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Abstract

In this document we will continue a line of research which focusses on reviv-
ing partial order planning. We will look at the latest pair ofpartial order planners,
RePOP[31] and VHPOP[43] which both use techniques developed for state-space
planners in an attempt to make partial order planning competitive with state of the
art state-space planners. We focus on recent advances in utilizing landmarks[35] as
exemplified by LAMA[37]. We inquire two lines of research, one is to integrate land-
marks within the heuristic as done by LAMA and the other is to utilize landmarks
to split a planning problem into a set of subproblems. We willdetail on additional
techniques derived and used and present novel flaw selectionstrategy. Our aim is to
revive partial order planning by taking VHPOP as our base planner and incorporate
techniques from FF[21], Fast-Downward[17], STeLLa[39], LAMA[37], and the inte-
gration of landmarks in FF[22]. We use the planning problemspresented at the 3rd
international planning competition[26] and compare the results of our approaches to
the original VHPOP.
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Chapter 1

Introduction

Over the course of the last decades, AI and more specifically domain independent planning
has come a long way. A broad range of planners have been developed, as have languages.
Applications for planning have steadily increased both dueto more complex systems that
have been developed requiring more reasoning to be controlled and the advances in the
field of planning itself. Previously planning was confined toa very strict subset of problems
which could only describe a finite set of state transitions and made assumptions which made
it only applicable to a very small range of systems, if any. Over the years the assumptions
have been lifted one by one which allowed planning to be applied to a broader range of
problems and integration in real-life systems was finally possible (STMP[42], O-Plan[10]).
Successes have been documented with domain specific planners which enjoy manually writ-
ten rules and heuristic[1][29]. In this work we will solely be looking at domain independent
planners which can, in principle, be applied to any kind of problem provided that the prob-
lem can be formalized in the given modeling language. In thiswork we will use domain files
which have been written in the language PDDL[16] and we assume the reader is familiar
with this language.

The extensions and evolution of the languages used in planning have come a long way
as well, from STRIPS[12], to ADL[32], and finally into PDDL and SAS+[18]. Domains
can now be handled which require temporal reasoning as well as handling numerical flu-
ents. Applications planning can and is applied to include autonomous vehicles[25], voltage
power stations[2], etc[28]. In situations where domain independent planners are used, both
in applications and in planning competitions, we see a breakfrom the trend of only a decade
ago, then research was mainly focussed on hierarchal planners and partial order planners.
Nowadays the planning landscape is dominated by forward state-space planners and rapid
advances are made in this area while other planning approaches do not enjoy as much atten-
tion as they used to. Although there are some good reasons forthis shift in focus, there are
some merits in plan-space planning which are not shared by forward state-space planners.

In this work we continue a line of work which began with the revival of partial order
planning by a planner called RePOP[31] published in 2001, which challenged the pessimism
about the performance of partial order planners by integrating state-of-the-art state-space
planning techniques into partial order planners and showeddramatic improvements. More
recent work saw VHPOP[43] entering the IPC-3[26] planning competition, again making
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use of state-of-the-art improvements in state-space planning, and which was able to tackle
temporal domains which it won the best newcomer prize. In thelast few years some new
and interesting developments have been made in state-spaceplanning. For example, the
Causal Graph heuristic[17], landmark integration[22, 36]and many other techniques have
been developed which have made considerable impact on performance. To continue the line
of work in partial order planning we set out to evaluate the latest advances in planning and
incorporate and improve upon these techniques in a partial order planning context.

In this work we focus on integrating landmarks into the latest version of VHPOP and
utilize this information both to improve the existing heuristics (much like LAMA[37] did)
and to split the planning problem into smaller subproblems that are (we hope) easier to
solve than the original problem (as has been previously beenexplored in STeLLa[39]).
The novelty in both approaches is the application to partialorder planners instead of state-
space planners and in using a different landmark generationprocess that also deals with
disjunctive landmarks. In addition to these main approaches we consider additional ways to
exploit information by using domain analysis to create a novel new flaw selection strategy
as well as other policies which speed up the search process. We expect that these approaches
will show a decrease in the search space that needs to be explored by VHPOP, due to a more
informed and guided search process, but we anticipate a decrease in the quality of the plans
(in term of plan length) due to the greedy nature of our approaches.

Our hope is that this renewed effort will revive the interestin partial order planning and
present a showcase for its merits. VHPOP will be used as the base planner to build upon
and central to this work are the following state-space planners in no particular order: Fast-
Forward[21], Fast-Downward[17], STeLLa[39] and LAMA[37]. In the first two sections
we briefly introduce classical and partial order planning and give the formal models of both
which is used throughout this document. Next we look at recent work done in partial order
planning and then turn to recent advances in state-space planning which are relevant to this
work. Once we have laid down the foundation and the background relevant to our planner,
we introduce our planner and discuss how and which techniques from other planners have
been integrated into VHPOP and discuss some novel contributions to partial order planning.
Finally, we consider several configurations and test their effectiveness using the planning
problems from the 3rd international planning competition[26] and compare it to the original
VHPOP. We end our work with our conclusions and future work.
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Chapter 2

Classical planning

One of the earliest fields of research within the planning community made some very strict
assumptions regarding the problems they tried to tackle. A classical planning problem is
fully observable, deterministic, finite, static (things only happen when an action is exe-
cuted) and discrete (in time, action, objects, and effects)domains[30]. Thus we are dealing
with restricted state-transition systems. Although this set of assumptions allows for system-
atic search algorithms to tackle the problem, a quick glanceat typical problems tackled by
the planning community shows that problems quickly become infeasible to solve. In fact,
even with these limitations in place, determining whether there is a solution is PSPACE-
complete[6].

People in the planning community have come up with several methods to solve larger
than trivial planning problems. One of these can be found in the way languages are con-
structed to formalize planning problems. One of the earlierlanguage to formalize classical
planning problems is STRIPS[12] and in a hope to make planning algorithms simpler and
more efficient various restrictions were imposed without making it too hard to describe
problem domains. In STRIPS the representation of the world is decomposed into logical
conditions and states are represented as a conjunction of positive first-order literals. A later
extension to this language is ADL[32] and the defacto standard language in use now is
PDDL[16].

2.1 Formal model

Before we go on to describe actual planners which are able to tackle classical planning
problem we give a formal model of a classical planning problem.

We denote the whole set of all possible states in the world asS. A planning problemP
is given as the triple〈s0,sg,O〉, where

• s0 ∈ S is the initial state.

• sg ∈ S is the goal state.

• O is the set of operators.
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We can navigate through the state-space of the world by applying actions. The set of
all actions we can execute is formulated by the set of operators O. Every operatoro∈ O is
described by the tripleo = 〈name, prec,e f f ects〉, where

• name, the name of the operator, is a syntactic expression of the formn(x1, . . . ,xk),
wheren is a symbol called an operator symbol,x1, . . . ,xk are all of the variable sym-
bols that appear anywhere ino, andn is unique (i.e., no two operators inO can have
the same operator symbol).

• prec, the preconditions ofo, this condition describes which set of literals must hold
in any states∈ Sbefore it can be executed.

• effects, the effects ofo, after the preconditions have been met and the action is ex-
ecuted this field describes how the state from which the action was executed will be
affected. It contains an add-list of positive literals which will be added to the state
from which the action is executed (literals which are already true are ignored) and a
delete-list of negative literals which will be deleted fromthe state (literals which are
not true in the current state are ignored).

In effect every operator can thus be instantiated into several actions based on the values
passed to its parameters. An action which is fully instantiated is called agrounded action.

A solution to a planning problem is a sequence of actions〈a1,a2, . . . ,an〉, corresponding
to a sequence of state transitions〈s0,s1, . . . ,sn〉 such thatsn+1 = γ(sn,an) ands0 is the initial
state andsn is the goal state.γ(sx,ax) denotes a transition from statesx by applying actionax

to this state. An action can only be applied if all its preconditions are satisfied by the state
we want to apply it to:∀p∈prec(ax)p∈ sx. The new state after applying an action is defined
as:γ(sx,ax) = (sx \effects−(ax))∪effects+(ax), note that the delete effects are handled first
before the add effects.

With the definition of the planning model complete, we are nowable to define the do-
main of a classical planning domain. Given a planning problem P, its domainD is specified
as the tuple:〈S,A,γ〉:

• S is the set which contains all possible states.|S| = 2all ground atoms o f L.

• A is the set of all ground actions ofO

• γ(s,a) = (s\effects−(a))∪effects+(a) iff ∀p∈prec(a)p∈ s

Do note thatγ(s,a) is closed underS, that is to say, the literals added to arrive at a new
state are already part of the first-order languageL.

2.2 Planning approaches

In order to tackle problems which can be described by the STRIPS language various so-
lutions have been proposed, some more successful than others. All these planners can be
categorized into two major families, state-space and plan-space planning. The former will
be discussed in this section and the latter in the next section.
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2.2.1 State-Space planning

The one most straightforward of the two is state-space planning which is the most common
type of search algorithm used in research nowadays. States in STRIPS are defined as a
conjunction of literals, so it is easy to work out which actions can be applied to any given
state by looking at their preconditions. We define the neighbourhood of a given states∈
S as N =

S

a∈A γ(s,a). This form of search is an iterative process in which we hold the
neighbourhood set, initially instantiated asN0 = {s0}, select a state from it and expand its
neighbourhood and add these into the neighbourhood set until the neighbourhood satisfies
the goal state:Ni = {Ni−1∪

S

a∈A(γ(s,a))\s|s∈ Ni−1} This method is calledforward state-
space search(or forward-chaining).

Another way of doing state-space search is by starting at thegoal state and working
backwards until we find a state which satisfies the initial state. This method is calledback-
ward state-space searchand operates very much the same, but instead of looking for actions
which are applicable in a state we search for actions which achieve the atoms in a given state
and the resulting state is constructed by removing all effects and adding all preconditions.
However, we must make sure that a given action does not undo any of the atoms in the goal
state, if an action satisfies this restriction it is called consistent. So what we are looking
for is a sequence of consistent actions which will bring us from the goal state to the initial
state. Thus we start with the goal state,N0 = {sg} and the neighbourhood is defined as
N = {

S

a∈As\effects(a)∪prec(a)|consistent(a)}.
Both forward- and backward-chaining have individual strengths and weaknesses and

their usability depend on the problem domain and the heuristics used. For instance with
forward state-space search when we check every possible action from any given state it is
clear that the branch factor can be enormous, for example when we are in the library and
want to pick up a book there may be thousands of possible pick up actions we can execute
for every possible book. A lot of actions can be executed which are irrelevant to the actual
goal we try to achieve. On the other hand doing backward state-planning the branching
factor will generally be lower since every action we select will be relevant to the goal in
some way. But again the same problem arises as we now need to find a way to backtrack
to the initial state. Consider buying a plane ticket to destination X, while we can assert that
any plane ticket which will get us to X is relevant to the goal but if we have no clue how
easy we can get to the departure location from the initial location it still is not helping a
lot. From both examples we can conclude that merely selecting a search strategy will get
us nowhere in most cases, if we want to do have any chance of finding a plan at all we will
need some guidance to direct state-space planners.

It is interesting from a historical perspective that whilstforward state-space planning is
now considered state-of-the-art, before it was assumed that this method was to inefficient
to be practical[42]. In the next chapter we will discuss the most important heuristics which
have made forward state-space planning efficient for problem solving.

