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Abstract

The intrusion of sea water into estuaries creates a complex flow that results from the density difference between
fresh river run-off and salty sea water. In combination with other processes, such as tides, these complex flows
are of interest because they affect the transport of e.g. salt, sediments and nutrients in water, which determine
the future shape and ecology of the estuary. This research focusses on mechanisms that result in exchange
flows and transport of salt.

The model study has led to new insights into the way in which tides and baroclinic pressure gradients contribute
to the straining circulation, i.e. the exchange flow that is induced by the interaction of temporal variations of
turbulence and velocity. The straining circulation is traditionally associated with the tidal flow. To make a
distinction between this traditional view and the new findings, we will call this the tidal straining circulation.
It is shown that the tidal straining circulation explains only a small part of the total straining circulation in a
parameter space typical for well-mixed and partially stratified estuaries.

This research identifies a new and more important contribution to the straining circulation. This is caused
by interactions between the gravitational circulation and temporal variations of turbulent mixing, which we
will call the gravitational straining circulation. The gravitational straining circulation increases non-linearly with
increasing temporal variations of turbulence. Large tidal variations of turbulent mixing are typically found in well-
mixed and partially stratified estuaries. Such temporal variations of turbulence can be caused by strain-induced
periodic stratification (SIPS), asymmetric mixing or symmetric variations of mixing, such as the variation of
turbulence with the tide.

The dominant contribution of gravitational straining circulation to the total straining circulation explains why
the straining circulation is larger than the gravitational circulation in partially stratified estuaries and why
both the gravitational circulation and the straining circulation have the same dependency on the along-channel
salinity gradient. It also explains why the straining circulation is much smaller in strongly stratified estuaries,
where the tidal variations of turbulence are not as large as in partially stratified estuaries. The direction and
magnitude of the gravitational straining circulation is additionally shown to be independent of the timing of
temporal variations of turbulent mixing. The magnitude and direction of the tidal straining circulation depend
not only on the timing of temporal variations of mixing, but are shown to also depend on the bed roughness
and the rate of mixing. This implies that the tidal straining circulation can act in the opposite direction as is
expected from current theory in certain model parametrisations.

Concerning the transport of salt, it is shown that temporal variations of turbulent mixing are able to create a
strong salt transport. A potentially large salt transport is caused by temporal correlations of the salinity and
the velocity. This salt transport contribution is shown to be highly sensitive to the phase of the salinity, which
is strongly dependent on the phase of turbulent mixing. Accurate modelling of turbulence is therefore essential
to obtaining accurate results for the salinity.
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Preface

Estuaries have captured my imagination ever since I first encountered them in my studies. Many estuaries are
areas of great natural beauty and tranquillity. Others support some of the largest cities and harbours in the
world and have become of essential economic value. It is therefore that human interventions in estuaries and
the surrounding waters can have an enormous environmental and economical impact. The understanding of
the physics that governs the flow in estuaries is of essential importance to evaluating and designing sustainable
measures for managing estuaries. This research treats a number of important physical mechanisms that act in
estuaries. These investigations are on an abstract level and will only contain the odd reference to real estuaries.
Still, the idea of studying something so tangible and natural as estuaries inspires me on a daily basis.

The physics of flow in estuaries contains exactly those elements that have always intrigued me during my studies
and that have led me take-up my studies in mathematics as well as in civil engineering. This physics includes
turbulence and the complex interactions between flow and turbulence that lead to transitions between different
states of the estuarine system. I am therefore happy that this thesis treats such interactions between flow and
turbulence, to make a contribution to a further understanding of the physics of estuaries.

This research is my master thesis for Applied Mathematics and part of my double degree in Civil Engineering
and Applied Mathematics. This research has been an excellent combination of both fields of study; using
mathematical techniques to formulate and implement an idealised model and using understanding of the physical
system to interpret the results. I hope that this work can be a bridge between the two fields, showing the use
of idealised models to civil engineers and the mathematical challenges of estuarine physics to mathematicians.

I would like to thank Henk Schuttelaars for the great cooperation, good ideas and his endless enthusiasm in
working on this thesis. This work would not be what it is without his great support. I would also like to thank
Julie Pietrzak and Rob Uittenbogaard for their feedback during the writing of this thesis and Jan van Kester
and Martin van Gijzen for their work on the assessment committee. I would like to express my gratitude to
Deltares for giving me the opportunity to work with them for fourteen months during the work on both theses.

I hope that you will find as many new insights in reading this thesis as I did in the process of writing it.

Yoeri Dijkstra,
November 2014
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Introduction

Estuaries are bodies of water where rivers meet the sea or ocean. The flow of water in estuaries is not only
affected by the clearly visible external forcing of tides, river discharge and wind, but also by the internal forcing
by density variations in the water. An example of such density variations are the density differences between
the salty sea water that flows into the estuary and the fresh river water that flows out into the sea. These
forcing mechanisms and the interaction between them give rise to complex flow patterns. A part of such density
induced flows are exchange flows. Exchange flow is a term for the residual, i.e. time-averaged, flow of water,
with a cross-sectionally-averaged velocity of zero, but with varying magnitude and direction over the estuarine
cross-section. The exchange flow is of interest because it is important for the transport of constituents in the
estuary such as salt, sediments, nutrients and algae, which in turn determine the development of the shape and
ecology of the estuary.

The transport of salt in water is of particular interest because it is both affected by the flow and induces a flow.
These interactions between water and salinity have such an effect on the flow dynamics, that the understanding
of them is a requirement for understanding the transport of other substances in water. The transport of salt is
also of interest in itself; the intrusion of salt water into the estuary can be a major problem for the agricultural
and drinking water system in the often heavily populated areas around estuaries.

Mathematical models can be used to gain understanding of the exchange flows and salinity dynamics. There
are several types of models that exist for this purpose, each with their own advantages. One clear distinction
between model types is that between idealised and complex models (Murray, 2003). Idealised models are
characterised by containing only those physical processes that are regarded as the essential physical processes
for the subject under study. These models are, as a result, not capable of providing a quantitatively accurate
representation of a real estuary. Their relative simplicity, however, makes them suitable for providing insight
into the workings and importance of the physics that is included. Contrastingly, complex numerical models are
capable of simulating estuarine dynamics at a more quantitative basis, but it is generally difficult to explain the
model results in terms of the separate physical processes contained in the model.

Restricting our attention to idealised models, we see that these models have long mainly focussed on the
net transport by residual flows in general and exchange flows in particular. The classical way (Geyer and
MacCready, 2014) of analysis contains the residual flow which is due to the river flow, a baroclinic pressure
gradient (i.e. pressure differences that are caused by density differences) and non-linear advection. Some or all
of these residual velocity components are used to calculate the net transport of salt (Hansen and Rattray, 1965;
MacCready, 2004; Ralston et al., 2008). The exchange flow which is caused by the baroclinic pressure gradient
is called gravitational circulation and is considered by these authors to be the most important mechanism for
the transport of salinity. The baroclinic pressure gradient arises from the fact that the salinity on the seaward
side of the estuary is higher than on the landward side. This causes the typical gravitational circulation with
water flowing into the estuary near the bed and water flowing out to sea near the water surface, see Geyer
(2010) or Section 1.2.

The classical way of modelling residual flows does not consider an important class of exchange flows that is
created by asymmetric mixing. Asymmetric mixing concerns differences in the amount of turbulent mixing of
the water column over a tidal cycle. The occurrence of asymmetric mixing is often ascribed to strain-induced
periodic stratification (SIPS). The SIPS mechanism was first published by Simpson et al. (1990) and concerns
tidal asymmetries in the degree of mixing of salt and fresh water. This asymmetry works as follows: during
ebb tide, the vertical velocity gradient causes fresh water from the riverine side of the estuary to flow over the
more saline and denser water from the seaward side, thus creating a stably stratified water column. Such stable
stratification acts to reduce the amount of turbulent mixing. This process is reversed during flood tide, when
more saline water flows over lighter fresh water, creating an unstably stratified water column. The amount of
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2 Introduction

mixing increases in order to return to a stable situation. SIPS is, however, not the only mechanism that creates
asymmetric mixing as asymmetries in the vertical gradient of the horizontal flow velocity can have a similar
effect (Burchard and Hetland, 2010).

It was shown by Jay and Musiak (1994) that asymmetric mixing by SIPS causes an exchange flow of water by
altering the vertical profile of the tidal flow. This exchange flow was later called straining circulation by Burchard
et al. (2011) and Geyer and MacCready (2014) as a reference to the SIPS mechanism. Several studies have
confirmed the importance of the straining circulation by measurements (Stacey et al., 2001), complex models in
one vertical dimension (1DV) (Stacey et al., 2008; Burchard and Hetland, 2010) and idealised models (Prandle,
2004; Cheng et al., 2010). These studies have found that the straining circulation can be larger than the
gravitational circulation for a wide range of parameters that describe well-mixed to partially stratified estuaries.
Burchard and Hetland (2010) find that the straining circulation is about two times the magnitude of the
gravitational circulation for a typical partially stratified estuary.

It remains a challenge to differentiate between straining circulation and gravitational circulation in measure-
ments, because the straining circulation typically has the same shape as the gravitational circulation (Burchard
and Hetland, 2010; Cheng et al., 2011). Burchard and Hetland (2010) have also shown that the straining circu-
lation has a similar dependency on the horizontal salinity gradient as the gravitational circulation in well-mixed
to partially stratified estuaries. On the other hand, Cheng et al. (2011) find that straining circulation is greatly
diminished in strongly stratified estuaries and can adopt a different shape of the velocity profile. The current
framework of explaining the straining circulation has not yet led to an explanation as to why these dependencies
exist.

Tidal processes are, next to the exchange flows, also important for the net transport of salt. The correlations
between vertical and temporal variations of the tidal velocity and the salinity can result in a significant or even
dominant net transport of salt (Hughes and Rattray, 1980). The tidal contribution to the salt transport has
been studied from measurements (Winterwerp, 1983; Bowen and Geyer, 2003; Lerczak et al., 2006) and in
idealised model studies with constant turbulence (McCarthy, 1993; Wei et al., 2014). It has however not been
studied separate from other salt transport mechanisms in models with variable mixing, so that little is known
about the dependency of the tidal salinity transport on tidal variations of turbulence.

In this study we will explain the above dependencies of the exchange flow and we will make a first step in analysing
the tidal salinity transport under conditions of tidally variable mixing in a well-mixed to partially stratified estuary.
To this end, we will develop a two-dimensional longitudinal-vertical (2DV) model for hydrodynamics and salinity.
The model is an idealised model based on a mathematical scaling and ordering of the equations, which allows
us to study different physical mechanisms associated with tides, river discharge and density, separately and
systematically. The turbulence modelling in the model allows for arbitrary variations of the turbulent mixing in
space and time and the model is coupled to a k − ε turbulence model.

The inclusion of arbitrary temporal variations of the eddy viscosity is a novel feature to this type of idealised
models. Previous studies with this class of models have used constant mixing (Ianniello, 1977, 1979; McCarthy,
1993) or small variations of mixing (Cheng et al., 2010; Chernetsky, 2012). The inclusion of arbitrary temporal
variations of the turbulent mixing allows us to study the interactions between several tidal velocity constituents
and the residual flow via correlations with the tidal variations of turbulent mixing. These interactions will prove
essential to the establishment and dependencies of the straining circulation. The arbitrarily sized variations of
mixing will also allow us to study the effects of turbulence variations on tidal salt transport; this has not been
possible with small variations of mixing, because such variations do not appear in the scaled salinity model
(Cheng et al., 2010).

This study centres around two research questions:
1. How does the flow velocity, and straining circulation in particular, depend on the interactions between

tidal variations of turbulence and the flow velocity itself?

2. How does the tidally induced salt transport depend on tidal variations of turbulence?

This report starts with a short overview of the background theory on the propagation of the tide, density driven
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exchange flows and turbulence in Chapter 1. The idealised 2DV model for hydrodynamics will be formulated
in Chapter 2. This chapter will start along the lines of Ianniello (1977, 1979) with a constant turbulent mixing
formulation. We will then extend the model to include vertical and temporal variations of turbulence. We will
also treat the coupling of the hydrodynamic model to a k − ε turbulence model. The model will be extended
with a model for salinity transport following on from McCarthy (1993) in Chapter 3. In a similar manner as
with the hydrodynamics model, the salinity model will be extended to include vertical and temporal variations
of turbulent mixing. Additional to the salt transport model, we will develop a tool to decompose the salt
transport into contributions by different forcing mechanisms and convert the transport to equivalent values of
a one-dimensional horizontal (1DH) salinity dispersion coefficient, inspired by Fischer (1972).

The results of the hydrodynamic model and the salinity model will be discussed separately. Chapter 4 discusses
how spatial and temporal variations of turbulence affect the flow velocity and the exchange flow in particular.
We will investigate the effects of vertical, horizontal and temporal variations of the eddy viscosity separately.
This research focusses on temporal variations of turbulence, in light of which a framework is developed to explain
the interactions between these temporal variations and the flow velocity. This framework will then be used to
explain the nature of the straining circulation. The results of the salinity model will be treated in Chapter 5.
We investigate the effect of temporal variations of turbulence on the tidal salt transport. The results include
an analysis of the tidal salt transport with mixing calculated by the k − ε model and a sensitivity analysis of
such transport to the phase and magnitude of turbulent mixing. A synthesis and discussion of the results is
presented in Chapter 6. This report closes with conclusions and recommendations for further research.





1
Flow in estuaries

Estuaries are defined as semi-enclosed basins with a free connection to the sea or ocean within which salt ocean
water is diluted by fresh water (Valle-Levinson, 2010). The density differences between fresh riverine water
and salty sea water result in interesting and complex flow patterns. Density differences in water can generally
be caused by differences in salinity, sediment concentration or temperature. In this study, we will assume that
all density differences are caused by differences in salinity. Estuaries here form the connection between the
relatively narrow and shallow river and the wider and deeper sea, see Figure 1. They typically vary strongly
in width and depth and generally do not consist of straight channels, but contain alternating patterns of deep
meandering channels and shallow shoals or islands.

Sea Estuary Tidal river River 

Salt 
water 

Fresh 
water 

Figure 1: Conceptual image of the sea, estuary, tidal river and river.

The flow in an estuary is a combination of the fresh river water that flows out to sea, the oscillatory movement
of the tide that propagates from the sea into the estuary, the flow and waves which are caused by the wind and
the flow which is caused by the density differences between fresh and salt water. These forcing mechanisms can
be divided in barotropic and baroclinic components. Barotropic concerns the flow in which density differences
in the water are not taken into account. Baroclinic concerns that part of the flow that is driven by density
differences, which are caused by differences in for example the salinity. The barotropic and baroclinic flow in the
estuary will be treated in more detail below. The discussion on the barotropic flow in Section 1.1 concentrates
on the propagation of the barotropic tide. The discussion on the baroclinic flow in Section 1.2 explains how
baroclinic density gradients are capable of creating a time-average flow of water. This will be followed by an
introduction to the meaning and role of turbulence in the estuary in Section 1.3.
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6 1. Flow in estuaries

1.1. Propagation of the tide
The global tide is created by the gravitational forces of the Sun and the Moon on the Earth. Such forces create
a tidal wave that propagates through the oceans over the world. As this wave moves into shallower seas and
estuaries it deforms under the effects of, among others, shoaling, funnelling, friction and reflection. Shoaling
occurs when a wave moves from deep to shallow water. The energy contained in the wave in deep water needs
to be transferred to the shallow water which results in an amplification of the wave height. Funnelling describes
the same effect for a wave moving into a channel with a converging width; the principle of conservation of
energy again results in an amplification of the wave height. The amplification is counteracted by friction, mainly
from contact with the river or sea bed. The friction depends strongly on the water depth, bed composition,
bed forms and vegetation and is therefore an intricate process to model accurately. Finally, reflection occurs
when a wave hits a steep coastline, sea wall or tidal weir. The wave energy is reflected back, leading to an
amplification of the wave height by up to a factor two.

The above discussion concerns what is sometimes called the vertical tide, the tidal wave height or amplitude.
We will not use the word tide to denote the vertical tide, but use it to denote the horizontal tide, which describes
the tidal flow velocity. The ebb tide is then defined as the period of time during which the tidal velocity has a
seaward direction, while the flood tide is conversely defined as the period of time during which the tidal velocity
has a landward direction.

We need to make a distinction between the flow velocity and the velocity of the wave. The tidal wave moves
at a different rate than the water itself. The frictionless shallow water approximation for the barotropic wave
velocity, denoted by cE , is

cE =
√
gH, (1.1)

where g is the acceleration of gravity and H is the water depth. The wave velocity for a depth of 10 m is then
10 m/s, while the typical flow velocity is only 1 m/s.

The notion that the wave velocity is finite leads to the conclusion that a tidal wave must be at a different stage
in its cycle at different locations along the estuary. This phenomenon is described by the phase of the wave.
Let us define a phase of zero as the phase of the wave at the mouth of the estuary at some point in time t0.
The wave then takes time to travel up the estuary so that the phase of zero occurs at t1 > t0 at a location
inside the estuary. In other words, the phase of the tidal wave inside of the estuary is negative at time t0. A
negative phase of the wave at some location therefore means that the wave lags the wave at the mouth of the
estuary.

The tidal wave is generally not a simple sine wave, but consists of multiple frequency components. The frequency
components are denoted by the combination of a letter that indicates the origin and a number that indicates
the frequency. For example the M2 tide denotes the lunar tide (M for moon) with a period of 12 hours and
25 minutes, i.e. approximately twice a day. Some components are mainly forced externally by the Sun and
the Moon, for example the lunar M2 and solar S2 tides and the lunar-solar interaction K1. Other components
are mainly generated internally in a shallow sea, estuary or tidal river by non-linear mechanisms like friction.
Examples of such internally generated tidal constituents are the overtides M4, M6, S4 and S6. In this thesis
we will concentrate on the main tidal constituent in most parts of the world: the M2 tide and its internally
generated overtides.

The combination of these constituents results in a tidal wave that is skewed and asymmetric. Skewness is used
to describe a wave that has wave crests that are more peaked and wave troughs that are flatter than a sine
wave, see Figure 2a. A skewed wave can be constructed by perturbing an M2 wave by a small M4 wave that
is out of phase. Asymmetry is used to describe a wave that is ’pitched forward’, see Figure 2b. An asymmetric
wave is also constructed by perturbing the M2 wave by an M4 component, but the M4 component is now in
phase with the M2 component.

The overtides also cause skewness and asymmetry of the horizontal tide. Such skewness and asymmetry is
called horizontal tidal asymmetry or just tidal asymmetry. The complexity of all the causes of tidal asymmetry
is often summarised by stating that the system is ebb dominant or flood dominant. The notion of ebb and
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ζ (m)

t/T

(a) Time record of a skewed wave.

ζ (m)

t/T

(b) Time record of an asymmetric wave

flood dominance is generally associated with the study of sediment transport. Ebb dominance is therefore
associated with a net landward directed sediment transport, while flood dominance is associated with a net
seaward sediment transport. We will adopt the definition of Friedrichs and Aubrey (1988); Friedrichs (2010)
here. This states that a system is ebb dominant if the period of time during which the water level falls is shorter
than the period of time during which the water level rises. The converse holds for flood dominant estuaries.
This definition is not conclusive about the direction of the net sediment transport, which depends on more
factors than the tidal asymmetry. Friedrichs (2010) provides an overview of how the shape and bathymetry of
the estuary influences tidal asymmetry and net sediment transport.

The non-linear tidal propagation in estuaries does not only induce overtides, but also residual flows. The residual
flow or subtidal flow are terms that denote the current that remains after tidally averaging the along-channel
velocity. Related to this, we will use the terms exchange flow or estuarine circulation for the part of the
residual flow that has a cross-sectionally-averaged value of zero. The formal definitions of exchange flow and
estuarine circulation do not make this clear distinction, but the terms are frequently used in this way (Geyer
and MacCready, 2014).

Examples of tidally-averaged flows with a non-zero depth-averaged value are the river flow and the return flow
that compensated for Stokes drift. The Stokes drift is a net transport that is caused by the differences in flow
velocity under the crest and the through of a wave. The flow velocity under a wave crest is higher than under a
wave trough, resulting in a net inflow of water. The net inflow of water by Stokes drift needs to be counteracted
in order to satisfy the law of conservation of mass. Such return flow is established by a subtidal water level
gradient which causes a pressure gradient and therefore a flow directed out of the estuary. Other residual flows
with a non-zero depth-averaged value can be present locally in certain channels or on certain shoals that favour
either the ebb or the flood tide. The cross-sectionally averaged contribution of such residual flows is zero.

Exchange flows can be caused by a number of processes among which non-linear advection (Li and O’Donnell,
2005), baroclinic pressure, see Section 1.2, and interactions with asymmetric turbulent mixing, see Section 1.3.

1.2. Baroclinic flow
The baroclinic pressure induces a component of the exchange flow that is known as gravitational circulation.
In this section it will be explained how this exchange flow is established.

First, however, we will look closer at the shape of the density profiles in an estuary. Baroclinic pressure is the
pressure that is caused by density differences, which in this research are caused by salinity differences. The sea
contains salt water, while river water is fresh. This causes salt water to be concentrated near the mouth of the
estuary, while fresh water is concentrated further inland. This is referred to as horizontal stratification. Salt
water is heavier than fresh water which leads to the tendency of salt water to be concentrated near the bed
and fresh water to be concentrated near the surface. This is referred to as vertical stratification. The structure
of the horizontal and vertical stratification differs between estuaries. Pritchard (1955) identifies the following
classes:



8 1. Flow in estuaries

(a) Salt-wedge. Very pronounced horizontal and vertical stratification with a salt water flow which is con-
centrated near the bed and which moves back and forth through the estuary during the tidal cycle. The
transition between saline and fresh water is strong and there is hardly any turbulent mixing at the interface
between the two.

(b) Strongly stratified. Horizontally and vertically stratified. The water column is stratified and remains
stratified throughout the tidal cycle, with higher salinity concentrations near the bed than near the surface.
Turbulent mixing is strongly damped by the stratification.

(c) Partially stratified. Horizontally stratified and weakly vertically stratified. The water column is stably
stratified during only a part of the tidal cycle. Turbulent mixing is damped during stratification, but is
enhanced when the water column becomes fully mixed, causing strong variations in mixing throughout the
tidal cycle.

(d) Well-mixed. Horizontally stratified. The water column is well-mixed throughout the tidal cycle and
turbulent mixing is hardly influenced by vertical stratification.
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(a) Salt wedge.
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(d) Well mixed.

Figure 3: Typical salt distribution in the several classes of estuaries.

This research is restricted to partially stratified and well-mixed estuaries. In this section we will concentrate on
the way in which the horizontal stratification induces the gravitational circulation. The vertical stratification
can also induce exchange flows via asymmetries in turbulent mixing. This will be discussed in Section 1.3.

We will look closer at the definition of baroclinic pressure in order to derive the relation between horizontal
stratification and gravitational circulation. The barotropic and baroclinic flow are driven by pressure gradients.
The pressure is assumed to be hydrostatic, which means that it is determined according to

p = gρ(ζ − z) + p0.

This equation describes that the pressure in water depends on the atmospheric pressure above the water p0 and
the pressure under water. The latter is composed of the product of the density of water ρ, the acceleration of
gravity g and the distance to the water surface ζ − z. We use ζ to denote the level of the water surface and z
to denote the vertical coordinate. This coordinate ranges from the bed level z = −H to the surface z = ζ.

We assume that atmospheric pressure is constant in the horizontal direction. We can then take the derivative
of the pressure to find the pressure gradient along the estuary and obtain

px = gρζx︸︷︷︸
(1)

+ gρx(ζ − z)︸ ︷︷ ︸
(2)

,
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where the subscript denotes the derivative in x-direction, i.e. along the length of the estuary. The first term
on the right-hand side is known as the barotropic pressure, while the second part is the baroclinic pressure.

Whereas the barotropic pressure is constant in the vertical direction, the baroclinic pressure differs in the vertical
direction. The baroclinic pressure varies linearly in the vertical direction if the density is constant in the vertical
direction. The time-independent part of the baroclinic pressure causes a residual flow velocity. Similarly to
what we have seen for the Stokes drift, the baroclinically induced velocity must be compensated for by a
barotropic pressure gradient in order to ensure conservation of mass. We then have a linearly varying baroclinic
pressure gradient and a counteracting constant barotropic pressure gradient. The net pressure gradient and
the corresponding flow velocity are displayed in Figure 4. The velocity is an exchange flow which is called
gravitational circulation. It has a cross-sectionally average value of zero, but is directed landward near the bed
and directed seaward near the surface. It can therefore cause a net transport of constituents in water if such a
constituent is non-uniformly distributed over the water column.

z 

pressure 

z 

velocity 

Figure 4: Net baroclinic pressure (left) and the resulting exchange flow: the gravitational circulation (right).

1.3. Turbulence and turbulence induced flows
This section provides a brief introduction to turbulence modelling by introducing the eddy viscosity hypothesis
and then using this to describe how temporal variations of turbulence cause exchange flows. A more complete
explanation of turbulence is given by Tennekes and Lumley (1972) and Pope (2000). Introductions to turbulence
for applications in estuaries and coastal waters are provided by Fischer et al. (1979) and Monismith (2010).

Turbulence is the mixing of water by turbulent eddies, or vortices, that derive their energy from gradients of the
velocity and density. Turbulent mixing acts on scales that become as small as 0.1 mm, the so called Kolmogorov
scale. Such small scales cannot as yet be resolved by models for environmental flows (e.g. rivers or estuaries)
or geophysical flows (e.g. oceans), because the computational time that would be required is too high. Such
models therefore solve for the flow velocity on a much larger scale and parametrise turbulence as a diffusive
mixing process.

Turbulence shows in a time record of the velocity as seemingly random fluctuations of the velocity. Such
fluctuations of the velocity components in three dimensions u, v and w are denoted by u′, v′ and w′. The
model resolves the velocity signal without these fluctuations ū, v̄ and w̄. The fluctuating velocity components
can, however, not be fully eliminated from the model, because the product of two fluctuating components
results in a net shear stress on the large-scale flow. Such a shear stress, called the Reynolds stress, is typically
dominated by the product of u′ and w′. Its net contribution is denoted by

τ = ρu′w′,

where τ is the Reynolds stress. This Reynolds stress is parametrised by a Fickian diffusion process according to
the eddy viscosity hypothesis. This reads

τ = ρu′w′ = −ρνtuz.
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The diffusion coefficient νt is called the eddy viscosity. The eddy viscosity is not a constant, but is a complex
function of the flow properties. The modelling of turbulence is the process of finding expressions for the eddy
viscosity in terms of mean flow quantities. In this thesis we will consider a number of such expressions ranging
from prescribing a constant value to employing a complex non-linear k − ε model.

Turbulence is affected by velocity gradients and density gradients. Velocity gradients promote turbulence.
This means that mixing increases during peak ebb and flood tide when the velocity, and therefore the velocity
gradient, is largest. Stable density gradients (i.e. lighter water on top of heavier water) oppose this and decrease
mixing. Such decrease of mixing is established by the potential energy gradient which accompanies the density
gradient and which should be overcome by turbulent eddies. This process drains kinetic energy from the eddies
and therefore reduces mixing. Partially stratified estuaries are only stably stratified (i.e. have a stable density
gradient) during part of the tidal cycle, which causes variations in turbulent mixing.

We will call these variations of turbulence over the tidal time-scale turbulence asymmetry. Asymmetric turbu-
lence is capable of changing the tidal propagation and the baroclinic flows by altering the oscillatory flow and
creating a new exchange flow. The latter has particularly received a lot of attention in literature since the first
time it was described by Jay and Musiak (1994). Their reasoning follows on from the strain-induced periodic
stratification (SIPS) mechanism described by Simpson et al. (1990). Both will be explained below.

The SIPS mechanism describes the evolution of vertical stratification in well-mixed and partially stratified
estuaries. Let us consider an estuary that is well mixed in the vertical direction and horizontally stratified. The
tidal velocity is small near the bed, because of the effect of bed friction, and is larger near the surface. During
ebb, this causes the fresh water from the landward side of the estuary to flow slowly near the bed and faster
near the surface. The result is a water column that becomes stably stratified and therefore contains a reduced
level of turbulence, see Figure 5. The converse happens during flood leading to unstable stratification with
heavy salt water on top of light fresh water, which results in increased mixing.

Fresh Salt 

Figure 5: Straining of salinity by the ebb tide in a horizontally stratified estuary.
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Flood 

z 

Exchange 
flow 

Ebb 

Figure 6: Vertical velocity profiles according to the theory by Jay and Musiak (1994) and the resulting time-averaged flow velocity.

Jay and Musiak (1994) reason that the variations of mixing caused by SIPS result in an exchange flow by
describing the changes to the distribution of momentum. The momentum of a tidal flow is concentrated in the
top part of the water column, because the flow velocity is larger there than near the bed. The increased mixing
during flood acts to smooth this momentum distribution and so mixes momentum downward. This yields an
increased flow velocity in landward direction near the bed and a decreased flow velocity near the surface. During
ebb, the reduced mixing leads to the opposite effect on the momentum distribution resulting in an increase
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of momentum near the surface and a decrease near the bed. This yields a decreased flow velocity in seaward
direction near the bed and an increased flow velocity near the surface. This asymmetric flow during ebb and
flood can be described by a symmetric tidal wave and a constant component or exchange flow. The exchange
flow has a landward direction near the bed and a seaward direction near the surface, see Figure 6.

The SIPS induced exchange flow is not the only nor the most important exchange flow that is caused by
temporal variations of turbulence. Turbulence asymmetry is not only created by an asymmetry in buoyancy,
but also by an asymmetry in velocity shear (Burchard and Hetland, 2010). It is important to note that an
asymmetry in velocity shear is not only created by an asymmetry in the depth-averaged velocity itself, but also
by asymmetric contributions to the shear, which are not visible in the depth-averaged velocity. This will be a
focal point of this research.

The asymmetry of the water level is another source of asymmetric turbulence. In the estuaries that will be
considered here the effect will be that the turbulent length-scale can become larger during higher water than
during low water. As a result the eddy viscosity is larger during high water than during low water.

It is additionally not only the tidal flow that interacts with asymmetric turbulence to induce an exchange flow.
It will be shown for the first time in this research that the interaction of the baroclinic pressure with temporal
variations of turbulence will also induce an exchange flow. This exchange flow will have a greater magnitude
than the exchange flow caused by the interaction of the tide and SIPS in a wide parameter range.

All exchange flows caused by interactions of the velocity and temporal variations of turbulence will be called
straining circulation, which is the name given by Burchard et al. (2011) to describe the SIPS induced exchange
flow.





2
Model formulation: hydrodynamics

The 2DV model for the hydrodynamics will be developed in this chapter. The model is named the two-
dimensional point model (2DPM) model, because it solves the vertical dimension like a sequence of 1DV point
models that are coupled horizontally. The solution method makes use of a mathematical perturbation approach
and solves the equations in terms of Fourier components in time, the advantages of which will be discussed in
Section 2.1.

Idealised modelling started with the one-dimensional horizontal (1DH) modelling of water levels in frictionally
dominated tidal flows in the 19th century. Some of the main results are repeated by e.g. Ippen and Harleman
(1961) for prismatic channels and by Lanzoni and Seminara (1998) and Friedrichs (2010) for converging chan-
nels. The analytical solution for the water motion found in these analyses is based on the balance between a
barotropic tidal forcing and friction. The disadvantage of the 1DH approach is the lack of the vertical structure
that is required for the modelling of exchange flows such as gravitational circulation. The depth-averaged
velocity of the exchange flow is zero, so that a depth-averaged model cannot resolve this circulation. One-
dimensional vertical (1DV) models were therefore developed to investigate the structure of the water column.
Hansen and Rattray (1965) have developed analytical solutions for the gravitational circulation in such a 1DV
model under the assumption of vertically constant turbulent mixing.

The combination of the 1DH and 1DV approaches results in an idealised 2DV model. Ianniello (1977) was the
first to build such a model that computes the residual currents resulting from the combined effects of barotropic
pressure, baroclinic pressure, river flow and momentum advection. The model was initially built for channels
with a constant depth and width and later extended by Ianniello (1979) for channels of exponentially converging
depth and width. Analytical solutions were developed for the case of a spatially and temporally constant eddy
viscosity and vertically parabolic eddy viscosity. The latter profile is typical for barotropic river flows and results
approximately in the classic logarithmic vertical velocity profile, which corresponds closely to observed profiles.

The model that will be developed in this chapter extends the model by Ianniello (1979). We will first introduce
the assumptions which will be used in the model in Section 2.1. These assumptions are used to scale the
equations in order to simplify them. We will present the equations and the scaling argument in Section 2.2.
The system of equations that is obtained can be rewritten as a system of linear ordinary differential equations.
The solution of this system can be written in terms of abstract linear operators that can be solved numerically.
This procedure is explained in Section 2.3. Section 2.4 finally treats the coupling of the model to a k − ε
turbulence model. The full details of the hydrodynamic model, including analytical solutions and its numerical
implementation, are presented in Appendix A.

13
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2.1. Assumptions and approach
The semi-analytical model is a 2DV model of a channel with a varying longitudinal bed profile and an expo-
nentially decreasing width, see Figure 7. The processes that act in the lateral direction are parametrised in
the model. The bed level, which is denoted by H(x), is allowed to vary gradually (i.e. with length scales
corresponding to the length of the tidal wave) over the x-direction. The width B is exponentially decreasing
according to

B(x) = B0e
−x/Lb ,

where Lb denotes the convergence length. A straight channel is retrieved by imposing Lb = ∞. The model
is forced by a tidal signal (M2, M4) at the seaward side. A tidal weir is located at the landward end of the
estuary. This weir acts as a reflecting wall over which a constant river inflow Q is prescribed. Short waves,
swell and wind forcing are not included in the model.

River 

𝑄 

𝑧 =  −𝐻(𝑥) 

𝑧 =  ζ(𝑥) 

Sea 
M2, M4 

x 

z 

𝑧 = 0 

(a) Along-channel cross section

River 

𝑄 Sea 

𝐵(𝑥) 

(b) Top view

Figure 7: Schematic overview of the modelled system.

The estuary is assumed to be well-mixed to partially stratified. The meaning of these terms and the implication
on modelling are discussed in Chapter 3. For the purposes of the hydrodynamic model it is sufficient to remark
that the horizontal density gradient in these estuaries is approximately constant over the water column and is
relatively small (see Section 2.2) throughout the estuary.

The linearisation of the model pivots around the assumption that the water level variations are small compared
to the water depth. In this report the water level variations are related to the amplitude of the M2 tide as this
is the main tidal component in most estuaries.

The above assumptions are used to simplify the hydrodynamic model equations using a perturbation approach.
This approach involves the ordering of the equations and the solution in a small parameter δ, here defined as
the ratio of the amplitude of the M2 tide at the seaward entrance AM2 and the water depth at the seaward
entrance H0;

δ = AM2

H0
. (2.1)

The perturbation approach makes use of the idea that terms of at most O(δ) are negligible compared to terms
of O(1). So a first approximation of the equations is obtained by removing the small terms from the equations.
One then obtains a simplified equation with solely O(1) terms. A better approximation of the solution of the
equation can be obtained by solving the difference of the original equation and the O(1)-equation. The terms
in this new equation are at most of O(δ). This equation can again be ordered in terms of O(δ) and terms of
at most O(δ2) and the procedure is repeated. The result is a sequence of equations at different orders. Each
additional equation improves the accuracy of the approximation of the solution. For the above definition of δ,
the obtained set of simplified equations is linear and therefore easier to solve than the original equation.

The non-linear terms in the equations are not neglected by applying the perturbation approach. Instead, the
non-linear interactions are expanded in a series expansion and the terms of this series expansion are spread over
all higher-order equations. If δ is indeed small (i.e. δ � 1), the series expansion converges quickly and it is
sufficient to take only a few equations into account. If conversely δ is not small (i.e. δ close to, but smaller than
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1), the perturbation approach is still valid, but the series converges slowly and many higher-order equations are
needed for a reasonable approximation of the original equations.

