by the means of
subjective identification [25]. In the second strategy, Group-ICA is applied directly
on the group data, and then common ICs as well as individual subject’s specific
ICs can be further obtained and examined. Although Group-ICA seems to be
superior than single-ICA, both strategies is important to be tested in the case of
fUS images as well as when not a lot of datasets are available and then group-ICA
is not feasible.

4.3.4 PDI-Atlas Registration

In the proposed strategy, the next step after having extracted the ICA spatial maps
is to anatomically evaluate them in order to better interpret the ICA performance
and the produced spatial brain areas between multiple subjects. The evaluation
can be performed by a technique registering a fUS image to a brain-atlas image,
leading to a geometrical alignment of the two different images. There are many
examples of brain atlases, including 3D tomographic images, anatomic specimens
as well as several histologic preparations regarding regional cytoarchitecture infor-
mation [64]. In this work, registration is performed to align a functional PDI to a
reference anatomical brain atlas image.

An anatomical atlas is usually encoded as a pair of two image volumes, an
intensity or anatomical image and a label-annotated image. Both images have
the same axis dimensions, so the label of a region in the first type of image can

1https://www.fil.ion.ucl.ac.uk/spm/
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be easily identified, a concept called label propagation. Assuming that the fUS
images (thus the ICA spatial maps) are aligned with the atlas images, we can use
label propagation to identify the anatomical regions that appear activated in the
ICA spatial maps. However, most of the times, the new target images do not
directly spatially correspond to the atlas images. This problem can be solved by
image registration. The atlas image is then used as a reference image and the
other, target, image is geometrically transformed in different ways, e.g. rotated,
in order for these two images to be aligned. The detailed methodology of image
registration is given later, in Section 4.4.6.

4.4 ICA Implementation

4.4.1 Preprocessing Steps

In this section, the proposed preprocessing pipeline is thoroughly presented.

4.4.1.1 Image-boundary Removal

One of the first tasks that should be applied to the fUS images is removing a
number of pixels that are located at the edges of the images as these correspond
to regions outside the brain. The exact number is dependent on the current imag-
ing. This step not only removes useless information but also allows for faster
computations in the analysis part, since image frame size is reduced.

For our experiments, to isolate the brain region, we typically discarded approx-
imately the first and the last 50 pixels in the z-axis and 10 pixels in the x-axis.

4.4.1.2 Time-point Removal

The first few frames of the functional images are often discarded for signal equi-
librium and for allowing the adaptation of each subject to the scanning noise.
Similarly, some frames at the end of the imaging acquisition will also be removed,
as these frames may contain some noise when the acquisition stops.

In that way, a specific number of time points for each subject will be removed
for the next steps of the analysis. In the current preprocessing pipeline, four frames
in total will be removed, two from the beginning and two from the end of each
recording.

In addition, this step is repeated after the spatial Gaussian-smoothing step
where the number of removed frames is dependent on the size of Gaussian kernel
used.

4.4.1.3 Smoothing

Due to the necessity of optimizing temporal measurements, spatial resolution is
usually sacrificed as part of a trade-off. A way to improve the latter is by a simple
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process during which data points are averaged with their neighbours. In so doing,
high-frequency signals are suppressed while low-frequency ones are enhanced.

Firstly, one of the benefits of spatial smoothing is that it can improve the
SNR of the data. Because adjacent brain areas show functional similarity in their
received signal data and because of signal blurring due to vascularity, fUS data
is supposed to be inherently spatially correlated as collected. As a result, the
most common smoothing technique is implemented by convolving the data with a
Gaussian kernel (shape of a normal distribution) that matches the inherent spatial
correlation of the collected fUS data. This can suppress noise sources uncorrelated
among adjacent imaging voxels and increase the SNR of the data.

Secondly, spatial smoothing may also improve the validity of subsequent sta-
tistical analysis by reducing the difference between inherent spatial structure of
the data and the assumed model, e.g., increasing the Gaussianity (approximation
of a Gaussian distribution [65]) of the data (a key assumption of the general lin-
ear model, and random-field theory). Additionally, it is used to suppress noise
and effects due to residual differences in functional anatomy during inter-subject
averaging.

The optimal size of smoothing kernel is not standard, and it can be determined
by the goal of the current experiment. For example, for maximizing SNR, the
kernel size should match the spatial correlations of each region, while for approxi-
mating the assumed smooth Gaussian field, the ideal kernel size should be at least
twice the size of a voxel. However, by using a larger kernel size, the spatial reso-
lution of the data is reduced, the functional boundaries may be blurred, and the
activation loci of a task may be shifted.

There are two choices that should be made regarding the Gaussian kernel which
are the full width at half maximum (FWHM) value and the kernel size. The
FWHM value is related to standard deviation s value and their relationship is
FWHM = 2.35s. However, there is no standard way to define these parameters.
After having examined the effects of different parameters’ values (some of these
are depicted in the Appendix A), a 3D 3× 3× 3 kernel with σ = 3 was selected.

After the spatial smoothing, again, a number of pixels in the edges of the
images and some frames in the beginning and end of the sequence are removed as
the filter effect on pixels of the image boundaries is quite apparent.

4.4.1.4 Centering

Centering is a useful step applied on data, so as to make the input data a zero-
mean variable. This is generally achieved by subtracting the mean of each pixel’s
time-course.
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4.4.1.5 Whitening or Sphering

Another useful and necessary preprocessing step in ICA is to whiten the observed
signals after centering. This means that before the application of the ICA algo-
rithm (and after centering), the input vector is linearly transformed to a new vec-
tor using PCA, whose principal components are uncorrelated and their variances
equal unity. Whitening has the effect of equalizing variances across all principal
components, a necessary step in order to counter the fact that only a few PCA
components with the largest variances are dominating the ICA components.

4.4.2 Processing Tools

For processing the fUS data, the well-known and various software packages that
exist for fMRI cases were checked. In [66] a comprehensive summary of algorithms,
as well as software toolboxes used for fMRI supporting different processing strate-
gies, is presented.

In my work, ICA is performed using the Group ICA Of fMRI Toolbox (GIFT)2

toolbox [67] implemented in MATLAB. It was released in 2004 and by now (Oc-
tober 2019) it has been downloaded 15503 times independently by researchers all
over the world. Its most recent stable version that is currently used is GroupICAT
v4.0b (Feb 20, 2017).

The GIFT toolbox is widely used in fMRI works for applying ICA, as it incor-
porates many ICA algorithms, Group ICA implementations as well as the ICASSO
software [68] necessary for determining the reliability of the ICA components, as
will be further described in Section 4.4.4.

4.4.3 Processing Algorithm

Algorithms that use nonlinear functions to generate higher-order statistics have
been the most popular ICA approaches. There is a number of algorithms based
on (i) maximum-likelihood estimation, (ii) maximization of information transfer,
(iii) mutual information minimization, and (iv) maximization of non-Gaussianity.
It is worth mentioning that these algorithms differ in the way that they find the
directions in which the projections of the input multidimensional data have “in-
teresting” distributions. In the ICA model, it is assumed that the least interesting
distributions are those that resemble a Gaussian.

In GIFT, algorithms belonging to all four categories have been implemented. It
is possible to choose between 12 implemented ICA algorithms, including Infomax,
Fast-ICA, ERICA, SIMBEC, EVD, JADE OPAC, AMUSE, SDDICA, Semi-blind
Infomax, Constrained ICA, Radical ICA and COMBI. As already shown by [69],
FastICA and Infomax3 are the most commonly used and give the best overall

2GIFT: http://trendscenter.org/software/gift/
3An example of applying the Infomax algorithm is given in the Appendix A
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performance when being applied to fMRI data. Thus, these two were mostly
explored for being applied to fUS data, concluding to the choice of Fast-ICA [16].

4.4.3.1 Fast-ICA

Fast-ICA is a fixed-point algorithm proposed by Hyvärinen and Oja [16]. It is
based on the optimization of a nonlinear contrast function measuring the non-
Gaussianity of the source. The popularity of the FastICA can be attributed to its
simplicity and flexibility in choosing the nonlinearity function.

More specifically, FastICA is based on a fixed-point iteration scheme for find-
ing a maximum of the non-Gaussianity of wTx. For one-unit (one-component)
estimation, the Fast-ICA learning rule finds a direction, i.e. a unit vector w such
that the projection wTx maximizes non-Gaussianity. Non-Gaussianity cannot be
directly measured, so the approximation of negentropy or kurtosis is commonly
used. In the current implementation, the use of negentropy, is considered the op-
timal estimator of non-Gaussianity, as it is justified by its statistical properties.
Negentropy is based on the information-theoretic quantity of differential entropy.

So, the approximation of negentropy used, called also contrast (contrast to
Gaussian distributions) function, is J(wTx) given as follows:

JG(wTX) ∝ [E(G(wTX))− E(G(v))]2 (4.1)

where G is a non-linear function used for measuring non-Gaussianity, and v is
a Gaussian variable of zero mean and unit variance.