Heuristics So far we have established that both forward- and back-chaining search algo-
rithms alone are not enough to tackle interesting planning problems. In order to do that
we need good heuristics, or more specifically, once we have found a neightbourhood for a
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given state we want to be able to determine which of these getsus closest to the goal. In the
context of classic planning we are interested in the state which requires the fewest number
of actions to get to the goal state. Unfortunately, finding the exact number of actions which
need to be added before a goal is reached is as hard as planningitself. Suppose that that
one such an heuristic exists; If we simply choose the state from our neighbourhood with
the lowest value we will solve the planning problem in polynomial time - assuming that the
optimal plan is polynomial in length - which is impossible. However, some approaches have
been found which gives us a reasonable estimate without requiring to much computation.
However, the strength of each heuristic depends on the structure of the domain; There is
no silver bullet when it comes to heuristics, some work very well in some domains but are
worthless in others, some planners like Fast-Downward[17]try to circumvent this issue by
using several heuristics while others employ randomness intheir search and allow restarts
like LPG[14]. This section will describe the most importantand most used heuristics and
planners in classical planning.

The aim of heuristics is to provide guidance for the planner in an attempt to speed
up the planning process. So it is no use to have an heuristic function which takes a long
time to complete because we might be better of without an heuristic at all! So an heuristic
estimate must be computed promptly yet still give good guidance. The informativeness
of an heuristic tells us how ‘informed’ an heuristic is, thisis an estimate of how much
guidance we expect an heuristic to give us. Coupled with thisis the notion of admissibility,
we say that an heuristic is admissible if every estimate it gives from any given state to the
goal is lessor equal to the actual value. The latter is important if we want to do optimal
planning because if we explore the best state - as defined by anadmissible heuristic - in our
neighbourhood first the first solution we find is guaranteed tobe the optimal solution. It is
very easy to come up with an admissible heuristic - for example assign 0 as an estimate for
every state - the challenge is to come up with an heuristic which is both informed as well
as admissible. We do note, however, that choosing a good heuristic will not be enough to
tackle all problem domains. Not even if the heuristic is almost perfect, i.e. the heuristic
only differs a constant value from the true heuristic[20]. Additional techniques which prune
the search space are needed.

The traditional way of constructing a heuristics for problems is to relax the problem and
try to solve the relaxed problem. In state-space planners there are 3 common heuristics:
hmax, hadd, andhk.

• hmax This heuristic assumes that if the planner solves the most difficult subgoal, that
all other goals are automatically satisfied as well. This heuristic is admissible but not
very informed.

• hadd This heuristic assumes complete goal independence, that isto say there will be
no interference when trying to solve every subgoal independently. This heuristic is
not admissible but better informed thanhmax.

• hk This heuristic is a generalization ofhmax, instead of trying the solve the hardest
subgoal we try to solve the hardest set ofk subgoals.hmax is thus equal toh1. If the
number of subgoals in the problem is equal tok this heuristic will actually solve the
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original problem. This heuristic is admissible and the higher k the better informed it
is, however the computation cost increases polynomial ask increases[19].

However, trying to find values with the above heuristics in the original planning problem
is equally difficult as planning in the first place. Consider any given planning problem with
a given goal statesg, next we introduce a new action which has as its preconditions all atoms
in the goal state and produces a new literal ‘Finished’ and make this the new goal state for
our problem. Given that there is only one goal atom to satisfyall above heuristics will be
the same, but finding a solution for out new problem is at leastas difficult as the original
problem.

Relaxation To make the heuristics applicable in planning we must further relax the
given problem. One of the reasons why planning is hard is because of conflicts between
actions. For example, if we want to visit two people on a day wecannot visit both at the
same time. Driving to the first person is in direct conflict with our goal to visit the other
person. We can relax the planning problem further by removing these types of conflicts by
ignoring the delete effects of an action. This means that by applying any given action, the
resulting state will be a superset of the previous state. However, there is one little caveat
we need to take care of, what if the goal state requires a negative effect? While this is not
a problem with the STRIPS language (it only allows positive literals in states), extensions
of this language do need to take care of this. The solution is simple, when we apply the
heuristic we translate all negative effects and negative atoms in the goal state and operators
to a new positive atom. We will now define how every heuristic works as described in[5].

hadd The estimated cost of achieving a set of goal atomsp from a given states are
obtained by solving the functional equation:

g(p;s)
de f
=

{

0 if p∈ s

mina∈O(p)[1+g(prec(a);s)] otherwise
(2.1)

for all atomsp by means of a Bellman-Ford type of algorithm. Whereg(prec(a);s)
stands for the estimated cost of achieving the setprec(a) from state s andO(p) stands for
all sets of operators which, combined, ‘add’ p. In this algorithm the measureg(p;s) are
updated as:

g(p;s) := min
a∈O(p)

[g(p;s),1+g(prec(a);s)] (2.2)

starting withg(p;s) = 0 if p∈ sandg(p;s) = ∞ otherwise, until they do not change.
For the additive heuristichadd the costg(C;s) of sets of atomsC is defined as the sum

of the costsg(p;s) of the individual atomsr in C. We denote such additive costs asgadd:

gadd
de f
= ∑

r∈C

g(r;s) (2.3)

The heuristichadd is then defined as:
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hadd(s)
de f
= gadd(G,s) (2.4)

hmax Instead of taking the sum of all goal atoms we can define thehmax heuristic as:

gmax(C;s)
de f
= max

r∈C
g(r;s) (2.5)

Thushmax(s)
de f
= gmax(G;s).

hk The last heuristic to define is thehk heuristic in which we search for the most
expensive subset to satisfy. The size of the subset is definedby k. The costgm(C;s) is
characterized by the equation:

gm(C;s)
de f
=











0 if C⊆ s, else

minB∈R(C)[1+gm(B;s)] if |C| ≤ m

maxD⊂C,|D|=mgm(D;s) otherwise

(2.6)

whereB∈ R(C) if B is the result of regressing the set of atomsC through some action

a. Thushk(s)
de f
= gm(C;s).

Do note however that given a relaxed problem, finding an optimal plan is still NP-
complete[19]. So we must resort to finding an estimate, afterintroducing partial order
planners we will look at recent advances in planning and check which search strategies and
heuristics they employ to solve problems.
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Chapter 3

Partial order planners

The other family of planners takes a different approach to planning and can be argued to
be more elegant. The previous discussed search algorithm only concerns itself with a strict
total-ordered sequence of actions from the initial state tothe goal state and was only able
to reason about grounded actions directly applicable to thestate under consideration. Plan-
space planning takes a different approach that offers some advantages over state-space plan-
ning.

Instead of deliberating over single states as nodes we construct partial specified plans to
reason about and instead of selecting actions to advance planning we use plan refinement
operations to solve flaws in a partial plan. The reason why a node in a search space is
called ‘partial specified’ is because we can reason about ungrounded (or lifted) actions. For
example, if our goal is to get to destination X we might add an ungrounded action which
will get us a plane ticket to location X but does not specify yet where to depart from. This
is called theleast commitment principleand gives a planner more control over the search
strategy as we are no longer bound to specify all details up front, committing ourselves
to grounded actions as in state-space planning and in effectgreatly reduces the branching
factor. Moreover, unlike state-space planning where we commit ourself to a total-ordered
sequence, we do not need to commit ourselves to any specific ordering when choosing an
action. This gives the planner the opportunity to work on several goal atoms independently
before deciding which one is achieved first or resolve any kind of mutex relations due to the
ordering. Despite these flexibilities there are some big challenges to overcome when using
plan-space planning.

In the next section we give a formal definition of partial plans and discus how planning
problems are generally solved in that context.

3.1 Formal model

A (partial) plan can be represented by a tuple〈A,L,O,B〉, whereA is a set of operators,L
a set of causal links,O a set of ordering constraints defining a partial order on the set A,
andB a set of binding constraints on the action parameters (B = /0 if ground actions are
used). Each actiona is an instance of some operatorA in the planning domain and a plan
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can contain multiple instances of the same operator. A causal link, ai
q
→ a j represents a

commitment by the planner that preconditionq of actiona j is to be fulfilled by an effect of
actionai .

When given a planning problem, an initial partial plan is generated by creating two
additional actions:a0 which contains as effects all literals in the initial states0 and a∞
which has as preconditions all literals of the goal statesg. The partial plan is now generated
by adding these two actions and by orderinga0 beforea∞: 〈{a0,a∞}, /0,{a0 ≺ a∞}, /0〉.

Instead of defining a neighbourhood of possible actions which can be executed given a
certain state, a refinement planner works by adding elementsto a plan in order to remove
flaws in the plan. Fixing a flaw is called plan refinement. A flaw can either be an open
condition

q
→ ai , which represents preconditionq of an actionai which is not yet supported

by another action, or an unsafe link (or threat)ai
q
→ a j , whose conditionq can unify with

the negation of an effect of an actionak that could possibly be ordered betweenai anda j .
There are 3 different solutions to this problem: 1) Eitherak is ordered beforeai (demotion);
2) ak is ordered aftera j (promotion); 3) or a binding constraint is introduced so that the
effect of ak cannot unify withq (separation). Once we find a plan without any flaws we
have found a solution, if on the other hand we cannot refine anyplan further and we have
not found a solution yet the problem is unsolvable.

During the planning process a partial order planner keeps track of its plan-space in the
set P. During every iteration a planp ∈ P is selected and then a flaw is selected to be
resolved inp. All possible refinements resolving the flaw are returned andadded toP, until
eitherP is empty (denoting that no solution has been found) or a plan without flaws is found
(a solution).

3.2 Plan selection strategies

During each iterations two important choices need to be made, first of all which partial
plan to work on and secondly which flaw to select to resolve. Inorder to achieve good
performance we must again rely on good heuristics, but whereas the search space in state-
space is finite this isnot the case in plan-space, this is due to the fact that we do not represent
the states explicitly in plan-space planning. While this gives us a lot of freedom on how to
plan we also lose information available to us in state-spaceplanning. In this and next section
we will discuss how this translates into search procedures and heuristics we can apply.

Like in state-space planning we want to base our decision howto advance constructing
a plan based on the notion of distance to the goal. While in a state-space representation we
had direct access to the state we are working on the state of a partial plan is ambiguous at
best. Because we adhere to the principle of least commitmentand because we do not need
to select the actions of a plan in any particular order it is unclear how a partial plan can
be translated into a state. This gives us problems when we tryto estimate the number of
actions needed to find a solution, the heuristics used in state-space planning cannot directly
be used in partial order planning, so we need to find new methods to deal with this.

Lacking an explicit state representation, partial order planners have originally resorted
to counting the number of flaws in a plan to estimate the work tobe done before reaching
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a solution. Because we are interested in a plan with as few actions as possible the heuristic
function is:

f (s) = g(s)+h(s) (3.1)

This equation can be used in a best-first search algorithm to select which plan to extend
next. g(s) = |A| (the number of actions) andh(s) is the estimate of work still to be done.
Possible heuristics include counting all flaws or only the number of open conditions. While
this gives us some guidance in general these notions do not give a clear idea of far we are
from a goal nor is this heuristic admissible, because multiple open flaws could be resolved
by one single action. But even if there is only one open condition, the above heuristics
do not take into consideration how much more work needs to be done to satisfy this open
condition. This is the main reason why partial order planners have fallen behind the perfor-
mance of state-space planners recently. However, in later chapters we will describe some
new developments in partial order planners which are closely related to the heuristics for
state-space planners.