As a consequence of the linearisation, the vertical and horizontal dimensions can be solved independently in
the particular case of the momentum and depth-averaged continuity equations, which will be introduced in the
next section. The time derivatives can be eliminated from these equations by solving the model for separate
tidal constituents. As a result only ordinary differential equations (ODEs) in x or z-direction need to be solved.
These ODEs can be solved analytically in some situations. Numerical solution methods are used otherwise.

The effect of turbulence modelling on the flow is investigated by comparing several formulations for the eddy
viscosity νt. Table 2.1 provides an overview of the eddy viscosity formulations in different versions of the 2DPM
model. The amount of complexity is increased in consecutive versions by allowing the eddy viscosity to vary in
more or different dimensions. The term variable in the table means that any function in the function space H1

(functions that have a weak derivative) is allowed.

Version number x-direction z-direction time
1 variable constant constant
2 variable parabolic constant
3 variable constant variable
4 variable variable variable
5 k − ε k − ε k − ε

Table 2.1: Formulations of νt in different versions of the 2DPM model. The profile of νt in each dimension is denoted.

The above assumptions are used in the next section to obtain at the model equations. These equations are
then scaled to obtain the ordered system.

2.2. Model equations
The solution to the hydrodynamic model consists of the water level ζ(x, t) and the horizontal and vertical
velocity u(x, z, t) and w(x, z, t). The equations that describe the flow are the width-averaged continuity and
momentum equations. The equations read

ux + wz −
u

Lb
= 0, (2.2)

ut + uux + wuz = −gζx − g
∫ ζ

z

ρx
ρ0
dẑ + (νtuz)z. (2.3)

The continuity equation will also be used in depth-averaged form

ζt +
(∫ ζ

−H
u dz

)
x

− 1
Lb

∫ ζ

−H
u dz = 0. (2.4)

In these equations ρ is the density, ρ0 is a constant reference density, g is the acceleration of gravity and νt
is the eddy viscosity. The subscripts x, z and t are derivatives in the respective dimensions. The equations
are based on the principles of conservation of mass and momentum. The conservation of momentum is a form
of the second law of Newton, describing how mass accelerates if a force is exerted on it. The acceleration is
described by the left-hand side of the momentum equation 2.3 by the inertia in the first term and the advection
of momentum in the second and third terms. The ’forces’ are found on the right-hand side of the equation and
represent the barotropic pressure, baroclinic pressure and vertical Reynolds-stress divergence (i.e. turbulence)
respectively.

The baroclinic pressure term in momentum equation 2.3 can be rewritten by using the assumption of a constant
vertical density gradient. The term reads

g

∫ ζ

z

ρx
ρ0
dẑ = g

ρx
ρ0

(ζ − z).
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The eddy viscosity is an arbitrary number or function in Versions 1, 3 and 4. For Version 2, however, the eddy
viscosity is restricted to a parabolic profile of the form

νt(x, z, t) = νt,0(zs(x)− z)(H(x) + zb(x) + z), (2.5)

where zs and zb are the surface and bottom roughness heights and νt,0 is a calibration parameter.

The equations are subject to the boundary conditions given below. At the free surface z = ζ:

νtuz(x, ζ, t) = 0 (no stress),
w(x, ζ, t) = ζt(x, t) + uζx(x, t) (kinematic).

At the bed z = −H: νtuz(x,−H, t) = sfu(x,−H, t) (partial slip, Version 1 and 3), or
u(x,−H, t) = 0 (no slip, Version 2, 4), or
νtuz(x,−H, t) = u2

∗ (quadratic friction, Version 5),
w(x,−H, t) = −u(x,−H, t)Hx (kinematic).

At the seaward side x = 0:

ζ(0, t) = Re

(
p∑

n=1
AM2ne

niωt+iφn

)
.

This boundary condition prescribes a sum of the M2 tide and its overtides at the boundary. The amplitude of
the nth overtide at the boundary is denoted by AM2n , its angular frequency by nω and its phase by φn. Finally,
the boundary condition at the inland boundary x = L is∫ ζ

z=−H
u(L, z, t) dz = Q

B(L) ,

which corresponds to a reflective weir over which a constant river flow discharges into the estuary. Q is the
fresh water discharge in volume per second.

Note that the bed roughness formulation for the Versions 1 and 3 differs from that for the Versions 2 and 4
and that of Version 5. Versions 1 and 3 use a vertically constant eddy viscosity. The roughness is therefore
specified in the boundary condition parametrised by a coefficient sf . The roughness formulation is linearised so
that the resulting system of equations is linear. For the Versions 2 and 4, the roughness is related to the shape
of the vertical eddy viscosity profile. The bed roughness in Version 2 is parametrised by the roughness height
zb that appears in the eddy viscosity formulation 2.5. Version 4 uses either this parabolic profile or a different
user-defined profile. The roughness does not have to be specified in the boundary conditions for Version 2 and
4, because the effect of the roughness is incorporated in the eddy viscosity profiles. A roughness height also
exists for the roughness formulation in Version 5. However, a quadratic friction law will be used here instead
of a no-slip condition as will be explained in Section 2.4.

A scaling analysis is used to find an ordering of the equations in the small parameter δ defined in Equation
2.1. We will discuss the main results of this scaling here. The details of the scaling are given in Appendix A.
The result of the scaling is that the advection terms uux and wuz in momentum equation 2.3 are of order
δ. Additionally, the assumption that the horizontal density gradient is small has the consequence that the
baroclinic pressure is also of order δ. The condition on the density difference ∆ρ over the length of the estuary
to establish this scaling is

∆ρ
ρ0

= O(δ2).

The final step before obtaining the ordered set of equations is to define an ordering of the solution:

u = u0 + u1 + u2 + . . . ,

w = w0 + w1 + w2 + . . . ,

ζ = ζ0 + ζ1 + ζ2 + . . . .
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The superscripts denote the order of magnitude, i.e. u0, w0 and ζ0 are of O(1), u1, w1 and ζ1 are of O(δ)
etcetera. Throughout this report we will use superscripts to denote the order of a term. O(1) terms will be
called leading-order terms, O(δ) terms will be called first-order terms etcetera. Subscripts will be used in this
report to denote the tidal constituent. A subscript 0 denotes residual flows, 1 denotes the M2 components and
higher numbers denote the consecutive overtides of the M2 tide. The equation applies to all orders or all tidal
constituents if superscripts or subscripts are omitted.

This scaling leads to the following leading-order equations

u0
t = −gζ0

x +
(
νtu

0
z

)
z
, (2.6)

u0
x + w0

z −
u0

Lb
= 0, (2.7)

ζ0
t +

(∫ 0

−H
u0 dz

)
x

= 1
Lb

∫ 0

−H
u0 dz. (2.8)

The first-order system is given by

u1
t + u0u0

x + w0u0
z = −gζ1

x + g
ρx
ρ0
z +

(
νtu

1
z

)
z
, (2.9)

u1
x + w1

z −
u1

Lb
= 0, (2.10)

ζ1
t +

(∫ 0

−H
u1 dz

)
x

+ ζ0
xu

0(x, 0, t) + ζ0u0
x(x, 0, t) = 1

Lb

(∫ 0

−H
u1 dz + ζ0u0(x, 0, t)

)
. (2.11)

The ordered boundary conditions are given in Appendix A.

2.3. Solution method
The leading-order model equations 2.6 to 2.8 will be solved first. This is done by first solving the coupled
system of the momentum equation and the depth-averaged continuity equation. The continuity equation may
then be used to obtain w. In this section we will focus on solving the coupled system and we will not use w.
The solution to the leading-order system is used as input to the first-order equations 2.9 to 2.11.

It will be shown in this section that the leading-order and first-order systems have a similar structure and can
therefore be solved in a similar manner. First, the solution procedure will be illustrated for the leading-order
system of Version 1 and 2. Next, still restricting the discussion to the leading-order system, this procedure
will be extended to cover also the model Versions 3 to 5 (see Table 2.1). Finally, the common structure of
the leading-order and first-order systems is used to solve the first-order system. The details of the solution
procedure for all model versions is given in Appendix A.

2.3.1. Illustration of the solution procedure for a time-independent eddy viscosity
The system is converted to a system of ODEs by solving for Fourier components eiωM2n t, where i is defined
such that i2 = −1 and ωM2n is the angular frequency of the tidal constituent M2n. The angular frequencies
of the overtides of the M2 tide are simply multiples of the angular frequency of the M2 tide. We will therefore
use ω for the angular frequency of the M2 tide and write

ωM2n = nω (n = 0, 1, . . .)

The tidal constituents can be described by the projection of these Fourier components to the real numbers.
So the horizontal velocity and water level signals can be described by taking a sum of Fourier components and
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projecting them to the real numbers;

u(x, z, t) = Re

( ∞∑
n=0

ûn(x, z)einωt
)
,

ζ(x, t) = Re

( ∞∑
n=0

ζ̂n(x)einωt
)
.

The symbol .̂ denotes the complex valued amplitude. This complex amplitude contains information on both
the real amplitude and the phase of the tidal constituent.

The model Versions 1 and 2 both use a temporally constant eddy viscosity. As a consequence, the system will
only respond with a signal at those frequencies at which it is forced. It is assumed in these versions that the
river discharge is small and does not appear in leading order. The system is then only forced by the tide, which
is assumed to consist only of the M2 component in leading order. So the system responds with only one tidal
constituent: the M2 tide. The velocity and water level formulations then simplify to

u(x, z, t) = Re
(
û(x, z)eiωt

)
,

ζ(x, t) = Re
(
ζ̂(x)eiωt

)
,

The Version 1 and 2 form of the Equations 2.6 and 2.8 in frequency space read

iωû0 − νtû0
zz − νt,zû0

z = −gζ̂0
x, (2.12)

iωζ̂0 +
(∫ 0

−H
û0 dz

)
x

− 1
Lb

∫ 0

−H
û0 dz = 0. (2.13)

The first equation can be solved as a second-order ODE in z in terms of the unknown water level gradient ζ̂0
x.

The result can then be used in the second equation to obtain a second-order ODE in x which can be solved for
ζ̂0.

In order to obtain a better insight into the structure of the problem, the model is rewritten in a more abstract
notation. This abstract notation helps to show the similarities between the model versions and the similarities
between the leading-order and first-order systems. The notation is also practical for the numerical implemen-
tation of the model. We will use linear operator theory for this abstract notation. An elementary example is
provided in Intermezzo 1.

Equation 2.12 can be rewritten by using the linear operator A, which is defined as

A = iω − νt
∂2

∂z2 − νt,z
∂

∂z
.

This equation is subject to homogeneous boundary conditions

νtû
0
z(x, 0) = 0,

νtû
0
z(x,−H)− sf û0(x,−H) = 0 (Version 1), or

û0(x,−H) = 0 (Version 2).

The solution to the momentum equation is then

û0 = −gA−1ζ̂0
x

This solution is then substituted in the depth-averaged continuity equation 2.13 and one obtains

iωζ̂0 − g
(∫ 0

−H
A−1ζ̂0

x dz

)
x

+ g

Lb

∫ 0

−H
A−1ζ̂0

x dz = 0.
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Intermezzo 1 : linear operators
We will illustrate the use of linear operators by a simple example. Consider the Poisson problem
in one dimension in the domain [0, 1]

uzz = f, (z ∈ (0, 1))

where f is an arbitrary real function and the problem is subject to homogeneous boundary
conditions of a mixed type:

αu(0) + βuz(0) = 0, (α, β ∈ R)
γu(1) + δuz(1) = 0, (γ, δ ∈ R)

We define the linear operator A : H1
m(0, 1)→ R according to

A = ∂2

∂z2 .

We then solve the problem

Au = f.

The boundary conditions are incorporated in the linear function space in which solutions u are
sought. For this case we seek for solutions in the space of all functions that possess a weak
derivative, which is called H1(0, 1). This space is restricted to the boundary conditions. We
therefore require

u ∈ H1
m(0, 1) =

{
H1(0, 1) |αu(0) + βuz(0) = 0, γu(1) + δuz(1) = 0, α, β, γ, δ ∈ R

}
In this research we will not focus on the function spaces that the solutions are in, because this
is irrelevant to the analytical and numerical calculation of the solution. The function space is
introduced here to explain how the abstract notation captures the boundary conditions.

Inhomogeneous boundary conditions cannot be incorporated in the function space, because this
would make the space non-linear. In order to see this, consider the boundary conditions

αu(0) + βuz(0) = a, (α, β, a ∈ R)
γu(1) + δuz(1) = b, (γ, δ, b ∈ R)

and let u1 and u2 be functions in H1
m(0, 1), but now with these boundary conditions. The sum

of these solutions is not in the same space, because it does not satisfy the boundary conditions.

The solution is therefore separated into two parts. The first is a solution to the inhomogeneous
differential equation with homogeneous boundary conditions, which has been treated above. We
will call this the internally forced part. The second is a solution to the homogeneous differential
equation with inhomogeneous boundary conditions. We will call this the externally forced part.
The latter will be denoted by ubc1(a) and ubc2(b). ubc1(a) is the solution that satisfies the
inhomogeneous boundary condition at z = 0 and the homogeneous boundary condition at z = 1.
ubc2(b) satisfies the inhomogeneous condition at z = 1 and the homogeneous condition at z = 0.
The total solution to the problem reads

u = ubc1(a) + ubc2(b) +A−1f

Next, the linear operator B is defined according to

B = iω − g
(∫ 0

−H
A−1 dz

)
x

∂

∂x
− g

(∫ 0

−H
A−1 dz

)
∂2

∂x2 + g

Lb

(∫ 0

−H
A−1 dz

)
∂

∂x
,
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subject to a homogeneous boundary condition at x = L and an inhomogeneous boundary condition at x = 0:

ζ̂(0) = AM2 ,

− g
∫ 0

−H
A−1(L, z) dz ζ̂x(L) = 0.

The solution to this equation consists only of the externally forced part due to the boundary forcing at x = 0.
This solution is denoted by

ζ̂0 = ζ̂0
tide(AM2).

The subscript ’tide’ is used to denote this solution, because this solution reflects the effect of the tidal forcing
at the boundary.

The solution for the velocity profile can be calculated analytically and is given by Ianniello (1977, 1979) for
Version 1 and McGregor (1972) for Version 2. For a simple channel in which all parameters, except for the
width, are uniform in the x-direction one can also obtain analytical solutions for the water level for both versions.
The analytical solutions for velocity and water level are repeated in Appendix A.

2.3.2. Solution for a time-dependent eddy viscosity
It was assumed in the above versions that the system is forced by a single frequency and responds with the
same frequency. The Versions 3 and 4 are generalised versions of this and include multiple forcing frequencies
and multiple response frequencies. Contrary to the previous section, the boundary forcing can now consist of
an arbitrary number of tidal components, as long as they are overtides of the M2 tide. Additionally, the river
discharge is not required to be small, so that it may act as a forcing in the leading-order equations. We will
however restrict this study to small river discharges, because this is characteristic for well-mixed and partially
stratified estuaries. The possibility of including a larger river discharge is included for generality. The response
of the system consists of the same frequencies as the forcing frequencies, supplemented by additional non-forced
response frequencies that originate from the interaction with the time-dependent eddy viscosity as will be shown
in this section.

The eddy viscosity is assumed to consist of a finite number of Fourier modes

νt(x, z, t) = Re

(
p∑

n=0
ν̂t,n(x, z)eniωt

)
. (2.14)

The angular frequency ω again corresponds to theM2 tide. Hence, it is assumed that the eddy viscosity consists
of a constant component and frequencies which are multiples of this M2 tidal frequency. We assume that the
eddy viscosity is a known input to the model. In reality, the eddy viscosity depends on the solution u and ζ. It
will be treated at the end of this section how this dependency can be solved iteratively.

The velocity and water level responses to this eddy viscosity signal and a finite set of frequencies at the
boundaries consist of infinitely many tidal constituents. We will truncate the solution after a finite number of
constituents so that the model can be solved analytically or numerically. It will be shown in Appendix D.1 that
the high-frequency components are only small in the cases considered in this study.

It is practical to write the solution as a series of both positive and negative Fourier components

u = Re

(
p∑

n=−p
ûne

niωt

)
, (2.15)

ζ = Re

(
p∑

n=−p
ζ̂ne

niωt

)
, (2.16)
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The momentum equation contains the product of the eddy viscosity and velocity derivatives. The product νtuzz
is used as an example of how such products should be calculated in solving the equations. Substituting the
Fourier series 2.14 and 2.15 we obtain another Fourier series. The components of this Fourier series are

νt,muzz,n = Re

(
1
2 ν̂t,mûz,ne

i(n+m)ωt + 1
2 ν̂t,mûz,ne

i(n−m)ωt
)
,

for m = 0, . . . , p, n = −p, . . . , p. The overline denotes the complex conjugate. Note that this product creates
response frequencies that are equal to the sum and difference of the interacting components. This has several
consequences. Firstly, response frequencies other than the forcing frequencies may be present.

Secondly, the product of two positive Fourier components can create a negative Fourier component. These
negative Fourier components represent the same tidal constituents as their positive counterparts. This can be
seen from the following equality:

u−n = Re
(
û−ne

−niωt) = Re
(
û−ne

niωt
)

;

The expression on the right contains the positive frequency component eniωt. So it is possible to eliminate the
negative Fourier components from the system and work with only positive components. This would reduce the
number of components that need to be solved from 2p+ 1 to p+ 1. However, the elimination of the negative
Fourier components would lead to a less well structured problem and would not benefit the computational
costs of solving the equations. This will be shown in Appendix A. We will therefore retain the negative Fourier
components in the computation.

Thirdly, the response signal contains an infinite number of tidal constituents, even when the forcing and eddy
viscosity consist of a finite number of constituents. This can be seen by imagining a forced frequency, say M2,
that interacts with some eddy viscosity frequency, say M4. This creates two new signals which are the sum and
difference of these two components, i.e. the M6 and M2. These components again interact with the M4 eddy
viscosity frequency to create four more frequencies, one of which is a new M10 signal. The continuation of this
reasoning yields one additional constituent with each step. The result is an infinite number of components.

The above reasoning also learns us that all frequencies are built up from many interactions. For example theM2
signal consists of the ’direct’ boundary forced signal such as in Version 1 and 2. Additionally the interaction of
this signal with theM4 eddy viscosity gives anM2 response. TheM6 velocity that is created also interacts with
the M4 eddy viscosity to create an M2 velocity component. This means that, even when one is interested in
the low frequencies only, the cut-off point p should be chosen sufficiently large in order to get accurate results.

We can again solve the Equations 2.6 and 2.8 in frequency space. This is done for the set of positive and
negative Fourier components, which are contained in the vectors û0 and ζ̂

0
:

û0 =



û0
−p
...
û0

0
...
û0
p

 , ζ̂
0

=



ζ̂0
−p
...

ζ̂0
0
...

ζ̂0
p


.

The underline denotes a vector.

The resulting system of equation reads

Dû0 −N û0
zz −Nzû

0
z = −gζ̂

0
x
, (2.17)

Dζ̂
0

+
(∫ 0

−H
û0 dz

)
x

− 1
Lb

∫ 0

−H
û0 dz = 0, (2.18)

where D is a (2p+ 1)× (2p+ 1)-diagonal matrix with entries niω (n = −p, . . . , p). The matrix N is a band
matrix that contains the eddy viscosity components. Details are provided in appendix A.
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The scalar system 2.12, 2.13 and vector system 2.17, 2.18 have a similar structure. The vector system is
therefore rewritten in the same abstract notation as the scalar system, with the linear operators A and B now
defined as

A = D −N ∂2

∂z2 −Nz
∂

∂z
,

B = D − g
(∫ 0

−H
A−1 dz

)
x

∂

∂x
− g

(∫ 0

−H
A−1 dz

)
∂2

∂x2 + g

Lb

(∫ 0

−H
A−1 dz

)
∂

∂x
.

The operator A is again subject to the homogeneous boundary conditions

N û0
z(x, 0) = 0,

N û0
z(x,−H)− sf û0(x,−H) = 0 (Version 3), or

û0(x,−H) = 0 (Version 4).

The operator B has inhomogeneous boundary conditions at both boundaries

ζ̂(0) = a0,

− g
∫ 0

−H
A−1(L, z) dz ζ̂

x
(L) =

Q0

B(L) .

The vector a0 consist of the boundary forcing amplitude and phase at the various frequencies. The second
boundary condition contains the forcing by the constant river discharge, which only contributes to the subtidal
flow and is zero for the other frequencies.

The solutions are then given by

û0 = −gA−1ζ̂
0
x
,

ζ̂
0

= ζ̂
0
tide + ζ̂

0
q

We again use the subscript ’tide’ to denote the effect of the tidal external forcing. The subscript ’q’ denotes
the effect of the external forcing by the river discharge.

Analytical solutions for the inverse of A exist for Version 3 and for Version 4 if parabolic profiles for all eddy
viscosity components are used. Analytical solutions also exist for the x-direction in Version 3 for a simple
channel in which all parameters, except for the width, are constant in the x-direction. The analytical solution
method for Version 3 is given in Appendix A. Numerical solutions will be used in the remainder of this report.
The details of the numerical solution procedure are also presented in Appendix A.

The eddy viscosity is assumed to be a known input to the model, while it depends on the solution u and ζ in
reality. This choice has been made to retain the linearity of the model. Several iterative procedures have been
included in the model to capture the dependency of the eddy viscosity on the velocity. One such procedure,
which is included in Version 3 and 4, concerns the phase of the eddy viscosity. A realistic approximation of
an eddy viscosity signal in a homogeneous flow contains the components with twice the frequency of the tidal
velocity components and is in phase with these components. In Version 3, where νt is constant in the z-direction,
it is therefore assumed that the phase of ν̂t,2n corresponds to the depth-averaged phase of û0

n. In Version 4,
where νt is allowed to vary in the z-direction, the phase of ν̂t,2n matches the phase of û0

n. The non-linear
equations are solved by a Picard iteration. This means that the phase of the eddy viscosity is zero initially and
adopts the phase of the previously calculated velocity in each consecutive iteration. The model is therefore
linear in every iteration step. Experiments with the model show that this procedure converges monotonously
and within a reasonable amount of iterations. A different iterative coupling is applied to the coupling to the
k − ε turbulence model in Version 5. This is treated in Section 2.4.

2.3.3. Solution to the first-order system
The previous section illustrated the solution method for the leading-order equations. This section treats the
extension of this solution method to the first-order momentum and depth-averaged equations. It will be shown
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that this extension is simple, because of the similarity of the structure of the leading-order and first-order
equations. The solution method is applied to model Versions 3 and 4.

In order to simplify the notation, the following symbols are introduced:

η(x, z, t) = u0(x, z, t)u0
x(x, z, t) + w0(x, z, t)u0

z(x, z, t),
γ(x, t) = ζ0(x, t)u0(x, 0, t),
χ(x, t) = ζ0(x, t)u0

zz(x, 0, t).

The advection terms are thus represented by η. The function γ denotes the Stokes drift by the leading-order
flow (see Section 1.1) and χ denotes a flow correction which is due to the linearisation of the boundary condition
at z = ζ to z = 0.

The first-order equations 2.9, 2.11 are again solved in frequency space using the same definitions of νt, u and
ζ as in 2.14, 2.15 and 2.16. Similarly, Fourier series are defined for η, γ, χ and ρ. The equations then read

Dû1 −N û1
zz −Nzû

1
z = −gζ̂

1
x
− η̂ + g

ρ0
ρ̂
x
z, (2.19)

Dζ̂
1
t

+
(∫ 0

−H
û1 dz

)
x

− 1
Lb

∫ 0

−H
û1 dz = −γ̂

x
+

γ̂

Lb
. (2.20)

Equation 2.19 still satisfies homogeneous boundary conditions at the bed, but the condition at the surface has
become inhomogeneous. The boundary conditions read

N û1
z(x, 0) = −N χ̂, (2.21)

N û1
z(x,−H)− sf û1(x,−H) = 0, (Version 3) or (2.22)

û1
z(x,−H) = 0. (Version 4)

Equation 2.20 satisfies the boundary conditions

ζ̂
1
(0) = a1, (2.23)∫ 0

−H
û1(L, z) dz =

Q1

B(L) − γ̂. (2.24)

Equations 2.19, 2.20 have the same structure as the leading-order equations 2.17, 2.18; both systems use the
same operators on the left-hand side and both systems have known quantities on the right-hand side. Because
the systems at both orders use the same operators, the definitions of A and B are exactly the same for the
leading-order and first-order systems. The first-order momentum equation can thus be written in abstract
notation as

Aû1 = −gζ̂
1
x
− η̂ + g

ρ0
ρ̂
x
z,

With solution

û1 = û1
no-stress − gA−1ζ̂

1
x
−A−1η̂ + g

ρ0
A−1ρ̂

x
z,

where the subscript ’no-stress’ signifies the solution to the homogeneous equation with the inhomogeneous
boundary condition 2.21 at the surface.

The first-order depth-averaged continuity equation becomes

Bζ̂
1

=
(∫ 0

−H
A−1η̂ dz

)
x

− 1
Lb

∫ 0

−H
A−1η̂ dz − g

ρ0

(∫ 0

−H
A−1ρ̂

x
z dz

)
x

+ 1
Lb

g

ρ0

∫ 0

−H
A−1ρ̂

x
z dz

+
(∫ 0

−H
û1
no-stress dz

)
x

− 1
Lb

∫ 0

−H
û1
no-stress dz − γ̂x +

γ̂

Lb
.



24 2. Model formulation: hydrodynamics

The solution contains many terms. The notation is slightly simplified by rewriting terms containing Lb in terms
of the width B.

ζ̂
1

=ζ̂
1
tide + ζ̂

1
q

+ ζ̂
1
return flow + ζ̂

1
sx

+ ζ̂
1
adv + ζ̂

1
no-stress + B−1

(
B

B0

∫ 0

−H
A−1η̂ dz

)
x

− B−1 g

ρ0

(
B

B0

∫ 0

−H
A−1ρ̂

x
z dz

)
x

+ B−1
(
B

B0

∫ 0

−H
û1
no-stress dz

)
x

− B−1
(
B

B0
γ̂

)
x

The solutions to these equations can be written in a clearer way by grouping the right-hand side forcings by
their physical meaning. The solution then takes the form

û1 = û1
tide + û1

q + û1
no-stress + û1

adv + û1
sx + û1

return flow, (2.25)

ζ̂
1

= ζ̂
1
tide + ζ̂

1
q

+ ζ̂
1
no-stress + ζ̂

1
adv + ζ̂

1
sx

+ ζ̂
1
return flow. (2.26)

The partial solutions on the right-hand side consist of the solution to one or more forcing terms of the equations
or boundary conditions. These partial solutions can simply be added to make the full solution because the
equations are linear. The meaning of the subscripts is provided in Table 2.2.

Subscript Physical component Meaning
tide External tidal forcing External forcing of water level
q River discharge Externally forced residual flow
no-stress Free surface mixing, χ Change of the velocity profile due to

linearised no-stress condition
adv Advective transport, η Contribution of advection
sx Baroclinic pressure Contribution of the salinity gradient

For residual flow: Gravitational circulation
return flow Return flow of Stokes drift, γ See Section 1.1

Table 2.2: Physical mechanisms identified in the velocity and water level fields.

2.4. The k − ε turbulence model
The previous sections described the model Versions 1 to 4 for hydrodynamics with prescribed profiles and time-
dependency of the eddy viscosity. The fifth version of the model involves the coupling of the hydrodynamic
model to a two-equation turbulence model. The turbulence model acts as a separate module, feeding its
solution into the eddy viscosity formulation 2.14 of Version 4. Next, the Version 4 model is used to calculate
the velocities and water levels as before and the result is used as input to the turbulence model. This iterative
process is repeated until convergence is reached. This section will first present the k − ε model and some
important properties and assumptions, after which the coupling of the hydrodynamic and turbulence models is
discussed. The details on the numerical implementation of the k − ε model are presented in Appendix C.

2.4.1. Properties and assumptions of the k − ε model
The k − ε model is a popular two-equation turbulence model that is used in many complex flow models. The
version of the model that is used here is the buoyancy extended form of Rodi (1993). This section treats only
some of the assumptions and properties of the k− ε model. Further details of the derivation of the model and
some results of computations with the model can be found in Dijkstra (2014).

The k−ε model is a turbulence model that is based on the eddy viscosity closure hypothesis. In this hypothesis
it is assumed that turbulent mixing has the form of a diffusion process that can be expressed by the diffusion
term (νtuz)z, in which the eddy viscosity νt acts as a diffusion coefficient. This turbulent diffusion acts
predominantly in the vertical direction, because the vertical velocity gradient is generally much larger than the
horizontal velocity gradient.



2.4. The k − ε turbulence model 25

The eddy viscosity is parametrised by the use of the mixing-length hypothesis. According to this hypothesis the
value of the eddy viscosity is determined by the product of a typical length-scale and a typical velocity-scale of
turbulent eddies. The eddy viscosity is then expressed as

νt = cµ
√
klm,

where
√
k is the velocity-scale, with k representing the turbulent kinetic energy. The variable lm denotes a

length-scale of mixing and cµ is a constant. Several alternative definitions exists for the mixing-length. For the
k − ε model it is assumed that the mixing-length can be expressed as

lm = k3/2

ε,

where ε is the rate of dissipation of turbulent eddies. The resulting expression for the eddy viscosity is

νt = cµ
k2

ε

The two unknown quantities k and ε are calculated by the k−ε model, which consists of two coupled non-linear
transport equations. The k − ε model by Rodi (1993) is adapted by using the additional assumption that the
horizontal gradient of turbulence are much smaller than the vertical gradients. This reduces the model to the
following 1DV model:

kt = ((ν + νt) kz)z + νtu
2
z −

νt
σρ
N2 − ε, (2.27)

εt =
((

ν + νt
σε

)
εz

)
z

+ c1
ε

k
νtu

2
z − c3

ε

k

νt
σρ
N2 − c2

ε2

k
(2.28)

The symbol ν represents the molecular diffusion of 10−6 m2/s. The terms on the right-hand side of both
equations represent the diffusive vertical transport, production of turbulence by velocity gradients, production
or dissipation of turbulence by stratification and viscous dissipation of turbulence. The quantity N in the
equations is the buoyancy frequency which is defined as

N =
√
−g
ρ
ρz.

The expressions νt
σε

and νt
σρ

denote dispersion coefficients for the dispersive transport of turbulence dissipation
ε and density differences respectively. The constants σε and σρ are Prandt-Schmidt numbers that are used to
relate these diffusion coefficients to the eddy viscosity. The constants c1, c2 and c3 are calibrated constants.
Table 2.3 presents the values of the parameters such as calibrated by Launder et al. (1972), Rodi (1993) and
in the numerical model Delft 3D - FLOW (Deltares, 2014).

Parameter c1 c2 c3 (stable stratification) c3 (unstable stratification) cµ σρ σε
Value 1.44 1.92 0 1.44 0.09 0.7 1.3

Table 2.3: The values of the parameters in the k − ε model.

The boundary conditions of the model are

k(x, ζ, t) = 0,

k(x,−H, t) = u2
∗√
cµ
,

∂ε

∂z
(x, ζ, t) = 0,

∂ε

∂z
(x,−H, t) = |u3

∗|
9z0κ

,
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where z0 is the roughness height, κ is the Von Kármán constant of 0.4 and u∗ is the friction velocity which is
defined as

u∗ = τ

|τ |

√
|τ |
ρ0
,

where τ is the bed shear stress.

The k − ε model derives ultimately from physical conservation laws and we will quickly outline the derivation
of the model. An exact equation for k can be derived from the principle of energy conservation. Equation
2.27 follows from this exact equation by assuming that turbulent transport terms can be described by diffusion
terms. This is a generally accepted assumption (Mellor and Yamada, 1982). It makes no sense physically
to formulate an exact conservation equation for turbulence dissipation ε, because there is no such law as
conservation of dissipation. Still, it is possible to derive an exact transport equation for ε from energy and
momentum conservation. This equation, however, involves some unknown quantities and the equation needs
to be closed. The validity of these closure assumptions is contested and leads to a range of turbulence models
that make different closure assumptions. From a pragmatic point of view, the k−ε model is a turbulence model
that contains the complexity to reproduce some of the influence of velocity gradients, friction and stratification
on turbulent mixing, while it is still sufficiently simple to solve within a reasonable computational time. This
is why the model is implemented in many complex numerical models for large-scale applications, such as Delft
3D-FLOW.

The k − ε model is solved numerically according to the implementation in Delft 3D-FLOW. Details of this
implementation are given in Appendix C and by Dijkstra (2014). Note that the k − ε model is solved as a
partial differential equation in z and t instead of solving it using Fourier components. We chose this method
here in order to be able to use the well-tested Delft 3D-FLOW implementation of the turbulence model, rather
than to make a new implementation of which the accuracy is not yet known. It is possible to solve the system in
terms of Fourier components, but it is unknown whether this yields accurate results within a reasonable amount
of computational time.

2.4.2. Bed friction formulation
In theory, the bottom boundary conditions should require no-slip conditions so that u and νt are zero at the
bed. However, all information on bed friction is then contained in the gradient of the eddy viscosity at the bed,
which cannot be accurately simulated with a resolution that yields reasonable computational times with the
2DPM model or in fact any large-scale 2D or 3D model. On the small scale that would be required in order to
use no-slip conditions, it is no longer realistic to regard the bed as a flat plate. Instead, it contains ripples and
dunes (also called bed forms) and possible vegetation or fluidised mud, which determine the roughness of the
bed.

u 

z=-H 

Real bed 

0 

z 

Figure 8: Definition of the bed level z = −H on a rough bed.

In order to circumvent the use of high resolution grids and highly detailed bed topography, the boundary
conditions are applied at a constant level which is a small distance from the real bed (Hinze, 1975), see Figure
8. This newly defined bed level z = −H is then a smoothly varying surface that possesses a certain roughness,
which is parametrised by a roughness height. Consistent with this definition, the velocity and eddy viscosity
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are non-zero at this bed level. Such boundary conditions are derived from a combination of idealised modelling
and empiricism. This yields the boundary conditions of the k − ε model given above and the quadratic-slip
boundary condition for the velocity, which reads

νt(−H)uz(−H) = u2
∗,

The bed friction u∗ depends on the velocity near the bed, see Appendix C. The effect of bed friction is now
incorporated in the boundary conditions of the k − ε model and the boundary condition for the velocity.

The non-linear boundary condition is linearised according to Picard’s method, i.e. by taking one factor u∗
explicitly from the previous iteration level and one implicitly in the current iteration. A solution to the non-
linear boundary condition is obtained by the iterative solution method.

2.4.3. Coupling of the turbulence and hydrodynamic models
The turbulence model is a non-linear model that is solved in time, while the hydrodynamic model is a linear
model that is solved in frequency space. Both models are therefore implemented as separate modules. The
coupling between these modules is presented here. Because the turbulence and hydrodynamic models together
form a non-linearly coupled system, the equations are solved iteratively. To explain this solution procedure we
will treat consecutively the initialisation phase, the iteration phase and the convergence criterion.

The notation is simplified by using the following abstract notation of both modules:

νt = f(uz, u∗, ρz) for the turbulence model,[
u
ζ

]
= g(νt) for the hydrodynamic model.

The functions f and g represent the models and the subscript n will be used below to denote a quantity after
the nth iteration.

An initial velocity and water level field are needed as input in order to calculate the eddy viscosity νt,1(x, z, t).
This initial field, denoted by u0 and ζ0, is calculated by the hydrodynamic model using an assumed initial eddy
viscosity νt,0(x, z, t).