4.4.3.2 Advantages of Fast-ICA

The selection of the Fast-ICA algorithm is also based on the following three points:

• Faster convergence:

FastICA allows for fast rates of convergence, even faster than of the other
algorithm widely used in fMRI data, Infomax. The reason why the algorithm
converges quickly is that it seeks for a component one by one. The conver-
gence speed is cubic (or at least quadratic), whereas in other ordinary ICA
algorithms based on (stochastic) gradient-descent methods, the convergence
is linear.

• Less free parameters:

Contrary to gradient-based algorithms, there are no step-size parameters to
choose for achieving convergence.

• More component distributions possible:

FastICA can estimate both sub- and super-Gaussian independent compo-
nents, which contrasts with the ordinary maximum-likelihood algorithms that
only work for a given class of distributions.
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4.4.3.3 Fast-ICA Parameters

• Symmetrical or deflatory strategy:

There are two different approaches in order for the components to be ex-
tracted, the deflation and the symmetric algorithm. The deflation approach
extracts successively the ICs one by one under orthogonality conditions. This
is the way followed by the majority of ICA algorithms. The symmetric ap-
proach extracts the components simultaneously or in parallel.

Both approaches were tested on fUS data without observing any significant
differences in the spatial maps. So, the symmetrical approach was used as
being usually considered superior to the deflation-based FastICA and to check
one of the main characteristics that changes in contrast to Infomax [70].

• Non-linear function:

When applying ICA, a suitable non-linearity measure g should be selected
[71], [72]. To measure non-Gaussianity, FastICA relies on a non-quadratic
nonlinear function G, its first derivative g, and its second derivative g′. There
are four options for the nonlinearity function depending on the nature of the
extracted sources. The first function is the nonlinearity g(z) = z3 (pow3),
using the kurtosis measure as an optimizing criterion. The classical skewness
measure uses the function g(z) = z2 (skew). The more slowly G grows as
its argument increases, the more robust is the estimator. Then, the func-
tions g(z) = tanh(az) (tanh) and g(z) = z exp (−az2/2) (gaus) grow, too,
more slowly and thus they give more robust estimators and are well-applied
functions in fMRI cases.

However, it is not very likely that all sources are either light-tailed, heavy-
tailed or skewed or even that the knowledge about these properties is avail-
able. So, the use of only a single nonlinearity g for all different components
seems questionable. An advantage of Fast-ICA is that the algorithm finds
directly independent components of any non-Gaussian distribution using any
non-linearity g.

In this work, the “tanh” nonlinearity measure is used for the ICA implemen-
tation.

4.4.4 Number of Independent Components (ICs) – Model Order

The fundamental question is the determination of the number of independent com-
ponents (ICs) to produce. ICA analysis can produce a large number of components.
Based on literature and given the multiple ICA variability sources, the main goal
is to extract the most robust and reproducible components and determine the ones
with biological relevance [73], [74].

This problem can be split into two parts:
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1. what dimension should be selected for reducing the fUS data into before
applying ICA (i.e. determining the effective data dimension), and

2. what is the most informative number of components to use in ICA analysis

For ICA, it has been shown that choosing a too small effective data-dimension
might generate “fused components”, not reflecting the real data heterogeneity and
leading to a at reduction of the interesting sources (under-decomposition). On
the other hand, choosing a too high number as the effective dimension may lead
to signal-to-noise ratio deterioration, overfitting and splitting of the meaningful
components (over-decomposition). Thus, it was decided to use only the number
of reproducible components as the optimal estimate of the data dimensionality.

Methods based on the application of information-theoretic criteria to the eigen-
spectrum (already mentioned in Section 2.2.3) can provide a good estimate of the
dimensionality of the data, but only if the covariance of the noise is known [75]. In
most cases, when noise is not known, the estimated number of sources tends to be
equal to the number of time points, which is considered an unrealistic condition.
Then, when ICA is applied on the original high-dimensional data, the extracted
sources may have been split into multiple components; a fact which leads to the
need of prior data reduction.

Consequently, in my work, to evaluate the performance of ICA, I mainly ex-
amined the three following aspects:

1. the stability of the computed components after multiple runs of ICA

2. the conservation of the computed components by varying the choice of the
reduced-data dimension

3. the reproducibility of the resulting set of ICA components across multiple
datasets of the same experiment.

4.4.4.1 Components Stability

The quantitative measures of IC stability obtained with the software package,
ICASSO, were used to facilitate the determination of the optimal number of com-
ponents to be extracted by the ICA algorithm. Through ICASSO, ICA is run mul-
tiple times using the selected training parameters, but the data is bootstrapped
and/or the initial conditions of ICA are changed each time. The estimates are
clustered according to their mutual similarities. More specifically, absolute corre-
lation is used as the similarity measure among the IC estimates and agglomerative
clustering with average-linkage criterion in order to identify the cluster of IC es-
timates attributing to the same underlying independent source. The reliable IC
estimates are obtained by retrieving the centrotype of each cluster, in other words
the estimate that is most similar to other estimates in the cluster.
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ICASSO also provides quantitative evaluations on the compactness of the clus-
ters of IC estimates, which is useful for validating components’ order with respect
to the stability of ICA estimation. A compactness index close to unity indicates
that the estimation is stable and consistent, i.e., similar components are estimated
at each run of the ICA algorithm. As a result, ICASSO can rank the estimates
accordingly and visualize the similarity graph between all the estimates and their
partition into clusters (as shown in figures 4.3, and 4.4). Clusters are indicated by
convex hulls.

Based on the principles of ICASSO, a comparison of different ICASSO results
is further presented in order to improve the components’ estimation, to rank the
components based on their stability and finally to select the optimal number of
ICs. The proposed pipeline was dependent on a fundamental parameter M , that
is defined as the effective dimension of the data and, at the same time, on the
number of computed independent components whose effect on the stability of the
ICs is investigated. The values of M equal to 20, 30, 50 and 100 were considered,
keeping data variance at around 37%, 41%, 46% and 56%, respectively. For each
value of M , the data dimension was reduced to M by PCA after the appropriate
pre-processing steps had been applied. Then, ICASSO was applied on each fUS
dataset separately, running ICA 100 times (i.e. 100 resampling cycles).

Results

More specifically, in this work, the cluster quality index (Iq) of the selected
components from ICASSO-runs was used to assess the ICs individual stability
and the average of all Iq’s was used to measure the overall stability of the whole
ICA decomposition. Thus, after comparing the ICASSO runs with different IC-
parameters according to that perspective, the selection of a number of ICs around
20 was considered the optimal choice which will be further supported by the fol-
lowing visualization results.

In case of 20 ICs, the extracted results of ICASSO are shown in figures 4.3 and
4.4.

In figure 4.4, the curve formed from the individual components as a function
of the quality index is an L-curve, which is a trade-off curve between the two
quantities, the total number of ICS and Iq values, that should be both optimized.
As also shown in the results in Appendix A, in cases where more ICs are estimated,
the ordered stability index generally drops off sharply. That allows us to estimate
the optimal number of components, by keeping those whose stability index is
above a cut-off point. Visual inspection of the ordered stability plot facilitates the
selection of the cut-off point. As a visually inspected result, a number of 15-20
ICs was optimally selected.

The set of spatial maps, derived from the ICA algorithm when searching for
20 components will be further used as a reference in the rest of the thesis. The
spatial maps depicted in figure 4.3 are shown in a descending order based on
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Figure 4.3: A visualization of the produced ICA spatial maps and their estimate
clusters produced by ICASSO. The most stable components are shown first in the left

sub-figure, and in more dense clusters in the right sub-figure.
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Figure 4.4: Stability (quality) index (Iq) graph for each estimate-cluster, ranking the
corresponding ICA estimate (left) and indicating how many times each estimate was

found (right).

their Iq values. So, the most stable components are displayed first. The number
above each map represents the order that they were extracted from ICA, and in
all the other figures they are characterized by that number. Moreover, the maps’
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intensities were normalized to have a maximum value of 1, a procedure followed in
all the spatial maps in the rest of the thesis. The corresponding results obtained
for ICs equal to 10, 15, 30, 50 and 100 are given in the Appendix A for further
visual inspection.

The stability of the components derived from ICASSO runs with different IC
parameters was checked by comparing the produced by ICASSO index quality (Iq)
values and components’ similarity. For similarity, correlation in both space and
time was computed. In all correlation-based comparisons, the absolute value of
the correlation coefficient was used. From the set of 20 spatial maps, some were
obsereved to represent a clear anatomical region, some followed the vessels struc-
ture and some were more noisy without specific activations. The most compact
and clear ones, that seem to represent particular anatomical regions, were selected
as the most “interesting” components to be further analysed. More specifically,
as displayed in figure 4.3, the spatial maps with numbers 1, 2, 6, 9, 7, 12, 17 were
selected.
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Figure 4.5: Components’ Stability. Left: Mean Iq values for all and a subset of
interesting components when running for 10, 15, 20, 30, 50 and 100 ICs. These 6 cases

are called ICASSO-10, ICASSO-15, ICASSO-20, ICASSO-30, ICASSO-50 and
ICASSO-100 respectively. Right: Iq values separately for all the interesting

components in each different ICASSO case.