3.3 Flaw selection strategies

After we have selected a plan from our plan-space based on an heuristic we need to identify
the flaws in this plan and choose which one to resolve first. First of all we must identify
that there are several types of flaws which can occur (see above) and that solving one type
before another might enhance the search process. In the literature a lot of strategies have
been proposed in which order flaws should be selected and fixed. Unfortunately so far no
iron clad rule has been found which works best in every situation and it is not clear that
one will ever be found. However, based on some benchmark problems some strategies are
considered better than others[34]. In this section we introduce the basic notation.

Cost of repairing a flaw An inherent property of a flaw in a partial plan is that it will
not go away unless we explicitly work on it. For example, in state-space planning we might
add an action to satisfy a goal atom, but the same action couldsatisfy another goal atom
as well. In partial order planning every causal link betweenan effect of an action and a
precondition of goal atom is made explicitly by adding one. Of course we can, by adding an
action, use the same action to solve multiple open conditions by adding causal links. This
allows us to look at every single flaw independently and checkhow many options we have
to solve this single flaw. As discussed before, all flaws need to be handled separately, the
ordering in which these flaws are resolved can lead to a significant reduction to the search
space.

To do flaw selection we use the notion of ‘most constrained variable’ which is exten-
sively used in CSPs (constraints satisfaction problems). When we have to decide which
variable to resolve first it is an good idea to assign a value tothe most constrained variable,
that is the variable with the smallest domain of values to choose from. Consider for example
solving a SuDoKu puzzle, one way of solving this puzzle is:
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1. Scan the puzzle row per row and select the first empty spot found and assign it a
number which is unique in its row, column, and block.

2. Repeat (1) until we either find an empty spot which we cannotassign a number or
solved the puzzle. In the former, clear the last assigned block and repeat (1), in the
latter case we are done!

It is clear to see while this algorithm will solve any SoDoKu puzzle it is not the most
efficient way to do so. If would be much faster to concentrate on the spots which have very
few choices, the obvious example being one. If a spot only hasone possible choice it must
take that choice and by propagating this effect through the puzzle we might able to solve
the puzzle without doing any search at all! A proper SuDoKu puzzle has only one possible
solution to its problem so if we have a spot with 9 possible numbers 8 of these will be false.
If we choose to make this variable the start of our search treewe could potentially end up
searching 8 different branches while if we start with a variable with only two choices there
is less chance to take a wrong branch and even if we do the otherbranch is guaranteed
to succeed. Choosing the most constrained variable will also allow us to detect dead ends
faster as we have less alternatives to try in the case of failure.

In the case of flaw selection, based on the flaw there are a number of possible resolutions
to this flaw:

• Open conditions:
An open goalg in planP can be solved by the following resolutions:

– The number of literals in the initial state which can unify with g;

– The number of action effects of actions already in the partial plan which can
unify with g;

– The number of action effects of new actions that can unify with g.

• Threads:
Threads can be distinguished in two cases:

– Non-separable threads, in this case there is a causal link between two actions
ai

q
→ a j , whose conditionq unifies with the negation of an effect of an actionak

that could possibly be ordered betweenai anda j . In this case we cannot separate
the negation and causal link. So our only option is to demote or promoteak,
giving us two options.

– Separable threads, in this case we have a similar situation but this time we can
separate the negation of the causal link by adding a binding constraint. However
if we are dealing with a predicate ofk variables we only need to make sure one
of these is unequal to the causal link. Thus addingk choices to the possible
resolutions.
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Preference strategies Depending on the most constrained variable heuristic alone
proves not to be sufficient to yield an effective planner. To improve upon this heuristic
authors have looked a possible orderings in which flaws should be resolved given a partial
plan[34]. Some of these strategies depend on the cost analysis outlined above, but others
only consider the type and order in which the flaws were introduced to the partial plan. We
will use the following notation to describe various strategies:

• o: open conditions

• n: non-separable threads

• s: separable threads

• t: static open condition

• l: local open condition

• u: unsafe open condition

The first three we have already detailed. A static open condition is a condition which
occurs in the initial state of a problem but cannot be affected by any actions, i.e. it does not
appear in the effects of any action. A local open condition isthe subset of open conditions
which is related to the most recently added action to the planthat still has open conditions.
And lastly, an unsafe open condition flaw is an open conditionwhat would be threatened if
we would add a causal link.

The different order or tie-breaking strategies are:

• LIFO (last in first out)

• FIFO (first in first out)

• LC (lowest cost)

• R (random)

• New (achieves an open conditions by using a newly created action)

Given this notation we can now denote strategies as follows:

• {o}LIFO - Always prefer open conditions, and always prefer the most recent added
subgoals.

• {o}LIFO/{n}LC/{s}R - Prefer open conditions in LIFO order, followed by non-
separable threads in cost order, followed by separable threads in random order.

• {n}0−1/{o}LIFO/{n,s}R - Look for forced non separable threads, that is open con-
ditions which either have only 1 solution or none (this wouldindicate a dead end),
followed by open conditions in LIFO order, followed by random selections of either
non-separable or separable threads.

When discussing actual planners in the next chapter we will detail which strategy they
use.
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Chapter 4

Previous work on partial order
planners

Recent years have seen a renewed interest in partial order planning with planners like
REPOP[31] and VHPOP[40] which are both based on UCPOP[33]. Research interest in
partial order planners had previously waned after intense research up until the first half of
the last decade. While partial order planning is an attractive planning framework it suffers
from some serious problems which researchers up to this point have failed to solve.

On the positive site, partial order planners allow for very flexible planning and execution
when compared to forward chaining state-space planners. Where the latter only allows,
given a current state, to select a transition to move to the next state, the former allows
to work on several aspects of a given plan by refining the plan by solving a flaw. One
could even argue that this approach is actually more akin planning compared to state-space
approaches. Another benefit is execution flexibility, once apartial order planner has found
a solution it need not be a total ordered set of actions which need to be executed. Rather it
is a partial plan which can be executed in several ways as the plan can be ordered in several
ways.

Despite all its merits, partial ordered planning has been lacking behind state-space plan-
ners like FF[21], LPG[14], LAMA[37], which show consistently better results in planning
benchmarks. The main reason why partial order planners havebeen falling behind is be-
cause of the lack of proper search guidance. Where state-space planners have an explicit
state description to work from and to derive an heuristic from, it is not clear how such an
explicit state can be derived from a partial plan. For example, if we take a look at the
plan selection heuristic for UCPOP which is defined as:|S|+ |OC|+ |UC| as the default,
this algorithm is alike a A* heuristic as analyzed by Gerevini and Schubert[15], but not
informative nor admissible.

More recent planners have improved both plan and flaw selection heuristics by adapting
techniques from state-space planners and integrating theminto the context of partial order
planners. In this section we will look at two recent advancesin partial planners, REPOP
and VHPOP.
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4.1 RePOP

One of the first attempts to revive partial order planning wasRePOP[31]. In their paper,
Nguyen and Kambhampati challenges, what they call, the prevailing pessimism about the
scalability of partial order planning. They observed that the techniques developed for state-
space planners could also be implemented for partial order planners and set out to see if
the performance of partial order planners could be improved. In this section we will briefly
describe the techniques used to gain better performance which allows RePOP to compete
with the GraphPlan[3] planner.

4.1.1 Plan selection heuristics

To select which plan to refine first, RePOP takes a different approach than UCPOP to es-
timate the amount of actions still needed to find a plan. It does not rely on counting the
number of flaws, but adopts a technique very similar to thehadd heuristic, although it does
account for positive interactions between actions. To do this, RePOP makes use of a serial
planning graph. It builds a planning graph from the initial states0. Let lev(p) be the index
of the level in the planning graph that a propositionp first appears,SOC be the subset of
all propositions which make up the open conditions, andlev(S) be the index of the first
level at which all propositions inSOC appear. Letps be the proposition inSOC such that
lev(ps) = maxpi∈SOC lev(pi). It is assumed thatps is possibly the last proposition inSOC that
is achieved during execution. Letas be an action in the planning graph that achievesps in
the levellev(ps). We can achieveps by addingas to the plan. Given this, RePOP defines its
cost heuristic for the set of open conditions:

cost(SOC) = cost(as)+cost(S
[

prec(as)\effects(as)) (4.1)

wherecost(as) = 1 if as 6∈ A and 0 otherwise. The final heuristic is:f (s) = |A|+ w∗
cost(SOC), where w is set to 5.

4.1.2 Additional improvements

Although RePOP does not introduce new flaw selection strategies, it does does conduct
reachability analysis to prune unattainable partial plansand tries to postpone commitment
to solving threats as long as possible by allowing for disjunctive ordering constraints. So
instead of solving a threatened causal linkai

p
→ a j , which is threatened by actionak, by de-

moting or promoting it. RePOP adds a disjunctive ordering constraint(ak ≺ ai)∨ (a j ≺ ak)
to the plan. Next a constraint propagation rule is applied every time a new ordering con-
straint is added to the plan. Basically when we add an ordering constraint which matches
one of the ordering constraints in a disjunctive binding we discard the other possible order-
ings in the disjunctive ordering constraint. For example, if an ordering(ak ≺ ai) is added to
the orderingsO and(ak ≺ ai)∨ (a j ≺ ak) ∈ O, we redefineO as:O = O

S

(ak ≺ ai)\ (ak ≺
ai)∨ (a j ≺ ak). What this technique hopes to achieve is when faced with an unsafe link,
instead of choosing a definite solution directly (i.e. promote or demote) postpone this deci-
sion until we can not longer ignore it or we are forced to make an ordering which will solve
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this outstanding flaw as well. Effectively it tries to reduces the search space as we do not
need to branch directly when faced with this flaw.

The other technique concerns itself with mutal exclusive prepositions. While most par-
tial order planners will only consider a causal link threatened when we are faced with an
action which negates the specific proposition the link achieves. There are more threats
which are not directly obvious. Sometimes it is possible that two proposition are mutal
exclusive and cannot appear at the same time in the plan. An easy way to find such mutal
exclusive propositions is by looking at the level-off pointof the plan graph, any mutexes
present at that level are state invariants.

4.2 VHPOP

The 3rd international planning competition[26] in 2002 sawa revival of a partial order
planning by a planner called VHPOP[43]. The aim of the authors was to incorporate the
advances which had been made in CPS-based planning algorithms and state-space planning
as heuristics search into partial order planners.

VHPOP is a partial order planner which is loosely based on UCPOP[33] and incorpo-
rates quite a number of interesting plan and flaw selectiong strategies. But most important
of all, while we claimed that one of the biggest challenges ofpartial order planners is to find
good heuristics as it lacks a explicit state description VHPOP defines a variation ofhadd

which can be used in its search while still accounting for positive interactions. On top of
that is uses a tie-breaking heuristic in case it gets stuck ona plateau.

As we have claimed earlier, there is no silver bullet when it comes to defining heuristics
for domain independent planners. VHPOP takes the approach by running multiple planners
concurrently with different flaw selection strategies.