The iteration between both modules starts by running the turbulence model, the result of which is an eddy
viscosity field in x, z and t. The turbulence model is run for 10 tidal cycles in the first iteration in order to
eliminate spin-up. The final cycle is used as the initial eddy viscosity in the next iteration. The turbulence
model is run for only two tidal cycles in subsequent iterations, which is sufficient because the turbulence field
is not supposed to change much between two iterations. A fast Fourier transformation (FFT) algorithm is
used to transform the last tidal cycle of the eddy viscosity field to frequency space in every iteration. The
hydrodynamic model Version 4 then uses the constant component and the first p overtides of the M2 tidal
frequency, including the M2 frequency itself. So the hydrodynamic model does not use the full eddy viscosity
signal, but an abstraction of it. It will be shown in the results and Appendix D.1 that this abstraction captures
a large part of the eddy viscosity signal for reasonably small values of p.

The coupling makes use of the under-relaxation method. This means that the hydrodynamic model uses a
fraction λ ∈ [0, 1] of the eddy viscosity from the previous iteration and a fraction 1 − λ of the eddy viscosity
from current iteration. This method can prevent certain instabilities that the model may display, because the
changes in the model from one iteration to the other are kept small when λ is close to 1. A value λ = 0.9 is
used in this research, which means that only 10% of the newly calculated value of the eddy viscosity is used in
every iteration.
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To be more precise the iteration is given by

νt,n = f(uz,n−1, u∗,n−1, ρz,n−1),
ν̃t,n = (1− λ)νFFTt,n + λνFFTt,n−1,[
un
ζn

]
= g(ν̃t,n),

where νFFTt is the eddy viscosity signal that results after the fast Fourier transform described above.

The above procedure of using a number of Fourier components to approximate the eddy viscosity does not
ensure positivity of the eddy viscosity. The positivity of ν̃t,n is therefore checked and the value is corrected if
it becomes negative by reducing the amplitude of the oscillating components.

The convergence of ν̃t,n is measured by the supremum-norm in x, z and t of the difference between the eddy
viscosity in consecutive iterations before the FFT, i.e.

∆νt,n = |νt,n − νt,n−1|∞ . (2.29)

The iteration is assumed to have converged when ∆νt,n < O(10−5 m2/s), which is much smaller the typical
value of the eddy viscosity.



3
Model formulation: salinity

The 2DPM hydrodynamics model is extended in this chapter by a salinity model which makes use of the
perturbation approach. The assumptions behind this model make it suitable only for well-mixed estuaries.
Section 3.1 explores in more detail what this restriction means and how this compares to other studies. The
salinity model will be explained in Section 3.2. This model is again solved by using abstract linear operators
as will be explained in Section 3.3. In order to gain understanding of the physical mechanisms that drive the
salinity model, a method for analysis is presented in Section 3.4.

3.1. Background and assumptions
The balance of the various physical mechanisms that govern the salinity transport depends strongly on the
vertical salinity structure (Jay and Smith, 1990b). The idealised model that is used in this research is restricted
to the processes and the vertical salinity structure that are seen in well-mixed estuaries. This means that the
model is not capable of modelling strongly stratified and salt wedge estuaries, and only partially capable of
modelling partially stratified estuaries. Strongly stratified and salt-wedge estuaries are characterised by a high
river discharge and little to moderate tidal influence. The persisting strong stratification diminishes the influence
of turbulent mixing and mixing is dominated by internal wave breaking and Kelvin-Helmholtz instabilities (Jay
and Smith, 1990b). Conversely, well-mixed and partially stratified estuaries have a smaller river discharge and
a larger tidal influence and turbulent mixing is important.

Most previous idealised model studies into the transport of salinity have been restricted to well-mixed estuaries
(Jay and Smith, 1990c; MacCready, 2004; Burchard and Hetland, 2010). An exception to this is the study done
by Jay and Smith (1990b) who use a two-layer model to study salt-wedge estuaries. This model is, however,
not suitable for other classes of estuaries and so to date no idealised model exists that is capable of simulating
the transition between partially stratified and salt-wedge estuaries. In order to model this transition it is vital
to include the effect of stratification on turbulent mixing (Geyer and MacCready, 2014). It is therefore possible
that the inclusion of a k − ε turbulence model as is done in this study makes the model capable of modelling
the transition. However, it is outside the scope of this thesis to explore this possibility.

The restriction to well-mixed estuaries allows us to assume that the longitudinal salinity gradient is rather small.
In the derivation of the salinity model in Appendix B this is made slightly more precise by stating that the
typical length-scale along which the salinity varies should be of the same order of magnitude as the length-scale
of the tidal wave. A consequence of this assumption is that the vertical stratification is weak, which agrees
with the initial restriction of the study to well-mixed and partially stratified estuaries. It is further assumed that
the river discharge appears in the first-order velocity component. This assumption also agrees with well-mixed
estuaries.
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3.2. Model equations
The transport equation for salinity in 2DV is given by the following advection-diffusion equation:

st + usx + wsz = 1
BH

(BHKHsx)x + (KV sz)z . (3.1)

In this equation KH and KV are dispersion coefficients. The coefficient KH parametrises all unresolved
processes. These include most notably lateral processes and lateral variations of longitudinal processes. It is
expected that this value is small in narrow estuaries with a rectangular cross-section, but it is dominant over
the other processes in many estuaries (Fischer, 1972; Burchard et al., 2011). KV parametrises vertical mixing
and can be related to the eddy viscosity through the Prandtl-Schmidth number according to

KV = νt
σρ
.

The Prandtl-Schmidt number σρ is assumed to be a constant, but may also be chosen to vary with stratification
(Burchard and Hetland, 2010).

The salinity is related to the density through an equation of state. It is sufficient to use a linear relation between
density and salinity for the range of salinity concentrations that is applied in this study. The equation of state
reads

ρ = ρ0(1 + βs),

where β = 7.7 · 10−4 1/psu and ρ0 = 1000 kg/m3 is a reference density. The acronym psu is the unit for
salinity and stands for practical salinity unit.

The boundary conditions to Equation 3.1 are no-flux conditions at the surface and bed

KV sz = 0 at z = ζ and z = −H.

A fixed salinity is prescribed at the mouth and a no-flux condition is prescribed at the landward boundary

1
H

∫ 0

−H
s dz = ssea at x = 0,

Q
1
H

∫ 0

−H
s dz = BHKL

1
H

∫ 0

−H
sx dz. at x = L.

The perturbation approach again uses a scaling and an ordering of the solution. The scaling is given in detail
in Appendix B, the main result being that the advective terms in Equation 3.1 are of O(δ) and the horizontal
dispersion term is of O(δ2). The ordering of s is written as

s = s0 + s1 + s2 + . . . ,

where s0 is of O(1), s1 is of O(δ) etcetera.

The resulting leading-order and first-order equations are then

s0
t =

(
KV s

0
z

)
z
, (3.2)

s1
t + u0s0

x + w0s0
z =

(
KV s

1
z

)
z
. (3.3)

The ordered boundary conditions are given in Appendix B.

The solution to Equation 3.2 with its no-flux boundary conditions is that s0 is an unknown function of x-only.
This implies that the leading-order salinity field is well-mixed and constant in time. An additional closure
equation is required, because s0 remains an unknown function. This closure equation is the depth-averaged,
time-averaged second-order salinity equation. The derivation is again given in the appendix. The equation
reads:(

B

∫ 0

−H
〈u0s1〉 dz

)
x

+
(
B

∫ 0

−H
〈u1s0〉 dz

)
x

+
(
B〈ζ0u0(x, 0, t)s0(x, 0, t)〉

)
x

=
(
BHKHs

0
x

)
x
. (3.4)
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3.3. Solution method
The Equations 3.2, 3.3 and 3.4 are again solved as systems of ordinary differential equations by using the
superposition of Fourier components. The salinity model will be applied to the vector form of Versions 3 to
5 of the hydrodynamic model, the scalar solutions will be omitted. The details of the solution procedure are
given in Appendix B. The main results are presented below.

Before substituting the Fourier series we consider the leading-order equation. It can be shown that this equation
with no-flux boundary conditions at the bed and linearised surface stipulates

s0(x, z, t) = s0(x). (3.5)

So the leading-order salinity field is well-mixed, time-independent and unknown. Therefore the depth-integrated
time-integrated second-order equation 3.4 is used as closure according to the method by McCarthy (1993).

The first-order equation 3.3 is solved in frequency space. To this end, the first-order salinity is written as the
truncated Fourier series

s1(x, z, t) = Re

(
p∑

n=−p
ŝ1
n(x, z)eniωt

)
.

The equation can then be written in a matrix form similar to the hydrodynamic model. This equation reads

Dŝ1 − 1
σρ
Nz ŝ1

z −
1
σρ
N ŝ1

zz = −û0s0
x,

where D and N are the same matrices as in the hydrodynamic model and it is used that KV = νt
σρ
. The

leading-order salinity in this equation is a scalar quantity, because it consists only of the subtidal salinity. This
equation can be rewritten in a more abstract notation by using the linear operator R which is defined as

R = D − 1
σρ
Nz

∂

∂z
− 1
σρ
N ∂2

∂z
.

We obtain the equation

Rŝ1 = −û0s0
x,

subject to no-flux boundary conditions

N ŝ1
z(x, 0) = 0,

N ŝ1
z(x,−H) = 0.

The solution for ŝ1 only has an internally forced part (see Intermezzo 1 in Chapter 2):

ŝ1 = −R−1û0s0
x. (3.6)

The linear operator R is singular and requires a compatibility condition. This compatibility condition is obtained
by integrating the residual component of Equation 3.3 over the water depth. This condition then prescribes
that there is no net (i.e. time-averaged and depth-averaged) salt transport in this first-order equation. More
details are given in Appendix B.

Next, the second-order depth-averaged time-averaged equation 3.4 is solved. This equation can be rewritten by
using the vertical uniformity of s0 and the depth-averaged continuity equation. This allows one to eliminate u1

from the equation, i.e. the salinity model only uses the leading-order velocity as input. The resulting equation
reads (

B

∫ 0

−H
〈u0s1〉 dz

)
x

+ s0
xQ

1 =
(
BHKHs

0
x

)
x
. (3.7)
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This is a scalar equation, because s0 is only the subtidal component by Equation 3.5. The equation is also real
because the subtidal salinity component does not contain phase information.

The equation is a real, scalar equation, but contains correlations of tidal components of the velocity and first-
order salinity. The equation is therefore solved in frequency space. This requires the conversion of the product
〈u0s1〉 to frequency space. This product becomes

〈u0s1〉 = Re
((
û0)T ŝ1

)
= −Re

((
û0)T R−1û0s0

x

)
.

By using Equation 3.6, the equation in frequency space becomes

−
(
Bs0

x

∫ 0

−H

(
û0)T R−1û0 dz

)
x

+ s0
xQ

1 =
(
BHKHs

0
x

)
x
.

This equation is rewritten to an abstract notation by defining the linear operator S as

S = −
(
B

∫ 0

−H

(
û0)T R−1û0 dz

)
x

∂

∂x
−B

∫ 0

−H

(
û0)T R−1û0 dz

∂2

∂x2 +Q1 ∂

∂x

− (BHKH)x
∂

∂x
−BHKH

∂2

∂x2 .

The equation then simplifies to

Ss0 = 0,

subject to the following boundary conditions:

s0(0) = ssea,

Q1s0(L)−BHKHs
0
x(L)−B

∫ 0

−H
〈
(
û0)T R−1û0〉 dz s0

x(L) = 0.

The solution to this equation only contains one externally forced part from the inhomogeneous boundary
condition at the seaward side:

s0 = sbc(ssea).

3.4. Salt balance decomposition
The depth-averaged time-averaged second-order salinity Equation 3.7 describes the amount of salt intrusion. In
this section two decompositions of the salt balance will be developed to analyse the different mechanisms that
are responsible for this salt intrusion. These decompositions will express the salt transport in terms of equivalent
dispersion coefficients such as are used in 1DH studies into salt intrusion (e.g. Savenije (2005), Kuijper and
Van Rijn (2011) and references therein). First, such 1DH approach is introduced and it is shown how the results
of the 2DV model can be converted to 1DH. Next, both decomposition techniques are introduced. Finally, the
salt balance is compared to the salinity model that was developed above.

3.4.1. The 1DH dispersion coefficient
The salt transport in 1DH is often described by the following equation (Ippen and Harleman, 1961)

BH (s)t +Qsx = (BHKsx)x ,

whereK is the dispersion coefficient for salt and the overline (̄.) denotes depth-averaging over the time-averaged
depth, i.e.

s = 1
H

∫ ζ

−H
s dz.
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This is not the proper equation for describing conservation of salinity, because BH denotes the linearised
time-averaged cross-section; interactions between the free surface variations, salinity and velocity are implicitly
contained in K. This equation will be used here so that the definition of K is consistent with the general
definition that is used in literature. The time-averaged form of this salt transport equation reads

Q〈s〉x = (BHK〈sx〉)x . (3.8)

This equation describes the balance between the river discharge flushing saline water from the estuary and the
dispersion pumping saline water into the estuary.

Rather than considering the 1DH equation, one can also calculate the salt transport from a 2DV perspective.
This is done by the salt balance, which describes the salt flux through a cross-section. We will consider the
time-averaged depth-averaged flux Mt. The total salt flux must equal zero in a stationary situation. We thus
obtain

Mt = B〈(H + ζ)us〉 −BHKclosure〈s〉x = 0. (3.9)

The mass transport equation contains two terms. The first describes the transport by salinity advection, i.e.
the product of u and s. This is the model resolved transport, because both the velocity and the salinity
are calculated by the model. The second term is a salt dispersion term that is parametrised by a dispersion
coefficient Kclosure. This term describes the unresolved transport, because the dispersion coefficient is not
calculated by the model. The unresolved transport contains for example the transport by lateral processes or
laterally varying longitudinal processes.

The salt balance 3.9 can be related to the 1DH salinity equation 3.8 by assuming that the model-resolved salt
flux can be written according to

B〈(H + ζ)us〉 = Q〈s〉 −BHKu〈s〉x,

where Ku is a dispersion coefficient. The 1DH dispersion coefficient K is equal to

K = Ku +Kclosure,

so that the salt balance then reads

Mt = Q〈s〉 −BH (Ku +Kclosure) 〈s〉x = 0.

This is the integrated form of the 1DH salt transport equation.

An expression for the unknown 1DH dispersion coefficient K in terms of output of 2DV model data can be
found by rewriting the latter expression to

K = −〈(H + ζ)us〉
H〈s〉x

+ Q

B

〈s〉
H〈s〉x

+Kclosure. (3.10)

The only unknown in this equation is the closure coefficientKclosure which needs to be prescribed or parametrised.
It will be shown in Section 3.4.4 that this closure coefficient corresponds approximately to the lateral dispersion
coefficient KH in the 2DV salinity model.

3.4.2. Decomposition in physical contributions
The expression for K can be decomposed into the contribution by the various forcing mechanisms in the
hydrodynamic model such as the tide, river discharge and baroclinic pressure, described in Table 2.2. This
requires the decomposition of the velocity and salinity into components that can be attributed to these forcing
mechanisms, such as was done in Equation 2.25 for the velocity. A similar decomposition could be constructed
for the salinity. However, such a decomposition would not be trivial nor unambiguous, because of the structure
of the depth-averaged time-averaged salinity equation. In order to see this, consider the abstract operator
notation of this equation: Ss0 = 0. The solution consists of a single term forcing at the seaward boundary. All
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information on the forcing mechanisms is contained in the operator S, instead of in the forcing of the equation
or the boundary conditions. So a decomposition would require that both operator S and the solution s0 are
separated in the various physical mechanisms. The equation Ss0 = 0 would then be non-linear in the physical
forcing mechanisms, even though it is linear in s0.

For our present purposes it is sufficient to use a decomposition of the velocity and use the full salinity signal as
calculated by the model. This means that the decomposition of the dispersion coefficient is calculated according
to

Ki = −〈(H + ζ)uis〉
H〈s〉x

,

with i ∈ {tide, no-stress, adv, sx, return flow} (see Table 2.2). The river discharge needs a separate definition
for the dispersion coefficient. Consistent with Equation 3.10 this expression should read

Kriver = −〈(H + ζ)urivers〉
H〈s〉x

+Q
〈s〉

BH〈s〉x
,

= −〈(H + ζ)(uriver − 〈uriver〉) s〉
H〈s〉x

.

This represents the salt transport by the depth-varying or time-varying component of the river discharge. Time-
variations of the river discharge can occur even when the prescribed discharge at the boundary is constant.
These result from interactions with the temporal variations of the eddy viscosity.

From the scaling analysis for the 2DV salinity model it is expected that the tidal contribution to K will be much
larger than the contribution of the other mechanisms. It is therefore expected that the results will not change
much if the above decomposition were to contain a decomposition of the salinity.

3.4.3. Fischer (1972) decomposition
The above decomposition makes specific use of the linearity of the 2DV model that is used in this thesis. The
decomposition that is explained below is more general and could also be applied to analyse the output of a
complex non-linear flow model. The approach that will be used here is the approach by Fischer (1972). First,
we make the following decomposition of the velocity and salinity

u = ua + ub + uc + ud, (3.11)

ua = 〈u〉 cross-sectionally-averaged time-averaged velocity
ub = u− ua cross-sectionally-averaged time-varying velocity
uc = 〈u〉 − ua cross-sectional variation of the time-averaged velocity
ud = u− ua − ub − uc cross-sectional variation of the time-varying velocity

= u− 〈u〉 − u+ 〈u〉

A similar decomposition is made for the salinity. Fischer (1972) continues by dividing the terms uc, sc, ud and
sd in a vertically varying part and a laterally varying part. The 2DV approach in this thesis assumes that these
terms vary only in the vertical direction.

This decomposition can now be used to find a decomposition of the resolved salt transport B〈(H+ ζ)us〉. The
full decomposition results in an equation containing 16 terms. In order to simplify this equation, some of these
terms are put together in one term with comparable physical meaning. The resulting equation is

B〈(H + ζ)us〉 = Qsa +BH 〈ubsb〉∗ +BHucsc
∗ +BH 〈udsd〉∗ . (3.12)

The asterisks ∗ denote that the term is not exactly equal to the term that one would expect from the decom-
position, but that it is corrected for the Stokes drift. Appendix D.4 provides the details of these terms.
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The dispersion coefficient can then be decomposed as follows

KQsa = 0,

KBH〈ubsb〉∗ = −〈ubsb〉
∗

〈s〉x
,

KBHucsc
∗ = −ucsc

∗

〈s〉x
,

KBH〈udsd〉∗ = −〈udsd〉
∗

〈s〉x
.

These terms may seem abstract, but they have a physical interpretation. The terms are also used in several
studies that discuss measurements of salinity in estuaries, e.g. that by Lerczak et al. (2006) in the Hudson
River, by Jay and Smith (1990a) in the Columbia River and by Winterwerp (1983) in the Rotterdam Waterway.

The component 〈ubsb〉∗ could be called tidal oscillatory mean dispersion. It is the transport due to the interaction
of the cross-sectionally-averaged tidal velocity and salinity, which can potentially yield a large contribution. In
literature this term is generally either neglected (Fischer, 1972) or used together with the terms containing ud
(Lerczak et al., 2006). However, this is unjustly done so. Fischer (1972) reasons that the term is negligible in
well-mixed to partially stratified estuaries, because sb is much smaller than sa. However, ub (the typical tidal
velocity) is generally much larger than ua (the typical residual velocity) so that this argument does not hold.
It will be shown in Section 5.2 that 〈ubsb〉 is not negligible. It is useful to consider this term separately from
the terms containing ud, because it is generally known from measurements what the typical magnitudes of the
average tidal velocity and tidal variation of salinity are. The magnitude of 〈ubsb〉 can thus be estimated from
only a few measurements. On the other hand, the variations of velocity and salinity over the cross-section are
often unknown.

It is particularly interesting to look at the phase of ub compared to the phase of sb. It will be shown in Sections
5.1 and 5.2 that this phase difference is important for the salt transport.

The term ucsc is the steady shear dispersion (Taylor, 1953), also known as transport due to estuarine circulation.
This contains most notably the transport by gravitational circulation and straining circulation.

Finally the term 〈udsd〉 is the tidal oscillatory shear dispersion. It denotes the net transport of salt due to
shearing of the velocity and salinity profiles. The term reflects many subtle properties of the flow, such as the
degree and the timing of vertical stratification and the shape of the vertical velocity profile.

The above described transport mechanisms are not the only nor the most important mechanisms that act in
a real estuary. Lateral and bathymetric variations have shown to be very important for the total longitudinal
mass transport of salt (Fischer, 1972; Burchard and Schuttelaars, 2012) . These variations are, however, not
included in the model.

3.4.4. Relation of the salt balance to the 2DV model
The 2DV salinity model is an approximation to the complete salt transport equation. The differences between
the 2DV model and the salt balance are derived below. The second-order salinity equation 3.7 can be integrated
in x-direction to obtain

Qs0 +B

∫ 0

−H

〈
u0s1〉 dz −BHKHs

0
x = C.

This equation describes that the salt flux through a cross-section is constant. It is assumed that the salt flux
through the landward boundary is zero or negligibly small so that C = 0.

The differences between this 2DV model and the salt balance can be expressed in terms of a contribution to
the closure term Kclosure. To this end the 2DV equation is set equal to the salt balance, Equation 3.9. The
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models can be related by noting that ŝ0 = 〈s〉. This yields

Kclosure = KH +
(〈

1
H

∫ ζ

−H
us1 dz

〉
− 1
H

∫ 0

−H

〈
u0s1〉 dz) 1

s0
x

. (3.13)

This means that Kclosure is equal to KH plus the error that is made by the salinity model, so that Kclosure can
be used to verify the validity of the scaling argument.

One part of the error that is contained in Equation 3.13 should not be taken into account. This error is caused
by the salt balance which calculates the Stokes drift from the interactions of u1 and ζ0, u0 and ζ1 and u1

and ζ1. The compensating return flows of these Stokes drift transports appear only in the second-order and
third-order velocity and are not resolved. For reasons of consistency, the above Stokes terms should not be
taken into account in the salt balance for analysing the 2DPM model, see also Appendix D.4.



4
Results: hydrodynamics

This chapter will present the results regarding the first research question: how does the flow velocity, and
straining circulation in particular, depend on the interactions between tidal variations of turbulence and the flow
velocity itself? The results are obtained by using the hydrodynamic model described in Chapter 2. The salinity
model will not be used in this chapter; the salinity is prescribed.

Not only exchange flow will be treated, but also oscillatory velocity components will be discussed. The inter-
actions between oscillatory tidal components and turbulent mixing are important for understanding exchange
flows. The complexity of turbulence modelling is varied by using the different versions of the hydrodynamic
model. The different model versions are applied to one case and are calibrated on the water level. The case
parameters and calibration procedure are discussed below.

One set of parameters for the shape and forcing of the estuary is used to illustrate the interactions between
turbulent mixing and the flow velocity. The parameters are representative for the Western Scheldt estuary,
which is situated in the South-West of the Netherlands and the North-West of Belgium. The Western Scheldt
is characterised by an alternating pattern of channels and shoals, which are not included in the presently used
model. The model is therefore not used to predict water levels and velocities in the Western Scheldt estuary,
but only to show the importance of specific physical mechanisms in an estuary of these typical dimensions. The
values of the parameters are given in Table 4.1.

Parameter Symbol Value
Length L 100 km
Width at mouth B0 2500 m
Depth (constant along the estuary) H0 25 m
Convergence length Lb 30 km
M2 tidal amplitude at mouth AM2 2.0 m
M4 tidal amplitude at mouth AM4 0.2 m
Phase difference between M2 and M4 tides at mouth φM4 180 degrees
River discharge Q 100 m3/s

Table 4.1: Parameter values for estuary dimensions and forcing.

The five model versions contain different parametrisations of the roughness coefficient and eddy viscosity that
cannot unambiguously be related to one another. This means that each model version should be calibrated
for that the results to be comparable. Version 5, with the k − ε turbulence model, is the starting point for
this calibration procedure. It uses a roughness height zs = 0.004 m, which corresponds to a Chézy value of
60 m1/2/s. In versions 2 and 4, the parabolic eddy viscosity profiles are calibrated. These versions use the
same roughness height, but need a calibration of the eddy viscosity magnitude. This magnitude varies in the
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x-direction in Version 5, but is assumed to be a constant in the other versions. The eddy viscosity magnitude
in Version 2 and 4 is determined such that the depth-averaged eddy viscosity is the same in Version 5 at one
location along the estuary. This location is determined by requiring that the M2 leading-order water level at
the end of the basin has a similar amplitude and phase in the different model versions. This requirement is in
accordance with common practice, in which the water level is used as a calibration criterion, because this is the
best measured quantity. Versions 1 and 3 use the same depth-averaged eddy viscosity as in Version 2 and 4.
The roughness coefficient in these two versions is calibrated using the water level at the end of the basin.

The results of this case with the Version 1 model will be discussed in Section 4.1, presenting an overview of
the results with the simplest turbulence formulation. Section 4.2 discusses the most important changes to the
velocity assuming a parabolic eddy viscosity profile. Next, the eddy viscosity is allowed to vary in time. This
introduces multiple significant changes to the flow velocity which will be discussed in Sections 4.3 to 4.5. In
these sections, the results of the k − ε model will be used to present the model result, while Versions 3 and 4
will be used for detailed analyses of the results. Finally, Section 4.6 discusses the importance of longitudinal
variations of the eddy viscosity on the model results.

4.1. Reference case
We start the discussion of the results by presenting the results of the reference case by using the model of
Version 1. This model uses a constant eddy viscosity and roughness coefficient

νt = 0.078m2/s,

sf = 0.004m/s

The value of the eddy viscosity is equal to the depth-averaged eddy viscosity at x = 26 km in the k − ε model
result, see also Section 4.3.

The leading-order solution is only forced by an M2 tide and will therefore only contain an M2 signal. The
first-order is forced by an M4 tide and a constant river discharge. It will therefore respond with an M4 and
residual signal. Additionally, the first-order is forced by a constant horizontal salinity gradient. The salinity is
assumed to be uniform in the vertical direction. The salinity is prescribed according to a simple exponential
profile, which is typical for well-mixed estuaries with a limited degree of tidal salt transport (Savenije, 2005);

s(x) = sseae
−x/Ls ,

where ssea = 30 psu is the salinity at the mouth and Ls = 30 km is a length-scale of salt intrusion.

Figure 9 shows the absolute value and phase of the surface level elevation ζ plotted against the longitudinal
distance, with x = 0 being the mouth of the estuary. The M2 water level amplitude increases with x. This
amplification is caused by the funnelling effect of the estuary due the decreasing width, and the reflection of
the tidal wave at the end of the basin. The amplification is opposed by bed friction, but this is not sufficient
here to counteract the amplifying effects. Such an amplification of the tidal wave is seen in many estuaries
among which the Western Scheldt. The phase of the leading-order water level decreases in upstream direction.
This means that the water level signal upstream lags the water level signal at the seaward side, because the
tidal wave takes time to travel up the estuary. This means that the phase φ in a Fourier component is defined
as eiωt+iφ.

The subtidal (denoted by M0 in the figure) and M4 contributions to the velocity originate from the first-order
equations and are clearly smaller than the leading-orderM2 water level elevation. Both first-order frequencies are
partly forced externally at the boundaries and partly generated internally. The boundary forced part originates
from the M4 tidal forcing at the seaward side and the river discharge at the landward boundary. Internal
contributions are caused by advection, baroclinic pressure and interactions of the M2 flow velocity with the
M2 water level elevation (the no-stress boundary condition and return flow). The separate contributions to
the water level amplitude by each of these physical components are presented in Figure 10. Each panel in the
figure displays the contribution to the water level by one forcing contribution in Equation 2.26 and Table 2.2.
The results show that the internal forcing by the baroclinic pressure ζsx is the main contributor to the subtidal
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water level elevation, while the external tidal forcing ζtide is the most important contributor to the M2 and M4
water level elevation.
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Figure 9: The water level amplitude and phase using model Version 1, separated in frequency components. The results of the
leading order and first order are added.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

x (km)

|ζ
| (

m
)

ζ
tide

 − Amplitude

 

 

M0
M2
M4

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

ζ
river

 − Amplitude

x (km)

|ζ
| (

m
)

0 20 40 60 80 100
0

0.01

0.02

0.03

ζ
no−stress

 − Amplitude

x (km)

|ζ
| (

m
)

0 20 40 60 80 100
0

0.5

1

1.5

2
x 10

−3 ζ
adv

 − Amplitude

x (km)

|ζ
| (

m
)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

ζ
s

x

 − Amplitude

x (km)

|ζ
| (

m
)

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

ζ
return flow

 − Amplitude

x (km)

|ζ
| (

m
)

Figure 10: The water level amplitude separated in six forcing mechanisms using Version 1. The subscripts are explained in Table
2.2.



40 4. Results: hydrodynamics

It can be argued that the assumed scaling of the model fails, because the M4 component at the landward
boundary is smaller, but not much smaller than the M2 component. However, it is shown in Appendix D.2 that
the results change little if the M4 component is moved to the leading order.

The horizontal velocity of the flow is presented in Figure 11. This figure shows the magnitude of the velocity
in the (x, z)-plane at four instances during the tidal cycle. Tidal slack, i.e. the point in time where the depth-
average velocity reverses, occurs around t = 0 and t = 0.5T near the mouth of the estuary. The flow at
these instances is dominated by the gravitational circulation, which shows as the circulating flow in the figure.
The maximum outflow velocity occurs at t = 0.34T and is called peak ebb. Conversely, the maximum inflow
velocity, or peak flood, occurs around t = 0.7T . So peak ebb and peak flood are not symmetrically distributed
over the tidal cycle.

We can analyse the importance and vertical structure of each of the six forcing mechanisms by making a
decomposition of the velocity, see Figure 12. The figure shows the velocity profile at peak ebb tide at 10
km from the mouth of the estuary. The most important forcing mechanisms are the tide and the baroclinic
pressure. The tide provides the most important M2 and M4 signals, while the gravitational circulation (i.e.
the baroclinically induced residual flow) provides the most important residual flow. These results are consistent
with the results of the surface level elevation. The shapes of the profiles of the tide and gravitational circulation
are distinctly different. The tidal flow profile has a uniform direction with the smallest velocity near the bed
and the highest velocity near the surface. The river flow and return flow share the same type of profiles. The
direction of the gravitational circulation is strongly curving and is bidirectional: landward near the bed and
seaward near the surface. This is conform the theory that was introduced in Section 1.1. The profiles of the
velocity which are due to advection and the no-stress surface condition also show curving bidirectional profiles.
These will not be discussed in detail, because the magnitude of these terms is small.
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Figure 11: Total horizontal velocity (leading-order and first-order) in the estuary at four instances during the tidal cycle.

4.2. The effect of a parabolic eddy viscosity
In this section we will consider the influence of a parabolic eddy viscosity profile on the water motion. The
parabolic vertical eddy viscosity is a good approximation of the result of the k − ε turbulence model as will be
shown in Section 4.3. In order to calibrate the model, the friction parameters zs and zb (see Equation 2.5) are
fixed at the same value as in Version 5 and the magnitude of the eddy viscosity is calibrated so that the water
levels show the best correspondence with the results of Version 5. The differences between the results of the
reference case and the results in this section amount to one centimetre in amplitude and 0.1 degree in phase
for the M2 water level. The M4 and residual water level show differences of the same order of magnitude. The
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Figure 12: Horizontal velocity at x = 10 km and at peak ebb t = 0.34T separated in six forcing mechanisms using Version 1.
Subscripts are explained in Table 2.2.

calibration yields the following values:

νt,0 = 0.00075m2/s,

zs = zb = 0.004m.

The effect of the parabolic eddy viscosity on the tidal velocity profile is the formation of a strong boundary
layer at the bed with a more uniform velocity in the rest of the water column. The velocity profile resembles
the logarithmic velocity profile that is often associated with tidal flow. This shape is clearest in the profiles of
the tidal velocity, river velocity and return flow in Figure 13. The figure again shows the decomposition of the
velocity signal, but now with both the results of a constant and parabolic eddy viscosity. The formation of clear
bed boundary layers are also visible in the profiles of the gravitational circulation and advection. The magnitude
of almost all contributions is similar with a constant and parabolic eddy viscosity profile. The contribution
from the no-stress boundary condition forms an exception. The changes to the tidal velocity profile near the
surface lead to a different magnitude of this term. However, it is still small compared to the most important
flow contributions.

The shape of the velocity profile is important to, for example, predicting the bed-load sediment transport. The
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impact of the change from Version 1 to Version 2 on the bed-load sediment transport can be estimated by
looking at the difference of the bed shear stress in both versions. The bed shear stress was defined in Section 1.3
as τ = ρνtuz. The maximum value of this bed shear stress is 6 · 10−2 N/m2 in Version 2, while the maximum
is 1.2 N/m2 in Version 1; a factor 20 difference between the two. One can use a constant eddy viscosity to
analyse the qualitative behaviour of the flow velocity, but one should be careful in using it even for qualitative
studies into sediment transport.

−0.4 −0.3 −0.2 −0.1 0
−25

−20

−15

−10

−5

0

u
tide

 − Real part

z 
(m

)

Re(u) (m/s)
−3 −2 −1 0

x 10
−3

−25

−20

−15

−10

−5

0

Re(u) (m/s)

z 
(m

)

u
river

 − Real part

 

 

−2 0 2 4 6

x 10
−3

−25

−20

−15

−10

−5

0

u
no−stress

 − Real part

z 
(m

)

Re(u) (m/s)
−5 0 5 10

x 10
−5

−25

−20

−15

−10

−5

0

u
adv

 − Real part
z 

(m
)

Re(u) (m/s)

−0.04 −0.02 0 0.02 0.04
−25

−20

−15

−10

−5

0

u
s

x

 − Real part

z 
(m

)

Re(u) (m/s)
−0.02 −0.015 −0.01 −0.005 0

−25

−20

−15

−10

−5

0

u
return flow

 − Real part

z 
(m

)

Re(u) (m/s)

M0
M2
M4

Figure 13: Components of the first order velocity at x = 10 km and at peak ebb (t = 0.34T ) using model Version 2 (solid line)
compared to Version 1 (dotted line).

4.3. The eddy viscosity as calculated by the k − ε model
The k−ε model in Version 5 is used to calculate a realistic temporally and spatially varying eddy viscosity. This
section will discuss the properties of the calculated eddy viscosity signal. The effects of the temporal and spatial
variations of the eddy viscosity will then be discussed in the next sections. The Version 5 model is calibrated
with the roughness height zs = 0.004 m, which corresponds to a Chézy value of 60 m1/2/s.

The eddy viscosity amplitude is separated in four frequencies and is presented in Figure 14. The figure shows
that the profiles of the eddy viscosity are similar to the parabolic profile in all frequencies and at all locations
along the estuary. We will discuss the along-channel distribution and the time-dependence in more detail below.
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Figure 14: Eddy viscosity amplitude for the several frequency components using Version 5.

We will first discuss the along-channel distribution of the subtidal eddy viscosity. Many simple relations assume
that the eddy viscosity can be estimated from the magnitude of the depth-averaged velocity. Such a relation is
used for example in the idealised model studies of Ianniello (1977) and Cheng et al. (2010). The eddy viscosity
does, however, not depend on the velocity, but on the velocity gradient. This gradient is contained in the
production term of turbulent kinetic energy in the k− ε turbulence model. The distribution of the velocity and
velocity gradient along the estuary are not the same. Figure 15 displays the along channel distributions of the
depth-averaged time-averaged absolute velocity, velocity gradient and eddy viscosity, i.e.∫ 0

−H
〈|u|〉 dz,

∫ 0

−H
〈|uz|〉 dz, and

∫ 0

−H
〈|νt|〉 dz.

The trend of the velocity is different to the trend of the velocity gradient and eddy viscosity. The velocity shear
is therefore a better estimator of the eddy viscosity in a homogeneous water column.