The graphs in figure 4.5 can justify the selection of components in a range of 15-
30 because of the high Iq values. On the left side of figure 4.5, the mean Iq values
of all extracted components is almost linearly decreasing when searching for a
higher total number of ICs. That is a reasonable result because, when extracting
more ICs, we expect a high number of them to be less significant and so the
mean Iq value will decrease. The mean Iq value of the corresponding interesting
components found in all different ICASSO runs was also decreasing when searching
for more ICs. On the right side of figure 4.5 are depicted the Iq values of each
component separately. It is again justified that, mostly when searching for ICs 50
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Figure 4.6: Correlation Comparisons. Left: Spatial correlation coefficients of all the
interesting components when running for 10, 15, 30, 50 and 100 ICs with the case of 20

ICs. Right: Temporal correlation coefficients of all the interesting components when
running for 10, 15, 30, 50 and 100 ICs with the case of 20 ICs.

and 100, some low Iq values were observed. In case of 10, 15 and 20 ICs, all the
Iq values are above 0.7. Thus, the initial choice of 20 ICs was proven reasonable.

Regarding only the corresponding interesting components, the spatial and tem-
poral corresponding correlation of ICASSO-10, ICASSO-15, ICASSO-30, ICASSO-
50 and ICASSO-100 with the optimal ICASSO-20 were examined. Corresponding
correlation, derived when a component is correlated with all the components in an-
other set and the maximum correlation found are selected. The spatial correlation,
in figure 4.6, showed that the spatial maps were quite similar, all having a corre-
lation coefficient above 0.5, and apart from one map, the rest had a value higher
than 0.8. From the temporal correlation in figure 4.6, it is indicated that the closer
the number of components goes to 20, the more it differs in their corresponding
time-series.

4.4.4.2 Component Conservation

Moreover, the effect of several different PCA components was investigated by
repeating ICA analysis using a fixed number of ICs. For example, for the reference
dataset previously used, the number of 20 ICs was selected in an ad-hoc manner.
Subsequently, the results of a prior data reduction using 20, 30, 50 and 100 PCA
components were compared for a final 20-ICs decomposition. The optimal choice
of PCA components relied always on finding the most reliable components and
for keeping the computational complexity as low as possible. The complexity and
processing time increases with the number of PCA components, especially when
running ICA for 100 times using ICASSO.

On the left side of figure 4.7, only the average Iq values of the interesting
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Figure 4.7: Components’ Stability for PCA. Left: Average Iq values for all the subset
of interesting components when using 20, 30, 50 and 100 PCA components. Right: Iq

values separately for all the interesting components in each different ICASSO case.

components are shown, instead of displaying the Iq values of all the components
like in figure 4.6. When PCA dimensionality was increased, more components were
found with infinite index quality, making it impossible to compute the average of
all. This occured when components appeared only once (number of estimates =
1) in all the resampling cycles.

Here, the maximum Iq was found for 30 PCA components, but in all other
cases Iq values were close, all above 0.8. However, as shown on the right side of
figure 4.7, when examining the Iq values of the interesting components separately,
these were mostly higher in case of using 20 PCA components.
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Figure 4.8: Spatial Correlation of each of the interesting components when using 30,
50, 100 PCA components with the case of 20
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A number of PCA components close to the range of 20-30 seems a reasonable
choice for a data-reduction, prior to applying ICA, without having significant
invariances in the produced results. Thus, the same number of PCA and ICA
components (20) was kept in the following analysis of the same type of datasets.
That was confirmed by several studies which also used the same number for PCA
and ICA components [76].

Besides, it is believed that the most interesting components for interpretation
are usually positioned within the first few top ranks (components), therefore 100
seems to be a quite high limit for testing dimension reduction when applying ICA
to fUS data.

4.4.4.3 Component Reproducibility

Subsequently, the components’ reproducibility across the 5 datasets was examined.
The detected as “interesting” components were checked for whether they can be
found in different datasets.

To identify the reproducible components, we applied the same methodology
for ICASSO with the previously set parameters, reduction to 20 PCA components
and search for 20 ICs. That methodology was applied to five different datasets
obtained from the same experiment and the same animal subject.

For the reproductivity evaluation, the five datasets were decomposed separately
and then the “interesting” components were examined for their stability values
(figure 4.9) and their corresponding correlations (figure 4.9) were calculated.
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Figure 4.9: Datasets’ Reproducibility. Left: Average Iq values for all and a subset of
interesting components, when running for 20 ICs in each different dataset. Right: Iq

values separately for all the interesting components in each different dataset.

The reproducibility analysis indicated that all the components recognized as
interesting were found highly accurately in all five datasets. In figure 4.9, the mean
stability value of the interesting components was approximately 0.9 in all datasets
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and it was also higher than the overall mean stability in each dataset.
On the right side of figure 4.9, the stability iq value of each interesting com-

ponent was examined separately and was found to be quite high. The first three
components (1, 2, 5 in order) were the most stable ones reaching an Iq value above
0.95 while the values of the other ones were more spread out, but apart from one
case, all were above 0.75.
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Figure 4.10: Spatial correlations between all the datasets with the reference dataset,
analyzed in Section 4.4.4. Left: The reference maps were unthresholded. Right: The

reference maps were thresholded.

Then, the spatial accuracy of the sources was evaluated by performing a spatial
correlation with each of the originally selected template maps. The corresponding
correlations of the interesting components’ unthresholded spatial maps are shown
in figure 4.10. The correlation values of each component were quite close for each
dataset. However, their values were found not to be very high, ranging from around
0.3 to 0.8. These low values may have been influenced by the low-intensity pixels,
although visually the components seemed very similar (see Appendix A). These
pixels were around the main anatomical high-intensity region and were differed
in each dataset. Thus, it was important for the thresholded spatial maps to be
examined as well. The corresponding spatial correlations in that case are shown
on the right side of figure 4.10. The values were relatively higher, especially for
the clearer components.

4.4.5 Group-ICA

4.4.5.1 Group-ICA Methodology

The data is organized in a temporal-concatenation mode and then the subject-
specific results are derived by back-reconstruction using a PCA-based approach.
It is indicated that temporal concatenation usually works better for fMRI data,
mainly because the temporal variations in the fMRI signals are much larger than
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the spatial variations [30]. Therefore, the same concept is believed to be valid for
fUS data as well.

Regarding the formulation of the mathematical problem, we denote Yi as the
preprocessed data matrix of each subject i, of T -by-V dimension, where T is
the number of time-points and V is the number of voxels. After the first PCA-
reduction step, Y ∗i represent the T1-by-V PCA-reduced data for each subject i,
where Y ∗i = F T

i Yi, F
T
i is the T1-by-T standardized reducing matrix and T1 is the

selected number of principal components retained for each subject.
The same data is collected on M subjects and are temporally concatenated in

Y ∗ = [Y ∗1 , Y
∗
2 , .., Y

∗
M ]T (4.2)

Then, the aggregated data is again PCA-reduced, represented by

X = GTY ∗ = [GT
1 , ..., G

T
M ]

 F T
1 Y1
...

F T
MYM

 =
M∑
i=1

GT
i F

T
i Y

T
i (4.3)

where G−1 is the T2-by-MT1 standardized reducing matrix. As reported in
[30], ideally T2 is selected to be equal to the true number of ICs for all subjects,
and each subject has the same components. The X matrix is then used as the
ICA input to be decomposed. In a noise-free ICA model, we estimate the mixing
matrix Â and the common between subjects SMs Ŝ according to:

X =
M∑
i=1

Xi =
M∑
i=1

GT
i F

T
i Yi = Â

M∑
i=1

Si = ÂŜ (4.4)

To back-reconstruct the subject-specific SMs Si and TCs Ri using the GICA3
approach, it is assumed that subject-specific TCs are the subject-specific PCA
back-projected mixing matrix

Ri =FiG
T
i Â (4.5)

Si =ÂTGT
i F

T
i Yi = ÂTGT

i Y
∗
i (4.6)

Moreover, it should be noted that the “common” SM Ŝ is the sum of the
subject-specific SMs,

Ŝ =
M∑
i=1

Si (4.7)
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4.4.5.2 Group-ICA Parameters

First, a PCA data reduction was done in two steps where firstly the data were re-
duced, followed by their concatenation in groups. Each individual-subject dataset
was PCA-reduced selecting 20 as the number of components, resulting from 1,143
timepoints to 20 timepoints. Then, the reduced datasets of every subject were
concatenated together into an aggregate dataset, resulting in an 18,939-by-100
(pixel-by-time) matrix. That matrix was further reduced, using PCA, to a dimen-
sion equal to 20 that is equal to the number of ICs. Consequently, that matrix
represents the input of the ICA algorithm for estimating the SMs and TCs at a
group level. Lastly, a back reconstruction of the data to single-subject SMs and
TCs was implemented.

It is obvious that the final between-subject differences and resulted inferences
become dependent on the initial subject-specific reduction stage.

4.4.6 Post-processing Steps

The well-applied methods used in fMRI were difficult to be applied in our case, be-
cause the two images, that were about to be registered, were not only multimodal,
meaning that were captured by a different imaging modality, but also contained
information of different formats. The reference image was a labeled map and
the target image was the vascular map of the brain (PDI). The atlas used was the
Allen Mouse Brain Reference Atlas4 (ARA). An example of the digital information
incorporated into the atlas is given in figure 4.11.