4.2.1 Temporal reasoning

To handle temporal domains VHPOP uses an STN with a constraint-based interval approach[40],
in other words it uses the STN to record the temporal constraints and during search queries
this STN to check for consistencies of plan refinements. STN stands for Simple Temporal
Network and is used to define temporal constraints between pairs of end and start points of
actions. Given that we can use an STN to record the particularordering of a partial plan,
there is no real need for the set of partial ordersO. To record the start and end points of
a durative action, every such action is split up into two nodes t2i−1 (start time) andt2i (end
time). To allow for a compact representation the STN is represented by a d-graph[11]. The
d-graph is a complete directed graph, where each edgeti → t j is labeled by the shortest
temporal distance,di j , between the two time nodesti andt j (i.e. t j − ti ≤ di j ). Internally
such a graph is represented by a matrix which records the difference in time between any
two start and end points. To account for the start point, an additional time pointt0 is added
which represent time zero.

Constraints are added to the STN whenever new actions are added, open conditions
are resolved and ordering constraints are imposed. The duration, δi, of a durative action
ai is specified as a conjunction of simple duration constraintsδi ⊲⊳ c, wherec is a real-
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valued constant and⊲⊳∈ {=,≤,≥}. Each simple duration constraint gives rise to temporal
constraints between the time nodest2i−1| and t2i when addingai to a partial plan. The
temporal constraints, in terms of the minimum distancedi j between two time points, are as
follows:

δi = c d2i−1,2i = c∧d2i,2i−1 = −c (4.2)

δi ≤ c d2i−1,2i ≤ c (4.3)

δi ≥ c d2i,2i−1 ≤−c (4.4)

The semantics of PDDL dictates that every action be scheduled strictly after time zero.
To ensure this we allow for a minimal time gapε between these two time points, i.e.
∀i>0d2i−1,0 ≤−ε. This is also the general method to encode that a time point should precede
another time point.

Every time a temporal constraint is added to VHPOP all the shortest paths that could
have been affected are updated. This operation can be executed inO(|A|2) time, thus it is
quite a costly action to perform.

Once a plan without flaws has been found we still need to decidewhen to execute which
action. Given the STN we have any number of possible schedules in which to execute the
plan because the STN gives us the tightest constraints. So any ordering that does not violate
these constraints is valid. Since we are trying to minimize the makespan we choose the
times as early as possible as our final schedule for the plan.

4.2.2 Plan selection heuristics

One of the other important features of VHPOP is that it bridges the gap between plan-state
planning and heuristics used in state-space planning. Instead of relying on the number of
flaws to select a plan to work on it uses an adapted version of the hadd heuristic where it
tries to account for positive interaction between actions.The problem in defining such an
heuristic remains that we are dealing with partial plans andnot with explicit state represen-
tations. Instead we look for potential actions which could unify with any open conditions
in a partial plan, or more formal:

Given a literalq, let GA(q) be the set of ground actions having an effect that unifies with
q. The cost of the literalq can then be defined as:

hadd(q) =











0 if q unifies with a literal that holds initially

mina∈GA(q) hadd(a) if GA(q) 6= /0
∞otherwise

(4.5)

A possitive literalq holds initially if it is part of the initial conditions. A negative literal
¬q holds initially if q is not part of the initial conditions. The cost of an actiona is defined
as:

hadd(a) = 1+hadd(prec(a)) (4.6)
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Which follows the same definition ofhadd in state-space planners. The cost to handle
other language constructs is given in the next list:

Existentially quantified variables hadd(∃x.φ) = hadd(φ) (4.7)

Conjunctions hadd(
^

i

φi) = ∑
i

hadd(φi) (4.8)

Disjunction hadd(
_

i

φi) = min
i

hadd(φi) (4.9)

The additive heuristic for a partial planπ with open condition setOC(π) can now be
defined as follows:

hadd(π) = ∑
q

−→ai∈OC(π)

hadd(q) (4.10)

Like our previous discussion of thehadd heuristic this algorithm is not admissible and
will not perform very well for strong interconnected problems. VHPOP tries to account
for the possible positive interaction by looking at alreadyexisting actions in the plan which
produce an effect that could be unified with the given literal. This can only be the case if
the given action can be ordered before the action requiring the literal. Or more formally:

hr
add(π)= ∑

q
−→ai∈OC(π)

{

0 if ∃aj ∈ A s.t. an effect ofa j unifies withq andai ≺ a j /∈ O

hadd(q) otherwise

(4.11)
Note that this algorithm is weaker thanhff [21] as it only takes actions into account which

are already part of the plan and not action which are added later. Nonetheless this heuristics
is a big step up from the previous partial order planners which only rely on counting flaws
for plan selection.

4.2.3 Flaw selection strategies

VHPOP used a combination of 4 flaw strategies during the IPC-3competition, these flaw
selection strategies are:

• MW-Loc: {n,s}LR/{o}MWadd

• MW-Loc-Conf: {n,s}LR/{u}MWadd/{l}MWadd

• LCFR-Loc:{n,s,u}LR/{o}LR

• LCFR-Loc-Conf:{n,s,u}LR/{l}LR

VHPOP uses all flaw selection strategies in unison by starting 4 planning procedures
at the same time. Every planning procedure runs for 1000 iterations before switching to
the next. The planning process stops once the first solution is found. The reason for doing
so is that every flaw selection strategy has its own strengthsand weaknesses and by using
multiple at the same time hopefully at least 1 will be suitable for the problem at hand.
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Chapter 5

Recent advances in forward-state
planning

Having discussed the last advancements in partial order planning we will now turn to the
recent advances in state-space planning and in particular forward-state planning. In our
discussion we will only limit ourself to the planners which are relevent to our work. Other
planners like LPG[14], for example, while relevant in planning in general will not be cov-
ered in this work. The focus on this section is mainly on the heuristics employed by these
planners as we will not adopt their search algorithms.

5.1 Fast forward

The introduction of Fast-Forward(FF)[21] in 2001 was a big step up from the HSP planner[5][4].
It combines some clever search techniques and a better informed heuristic than used so far.
FF is a forward-chaining search-based planner, uses the relaxed planning graph heuristic
to guide its search and two different search strategies to find a solution to a planning prob-
lem. FF has performed very well in the AIPS-2000 planning competition where it won two
“outstanding performance” awards for its performance in the “fully automatic” track. It is
noted that FF finds solutions very quickly although the quality of the plans (i.e. plan length)
tends to vary with respect to the degree of optimality. FF is considered a big milestone in
planning and a lot of subsequent planning systems were buildbased on FF or used the FF
heuristichff .

5.1.1 Heuristic

The main aspect of FF is the heuristic it applies to planning problems. It adapts thehadd

heuristic from HSP by using a GraphPlan-style algorithm. Itstill relaxes the plan by ig-
noring delete effects, but for every state it builds a relaxed planning graph to the goal state
which only contains positive effect and solves this problemin polynomial time. A solution
to a relaxed plan graph is given asP′ = 〈O0, . . . ,Om−1〉 whereOi is the set of actions se-
lected in action layeri, andm is the number of the fact layer first containing all goal atoms.
The heuristic is computed as follows:
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h(s) = ∑
i=0,...,m−1

|Oi | (5.1)

When searching for a plan in the relaxed plan graph it is oftenbest to find the shortest
plan as possible. To accomplish this the following heuristics are used in how to solve the
relaxed plan. When faced with a choice which action to selectto support a fact, if there is
a no-op available to make this happen always go with the no-op. If this it not the case then
we select the action whose preconditions seems the easiest to achieve:

Difficulty(o) = ∑
p∈prec(o)

min{i|p is a member of fact layer numberi} (5.2)

Furthermore the actions are linearised in the order in whichthey get selected. Finding
an optimal linear action linearisation for a parallel set ofachieversOi is NP-complete. This
solution will be found in polynomial time.

The given heuristic is not admissible but informed which is agreat step up from the
hmaxandhadd heuristics described before. Because we actually construct a relaxed planning
graph and solve this one we take both all goal atoms and positive interactions between
actions into account.

5.2 Fast-Downward

Another take on domain analysis was taken in 2004 with the introduction of Fast-Downward[17],
which won the ICAPS 2004’s classical track. One of its features is that it does not use PDDL
as the planning language directly but first translates it into a language calledSAS+[18]. In
this representation values are not proportional, but multi-valued, e.g. a truck that is associ-
ated with a location is represented in PDDL with one proposition for every location, with
only true in any given state. InSAS+ a variable is created for the location of the truck and it
can have exactly one value amongst the locations. Clearly the SAS+ representation is more
intuitive to grasp and it also prunes the number of possible states which can be represented.
Giving the last example, if we haven locations the number of states representable in PDDL
is 2n while in SAS+ there are exactlyn states.

Before some actual search can take place we must translate a PDDL representation into
the accordingSAS+ representation. While we will not discuss the actual methodused in
Fast-Downward the idea is that if we find a collection of propositional values which can
be represented by a singleSAS+ variable we know that only one of these propositions can
be true at any time. This is an invariant condition of the domain that exactly one of these
propositions is true or in Graphplan terminology all pairs of these propositions must be
mutex.

AlthoughSAS+ does not allow us to define domains which cannot be defined in PDDL it
does uncover some hidden constraints of the domains which could be used to our advantage.
This is exactly what Fast-Downward does.
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5.2.1 SAS+ representation

A conciseSAS+ representation of a planning task can be generated from a typical PDDL
representation automatically[18].

Definition 5.2.1 A SAS+ planning task is a tupleΠ = 〈V,O,s0,sg〉 where:

• V is a finite set of multi-valuedstate variables, each with a finite domain Dv.. A fact
is a pair 〈v,d〉 (also written v7→ d), where v∈ V and d∈ Dv. A partial variable
assignment s is a set of facts, each with a different variable. (We use set notation such
as 〈v,d〉 ∈ s and function notation such as s(v) = d interchangeably.) A state is a
partial variable assignment defined on all variables V .

• O is a set of operators, where an operator o∈ O is a tuple〈name,prec,effects〉 of
partial variable assignments.

• s0 is a state called the initial state.

• sg is a partial variable assignment called the goal.

An operator o= 〈name,prec,effects〉 ∈O is applicable in state s if prec⊆ s. In that case,
it can be applied to s, which produces the state s′ with s′(v) = effects(v) where effects(v)
is defined and s′(v) = s(v) otherwise. We write s[o] for s′. For operator sequencesπ =
〈o1, . . . ,on〉, we write s[π] for s[o1] . . . [on] (only defined if each operator is applicable in the
respective state). The operator sequenceπ is a plan iff sg ⊆ s0[π].

Each state variable of aSAS+ planning task has an associated directed graph which cap-
tures the ways in which the value of the variable changes through operator application[23].

Definition 5.2.2 The domain transition graph(DTG) of a state variable v∈V of an SAS+

task 〈V,O,s0,sg〉 is the digraph〈Dv,A〉 which includes an arc〈d,d′〉 ⇐⇒ d 6= d′ and
there is an operator〈name,prec,effects〉 ∈ O with prec(v) = d or prec(v) undefined, and
effects(v) = d′.

5.2.2 The causal graph heuristic

Once we have created the DTGs for the variables of a problem, we know how the value
of a variable can change and which transitions are possible between the different values.
However, a DTG does not stand alone and for most problems DTGswill have external
dependencies with other variables to make its transitions.These external dependencies are
captured in a causal graph(CG).

Definition 5.2.3 Let Π be a SAS+ planning task with variable set V . The causal graph of
Π (CG(Π)), is the directed graph with vertex set V containing an arc(v,v′) if v ∈V ∧v′ ∈
V ∧v 6= v′ and one of the following conditions is true:

• The domain transition graph of v′ has a transition with some condition on v.
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• The set of affected variables in the effect list of some operator includes both v and v′.