The gravitational circulation is the most important source of the disparity between the velocity and its gradient.
The gravitational circulation has a depth-averaged velocity of zero, but produces a significant amount of velocity
shear. This is shown in Figure 16. The gravitational circulation produces a similar amount of velocity shear as
the tide at the seaward boundary, even though the magnitude of the gravitational circulation is much smaller
than the magnitude of the tidal velocity.

Figure 14 also shows that the M2 component of the eddy viscosity is of a similar magnitude as the subtidal
component. This results in a strong asymmetry in the amount of turbulence during ebb and flood. Figure
18 shows this clearly with a time-series of the depth-average eddy viscosity. Such an asymmetry with a large
eddy viscosity during flood and a small eddy viscosity during ebb would be the expected result of SIPS (see
Section 1.3), which relates to an asymmetry in density stratification. The present case does however assume a
homogeneous density in the water column. Other sources are therefore responsible for the turbulence asymmetry.
One source is the asymmetry in the amount of velocity shear. The combination of gravitational circulation and
tidal flow result in a profile that is more sheared during flood than during ebb (Burchard and Hetland, 2010),
see Figure 17. The river flow and return flow counteract this by increasing the shear during ebb and decreasing
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Figure 17: Schematic representation of the velocity profile that results from the combination of gravitational circulation and tidal
flow.

it during flood, but this effect is small in this case. The turbulence asymmetry is further amplified by the tidal
asymmetry. The present case is flood dominant. The flood velocity is therefore larger than the ebb velocity.
This leads to more velocity shear during flood than during ebb. Finally, it is generally possible that the water
level is higher during either ebb or flood. The eddy viscosity grows larger in deeper water than in shallower
water, adding to the turbulence asymmetry. This does not play a role in the present simulation, because the
water level and velocity are approximately 90 degrees out of phase; the average water level is the same during
ebb and flood.

These sources of turbulence asymmetry lead to a velocity shear squared, i.e the production of turbulence, which
is 1.5 times larger during flood than during ebb. Additionally, they lead to a bed friction which is 8 times larger
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during flood than during ebb.

The M4 and M6 components also have a considerable magnitude. The phase of these components is such
that the eddy viscosity is almost constant during ebb and has a strong peak during flood. The small peak of
the eddy viscosity around t = 0.25T in Figure 18 is a model artefact which is caused by the limited number
of Fourier components. However, the overall pattern of the eddy viscosity is well captured by these Fourier
components.
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Figure 18: Depth-averaged eddy viscosity versus time at x = 10 km.

4.4. The interaction of the velocity and eddy viscosity
The interaction of temporally varying components of the eddy viscosity and velocity result in the creation of new
velocity frequencies and changes to the amplitudes and phases of the velocity already present. In this section
it will be analysed how large the effect of such interactions is on the velocity signal and how this depends on
the magnitude of the temporally varying eddy viscosity.

The way in which new frequencies are created is best illustrated by considering the momentum equation. Let us
assume that the eddy viscosity consists of a subtidal and an M2 component. We will consider the leading-order
momentum equation of the M2 component:

iωû0
1 −

(
ν̂t0û

0
1,z
)
z

= −gζ̂0
1,x + 1

2
(
ν̂t1û

0
2,z
)
z

+ 1
2
(
ν̂t1û

0
0,z
)
z
.

The terms on the left-hand side involve theM2 tide. They form the system response to the forcing terms on the
right-hand side by the water level gradient and the other frequency components. The subtidal eddy viscosity
appears in a system response term, while the time-varying eddy viscosity appears in the forcing terms. So the
time-varying eddy viscosity controls the interaction between the different frequency components. The interaction
of the M2 eddy viscosity and the subtidal and M4 tide act as a forcing on the M2 velocity. The residual and
M4 velocity components are themselves influenced by other velocity components so that all velocity frequency
components are coupled. It will be shown below that it is often sufficient to take only a few interacting
components into account. This justifies the assumption of including only a limited number of frequency
components in the calculation.

In Section 4.4.1 a theoretical framework will be developed that explains dependence of the velocity on the
magnitude of the temporally varying eddy viscosity. This is then applied to analyse the results of Version 5 in
Section 4.4.2.

4.4.1. Theoretical framework for the strength of the interactions
Let us assume that the eddy viscosity consists of a subtidal and an equally large M2 component. The eddy
viscosity is in phase with the M2 velocity. The Version 4 model has been used to obtain the model results in
this section.
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We will first consider the effects of the interaction between the eddy viscosity and the velocity on the leading-
order velocity. This interaction creates new residual, M4 and higher frequency components. It is observed from
the model output, see Figure 19, that the newly created residual and M4 velocity components are mainly due
to the interaction of the M2 velocity and the M2 eddy viscosity. It is also found that M2 velocity is almost
unaffected by the interaction of these new velocity components and the M2 eddy viscosity. So the frequency
components form a weakly interacting system; the M2 velocity affects the residual and M4, but their feedback
to the M2 velocity is negligible.

We can explain this observation by looking at the magnitude of the terms in the momentum equation. Consider
the momentum equation of the leading-order M4 velocity component:

2iωû0
2 −

(
ν̂t0û

0
2,z
)
z

= −gζ̂0
2,x + 1

2
(
ν̂t1û

0
1,z
)
z
, (4.1)

where
(
ν̂t1û

0
1,z
)
z
is treated as a known forcing term that does not depend on the M4 velocity. We have seen

above that this is a reasonable approximation, because the M2 velocity is only weakly affected by the M4
velocity.

The magnitude of the forcing term
(
ν̂t1û

0
1,z
)
z
can be estimated from a scaling argument The expected magni-

tude, using the scales in Appendix A.1, is

gAM2

Ltide
≈ 2 · 10−4 m/s2.

The actual depth-averaged value of the forcing term is only 3 · 10−5 m/s2, see Figure 20. This is one order of
magnitude smaller than the scaling suggests. So the forcing has the magnitude of an O(δ) term, instead of an
O(1) term. The reason for this difference is that the scaling argument assumes that the velocity gradient scales
with the typical velocity magnitude over the typical water depth. The actual depth-averaged velocity gradient
is larger than this scale near the bed, but quickly decreases and is small in the rest of the water column. The
depth-averaged value of

(
ν̂t1û

0
1,z
)
z
is therefore much smaller than the scaling suggests.

The first-order velocity components interact differently than the leading-order components. The first-order
velocity contained only residual and M4 components in Versions 1 and 2. These components create an M2
velocity component of similar magnitude (O(δ)) through the interaction with the M2 eddy viscosity in Versions
3 and 4. This O(δ) M2 velocity in turn affects the residual and theM4 components through the interaction with
theM2 eddy viscosity, inducing and O(δ) change to the residual andM4 components. So the first-order velocity
forms a system with mutual interactions of the same order of magnitude between the different components, see
Figure 19. We will call such a system a strongly interacting system.

These results can be explained by using the same ideas that were used above for the leading-order velocity. We
will consider the part of the momentum equation of the first-order M2 velocity component that is associated
with the baroclinic pressure:

iωû1
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1
1,z
)
z

= g

ρ0
ρ̂0

0,xz + 1
2
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, (4.2)

It is again assumed that the tidal components do not interact, so that the forcing terms 1
2
(
ν̂t1û

0
0,z
)
z
and

1
2
(
ν̂t1û

0
2,z
)
z
are known from the plain gravitational circulation and first-order tide that was also found in

Section 4.2. It will be shown why this assumption does not hold.

The forcing terms are plotted in Figure 20. The depth-average values of these forcing terms are∫ 0

−H
| 12
(
ν̂t1û

0
0,z
)
z
| dz = 3 · 10−5 m/s2,∫ 0

−H
| 12
(
ν̂t1û

0
2,z
)
z
| dz = 1 · 10−5 m/s2.

The scaling argument states that these terms should be approximately 2 · 10−5 m/s2. So these terms are
of the same order as the scaling suggests. The result is that they induce an M2 component which is of
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Figure 19: Amplitude and phase of the velocity at x = 10 km with model Version 4. Solid line: results of subtidal and M2 eddy
viscosity. Dotted line: results of subtidal eddy viscosity only (Version 2).
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,
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under the assumption that tidal components

do not interact.

similar magnitude as the gravitational circulation and first-order tide. Essential in this is that the shape of
the gravitational circulation induces an M2 component with a similar vertical structure as the gravitational
circulation itself, see Figure 19. This strongly curving M2 components has a large velocity gradient. The
forcing terms

∫ 0
−H |

1
2
(
ν̂t1û

0
1,z
)
z
| dz and

∫ 0
−H |

1
2
(
ν̂t1û

0
1,z
)
z
| dz that appear in the momentum equations of

the residual and M4 components are therefore also of the same order as the scaling suggests. This forcing
amplifies the residual and M4 components. It follows that the velocity components are strongly interacting;
the assumption that components do not interact, does not hold.

The curvature of the gravitational circulation is essential for this interaction. The interaction between the
residual andM2 component can be so strong because the interactions amplify the curved profiles, which generate
velocity shear. This velocity shear adds to the interaction, so that a positive feedback loop is established. The
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interaction between the first-order tidal M4 velocity component and the M2 component generates less shear so
that the interaction is much weaker. This is also the case for the interaction between the first-order tidal M4
component and the M6 component; the interaction is weaker so that the M6 component is about two times
smaller than the M4 component in first order, see Figure 19.

The above reasoning constitutes a theoretical framework that is summarised conceptually in Figure 21. This
framework distinguishes between weakly and strongly interacting systems on the basis of two axes. The two
axes can be made more exact with the following definitions

temporal variations of turbulence = |ν̂tn|
ν̂t0

,

vertical curvature of the velocity profile =
| (νtnûm,z)z |
NU/H2 ,

where n,m 6= 0 denote some tidal constituent and N , U and H are typical eddy viscosity, velocity and water
depth scales. One finds a strongly coupled system if the turbulence is strongly asymmetric and the curvature
of the velocity is of a similar or greater magnitude than the typical scale. The strongly interacting system
is characterised by a positive feedback loop between tidal components. This leads to an amplification of the
components that depends super-linearly on the temporal variations of turbulence. The interactions become
weak when either the temporal variations of mixing or the curvature is small. Weakly interacting systems
show hardly any feedback between the components, so that the interactions depend linearly on the turbulence
asymmetry.

Examples of the linear and super-linear dependencies on turbulence asymmetry are shown in Figure 22. The
figure shows the normalised velocity magnitude as a function of the temporal variations of turbulence. The
left panel shown the results in the weakly coupled leading-order system. The magnitude of the M2 and M4
components depends linearly on νt1/νt0 and the residual and M6 components show a weak super-linear trend.
The right panel shows the results of the strongly coupled first-order system. The velocity components show a
fairly linear trend for small values of νt1/νt0 and a super-linear trend for larger values of this variable.

It is not required that the temporal variations of turbulence are caused by anM2 component or that the vertical
curvature originates from gravitational circulation. This reasoning works for any source of vertical curvature
and any temporally varying eddy viscosity that fits within a hydrostatic model.
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velocity profile 

Weakly interacting 
- One-way interactions 
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Figure 21: Conceptual representation of the types of velocity-eddy viscosity interactions.

4.4.2. Results with Version 5
The above results carry over to the results of the simulations with the k − ε turbulence model. The velocity
profiles simulated by this model are displayed in Figure 23. The results form an excellent example of the
application of the above framework. It was already shown in Section 4.3 that the k − ε model simulated a
strongly asymmetric turbulence profile which can be ascribed to a large M2 eddy viscosity. The curvature of
the velocity profiles therefore determines whether the interactions with other frequency components are weak
or strong. The leading-order tide is again a weakly coupled system, because the M2 tide shows little velocity
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Figure 23: Amplitude and phase of the velocity at x = 10 km with model Version 5. Solid line: results of Version 5. Dotted line:
results of subtidal eddy viscosity only (Version 2).

shear. The same also holds for the first-order M4 tide. The comparison between the dotted line (subtidal eddy
viscosity only) and the solid line (k − ε model) shows that the temporal variations of the eddy viscosity hardly
influence theM4 velocity. The gravitational circulation on the other hand is strongly amplified due to its strong
interactions with the temporally varying eddy viscosity and first-order M2 velocity.

The results show that both the leading-order tide and the gravitational circulation induce a residual flow or an
amplification of this residual flow. This will be discussed in more detail in the next Section.
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4.5. The decomposition of the straining circulation
The analysis of the previous section has resulted in two types of straining circulation, i.e. two types of flows that
result from interactions between the velocity and temporal variations of turbulence. The first originates from
the weakly interacting system of the barotropic tidal flow and will therefore be called tidal straining circulation.
This contributions corresponds to the straining circulation that fits within the conceptual reasoning of Jay and
Musiak (1994). The tidal straining circulation is much weaker than the tidal flow that induces it. It also requires
variations of turbulence at the same frequency as the main tidal constituent, in this case M2.

The second type of straining circulation originates from the strongly interacting system of the gravitational
circulation. This will therefore be called the gravitational straining circulation. This research is the first time
that the gravitational straining circulation is identified as such. Its magnitude is potentially larger than the
gravitational circulation. It also does not require a specific frequency of turbulence variations; the gravitational
circulation amplifies through mutual interactions with any frequency of varying turbulence.

In this section we will show some properties and dependencies of these two contributions to the straining
circulation. We will show for the tidal straining circulations that the flow magnitude and direction depend
on the magnitude and phase of the eddy viscosity and the roughness formulation in Section 4.5.1. These
dependencies cannot be explained by the conceptual reasoning of Jay and Musiak (1994). We will show
that there is an additional mechanism that also affects the tidal straining circulation that can explain these
dependencies. It will be shown in Section 4.5.2 how the gravitational straining circulation depends on the eddy
viscosity, the salinity gradient and the frequency of the temporally varying eddy viscosity. Section 4.5.3 will
present the magnitudes of the different contributions to the straining circulation in the results of the model
including k − ε turbulence model.

4.5.1. Straining circulation induced by M2 barotropic tide
Jay and Musiak (1994) describe the exchange flow that would later be called straining circulation, as the
interaction of SIPS induced asymmetric turbulence and the tidal flow. This process was explained in Section
1.3. In summary their reasoning is that periodic stratification leads to damping of turbulence during the ebb tide
and strong mixing during the flood tide. The decreased ebb mixing is reasoned to lead to a less uniform tidal
velocity profile, while the increased flood mixing leads to a more uniform tidal velocity profile. This asymmetry
of the velocity profiles can be described by a symmetric M2 tide and an exchange flow with seaward flow near
the surface and landward flow near the bed.

We will investigate this interaction in more detail by looking at the influence of the phase of the velocity and
eddy viscosity and by looking at the influence of the roughness formulation. The motivation for such detailed
analysis is presented in Figure 24, which zooms in on the result of Section 4.4.1. The model results are obtained
with model Version 4 with an M2 eddy viscosity with three different phases. These phases are represented by
the variable ∆φ, which is defined as the phase difference between the depth-averaged phase of the eddy viscosity
and velocity and is positive when the M2 eddy viscosity lags the M2 velocity. The upper-left panel shows that
theM2-M2 straining circulation is directed out of the estuary near the bed and into the estuary near the surface
if ∆φ is zero. This direction is opposite to the direction that is generally associated with straining circulation.
The flow reverses when ∆φ is increased, i.e. when the eddy viscosity lags the velocity.

These results will first be discussed by making a further decomposition of the straining circulation and providing
a physical explanation to this decomposition.

Effect of bed friction on the straining circulation

There is a mechanism that is not taken into account in the reasoning of Jay and Musiak (1994) that could
explain the circulation that was found in Figure 24: the effect of bed friction. If the effect of bed friction on
mixing is reduced during ebb, this would result in a smaller boundary layer with a more uniform velocity profile
in the rest of the water column. This situation is reversed during flood, so that the velocity profile is steeper
during ebb than during flood. We then find a subtidal circulation in opposite direction; landwards near the
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eddy viscosity versus time at x = 10 km.

surface and seawards near the bed. The bed friction does not necessarily have to change for such effect to take
place. It is the behaviour of the frictional boundary layer that is of importance. This frictional boundary layer
extends through the whole water column in estuarine tidal flow and depends on both the bed friction and the
eddy viscosity that propagates this bed friction up through the water column.

The opposing effects of the turbulent mixing and bed friction discussed above can be distinguished in the
analytical solutions of the leading-order momentum equations, which are derived in Appendix E. These solutions
are derived under the assumption of a weakly interacting system, i.e. the M2 velocity is not affected by the
temporally varying eddy viscosity and the straining circulation is caused by M2-M2 interactions of the velocity
and eddy viscosity only. We will repeat the solution for the exchange flow velocity from the appendix:

û0
0 = Re

 ν̂t1ν̂t0
 1
H

∫ 0

−H
û0

1 dz − û0
1︸ ︷︷ ︸

(1)

+κ(z)
(

1
H

∫ 0

−H
û0

1 dz

)
︸ ︷︷ ︸

(2)


 . (4.3)
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The function κ(z) equals

κ(z) = −
1
H

∫ 0
−H f(z) dz − f(z)

1
H

∫ 0
−H f(z) dz − f(−H)

,

f(z) =
∫

z

ν̂t0
dz.

This function κ(z) is equal to −1 at the bed and is positive near the surface.

The first part of Equation 4.3 corresponds to the well-known mixing effect of the eddy viscosity that was
described by Jay and Musiak (1994). This can be better understood by separating the phases of the eddy
viscosity in a depth-mean and depth-varying part, denoted by overlines and apostrophes respectively, and
rewriting this part to

û0
0 (1) = Re

(
|ν̂t1|
ν̂t0

(
1
H

∫ 0

−H
|û0

1|e
iφ′u1 dz − |û0

1|e
iφ′u1

)
ei(φu1−φνt1 )

)
.

Let us assume that the eddy viscosity is in phase with the depth averaged velocity phase so that the last
exponential vanishes. This corresponds to reduced mixing during ebb and increased mixing during flood. The
velocity amplitude at the surface is larger than the depth-averaged velocity so that the resulting residual flow
is negative there. The vertical phase variations of the M2 velocity are generally small enough for this reasoning
to hold. A similar argument yields a positive residual velocity near the bed, see also Figure 25. The result is
an exchange flow with seaward flow near the surface and landward flow near the bed. This part corresponds to
the mixing effect of turbulence, because it describes the correlation between the phase difference between the
velocity and the eddy viscosity on the one hand, and the uniformity of the velocity profile on the other hand.

Part two corresponds to the effect of the bed friction, which is contained within the function κ(z). The bed
friction creates a bottom boundary layer that affects the shape of the velocity profile in the water column.
This effect is not contained in part 1. This can be understood intuitively by considering the ebb tide with a
strong damping of turbulence. Part 1 describes that the velocity profile becomes less uniform as a results of
this turbulence damping. However, at a very low degree of turbulence, the bed friction cannot propagate up
the water column. This means that there is no source of velocity shear and the velocity profile must become
uniform. So we find a balance between the effect of turbulence and an opposing effect that describes how bed
friction is ’felt’ in the water column.

The effect of part 2 is examined more closely by rewriting the term in a similar form as part 1:

û0
0 (2) = Re

(
|ν̂t1|
ν̂t0

κ(z)
(

1
H

∫ 0

−H
|û0

1|e
iφ′u1 dz

)
ei(φu1−φνt )

)
.

Again consider the eddy viscosity to be in phase with the depth-averaged velocity. The last exponential then
vanishes. The integral is generally a positive number, because the vertical phase difference is typically small.
So the function κ(z) is multiplied by a positive constant. This function is negative at the bed and positive at
the surface, so that the residual flow is also positive at the surface and negative at the bed, see Figure 25.

The function f defined above suggests that there is a connection to the shape of the boundary layer. Let us
consider the typical magnitude of the function f , which will be denoted by F and uses a typical eddy viscosity
scale N . The magnitude of F can be expressed as

F =
∫

z

N
dz = 1

2
H2

N
.

This is a time-scale which we will scale by the M2 tidal frequency to obtain a dimensionless parameter which
is equal to the inverse square of the Stokes number

S−2
tk = Fω = 1

2
ωH2

N
.
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Figure 25: Schematic representation of the two opposing contributions to the residual circulation: (1) the effect of turbulent mixing
and (2) the effect of bed friction.

The Stokes number is used to study the depth of frictional influence in oscillating flows and is defined as the
ratio of this depth and the water depth (Souza, 2013). The quantity F can therefore be regarded as a time-scale
of frictional influence, so that the Stokes number becomes the ratio of a time-scale of frictional influence and
the tidal time-scale.

The interpretation of F as a time-scale is difficult here, because we are considering the creation of a residual
flow. The creation of this residual flow does not depend on ω and does therefore not depend on any tidal
time-scale. Yet, the parameter F has a meaning that is connected to the structure of the boundary layer. It
therefore supports the earlier intuitive reasoning that part 2 reflects the effect of this boundary layer. More
research is required to provide a better understanding of the opposing effects of turbulent mixing and bed
friction on the velocity profile.

Sensitivity to the roughness and eddy viscosity
We will study the sensitivity of the direction of the tidal straining circulation to three parameters in Versions
3 and 4 of the model. In Version 3 these parameters are the roughness parameter sf , the vertically constant
subtidal eddy viscosity νt0 and the phase difference between the depth-averaged leading-order M2 velocity and
M2 eddy viscosity. The latter parameter will be denoted by ∆φ and is positive if the M2 eddy viscosity lags the
M2 velocity. The results in this section are obtained from the analytical solution for the residual flow, derived
in Appendix E. This solution uses the solution for û0

1 which is calculated analytically. It is assumed that the
M2 velocity is not affected by the M2 eddy viscosity.

Figure 26 shows the direction of the tidal straining circulation as a function of sf , νt0 and ∆φ. The white
area in the figure represents the expected flow direction; with outflow near the surface and inflow near the bed.
Figure 26c shows how the direction of the circulation depends on sf and νt0 if ∆φ is zero; the relation between
the input parameters and the circulation direction if the M2 eddy viscosity is in phase with the M2 velocity.
Figures 26a and 26b show how the direction of the circulation changes with ∆φ. It is expected that the phase
difference is positive in reality, simulating stable stratification during late ebb and enhanced mixing during late
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Figure 26: Sensitivity of the direction of the tidal straining circulation to the three parameters sf , νt0 and ∆φ in Version 3. The
white area represents the expected flow direction; outflow at the surface and inflow near the bed.

The parameters used in this research, ν̂t0 = 0.078 m2/s and sf = 0.004 m/s, result in the expected direction
of the straining circulation if the phase difference between the eddy viscosity and the velocity is zero, see Figure
26c. It is therefore that the Figures 26a and 26b use values of sf and νt that are different to the values used
in the rest of this research. It illustrates the possible effect of the bed friction of the flow direction for other
parameter settings.

The figure shows that it is required to have some phase difference ∆φ in order to get the expected direction of
the circulation for many reasonable combinations of νt and sf , such as that used by (Chernetsky et al., 2010).
It also shows that a positive value of ∆φ, which is expected from a physical point of view, yields the expected
direction of the residual circulation for more values of νt and sf than a negative value of ∆φ.

The sensitivity study supports the physical explanation given above. The small value of the bed friction
coefficient sf used in the Version 3 simulations diminishes the effect of bed friction and therefore yields the
expected flow direction.

A similar sensitivity study in Version 4, with the parabolic eddy viscosity profile, yields results which differ at
a few points. At a phase difference ∆φ = 0 no configuration of the parameters zb and νt0 exists so that the
straining circulation is in the expected direction. Figure 27 shows the other results of the sensitivity study. The
left panel of this figure compares well to Figure 26a for small values of the eddy viscosity, but has a horizontal
asymptote just above ∆φ = 0 for larger values of the eddy viscosity. The right panel shows that the direction
of the straining circulation is independent of the bed roughness zb as long as this value is higher than 10−6 m.

So the balance between the two parts that make up the tidal straining circulation depends on the type of
roughness formulation as well as the value of the roughness parameter and νt0. It can be seen from the
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Figure 27: Sensitivity of the direction of the tidal straining circulation to the three parameters zb, depth-averaged νt0 and ∆φ in
Version 4. The white area represents the expected flow direction; outflow at the surface and inflow near the bed.

analytical solutions to the tidal straining circulation that the depth of the estuary is the only other parameter
that influences the direction of the tidal straining circulation in Version 3 and 4. This means that the amplitude
of the M2 eddy viscosity and the magnitude of the M2 velocity are not important for the direction of the
circulation.

This research is the first time that such dependencies are found. It is not known whether the possible reversal
of the tidal straining circulation can also occur in reality or whether it is a model artefact. Experimental studies
are required to investigate this.

4.5.2. Straining circulation induced by the gravitational circulation
It was shown in Section 4.4 that the residual circulation in the first-order is amplified by the strong interactions
between the velocity and the eddy viscosity. The most important interaction is that of the gravitational
circulation with the M2 eddy viscosity. This interaction involves the gravitational circulation which interacts
with the M2 eddy viscosity to create an M2 velocity. This M2 velocity has the same velocity profile as the
gravitational circulation. It also has a similar magnitude, because the turbulence is strongly varying in time
and the gravitational circulation profile has a strong curvature. The interaction of the M2 velocity and the M2
eddy viscosity provide a strong feedback to the exchange flow.

In this section we will show how the straining circulation induced by the gravitational circulation can be
distinguished from the momentum equations and how the straining circulation depends on the along-channel
salinity gradient, the phase of the eddy viscosity and the frequency of the temporal variations of the eddy
viscosity.

The parts of the momentum equations that are associated with this interaction between the baroclinic residual
and M2 velocity are

−ν̂t0û1
0,zz = −gζ̂1

0,x,sx +Re
(
ν̂t1û

1
1,zz
)

+ gβs0,xz,

iωû1
1 − ν̂1

t0û1,zz = −gζ̂1
1,x,sx + 1

2 ν̂t1û
1
0,zz.

The equations are restricted to the baroclinic forcing under the assumption of a constant salinity gradient. This
exchange flow contains the effect of the gravitational circulation and the gravitational straining circulation.
These two components can be distinguished in the equations by separating the subtidal water level gradient in
a part associated with the gravitational circulation (GC) and a part associated with the gravitational straining
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circulation (GSC);

ζ̂1
0,x,sx = ζ̂1

0,x,GC + ζ̂1
0,x,GSC ,

TheM2 water level gradient is only due to the gravitational straining circulation, because it is not forced directly
by the salinity gradient. The equations then read

−ν̂t0û1
0,zz = −gζ̂1

0,x,GSC +Re
(
ν̂t1û

1
1,zz
)︸ ︷︷ ︸

(GSC)

−gζ̂1
0,x,GC + gβs0,xz︸ ︷︷ ︸

(GC)

,

iωû1
1 − ν̂1

t0û1,zz = −gζ̂1
1,x,sx + 1

2 ν̂t1û
1
0,zz︸ ︷︷ ︸

(GSC)

.

The equation contains separate parts for GSC and GC. The only external forcing to this system is the along-
channel salinity gradient. This induces the gravitational circulation, which enters in the equations for the M2
velocity. This M2 velocity feeds back into the residual velocity, see Figure 28. The equations are linear. This
means that the solution depends linearly on the salinity gradient, i.e. both the gravitational circulation and the
gravitational straining circulation depend linearly on the salinity gradient.

sx 
Residual 
velocity 

M2 
velocity 

GC GSC 

(νtu0,z)z 

(νtu1,z)z 

Figure 28: Schematic figure of the interactions in the system of gravitational circulation (GC) and gravitational straining circulation
(GSC).

This dependence is verified in model Version 4 with a parabolic subtidal and M2 eddy viscosity of equal
magnitude, see Figure 29. The magnitude of the exchange flow is measured as an absolute depth-average, see
the definition of Equation 4.4 in the next section. The gravitational straining circulation and the gravitational
circulation are indeed both linearly dependent on sx, with this component of the straining circulation being 2.2
times greater than the gravitational circulation in this case.
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Figure 29: Magnitude (see Equation 4.4) of the gravitational circulation (GC) and gravitational straining circulation (GSC) as a
function of the along-channel salinity gradient. The linear dependence has also been proved analytically.

It is proved in Appendix E.3 that the magnitude and direction of the gravitational straining circulation is
independent of the phase of any temporally varying eddy viscosity eddy viscosity. The gravitational straining
circulation therefore does not depend on the timing of the eddy viscosity, but only on its magnitude. This is
unlike the magnitude and direction of the tidal straining circulation, which was shown in the previous section
to depend on the phase of the M2 eddy viscosity.
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Figure 30: Magnitude (see Equation 4.4) of the gravitational circulation (GC) and gravitational straining circulation (GSC) as a
function of the angular frequency of the tidal wave.

It is found in all experiments for this research that the gravitational straining circulation acts in the direction of
the gravitational circulation. It could be possible that configurations of the bed roughness and eddy viscosity
exist that produce a straining circulation in the opposite direction. Further research is required to prove whether
such a reversal of direction possible.

The interaction between the residual and M2 velocity components via an M2 eddy viscosity have been inves-
tigated above. We will now investigate the effectiveness of interactions between the gravitational circulation
and other frequency components in creating the gravitational straining circulation. We will assume that the
gravitational circulation interacts with one frequency component of the eddy viscosity and therefore with the
same frequency component of the velocity. The temporal variation of the eddy viscosity has the same amplitude
as the subtidal eddy viscosity. The angular frequency ω of this frequency component is varied. The magnitude
of the gravitational straining circulation as a function of ω is presented in Figure 30. The figure shows that a
smaller frequency results in a stronger exchange flow. This means that M2 variations of the eddy viscosity are
more effective in creating the gravitational straining circulation than M4 variations or higher overtides. The
M4 variations are, however, still capable of inducing a gravitational straining circulation that has the same
magnitude as the gravitational circulation in this case. The variations of the eddy viscosity on the spring-neap
cycle are more effective in creating the gravitational straining circulation than the M2 variations. It is outside
the scope of this research to look into the effect of spring-neap variations.

4.5.3. Results with Version 5
The previous two sections have showed that the exchange flow in the present case consists of three important
contributions. The first contribution is the straining circulation induced by the interaction of the M2 tide
and M2 eddy viscosity. The second is the straining circulation induced by the strongly coupled system of
gravitational circulation and M2 baroclinic velocity component via the M2 eddy viscosity. The final important
contribution to the exchange flow is the gravitational circulation itself. We will compare the magnitude of the
three contributions in the results with the k − ε turbulence model.

Figure 31 displays these contributions to the exchange flow. The magnitude of the contributions is measured
in a similar way as Burchard and Hetland (2010):

||u0||1 = 1
H

∫ 0

−H
|u0 − u0| dz, (4.4)

The total straining circulation contributes to 63% of the total exchange flow. The gravitational circulation
contributes 36 %. Other sources of exchange flows are for example the advection and the vertical variation of
the river velocity. These contribute only 1% of the exchange flow. These results correspond to the results of
Burchard and Hetland (2010), who have found that the straining circulation amounts to approximately 2/3 of
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Figure 31: The three most important contributions to the exchange flow and the total exchange flow in the Version 5 simulation
at x = 10 km.

the exchange flow, while the gravitational circulation is responsible for the other 1/3 in their test cases. They
have used an 1DV model with a k − ε model and have included salt transport.

The straining circulation consists for 85% by the gravitational straining circulation. Only 15% of the straining
circulation is attributable to the tidal straining circulation. In literature it is assumed that the tidal straining
explains the straining circulation, but it is shown here that this is not necessarily the case. The straining
circulation is a result of the interaction of both the tidal and gravitational contributions. The gravitational
straining circulation is capable of providing the largest contribution to the straining circulation. This contribution
is also independent of the phase of the eddy viscosity, while the tidal straining circulation depends on the phase
of the eddy viscosity and may even reverse direction.

4.6. The (un)importance of longitudinal eddy viscosity variations
It was discussed in Section 4.3 that the eddy viscosity varies strongly in longitudinal direction and that these
variations can be related to the velocity shear that is caused by the tidal velocity and the exchange flow. In
this section it will be discussed what importance these longitudinal variations have on the flow velocity. To this
end we compare the results of the full k − ε model (Version 5) with the results that are obtained by choosing
an along-channel uniform eddy viscosity (Version 4). The vertical and temporal variations of the eddy viscosity
are the same in both cases. The along-channel uniform profile of the eddy viscosity is chosen so that the M2
water level amplitude and phase at the end of the basin are similar in both cases.

The M2 tidal velocity and the exchange flow are used to compare both cases in Figure 32. This figure presents
the differences in amplitude of the M2 tide and differences in magnitude of the exchange flow, see Equation
4.4. The tidal velocity is hardly affected by the longitudinal variations of the eddy viscosity, while the exchange
flow magnitude changes up to 100% when longitudinal variations of the eddy viscosity not included.

The results in Figure 32 show the uncertainty in the model results when it is calibrated on the water level. The
M2 and subtidal water level at the end of the estuary differ only 5 cm between the case of the longitudinally
varying and constant eddy viscosity. This results in very small differences in the M2 velocity, but very large
differences in the exchange flow magnitude. Calibration on the M2 water level as is done here is clearly not
sufficient to get accurate results for the exchange flow.
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Figure 32: Absolute differences between the velocities as calculated by the k− ε model with and without longitudinal variations of
the eddy viscosity. The differences are given for the M2 tide and the exchange flow.





5
Results: salinity

This chapter considers the coupling of the hydrodynamic model and the salinity model, and the effect of
turbulent mixing on this coupled model. The central question to be addressed in this chapter is the second
research question: "how does the tidally induced salt transport depend on tidal variations of turbulence?" The
structure of the salinity model is ideal for studying the salt transport, because one equation of the salinity model
separates the mechanisms that are responsible for salt transport. The salinity model consists of two equations
that are repeated here(

B

∫ 0

−H
〈u0s1〉 dz

)
x

+Q1s0
x −BH

(
KHs

0
x

)
x

= 0,

s1
t −

(
KV s

1
z

)
z

= −u0s0
x.

The first equation describes the salt transport of the depth-averaged time-averaged salinity s0. The transport
in this equation comes from the leading-order tidal flow, which is contained in u0, the river discharge Q and the
unresolved dispersion, parametrised by KH . The other forcing mechanisms of the flow, such as the baroclinic
pressure or momentum advection, are unimportant according to the scaling procedure. The second equation
describes the temporal and vertical variations of salinity s1. This equation is forced by the along-channel
advection of salt by the leading-order tide.

In this chapter we will focus on the tidal salinity transport. The dependency of this tidal transport on turbulence
is explored by increasing the complexity of the turbulence modelling by using the different versions of the model.
Special attention is paid to the effect of temporal variations of the eddy viscosity. The salt balances that were
introduced in Section 3.4 will be used throughout this chapter to analyse the results.

This chapter uses the same estuary dimensions and tidal and river forcing as were used in the previous chapter,
see Table 4.1. We will first discuss the results of the salinity model in the case of a temporally constant eddy
viscosity (Version 1 and 2) in Section 5.1. Next, the k − ε model will be applied in Section 5.2. In Section
5.3 we will go further into the effect of a temporally varying eddy viscosity on the salt intrusion and timing of
stratification.

5.1. Reference case
This section will present the results of the salinity model in the reference case. This case will use the estuary
dimensions, tidal forcing and river discharge that were used in Chapter 4. The eddy viscosity is assumed to be
constant in time and either constant or parabolic in the vertical direction (Version 1 and 2).

Figure 33 shows the depth-averaged, time-averaged salinity over the length of the estuary for Version 1 and
Version 2. The results are presented for three different values of the horizontal dispersion coefficient KH . A
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smaller value of this coefficient results in less salt intrusion, while a larger value leads to more salt intrusion.
This can be explained by looking at the 1DH salinity equation

Qsx − (HBKsx)x = 0.