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

Figure 4.11: The corresponding to our dataset structural slice (left) in atlas and its
annotated volume (right). Every color has a different label number that represents a

brain region.

So, a simple solution to that could be the usage of some landmarks in the
vascular map corresponding to specific points in the reference image. As landmarks

4https://portal.brain-map.org/
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were defined some of the detected blood vessels approximating the shape of known
and well-identifiable structures in the brain.

In Matlab, that was performed using the Control Point Selection Tool which
has a user interface in order to manually select control points in the PDI (moving
image) and the corresponding slice in atlas (fixed image). The selection procedure
is shown in figure 4.12. Then, an appropriate estimation of the geometric transfor-
mation (like similarity, affine, projective) was selected to bring the moving image
into alignment with the fixed one. In our case, after similarity, the result was a
transformation matrix that was further used for PDIs as well as ICA spatial maps
of the same dimensions. The registered PDI is shown in figure 4.13.

Figure 4.12: Control Point Selection Tool user interface
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Figure 4.13: PDI-Registered to Atlas
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Experimental Results 5
After the experimental process we follow has been established in Chapter 4,
through appropriate use of ICA, we proceed in this chapter to investigate different
fUS experiments and assess our method’ s performance and findings. The first
experiment was a 2D visual-stimulation experiment, for which 5 different datasets
were obtained in order to be examined separately as well as in a group. On these
five datasets, the produced components were examined, first with regard to the
spatial domain by interpreting the anatomical regions represented, and then to
the temporal domain by investigating their task relevance. Afterwards, the differ-
ences in spatial maps as well as in temporal-series were tested on an ICA group
approach. For an additional group comparison, a slightly different experimental
condition (one-side visual stimulation) was also examined. Finally, a 3D (or 4D,
space by time) resting-state experiment was conducted for examining the discrim-
ination of regions in adjacent brain positions. All the experiments were obtained
from the fUS setup building at the Erasmus MC.

5.1 2D Visual-Stimulation Experiment

The 2D visual-stimulation data was first analysed in Chapter 4 for determining
all the ICA key choices, such as the optimal number of ICs. ICA was applied
separately in each dataset and the results were assessed for reliability and repro-
ducibility due to the advantage of having multiple similar datasets of the same
subject. Each dataset contained 1,143 PDIs, with a frame size of 256× 128 pixels.

In this chapter, single-ICA was used for the first-level analysis of the pro-
duced components. The components were investigated in space and time for the
anatomical regions represented and their task relevance, respectively. However,
single-ICA cannot be used for reliable inter-group comparisons because finding
the corresponding ones across subjects is not so straightforward [77]. Sometimes,
merging some of the produced components is a necessary strategy to deal with
that problem.

Subsequently, these five datasets could be easily tested for the effects that
Group-ICA has on them. Group-ICA has been well-studied in the case of fMRI and
the Group-ICA’s results can be better compared than when separately analysed.
Although the estimated spatial patterns of the most clear components are well-
represented, in general subject variability in space, time and amplitude leads to a
great components-matching problem.
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5.1.1 Single-ICA

ICA was performed separately on each of the five datasets. The ICs used were
derived after 100 ICA runs through ICASSO because they are considered as more
reliable results than those from an arbitrary run. From the 20 reference spatial
maps (shown in figure 4.3), the seven most “interesting” components with numbers
1, 2, 6, 7, 9, 12, 17 are shown in figure 5.1, and are further used in this chapter
as well. The seven most interesting components were selected for further analysis
as they were the most dense and distinct distributed maps, consider to resembling
separate anatomical regions.

Figure 5.1: The seven interesting spatial maps derived from Section 4.4.4, selected as
the most dense and distinct distributed maps

5.1.1.1 Components Anatomical Interpretation

The first approach in analyzing the produced components was through their spatial
maps. Thus, according to their activated regions, the interpretation of the inter-
esting ones against actual anatomy was investigated. The spatial analysis aimed
to provide an anatomical understanding of each one of the already recognized as
interesting ICA components.

After combining the seven components, it is quite clear that they together shape
the structure of the brain. Brain structure of the reference dataset’s components
is depicted in figure 5.2.

It is obvious that a part in the center of the brain stucture of figure 5.2 was not
discovered in the components. This is anatomically explained because that region
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is part of the cerebral ventricles network (third ventricle1). Ventricles are brain
cavities where no vessels exist and so cannot be captured by fUS.

Mean Power Doppler Image
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Figure 5.2: Left: Vessels structure originally captured by fUS. Right: Shape of brain
structure after merging the 7 interesting components (shown in figure 5.1).

Each component was separately examined for identifying the real anatomical
region that they represent. In each case, the activated region was superimposed
with the annotated atlas slice and the underlying atlas labels were selected and
gathered to a matrix.

Due of the atlas structure, for each component the labels of very small regions
were uncovered, so these labels were further grouped into bigger brain regions. To
achieve that, additional information was used regarding the hierarchical organiza-
tional of brain structures; the atlas brain structures were stored in a deeply nested
data stucture which held the needed hierarchy. A schematical representation of
the brain structure hierarchical tree is shown in the Appendix B.

Regarding this procedure, label merging was performed after first checking the
parent labels of the ones initially found (low-level labels in hierarchy). According
to the atlas structure, if all the labels with the same parent label that are present
in the particular slice were found, these could be replaced with the parent label.
Thus, higher-level and more recognizable regions were finally identified in each
component. The same procedure was repeated until finding the labels of the
highest possible level in the atlas stucture hierarchy. The final sub-regions of each
component are analyzed in more detail in the following part.

Despite the merging of smaller regions into bigger ones, the total number of
labels found for each component was still high. As the map has activated pixels,
whose intensity is not zero, scattered all over the brain, less significant labels have

1http://atlas.brain-map.org/atlas
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also been found. Thus, a proper measure had to be established in order to keep
only the significant ones. For this reason, additional information regarding each
label was also collected for each component’s label, such as mean intensity value,
number of activated pixels (label’s coverage) and the spatial overlap between PDI
and atlas label’s region using the dice similarity measure. Dice similarity is a
common computational way to measure the level of spatial overlap between two
binary maps [78]. The value of that ranges from 0, indicating no overlap between
the spatial map of the component and the label’s region, to 1, indicating complete
overlap.

From all this information, two filtering strategies to make the co-registration
process less noisy were finally used (i) the overlap between PDI and atlas pixels
and (ii) mean intensity. For every label found, dice similarity of the real label
map and the component spatial map was computed. More specifically, labels
with similarity larger than 0.2 were kept, after having examined different values of
similarity threshold. Additionally, the mean intensity of each label’s region plays
an important role. So, for calculating the similarity values, the whole component
map was thresholded (intensity values |z| < 0.3 were cut-off) to isolate the most
activated area.

For each of the seven interesting components, the maps of the most significant
low-level labels and the subsequently merged regions are shown next, in figures
5.3-5.9 along with matching tables which include their corresponding names and
acronyms.

Component 1

Figure 5.3: Component 1: the IC spatial map, all the low-level labels and the
interesting labels finally selected

Label Name

170 Dorsal part of the lateral geniculate complex (LGd)

Table 5.1: Component 1: Labels and names of the interesting regions
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In this case, the bigger regions found after grouping correspond to only one
lower-level (in atlas hierarchy) region, so the latter regions were considered and
kept as the interesting ones. Thus, only the low-level regions maps appear in figure
5.3.

The well-identifiable LGN region from the literature is not apparent in the atlas
labels. However, it is known from [79] that LGN is subdivided into two different
sub-regions, the dorsal (LGv) and the ventral part (LGd). As the latter region was
revealed in ICA component 1, the spatial map of this component is called LGN in
the rest of the thesis.

Component 2

Figure 5.4: Component 2: the IC spatial map, all the low-level labels and the
interesting labels finally selected

Label Name

329 Primary somatosensory area, barrel field (SSp-bfd)
981 Primary somatosensory area, barrel field, layer 1
201 Primary somatosensory area, barrel field, layer 2/3
1047 Primary somatosensory area, barrel field, layer 4
1070 Primary somatosensory area, barrel field, layer 5
1038 Primary somatosensory area, barrel field, layer 6a
1062 Primary somatosensory area, barrel field, layer 6b

Table 5.2: Component 2: Labels and names of the interesting regions as well as their
sub-regions

Since only one part of the primary somatosensory area, the primary somatosen-
sory area - barrel field, was identified in all the interesting activated regions, label
329 will be called with the SSp acronym. According to anatomy, the primary
somatosensory barrel cortex processes tactile vibrissae (whiskers) information, al-
lowing mice to actively perceive spatial features of their surroundings [80].
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Component 6

Figure 5.5: Component 6: the IC spatial map, all the low-level labels and the
interesting labels finally selected

Label Name

879 Retrosplenial area, dorsal part (RSPd)
442 Retrosplenial area, dorsal part, layer 1
434 Retrosplenial area, dorsal part, layer 2/3
610 Retrosplenial area, dorsal part, layer 5
274 Retrosplenial area, dorsal part, layer 6a
330 Retrosplenial area, dorsal part, layer 6b
886 Retrosplenial area, ventral part (RSPv)
542 Retrosplenial area, ventral part, layer 1
606 Retrosplenial area, ventral part, layer 2
430 Retrosplenial area, ventral part, layer 2/3
687 Retrosplenial area, ventral part, layer 5
590 Retrosplenial area, ventral part, layer 6a
622 Retrosplenial area, ventral part, layer 6b

Table 5.3: Component 6: Labels and names of the interesting regions as well as their
underlying sub-regions

According to the atlas structure of the examined coronal slice, the RSPv and
RSPd regions form the bigger Retrosplenial area (RSP). RSP is part of the Default
mode network (DMN) and it plays an important role in spatial learning [81]. It
mainly processes and stores spatial information.