In the first case, we say that an arc is induced by a transition condition. In the second case
we say that it is induced by co-occurring effects.

The computation of the causal graph heuristic is done by using a path finding algorithm
the find the shortest paths through the DTGs of every goal atomindependently. While
traversing the DTG related to a goal atom we try to find the shortest possible path from the
initial value of that variable. To account for extra work which might need to be done (e.g.
we need to move a truck to the same location as the package before it can be loaded), every
time we hit a precondition which is not satisfied we solve the DTGs related to the unsatisfied
literals in similar fashion and take the number of steps necessary as the weight attached
to traversing an edge in the DTG. A major difference between this heuristic and heuristics
utilized by FF and HSP is that it actually takes the interactions into account of DTGs directly
connected by the causal graph and updates the value of the variables according to the effects
of the transitions. Thus it does not allow for multiple valueof the same variable to hold true
at the same time.

For example take the following problem from the same domain.A package is located at
locationA, a truck is located at locationD which is also the goal location of the package and
the graph is constructed like depicted in figure 5.1. Using the FF heuristic it will realize it
needs to drive the truck to A, load the package and unload it again at D. But because it does
not take into consideration the delete effects, when it reachesA it assumes that the truck can
be at any location in the graph and thus simply unloads the package. The heuristic value is
5. But suppose the truck has moved to locationB now, using the FF heuristic we will again
get 5 as the heuristic. In other words the whole driving sequence to the package is a plateau.
If, on the other hand, we use the causal graph heuristic it will record the fact that the truck
needs to move to locationA and once it has arrived there that it needs to drive back. In this
case even the causal graph heuristic will give us the true heuristic of 8.

Figure 5.1: Simple road network.

This is one of the fundamental strengths of the causal graph heuristic, if the causal graph
does not contain any cycles, is that it will always return thetrue heuristic for achieving a
goal atom. Unfortunately this is hardly ever the case. If there are cycles in the causal graph
there is no way to identify the order in which to evaluate the costs for transitions in the
DTGs and propagate them upwards. The approach taken by Fast-Downward is to cut cycles
in the causal graph by removing dependencies which cause thecycles, edges which affect
the least preconditions are removed first. This means that dependencies which affect the
most preconditions are preserved. With the cycles removed we can again use a pathfinder
algorithm to find the shortest path within every DTG linked toa goal atom.
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The heuristic can be formalized as:

hcg = ∑
v∈sg

costv(vs,vg) (5.3)

Wherecostv(d,d′) stands for solving the subproblemΠv,d,d′ with the value ofv in the
initial state isd (s[v] = d) and the goal value isd′. Per goal atom, only that particular variable
and its parents (as defined in the CG) are considered. Becausewe assume an acyclic graph
we can apply a Dijkstra algorithm to calculate the transition costs in the DTGs from every
node to every other node. We start with the variables which have no dependancies according
to the CG, we can simply apply Dijstra to calculate the distance between every node pair
d,d′ ∈ Dv, resulting in the optimal costcostv(d,d′) for every pair. Next we move to the
variables which have dependencies on other variables whichhave already been computed.
We modify the original Dijkstra algorithm to take into account the cost of solving the parent
variables from their current valuee to the goal valuee′. To calculate the transition cost
cost(d,d′) we simply add all costs for achieving the parent variables from the current state
to the precondition as defined by the transition arc. So if we have a transition arc with
preconditions for a set of variables:v1 = e1, . . . ,vn = en, where allei ,e′i ∈ Dv andcostei ,e′i
already computed, we define the cost function as follows:

costv(d,d′) = 1+ ∑
i=1,...,n

costei ,e′i
(5.4)

Note that with every transition made during the computationof the algorithm, we keep
track of our state. Thus if we find a transition which decreases the cost from somed ∈ Dv

to d′ ∈ Dv by following an arc with some edgez we will change the state accordingly:
s[v] = z. By doing this we are able to take advantage of the context of avariable and get
better heuristic values as highlighted in the example above.

While the causal graph heuristic is very good at domains withno or few cycles in the
causal graph, if the interdependencies between variables are very strong the algorithm will
break down as we need to delete a lot of information by removing dependencies in the
causal graph. One of these problems is the blocks world domain in which a planner must
find a sequence of actions to stack and unstack blocks on a table to reach some goal state.
We are only able to interact with the top most block of each tower, so there is a very tight
interconnection between the different blocks. In order to circumvent this weakness Fast-
Downward useshf f as a second heuristic to solve the problem in parallel in casethe causal
graph heuristic fails.

5.2.3 ADCG

In 2008 a version of the causal graph heuristic was introduced called additive-disjunctive
causal graph heuristic(ADCG)[27] which does not require tobreak the cycles in the CG.
Effectively it does not even require the CG at all to compute the heuristic. In order to do this
the ADCG heuristic assumes subgoal independence and will not take positive interactions
into account, this allows it to calculate an heuristic valuewithout breaking cycles in the CG.
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The way in which we can do this is quite straight forward. Informally, given a start
valuevs and a goal valuevg such that both are part of the same variableV. We search for
the shortest path in the DTG and solve external dependenciesto other DTGs independently.
The additive-disjuncitve causal graph heuristic is given as:

hc
a(s)

de f
= ∑

x∈sg

h(x|xs) (5.5)

Wherexs is defined as the value of the variablex in s0. Now to calculate the actual
heuristic we start from the values of all variables as definedin the initial state and try to find
the shortest path for all variables defined in the goal state.Because we treat every subgoal
independently, actions applied to satisfy a certain transaction will have no effect on the state
of other search branches. The function is defined as:

h(x′′|x′)
de f
=

{

0 if x′′ = x′,else

mino∈O|x∈oprec∧x′′∈oeffects
[1+h(x|x′)+ ∑xi∈oprec|xi 6=xh(xi |x′i)]

(5.6)

where we look for the minimal path to achieve valuex′′ from valuex′. If the value of
the given variable is equal to the goal value we return 0. Otherwise we look for the set of
transitions with minimal cost. Note that we also take care ofsolving any other preconditions
which are not part of the variablex′ andx′′ belong to. In order to do this, we first calculate
the state which results from achievingx from x′. This is the value ofx′i which is written as
s(x|x′) and obtained by replacing all values for the affected variables by applyingo to the
current state with the values inoeffect.

5.3 Landmarks

The last advancement we will discuss, which is also most relevant to our work, is landmarks[35].
Landmarks are states in a plan which must necessarily be visited before we can reach the
goal state. Furthermore, given an ordering between these landmarks, we can use this infor-
mation to guide planner towards its final goal and hopefully come up with better solutions
which require less time to compute.

5.3.1 Finding landmarks

Unfortunately finding all landmarks for planning problem isa PSPACE-hard problem[22],
so we necessarily have to consider an incomplete subset of all landmarks. The most trivial
landmarks are the original goals, but if we note that all actions which can achieve any of
these goals have a similar precondition, we can mark this precondition as a landmark as
well. Unfortunately this will give us a very small set of landmarks for most domains, so
additional work is necessary to unearth more landmarks.

Except finding landmarks it is also beneficial to find orderingbetween landmarks. For
example, the notion of reasonable orders[24] states that a pair of goalsA andB which, if
ordered so thatB is achieved beforeA, it is not possible to reach a state in whichA andB are

26



both true, from a state in which justA is true, without having to temporarily destroyA, in
that case it is reasonable to achieve B before A to avoid unnecessary effort. In the literature
the following orderings have been defined:

• Natural ordering:A→ B, iff in each operator sequence whereB is true, at timei, A is
true at some timej < i.

• Necessary ordering:A→n B, iff in each operator sequence whereB is true, at timei,
A is true at timei −1.

• Greedy-necessary:A →gn B, iff every operator sequence whereB is first added at
time i, A is true at timei −1.

• Reasonable ordering:A →ro B, iff starting from any state whereB was achieved
before A:B must be true at some point later than the achievement ofA; and one must
deleteB on the way toA.

• Obedient reasonable ordering:A →o B, iff given a set of reasonable ordering con-
straintsO, if a planner commits to obey all the ordering constraitns inO, A →ro B
arises because of this.

In order to find landmarks and their orders, methods which utilize the RPG[22] (LMRPG)
and DTGs[37][36] have been devised.

Intuitively when we use RPGs to find landmarks, what we can do is construct the RPG
and leave out any operator which would achieve some literall . When the RPG levels off, the
last layer of facts is an over-approximation of the set of facts that can be achieved beforel in
the planning task. Any operator that is applicable to this last layer and achievesl is possibly
the first achiever ofl . When we take a disjunctive set of literals from the first achievers’
shared preconditions, such that a set contains one precondition fact from each first achiever,
these sets from disjunctive landmarks.

The actual method is more sophisticated than described above and we refer to the re-
spective paper for a detailed description. We will provide more detail about the approach
adopted in LAMA since our solution is based on their method ofderiving landmarks. The
method of finding landmarks is quite similar toLMRPG, but differs in a number of funda-
mental ways. In contrast to the previous method it only derives sound orderings and it takes
into account disjunctive landmarks. LikeLMRPG, it creates disjunctive sets of facts from the
preconditions of first achievers of a landmarkB such that a set contains one precondition
fact from each first achiever ofB. In order for these preconditions to be considered land-
marks it is required that they stem from the same predicate symbol. Each setA found this
way is then recorded as a disjunctive landmark and ordered greedy-necessarily beforeB.
If B is a disjunctive landmark, then the first achievers ofB are all operators which achieve
one if the facts inB. Additional landmarks can be derived from doing graph analysis on the
DTGs. If every path from the value of a variable in the initialstates0 to the value in the
goal statesg needs to visit a certain node, we mark this node as a landmark.The way to test
this is by removing a single node from the DTG and test if thereis still a path between the
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two nodes. If not this node can also be added as a landmark which can be naturally ordered
after the initial value.

5.3.2 Search with landmarks

After finding landmarks, there is still a question of how to utilize these as good as possi-
ble. One possible way is by constructing a landmark graph based on the ordering between
landmarks, where the vertices are the landmarks and the edges are the orderings. Because
the landmark generation process used forLMRPG does not guarantee to produce sound or-
derings between landmarks cycles in this graph may occur andneed to be broken. Once
this is done, we can decompose the planning task into smallersubtasks which need to be
accomplished in succession. The landmarks are presented tothe planner as a disjunctive
goal and upon achieving one of the landmarks, this is removedfrom the landmark graph
and the process continues until the landmark graph is empty at which point the planner is
asked to construct a plan to the actual goal from its current state. This process is called
LMlocal[22] and results show a speedup on most domains but at the expense of plan quality.
Unfortunately due to the fact that the landmark generation process can create unsound or-
derings the search process sometimes fails to find solution where it previously was able to
solve problems without the landmark heuristic.

A better approach was introduced by the planner LAMA[37], which is based on the
Fast-Downward code base and also uses some of its heuristics. The way it utilizes land-
marks is by simply counting how many more landmarks need to beachieved before the
goal is satisfied. It also accounts for landmarks which are required multiple times during
search. The heuristic employed to estimate the number of landmarks which still needs to
be achieved is defined as:l = n−m+ k, wheren is the total number of landmarks,m is
the number of landmarks that are accepted, andk is the number of accepted landmarks
that are required again. A landmarkB is accepted in a states if it is true in that state and
all landmarks ordered beforeB are accepted in the predecessor state from whichs was
generated. An accepted landmark is required again if it is not true ins and it is the greedy-
necessary predecessor of some landmark which is not accepted. Given this heuristic it can
be simply integrated with other heuristics we have described before, although it would not
benefit admissible-heuristics directly as adding the landmark heuristic would make it non-
admissible. Nonetheless, experiments have shown that integrating this information with
other heuristics yields better results[36]. LAMA was actually the winner during the ICAPS
’08 competition for the “Sequential satisficing track” and “Learning tracks domains”.