The 1DH equation is an advection-dispersion equation. This equation can be rewritten by using the product
rule

Qsx −HBKxsx −HBKsxx = 0. (5.1)

The dispersive component has a dispersion coefficient K. The dispersion spreads the salinity from the seaward
boundary into the estuary and results in an exponential decay of the salinity with the distance from this
boundary. The advective component transports salinity with a ’velocity’ Kx. The salinity profile that results
from advection does not decay with distance. The gradient of K therefore indicates the deviation of the salinity
from the exponentially decaying profile.
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Figure 33: Depth-averaged time-averaged salinity versus longitudinal distance for Version 1 (dotted line) and Version 2 (solid line).
KH = 20, 50 and 100 m2/s.
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Figure 34: Equivalent dispersion coefficients separated in physical mechanisms. Model Version 2, KH = 50 m2/s.

The dispersion coefficient is decomposed into the different forcing mechanisms in Figure 34. The decomposition
is made according to the method presented in Section 3.4.2. The dispersion coefficients are calculated in post-
processing so that the contribution of, for example, baroclinic pressure can be estimated even though it is not
included in the salinity model. For the validity of the model it is required that the leading-order tidal contribution
and the closure term are much larger than the other contributions.

The salt intrusion is almost solely established by the parametrised dispersion. The dispersion coefficient of this
parametrised dispersion is Kclosure, which equals the sum of KH and any disparity between the 2DV model and
the salt balance equation. Such differences can be caused by model errors, e.g. because the model does not
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take baroclinic salinity transport into account. Differences between the model and the salt balance can also
occur if the calculated salinity profile cannot be described by a dispersion coefficient. In this case, the Kclosure
almost equals the prescribed KH .

We will look closer at the tidal contribution of the salinity transport and explain why it is negligible in this case.
If the eddy viscosity is constant in time, this transport is induced by the M2-M2 interactions of velocity and
salinity. The negligible contribution of the tide can be explained by considering the first-order salinity equation

iωŝ1
1 −

(
KV 0ŝ

1
1,z
)
z

= −û0
1ŝ

0
x. (5.2)

The first-order salinity contains the M2 frequency, which will be broken down into a depth-averaged part and
a depth-varying part. To this end, the forcing on the right-hand side of the equation is also split into a depth-
averaged part −û0

1ŝ
0
x and a depth-varying part −(û0

1)′ŝ0
x. The depth-averaged part indicates the excursion of

salt over the M2 tide. Its magnitude is easily calculated by solving Equation 5.2 with only this part of the
forcing. This yields the solution

ŝ1
1,depth-averaged = − û

0
1ŝ

0

iω
.

The amplitude of ŝ1
1,depth-averaged is about 3 psu at the mouth for the present situation. More importantly, it is

always 90 degrees out of phase with the leading-order velocity. As a result, the product of ŝ1
1,depth-averaged and

û0
1 is zero and there is no contribution to the salt-intrusion.

So vertical stratification is, in this simplified model, the only model-resolved forcing mechanism for salt intrusion.
The vertical stratification is negligible (∼ 0.01 psu) in the present simulation due to the high value of the eddy
viscosity. The vertical stratification would be larger if the parameter settings were different. The vertical
stratification is only 11 degrees out of phase with the depth-average M2 velocity in this case. A higher level of
vertical stratification would therefore lead to a more significant tidal salt transport.

A sensitivity study using the constant eddy viscosity model results in a maximum of 2 · 103|ŝ0
x| psu salinity

difference between the surface and the bed, which is approximately 2 psu for a uniform salinity gradient ŝ0
x of

30 psu over 30 km. This maximum value is found for νt ≈ 0.004 m2/s and roughness coefficient s > 0.1 m/s
if the depth is 25 m and we consider the M2 tide, see Figure 35. At its maximum the vertical stratification is
capable of a salt transport with an equivalent dispersion coefficient of approximately 50 m2/s with the estuary
dimensions that are considered here. This is a significant amount. So the transport by the tide can be a
dominant factor for salt transport, but the settings in this reference case produce hardly any tidal salt transport.

∆s1 (psu)

νt0 (m2/s)

sf = 0.1 m/s

sf = 0.004 m/s

Figure 35: Maximum top-bottom salinity difference ∆s1 during a tidal cycle in Version 1 with model parameters ŝ0
x = −10−3

psu/m and sf = 0.004 (blue line) or sf = 0.1 (red line).

5.2. Results with a k − ε turbulence model
The tide can only transport salt by interactions with the vertical stratification if the eddy viscosity is constant.
If the eddy viscosity were to vary in time, however, the tide would also transport salt by interactions with the
depth-averaged salinity. This will be shown in this section.
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We will therefore employ the k− ε turbulence model to calculate the eddy viscosity. The results in this section
use the k − ε model without buoyancy effects, i.e. vertical stratification has no effect on turbulence. This
restriction is necessary for the model to converge. These convergence problems are discussed in Appendix D.3.
It is expected that the stratification has a profound effect on the eddy viscosity. However, the results presented
in this section are still useful to illustrate the effects that any temporally and longitudinally varying eddy viscosity
might have on the tidal salt transport.

The salt intrusion and equivalent dispersion coefficient as functions of x are presented in Figures 36 and 37.
The tip of the salt curve has not progressed much further into the estuary than in the reference case, but the
shape of the salt intrusion curve has changed to a more convex shape near the mouth of the estuary, causing
increased salinity levels throughout the estuary. Figure 37 reveals that this change of the salinity is caused by
the tidal salt transport, which is significant near the mouth of the estuary.

The changed shape of the salt intrusion curve appears in Figure 37 as the gradient of the tidal dispersion
coefficient. This gradient indicates an advective type of transport, as was explained in the previous section.
The combination of advective and dispersive transport of salt yields the more convex salinity profile near the
seaward boundary.
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Figure 36: Depth-averaged time-averaged salinity versus longitudinal distance for Version 5 without buoyancy effects in the k − ε
model (solid line). The result of Version 2 is given as reference (dotted line). KH = 100 m2/s.
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Figure 37: Equivalent dispersion coefficient separated in physical mechanisms. Model Version 5 without buoyancy effects in the
k − ε model. KH = 100 m2/s.

The tidal salinity transport is caused for 95 % by the interaction of theM2 tidal velocity with the depth-averaged
M2 salinity. This type of salinity transport was absent in the reference case, because the depth-averaged M2
salinity and tidal velocity were out of phase. This is different if the eddy viscosity is allowed to vary in time.
The phase difference between the depth-averagedM2 salinity and tidal velocity is now 82 to 86 degrees. So the
two components are still almost out of phase, but this is sufficient to produce a significant tidal salt dispersion.
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This means that the potential of the tide to transport salt is enormous even if the level of vertical stratification
is limited.

The tidal salinity transport can be analysed further by looking closer at the first-order salinity equation. We will
look at the M2 and M4 components and assume that these are the only components to illustrate the behaviour
of this equation. The eddy viscosity is assumed to consist of a subtidal and an M2 component. The equations
then read
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1
2,z
)
z

= −û0
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.

The M4 salinity is forced by a weak M4 tidal velocity. The forcing of the M4 salinity by the M2 salinity via
the term 1

2
(
KV 1ŝ

1
1,z
)
z
is also small, because the vertical gradient of the M2 salinity is small, see Figure 38.

Conversely, theM4 salinity has little influence on theM2 salinity as its vertical gradient is small. Note however,
that the gradient of the M4 salinity is of similar magnitude as the gradient of the M2 salinity. The effect of
the M4 salinity on the M2 salinity can therefore not be neglected completely. Nevertheless it can be concluded
that the first-order salinity equation is a weakly interacting system; the interactions between different salinity
components are small.

Still, the interactions between the components are strong enough to cause a shift of 6 degrees of the depth-
averaged M2 salinity compared to the reference case, see Figure 38. This small phase shift is sufficient to
induce a significant amount of salt transport. This makes salt transport especially difficult to model; even weak
interactions between components that are small can be important for the prediction of the total salt transport.
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Figure 38: Vertical profiles of the first-order salinity at x = 30 km with the k − ε model (solid line) and parabolic temporally
constant eddy viscosity (dotted line).

Whereas the vertical stratification was most stable after peak ebb in the reference case, its M2 component is
30 degrees ahead of the M2 velocity here. This means that the water column is at its most stable stratification
during early ebb. It could be questioned whether this is realistic. The eddy viscosity is higher during peak ebb
than during early ebb, because buoyancy effects are not taken into account in the k− ε model. This increased
mixing during peak ebb shifts the maximum stratification to early ebb.

So it is expected that the phase of the eddy viscosity changes when buoyancy effect are taken into account.
This is likely to affect the salt transport. We will therefore investigate how the phase of the eddy viscosity and
the phase of stratification are related in Section 5.3.

5.3. Sensitivity to the phase of the eddy viscosity
It was found in Section 4.3 that the eddy viscosity without salinity model mainly consists of a subtidal and an
M2 component. It is further expected that the inclusion of buoyancy effects in the eddy viscosity would induce
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a strong M2 component of the eddy viscosity, because of the tidally asymmetric SIPS phenomenon. We will
therefore describe the eddy viscosity by a subtidal and an M2 component and investigate the sensitivity of the
results to the magnitude and phase of the M2 eddy viscosity. First, it will be investigated how the phase of the
vertical stratification depends on the phase of the eddy viscosity. Next, the dependency of the salt transport
on the phase of the eddy viscosity is investigated. We will use model Version 4 with a parabolic eddy viscosity
profile in this section.

When prescribing an M2 eddy viscosity, it is preferred that the phase of the stratification is not too sensitive
to the chosen phase of the eddy viscosity. If the phase of the stratification is highly sensitive to the phase of
the eddy viscosity, this would put strong demands on the accuracy with which the eddy viscosity is prescribed.
This sensitivity is tested in Figure 39.

The phase of the stratification is independent of the phase of the eddy viscosity if the M2 eddy viscosity is only
1 % of the subtidal value. The value of φstrat is just negative, which means that the strongest stratification
occurs just after peak ebb. The results change when the magnitude of the M2 eddy viscosity is increased
to 10% of the subtidal eddy viscosity. The phase of the stratification is now equal to the phase of the eddy
viscosity at a positive value. This means that the stratification is already at its maximum before peak ebb.
The results change even more when the M2 eddy viscosity is increased further. The phase of the stratification
becomes strongly dependent on the phase of the eddy viscosity.

The validity of the assumed simplified eddy viscosity is challenged by the highly fluctuating behaviour of the
timing of the stratification with the phase of the eddy viscosity. It is likely that the addition of a small M4
eddy viscosity component affects the timing of the stratification quite significantly, because of the strong
sensitivity. This means that the accuracy of turbulence modelling is essential in order to find the correct timing
of stratification. One should furthermore be careful in using approximations of the full turbulence signal, because
a small change in the turbulence prescription may result in a strong change in the timing of stratification.

A similar sensitivity is found when plotting the phase of the M2 eddy viscosity against the tidal salt dispersion
coefficient, see Figure 40. The transport is almost solely established by the interaction of the M2 tidal velocity
and M2 depth-averaged salinity. The phase difference between these two components is highly dependent on
the phase of the eddy viscosity. Especially the strong change of the transport for νt1/νt0 = 1 around φνt = 0
puts very strong requirements on the accuracy of turbulence modelling.
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Figure 39: Phase difference (degrees) at x = 10 km between the top-bottom salinity difference and the eddy viscosity as a function
of the eddy viscosity. This phase is relative to the phase of the M2 velocity, i.e. φνt − φu.

The reasons for these strong fluctuations are not fully understood. It was found in the previous section that the
effect of small M4 and residual salinity components can result in large changes in the tidal salt transport. This
leaves the possibility that small numerical errors are responsible for the strong fluctuations that were observed.
The exclusion of small higher-order velocity and salinity components in the model can similarly have resulted
in the strong fluctuations. More research is needed to investigate these dependencies of the tidal salt transport
on the turbulence modelling.
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Figure 40: Tidal salt transport expressed by a dispersion coefficient at x = 10 km as a function of the prescribed phase of the eddy
viscosity. This phase is relative to the phase of the M2 velocity, i.e. φνt − φu.

It can be concluded that, in this 2DV model, it is virtually impossible to prescribe anM2 eddy viscosity with the
right phase so that the stratification and eddy viscosity are in phase or almost in phase. The correct phase is
strongly dependent on the magnitude of the eddy viscosity. It is therefore not realistic to describe the effects of
stratification on the eddy viscosity by a singleM2 components and more complex turbulence modelling methods
are required.

5.4. Limitations of the salinity model
The scaling of the salinity and the inclusion of only the leading-order and first-order salinity pose strong
restrictions on the range of applicability of the salinity model. The model is only applicable to well-mixed
estuaries and the results rely strongly on the parametrised dispersion with coefficient KH . We will consider a
number of limitations of the model and possible extensions of the salinity model within this idealised modelling
framework.

It is argued that the present model scaling is only suitable for well-mixed estuaries and does not apply for
partially stratified estuaries, because it does not take the baroclinically induced salt transport into account. It is
hypothesised that the baroclinic pressure is capable of producing a salt transport of the same order of magnitude
as the tide in partially stratified estuaries. This transport is thought to be caused by the gravitational circulation
and gravitational straining circulation, which are the dominant contributions to the exchange flow in the present
case. The hypothesis is motivated below.

Let us assume that the velocity, eddy viscosity and salinity can be described by a residual and anM2 component
which are caused by the M2 tide and the exchange flow. The salt transport can then be described as

〈ûŝ1〉 = û
0
1ŝ

1
1︸︷︷︸

M2 tidal transport

+ û0ŝ
0
0.︸ ︷︷ ︸

transport by exchange flows

It has been shown that the transport by the M2 tide consists of two parts: the transport by vertical correlations
of û1 and ŝ1 and the transport by temporal correlations of the depth-averaged û1 and ŝ1

1. The transport by
vertical correlations was small in the present case, but can be larger in partially stratified estuaries when the
vertical salinity gradient is larger. However, the vertical variation of the tidal velocity is not of O(1), but of O(δ)
in most parts of the water column, except for near the bed. It could therefore be argued that the transport by
vertical correlations of the tidal flow and salinity is not of O(δ2), as is assumed, but of O(δ3). Additionally, the
vertical stratification and tidal velocity are not completely in phase, but have a small phase difference, which
also reduces the transport. The transport by temporal correlations of the tidal velocity and salinity was shown
to be highly dependent on the phase difference between the two components. The transport can therefore be
of O(δ2), but also much smaller.

The transport by the exchange flow is caused by the vertical correlations of the exchange flow and subtidal
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salinity. The vertical variation of the exchange flow is of O(δ). Provided that the exchange flow induces an
O(δ) ŝ0

0, the transport by the exchange flow is of O(δ3).

There are several factors that can lead to an amplification of the transport by the exchange flow. Firstly, there
exists a positive feedback mechanism, which increases the salt transport by exchange flows. The straining
of the salt field by the exchange flow induces stronger turbulence asymmetry through strain-induced periodic
stratification (SIPS). The straining circulation depends super-linearly on this turbulence asymmetry and is
therefore strongly amplified by SIPS. This stronger exchange flow again causes more straining of the salinity
field. Secondly, theM2 salinity can increase the subtidal salinity. To see this, we will solve the first-order salinity
equation for the subtidal salinity. The equation, under the above assumptions, reads
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The solution to this equation is
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where c1 and c2 are constants that can be determined with the boundary conditions and the compatibility
relation. So the subtidal first-order salinity is determined by the exchange flow and the M2 salinity.

From the above reasoning it must be concluded that the scaling of the salinity model does not necessarily
hold. The salt transport by the tide and exchange flow should therefore be included in the model to test their
magnitudes for a parameter space typical for well-mixed and partially stratified estuaries.

If the above hypothesis holds, it can be used to construct a new definition of well-mixed and partially stratified
estuaries. This new definition distinguishes both types by the governing physics for salt transport. Well-mixed
estuaries can be defined as those estuaries where the exchange flows lead to little salt transport, i.e. a second-
order contribution. The scaling of the salinity model holds in these cases. Partially stratified estuaries violate
this scaling for the reasons described above. The exchange flows create a first-order contribution to the salt
transport in this case. The two types of estuaries have the common property that the water column is well-mixed
during part of the tidal cycle. Further research is needed to determine whether such new definitions would be
meaningful if lateral salt transport is also taken in consideration.

A large part of the behaviour of the salinity model is determined by the parametrised dispersion. The
parametrised dispersion consists mainly of lateral dispersion and lateral variations of longitudinal velocity com-
ponents. Fischer (1972) has shown that these mechanisms are typically larger than the longitudinal dispersion
on the basis of scaling laws and simplified analytical solutions. The fraction of the total transport that is
resolved by a 2DV model will therefore always be limited.

Another limitation of the salinity model is the assumption that the along-channel salinity gradient should be
small, i.e. of order δ. If the salinity gradient becomes too large, the M2 salinity can become larger than the
subtidal salinity at some points in the estuary. This does not only violate the scaling, i.e. s0 � s1, but it is
also physically impossible, because it means that the salinity becomes negative for some period of time. This
means that the requirement that δ is small is quite strict. In contrast, this requirement is less strict in the
hydrodynamic model, where the solution becomes less accurate when δ is not small, but remains physically
possible.

The salinity model can be improved by relaxing the assumption that sx should be small. This would however
bring the salinity advection term usx in the leading-order equations, so that the equations become coupled in the
x-direction and z -direction. This makes the model more difficult to analyse. Some alternative improvements
can be explored within the current scaling. More orders of magnitude can be included in the model. This would
include the straining of the salt field by gravitational circulation and gravitational straining circulation in the
second-order equation for salinity. It is expected however that the scaling will be violated, because the transport
by the exchange flow is larger in partially stratified estuaries than the second-order would suggest. Another
possibility would be to include the baroclinic pressure in the leading-order velocity. This would incorporate
the straining by exchange flows in the first-order salinity, but would introduce a non-linearity between the
hydrodynamics and salt model.
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Discussion

Since the work done by Jay and Musiak (1994), it is recognised that tidal variations of turbulence are essential for
the prediction of exchange flows. A number of studies have investigated the sensitivity of these exchange flows
to several estuarine parameters, such as the degree of stratification and bed friction (Burchard and Baumert,
1998; Stacey et al., 2001; Burchard and Hetland, 2010; Cheng et al., 2011). It has been reported recently that
the straining circulation forms the largest contribution to the exchange flow. Burchard and Hetland (2010)
find that the exchange flow is composed of approximately 2/3 part by straining circulation and 1/3 part by
gravitational circulation. They also find that both contributions to the exchange flow have a similar dependence
on the Richardson number, i.e. the along-channel salinity gradient. It has not been explained why the exchange
flow has this composition and why the exchange flow has this dependence on the Richardson number. These
observations will be explained by providing a better understanding of the processes that govern the exchange
flow. For the first time this research identifies the interactions of the gravitational circulation with temporal
variations of turbulent mixing as one of the dominant sources of the exchange flow. These interactions will be
discussed in Section 6.1.

Tidal variations of turbulence are also important for the transport of salt in estuaries. The dependence of salt
intrusion on the flow has been investigated by many authors by using idealised models (Hansen and Rattray,
1965; Jay and Smith, 1990c; McCarthy, 1993; Prandle, 2004; MacCready, 2004) and measurements (Hughes
and Rattray, 1980; Winterwerp, 1983; Bowen and Geyer, 2003; Lerczak et al., 2006). The mechanisms by which
tidal variations of turbulent mixing affect the salt intrusion have, however, not been studied systematically. This
is partly because of the lack of a method to analyse the output of numerical models in terms of the different
contributions to salt intrusion. Such a tool has been developed here. Additionally, a first step has been made
in the systematic analysis of the interactions between tidal variations of turbulent mixing, flow and salinity.
In Section 6.2 we discuss the salt transport induced by the barotropic tidal flow and give an outlook to the
importance of exchange flows on salt transport.

6.1. Exchange flows
The exchange flows have been studied in a 2DV perturbation model. This model uses a scaling of the momentum
equations to separate the solution, i.e. the velocity and water level, in contributions of different orders of
magnitude indicated by the small parameter δ. This parameter is defined as the ratio of the water level
amplitude and the water depth. The model scaling results in a system of equations that is linear at each order
of δ. The linearity allows us to separate the contributions of different forcing mechanisms of the flow. We
have distinguished the tidal flow, river discharge, baroclinic pressure, advection, return flow from Stokes drift
and the free surface mixing, which is related to a linearisation of the surface level boundary condition. This
research focusses on the contributions from the tidal flow and the baroclinic pressure, because these are the
most important mechanisms for creating exchange flows in the parameter space under consideration.
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The present model facilitates the investigation of the interactions between turbulence and the flow velocity by
separating the interaction into two parts. The perturbation model takes the eddy viscosity as an input function,
which is used to calculate the velocity and water level. Conversely, the turbulence model takes the velocity and
water level as input and calculates the eddy viscosity on the basis of this velocity and water level. Interactions
between the models can be included by iterating between the two models. We will discuss the perturbation
model below. The dependence of the turbulence on the velocity and water level is outlined in Section 6.1.2

The perturbation model has been used earlier in combination with small, i.e. O(δ), temporal variations of
the eddy viscosity (Cheng et al., 2010; Chernetsky, 2012). An O(δ) temporal variation of the eddy viscosity
adds an O(δ) forcing to the list above: the forcing by interactions of the leading-order velocity gradient and
the temporally varying eddy viscosity. The straining circulation in these models is a result of such interactions
between the M2 leading-order tide and the M2 variations of the eddy viscosity. This straining circulation is a
first-order velocity, which will be called the tidal straining circulation.

This research takes a novel approach by allowing for large temporal variations of the eddy viscosity. The
interactions between the eddy viscosity and the velocity gradient can now no longer be interpreted as a forcing
mechanism that is of order δ. Instead, the interactions can be an O(1) term. Hence, the interactions induce
an infinite number of velocity frequency components, some of which can be of the same order as the velocity
component that entered in the interactions. The consequences of this can be better understood by looking at
different frequency components, in this case the subtidal velocity, theM2 tide and its overtides. The interactions
of for example an O(δ) M2 velocity and the M2 temporally varying eddy viscosity induce a residual and an M4
velocity that are also of O(δ). These residual and M4 velocity gradients themselves interact with the M2 eddy
viscosity to induce an O(δ) change to the M2 velocity. The change to the M2 velocity is of the same order
as the original M2 component. So the different frequency components are mutually coupled to one-another by
the temporal variations of the eddy viscosity.

These arguments lead to two types of interactions between the velocity and eddy viscosity. We define the
weakly interacting system as a system that behaves similar to a system with a small eddy viscosity as has been
described above. The interactions between for example the O(1) M2 velocity and the M2 variations of the
eddy viscosity induce a velocity of O(δ). The M2 velocity itself is hardly changed by interactions between this
O(δ) velocity and the temporally varying eddy viscosity. A system is weakly interacting when the interaction
between the velocity gradient and the temporally varying eddy viscosity is small, i.e. when either the temporally
varying eddy viscosity is of O(δ) or the vertical curvature of the velocity component under consideration is of
O(δ), see Figure 41. The curvature of the velocity component is defined here as (νtnum,z)z, where νtn and
um,z denote the time-varying frequency components that enter into the interaction and the overline denotes
depth-averaging.

Strongly interacting systems are defined as those systems in which the different velocity frequency components
create new frequency components of the same order via interactions of the velocity gradients and the temporal
variations of turbulence. As a result, at least two frequencies of the same order have mutual interactions via the
temporal variations of the eddy viscosity. A system is strongly interacting when both the temporal variations
of the eddy viscosity and the vertical curvature of the various velocity frequency components are of O(1), see
Figure 41. The effect of the interactions on the velocity has a super-linear dependence on the amplitude of
the temporally varying eddy viscosity. This means that a small increase in the temporal variations of the eddy
viscosity leads to a larger than proportional effect on the interactions.

Both types of systems are found in estuarine flow. The barotropic tidal flow is an example of a weakly interacting
system. While the tidal velocity itself if of leading order, its vertical curvature is of first order. The almost
logarithmic velocity profile that is associated with the barotropic tidal flow has a small average velocity gradient
everywhere, except near the bed, where the eddy viscosity is typically small. This means that the residual
flow that is induced by the interaction of the tidal flow and the temporally varying eddy viscosity, i.e. the
tidal straining circulation, is much smaller than the tidal flow, see Figure 42. It is important to note that the
magnitude and direction of the tidal straining circulation depend on the phase of the eddy viscosity and the
bed roughness parametrisation. We will elaborate on this in Section 6.1.1.

The baroclinic flow that is driven by the longitudinal salinity gradient is an example of a potentially strongly
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Figure 41: Conceptual representation of the types of velocity-eddy viscosity interactions.
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Figure 42: Conceptual visualisation of the weakly interacting tidal flow. TSC: tidal straining circulation.

interacting system. The O(δ) gravitational circulation has a large vertical curvature. So it will induce a
strongly interacting system if the temporal variations of turbulence are of O(1). This strongly interacting
system is visualised in Figure 43 assuming that the variations of turbulence have anM2 frequency. In a strongly
interacting system, the gravitational circulation induces a velocity of O(δ) with the same frequencies as the
temporally variations of mixing. This newly created velocity also has a large curvature and induces an O(δ)
amplification of the exchange flow. This contribution to the exchange flow will be called the gravitational
straining circulation. This gravitational straining circulation is independent of the phase of the eddy viscosity.

The strongly interacting system is most effective when the temporal variations of turbulence are asymmetric on
the tidal time-scale. Such an asymmetry of turbulence can be caused by strain-induced periodic stratification
(SIPS) (Simpson et al., 1990), but it has been shown that strong asymmetric turbulence can also be obtained
without the effect of SIPS. This will be discussed in more detail in Section 6.1.2.
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Figure 43: Conceptual visualisation of the strongly interacting baroclinic flow. GC: gravitational circulation. GSC: gravitational
straining circulation.

Hence, the straining circulation is composed of at least two major O(δ) contributions if the eddy viscosity varies
strongly over the tidal cycle: the tidal straining circulation and the gravitational straining circulation. For the
case considered in this thesis, the contribution by the gravitational straining circulation is about 85 to 95% of



72 6. Discussion

the total straining circulation and is therefore considerably greater than the contribution by the tidal straining
circulation. So the common interpretation of the straining circulation as the tidal straining circulation describes
only a small part of the full straining circulation in the situations under consideration. In these situations, the
straining circulation should be interpreted as the gravitational straining circulation.

This new interpretation of the straining circulation offers an explanation for a result obtained by Burchard
and Hetland (2010). They conclude that the straining circulation has approximately the same dependency
on the Richardson number as the gravitational circulation. It is proved in this research that the gravitational
straining circulation and the gravitational circulation have the same dependency on the Richardson number.
The largest part of the straining circulation is formed by the gravitational straining circulation through the
strong interactions, which explains the dependency.

This framework can also provide a possible explanation for the findings of Cheng et al. (2011) and a comment
by Geyer and MacCready (2014). They conclude from model studies that the straining circulation is larger than
the gravitational circulation in well-mixed estuaries, while the converse is true in strongly stratified estuaries.
They also report that the temporal variations of the eddy viscosity are somewhat smaller in strongly stratified
estuaries than in well mixed estuaries. By combining these findings and our results, it can be hypothesised that
the strongly interacting system of the gravitational circulation and the temporally varying eddy viscosity creates
a strong gravitational straining circulation in the partially stratified estuary. This circulation, however, collapses
in strongly stratified estuaries. Hence, the small reduction of the temporal variations of the eddy viscosity in
strongly stratified estuaries leads to a strong reduction of the straining circulation. This is consistent with
the super-linear dependence of the gravitational straining circulation on the temporal variations of the eddy
viscosity.

The exchange flow is decomposed into the contributions by the tidal straining circulation, gravitational straining
circulation and gravitational circulation for the case of Chapter 4. This case describes a converging channel with
a constant depth of 25 m, which is mainly forced by the tide and salinity. The advection and river discharge are
small. The results are presented in Table 6.1. The results in the table are obtained by using a k− ε turbulence
model and a prescribed salinity gradient. The density is uniform in the water column, so SIPS does not occur;
strongly asymmetric turbulence is created by other factors that will be discussed in Section 6.1.2. We define
the magnitude of the exchange flow in a similar way as Burchard and Hetland (2010):

||u0||1 = 1
H

∫ 0

−H
|u0 − u0| dz, (6.1)

where u0 denotes the residual flow. This definition does not provide information on the direction of the exchange
flow. The separate contributions to the exchange flow can therefore add-up to more than 100%, because some
contributions cancel each other in the total exchange flow.

Longitudinally varying νt Longitudinally constant νt
Total exchange flow 0.034 m/s 0.039 m/s
Tidal straining circulation 8 % 3 %
Gravitational straining circulation 55 % 51 %
Gravitational circulation 37 % 44 %
Other 1 % 2 %

Table 6.1: Magnitude of the exchange flow (Equation 6.1) at x = 10 km in the case of Chapter 4 with a k − ε turbulence model
and a prescribed salinity gradient. The depth-average eddy viscosity at x = 10 km is 0.1 m2/s for the longitudinally varying eddy
viscosity and 0.078 m2/s for the longitudinally constant eddy viscosity.

Table 6.2 again shows the magnitude of the exchange flow in the same case, but now with the salinity resolved
by the salinity model and KH = 100 m2/s. This model uses the k−ε turbulence model without density effects.

Tables 6.1 and 6.2 show that the gravitational straining circulation is the dominant contribution to the exchange
flow, sometimes explaining over half of the total exchange flow. It is much larger than the tidal straining
circulation. The total straining circulation determines around 60% of the exchange flow, while the gravitational
circulation explains most of the remaining 40%. These numbers are close to the distribution found by Burchard
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0 km 20 km 40 km 60 km
Total 0.026 m/s 0.028 m/s 0.029 m/s 0.023 m/s
Tidal straining circulation 18 % 11 % 2 % 3 %
Gravitational straining circulation 43 % 49 % 57 % 56 %
Gravitational circulation 37 % 38 % 39 % 39 %
Other 3 % 4 % 5 % 6 %

Table 6.2: Magnitude of the exchange flow (Equation 6.1) at several location in the case of Chapter 5 with the k − ε turbulence
model without buoyancy effects in the turbulence model. Note that the percentages sum to more than 100% because of the
definition of the magnitude of the exchange flow.

and Hetland (2010): 2/3 straining circulation and 1/3 gravitational circulation. Note that this distribution is
not strongly dependent on the timing of the turbulence variations, because the gravitational straining circulation
is independent of this timing.

6.1.1. Direction of the barotropic tidal straining circulation
The sign and magnitude of the barotropic tidal straining circulation depends on the timing of the eddy viscosity
and the bed roughness formulation. The original theory by Jay and Musiak (1994) reasons that the barotropic
tidal straining circulation has a velocity profile with two oppositely directed cells, similar to the gravitational
circulation. Cheng et al. (2011) and Burchard et al. (2011) have found in model studies that this straining
circulation can also possess a a three-cell structure. It is found in this study that the barotropic tidal straining
circulation can also have a two-cell structure with a reversed direction to the original theory, while the turbulent
mixing still has the same time variation as described by Jay and Musiak (1994). A similar reversal has not
been observed for the baroclinic pressure straining circulation, which is independent of the timing of the eddy
viscosity.

It was already found by Stacey et al. (2008) and Cheng et al. (2010) that the direction of the barotropic tidal
straining circulation changes if the eddy viscosity and velocity are over 90 degrees out of phase. This is still
consistent with the original theory, because the principles of this theory can still be used to explain this; an
increase in mixing leads to more uniform flow profiles and a decrease in mixing leads to less uniform profiles.

The flow reversal or three-cell structure that occurs when the eddy viscosity and velocity are less than 90 degrees
out of phase cannot be described with the original theory. These changes are caused by changes to the frictional
boundary layer, which act in addition to and opposite to the effect of asymmetric mixing described by Jay and
Musiak (1994). It is hypothesised that decreased mixing during ebb leads to a reduction of the ability of bed
friction to propagate through the water column, because less mixing is available to support this propagation.
This leads to a more uniform velocity profile, instead of the less uniform profile that is created by asymmetric
mixing. The converse situation applies to the flood tide. The development of the boundary layer therefore leads
to an exchange flow that has an opposite direction to the exchange flow created by asymmetric mixing.

The balance between the two effects depends on the timing of the eddy viscosity and the bed friction formulation.
The boundary layer development can lead to a reversal of the baroptropic tidal straining circulation for realistic
parameter settings, such as those of Chernetsky et al. (2010), if the M2 eddy viscosity and M2 velocity are in
phase and the eddy viscosity profile is constant. Such a reversal can also occur if the M2 eddy viscosity andM2
velocity are in phase and the eddy viscosity profile is parabolic with a no-slip boundary condition. The reversal
is found especially for small values of the eddy viscosity.

It is not known whether the reversal of the barotropic tidal straining circulation is a model artefact or that it
also happens in real estuaries. The limited number of cases that has been tested with the k − ε turbulence
model for this study have not shown such a flow reversal. It could therefore be that the flow reversal is a
consequence of unrealistic combinations of the prescribed eddy viscosity and bed friction. It is possible that
these parameters are modelled consistently in the k − ε turbulence model. The flow reversal has also not been
observed in earlier model or measurement studies. However, this is probably because only the total straining
circulation has been observed. This total straining circulation cannot reverse direction in most cases, because
the gravitational straining circulation cannot reverse direction and is larger than the tidal straining circulation.
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6.1.2. Sources of asymmetric and symmetric mixing
Asymmetric turbulence on a tidal time-scale is the most effective type of temporal variation of turbulence for
inducing baroclinic pressure straining circulation. This is because the frequency of the temporally varying eddy
viscosity affects the strength of the interacting system. The interactions are strong when the predominant
frequency of the eddy viscosity is small. Within the M2 tidal period, this means that the M2 variations of the
eddy viscosity are most effective for generating a baroclinic pressure straining circulation.

The asymmetric turbulence that is responsible for the straining circulation is often reasoned to originate from
strain-induced periodic stratification (SIPS) (Simpson et al., 1990), which has been explained in Section 1. Three
more causes of asymmetric turbulence are identified here: asymmetric shear, tidal asymmetry and asymmetric
depth. The strongly asymmetric turbulence that has been obtained in this research is due to these factors, as
SIPS is not included in the model.

The essential thought behind the asymmetric shear as a source of asymmetric turbulence is that the vertical
velocity gradient is responsible for turbulence production, instead of the velocity itself. The gradient is not
necessarily related to the magnitude of the depth-averaged velocity. This is especially clear in the case of
exchange flows, which are characterised by strong gradients, but have a zero depth-averaged velocity. The
combination of the tide and exchange flows is an important source of asymmetric shear (Burchard and Hetland,
2010). The combination of these two flow mechanisms typically results in a velocity profile that has a smaller
average velocity gradient during flood than during ebb. This results in a higher degree of mixing during flood
than during ebb, similar to the asymmetry that is caused by SIPS. Other sources of asymmetric turbulence are
the river discharge, the return flow of Stokes drift and advection. The river discharge and return flow favour
the velocity in the ebb flow direction and therefore the velocity gradient and mixing during the ebb tide. The
effects of advection on mixing have not been investigated here.

Tidal asymmetry is a special case of asymmetric shear. The asymmetry of the depth-average tidal velocity
causes an asymmetry of the velocity shear and therefore an asymmetry in turbulence production. It is insightful
to distinguish between tidal asymmetry and asymmetric shear, because it provides an intuitive explanation for
how the deformation of the tidal wave affects turbulent mixing. Asymmetric depth describes that the depth-
averaged eddy viscosity depends on the water depth. A larger average depth during either ebb or flood will
therefore lead to turbulence asymmetry.