50



Component 7

Figure 5.6: Component 7: the IC spatial map, all the low-level labels and the
interesting labels finally selected

Label Name

375 Ammon’s horn (CA)
726 Dentate gyrus (DG)

Table 5.4: Component 7: Labels and names of the interesting regions.

The CA and DG regions are the most significant sub-regions of hippocampal
area (Hip) because they cover most of its total map. According to the atlas
structure, two other sub-regions must exist to form the whole hippocampal area,
the Fasciola sinerea and Induseum griseum. However, because they are very small
regions, component 7 is called Hip in the rest of the thesis. According to anatomy,
hippocampus plays an important role in learning and memory.

Component 9

Figure 5.7: Component 9: the IC spatial map, all the low-level labels and the
interesting labels finally selected.
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Label Name

22 Posterior parietal association areas (PTLp)

Table 5.5: Component 9: Labels and names of the interesting regions as well as their
sub-regions

In case of a visual input, the parietal areas play a role in spatial cognition and
motor control of the eyes [82]. It is known that these areas are connected with the
Hippocampus for long-term memory formation.

Component 12

Figure 5.8: Component 12: the IC spatial map, all the low-level labels and the
interesting labels finally selected

Label Name

138 Lateral group of the dorsal thalamus (LAT)
218 Lateral posterior nucleus of the thalamus
1020 Posterior complex of the thalamus

Table 5.6: Component 12: Labels and names of the interesting regions as well as their
sub-regions

The LAT region is part of the thalamus that receives input from several sub-
divisions of the visual cortex. It is also very close to the LGN, so it is interesting
to be examined.
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Component 17

Figure 5.9: Component 17: the IC spatial map, all the low-level labels and the
interesting labels finally selected

Label Name

22 Posterior parietal association areas (PTLp)
329 Primary somatosensory area, barrel field (SSp-bfd)

Table 5.7: Component 17: Labels and names of the interesting regions as well as their
sub-regions

In total, a set of 8 labels was derived. These 8 labels will be used in the rest
of the analysis section. The spatial maps of the 8 labels merged in one map is
given in figure 5.10, closely identifying the brain structures and resembling the
ICA produced map of figure 5.2.
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Figure 5.10: Shape of brain structures after merging the 8 interesting labels’ maps

For the rest of the thesis, the seven interesting ICs will be called with the
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acronyms of the regions they mostly represent. The acronym of each component
is given in table 5.8.

Component Acronym

1 LGN
2 SSp-L
6 RSP
7 Hip
9 PTL-L
12 LAT
17 PTL-R + SSp-R

Table 5.8: Acronyms of the interesting components. When a bilateral region is split
into left and right sides, the acronyms contain also the letter L and R, respectively.

Figure 5.11: Similarity matrix of the components extracted from the reference dataset
with the spatial maps of the true labels. The numbering of the components is

according to figure 4.3

As a result, a similarity matrix can be constructed to summarize the labels
which are represented in all the 20 ICs. The matrix, shown in figure 5.11, exhibits
the dice similarity between all the components’ maps (thresholded) and the 8
interesting labels-regions. That measure was the main criterion, previously used,

54



to collect the interesting labels of each component.
As expected, the highest values appeared in the interesting components because

for these the labels were found. However, some of the labels were also found in
the other components. This mostly occurs because all the maps’ activated pixels
are quite spread (resembling the vessels’ structure, like 4, 5, 10), but there are
cases where pixels’ intensity in specific areas is higher. For example, label 375,
initially found in the hippocampus component, was quite high for components 16
and 18, as well. After being visually checked, these components seem to have a
great number of activated pixels in the same region as the hippocampus.

Furthermore, there were cases where the same labels were found in multiple
components with quite high values. For instance, labels 22, 329 and 361 were all
appeared in components 2, 9 and 17. These regions seemed related, being quite
close to each other in the cortex area.

5.1.1.2 Component Task Relevance

Subsequently, quantitative validation results were obtained for the extracted tem-
poral components. To examine the task relevance of the components, correlation
of the time-series was computed with the pattern of the stimulus. Regarding cor-
relation, we are interested in checking both the computed values and whether the
values are scattered between datasets.

Because of the single-ICA inherent variablity in the time-series, we cannot
always find the corresponding components. Thus, the correlation values of the
interesting components2 of all the five datasets are displayed in figure 5.12. In all
the datasets, the corresponding components were found based on the maximum
correlation of the spatial maps with the interesting reference components.

Based on correlation, a method for ordering the components is proposed and
so the general problem of the components’ ordering is approached. As already
described, the order of the extracted components has no particular meaning. Most
of the ICA algorithms are iterative in nature so the results are based on the initial
conditions of every ICA run and the components appear in a random order each
time. Therefore, two different measures are proposed for solving the ambiguity of
IC ordering. The first measure is the correlation of components’ time-series with
the stimulus pattern and the second one is the stability Iq values produced from
ICASSO.

Regarding the first measure, in figure 5.13, the 7 interesting components of all
five datasets are ordered based on their correlation with the stimulus pattern. As
a clear result of figure 5.13, the LGN component was always found in the first rank
position, meaning that it is the most task-relevant one. The LGN’s relevance is
confirmed neuro-scientifically by its role in the visual pathway. However, a similar

2See in Appendix B the correlation values of all the reference dataset’ s temporal components with
the stimulus pattern.

55



LGN SSp-L RSP Hip PTL-L LAT PTL-R+SSp-R

Component

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

Correlation of single-ICA temporal maps with stimulus pattern per dataset

Dataset1

Dataset2

Dataset3

Dataset4

Dataset5

Figure 5.12: Temporal correlation of the corresponding interesting components of all
the five dataset with the stimulus pattern. LGN revealed the most-task relevant

component.

Figure 5.13: Task-relevance-based ranking of the seven interesting components in the
five different datasets. In all datasets, LGN was found first in ranking.

pattern in the ordering of the other components is not apparent. This may occur
because all the other regions are not known to be directly task-relevant.

Here, the fact that some sources may exhibit a relative delay in the hemody-
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namic response compared to the supposed on-periods of the stimulation pattern
was taken into account. Cross-correlation of the components’ time-series with the
stimulus pattern was calculated by shifting the stimulus’ signal by a small number
of time-frames in order to find the maximum correlation. In fMRI, it has been
reported that the onset of signal activation can vary across regions [83].
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Figure 5.14: Stimulation pattern shifted by 10 time-frames is superimposed with the
time-series of each dataset’s LGN.

In figure 5.14, we can observe how similar the time-series of the most task-
relevant LGN component is with the stimulus pattern. The corresponding corre-
lation coefficients are shown in table 5.9. Although a low value was found in the
first dataset, probably because of an acquisition problem, the LGN was found in
the first rank.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Correlation Coefficient 0.20 0.58 0.61 0.52 0.63

Table 5.9: Correlation Coefficients of the LGN of each dataset with the stimulus
pattern

As far as the second measure is concerned, the ambiguity of the components’
ordering was considered to be approached through the stability Iq values produced
from ICASSO. According to that value, the extracted components can be ordered
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from the most stable to the least stable ones for each dataset. As shown in figure
5.15, we cannot easily draw a straightforward conclusion. Because Iq values were
very high and very close to each other, components were not found in the same
stability-based order. However, it is observed that Iq-based ranking shows much
higher cohesion than the stimulus-based one. The LGN, SSp-L and RSP were
almost always found to be in the first 3 positions, while the other components in
the last positions.

Figure 5.15: Stability-based ranking of the seven interesting components in all the
different datasets

5.1.2 Group-ICA

In Group-ICA, the spatial maps and time-series of different datasets can be directly
compared, because common as well as subject-specific components are presented
in the same order. Thus, the group-case approach permits the identification of
experiments’ differences in a way that makes them comparable. Two cases of ex-
periments were applied to group-ICA. The first case was the within-experiment
group-ICA, using the 5 datasets of the same experiment and the second case
was the between-experiment group-ICA examining the differences obtained in two
slightly different conditions. Being in the same way stimulated, it is interesting to
check the differences occurring in the task-relevant spatial maps and time-series of
both experiments.
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5.1.2.1 Within-Experiment

The 5 datasets obtained from the both-side visual stimulation experiment, that
were separately analysed before, are applied to group-ICA after being temporal
concatenated. The common spatial maps that were produced after Group-ICA
analysis are shown in figure 5.16.

Figure 5.16: Group-ICA common spatial maps. The components that correspond to
the interesting reference ones are denoted with numbers 2, 3, 4, 5, 8, 9, 13 above each

map.