5.4 STeLLa

Along with VHPOP another planner called STeLLa[39] enteredthe IPC-3 competition.
This planner tries to gain better planning speedups by introducing a general technique
of decomposing a planning problem〈s0,sg,O〉 into several subproblems of the formPi =
〈ISi−1, IGi,O〉, whereIGi is an intermediate goal andISi−1 is the state reached by solving
the previous subproblem. The first subproblemIS0 = s0 and the last subproblemIGn = sg

These subproblems are solved by any planner to obtain a planPi = 〈oi1,oi2, . . . ,oi j 〉 and the
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final plan can be found by concatenating the plansPi: P = P1 ◦P2 ◦ · · · ◦Pn. The idea is
that solving these subproblems in sequence should be easierthan solving the problem as
a whole. Previous work has identified two ways of splitting a problem up into subprob-
lems, for example SGPlan[7] tries to solve every goal atom independently and later ‘glue’
them together, this work was later extended in TSGP[9]. The decomposition technique in
STeLLa, however, does not split the planning problem ‘vertically’ but rather ‘horizontally’.
Which means that instead of asking the planner to solve the goal state, the planner must
solve a sequence subproblems and use their solution to solvethe next subproblem until the
final goal state is reached.

One of the nice features of STeLLa is that it provides a general framework for problem
decomposition which can be applied to virtually any planner. In their experiments STeLLa
has been tested with FF, LPG, and VHPOP as the base planner. Inthe case of VHPOP ex-
perimental results show considerable speedups in search and rendered previously unsolved
problems solvable in the same time span.

5.4.1 Constructing the subproblems

In order to construct the set of subproblems STeLLa uses the landmarks generation process
from LMRPG[22]. Given a landmark generation graphG= {V,E}, where every vertexv∈V
represents a landmark and every edgee∈ E is labeled with the type of ordering between its
two vertexes:e= {from, to,edgetype}, a subproblem is generated such that the following
two properties hold:

• Consistency property: All literals in anIG must be consistent with each other∀l , l ′ ∈
IG : ¬inconsistent(l , l ′).

• Ordering property: A literall belongs to anIG if and only if all of its predecessor
nodes in theG(V,E) have been included in a previous IG beforel : ∀l ∈ IGi : ∀l ′ inV :
l ′ ≤ l → l ′ ∈ IG j ∧ j < i.

Two literals are inconsistent if they cannot simultaneously coexist in the same correct
planning state. STeLLa uses the inconsistent function provided by the TIM API[13] to
approximate this relationship. Based on these relationships and the ordering between the
landmarks the following ‘active interference’ rules are defined by STeLLa to compute the
subproblems. Given three consecutiveIGs: IGi−1, IGi , IGi+1, and letl and l ′ be two land-
marks the belong toG:

1. If l belongs toIGi−1, l will be propagated toIGi , until a successor literal inG is
visited through a necessary order.

2. If two inconsistent landmarksl andl ′ belong toIGi andl ′ is a propagated literal,l is
delayed toIGi+1.

3. If two inconsistent landmarksl and l ′ belong toIGi, and there is a literallp in the
previousIG such thatlp →n l ′, thenl is delayed toIGi+1.
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4. If two landmarksl and l ′ belong toIGi, and there is a landmarkl ′′ so thatl ′′ →n l ′

andl ′′ is inconsistent withl , thenl is delayed because the plan should achievel ′ first
in order not to deletel ′′ with l .

Every subproblem is now constructed as follows:

1. First, an approximation toIGi is computed with all the landmarksl that have a prede-
cessor literall ′ ∈ IGi−1 : IGi = {l ∈ G/∃l ′ ∈ IGi−1 : l ′ ≤ l}.

2. Secondly, this first approximation is refined in three stages:

a) Delay landmarksl that have a predecessor literall ′ in G such thatl ′ has not been
visited (Ordering property).

b) Propagate the corresponding literals fromIGi−1 to IGi.

c) Check remaining interference rules between the literalsin IGi.

A special case is applied to literals fromsg. Once a literalg∈ sg has been included in
anIG, g will be propagated unless an inconsistent landmark is addedto the sameIG. In this
caseg will be delayed to the lastIG.

30



Chapter 6

Integrating landmarks in VHPOP

Having discussed the most recent advances in both partial order planning and state-space
planning, we will now proceed to discuss our contribution topartial order planning which
follows in the footsteps of RePOP and VHPOP. As we have seen, both successfully inte-
grated techniques adopted from advances in state-space planning to gain a more competitive
advantage. The most recent advance in planning is the successful adaptation of landmarks in
planning to gain better performance both speed and quality wise, as exemplified by LAMA.
Earlier work on integrating landmarks in FF, in which the planner would only see the land-
marks closest to him effectively splitting the planning problem in vertical slices to work
though also showed good results speed wise but took a bigger hit on the quality of the
produced plans.

In this work we will adopt both approaches in the context of partial order planning and
see if in doing so we can raise the competitiveness level of the latest partial order planner,
VHPOP. The reason why we choose VHPOP is for a couple of reasons, first of all it is
the last partial order planner to have competed in a international planning competition, in
2003, so we have a good benchmarks set the planner will work onwhich will serve as a
good reference point. Secondly, the program is designed to handle multiple flaw and plan
selection heuristics which made it easily adaptable to our needs.

In the following sections we first describe our approach to integrate landmarks into
VHPOP by adopting the previously described ‘FF approach’, which means that landmarks
will not solely function as part of the heuristic function, but rather serve to slice the planning
problem of in vertical slices which need to be solved in succession. UnlikeLMlocal which is
quite straightforward we will see that guiding the planner with this approach needs a little
more work when applied to partial order planning. Next, we adopt the ‘LAMA approach’ by
using the landmarks solely as an heuristic guidance on top ofVHPOP’s ordinary heuristic
and report on the found results. Finally we discuss some other techniques we found during
our research and which can help to prune the search space of VHPOP using landmarks and
information derived from theSAS+ representation and we discuss a novel way to do flaw
selection based on the ADCG heuristic[27].
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6.1 FF approach

In this section we describe the method employed to split up the planning problem into
subproblems, using landmarks. These are also used in the next section in which we present
our novel flaw selection strategy. One of the earliest paperson landmarks detailed a way
to split planning problems using landmarks (LMlocal[22]), by successively planning to the
“nearest” landmark until all are visited. We propose a different approach. First we discuss
the process we used to derive landmarks and the modificationswe make in comparison with
earlier approaches. Next we explain how thelandmark generation graphis used to split the
problem up into consecutive planning problems and finally wereport on the heuristics used
and results obtained.

6.1.1 Deriving landmarks

WhereasLMlocal successively plans to the “nearest” landmark, in VHPOP we donot have
the same option as we lack an explicit state definition. Furthermore, landmark orderings
derived using theLMRPG algorithm are not sound which can distort the planning process
and can cause the planning process to fail on a task, even though the underlying planning
process is complete.

For this reason we use the landmark generation process derived by Richter, Helmert and
Wesphal[36] which produces sound orderings, leading to shorter plans and an improved suc-
cess rate, compared toLMRGP, when applied to the same planners. The process we use to
generate the landmark layers is quite similar to the approach adopted by STeLLa, but does
very in some significant ways. First of all, we also consider disjunctive landmarks and em-
ploy a different technique to handle inconsistencies within landmark layers. Where STeLLa
uses a preprocessing algorithm to make sure every subproblem does not contain inconsistent
landmarks we allow for inconsistent landmarks and let the planner decide which landmark
it wishes to utilize. Furthermore, where STeLLa only considers a general framework which
can be applied to any planner we focus solely on partial orderplanners and in effect derive
more techniques based on landmarks than discussed in the work on STeLLa.

6.1.2 Determining the ordering of landmarks

As discussed before, because VHPOP lacks an explicit state representation it is not clear
how we adopt theLMlocal approach by planning to the “nearest” landmark. For exam-
ple, consider the driverlog domain and suppose that the landmark closest to a goal is
(at package1 s1) and the goal is(at package1 s2). From a planning perspective it is unclear
how this problem can be solved, lacking information regarding the location of the trucks and
potential drivers. All we know about the other variables is their goal value, an interesting
approach — which is not pursued here — might be to inverse the preconditions and effects
of actions. This approach would mimic theLMlocal approach closer than the approach we
pursued, we leave this for future work.

In our approach we insist that every landmark layer is a fullydescribed state, which
means that for every variable a value is defined. When a landmark generation graph is
constructed we notice that several types of orderings can occur between landmarks, recall:
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• Natual ordering:A→ B, iff in each operator sequence whereB is true, at timei, A is
true at some timej < i.

• Necessary ordering:A→n B, iff in each operator sequence whereB is true, at timei,
A is true at timei −1.

• Greedy-necessary ordering:A →gn B, iff every operator sequence whereB is first
added at timei, A is true at timei −1.

• Reasonable ordering:A →ro B, iff starting from any state whereB was achieved
before A:B must be true at some point later than the achievement ofA; and one must
deleteB on the way toA.

• Obedient reasonable ordering:A →o B, iff given a set of reasonable ordering con-
straintsO, if a planner commits to obey all the ordering constraitns inO, A →ro B
arises because of this.

Given a landmark generation graphG = {L,E}, where every vertexl ∈ L represents a
landmark and every edgee∈E is labelled with the type of ordering between its two vertexes:
e = { f rom, to,edgetype}. The landmark generation graph can be split up into separate
landmark layers by iteratively grouping all landmarks thathave no incoming edges. We
start by labelling all landmarks as active. The first set of landmarks is the initial state. After
every iteration we label all discovered landmarks as inactive and repeat the procedure, until
all landmarks have been marked as inactive. For every landmark we denote the iteration
number at which it was made inactive, which we refer to as thelayer number, this procedure
ensures that, if landmarkl1 is ordered beforel2 in the landmark generation graph, then the
layer number ofl1 < l2.

This process does not guarantee a correct ordering of the values each variable will take,
it will only create a correct ordering for the explicit orderings which are defined in the
landmark generation graph. Unfortunately, finding all landmarks and their ordering is a
PSPACE-complete problem[22], so we cannot hope to ever find all correct orderings. Note
that this means that we can have multiple values for the same variable in a single layer. How
we deal with this issue will be explained in the next section where we explain the process
of creating the actual landmark layers. Relating this work back to STeLLa, this process
guarantees the ordering property.

6.1.3 Creating the landmark layers

Now we propose our stratification technique. Given a set of pairs of landmarks and their
respectivelayer number H= 〈l ,n〉 : l ∈ L; andn ∈ N, we divide these into consecutive
subsetsX1,X2, . . . ,Xn, such that every subset defines a state. The number of subsetsis equal
to maxn ∈ N. For the remainder of the discussion we will add a notion of directionality:
because we are doing a goal-directed search, we say that the first subset is the goal set and
the last is the initial state.