The lowest-frequency symmetric variation of turbulence on theM2 tidal time-scale is theM4 frequency. Turbu-
lence variations at this frequency can also by quite effective in promoting a strongly interacting system. TheM4
variation of turbulence is for example created by any M2 velocity component, such as the tide or the M2 signal
that is created by the baroclinic pressure. The M4 variation was small in the case considered in this research
compared to the M2 variation. However, it tends to be strong in tidal channels if the turbulence asymmetry is
less pronounced (Stacey et al., 2008; Burchard and Hetland, 2010; Stacey et al., 2010), because a major part
of the turbulence production from the M2 tide is absent during slack tide. A strong turbulence asymmetry is
therefore not essential to obtaining strongly interacting systems.

6.1.3. Exchange flows by other processes
A number of processes that have not been considered in this study are known to have an important effect on
the exchange flows in certain cases. Lateral circulation can create a longitudinal exchange flow similar to the
gravitational circulation, which is of the same or larger magnitude (Fischer, 1972; Lerczak and Geyer, 2004).
Additionally the lateral circulation creates an additional contribution to straining circulation (Burchard and
Schuttelaars, 2012).

Additional effects that can create exchange flows are wind (Scully et al., 2005), wind induced density straining
(Burchard and Hetland, 2010), the Earth’s rotation (Lerczak and Geyer, 2004; Huijts et al., 2006) and flow cur-
vature (Chant, 2002). Li and O’Donnell (2005) have shown that advection can create a significant contribution
to the exchange flow if a different parameter space is used than in this research.
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6.2. Salt intrusion
The 2DV scaled salinity model that has been used provides a structure that is convenient for studying the
transport of salt. The leading-order salinity is constant in time and in the vertical direction. Hence, the equation
for this leading-order salinity takes the form of a 1DH transport equation that includes the net transport that is
induced by vertical and temporal variations of the salinity. The equation resolves the transport that is caused
by the river discharge and tide and contains a salinity dispersion term that parametrises all other processes
(McCarthy, 1993). The first-order salinity describes the vertical and temporal variations of the salinity and is
forced by the tidal straining of the along-channel salinity. We have focussed on the dependence of the tidal
salinity transport on the complexity of the turbulence model.

The tidal transport in the present model is caused by two types of interactions that can be separated along the
lines of Fischer (1972). The first is the interaction between the vertical salinity profile and the tidal velocity
profile, the tidal oscillatory shear transport. The tidal oscillatory shear transport was negligible in the case
considered in this research, because of the high degree of mixing. Significant contributions by this mechanism
can be obtained with the present model with different parameter configurations, as is shown by Wei et al.
(2014).

The second is the interaction between the temporally varying depth-averaged components of the salinity and
tidal velocity, which could be called tidal oscillatory mean transport. This transport is zero if turbulent mixing is
assumed to be constant in time, because the depth-averaged velocity and salinity are 90 degrees out of phase.
O(δ) temporal variations of mixing have been applied to the salinity model by Cheng et al. (2010). These
variations do not affect the salinity model up to the first-order salinity. This motivates the inclusion of large
variations of turbulent mixing in order to study the tidal oscillatory mean transport.

The novel extension of the salinity model with O(1) temporal variations of turbulence makes it possible to
study this tidal oscillatory mean transport. The depth-averaged tidal velocity and salinity are still almost out
of phase if the eddy viscosity varies strongly in time. However, a few degrees deviation from such 90 degrees
phase difference already results in a significant salt transport. This makes the salt transport highly sensitive to
small variations of the timing of the temporally varying salinity.

The small phase difference between the tidal velocity and salinity is caused by the interactions between the
first-order salinity and the temporally varying eddy viscosity. The first-order salinity can be classified as a weakly
interacting system in well-mixed to partially stratified estuaries, because the vertical curvature of the salinity
is small. In the present case, the M2 salinity is the dominant component. The other salinity frequencies are
also forced by small tidal constituents. These salinity frequencies are much smaller than the M2 salinity, but
still strong enough to have a small effect on the M2 salinity via interactions with the eddy viscosity. This small
effect manifests as a small change of the phase of the M2 salinity, which results in a significant salt transport.

The tidal oscillatory mean transport is also highly sensitive to the phase and magnitude of the temporally
varying eddy viscosity. This stresses the importance of accurate turbulence modelling for the tidal transport. It
also stresses the need for further research, as the dependency of the tidal transport on the temporal variations
of the eddy viscosity are not well understood.

The importance of exchange flows for salt transport in well-mixed to partially stratified estuaries is a topic of
ongoing debate. The transport by exchange flows is called steady shear dispersion (Taylor, 1953) and is by
the correlation of vertical variations of the exchange flow velocity and salinity. The transport by gravitational
circulation is the only model resolved transport mechanism opposing the river discharge in the models of Hansen
and Rattray (1965), MacCready (2004) and Ralston et al. (2008). Prandle (2004) uses the same approach and
extends this by taking a first step in adding straining circulation. Lerczak et al. (2006) support that the steady
shear dispersion is the largest contribution to salt transport by analysing measurements in the Hudson River
estuary. Fischer (1972) and McCarthy (1993), on the other hand, find from scaling arguments that transport
by gravitational circulation is small.

First results of this research indicate that the scaling approach is only valid for well-mixed systems. The
scaling approach is hypothesised to become inaccurate in partially stratified systems, because the steady shear
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dispersion is not taken into account by the model, while it is as important as the salt transport by the tide. On
the one hand the tidal salt transport can become smaller than O(δ2), which is the magnitude suggested by the
scaling. The tidal oscillatory shear transport can become an O(δ3) transport, because the vertical variation of
the tidal velocity is small in a large part of the water column. The tidal oscillatory mean transport was shown
to be highly sensitive to small phase changes of the salinity and can therefore be of O(δ2), but also much
smaller. On the other hand the steady shear dispersion can become larger than the O(δ3) suggested by the
scaling. Steady shear dispersion is caused by the correlation of the exchange flow velocity and straining of the
subtidal salinity. The straining of the subtidal salinity leads to a stronger asymmetry of turbulent mixing, which
induces a stronger exchange flow and therefore more straining. This positive feedback increases the steady shear
dispersion. Additionally, the interaction between the temporally varying salinity and turbulence can increase the
straining of the subtidal salinity.

This hypothesis can be used to formulate a new definition of well-mixed and partially stratified estuaries which
is based on the governing physics of salt transport. A well-mixed estuary can be defined as a system that has
a well-mixed water column during a part of the tidal cycle and in which the salt transport by exchange flows is
negligible. Well-mixed estuaries are therefore estuaries that comply with the present scaling approach for the
salinity model. A partially stratified estuary also has a well-mixed water column during a part of the tidal cycle,
but the salt transport by exchange flows is of the same order as the salt transport by the tide. The scaling
of the salt model becomes invalid due to the importance of the velocity gradient and the feedback described
above. These definitions fit within the estuarine classifications of Hansen and Rattray (1966), Geyer (2010)
and Geyer and MacCready (2014), but have not been made explicit as is done here.

Further research is required to establish if these definitions are useful when considering salt transport by variations
in the lateral dimensions. The salt transport by lateral processes and lateral variations of along-channel processes
can form the dominant contribution to the salt transport (Fischer, 1972). Further research into these processes
is therefore essential to obtaining a good understanding of salt transport in well-mixed and partially stratified
estuaries.

Research into the mechanisms that are responsible for salt transport requires increasingly complex models.
Suitable tools are required to study the contributions of the different physical forcing mechanisms to salt
transport in these models. Decomposition techniques for analysing salt transport have been used for analysing
measurements (Hughes and Rattray, 1980; Winterwerp, 1983; Bowen and Geyer, 2003; Lerczak et al., 2006),
but not so extensively for analysing model output of complex models. The framework by Fischer (1972) has
been used here to develop two tools for analysing salt transport in models by dispersion coefficients. One tool
is suitable for the idealised perturbation model and separates the salt transport in the contributions by different
physical mechanisms. This is generally not possible for complex models, in which case the decomposition by
Fischer (1972) can be used to find a useful decomposition.

The conversion of the salt transport contributions to equivalent dispersion coefficients establishes a connection
between complex 2DV or 3D models or measurements and 1DH models. Dispersion coefficients in a 1DH sense
are known for many estuaries around the world and have been widely studied (Savenije, 2005; Kuijper and
Van Rijn, 2011). Hence, the connection of complex models or measurements and 1DH models could provide
more insight into the interpretation of complex model output.



Conclusions

The novel extension of an idealised perturbation model for estuarine flow by a turbulence model has led to new
insights into the mechanisms that create exchange flows and tidal salinity transport in well-mixed to partially
stratified estuaries. A new mechanism that creates straining circulation has been identified and it is shown that
this mechanism can explain most of the straining circulation and a dominant part of the total exchange flow
in well-mixed to partially stratified estuaries. This new mechanism also provides an explanation for the open
questions why the gravitational circulation and straining circulation have a similar dependence on the along-
channel salinity gradient and why the straining circulation is strongly reduced in the transition from partially
stratified to strongly stratified estuaries.

A new framework has been developed to explain the interactions between the temporal variations of the eddy
viscosity and the flow velocity that induce straining circulation. We identify two types of interacting systems.
The weakly interacting system is found if either the temporal variations of turbulence are small or the vertical
curvature of the velocity profile is small. The latter condition applies for the barotropic tide, which’ near-
logarithmic velocity profile has a small rate of curvature. The weakly interacting system is characterised by
small interactions between different frequency components of the flow velocity. Hence, the interactions between
the M2 tidal velocity and the temporal variations of the eddy viscosity result in a residual velocity and overtides
which are much smaller than the M2 tidal velocity itself. The M2 tidal velocity itself is hardly affected by
interactions between other velocity frequency components and the eddy viscosity. The exchange flow that is
created from this process is called the tidal straining circulation.

Conversely, the strongly interacting system is found if both the temporal variations of turbulent mixing and the
vertical curvature of the velocity profile are large. The condition of a strongly curving velocity profile applies
for gravitational circulation, so that a strongly interacting system is formed if the tidal variations of mixing
are large. The strongly interacting system is characterised by mutual interactions between different velocity
frequency components. Hence, the gravitational circulation interacts with the tidal variations of turbulence to
create a velocity with the same frequencies as the tidal variations of turbulence. These velocity components
have a curvature similar to the gravitational circulation and also interact with the temporally varying turbulent
mixing to amplify other frequency components, among which the exchange flow. Such amplification of the
residual flow is called the gravitational straining circulation.

Several factors have been identified that provide the strong tidal variations of mixing. Factors that cause an
asymmetry of turbulence on the longest tidal time-scale, i.e. M2 frequency when considering the M2 tide, are
the most effective for creating a strongly interacting system. Asymmetric turbulence is classically associated
with SIPS. However, asymmetric shear has been shown to also cause strongly asymmetric turbulence. The
exchange flow and flood dominance are important sources of asymmetric shear and create a similar asymmetric
turbulence as is associated with SIPS. The river discharge, return flow of Stokes drift and ebb dominance
create asymmetric turbulence with an opposite timing. Symmetric variations of turbulence, e.g. M4 frequency
variations when considering the M2 tide, are often strong in tidally energetic estuaries with little asymmetric
turbulence. These M4 variations can also lead to a strongly interacting system, but are less effective in doing
so than the longer M2 variations.

So the tidal flow and baroclinic pressure result in three major contributions to the exchange flow:
1. the gravitational circulation,

2. the gravitational straining circulation, and

3. the tidal straining circulation.
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These contributions have been quantified in a case study of a well-mixed estuary with the inclusion of the
salinity model and a k−ε model without buoyancy effects. The gravitational circulation contributes about 40%
of the exchange flow and the straining circulation about 60%. This distributions agrees with earlier findings.
The gravitational straining circulation contributes up to 95% of the total straining circulation.

The gravitational straining circulation does not depend on the phase of the temporally varying turbulence.
Its magnitude depends super-linearly on the amplitude of the temporally varying turbulence. This provides a
possible explanation for the question why the straining circulation is dominant in partially stratified estuaries
with strongly varying turbulence and much smaller in strongly stratified estuaries with only slightly less tidal
variation of turbulence. The magnitude of the gravitational straining circulation and gravitational circulation
both depend linearly on the along-channel salinity gradient. This explains that the straining circulation and
gravitational circulation have a similar dependency on the salinity gradient.

We have separated the tidal straining circulation into two parts. The first is the well-known part that has a
profile similar to the gravitational circulation and is caused directly by asymmetric mixing. A new part has been
identified that is caused by a changing shape of the frictional boundary layer as a consequence of asymmetric
mixing. This part has an opposite direction to the gravitational circulation and therefore opposes the first part.
The balance between the two contributions is determined by a combination of the phase of the temporally
varying eddy viscosity and the bed friction formulation. The second, newly identified effect can lead to a
reversal of the direction of the tidal straining circulation for a realistic parameter space in parametrisations with
a constant eddy viscosity or a parabolic eddy viscosity with no-slip boundary condition. Such a reversal has not
been observed when using a k− ε turbulence model. It is unknown whether the reversal can occur in nature or
whether it is a model artefact.

We have made a first step in analysing the tidal salt transport under tidal variations of turbulent mixing.
Temporal variations of mixing create a process by which the tidal flow can transport salt that does not exist
if the turbulent mixing is constant in time. This new transport is created by the correlation of the depth-
averaged tidal salinity variations and the depth-averaged tidal velocity. Whereas these components are out
of phase under the assumption of constant mixing, tidal variations of mixing can cause a phase shift of the
tidal salinity. Even a small phase shift of the salinity can lead to a significant salt transport. The vertical and
temporal variations of salinity form a weakly interacting system in well-mixed estuaries. The weak interactions
are nevertheless sufficient to create a small phase shift of the tidal salinity and therefore a tidal contribution to
the salt transport. This transport was the dominant source of transport in the well-mixed case considered in
this research.

A sensitivity study has shown a very high sensitivity of the tidal salt transport to the phase and magnitude of a
prescribed M2 eddy viscosity. Such a high sensitivity stresses the importance of accurate turbulence modelling
to the modelling of salt transport. The sensitivity is not yet fully understood and more research is required to
establish why these dependencies exist and what detail of turbulence modelling is needed to model salt transport
to the desired accuracy.



Recommendations

A robust and computationally efficient coupling of the hydrodynamic model and the turbulence model would
provide the possibility to study the physics of complex interactions between flow and turbulence further. The
coupling presently only converges if buoyancy is not taken into account, which is a serious limitation for further
study into the physics of stratified estuaries. The iteration procedure additionally uses a strong under-relaxation
method which is highly inefficient. It is therefore recommended to investigate stable ways of coupling the
hydrodynamics model and turbulence model.

The robust coupling of the turbulence model to the flow model assists in the analysis of the sensitivity of
the tidal salt transport to turbulence. The results of this research indicate a very strong sensitivity of the
tidal salt transport to the timing of the turbulent mixing. However, this sensitivity is not yet well understood.
More research into this would lead to a better understanding of salt transport. It would also lead to a better
understanding of the complexity of turbulence modelling that is required in order to simulate the salt dynamics
with a reasonable accuracy.

A question that is left open in this research is whether the flow reversal of the tidal straining circulation occurs
in reality or whether it is a model artefact. An experiment would be required to test this. In either case the flow
reversal is an interesting phenomenon and provides information about suitable choices for roughness parameters
and eddy viscosity in idealised models and about the physical nature of the tidal straining circulation.

The hydrodynamic model provides possibilities to extend the research to the transition between partially stratified
and strongly stratified estuaries. The river discharge and baroclinic pressure could easily be made leading-order
effects in the equations. In order to model the full transition from partially stratified to strongly stratified
estuaries, a salinity model and turbulence model should be coupled to the hydrodynamics model. A first step
would, however, be to use the salinity and turbulence fields from complex models in the idealised model to
study the importance of different physical forcing mechanisms.

This research also provides interesting clues for further research into spring-neap cycles. It has been shown
that long tidal waves are most suitable for creating a strong straining circulation. It is therefore expected that
spring-neap tidal cycles can play a significant role in the creation of straining circulation. This would have
consequences for the validity of considering only one average M2 tide to determine the net transport in an
estuary.

Concerning the salinity model, it has been hypothesised that the model scaling only holds for well-mixed
estuaries. Interactions between flow, salinity and turbulence are expected to lead to a strong amplification
of the salt transport by gravitational circulation in partially stratified estuaries. Such amplifications are not
captured in the scaling of the equations. The salt transport by gravitational circulation can be captured in
the model in two ways. The first is by including the second-order salinity. In view of the above described
amplifications it is however expected that this second-order salinity is actually larger than expected from the
scaling. The second is by including the gravitational circulation as a leading-order velocity. This would however
lead to a non-linear coupling between the hydrodynamic and salinity model. It is recommended to look into the
best way of incorporating the gravitational circulation into the salinity model to expand its range of applicability.

A different route of extending the salinity model would be to include the lateral dimension. It has been shown
frequently that the lateral dimension contains many essential mechanisms that explain salt transport.

Idealised models tend more to complex models if they are extended by an increasing number of dimensions,
physics and linear or non-linear interactions. In order to study increasingly complex processes, but still have an
understandable idealised model, it is useful to look at a combination of idealised models, complex models and
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measurements. This hybrid use of models allows one to use the strengths of each of these methods. A possible
strategy is to use measurements to identify trends and patterns and to calibrate complex models. These complex
model can then be used to identify a selection of physical mechanisms that are expected to be important for the
process under consideration. Idealised models can then be used to study these physical mechanisms in detail
and understand the possibly non-linear interactions between the mechanisms.

The further development of the methods for making a decomposition of the salt transport can also be regarded
in light of the combined use of complex and idealised models. The analysis of salt fluxes in a 3D model in
terms of 1D dispersion coefficients is likely to provide more insight into the results of complex models, as well
as help the development of better idealised 1D models.
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A
Derivation and solution hydrodynamics

This appendix presents the details of the hydrodynamics model that was introduced in Chapter 2. The assump-
tions regarding the shape of the estuary and the equations were introduced in that chapter. Section A.1 then
treats the scaling of the equations and ends with an overview of the ordered set of equations. The subsequent
sections treat the solution methods for the several versions of the model that were introduced in table 2.1 up
to Version 4. The coupling of the model to the k − ε model in Version 5 is treated in Appendix C. Analytical
solutions will be given for Version 1 and 2. The Versions 3, 4 and 5 are solved numerically, but the analytical
solution procedure to Version 3 is provided in Section A.6. Finally, Section A.7 presents the numerical grid and
discretisation methods.

A.1. Scaling the equations
The three equations for continuity, momentum conservation and depth-averaged continuity in 2DV are repeated
below

ux + wz −
u

Lb
= 0, (A.1)

ut + uux + wuz = −gζx − g
∫ ζ

z

ρx
ρ0
dẑ + (νtuz)z, (A.2)

ζt +
(∫ ζ

−H
u dz

)
x

− 1
Lb

∫ ζ

−H
u dz = 0. (A.3)

The equations are transformed to a dimensionless system by using a scaling argument in order to establish
the order of magnitude of the several terms. The equations are scaled by using five typical scales, which are
presented in Table A.1.

This table presents three more scales that are derived from the other five. The velocity scale U follows from
the scaling of the depth-averaged continuity equations

ζt + (Hu)x = Hu

Lb
.

This equation can be expressed in dimensionless quantities according to

AM2

TM2

ζ∗t∗ + H0U

Ltide
(H∗u∗)x∗ = H0U

Lb
H∗u∗
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Scale Dimensionless quantity
TM2 M2 tidal period t = TM2t

∗

AM2 M2 tidal amplitude at the seaward side ζ = AM2ζ
∗

H0 Average depth at seaward side z = H0z
∗

Ltide Tidal wave length x = Ltidex
∗

Rx Typical density gradient ρx = Rxρ∗x∗

Derived scale Dimensionless quantity
U Typical horizontal velocity of the M2 tide u = Uu∗

W Typical vertical velocity of the M2 tide w = Ww∗

N Typical eddy viscosity νt = Nν∗t

Table A.1: Scales and derived scales for deriving the dimensionless equations.

In order to remain consistent, the velocity scale U is defined as

U = AM2

TM2

min(Ltide, Lb)
H0

≈ AM2

TM2

Ltide
H0

It is assumed that either Lb > Ltide or Lb
Ltide

= O(1), such that min(Ltide, Lb) can be replaced by Ltide.
Similar to U , W is derived from the continuity equation A.1. It follows that

W = H

Ltide
U.

The typical eddy viscosity follows from the stationary barotropic momentum balance (νtuz)z = gζx. It follows
that

N = H2
0

TM2

.

A.1.1. Scaling the momentum equation
The dimensionless momentum equation is then given by

U

TM2

u∗t∗ + U2

Ltide
u∗u∗x∗ + WU

H0
w∗u∗z∗ =− g AM2

Ltide
ζ∗ + g

ρ0
Rxρ∗x∗ (H0z

∗ −AM2ζ
∗)

+ NU
H2

0
(ν∗t u∗z∗)z∗ .

Rewriting this yields

u∗t∗ + AM2

H0
u∗u∗x∗ + AM2

H0
w∗u∗z∗ =− gH0

T 2
M2

L2
tide

ζ∗ + g

ρ0

H0TM2Rx
U

ρ∗x∗

(
z∗ − AM2

H0
ζ∗
)

+H2
0 (ν∗t u∗z∗)z∗ .

The factor AM2
H0

in front of the advection term is assumed to be much smaller than unity. This provides the
motivation for ordering the equation around a small parameter δ which is defined as

δ = AM2

H0
.

The other factors that appear in the dimensionless momentum equation can be related to the magnitude of
δ. These factors are considered below. Firstly, gH0

T 2
M2

L2
tide

can be rewritten by using that
√
gH0 equals the
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barotropic shallow-water wave velocity cE . This wave velocity can also be estimated as cE = Ltide
TM2

. It follows
that

gH0
T 2
M2

L2
tide

= 1.

Secondly, g
ρ0

H0TM2Rx
U is simplified to

g

ρ0

H0TM2Rx
U

= cI
U

= ρxdx

ρ0

H0

AM2

,

where cI is the baroclinic (internal) wave velocity, defined as cI = cE
ρxdx
ρ0

. The term cI
U is also known as the

internal Froude number and is assumed to be of order δ. This gives an order-estimate for the allowable density
difference ∆ρ = ρxdx over the length of the estuary:

∆ρ
ρ0

= O(δ2).

The dimensional momentum equation then has terms of the following order of magnitude:

ut︸︷︷︸
O(1)

+ uux︸︷︷︸
O(δ)

+wuz︸︷︷︸
O(δ)

= −gζx︸ ︷︷ ︸
O(1)

+ g
ρx
ρ0

(z − ζ)︸ ︷︷ ︸
O(δ)

+ (νtuz)z︸ ︷︷ ︸
O(1)

A.1.2. Scaling the depth-averaged continuity equation
The dimensionless form of the depth-averaged momentum equation A.3 is

ζ∗t∗ +
(∫ δζ∗

−H∗
u∗ dz∗

)
x∗

= Ltide
Lb

∫ δζ∗

−H∗
u∗ dz∗.

All terms are of the same order, except for the integration boundary ζ. The integral is therefore linearised by a
Taylor expansion according to∫ ζ

−H
u dz =

∫ 0

−H
u dz + ζu(x, 0, t) +HOT 1

The dimensional equation then has terms of the following order of magnitude:

ζt︸︷︷︸
O(1)

+
(∫ 0

−H
u dz

)
x︸ ︷︷ ︸

O(1)

+ ζxu(x, 0, t) + ζux(x, 0, t)︸ ︷︷ ︸
O(δ)

= 1
Lb


∫ 0

−H
u dz︸ ︷︷ ︸

O(1)

+ ζu(x, 0, t)︸ ︷︷ ︸
O(δ)

 .

A.1.3. Scaling the boundary conditions
The momentum equation has boundary conditions which are applied on the bed and at the surface. The
boundary condition νtuz(x, ζ, t) = 0 at the surface z = ζ is linearised around z = 0 by using a Taylor expansion

νtuz(x, ζ, t) = νtuz(x, 0, t)︸ ︷︷ ︸
O(1)

+ νtuzz(x, 0, t)ζ︸ ︷︷ ︸
O(δ)

+HOT.

1The acronym HOT means ’higher-order terms’.



88 A. Derivation and solution hydrodynamics

The ordering of this boundary condition in terms of δ is obtained by observing that z∗ = AM2
H0

ζ∗ = O(δ).

On the bed z = −H no-slip, partial slip or quadratic slipt conditions may be applied, depending on the
formulation for νt. The boundary conditions read

νtuz(x,−H, t) = sfu(x,−H, t) (partial slip), (A.4)
u(x,−H, t) = 0 (no-slip), (A.5)

νtuz(x,−H, t) = u∗(x, t)2 (quadratic slip), (A.6)

where sf is a roughness parameter and u∗ is the bed friction velocity, see Appendix C. These terms in these
boundary conditions must all be of equal order in order to obtain balanced equations.

The horizontal boundary conditions are used for solving the water level ζ from the depth-averaged continuity
equation. An M2 and M4 tide is prescribed at the entrance x = 0

ζ(0, t) = AM2 cos(ωt)︸ ︷︷ ︸
O(1)

+AM4 cos(2ωt− φ)︸ ︷︷ ︸
O(δ)

,

where the ordering follows from the dimensionless form ζ∗(0, t) = cos(t∗) + AM4
AM2

cos(2t∗ − φ). It is assumed
that AM4

AM2
is of order δ.

The landward boundary is modelled by a tidal weir. The tidal weir is a reflective boundary that allows a fixed
river discharge over it. The boundary condition thus reads∫ ζ(L,t)

−H
u(L, z, t) dz = Q

B
,

where Q is the river discharge in volume per second. The upper bound of the integral ζ(L, t) is linearised
around z = 0 by using a Taylor expansion. It is further assumed that the river discharge is of order δ in Version
1 and 2. This assumption is not necessary in Version 3 to 5. The results in this research use a river discharge
of first order, but the general equations will be given. The equation then becomes∫ 0

−H
u(L, z, t) dz︸ ︷︷ ︸
O(1)

+ ζ(L, t)u(L, 0, t)︸ ︷︷ ︸
O(δ)

+HOT = Q

B︸︷︷︸
O(1),O(δ)

A.1.4. Overview of equations
The solutions u, w and ζ are written as a power series of the small parameter δ

u = u0 + u1 + u2 + . . . ,

w = w0 + w1 + w2 + . . . ,

ζ = ζ0 + ζ1 + ζ2 + . . . ,

where u1, w1 and ζ1 are assumed to be of order δ, u2, w2 and ζ2 are of order δ2 etcetera.

Substituting these series in the momentum, continuity and depth-averaged continuity equations yields the
systems of equations in leading order and first order. The solution to the momentum equation yields u, the
continuity yields w and the depth-averaged continuity equation yields ζ.

The leading order system is given by

u0
t = −gζ0

x + (νtu0
z)z, (A.7)
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• νtu
0
z(x, 0, t) = 0, (A.8)

• νtu
0
z(x,−H, t) = sfu

0(x,−H, t) (partial-slip), (A.9)
• u0(x,−H, t) = 0 (no-slip), (A.10)
• νtu

0
z(x,−H, t) = u∗(x, t)2 (quadratic). (A.11)

u0
x + w0

z −
u0

Lb
= 0, (A.12)

• w0(x, 0, t) = ζ0
t (x, t), (A.13)

• w0(x,−H, t) = −u0(x,−H, t)Hx. (A.14)

ζ0
t +

(∫ 0

−H
u0
)
x

= 1
Lb

∫ 0

−H
u0, (A.15)

• ζ0(0, t) = AM2 cos(ωt), (A.16)

•
∫ 0

−H
u0(L, z, t) dz = Q0

B
. (A.17)

The first order system is given by

u1
t + u0u0

x + w0u0
z = −gζ1

x + g
ρx
ρ0
z + (νtu1

z)z, (A.18)

• νtu
1
z(0) + νtζ(x, t)0u0

zz(x, 0, t) = 0, (A.19)
• νtu

1
z(x,−H, t) = sfu

1(x,−H, t), (partial-slip), (A.20)
• u1(x,−H, t) = 0 (no-slip), (A.21)
• νtu

1
z(x,−H, t) = u∗(x, t)2 (quadratic). (A.22)

u1
x + w1

z −
u1

Lb
= 0, (A.23)

• w1(x, 0, t) + w0
z(x, 0, t)ζ0(x, t) = ζ1

t (x, t) + u0ζ0
x, (A.24)

• w1(x,−H, t) = −u1(x,−H, t)Hx. (A.25)

ζ1
t +

(∫ 0

−H
u1
)
x

+ ζ0
xu

0(x, 0, t) + ζ0u0
x(x, 0, t) = 1

Lb

(∫ 0

−H
u1 + ζ0u0(x, 0, t)

)
, (A.26)

• ζ1(0, t) = AM4 cos(ωt), (A.27)

•
∫ 0

−H
u1(L, z, t) dz = Q1

B
− ζ0(L, t)u0(L, 0, t). (A.28)

A.2. Version 1: constant eddy viscosity
Version 1 uses a vertically uniform and stationary eddy viscosity and linear friction law. The eddy viscosity and
friction coefficient are allowed to change gradually in the x-direction. The river discharge is assumed to be of
first-order magnitude. These assumptions allow for an analytical solution in vertical direction and an analytical
solution in horizontal direction for some simple cases. Only these analytical solutions are treated in this section.
The numerical solutions can be obtained as a specific case of Version 3.
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A.2.1. Leading order
The leading order equations are only forced by an M2 tidal component at the seaward boundary and the
equations are linear. As a result the leading order velocity and water level can only consist of an M2 signal. So
it is sufficient to consider one Fourier component with frequency ω;

u0(x, z, t) = Re
(
û0(x, z)eiωt

)
, û0(x, z) ∈ H2 : (R× R)→ C

w0(x, z, t) = Re
(
ŵ0(x, z)eiωt

)
, ŵ0(x, z) ∈ H2 : (R× R)→ C

ζ0(x, t) = Re
(
ζ̂0(x)eiωt

)
. ζ̂0(x) ∈ H2 : R→ C

The momentum equation A.7 is then given by
iωû0 = −gζ̂0

x + νtû
0
zz,

and the general solution is

û(x, z) = −gζ̂x(x)
r2νt

+ C1e
rz + C2e

−rz,

where

r(x) =
√
iω

νt

The solution for û is obtained by the substitution of the boundary conditions A.8 and A.9

û(x, z) = −gζ̂x(x)
iω

(1− α(x) cosh(r(x)z)) ,

where
α(x) = sf (νtr sinh(rH) + sf cosh(rH))−1

Next, the Fourier components and the solution for û are substituted in the depth-averaged continuity equation
A.15. This equation then gives a second-order linear ODE for ζ̂:

iωζ̂ + g

iω

(
ζ̂xx −

1
Lb
ζ̂x

)(
−H + α

r
sinh(rH)

)
+ g

iω
sinh(rH)ζ̂x

(
αx + αrx

(
H

cosh(rH)
sinh(rh) −

1
r

))
− g

iω
ζ̂x (1− α cosh(rH))Hx = 0.

This equation generally needs to be solved numerically because of the non-constant coefficients in the ODE.
A case in which an analytical solution can be found is when all quantities are uniform in the x-direction. The
ODE for ζ̂ then reduces to

iωζ̂ + g

iω
ζ̂xx

(
−H + α

r
sinh(rH)

)
= 0.

The solution of this equation is

ζ̂(x) = 1
2AM2

(
e−RL

cosh(RL)e
rx + eRL

cosh(RL)e
−Rx

)
,

where

R = ω2

g
(
−H + α

r sinh(rH)
)

Finally, we find the solution for ŵ from the continuity equation A.12. This solution reads

ŵ(x, z) = g

iω

(
ζ̂0
xx −

1
Lb
ζ̂0
x

)(
z − α

r
sinh(rz)

)
+ g

iωr
sinh(rz)ζ̂0

x

(
−αx − αrx

(
z

cosh(rz)
sinh(rz) −

1
r

))
+ iωζ̂0.
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A.2.2. First order
The first-order velocity and water level are forced externally by an M4 tidal component and a constant river
discharge and internally by the salinity gradient, the leading-order advection, tidal return flow and water level.
The forcing components span two frequencies: the residual (M0) and M4. The equations for both frequencies
are solved below.

Some simplifications in the notation are adopted for the first-order equations. The following quantities are
introduced

η(x, z, t) = u0(x, z, t)u0
x(x, z, t) + w0(x, z, t)u0

z(x, z, t),
γ(x, t) = ζ0(x, t)u0(x, 0, t),
χ(x, t) = ζ0(x, t)u0

zz(x, 0, t).

The following derivations make frequent use of products of Fourier components. Therefore a general derivation
of such a product is given below. Let un = ûne

niωt and wm = ŵme
miωt be Fourier components of some

quantities. Their product is given by

unwm = |ûn||ŵm|
(
Re
(
ei arg(ŵm)

)
cos(mωt)− Im

(
ei arg(ŵm)

)
sin(mωt)

)
(
Re
(
ei arg(ûn)

)
cos(nωt)− Im

(
ei arg(ûn)

)
sin(nωt)

)
= 1

2 |ûn||ŵm|Re
(
ei(arg(ûn)+arg(ŵm))ei(n+m)ωt + ei(arg(ûn)−arg(ŵm))ei(n−m)ωt

)
= Re

(
1
2 ûnŵme

i(n+m)ωt + 1
2 ûnŵme

i(n−m)ωt
)

(A.29)

Residual flow velocity

The equations for residual flow are obtained by taking the tide-averaged component of the first-order equations.
Let 〈.〉 denote tide-averaging. The momentum equation with its boundary conditions is then given by

νtû
1
0,zz = 〈η̂〉+ gζ̂1

0,x − gβ〈ŝx〉z,
νtû

1
0,z(x, 0) = −νt〈χ̂〉,

νtû
1
0,z(x,−H) = sf û

1
0(x,−H).

The subscript 0 denotes the residual component.

For reasons of generality and ease of notation, we first solve the equation νtû1
0,zz = f(x, z) with the above

boundary conditions. The solution to this equation reads

û1
0 = −

∫ z

−H

∫ 0

z̃

f(x, ẑ)
νt

dẑdz̃ −
∫ 0

−H

f(x, z)
sf

dz − 〈χ̂〉
(
z +H + νt

sf

)
.
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The solution to û1
0 can be written in the form

û1
0 = u1 − u2gζ̂

1
0,x, (A.30)

u1 = uno-stress + uadv + usx ,

u2 = −1
2
z2

νt
+ 1

2
H2

νt
+ H

sf
,

uno-stress = −〈χ̂〉
(
z +H + νt

sf

)
,

uadv = −
∫ z

−H

∫ 0

z̃

〈η̂〉
νt

dẑ dz̃ −
∫ 0

−H

〈η̂〉
sf

dz,

usx = −gβ〈ŝx〉
(

1
6
z3

νt
+ 1

6
H3

νt
− 1

2
H2

sf

)
,

where the subscripts denote the part of the solution due to a particular forcing, see Table 2.2.

Constant water level elevation

The equation for the constant water level elevation is obtained by using the decomposition A.30 for the residual
flow velocity. It reads

−g
∫ 0

−H
u2 dz ζ̂

1
0,xx − g

((∫ 0

−H
u2 dz

)
x

− 1
Lb

∫ 0

−H
u2 dz

)
ζ̂1
0,x =

−
(∫ 0

−H
u1 dz

)
x

+ 1
Lb

∫ 0

−H
u1 dz − γ̂x + 1

Lb
γ̂.