A comparison important to be conducted is between single- and group-ICA
results. In other words, examining whether, and to what extent, the sources that
were back-reconstructed from the group mixing matrix are similar to the sources
yielded from a single-ICA analysis performed separately on each subject’s dataset.

In figure 5.17, the spatial and temporal correlations for all components are
depicted. Regarding the similarity of the spatial maps, we observed a high corre-
lation value for the first 10 components as well as LAT, which more likely represent
distinct anatomical and functional networks as visually checked. However, a wide
variation is observed for the remaining 9 components. These components’ values
were both lower and more scattered for the 5 datasets, because their spatial maps
were quite noisier.

On the other hand, the values of the temporal correlation for all the components
significantly varied between datasets. It is obvious that several components’ values
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Figure 5.17: Correlation between single- and Group-ICA in the five datasets. Left:
Correlation between the spatial maps. The first 10 components are found to be more
consistent and correlated. Right: Correlation between the time-series. Only the LGN

time-series are found similar to each other.

were found to be high (e.g. above 0.6) but not consistent for the whole dataset.
Only the LGN component is found the most robust one, because its time-series are
high and similar to each other, all ranging between 0.7 and 0.8. This means that
many differences appeared in the produced time-series by single- and group-ICA.

Subsequently, the temporal sources were further investigated for their task
relevance. Components’ time-series were correlated with the stimulus pattern, as
calculated for single-ICA analysis (figure 5.12) and are shown in figure 5.18.

Again the LGN component is highlighted as the most task-relevant one, having
a correlation coefficient above 0.6. However, there must be a problem with the
first dataset because the LGN time-series is not so highly correlated both in case
of single- and Group-ICA. Furthermore, the values calculated in case of group-
ICA subject-specific time-series (0.6− 0.8) were higher than those obtained from
single-ICA results, mostly ranging from 0.5 − 0.6 as shown in figure 5.12. This
fact confirms that Group-ICA analysis yields more consistent results suitable for
drawing conclusions about groups of subjects.

Besides, most of the values of the rest of the components vary a lot and are
below 0.4. Nevertheless, apart from LGN, some values that are above 0.4 in some
datasets appear in components 5, 7, 10 and 15. For these components, because high
values are not found in all five datasets and also couldn’t be justified anatomically,
it is assumed that these regions are not really task-relevant ones. The high values
are due to an increased number of activated pixels in the task-relevant LGN region,
after being anatomically examined.
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Figure 5.18: Correlation of the time-series with the stimulus pattern for all five
datasets. LGN was observed as the highest correlated components.

5.1.2.2 Between-Experiments

Another experiment was also examined for Group-ICA in order to compare the
results obtained in different conditions. The experiment was a single-screen visual-
stimulation experiment with the same stimulation pattern as before. More specif-
ically, only the right screen was displaying images, so the right visual pathway
became stimulated in the mouse subjects. Again, five different datasets were ob-
tained under these conditions. Being in the same way stimulated, it is interesting
to check the differences occurring in the task-relevant spatial maps and time-series
of both experiments.

After applying temporal Group-ICA, 20 common between-subjects spatial
maps and separate mixing matrices were extracted. The produced spatial maps
are shown in figure 5.19.

The majority of the most clear and compact components, for instance compo-
nents 1 – 10, were again extracted similarly as in the other experiment. A big
difference was observed in the previously most task-relevant component. In the
two-side stimulation, bilateral areas were activated but in this case only one was.
Therefore, again it is confirmed that LGN (component 7) was the most significant
region, as it was the only one with apparent changes.

Regarding the subject-specific time-series, the differences in the activated com-
ponents were checked as well. In figure 5.20, the correlation of each component’s
time-series with the stimulus pattern was depicted. As expected from the other
experiment, the LGN area was most strongly correlated with the stimulus pattern.
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Figure 5.19: Group-ICA common spatial maps of the right-visual stimulation
experiment. The components that correspond to the interesting reference ones are

denoted with numbers 2, 3, 5, 7, 8, 9 17 above each map.
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Figure 5.20: Correlation of the time-series with the stimulus pattern for all five
datasets. Unilateral LGN was observed as the highest correlated.

However, the values were slightly decreased, ranging from 0.45 to 0.55 for the five
datasets. That may have occured because the other side of LGN was also shown
in the same map, even with very low intesity values, so that the time-series of the
whole component deviated from the stimulus time-series.
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The correlation values of the other components varied and were quite low, most
of them below 0.3. Some exceptions, where values exceeded 0.3, were apparent for
some datasets in the case of components 8, 9, 10, 11 and 20. The reason behind
this was some activated pixels in the LGN region.

5.1.2.3 Group Anatomical-Interpretation Comparison

To verify that the proposed group-ICA procedure is capable of extracting similar
spatial patterns, the labels revealed from each component were examined. A sim-
ilarity matrix was constructed to compare each one of the common components
with the previously extracted 8 interesting labels. In figures 5.21 and 5.22, the
similarity matrices of the two different experiments are shown.

Figure 5.21: Similarity matrix between the components of the both-sides visual
stimulation experiment and the atlas’ labels maps. The numbering of the components

is according to figure 5.16

This type of resulting matrices facilates finding the most representative compo-
nents of each region. For example, regarding the hippocampus region, with label
375, apart from the easily found component 9, also components 14 and 18 corre-
spond to parts of that region. This can be directly observed from the similarity
matrix, as these components have the highest values for label 375. Thus, when a
specific brain area is captured by different components, it can be easily visualized.

Furthermore, comparing to single-ICA, the values found in the Group-ICA ma-
trices were approximately of the same level. No extreme differences were noticed.
As expected, only in the second experiment some differences were detected. The
LGN component of the second experiment was less similar to the real LGN region
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Figure 5.22: Similarity matrix between the components of the right-visual stimulation
experimentand the atlas’ labels maps. The numbering of the components is according

to figure 5.19

because now bilateral regions were not activated and the LAT component was not
very distinguishable in the set of components.

5.2 3D Resting-state Experiment

Next, the effects of a different condition were explored. fUS data were acquired
from different brain positions, while not setting any specific task for the experi-
mental mouse to execute.

More specifically, a fUS dataset was collected comprising images from 18 coro-
nal slices. After excluding four initial slices that seemed not to be captured cor-
rectly, 14 slices remained of approximately 2000 images (PDIs) taken in each slice
position, with a matrix size of 256 × 256. The PDIs of each slice were fed to the
ICA algorithm. The same ICA parameters have been set as before. Specifically
for the number of ICs, the same procedure as in Section 4.4.4 was repeated, which
involved trying different number of ICs in ICASSO in order to find the most stable
and reproducible results. In the 3D resting-state case, a higher number of ICs was
selected as optimal compared to the previous 2D visual-stimulation experiment.
20 ICs did not seem enough to clearly separate regions because more distinct
anatomical regions were revealed now that more brain positions were examined.
An example of the ICASSO results is given in the Appendix B. In figure 5.23, the
30 components of the first slice are shown.
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Figure 5.23: Resting-state spatial maps of the 1st slice

Figure 5.24: Brain structure of Slices 1 and 2 after gathering most interesting
components. The color of each region matches the number of the component, ranging

each time from 1 to 30.

The clearest and most compact components can be combined while trying to
predict the brain structure of the specific slice, as it is demonstrated in figure
5.24 for slices 1 and 2. The main components of slice 1 and 2 appear after being
thresholded to isolate the most activated area in each case.
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Subsequently, the purpose was to investigate the spatial consistency of several
functional and anatomical regions between adjacent slices. To achieve that the
functional areas that clearly appeared in the ICA components produced from one
reference slice compared to the corresponding areas found in the adjacent slices.

For example, for illustration purposes, the whole set of slices is depicted in two
figures, 5.25 and 5.26, where the 4th and the 9th slice were used as a reference
slice, respectively. In each figure, the reference slice, as well as 3 preceding and
3 trailing slices, were used for the comparison. The components in the reference
slice were selected with regard to how distinctly distributed the maps of some
ICA components appear and how much correlated they are with components from
adjacent slices. If some components are highly correlated with components in
adjacent slices, these become good candidates for further visual inspection.

When matching the corresponding components of different slices, we find that
some of them are similar to multiple components of the reference slice. This occurs
because ICA does not separate the regions in the same way every time. Therefore,
some components represented separate parts of the same anatomical area or did
not constitute a so clear region. Some clear examples of each slice are contoured
by a grey box.

The components that have been separated in the same way can be found as
having high correlation value. The fact that sevaral very high values were found,
confirmed the continuity of distinct brain regions in space. In the two figures, it is
well noticable how the regions in the highlighted boxes changed when looking in
an adjacent brain slice.
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Conclusions 6
This work is mainly focused on applying the data-driven ICA method to fUS data
in order to get access to the different brain anatomical regions. The whole pro-
cessing pipeline was designed, including all the necessary preprocessing steps, ICA
approaches and parameters, as well as the post-processing PDIs-to-atlas registra-
tion. The performance of ICA and its results’ effectiveness were finally assessed
using both task-based and resting-state experiments.

This concluding chapter consists of three sections. In Section 6.1, the overview
of this thesis is presented. Section 6.2 summarizes the contributions made in this
work, while Section 6.3 provides some recommendations for future work regarding
further fUS-data analysis methods.