Definition 6.1.1 A landmark l∈ L defines a variable v∈V if
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• l is not disjunctive and the value of l∈ Dv.

• If l in respect of v is inconsistent, i.e.∃a∈l∃b∈l a∈ Dv∧b∈ Dv∧a 6= b.

Definition 6.1.2 A set of landmarks L defines a state if∀v∈V∃l∈L|l defines v.

Definition 6.1.3 Theminimal landmark layerat layer j is defined as the subset Xj . The
value of every state variable v∈V is defined as:

Xv
j = min

i≥ j
〈l , i〉 ∈ H|l defines v

This definition ignores all landmarks that do not define a variable, but it gives us a
stratification of the planning problem. However, the choices represented by disjunctive
landmarks are an essential part of planning, especially as more resources are available to
accomplish a task. For example, given a landmark like(at rover1 s1)∨ (at rover2 s1) it is
unclear if this landmark defines the location ofrover1 and / orrover2. Either one or both
could be true, but this will only become clear during the planning process and we cannot
determine this in advance. Therefore we continue to traverse the next layers searching for
the set of earliest landmarks which defines all variables. Ifno variable has been defined in
any landmark we default to the value given in the initial state which defines a variable by
definition. For example if we look at figure 6.1 which is derived from driverslog problem
file pfile01 we see there is an ambiguity over which driver getsto drive the truck to its goal
location. Note that none of these landmarks define the variable for either driver, forcing us
to include the location of the drivers from the initial statein every landmark layer.

Figure 6.1: Landmark generation graph for pfile01 - Driverlog (atoms from the initial and
goal state have been grayed out).

At a bare minimum we could opt to ignore landmarks which are ambiguous in which
case we end up with theminimal landmark layersetX1,X2, . . . ,Xn. The problem with this
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approach, however, is that as more objects are included in a planning problem we see that
this ambiguity is an essential part of planning. Very rarelydo we see non-disjunct or even
conjunct set of landmarks which can be usefully utilized to split up the planning problem
into several layers. Therefore we account for the ordering information derived from the
landmark generation graph by adding a speciallandmark actionto the planning problem,
which is defined as an action which contains all landmarks which are part of a landmark
layer but do not define a variable and are ordered before the minimal landmark layer as
defined above.

Definition 6.1.4 Given aminimal landmark layerXj and the set oflayer numbers, the
landmark actionat layer j is defined as the subset Yj . The set of landmarks for a state
variable v∈V, for which theminimal landmark layerwas found atlayer numberi is defined
as:

Yv
j =

[

i>x≥ j

〈l , i〉 ∈ H|l¬ defines v

We can now define the successivelandmark layersasZ1,Z2, . . . ,Zn, whereZi = 〈Xi,Yi〉.

6.1.4 Using landmark layers in planning

Given that we have stratified the planning problems into landmark layers, we will now
describe the modifications which had to be made to the original planner to make effective
use of these landmark layers. In this section we will describe the several aspect which
needed to be modified. We will start off with the plan selection heuristic and later discuss a
novel way of doing flaw selection.

Plan selection heuristic Given a planning problemP : 〈A,L,O,B〉, we define the first
subproblem as:P1 = 〈{a∞,X1,Y1}, /0,{X1 ≺Y1,X1≺ a∞,Y1 ≺ a∞}, /0〉. In the previous section
we have discussed thelandmark actionwhich serves as an extra ‘state’ from which VHPOP
can use atoms from, provided they do not interfere with theminimal landmark layer. The
reason why we can do this is because we know from thelandmark generation graphthat
all the values of the landmarks in thelandmark actionwill occur at some point after the
values of the landmarks in the minimal landmark layer for every variable respectively. Thus
the planner can safely assume that any value from thelandmark actionis already satisfied,
given that causal links it supports does not interfere with causal links supported from the
minimal landmark layerbecause of the ordering constraints. There is a catch however,
because all landmarks added to thelandmark actionare disjunctive landmarks, there is
no guarantee that all these landmarks are true, i.e. we cannot treat these landmarks as
conjunctive landmarks but rather force the planner to make achoice which of atoms in the
disjunctive landmarks are true. This highlights why we include theminimal landmark layer
which the planner can fall back on in case the value of a variable cannot be derived from
any of the disjunctive landmarks.

To estimate the number of steps that must still be completed from the currentlandmark
layer to the initial state, we apply the FF heuristichff . Sincehff uses the RPG to derive its
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heuristic it can account for the possibly inconsistent goalstate as it simply accumulates all
positive effects. Other heuristics likehcg from Fast-Downward cannot be applied directly
because these heuristics assume that goal states do not contain variables to which multiple
values are assigned. Although variations on these heuristics can be constructed, e.g. by
considering the set of conflicting values independently andtaking the maximum. This line
of research is not pursued in this research and is left for possible future work.

To solve the planning problem,P, we use VHPOP, but with a couple of changes. Most
importantly, whenever a causal link is created from eitherX1 or Y1, we remove all atoms
from the corresponding action that refer to the same state variable but assign it a differ-
ent value. This allows the planner to choose which values amongst disjunctive landmarks
should be assigned. To guide the planner, the FF heuristic isrecalculated every time values
are removed from any action. Note that in our implementationwe do not consider the dif-
ferent orderings within thelandmark action, it could very well be that there is a sequence
of ordered landmarks — assigning a different value to the same variable — but when one
landmark is chosen all other options are no longer considered. This is also an option to
extent upon in future work.

Once the subproblem is solved, we move on to the next subproblem. To do this, we first
remove thelandmark actionandminimal landmark layerand all causal links it supports.
Next we insert the next set{Xi ,Yi}, with the appropriate orderings{Xi ≺Yi ,X1 ≺ a∞,Y1 ≺
a∞} as before. After calculating the FF heuristic the process isrepeated until a solution is
found for the last subproblem which is the initial state. This solution is the final plan.

Flaw selection heuristic As we have seen before, partial order planners have never been
known for very ‘smart’ flaw selection strategies, earlier work focused a lot on the order of
typesof flaws, e.g. solve unsafe links before treating open conditions, etc. Pollack, Joslin,
and Paolucci[34] came up with a slightly more sophisticatedflaw select strategy which takes
the actual estimated cost into consideration and argued that choosing to select the flaw with
the minimal repair value{o,n,s}LC yield better results than previous developed strategies
in a selected set of benchmarks. In this section we will present a new approach to flaw
selection which will not only look at the type and cost of a given flaw as previous methods
have, but rather analysis how a particular flaw is related to the rest of the problem and from
this analysis select the most constrained flaw for valuationfirst.

To do this we make use of the previous discussed additive-disjunctive casual graph
heuristic (ADCG). The idea is that instead of only looking atthe cost and type of a given
flaw we place the flaw in a broader context and check how the variable related to the flaw
is constrained in the planning problem. We do this by checking the links in the Causal
Graph to estimate how constrained a variable is, based on thenumber of incoming edges.
In the original Causal Graph heuristic cycles needed to be broken in order to determine the
order in which the variables should be evaluated. This in turn gave a particular ordering
on the variables, from least to most constrained. In the literature a common technique in,
for example, CSP, is to assign the most constrained variables first so in case a dead end is
detected it can be pruned as quick as possible. We want to apply the same principle to the
flaw selection strategy in partial order planners.

While the following method might not be applicable in most planners it fits very well
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with planners which use a stratifying approach[8, 39], because the subproblems between the
landmark layers are relatively small in scope compared to the whole problem. We observe
that, in order to solve these subproblems, only a small subset of all operators needs to be
considered. For example if we have a landmark layer with all trucks occupied by a driver
and packages loaded in various trucks, we only need to consider drive actions to get the
trucks to the drop-off points for the packages and do not needto consider the actions for
getting the drivers and packages into the trucks. In other words, if we place this discussion in
the context of the Causal Graph heuristic, instead of breaking cycles by checking the number
of incoming edges we can remove cycles first by checking whichactions are relevant.

In order to estimate the operators that will be relevant for solving a subproblem between
two landmark layers we make use of the ADCG heuristic. There is a slight modification
made to the actual heuristic, because we can have a situationwhere a variable starts with
multiple values assigned to it. For simplicity we assume that all possible start values are
true, so the pathfinding algorithm is modified to be able to cope with this. While searching
for the shortest path per goal atom we keep track of the operators applied in the process and
store all applied operators per subgoal. We store the set of all operators which correspond to
the shortest path according to the ADCG heuristic. Next we generalize the operators found
by this process by allowing the arguments of the operators tobe replaced with any object
which shares the same DTG structure. That is to say, any object that shares the same values
and transitions can replace an existing argument value.

Definition 6.1.5 A variable v∈V is the defining value for a DTG d, if

• |d| > 2.

• For every node, v is one of its arguments.

• For every transition, v is one of its parameters.

• There is no other w∈V|w 6= v for which the above hold.

Definition 6.1.6 A DTG d1 is isometric with DTG d2, if all of the following conditions hold:

• |d1| = |d2|,

• Every node in d1 has an equivalent node in d2 for which the proposition is the same
and the terms are all equal except for the defining variable for both DTGs, and vice
versa.

• Every transition in d1 has an equivalent transition in d2 for which the preconditions
are the same, equal except for the defining variable for both DTGs and for which the
from and to nodes are isometric, as defined above, and vice versa.

For example, if a solution is found which has at least one drive action we replace that
one action with all drive actions for all trucks and drivers which effectively share the same
range of states they can be in. The reason for doing this step is because in the real plan we
might use any combination of values for the variables as arguments and we cannot derive
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this information directly from the heuristic. This is especially relevant when using the
ADCG heuristic, because it assumes goal independence and will not see the advantage of
using multiple resources at the same time, though this mightbe vital in solving the problem
at hand. So we make a very optimistic assumption by assuming that all variables that share
the same range of states and transitions could be used.

Once we have this extended set of operators, we construct a Causal Graph and will only
consider this identified subset of all possible operators. From this point we use the normal
cycle breaking algorithm of Fast-Downward[17] to find the final variable ordering that we
use for our flaw selection algorithm. Given a set of flaws to choose from, we only consider
the subset that is — according to the presented flaw selectionstrategy — most constrained.
To distinguish between the most constrained flaws, we use theflaw selection strategies of
VHPOP.

6.1.5 Example

As an example of how all of the above comes together we will take the 3rd problem from the
Driverlog domain (pfile03) and see how this problem is decomposed into landmark layers
and how the flaw selection strategy works out on every layer.

Landmark layers First, we detail the landmark layers as they are constructedby the
landmark generation process. The landmark generation graph is depicted in Figure 6.2.

Figure 6.2: Landmark generation graph for pfile03 - Driverlog.

Following the landmark layer generation process as outlined above will cut the problem
up into 5 layers as depicted in Table 6.1.