The expressions for u1 and u2 are then substituted and the terms in the resulting equation are grouped according
to the forcing mechanism. The rewritten ODE for ζ̂1

0 reads

aζ̂1
0,xx − bζ̂1

0,x = d,

a = −g
(

1
3
H3

νt
+ H2

sf

)
,

b =
(
∂

∂x
− 1
Lb

)(
−g
(

1
3
H3

νt
+ H2

sf

))
,

d = ζ̂no-stress + ζ̂adv + ζ̂sx + ζ̂return flow,

ζ̂no-stress =
(
∂

∂x
− 1
Lb

)
〈χ̂〉
(

1
2H

2 + νt
sf
H

)
,

ζ̂adv =
(
∂

∂x
− 1
Lb

)(∫ 0

−H

∫ z

−H

∫ 0

z̃

〈η̂〉
νt

dẑ dz̃ dz + H

sf

∫ 0

−H
〈η〉 dz

)
,

ζ̂sx =
(
∂

∂x
− 1
Lb

)
gβ〈ŝx〉

(
1
8
H4

νt
+ 1

2
H3

sf

)
,

ζ̂return flow = −
(
∂

∂x
− 1
Lb

)
〈γ̂〉,

The forcing mechanisms ζ̂no-stress, ζ̂adv, ζ̂sx and ζ̂return flow originate from the effect of leading-order water level
and their meaning is presented in Table 2.2.

There is no subtidal water level forcing at x = 0. The boundary condition thus reads

ζ̂1
0 (0) = 0.
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The boundary condition at x = L is∫ 0

−H
û1

0(L, z) dz = Q1

B
− 〈γ̂(L)〉.

This can be rewritten to an expression for ζ̂1
0 :

ζ̂1
0,x(L) =

(
−g
∫ 0

−H
u2(L, z) dz

)−1(
Q1

B
− 〈γ̂(L)〉 −

∫ 0

−H
u1(L, z) dz

)
Note that the river discharge is a negative number, which reflects that the flow is in the negative x-direction.

M4 flow velocity

Let [.] denote the operation of taking theM4 component of a signal. The equation and the boundary conditions
for the M4 velocity then read

2iωû1
2 − νtû1

2,zz = −[η̂]− gζ̂1
2,x,

νtû
1
2,z(x, 0) = −νt[χ̂],

νtû
1
2,z(x,−H) = sf û

1
2(x,−H)

where the subscript 2 denotes the M4 frequency, i.e. the second overtide of the M2 tidal constituent.

The general solution to this equation is

û1
2 = 1

2νtr

(
−
∫ 0

z

[η̂]erẑ dẑ e−rz +
∫ 0

z

[η̂]e−rẑ dẑ erz
)
− g

2iω ζ̂x + c1e
rz + c2e

−rz

Substituting the boundary conditions yields the following equation

û1
2 = u1 − u2gζ̂

1
2,x,

u2 = 1
2iω (1− α cosh(rz)) ,

u1 = uno-stress + uadv,

uno-stress = − α

sf
[χ̂]
(
νt cosh(r(z +H)) + sf

r
sinh(r(z +H))

)
,

uadv = 1
2νtr

(∫ 0

z

[η̂]erẑ dẑ e−rz −
∫ 0

z

[η̂]e−rẑ dẑ erz
)
−
(∫ 0

−H
[η̂]erẑ dẑ erH

(
1
2 + sf

2νtr

)
+
∫ 0

−H
[η̂]e−rẑ dẑ e−rH

(
1
2 −

sf
2νtr

))
α

sf
cosh(rz).

where

r =
√

2iω
νt
,

α = sf (νtr sinh(rH) + sf cosh(rH))−1
.
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M4 water level

The M4 water level equation can be derived in a similar manner as the constant water level elevation. The
ODE for ζ̂1

2 reads

aζ̂1
2,xx − bζ̂1

2,x − cζ̂1
2 = d,

a = − g

2iω

(
H − α

r
sinh(rH)

)
,

b =
(
∂

∂x
− 1
Lb

)
g

2iω

(
H − α

r
sinh(rH)

)
,

c = −2iω,
d = ζ̂no-stress + ζ̂adv + ζ̂return flow,

ζ̂no-stress =
(
∂

∂x
− 1
Lb

)
α

r2sf
[χ̂] (νtr sinh(rH) + sf cosh(rH)− sf )

ζ̂adv =
(
∂

∂x
− 1
Lb

){
− 1

2νtr

(∫ 0

−H

∫ 0

z

[η̂]erẑ dẑ dz e−rz −
∫ 0

−H

∫ 0

z

[η̂]e−rẑ dẑ dz erz
)

+
(∫ 0

−H
[η̂]erẑ dẑ erH

(
1
2 + sf

2νtr

)
+
∫ 0

−H
[η̂]e−rẑ dẑ e−rH

(
1
2 −

sf
2νtr

))
α

rs
sinh(rz)

}
,

ζ̂return flow = −
(
∂

∂x
− 1
Lb

)
[γ̂]

An M4 tide is applied on the boundary at x = 0 . This boundary condition reads

ζ̂1
2 (0) = AM4e

iφ,

where AM4 is the amplitude of the M4 tide and φ is the phase of the tide relative to the M2 tide.

The boundary condition at x = L reads∫ 0

−H
û1

2(L, z) dz = −[γ̂(L)].

This boundary condition is rewritten to a relation for ζ̂1
2,x by substituting the expression for û1

2

ζ̂1
2,x(L) =

(
−g
∫ 0

−H
u2(L, z) dz

)−1(
−[γ̂(L)]−

∫ 0

−H
u1(L, z) dz

)
.

A.3. Version 2: parabolic viscosity
The parabolic eddy viscosity profile in vertical direction is of interest, because it is a good approximation for
the eddy viscosity in homogeneous tidal flows. Such eddy viscosity profile also allows one to find an analytical
solution for u and, for the case of a simple channel, the water level. These analytical solutions will be presented
in this section. This analysis is restricted to the leading-order velocity. The analytical solutions for the first-order
velocity are omitted, because they are complicated expressions that provide little insight into the properties of
the solutions.

The parabolic profile for νt is given by the following equation:

νt = νt,0(x)(zs(x)− z)(H(x) + zb(x) + z).

In this equation zs and zb represent surface and bottom roughness heights, which replace the roughness co-
efficient in Version 1. Moreover, the model no longer needs the partial-slip friction law, but instead uses the
no-slip boundary condition. The river discharge is again assumed to be of first order.
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A.3.1. Leading order
The leading-order momentum equation A.7 reduces to

iωû0 + νt,0(H + zb − zs + 2z)ûz + νt,0(z − zs)(H + zb + z)ûzz = −gζ̂0
x.

The general solution to this ODE is

û = − g

iω
ζ̂x + C1H1(z − zs)−r1 + C2H2(z − zs)−r2 ,

where

H1 = Hypergeometric
(

[r1, r1], 2r1,
zs + zb +H

zb − z

)
,

H2 = Hypergeometric
(

[r2, r2], 2r2,
zs + zb +H

zb − z

)
,

r1 = 1
2 +

√
1
2 −

iω

νt
,

r2 = 1
2 −

√
1
2 −

iω

νt
.

The ’constants’ C1 and C2, which are still allowed to be functions of x, follow from the boundary conditions
A.8 and A.10. It can be derived that C1 and C2 depend linearly on gζ̂x. The constants are therefore rewritten
according to

C1(x) = a1(x)gζ̂x,
C2(x) = a2(x)gζ̂x,

for some functions a1 and a2. The solution for u is

û = gζ̂x

(
a1H1(z − zs)−r1 + a2H2(z − zs)−r2 − 1

iω

)
.

This solution can be substituted in the depth-averaged continuity equation A.15 to obtain the water level ζ.
The resulting ODE generally needs to be solved numerically. For the simple channel the ODE for ζ can be
solved analytically. The ODE for this case reads(

a1

∫ 0

−H
H1(z − zs)−r1 + a2

∫ 0

−H
H2(z − zs)−r2 − 1

iω
H

)
ζ̂xx + iω

g
ζ̂ = 0

The integrals of the hypergeometric functions in this equations are evaluated analytically and the ODE is solved
in a similar manner as in Version 1.

A.4. Version 3: time-varying viscosity
The solutions for Version 3, 4 and 5 are obtained numerically. This section therefore presents the numerical
solution method. An alternative, analytical, solution method to Version 3 is presented in Section A.6.

Consider an eddy viscosity which is constant in the vertical direction and variable in time according to a truncated
Fourier series

νt(x, t) = Re

(
p∑

m=0
ν̂t,m(x)emiωt

)
.
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The velocity and water level responses consists of an infinite Fourier series, but the series is truncated for
numerical computation. These responses originate from the product of νt and uz in the momentum equation.
It follows from Equation A.29 that these responses do not only consist of positive Fourier components but also
of negative components. The velocity and water level are therefore approximated by

u = Re

(
p∑

n=−p
ûne

niωt

)
,

w = Re

(
p∑

n=−p
ŵne

niωt

)
,

ζ = Re

(
p∑

n=−p
ζ̂ne

niωt

)
.

It is assumed that the phase of the eddy viscosity at a location x corresponds to the average phase of the
leading order horizontal velocity at the same location. The vertically averaged phase has to be used in order
for νt to remain independent of z. This coupling of the phase of the velocity and eddy viscosity introduces a
non-linearity in the model. The model is therefore solved iteratively.

A.4.1. Leading order
The momentum equation A.7 involves the product νtuz. This term introduces additional Fourier components
to the system compared to previous versions of the model according to Equation A.29. It follows from this
expression that the product of two positive Fourier components m and n can induce a negative Fourier com-
ponent. Therefore, both positive and negative components will be used. The following equation follows from
the momentum equation for the Fourier modes

niωûn = −gζ̂x,n + 1
2

p∑
m=0

(
ν̂t,mûzz,n−m + ν̂t,mûzz,n+m

)
, n = −p, . . . , p

So we solve a system of 2p+ 1 ODEs of the form

Dû−N ûzz = −gζ̂x, (A.31)
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where

D =



−piω ∅

−(p− 1)iω

. . .

∅ piω


, û =



û−p

û−(p−1)

...

ûp


,

N = 1
2



2Re(ν̂t,0) ν̂t,1 · · · ν̂t,p

ν̂t,1 2Re(ν̂t,0)
. . .

...
. . . ∅

...
. . .

. . . ν̂t,1
. . .

ν̂t,p · · · ν̂t,1 2Re(ν̂t,0) ν̂t,1 · · · ν̂t,p

. . . ν̂t,1
. . .

. . .
...

∅
. . .

...
. . . 2Re(ν̂t,0) ν̂t,1

ν̂t,p · · · ν̂t,1 2Re(ν̂t,0)


The system can also be solved for positive Fourier components only. The essential observation that allows us
to eliminated the negative Fourier components is given by

u−n = Re(û−ne−niωt) = Re(û−ne−niωt) = Re(û−neniωt)

A negative Fourier component becomes a positive component by taking the complex conjugate of its amplitude.
We find the following form of N if the negative components are eliminated

N = 1
2



2Re(ν̂t,0) ν̂t,1 · · · ν̂t,p

ν̂t,1
. . .

. . .
...

...
. . . 2Re(ν̂t,0) ν̂t,1

ν̂t,p · · · ν̂t,1 2Re(ν̂t,0)


+ 1

2



0 ν̂t,1 · · · ν̂t,p

...
... . .

.
0

0 ν̂t,p 0
...

0 0 · · · 0


Note that the bandwidths of the equations with and without negative Fourier components are the same. Below,
in Equation A.32, it will be shown that it is more efficient in terms of computational speed to eliminate the
negative Fourier components. The model implementation nevertheless uses the negative Fourier components,
because the matrices are more intuitive to implement. Future developments of the model may want to use the
positive components only.

The system can be solved both analytically and numerically. The analytical solution is presented in Appendix
A.6. The numerical procedure is explained below.
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Numerical solution to the momentum equation
The system of ODEs A.31 is easy to discretise when it is written as separate equations, instead of a system.
A central approximation for the second derivative of û is used on the grid that will be introduced in Appendix
A.7. The discretised equations read

Dnnûn,k −
2p+1∑
m=1
Nnm

1
∆zk

(
ûm,k−1 − ûm,k

∆zk−1/2
− ûm,k − ûm,k+1

∆zk+1/2

)
= −gζ̂n,x

for n = 1, . . . , 2p+ 1; k = 1, . . . kmax. The subscripts j to indicate variability in the x-direction are omitted.

The equations are all of the form
2p+1∑
m=1

anmûm,k−1 + bnmûm,k + cnmûm,k+1 = −gζ̂n,x

• anm = − 1
∆zk∆zk−1/2

Nnm

• bnm =
(

1
∆zk∆zk−1/2

+ 1
∆zk∆zk+1/2

)
Nnm + δnm

2Dnn

• cnm = − 1
∆zk∆zk+1/2

Nnm

This procedure yields a system in matrix form

Aû = −gIbζ̂x,

where the double underlining denotes a vector in the numerical calculation. This is different from the single
underlined terms which denote vectors that contain frequency components as functions of space, whereas this
numerical vector contains these frequency components as scalars on every grid point. The elements ûn,k of
this vector are ordered by grouping elements with the same spatial index k;

û = (û1,0, û2,0, . . . , û2p+1,0, û1,2, . . . , û2p+1,kmax+1)T .

As a result of this ordering, the matrix A is a band matrix with the maximum bandwidth equal to 6p+ 3. This
is the most optimal matrix structure that can be obtained in terms of computational time to solve the system.

The matrices A and Ib are defined below in terms of sub-matrices of dimension (2p+ 1)× (2p+ 1)

A =



I −I

A B C ∅

. . .
. . .

. . .

∅ A B C

Ã B̃


, Ib =



∅

I

...

I

∅


. (A.32)

where the sub-matrices A, B and C have entries anm, bnm and cnm. The actual bandwidth of the matrix A
is 4p + 3, because A, B and C are themselves band matrices. The bandwidth of A would reduce further to
3p+ 3 if the negative Fourier components were eliminated.

The matrices Ã and B̃ have entries ãnm and b̃nm that follow from the partial-slip boundary condition on the
bed. The discretised form of this boundary condition is

m=2p+1∑
m=1

Nnm
ûm,kmax − ûm,kmax+1

1
2∆zkmax

= sf ûn,kmax+1.

2Kronecker delta; δnn = 1, δnm = 0 if n 6= m.
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This is rewritten to
2p+1∑
m=1

ãnmûm,kmax + b̃nmûm,kmax+1 = 0.

• ãnm = 1
1
2∆zkmax

Nnm

• b̃nm = − 1
1
2∆zkmax

Nnm − δnmsf

The solution û then follows from û = −A−1Ibgζ̂x. However, calculating the inverse of A is computationally
inaccurate and the water level gradient ζ̂x is yet unknown. Therefore, a coefficient matrix U is calculated by
solving

AU = Ib.

After the water level gradient is calculated, the horizontal velocity field then follows from

û = −Ugζ̂
x
.

Solution for ζ̂

The solution for ζ̂ can generally only be obtained numerically and it follows from the depth-averaged continuity
equation A.15. In matrix form this equation reads

Dζ̂ −
∫ 0

−H
U dz gζ̂

xx
−
(∫ 0

−H
U dz

)
x

gζ̂
x

+ 1
Lb

∫ 0

−H
U dz gζ̂

x
= 0. (A.33)

Here it is used that the velocity û can be written as

û = −Ugζ̂
x
.

The system A.33 can be written as separate equations for n = 1, . . . , 2p + 1 and j = 1, . . . , jmax − 1 of the
form

2p+1∑
m=1

anmζ̂m,j−1 + bnmζ̂m,j + cnmζ̂m,j+1 = 0.

• anm = − g

∆xj+1/2∆xj

∫ 0

−H
Unm dz + g

∆xj + ∆xj+1

(∫ 0

−H
Ux,nm dz −

1
Lb

∫ 0

−H
Unm dz

)
• bnm = g

∆xj+1/2∆xj+1

∫ 0

−H
Unm dz + g

∆xj+1/2∆xj

∫ 0

−H
Unm dz + δnmDnn

• cnm = − g

∆xj+1/2∆xj+1

∫ 0

−H
Unm dz −

g

∆xj + ∆xj+1

(∫ 0

−H
Ux,nm dz −

1
Lb

∫ 0

−H
Unm dz

)

The resulting system of equations is Bζ̂
0

= f0 + q0 with the matrix and vector

B =



I ∅

A B C ∅

. . .
. . .

. . .

∅ A B C

Ã B̃


, f0 =



ζ̂
0
(0)

0

...

0

0


, q0 =



0

0

...

0

q̃0





100 A. Derivation and solution hydrodynamics

The forcing vectors f0 and q0 represent the tidal forcing and river discharge at the boundaries. Note that the
addition of a leading-order river discharge is a feature of the Version 3 model, which was not included in version
1. The matrices A, B, C again have entries anm, bnm and cnm. The matrices Ã and B̃ have entries ãnm and
b̃nm depending on the boundary condition at x = L.

ãnm = g

∆xjmax

∫ 0

−H
U dz

b̃nm = − g

∆xjmax

∫ 0

−H
U dz

q̃0
n = Q0

B
δn0

A.4.2. First order
The first order solution makes use of the same definitions for η, γ and χ as presented in Version 1. These are
repeated here for clarity.

η(x, z, t) = u0(x, z, t)u0
x(x, z, t) + w0(x, z, t)u0

z(x, z, t),
γ(x, t) = ζ0(x, t)u0(x, 0, t),
χ(x, t) = ζ0(x, t)u0

zz(x, 0, t).

The resulting (scalar) functions for η, γ and χ are approximated by a truncated series of Fourier components
similar to u, w and ζ;

η(x, z, t) = Re

(
p∑

n=−p
η̂n(x, z)eniωt

)
,

γ(x, t) = Re

(
p∑

n=−p
γ̂n(x)eniωt

)
,

χ(x, t) = Re

(
p∑

n=−p
χ̂n(x)eniωt

)
.

Solution for û
The momentum equation in matrix notation is derived similar to the leading-order system. The equation reads

Dû1 −N û1
zz = −gζ̂

1
x
− η̂ + gβzŝx

This system is solved numerically. The analytical solution presented in Section A.6 can also be used, because
the system matrix A is the same as in the leading-order system. This results in a system

Aû1 = −Ibgζ̂ − η̂ + gβzŝx + Iaχ̂,

where A and Ib are the same as in the leading-order system (equation A.32) and Ia, in terms of 2p−1×2p−1
sub-matrices, is given by

Ia =



I

∅

...

∅


.



A.5. Version 4: time- and space-varying viscosity 101

The solution now reads

û1 = A−1Iaγzz −A
−1Ibgζ̂x −A

−1η̂ +A−1gβzŝx,

Solution for ζ̂

The horizontal velocity field can be written as

û1 = −Ugζ̂
1
x

+ û1.

The firstorder depth-averaged continuity equation in matrix form then becomes

Dζ̂
1
−
∫ 0

−H
U dz gζ̂

1
xx
−
(∫ 0

−H
U dz

)
x

gζ̂
1
x

+ 1
Lb

∫ 0

−H
U dz gζ̂

1
x

=

−
(∫ 0

−H
û1 dz

)
x

− γ
x

+ 1
Lb

(∫ 0

−H
û1 dz + γ

)
.

This system can generally only be solved numerically. The resulting system is given by

Bζ̂
1

= f1 + q1 −
(∫ 0

−H
û1 dz

)
x

− γ
x

+ 1
Lb

(∫ 0

−H
û1 dz + γ

)
,

with solution

ζ̂
1

= B−1f1 + B−1q1 − B−1
(∫ 0

−H
û1 dz

)
x

− B−1γ
x

+ 1
Lb
B−1

∫ 0

−H
û1 dz + 1

Lb
B−1γ, (A.34)

The vectors f1 and q1 represent the tidal forcing and river discharge at the boundaries and are similar to the
leading order.

A.5. Version 4: time- and space-varying viscosity
The eddy viscosity in Version 4 has the form

νt(x, t) = Re

(
p∑

m=0
ν̂t,m(x, z)emiωt

)
.

The difference with Version 3 is the amplitude of the eddy viscosity, which can vary in vertical direction. If ν̂t has
a parabolic profile similar to Version 2, the momentum equation can be solved analytically using hypergeometric
functions according to an approach by Tirao (2003). The analytical solution is not implemented because of the
large development time that is required to implement and test the solution. Moreover, it is expected that the
computational time that is necessary to calculate the hypergeometric functions is of the same order as the time
required for a high-resolution numerical calculation. This expectation is based on experience with calculations
of Version 2.

The numerical calculation differs from Version 3 in only two places. Firstly, the phase of the eddy viscosity
is no longer depth-averaged. Instead, the eddy viscosity adopts the phase of the velocity in every grid point.
Secondly, the operator A is different. This operator is derived for the Version 4 model below. The leading-order
momentum equations are given by the system

Dû−Nzûz −N ûzz = −gζ̂
x
, (A.35)
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where the matrices are the same as in Version 3. The discretised equations read

Dnnûn,k −
2p+1∑
m=1
Nnm,k

1
∆zk

(
ûm,k−1 − ûm,k

∆zk−1/2
− ûm,k − ûm,k+1

∆zk+1/2

)
−Nz,nm,k

ûm,k−1 − ûm,k+1

∆zk−1/2 + ∆zk+1/2

= −gζ̂n,x.

This is rewritten to
2p+1∑
m=1

anmûm,k−1 + bnmûm,k + cnmûm,k+1 = −gζ̂n,x

• anm = − 1
∆zk∆zk−1/2

Nnm,k −
1

∆zk−1/2 + ∆zk+1/2
Nz,nm,k

• bnm =
(

1
∆zk∆zk−1/2

+ 1
∆zk∆zk+1/2

)
Nnm,k + δnmDnn

• cnm = − 1
∆zk∆zk+1/2

Nnm,k + 1
∆zk−1/2 + ∆zk+1/2

Nz,nm,k

The boundary condition on the bed is a no-slip condition. This means that the sub-matrices Ã and B̃ in
Equation A.32 are given by Ã = ∅ and B̃ = I.

Again a system Aû = −gIbζ̂x is obtained, but with the matrix A differing from that used in Version 3. The
solution procedure for ζ̂ and the first-order system are the same as in Version 3.

A.6. Analytical solution to the Version 3 momentum equation
This system of Version 3 can be solved analytically, provided that the phases of the eddy viscosity are known
beforehand. If this is not the case, then the system still needs to be solved iteratively by using an the analytical
solution method below in every iteration.

The analytical solution cannot be constructed from the system of equations A.31 directly, because the matrix
D is not invertible. The equation for û0 is therefore eliminated from the system, yielding

û0,zz = g

Re(ν̂t,0) ζ̂0,x −
1

2Re(ν̂t,0)

p∑
m=1

(
ν̂t,mû−m,zz + ν̂t,mûm,zz

)
, (A.36)

D̃ ˜̂u = −gζ̂
x,red

+Nred ˜̂uzz. (A.37)

The tilde over a vector in this equation signifies that the row belonging to û0 is not included. Similarly, the
tilde over matrices means that the row and column belonging to û0 are not included. The other vectors and
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matrices are defined as follows, both not including ν̂t,0,

Nred = Ñ − 1
2Re(ν̂t,0)



ν̂t,p ν̂t,p ν̂t,p ν̂t,p−1 · · · ν̂t,p ν̂t,p

ν̂t,p−1 ν̂t,p ν̂t,p−1 ν̂t,p−1 · · · ν̂t,p−1 ν̂t,p

...
...

. . .
...

ν̂t,p ν̂t,p ν̂t,p−1 ν̂t,p · · · ν̂t,p ν̂t,p


,

ζ̂
x,red

= ˜̂
ζx −

1
Re(ν̂t,0)



ν̂t,p

ν̂t,p−1

...

ν̂t,p


ζ̂0,x

The system is rewritten to a system of first-order ODEs[ ˜̂u
˜̂uz

]
z

=
[
∅ I

N−1
redD̃ ∅

]
︸ ︷︷ ︸

A

[ ˜̂u
˜̂uz

]
+ g

[
∅
N−1
red

]
˜̂
ζx.

The general solution to this system is derived by using variation of constants. This solution is[ ˜̂u
˜̂uz

]
= −g

[
D̃−1

∅

]
˜̂
ζx,red + eAzc1,

wherein matrix exponential eAz has the following form

eAz = 1
2


cosh

((
N−1
redD̃

)1/2
z
) (

N−1
redD̃

)−1/2 sinh
((
N−1
redD̃

)1/2
z
)

(
N−1
redD̃

)1/2 sinh
((
N−1
redD̃

)1/2
z
)

cosh
((
N−1
redD̃

)1/2
z
)

 .

The solution for û, including û0, is then

˜̂u = −gD̃−1 ˜̂
ζx,red + C1 cosh

((
N−1
redD̃

)1/2
z
)

+ C2
(
N−1
redD̃

)−1/2 sinh
((
N−1
redD̃

)1/2
z
)
,

û0 = 1
2

g

Reν̂t, 0
ζ̂0,xz

2 + 1
2Re(ν̂t,0) [ν̂t,p · · · ν̂t,p]˜̂u+ C01z + C02

Next, the p + 2 unknown constants C,C01, C02 are solved using the boundary conditions. The boundary
condition at the bed is a partial-slip condition, similar to Version 1. The boundary conditions in vector form
read

ûz(x, 0, t) = 0,
N ûz(x,−H, t) = sf û(x,−H, t).

A.7. Numerical aspects
The Version 3, 4 and 5 models as well as the salinity and turbulence model are solved numerically. The numerical
grid will be presented below, after which it is explained how derivatives and integrals are calculated on the grid.
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A.7.1. Grid
The model is called the two-directional point model (2DPM) because it consists of a sequence of 1DV models,
or point models, which are connected by one horizontal grid axis. The grid is shown in Figure 44. The water
levels are calculated on the grid points in the horizontal grid, while the velocities are calculated on the cell
centres in the vertical grid. The velocity points are defined in the middle of a cell in order to correspond to the
implementation in Delft3D-FLOW and therefore allow an extension with the k − ε model as it is implemented
in Delft 3D-FLOW. Two additional velocity points are added at the surface (z = 0) and the bed (z = −H) in
order to simplify the implementation of the boundary conditions and improve the accuracy of gradients at the
bed and surface

The distances between the grid points are denoted by ∆zk as defined in Figure 44. Two additional distances
that will be used are

∆z1/2 = 1
2∆z1,

∆zkmax+1/2 = 1
2∆zkmax .

z=-H 

z=0 
uj,1 

Δzkmax uj,kmax 

uj,kmax-1 

uj,0 

uj,kmax+1 

ζj ζj+1 ζj-1 ζjmax ζ0 

Δzkmax-3/2 

Δxj 

Figure 44: Grid of the 2DPM model. The dots represent velocity points (vertical grid) and water level point (horizontal grid).

The Delft 3D-FLOW k − ε model uses a staggered grid approach with the quantities k, ε and νt at the cell
interfaces and u and ρ at the cell centres. The model uses the velocities from the internal velocity points, i.e.
excluding the two at the boundaries. Only one grid interpolation is needed in the coupling of the perturbation
model and the turbulence model, which is the interpolation of νt at the cell interfaces in the turbulence model
to the cell centres in the perturbation model. The eddy viscosity points at the surface and the bed can be
transferred between both modules without interpolation.

A.7.2. Derivatives & integrals
The single and double vertical derivatives of a quantity u in the internal cells of the grid are defined as

uz,k = uk−1 − uk+1

∆zk−1/2 + ∆zk+1/2
,

uzz,k = 1
∆zk

(
uk−1 − uk
∆zk−1/2

− uk − uk+1

∆zk+1/2

)
,

for k = 1, . . . , kmax. Similarly the horizontal derivatives on the internal cells are defined as

ux,k = uj−1 − uj+1

∆xj + dxj+1
,

uxx,k = 1
∆xj + 1/2

(
uj−1 − uj

∆xj
− uj − uj+1

∆xj+1

)
,
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for j = 1, . . . , jmax − 1.

These definitions do not hold in the boundary cells. At the boundaries the derivatives use a one-sided approxi-
mation

uz,0 = u0 − u1
1
2∆z1

,

uzz,0 =
uz,0 − 3

4uz,1
1
2∆z1

ux,0 = u0 − u1

∆x1
,

uxx,0 =
ux,0 − 3

4ux,1

∆x1

The salinity model deviates from these definitions at a few occasions, where a first-order upwind scheme is used
instead of the central scheme in order to prevent numerical oscillations.

The integral of a quantity u on the vertical grid is defined as∫ zk

−H
u dz =

kmax∑
n=k

un∆zn.

for k = 1, . . . , kmax and with zk equal to the locations of the velocity point uk.





B
Salinity model

This appendix presents the derivation and implementation of the salinity model. The model is a generalisation
of the model by McCarthy (1993). His approach is based on the assumption that advection of salinity is small.
As a result the leading-order salinity is well-mixed and vertical variations of salinity only appear in the first-order
and higher-orders.

The salinity transport equation reads

st + usx + wsz = 1
BH

(BHKHsx)x + (KV sz)z ,

where KH and KV are horizontal and vertical dispersion coefficients. The value of the horizontal dispersion
coefficient is unknown and is used as a closure. The vertical coefficient represents turbulent mixing and is
related to the eddy viscosity through a constant Prandtl-Schmidt number σρ.

The boundary conditions to this model are no-flux conditions at the bed and at the surface. The salinity is
prescribed at the mouth and is assumed to be a constant. The boundary condition at the landward boundary
results from the 1DH salinity equation and is explained below. The four boundary conditions are:

sz(x, ζ, t) = 0,
sz(x,−H, t) = 0,

s(0, z, t) = ssea,

Q
1
H

∫ 0

−H
s(L, z, t) dz = BHKL

1
H

∫ 0

−H
sx(L, z, t) dz,

where KL is the salt dispersion at x = L. An expression for this coefficient is provided at the end of Section
B.1.

B.1. Scaling and derivation of the model
The salinity equation is again ordered around the parameter δ. We therefore start by scaling the equations.
The typical scales are given in Table B.1. This table repeats the scales given in Table A.1 and adds some new
scales.

The derived velocity and eddy viscosity scales in the table are the same as in Appendix A. The typical vertical
dispersion coefficient is relates to the eddy viscosity scale by a Prandtl-Schmidt number σρ which is O(1). It
thus follows that KV = O(N ). The horizontal dispersion scale follows from the 1DH salt balance

(Qs−KHBsx)x = 0.

107
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Scale Dimensionless quantity
TM2 M2 tidal period t = TM2t

∗

AM2 M2 tidal amplitude at the seaward side ζ = AM2ζ
∗

H0 Average depth at seaward side z = H0z
∗

Ls Salt intrusion length-scale x = Lsx
∗

S Typical salinity s = Ss∗

Derived scale Dimensionless quantity
U Typical horizontal velocity of the M2 tide u = Uu∗

W Typical vertical velocity of the M2 tide w = Ww∗

N Typical eddy viscosity νt = Nν∗t
KV Typical vertical dispersion coefficient KH = KHK∗H
KH Typical horizontal dispersion coefficient KH = KHK∗H

Table B.1: Scales and derived scales for deriving the dimensionless equations.

We expect KH to be of the same order of magnitude as the total dispersion coefficient K (see e.g. Fischer
(1972)). We next use that Uq is a typical scale for the velocity caused by the river discharge and find

KH = UqLs

= Uq
U

AM2

H0

LtideLs
TM2

.

The dimensionless salinity equation is

S

TM2

s∗t∗ + SU

Ls
u∗s∗x∗ + SW

H0
w∗s∗z∗ = SKH

L2
s

1
B∗H∗

(B∗H∗K∗Hs∗x∗)x∗ + SKV
H2

0
(K∗V s∗z∗)z∗ .

This is rewritten to

s∗t∗ + TM2U

Ls
u∗s∗x∗ + TM2W

H0
w∗s∗z∗ = TM2KH

L2
s

1
B∗H∗

(B∗H∗K∗Hs∗x∗)x∗ + TM2KV
H2

0
(K∗V s∗z∗)z∗ .

We then assume that Ls = O(Ltide). This means that the salinity gradient is small so that the salinity decreases
smoothly over a tidal length-scale. We also assume that Uq

U = O(δ). The model is restricted to a small river
discharge. This results in the equation that is given below, with the scales written under each term:

st︸︷︷︸
O(1)

+usx + wsz︸ ︷︷ ︸
O(δ)

= 1
BH

(BHKHsx)x︸ ︷︷ ︸
O(δ2)

+ (KV sz)z︸ ︷︷ ︸
O(1)

.

B.1.1. Leading-order and first-order equations
The solution s is written as a power series ordered around the small parameter δ

s = s0 + s1 + s2 + . . . ,

where s1 is assumed to be of order δ, s2 is of order δ2 etcetera.

We then find the leading-order equation with boundary conditions

s0
t =

(
KV s

0
z

)
z
,

• s0
z(0) = 0,

• s0
z(−H) = 0.
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Integrating this equation over the vertical and applying the no-flux boundary conditions, we find s0
t = 0 and

therefore
(
KV s

0
z

)
z

= 0. As a result we have KV s
0
z = constant, but with the boundary conditions this constant

must be zero. We find that the leading-order salinity is uniform over the vertical and constant in time;

s0(x, z, t) = s0(x) (B.1)

The first-order salinity equation is

s1
t + u0s0

x + w0s0
z =

(
KV s

1
z

)
z
.

Because s0 is z-uniform, this equation reduces to

s1
t + u0s0

x =
(
KV s

1
z

)
z
, (B.2)

• s1
z(0) = 0,

• s1
z(−H) = 0.

B.1.2. Derivation of the closure equation
The above leading-order and first-order equations form a system of one equation with two unknowns s0 and
s1. McCarthy (1993) shows that the second-order depth-averaged time-averaged salinity equation can be used
to close the equations. The derivation of this closure equation is presented in this section. The depth-averaged
time-averaged salinity equation is〈∫ ζ

−H
st + usx + wsz dz

〉
=
〈∫ ζ

−H

1
BH

(BHKHsx)x + (KV sz)z dz
〉
,

where 〈.〉 denotes time averaging. This is rewritten to〈∫ ζ

−H
st + (us)x + (ws)z − s(ux − wz) dz

〉
=
〈∫ ζ

−H

1
BH

(BHKHsx)x

〉
,

where the boundary conditions are used in the process of of eliminating the vertical dispersion term. Leibniz’
rule and continuity are then used to obtain〈(∫ ζ

−H
s dz

)
t

〉
− 〈sζt〉+

〈∫ ζ

−H
us dz

〉
x

+ 〈−u(ζ)s(ζ)ζx + w(ζ)s(ζ)− u(−H)s(−H)Hx − w(−H)s(−H)〉

+Bx
B

〈∫ ζ

−H
us dz

〉
=
〈∫ ζ

−H

1
BH

(BHKHsx)x

〉

Next we use u(−H)s(−H)Hx + w(−H)s(−H) = 0, −u(ζ)s(ζ)ζx + w(ζ)s(ζ) = s(ζ)ζt and the definition of
time-averaging to simplify this expression to

1
B

〈
B

∫ ζ

−H
us dz

〉
x

=
〈∫ ζ

−H

1
BH

(BHKHsx)x

〉

The second-order equation is then given by

1
B

(
B

∫ 0

−H

〈
u0s1〉 dz)

x

+ 1
B

(
B

∫ 0

−H

〈
u1s0〉 dz)

x

+ 1
B

〈
ζBu0(0)s0(0)

〉
x

= 1
B

(
BHKHs

0
x

)
x
,

Next, it is used that(
B

∫ 0

−H
u1
)
x

+ (Bγ)x = 0.
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The integration of this from x to L yields

B(L)
(∫ 0

−H
u1(L) + γ(L)

)
−B(x)

(∫ 0

−H
u1(x) + γ(x)

)
= 0,

which is rewritten to

B(x)
(∫ 0

−H
u1(x) + γ(x)

)
= Q1.

This expression can be substituted in the closure equation because s0 is only a function of x. The substitution
results in the final closure equation

1
B

(
B

∫ 0

−H

〈
u0s1〉 dz)

x

+ Q1

B(x)s
0
x −

1
B

(
BHKHs

0
x

)
x

= 0. (B.3)

• s0(0) = ssea,

• Qs0(L) = BHKLs
0
x(L).

This equation corresponds to the closure equation that is obtained by McCarthy (1993). The boundary condition
at x = L is explained below.