6.1 Thesis Overview

By moving beyond the gold standard of functional-imaging techniques, that is
fMRI, and the concept of conventional ultrasound-imaging acquisitions, ultrafast
plane-wave compounding has given rise to a new promising modality, fUS. The
combination of high spatiotemporal resolution and sensitivity, deep penetration
and portability led to an increasing number of publications and scientific teams
exploring fUS imaging as well as its potential applications in the field of Neuro-
science. Nevertheless, due to the pioneering nature of this work, the majority of
this thesis effort was focused on setup validation and experimental-parameter con-
figuration (Table 3.1) and not so deeply on the data analysis. Thus, the analysis
part needs further exploration since, so far, correlation analysis was mostly ap-
plied on fUS studies among the obtained signals or the signals and the stimulation
pattern. In the currect work, the exploration was based on ICA, a more advanced
method for decomposing the different brain networks. Extensive fMRI research
showed that the ICA method has been successfully used in numerous neurologi-
cal task-based and resting-state applications. Combined with the fact that ICA
makes no assumptions on data models, ICA has been the algorithm of choice for
this analysis.

In Chapter 4, the whole analysis strategy proposed was described. The first
stage was the determination of the appropriate pre-processing methods. A number
of preprocessing steps was chosen, including removing points in space and time,
gaussian smoothing, centering, whitening and data reduction, along with their
parameters. Then, regarding ICA, the fast-ICA algorithm was used accompanied
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by the ICASSO software package to improve the components estimation. A critical
step for applying ICA is the optimization of the number of ICs. To address that
problem, the question was split into two parts, first defining the effective data-
dimension reduction and then the number of ICs in order for the results to be stable
as well as reproducible. That was achieved by comparing the effects of different
ICs values using the ICASSO software separately for every experiment. That
procedure was firstly tested on the 5 datasets acquired from a visual-stimulation
experiment. After assessing the quantitative measures of IC stability of the whole
set of components, as well as separately for the ones selected as the most clear
ones, a range of values from 15 to 30 components was found appropriate. The
number of 20 was eventually kept for the rest of these experiments’ analysis. Of
course, the computation time significantly increased with the number of ICs when
running a 100-time ICASSO.

In Chapter 5, the methodology developed previously in Chapter 4 was applied,
and the results produced by single- and group-ICA were presented. Firstly, ICA
was applied separately to each dataset and the produced results were examined in
both the space and time domain. Regarding space, the components’ anatomical
regions were identified. After the acquired functional images had been aligned
with the label-annotated brain atlas, each activated region of the components’
spatial maps was matched with the atlas’ labels. To isolate only the most signif-
icant labels, two filtering strategies were used, (i) the overlap between PDI and
atlas’ region and (ii) mean intensity. Then, all the labels found were kept and
characterized as relevant to the specific component. According to that procedure,
8 interesting labels resulted from all the interesting components segmentation.
The brain regions found included the LGN, hippocampus, primary somatosensory
areas, retrosplenial areas and parietal association areas.

Regarding the time domain, components derived from single-ICA were exam-
ined for their task relevance. The components’ time-series were cross-correlated
with the given stimulation pattern. Based on the produced correlation coefficients,
a type of components ranking was proposed. The signal of the component repre-
senting the LGN region was found as the highest correlated in all five datasets,
reaching a correlation of a value equal to 0.6. Thus, the most task-relevant compo-
nent was always the LGN component. The finding of LGN was confirmed by the
visual-pathway, where this region is a very significant one during visual processing.
However, not the same ordering pattern was derived for the rest of the components
as they are not directly associated with the visual-pathway.

Afterwards, the same 5 datasets were examined in a group approach. Us-
ing group-ICA, the components were produced in the same order across datasets
solving the components correspondence problem and facilitating the comparisons.
The differences detected between single- and group-ICA regarding the spatial maps
were not significant. Both approaches were capable of discovering the interesting
maps, which similarly corresponded to the true labels. Whereas, regarding the
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temporal components, in group-ICA the LGN’s time-series were correlated with
the stimulation pattern in a higher level, ranging from 0.6− 0.8. Then, the group
results in a slightly different condition of the same experiment were evaluated. The
most task-relevant LGN component was again identified.

Finally, ICA performance was tested on a single 3D dataset obtained from a
resting-state experiment. Then, ICA was performed on the PDIs of each coronal
slice resulting in different anatomical and functional networks. The most compact
and interesting components were investigated for their spatial consistency. After
having selected a reference slice, the corresponding components of the adjacent
slices were found. In most cases, the correlation values were high, having an
average value around 0.41 and confirming the regions’ spatial continuity.

6.2 Scientific Contributions

• An extensive fUS-related literature review was presented, categorizing the
various research works that has be done regarding the fUS-setup parameters,
experiments and performance (table 3.1)

• Data-analysis methods used in fMRI were explored while checking which
could be potentially applied to fUS data in the future. A summary table
describing the widely-used fMRI methods was given in table 3.2.

• The whole ICA processing pipeline was established. The appropriate pre-
processing steps as well as the free parameters of the ICA algorithm were
determined. ICA ambiguities regarding the parameters, such as the number
of PCA components and ICs, were examined in great detail after performing
a (limited) parameter-space exploration with ICASSO. The ICASSO soft-
ware package was used to facilitate that procedure, running ICA multiple
times. For the determination of the optimal parameters, the same ICASSO
procedure should be followed in every experiment separately.

• The ICA performance was tested on 2D datasets of visual-stimulation exper-
iments as well as 3D resting-state experiments.

• The extracted results were assessed both in time and space. Regarding time,
the temporal components were correlated with the stimulus pattern. In par-
allel, regarding space, the spatial maps were validated for the anatomical
regions that they represent. Thus, task-relevant brain regions were discov-
ered.

• Both single- and group-ICA approaches were capable of revealing the seven
most commonly observed regions without any a priori information.

• ICA results successfully revealed the brain functional segregation into
anatomically meaningful regions in the thalamus, such as the LGN and LAT,
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the hippocampus and in cortex the parietal, somatosensory and retrosplenial
areas.

• The LGN was identified as the most task-relevant component by both ap-
proaches, as also proven by the visual-pathway.

• In the case of the resting state experiment, the ICA-derived regions’ conti-
nuity in space was confirmed.

6.3 Future Directions

Several major limitations within this study are identified. First and foremost,
there is the fact that the main analysis was performed on 2D datasets. As 3D fUS
imaging (or 4D) is a rapidly evolving field, the proposed methodology should be
translated to 3D, as well. In section 5.2, ICA was successfully applied to a 3D
resting-state dataset. However, for a better evaluation, a 3D atlas registration is
a necessary next step. PDIs from multiple brain slices, forming a 3D fUS vascular
atlas, should be aligned with corresponding slices in the annotated brain atlas.
This can be achieved by using several landmarks for the observed blood flow that
match the shape of brain structures and a proper geometrical transformation.
Thus in every new experiment, the 3D fUS atlas will facilitate locating in real
time the position of the image plane scanned. More specifically, the brain regions
with significant neural activity would be also directly recognized.

Furthermore, for better evaluating the interpretability of the ICA results related
to the brain responses, more experiments must take place. Firstly regarding the
visual-stimulation one, it is important to examine slices containing all the areas in
the visual-pathway, such as primary visual areas and the Superior Colliculus.

Secondly, experiments incorporating data acquired simultaneously from differ-
ent modalities should take place. For instance, fUS measurements in combination
with simultaneous EEG recordings can be investigated in case of epilepsy disorder
to validate the activations found. As already tested, the combination of EEG and
fMRI has been used extensively to map the hemodynamic changes associated with
interictal and ictal epileptic discharges [84].

Regarding the data-analysis method used, some other promising options are
also proposed as future work. Some additional steps to ICA as well as other
methods for drawing more and and stronger conclusions are the following:

• Discover patterns of dynamic functional connectivity

Although the majority of fMRI studies, so far, is based on the fact that the
statistical inter-dependence of signals between distinct brain regions is con-
stant throughout a recording, it has been observed that network patterns
may undergo substantial fluctuations over time, leading to a paradigm shift
from static- to dynamic-analysis methods. In many studies, such as [85], [86],
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ICA constitutes a good way for identifying changing patterns of synchrony at
a multivariate level, in combination with strategies, such as the well-applied
sliding-window approach and time-frequency analysis that are able to detect
the dynamic changes and variability over time in inter-region activity (dy-
namic functional network connectivity - FNC). Therefore in fUS-signals, a
dynamic manner should be also examined.

• Incorporate prior information: semi-blind ICA

In some task-based experiments, it would be useful to incorporate additional
information into the ICA analysis. As implemented in the semi-blind ICA
algorithm on fMRI data [87], information regarding the paradigm pattern
could be used to constrain the extracted time-series so to resemble the pre-
defined pattern. That way, ICA sets some assumptions upon the extracted
hemodynamic response, but not so explicit as in case of GLM.

• Discriminate different types of signal patterns using MVPA (Multi-Voxel Pat-
tern Analysis)

More advanced analysis methods should also be applied to fUS data for
further brain-activity interpretation. As already methioned in Section 3.3,
MVPA is a well-known pattern-classification algorithm, used in fMRI to de-
code the information that is represented in distributed (multi-voxel) data
responses. For example, in a visual-stimulation experiment, as the ones con-
ducted in the current work, MVPA could be possibly used to discriminate
the type of stimuli. In case of presenting faces and objects or scenes images
as visual stimuli, the different neural-activation patterns could be detected.
Then, the different brain responses in each region could be distinguished
based on the category of a viewed object. In [88], other examples reported
where MVPA has been used on human datasets are the (visual) decoding of
the orientation of a striped pattern or the movement direction of a field of
dots, or even whether the stimuli is a picture or a sentence, and in particular
the semantic category of that. Some other studies achieved to examine the
subject’s cognitive state.
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Appendix A
A.1 Gaussian Smoothing

To draw some conclusions regarding the different values of the kernel size and
sigma, I checked the collected ICA components in each case for whether all the
significant brain regions are appearing and are clearly distinguished.

To verify that a smoothing procedure is a necessary step for our single-subject
dataset analysis, I firstly displayed the 20 ICA components without smoothing,
shown in figure A.1. In that case, the region of LGN (Lateral Geniculate Nuclei)
is not clearly apparent and significantly activated. Despite the original high spatial
resolution, that is equal to 1540/(30∗106) = 50µm when using a 30MHz probe,
spatial smoothing (and a resulting decrease in resolution) seemed necessary.

Figure A.1: ICA components without smoothing

To understand the influence of spatial smoothing on the ICA components,
different kernel sizes and σ values were tested. In figure A.2, the ICA components
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Figure A.2: ICA components after being smoothed with a large Gaussian kernel

are shown in case of having applied a Gaussian kernel of size 10∗10∗10 and σ = 3.
All the interesting components (described in Section 4.4.4) appear, making the

kernel values appropriate. Also, the correlation coefficient of the LGN component
time-series with the stimulus pattern reaches the value of approximately 0.55,
which is close to the highest discovered. Using different but neighboring values to
for the Gaussian kernel showed similar outcomes. Thus, without loss of generality,
these parameters are chosen for the preprocessing smoothing step.

As it was expected, when the size of the kernel increases, the components
appear more blurred and some of them are not clearly distinguished. Thus, a
large-size kernel did not seem to be an appropriate choice.

A.2 Infomax Algorithm

As menthioned in the main document, FastICA and Infomax are the most com-
monly algorithms used and give the best overall performance when being applied
to fMRI data. So, Infomax was also tested for fUS data.

Infomax maximizes the information transfer from the input to the output of
a network using a non-linear function [67]. However, an important drawback of
that method is that it tends to be biased towards a certain type of probability
density functions (PDFs) for the extracted sources. That means it can find only
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super-Gaussian or sub-Gaussian sources. Most applications of ICA to fMRI cases
use Infomax since the sources of interest are mostly super-Gaussian (i.e., PDFs
that are heavier-tailed and peakier than the Gaussian) and that algorithm favours
that kind of separation.

An example of the extracted ICA components is depicted in figure A.3. In
general, we see similar components with Fast-ICA. All the most-common “inter-
esting” components light up again when using the Infomax algorithm. Correlation
of the task-relevant LGN time-series with the stimulation pattern = 0.5760.

Figure A.3: ICA components using the Infomax algorithm

A.3 Fast-ICA Methodology

The ICA method can give a solution by minimizing or maximizing certain contrast
functions. This transforms the ICA problem to a numerical-optimization problem.
So, the Fast-ICA algorithms [89] for maximizing the contrast function in case of
both deflation-based and symmetrical-based multiple-unit (multiple components)
estimation are:
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Algorithm 1 Multiple-unit Deflation-based Estimation

Result: W← [w1, . . . ,wC]
Result: S←WTX
for p in 1 to C do

wp initialization
while wp changes do

wp ←
1

M
Xg(wp

TX)T − 1

M
g′(wp

TX)1wp

wp ← wp −
p−1∑
j=1

(wp
Twj)wj

wp ←
wp

‖wp‖
end

end

Algorithm 2 Multiple-unit Symmetrical Estimation

Result: W← [w1, . . . ,wC]
Result: S←WTX
W← Random vector of length C
while W changes do

W+ ← 1

M
Xg(WTX)T − 1

M
g′(WTX)1W

W← (W+W+T )−1/2W+

end

A.4 Components Reliability

The extracted components after searching for a different number of components
(10, 15, 30, 50, 100) are shown in figures A.4 - A.7, respectively.

A.5 Components Reproducibility

The extracted components of all the five datasets are presented in figures A.9 -
A.13. The spatial maps as well as the Iq values are shown in each case.
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Figure A.4: ICASSO-10. Left: Iq values of each of the produced ICA components.
Right: The corresponding spatial maps.

Figure A.5: ICASSO-15. Left: Iq values of each of the produced ICA components.
Right: The corresponding spatial maps.
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Figure A.6: ICASSO-30. Left: Iq values of each of the produced ICA components.
Right: The corresponding spatial maps. From the number of 30 ICs, the Iq values start

forming an L-curve.

Figure A.7: ICASSO-50. Left: Iq values of each of the produced ICA components.
Right: The corresponding spatial maps.
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Figure A.8: ICASSO-100. Left: Iq values of each of the produced ICA components.
Right: The corresponding spatial maps.

Figure A.9: Dataset-1. Left: Iq values of each of the produced ICA components.
Right: The corresponding spatial maps.
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Figure A.10: Dataset-2. Left: Iq values of each of the produced ICA components.
Right: The corresponding spatial maps.

Figure A.11: Dataset-3. Left: Iq values of each of the produced ICA components.
Right: The corresponding spatial maps.
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Figure A.12: Dataset-4. Left: Iq values of each of the produced ICA components.
Right: The corresponding spatial maps.

Figure A.13: Dataset-5. Left: Iq values of each of the produced ICA components.
Right: The corresponding spatial maps.
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Appendix B
B.1 Correlation of components’ time-series with the stim-

ulus pattern

As mentioned before, because of the single-ICA inherent variablity in the time-
series, the corresponding components for all the 20 produced by single-ICA could
not be found. So, only the interesting components’ correlation was displayed with
the stimulus pattern. In order to also demostrate the other components’ task
relevance, we can show the correlation values for each dataset separately. In figure
B.1, we see the absolute correlation values between the time-series produced in
case of the reference dataset with the stimulus pattern.
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Figure B.1: Correlation of the reference dataset’ s time-series with the stimulus
pattern.
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B.2 Group-ICA

The 20 back-reconstructed, subject-specific spatial maps derived from group-ICA
on the 5 datasets are shown in figures B.2 and B.3.

Figure B.2: Group-ICA common spatial maps and the back-reconstructed
individual-specific ones (Maps 1-10)
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Figure B.3: Group-ICA common spatial maps and the back-reconstructed
individual-specific ones (Maps 11-20)
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B.4 Resting-state Experiment

Figure B.5: Average Iq values for different number of ICs (20, 30 and 50) in case of
resting-state dataset. Searching for 30 ICs was considered as the most appropriate

choice.

It is observed in figure B.5 that there is no significant difference in the average
Iq values, in case of 20 and 30 ICs, whereas it quite drops in case of 50 ICs. Thus,
the selection of 30 ICs for the analysis led to a better separation. Even though the
components were more, their Iq values were also higher.
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[7] Charlie Demené, Thomas Deffieux, Mathieu Pernot, Bruno-Félix Osman-
ski, Valérie Biran, Jean-Luc Gennisson, Lim-Anna Sieu, Antoine Bergel,
Stephanie Franqui, Jean-Michel Correas, et al. Spatiotemporal clutter fil-
tering of ultrafast ultrasound data highly increases doppler and fultrasound
sensitivity. IEEE transactions on medical imaging, 34(11):2271–2285, 2015.

[8] Yi He, Maosen Wang, Xuming Chen, Rolf Pohmann, Jonathan R Polimeni,
Klaus Scheffler, Bruce R Rosen, David Kleinfeld, and Xin Yu. Ultra-slow
single-vessel bold and cbv-based fmri spatiotemporal dynamics and their cor-
relation with neuronal intracellular calcium signals. Neuron, 97(4):925–939,
2018.

[9] Yoshiyuki Hirano, Bojana Stefanovic, and Afonso C Silva. Spatiotemporal
evolution of the functional magnetic resonance imaging response to ultrashort
stimuli. Journal of Neuroscience, 31(4):1440–1447, 2011.

91

https://doi.org/10.1007/978-3-540-69469-4_8
https://doi.org/10.1007/978-3-540-69469-4_8


[10] Philip G Haydon and Giorgio Carmignoto. Astrocyte control of synaptic
transmission and neurovascular coupling. Physiological reviews, 86(3):1009–
1031, 2006.

[11] Sang-Pil Lee, Timothy Q Duong, Guang Yang, Costantino Iadecola, and
Seong-Gi Kim. Relative changes of cerebral arterial and venous blood vol-
umes during increased cerebral blood flow: implications for bold fmri. Mag-
netic Resonance in Medicine: An Official Journal of the International Society
for Magnetic Resonance in Medicine, 45(5):791–800, 2001.
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