The boundary condition at x = L follows from an approximation of the closure equation based on the 1DH
salinity equation (Qs − KHBsx)x = 0. This 1DH equation is integrated over x and it is assumed that the
integration constant is zero. The equation is then applied at x = L to form the boundary condition. The
dispersion coefficient KL is estimated from Equation B.3 as

HKLsx = HKHsx −
∫ 0

−H

〈
u0s1〉 dz.

B.2. Vector form of salinity model
We solve the system by using Fourier components. We therefore define

s0 = Re
(
ŝ0(x)

)
, ŝ0 ∈ C

s1 = Re

(
p∑

n=−p
ŝ1
n(x, z)eniωt

)
, ŝ1

n ∈ C

The set of two equations B.2 and B.3 form a linear system of coupled equations that resembles the u−ζ-system.
The solution procedure that is outlined below is therefore similar to the solution procedure of the u− ζ-system

B.2.1. First-order salinity
First we solve the first-order system B.2 in terms of the unknown s0. This equation uses the product u1s0,
which can be expressed in Fourier components as follows :

u1
ns

0 = Re

(
1
2 û

1
nŝ

0eniωt + 1
2 û

1
nŝ

0
eniωt

)
= Re

(
û1
nRe

(
ŝ0) eniωt)

Note that this is different from McCarthy (1993) who erroneously uses u1
ns

0 = Re
(
û1
nŝ

0eniωt
)
. We see that

only the real part of ŝ0 appears in the equation. So we could as well say s0 = ŝ0 with ŝ0 ∈ R.

Equation B.2 in vector form then reads

Dŝ1 − 1
σρ
Nz ŝ1

z −
1
σρ
N ŝ1

zz = −û0Re
(
ŝ0
x

)
, (B.4)
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where D and N are the same as in the equations of motion A.31. This equation has one remaining degree of
freedom. This degree of freedom results from the equation for the subtidal Fourier component. This equation
is of the form

(
Re(νt,0)ŝ1

0,z
)
z

= b for some forcing b. The solution to this equation with no-flux boundary
conditions is ŝ1

0 = f(x, z) + c, where f is a known function and c is an arbitrary constant. A compatibility
relation is therefore imposed in order to close the system.

The compatibility condition can be derived by taking the time-averaged, depth-integrated form of the first-order
salinity equation and applying the no-flux boundary conditions. The condition then reads∫ 0

−H
ŝ1

0 dz = 0.

Alternatively, this condition can be derived from the depth-averaged time-averaged second-order salinity equa-
tion. This equation contains all the terms that are responsible for the net salt transport up to order δ2. This
has been proven in Equation 3.13, which shows that the difference between the salt balance and the salt model
contains only terms of order δ3. The compatibility condition therefore prescribes that all depth-averaged,
time-averaged contributions to the salinity should be of leading-order.

Numerical implementation

The numerical solution method is similar to the the solution method of Version 3 and 4 of the hydrodynam-
ics model. One exception is the solution of the subtidal salinity component ŝ1

0, which needs the addition
of the compatibility condition. The most efficient way of solving Equation B.4 is by solving for the vector
[ŝ1
−p, . . . , ŝ

1
−1, ψ, ŝ

1
1, . . . , ŝ

1
p], where ψ = ŝ1

0,z. The compatibility condition is then applied to obtain ŝ1
0.

The matrix system is first written as a sequence of scalar equations to make it easier to discretise. The
discretised equations are of the form

Dnnŝ
1
n,k −

1
σρ

2p+1∑
m=1
m 6=p+1

[
Nnm,k

1
∆zk

(
ŝ1
m,k−1 − ŝ1

m,k

∆zk−1/2
−
ŝ1
m,k − ŝ1

m,k+1

∆zk+1/2

)
−Nz,nm,k

ŝ1
m,k−1 − ŝ1

m,k+1

∆zk−1/2 + ∆zk+1/2

]

− 1
σρ
Nnp+1,kψz,k −

1
σρ
Nz,np+1,kψk = −û0

n,kRe
(
ŝ0
x

)
for n = 1, . . . , 2p + 1; k = 1, . . . kmax. The subscripts j to indicate variability in the x-direction are omitted.
The derivative ψz is implemented according to a first-order upwind scheme to prevent numerical oscillations.
This scheme reads

Nnp+1,kψz,k =Re (Nnp+1,k)
{
ψk−ψk+1
∆zk+1/2

if Re (Nnp+1,k) > 0
ψk−1−ψk
∆zk+1/2

if Re (Nnp+1,k) < 0
+

Im (Nnp+1,k)
{
ψk−ψk+1
∆zk+1/2

if Im (Nnp+1,k) > 0
ψk−1−ψk
∆zk+1/2

if Im (Nnp+1,k) < 0

The discretised scalar equations are put in matrix form again along the same lines as in the hydrodynamic
model. This procedure yields a system in matrix form

Rŝ = −û0Re
(
ŝ0
x

)
,

where the double underlining denotes a vector in the numerical calculation with the same ordering as in the
hydrodynamic model. The large matrix R is a band matrix with maximum bandwidth equal to 6p + 3. The
remainder of the solution procedure is the same is in the hydrodynamic model.

The solution for ŝ1
0 is obtained by integrating ψ by numerical integration such as explained in Appendix A.7.
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B.2.2. Leading-order salinity
Next we solve the closure equation B.3. This equation contains the term 〈u0s1〉

〈u0s1〉 = Re

((
û0
)T

ŝ1
)

= Re

((
û0
)T

ςRe
(
ŝ0
x

))
,

where ς = −R−1û0.

The leading-order salinity is time-independent and the equation is therefore a scalar equation. This equation
reads (∫ 0

−H

(
û0
)T

ς dzRe
(
ŝ0
x

))
x

− 1
Lb

(∫ 0

−H

(
û0
)T

ς dzRe
(
ŝ0
x

))
+ Q1

B(x)Re
(
ŝ0
x

)
=

1
B

(
BHKHRe

(
ŝ0
x

))
x

or equivalently, by using Re
(
ŝ0
x

)
= s0

x,(∫ 0

−H

(
û0
)T

ς dzs0
x

)
x

− 1
Lb

(∫ 0

−H

(
û0
)T

ς dzs0
x

)
+ Q1

B(x)s
0
x = 1

B

(
BHKHs

0
x

)
x
.

Numerical implementation

The closure equation is an advection-diffusion equation. This is emphasised by rewriting the equation to(∫ 0

−H

(
û0
)T

ς dz −HKH

)
s0
xx +

[(∫ 0

−H

(
û0
)T

ς dz

)
x

− 1
Lb

(∫ 0

−H

(
û0
)T

ς

)
+

Q1

B(x) −
1
B

(BHKH)x
]
s0
x = 0.

This equation is simplified to

Dif s0
xx + Adv s0

x = 0,

• Dif =
∫ 0

−H

(
û0
)T

ς dz −HKH ,

• Adv =
(∫ 0

−H

(
û0
)T

ς dz

)
x

− 1
Lb

(∫ 0

−H

(
û0
)T

ς

)
+ Q1

B(x) −
1
B

(BHKH)x .

The closure equation typically has a grid Péclet number Adv∆x
Dif which is greater than 2. A central scheme for

the advection terms is therefore unstable and a first-order accurate upwind scheme is used in order to introduce
stabilising numerical diffusion. The advection and diffusion terms are discretised according to

(
Dif s0

xx

)
j

= Difj
1

∆xj+1/2

(
s0
j+1 − s0

j

∆xj+1
−
s0
j − s0

j−1

∆xj

)
,

(
Adv s0

xx

)
j

= Advj


s0
j−s

0
j−1

∆xj if Advj > 0
s0
j+1−s

0
j

∆xj+1
if Advj < 0

for j = 1, . . . , jmax − 1. The boundary condition at the landward side is discretised according to

Q1s0
jmax

= BjmaxHjmaxKL,jmax

s0
jmax
− s0

jmax−1

∆xjmax

.

The resulting system of equations forms a tridiagonal system



C
Implementation of the k − ε turbulence

model

This appendix treats the numerical implementation of the k − ε turbulence model and its coupling to the
perturbation model. The assumptions that lead to the k − ε model have been outlined in Section 1.3 and
2.4 and are treated in more detail by Dijkstra (2014). First, the model equations will be repeated. Next, the
discretisation will be presented.

The k − ε turbulence model solves a system of two non-linear partial differential equation for the turbulent
kinetic energy (TKE) k(x, z, t) and the turbulence dissipation ε(x, z, t). The model then uses these quantities
to calculate the eddy viscosity according to

νt = cµ
k2

ε
,

where cµ is a constant in Delft 3D-Flow. Some other models calculate cµ as a function of stratification, which
is sometimes called a stability function.

The equations for k and ε are partial differential equations in three spatial dimensions. However, the model is
formulated in the vertical direction only, because the gradients in the vertical direction are much greater than
the gradients in horizontal direction. The k − ε model as used in Delft 3D-FLOW reads

kt = ((ν + νt)kz)z︸ ︷︷ ︸
Dk

+ νtu
2
z︸︷︷︸

Pk

− νt
σρ
N2︸ ︷︷ ︸
Bk

− ε︸︷︷︸
εk

, (C.1)

εt =
((

ν + νt
σε

)
εz

)
z︸ ︷︷ ︸

Dε

+ c1
ε

k
νtu

2
z︸ ︷︷ ︸

Pε

− c3
ε

k

νt
σρ
N2︸ ︷︷ ︸

Bε

− c2
ε2

k︸︷︷︸
εε

, (C.2)

where N is the Brunt-Väisälä frequency or buoyancy frequency, which is defined as

N =
√
−g
ρ
ρz.

The terms on the right-hand side of the equations represent diffusion D, production by velocity shear P ,
production or dissipation by buoyancy B and viscous dissipation ε.
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The boundary conditions of the model are

k(x, ζ, t) = 0,

k(x,−H, t) = u2
∗√
cµ
,

∂ε

∂z
(x, ζ, t) = 0,

∂ε

∂z
(x,−H, t) = |u3

∗|
9z0κ

,

where z0 is the roughness height, κ is the Von Kármán coefficient and u∗ is the friction velocity which is defined
as

u∗ = τ

|τ |

√
|τ |
ρ0
. (C.3)

The boundary conditions at the surface are currently implemented on the linearised surface level z = 0. It is
advised to implement these boundary conditions on z = ζ in the future.

Following the implementation in Delft 3D-FLOW (Deltares, 2014; Uittenbogaard et al., 1992), the k− ε model
uses a staggered grid with k, ε, νt calculated on the cell interfaces and u and ρ in the cell centres. In the
equations below, all quantities with subscript and superscript denote quantities on the numerical grid, with
the subscript k denoting the position on the vertical grid axis and the superscript n denoting the time step.
Quantities on cell interfaces will be denoted by an index subscript k+ 1/2 (k = 0, . . . , kmax) , while cell centres
use will be denoted by subscript k (k = 0, . . . , kmax + 1) . Note that the ’centre’ points k = 0 and k = kmax + 1
coincide with the interface points k = 1/2 and k = kmax + 1/2, see Figure 44.

The basis of the model discretisation is an implicit Euler time stepping scheme with two adjustments. First,
the model is linearised. This is done by using Picard’s method, i.e. by using a linear part of each term on the
new time level and by using the rest on the old time level. One exception is the dissipation term εε, which
is linearised by Newton’s method. This method takes a first-order Taylor expansion of the term around the
old time level. The linearisation is done in such a way that the system of equations is decoupled, allowing for
a faster computation. The linearised model is solved without iterating. Such a solution method is justified
when the change of k, ε and νt is small between two time steps. Second, the k − ε model guarantees positive
solutions for k and ε (Mohammadi and Pironneau, 1994). The discretisation is therefore adjusted so that the
numerical implementation also guarantees positive solutions.

The discretisation for the diffusion term Dk reads

Dn
k,k+1/2 = 1

∆zk+1/2

((
ν + νnt,k

) kn+1
k−1/2 − k

n+1
k+1/2

∆zk
−
(
ν + νnt,k+1

) kn+1
k+1/2 − k

n+1
k+3/2

∆zk+1

)
, (C.4)

where

∆zk+1/2 = ∆zk + ∆zk+1

2 ,

νnt,k =
νt,k−1/2 + νt,k+1/2

2 .

A similar discretisation applies for Dε,k+1/2.

The discretised production terms become

Pnk,k+1/2 = νnt,k+1/2

(
unz,k+1/2

)2
,

Pnε,k+1/2 = c1cµk
n
k+1/2

(
unz,k+1/2

)2
.
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The dissipation term is a sink and the buoyancy term may be a sink for TKE and can cause k to become
negative. A semi-implicit method (Patankar, 1980) is used to guarantee positivity of the numerical solutions.
The discretised terms read

Bnk,k+1/2 =
νnt,k+1/2

σρ


N2 k

n+1
k+1/2
kn
k+1/2

if N2 > 0; stable stratification

N2 if N2 < 0; unstable stratification.

Bnε,k+1/2 = c3cµ
knk+1/2

σρ


N2 ε

n+1
k+1/2
εn
k+1/2

if c3N2 > 0

N2 if c3N2 < 0.

εnk,k+1/2 = 2εnk+1/2
kn+1
k+1/2

knk+1/2
− εnk+1/2,

εnε,k+1/2 = c2
knk+1/2

(
2εnk+1/2ε

n+1
k+1/2 −

(
εnk+1/2

)2
)

The boundary conditions use the bed friction velocity u∗. The numerical calculation of this friction velocity
does not use the definition of Equation C.3. Rather, it is assumed that the flow velocity in the bottom half cell
attains a logarithmic profile so that the friction velocity can be expressed as

u∗ = κukmax

ln
(

1 + ∆zkmax+1
z0

) .

The discretisation of the boundary conditions reads

kn1/2 = 0,

knkmax+1 = u2
∗√
cµ
,

ε1/2 − ε3/2

∆z1
= 0,

εkmax−1/2 − εkmax+1/2

∆zkmax

= |u3
∗|

9z0κ
,





D
Model verification

Several tests were done to verify the model assumptions and accuracy. In Section D.1, the error made by using
a limited number of Fourier components is shown. Next, in Section D.2, it is presented how the results change
when the M4 tide is moved from the first-order to the leading-order equations in order to show the validity of
the scaling approach. Section D.3 describes the convergence and convergence problems associated with the
coupling between the hydrodynamic and turbulence models. Finally, a guide is provided on how to use the salt
balance accurately within the perturbation model in Section D.4.

D.1. Required number of frequency components
The inclusion of temporal variations of the eddy viscosity results in a coupling of infinitely many velocity
frequency components. However, the results in this thesis only use the frequencies up to the M6 frequency,
because the higher frequencies are small. This is illustrated in this section by showing the result of the case of
Chapter 4 with Version 5 with frequencies ranging up to the M10 component.

The M8 and M10 components of the water level and velocity are of approximately the same magnitude as
the M6 component and are therefore not negligible, but rather unimportant for many applications. It was
shown in Section 4.4 that the M6 component has little influence on the larger M2 and M4 components and on
the exchange flow, because of its near-logarithmic profile. The same holds for the M8 and M10 components.
Turbulence is also only weakly affected by the addition of the higher frequency components as is shown in
Figure 45. The higher-frequency components are important for the flow velocity around slack tide as much as
is the M6 component.

Instead of increasing the number of frequency components, the number can also be reduced. The inclusion of
the M6 component is not essential for reproducing the qualitative behaviour of the model in the case that was
tested in this thesis. It is useful to keep the M6 component in the model as a diagnostic for other cases; if the
M6 component becomes important for the behaviour of the flow, this signals a new situation that needs more
analysis. Such situation is expected for a situation with a smaller water depth, so that friction plays a greater
role and the M4 eddy viscosity becomes more important. The interaction between this eddy viscosity and the
M2 velocity then creates a strong M6 velocity. In general, it is advised to keep one frequency component that
is expected to be unimportant for the qualitative behaviour of the flow for such signalling purposes.

D.2. Validity of the scaling
The first-order M4 tide in the case of Section 4.2 grows to an amplitude of 0.4 m at the end of the estuary,
which is amounts to 2 % of the water depth. The scaling approach requires the first-order tide to be of order
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Figure 45: Depth-averaged eddy viscosity at x = 10 km with the k − ε model and prescribed well-mixed salinity. The model
resolves tidal components up to M10 (solid line) and M6 (dotted line).

δ2, which is satisfied in this case if δ = 0.1. The validity of the scaling approach will be shown by comparing
this case with the case where the M4 tide is moved to the first order, while keeping the same magnitude. This
section uses Version 2, i.e. with a temporally constant parabolic eddy viscosity, of the model with prescribed
salinity field.

The results are displayed in Figure 46. The figure shows the difference between the water level amplitude if
the M4 tide appears in the leading order and if the M4 tide appears in the first order. The main difference is
the M6 component, which shows a difference of 0.1 m at the end of the basin. The velocity has a maximum
difference of 4 cm/s, also originating from the M6 component. This M6 component is contained in ureturn flow,
the return flow to compensate for Stokes drift. These water level and velocity amplitude differences are small
compared to the total water level and velocity.
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Figure 46: Water level and velocity difference between the case where the M4 tide is positioned in the leading order and first order
in Version 2. Left: difference of water level amplitude. Right: maximum difference of the velocity amplitude.

D.3. Model convergence and limitations
The coupling of the perturbation model to any turbulence model that depends on the velocity or salinity converts
the otherwise linear model to a non-linear model. This non-linear model is solved iteratively. The convergence of
several of such iterative solution procedures will be discussed below. Convergence is measured by the supremum
norm of the eddy viscosity difference between two consecutive iterations, i.e. the maximum absolute difference
in time and space.

The model Versions 3 and 4 become non-linear when the phase of the eddy viscosity is not prescribed, but
depends on the velocity. The iterative process of solving this non-linear model converges quickly; within three
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to six iterations in all cases that were tested in this research. The simulation is considered to be converged
when the phase difference between the phase of the eddy viscosity in the model and the desired phase is less
than 0.1 degrees.

The convergence becomes slower when the perturbation model is coupled to a k − ε turbulence model. Such
slow convergence is caused for a significant part by the under-relaxation procedure (see Section 2.4) which is
required in order to establish convergence. The convergence for the case of Section 4.3 is shown in Figure 47.
The figure shows the supremum norm of the eddy viscosity difference between subsequent iterations, corrected
for under-relaxation. The under-relaxation was 0.9 in this case, which means that the real supremum norm is
a factor 10 smaller than is shown in the figure. The convergence is measured directly from the k − ε model
output (before FFT) and from the signal that is used in the hydrodynamic model (after FFT). The iteration
appears to be diverging in the first 30 to 40 iterations, but ultimately reaches linear convergence.
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Figure 47: Supremum norm of the difference in the eddy viscosity in subsequent iterations in the case of Section 4.3. The norm is
corrected for the under-relaxation factor.

Convergence of the coupled model is not guaranteed for all parameter settings. The convergence of the model
stagnates, for example, after 80 to 100 iterations if the roughness coefficient is changed to zb = 0.1 m. Such
stagnation of convergence also happens when the model is coupled to the salinity model and the k−ε turbulence
model without buoyancy as is shown by Figure 48. The convergence stops after 130 to 150 iterations with a
supremum norm of 6 · 10−3 m2/s after FFT.
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Figure 48: Supremum norm of the difference in the eddy viscosity in subsequent iterations in the case of Section 5.2. The norm is
corrected for the under-relaxation factor.

The model diverges when it is coupled to the salt model and the k− ε model with buoyancy effects. A possible
factor that influences this divergence could be the fast variations of the eddy viscosity due to stable and unstable
stratification, which cannot be reproduced by a limited number of Fourier components. Another reason could
be the strong sensitivity of the salinity to the eddy viscosity and vice versa.
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D.4. Closure of the salt balance
The salt balance introduced in Section 3.4 uses a grouping of terms which will be explained in this section.
The salt balance needs to be used carefully in the perturbation model, because the second-order velocity is not
resolved. This will also be explained below.

The full decomposition of the model resolved salt flux 〈B(H + ζ)us〉 using the Fischer (1972) decomposition
of equation 3.11 contains 16 terms and reads

〈B(H + ζ)us〉 =BHuasa +Bsa〈ζub〉+Bsa〈ζud(0)〉 (D.1)
+BHucsc +Bsc(0)〈ζub〉+Bsc(0)〈ζud(0)〉
+BH〈ubsb〉+Bua〈ζsb〉+Buc(0)〈ζsb〉+B〈ζubsb〉+B〈ζud(0)sb〉
+BH〈udsd〉+Bua〈ζsd(0)〉+Buc(0)〈ζsd(0)〉+B〈ζud(0)sd(0)〉+B〈ζubsd(0)〉.

Many of these terms represent a Stokes drift transport. It is chosen to combine the Stokes drift terms with the
depth-averaged term that contains the same salinity component, i.e.

Qsa = BHuasa +Bsa〈ζub〉+Bsa〈ζud(0)〉,
BH〈ubsb〉∗ = BH〈ubsb〉+Bua〈ζsb〉+Buc(0)〈ζsb〉+B〈ζubsb〉+B〈ζud(0)sb〉,
BHucsc

∗ = ζucsc +Bsc(0)〈ζub〉+Bsc(0)〈ζud(0)〉,
BH〈udsd〉∗ = Bζ〈udsd〉+Bua〈ζsd(0)〉+Buc(0)〈ζsd(0)〉+B〈ζud(0)sd(0)〉+B〈ζubsd(0)〉.

The idea behind this grouping stems from the first line, in which all terms involving sa are grouped. The terms
on this line have a clear meaning. Let us consider the situation of homogeneous flow and let us replace s by a
constant density ρ, then the mass reduces to

〈B(H + ζ)uρ〉 =BHuaρ+Bρ〈ζub〉+Bρ〈ζud(0)〉. (D.2)

This equation equals the water balance. The last two terms are Stokes drift terms. These Stokes drift terms
are compensated for by a return flow that is contained within ua. The net result should be equal to the salt
transport by the river discharge Qρ, so it is physically meaningful to group terms that contain sa. Similar
arguments do not exist for grouping the other terms, because the remaining Stokes drift terms do not vanish.

The salt balance should be used with care within the perturbation approach, because of the Stokes drift terms.
It was shown above in the water balance of Equation D.2 that the Stokes drift term cancels against a return
flow. The other Stokes drift terms cancel partly against a return flow. Stokes drift results from the interaction
of the velocity and water level elevation at the ith order (i = 1, 2, . . .), but the corresponding return flow appears
only at order i+ 1. This means that the Stokes drift in the first order lacks its corresponding return transport,
which appears in the unresolved second-order velocity. All Stokes drift related terms by all first-order velocity
components are therefore excluded from the salt balance. This holds for the Fischer decomposition as well as
for the decomposition in physical contributions (Section 3.4.2).

Figure 49 is included to illustrate the importance of removing the Stokes drift related terms from the mass
balance. The figure shows the salt transport in terms of equivalent dispersion coefficients for the case of
Chapter 5 with k− ε model without buoyancy. The top-left panel is the same as figure 37 except for the return
flow. This return flow is almost fully compensated for by the resolved leading-order Stokes drift shown in the
top-right panel. The bottom-left panel shows all higher-order Stokes drift transport terms. These terms are not
small and the erroneous inclusion of these terms in the salt balance would therefore have shown a completely
different result. It is expected that the second-order and third-order return flows largely compensate for these
higher-order Stokes terms.



D.4. Closure of the salt balance 121

0 20 40 60 80 100
−200

−100

0

100

200
Depth−averaged

x (km)

K
 (

m
2 /s

)

 

 

Total K
Leading−order tide
First−order tide
River discharge
Baroclinic pressure
Advection
Linearisation (χ)
Return flow
K

closure

0 20 40 60 80 100
−50

0

50

100

150
Stokes drift − leading−order u0ζ0

x (km)

K
 (

m
2 /s

)

0 20 40 60 80 100
−60

−40

−20

0

20

40
Stokes drift − higher−order u1ζ0 and u1ζ1

x (km)

K
 (

m
2 /s

)

Figure 49: Salt balance separated according to physical contribution. Top-left: transport by flow in interval [−H, 0]. Top-right:
Stokes drift in leading order (u0ζ0). Bottom-left: Stokes drift in higher orders (u1ζ0 and u1ζ1).





E
Approximate analytical solutions to the

straining circulation

Section 4.5 uses the analytical solution to the tidal straining circulation that results from theM2-M2 interaction
of the leading-order tide in with a vertically constant and arbitrary eddy viscosity (Version 3 and 4). The
derivations of these solutions are given in Sections E.1 and E.2. Section E.3 will show the proof that the
gravitational straining circulation is independent of the phase of the eddy viscosity. In all cases it is assumed
that the eddy viscosity and the flow velocity can be described by the residual and M2 components only.

E.1. Tidal straining circulation with a constant eddy viscosity profile
We will assume that the eddy viscosity and velocity can be described by an M2 tide and the residual velocity.
These two constituents are assumed to form a strictly weakly interacting system in which the M2 tide affects
the residual flow, but not vice-versa. The eddy viscosity is assumed to be constant in the vertical direction.
The solution for arbitrary eddy viscosity profiles will be derived in Section E.2.

The momentum equation for the the leading-order residual flow is

−ν̂t0û0
0,zz = −gζ̂0

0,x +Re
(
ν̂t1û

0
1,zz
)
. (E.1)

The general solution is obtained by integrating Equation E.1 twice.

û0
0 = 1

2
gζ̂0

0,x

ν̂t0
z2 −Re

(
ν̂t1
ν̂t0

û0
1

)
+ c1z + c2.

The no-stress boundary condition at the surface is applied to this equation, which results in c1 = 0. The partial
slip condition at the bed reads

ν̂t0û
0
0,z(−H) = −Re

(
ν̂t1û

0
1,z(−H)

)
+ sf û

0
0(−H).

An expression for c2 is obtained by substituting the equation in this boundary condition.

−ν̂t0
gζ̂0

0,x

ν̂t0
H −Re

(
ν̂t0

ν̂t1
ν̂t0

û0
1,z(−H)

)
= −Re

(
ν̂t1û

0
1,z(−H)

)
+ sf

1
2
gζ̂0

0,x

ν̂t0
H2 − sfRe

(
ν̂t1
ν̂t0

û0
1(−H)

)
+ sfc2,

with solution

c2 = −gζ̂0
x,0

(
H

sf
+ H2

2ν̂t0

)
+Re

(
ν̂t1
ν̂t0

û0
1(−H)

)
.
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The solution for û0
0 is then

û0
0 = −gζ̂0

0,x

(
H

sf
+ H2 − z2

2ν̂t0

)
+Re

(
ν̂t1
ν̂t0

(
û0

1 − û0
1(−H)

))
.

A closure for ζ̂0
x,0 is easily obtained, because we require that the net residual flow is zero. This condition is∫ 0

−H
û0

0 dz = −gζ̂0
0,x

(
H2

sf
+ H3

3ν̂t0

)
+Re

(
ν̂t1
ν̂t0

(∫ 0

−H
û0

1 dz −Hû0
1(−H)

))
= 0,

so that we find

ζ̂0
0,x = Re

(
1
g

ν̂t1
ν̂t0

(∫ 0

−H
û0

1 dz −Hû0
1(−H)

))(
H2

sf
+ H3

3ν̂t0

)−1

So the final solution for û0
0 is

û0
0 = Re

(
ν̂t1
ν̂t0

(
1
H

∫ 0

−H
û0

1 dz − û0
1 + κ(z)

(
1
H

∫ 0

−H
û0

1 dz − û0
1(−H)

)))
, (E.2)

where

κ(z) = H

(
H

sf
+ H2 − z2

2ν̂t0

)(
H2

sf
+ H3

3ν̂t0

)−1

− 1,

= 1
2
sf
H

H2 − 3z2

Hsf + 3ν̂t0

The function κ(z) has a depth-averaged value of zero. The value of κ at the bed is in the range (−1, 0] and
its value at the surface is in the range [0, 1

2 ).

E.2. Tidal straining circulation with an arbitrary eddy viscosity profile
We will use the same assumptions as in Section E.1, but the eddy viscosity now has an arbitrary vertical profile.
It is assumed that the profiles of the residual and M2 eddy viscosity are the same.

The derivation of the solution to Version 4 is similar to the derivation above. The equation for Version 4 reads

−
(
ν̂t0û

0
0,z
)
z

= −gζ̂0
0,x +Re

((
ν̂t1û

0
1,z
)
z

)
. (E.3)

This equation is integrated once. Next, the boundary at the surface can be applied to eliminate the constant
of integration:

û0
z,0 = gζ̂0

x,0
z

ν̂t0
−Re

(
ν̂t1
ν̂t0

û0
z,1

)
.

The model uses parabolic vertical eddy viscosity profiles with a similar shape and the same roughness parametri-
sation for ν̂t0 and ν̂t1. So the ratio of the two eddy viscosity components is constant in the vertical direction.
This constant is defined as µ;

µ =
(
ν̂t1,0
ν̂t0,0

)
.

The solution for u0
0 then reads

û0
0 = gζ̂0

x,0

∫ (
z

ν̂t0

)
dz −Re

(
µû0

1
)

+ c2. (E.4)
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For ease of notation we define f(z) =
∫ (

z
ν̂t0

)
dz.

The no-slip boundary condition at the bed results in
c2 = −gζ̂0

x,0f(−H).

The closure ζ̂0
x,0 is again derived by requiring a vanishing depth-averaged residual velocity. This yields

ζ̂0
x,0 = 1

g
Re

(
µ

1
H

∫ 0

−H
û0

1 dz

)(
1
H

∫ 0

−H
f(z) dz − f(−H)

)−1

.

The final solution is then

û0
0 = Re

(
µ

(
1
H

∫ 0

−H
û0

1 dz − û0
1 + κ(z) 1

H

∫ 0

−H
û0

1 dz

))
,

where

κ(z) = −
1
H

∫ 0
−H f(z) dz − f(z)

1
H

∫ 0
−H f(z) dz − f(−H)

.

E.3. Phase independence of the gravitational straining circulation
It will be shown that the gravitational straining circulation is independent of the phase of theM2 eddy viscosity.
It is assumed that the velocity and eddy viscosity consist of a residual and an M2 component. For simplicity of
notation it is also assumed that the eddy viscosity is constant in the vertical direction, but a similar derivation
holds for general eddy viscosity profiles.

The momentum and depth-averaged continuity equations are reduced to the baroclinic pressure forcing and the
balancing barotropic forcing only. We will only consider the interaction between the residual component and
the positive Fourier component corresponding to the M2 tide. The residual flow also interacts with a negative
Fourier component of the M2 tide. This interaction is fully symmetric to the derivation given below. The
equations read:

−ν̂t0û1
0,zz = −gζ̂1

0,x,sx + 1
2 ν̂t1û1,zz + gβs0,xz,∫ 0

−H
û1

0 dz = 0,

iωû1
1 − ν̂t0û1,zz = −gζ̂1

1,x,sx + 1
2 ν̂t1û

1
0,zz,

iωζ̂1
1 +

(
B

∫ 0

−H
û1

1 dz

)
x

= 0.

The last equation uses B to denote the width of the estuary. The equations contain both the gravitational
circulation (GC) and the gravitational straining circulation (GSC). In order to separate these parts we separate
the subtidal water level gradient according to

ζ̂1
0,x,sx = ζ̂1

0,x,GC + ζ̂1
0,x,GSC .

TheM2 water level gradient contains only the GSC part, because it is not directly forced by the salinity gradient.

The momentum equations are rewritten to

−˜̂νt0û0,zz = −gζ̂1
0,x,GSC +−1

2µ
(
−gζ̂1

1,x,GSC − iωû1
1

)
︸ ︷︷ ︸

(GSC)

−gζ̂1
0,x,GC + gβs0,xz︸ ︷︷ ︸

(GC)

(E.5)

iωû1
1 − ˜̂νt0û1,zz = −gζ̂1

1,x,GSC −
1
2µ
(
−gζ̂1

0,x,GSC − gζ̂1
0,x,GC + gβs0,xz

)
︸ ︷︷ ︸

(GSC)

, (E.6)
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where

µ = ν̂t1
νt0

,

˜̂νt0 = ν̂t0 −
1
4
|ν̂t1|2

ν̂t0
= ν̂t0

(
1− 1

4 |µ|
2
)
.

The depth-averaged continuity equations can be rewritten in an abstract notation to

B0ζ
1
0 = −µ

∫ 0

−H
A−1

0

(
−gζ̂1

1,x,GSC − iωû1
1

)
dz︸ ︷︷ ︸

(GSC)

−
∫ 0

−H
A−1

0 gβs0,xz dz︸ ︷︷ ︸
(GC)

(E.7)

B1ζ
1
1 = −

(
µB

∫ 0

−H
A−1

0

(
−gζ̂1

0,x,GSC − gζ̂1
0,x,GC − gβs0,xz

))
x

dz,

≈ −µ
(
B

∫ 0

−H
A−1

0

(
−gζ̂1

0,x,GSC − gζ̂1
0,x,GC − gβs0,xz

))
x

dz︸ ︷︷ ︸
(GSC)

(E.8)

The abstract operators are linear operators of which the exact formulation is not important for the present
purposes. In the final equation it is assumed that µx is negligible1.

Equations E.5 and E.7 describe the subtidal velocity and water level. The M2 velocity and water level act as a
forcing in these equation via the factor µ. Similarly, the subtidal velocity and water level acts as a forcing in
Equations E.6 and E.8 via µ. So the variable µ acts as a coefficient that regulates the interaction between the
frequency components.

We will focus on the dependency of the solution of the GSC part on the eddy viscosity. The residual GSC
velocity and water level depend linearly on the forcing from the M2 velocity and water level. Similarly, the M2
velocity and water level depend linearly on the forcing from the residual component. We can therefore write

û1
0,GSC ∼ µ

(
f1(ζ̂1

1,GSC , û
1
1,GSC)

)
,

ζ̂1
0,GSC ∼ µ

(
f2(ζ̂1

1,GSC , û
1
1,GSC)

)
,

û1
1,GSC ∼ µ

(
f3(ζ̂1

0,GSC , û
1
0,GSC)

)
,

ζ̂1
1,GSC ∼ µ

(
f4(ζ̂1

0,GSC , û
1
0,GSC)

)
,

where the functions fn, n = 1, 2, 3, 4 are some functions that do not depend on the M2 eddy viscosity and that
depend linearly on their two arguments. The variables can be substituted to obtain the following dependency
of the subtidal and M2 velocity and water level. This yields

û1
0,GSC ∼ |µ|2

[
f1

(
f4(ζ̂1

0,GSC , û
1
0,GSC), f3(ζ̂1

0,GSC , û
1
0,GSC)

)]
,

ζ̂1
0,GSC ∼ |µ|2

[
f2

(
f4(ζ̂1

0,GSC , û
1
0,GSC), f3(ζ̂1

0,GSC , û
1
0,GSC)

)]
,

û1
1,GSC ∼ |µ|2

[
f3

(
f2(ζ̂1

1,GSC , û
1
1,GSC), f1(ζ̂1

1,GSC , û
1
1,GSC)

)]
,

ζ̂1
1,GSC ∼ |µ|2

[
f4

(
f2(ζ̂1

1,GSC , û
1
1,GSC), f1(ζ̂1

1,GSC , û
1
1,GSC)

)]
.

The only parameter that contains phase information of the eddy viscosity is µ, which appears only in its
absolute value in this equation. The phase of the eddy viscosity therefore cancels from the equations. So the
GSC components of the velocity and water level are independent of the phase of the eddy viscosity. A sensitivity
test shows that this conclusion indeed holds in Version 3 and also for the depth-averaged phase of the eddy
viscosity in Version 4 and 5.
1The same structure would also be obtained under the weaker assumption that |µ|x is negligible, i.e. the ratio of the subtidal and
M2 eddy viscosity amplitudes remains constant.
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