The last layer represents the initial state and the first layer the goal state. The layers
show a nice progression towards the goal state. First the drivers board the trucks, next the
packages are loaded and finally the packages are delivered, the trucks are at the right place
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Layer driver1 driver2 truck1 truck2 package1 package2 package3 package4
0th Layer - at s2 at s1 at s2 at s1 at s1 at s2 -
1st Layer ↑ ↑ ↑ ↑ in truck1∨ ↑ ↑

in truck2
2nd Layer ↑ ↑ at s0 ↑ ↑ in truck1∨ ↑

in truck2
3rd Layer driving truck1∨ ↑ ↑ ↑ ↑ ↑ ↑

driving truck2
4th Layer at s1 at s0 at s1 at s2 at s0 at s0 at s1 at s1

Table 6.1: Stratification of pfile03 for Driverlog

Layer transition Necessary operators Ordering (least to most constraint)
0th to 1st Layer Unload, Drive, Disembark Drivers→ Trucks→ Packages
1st to 2nd Layer Load Driver1→ Packages→ Truck→ Driver2
2nd to 3rd Layer Load, Drive Drivers→ Truck→ Package
3rd to 4rd Layer Load, Drive Packages→ Trucks→ Drivers

Table 6.2: Variable ordering of pfile03 for Driverlog

and so is the driver. One of the challenges in Driverlog from the planner’s perspective is
to recognise that a truck will not move until there is a driverin it and packages cannot be
delivered without a truck able to pick them up and deliver them. So, when we look at the
goals, we see that there is an order in which the problem must be solved: first we need to
deliver the packages, then we need to drop the trucks at the right location and last we need
to get the drivers to where they belong.

Flaw selection strategy Interestingly, when we examine the orderings constraints derived
from our flaw selection heuristic we see an interesting pattern when the planner traverses
through the landmark layers. We will not show the actual search progress, but rather com-
ment on the actions which the ADCG heuristic deems necessaryto solve the next landmark
layer upon solving the current one. The results are depictedin Table 6.2.

As we can see from this table, our flaw selection strategy actually arrives at the same
ordering as we would hope for, to get from the goal layer to thefirst landmark layer, by
first solving the most constrained variables (the packages), then place the trucks at the right
locations and finally get the drivers to where they need to be.When we look at the next
layer where a subset of the packages need to be loaded, we see that the packages variables
are now less constrained than the variables for trucks, as they will remain stationary. The
next layer is concerned with getting the first subset of packages into the trucks and, due to
the drive actions, the priority switches back again. Finally, when we get to the initial state,
we see that the constraints ordering is completely oppositefrom the previous layer, as the
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drivers are now the most constrained. This is because we needto get the drivers into the
trucks and the trucks at the right locations to pick up the first subset of packages.

Although this is a particularly good example, where this flawselection strategy works
out very well, this need not necessarily always be the case. However, for the examples we
have tested, we get consistently good results.

6.1.6 Search process

Having discussed the various heuristics we use in our planner and the method of stratifying
the landmark generation graph intolandmark layers, we will now explain the search pro-
cess. We did not change the VHPOP searching algorithm, safe for the heuristics and flaw
selection strategy as detailed above. The major change is that we now apply VHPOP to
smaller subproblems and force it to solve the problem by tackling a sequence of subprob-
lems.

The general outline of how to solve a problem is defined as: given a planning prob-
lem P : 〈A,L,O,B〉, we define the first subproblem as:P1 = 〈{a∞,X1,Y1}, /0,{X1 ≺Y1,X1 ≺
a∞,Y1 ≺ a∞}, /0〉. To estimate the number of steps that must still be completedfrom the
currentlandmark layerto the initial state, we apply the FF heuristichff . Sincehff uses the
RPG to derive its heuristic it can account for the possibly inconsistent goal state as it simply
accumulates all positive effects. To solve this problem we use VHPOP, but with a couple
of changes. Most importantly, whenever a causal link is created from eitherX1 or Y1, we
remove all atoms from the corresponding action that refer tothe same state variable but as-
sign it a different value. This allows the planner to choose which values amongst disjunctive
landmarks should be assigned. To guide the planner, the FF heuristic is recalculated every
time values are removed from any action.

Once the subproblem is solved, we move on to the next subproblem. To do this, we first
remove thelandmark actionandminimal landmark layerand all causal links it supports.
Next we insert the next set{Xi ,Yi}, with the appropriate orderings{Xi ≺Yi ,X1 ≺ a∞,Y1 ≺
a∞} as before. After calculating the FF heuristic the process isrepeated until a solution is
found for the last subproblem which is the initial state. This solution is the final plan.

One thing we tried to do early on in this project is to allow causal links to persist over
layers if the causal link in question was ‘deeper linked’ than the nextlandmark layer. For
example, if a causal link is made between an atom from from theinitial layer to the goal
layer, we would not break this link when advancing through layers and only remove those
causal links which were actually linked to the nextlandmark layer. However, we soon found
out that this policy severely drags the planner down as it is forced to stick to a decision early
on in the planning process which may prove to be erroneous, but the planner might only find
out a number of landmark layers later at which time it will need to spend a severe amount
of time to backtracking to resolve this mistake. To avoid this situation we remove all causal
links made to any of the actions from thelandmark layer.

Additionally, when we find a solution for alandmark layerwhich is not the initial state,
we allow for unsafe links to persist if such a flaw can be solvedby both demoting and
promoting the threatening action. This adheres to the leastcommitment principle because
we do not force the planner to make an arbitrary decision but rather leave the question open
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until we are forced to resolve it.

6.2 LAMA approach

A more recently adopted approach has been the direction LAMAhas taken, not using land-
marks directly in the search process asLMlocal did, but incorporating them into the heuristic
function. LAMA takes the approach of counting the number of landmarks that need to be
accepted, plus the ones that are required again. In this section we will discuss how we have
adapted this method and applied it to guide the heuristic in VHPOP.

The easiest way to integrate counting from LAMA is by counting the number of land-
marks that need to be achieved in total and decrease this number every time we make a
causal link that supports a previously unsupported landmark. So the heuristic function be-
comes: l = n−m, wheren is the total number of landmarks andm is the distinct set of
landmarks which have an achiever. This way of incorporatinglandmarks in the heuristic
function, is simplistic as it takes neither the ordering northe need to reachieve landmarks
into account.

LAMA defines a landmark that must be reachieved as: “An accepted landmark isre-
quired againif it is not true insand it is the greedy-necessary predecessor of some landmark
which is not accepted”. In order to calculate this part of theheuristic, LAMA needs to keep
track of how landmarks have been achieved, thereby keeping the ordering of the landmarks
as part of the heuristic. The latter aspect is harder to buildin VHPOP since we are not
required to specify any particular ordering between different steps in the plan. However, it
is possible to check whether the ordering is satisfied between landmarks by checking if it
is possible to impose a certain ordering between steps in a partial plan, or to wait until an
ordering constraint is imposed before checking this constraint. In our implementation we
decided to go for the latter option and only consider a landmark achieved is all parents are
also accepted and explicitly ordered before this landmark.Since we plan for the goal back-
wards to the initial state, so we consider the landmarks which make up the goal accepted
and from there work our way backwards.

To check if a particular landmark needs to be reachieved, we do the following: for every
landmark which has been achieved we check if it has any (greedy-)necessary children it
depends on. If this is the case we add all these dependencies to a list and, after establish-
ing which landmarks have been achieved, we run a post processthat checks whether, for
every (greedy-)necessary dependency, there is at least onethat is satisfied or whether all
of them are satisfied for the greedy-necessary and necessaryorderings respectively. so the
heuristic function now becomes:l = n−m+ k, wherek is the number of landmarks that
need to be reachieved. This function is quite similar to the heuristic used by LAMA and, as
with LAMA, we will use this approach on top of the existing heuristic function utilized by
VHPOP.
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6.3 Additional techniques

In addition to considering how to use landmarks to increase the performance of VHPOP we
also experimented with other techniques. In this section wegive a short overview of these
techniques and how we applied them to VHPOP.

6.3.1 Pruning by looking at (greedy-)necessary landmarks

When looking closely at the definition of (greedy-)necessary landmarks we notice that it
defines a set of criteria which must be met before a landmark can be achieved. In other
words it limits the number of operators which can be applied to support the given landmark.
If we know that every operator sequence whereB is (for the first time) added at timei,
A is true at timei − 1, then we can prune all operators which can achieveB which have
a different value for the variable associated withA than A. e.g. if we have a necessary
landmark(at truck1 s1)→n (driving driver1 truck1), than we can prune any operator which
has(driving driver1 truck1) as an effect but does not has(at truck1 s1) as its precondition.
Assuming the ordering between landmarks is sound, this can be an effective way of pruning.

Unfortunately, necessary landmark orderings are very rare, greedy-necessary landmarks
are more common especially in domains like rovers. However,pruning actions based on
greedy-necessary orderings can lead to an incomplete planner as we might prune away
necessary actions. In our experiments it turned out that this option sometimes caused slight
improvements in planning, but in the majority of the cases itcaused the planner to fail to
find a solution where it previously did, so we disabled this option from our planner.

6.3.2 Solve earliest flaws first

When we look for open conditions to solve, it might be worthwhile to only consider the
earliest set of flaws, i.e. the set of open conditions, per variable, which are all ordered
as early as possible according to the landmark generation graph. For example, if we are
looking for a way to drop a package at some location, but we have not yet worked out how
the package will be picked up, it might be worthwhile to establish this first, before heading
to the drop-off location. We found that this improved the planning process in all cases we
tested it on.

6.3.3 Prune unsafe states as quick as possible

We noticed that the original planner sometimes allows for the generation of plans in which
an unsafe link is unsolvable. Although this unsafe link willeventually be resolved, it might
take several refinement steps before the planner realizes itcannot resolve the threat. So
whenever we encounter an unsafe link, we first test whether itis directly solvable by either
demoting or promoting. Separation is not an option in our case, since we only use grounded
actions in our current planner.
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6.3.4 Goal hiding

When using landmarks to split the problem into subproblems we experimented with not
showing all the goals to the plannera priori but rather only letting it solve the goals for
which there is no landmark in the landmark action related to the same variable. In doing
so, a goal atomg that is a value of state variablev is visible on landmark layerx if g /∈Yv

x .
Thus, we force the planner to only work on goals for which the value in the current landmark
layer can be directly established because the value is defined in that layer, or there are no
disjunctive landmarks between the current layer and the layer where a value is defined.
Once a goal has been unveiled to the planner it remains visible from that point on.

We explore this idea because disjunctive landmarks that do not define a variable are
usually used to accomplish something else, other than the actual goal values for the variables
involved. For example a landmark likeat truck1 s1∨ at truck2 s1is not included to get
either truck to the goal state but rather to accomplish another landmark first. Thus, we first
focus on the variables for which we have a value defined in the current landmark layer, or
know that no intermediate steps are defined in subsequent landmark layers, and experiments
have shown that this vastly decreases the search space that we need to investigate.
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Chapter 7

Results

Now that we have discussed all our methods for integrating state of the art planning tech-
nology in a partial order planning context we will now evaluate these strategies. In order
to do so we have taken all the IPC-3 STRIPS domains: Depots, DriverLog, ZenoTravel,
Satellite, Rovers, and FreeCell and tested our configurations against the original VHPOP.
We have chosen to take the latest possible version of VHPOP, version 3.0 (Beta), released
on October 7, 2005. This is the same version we used as our framework. One thing we
want to stress is that our current code is not optimized for speed, but rather tests whether
the number of visited and generated plans are decreased due to better heuristic guidance. A
lot of prototyping went on during the construction of above methods and no time was left to
do any optimization of the code. For example our ADCG heuristic uses a dijkstra algorithm
where an A* algorithm would be much faster, we calculate the number of landmarks which
are achieved or need to be reachieved every time a plan is constructed instead of caching
this information and only update it when necessary.

All experiments were run on a Intel Pentium 4 processor running on 3.40GHz with 1GB
of memory and we cut of the search after 10 minutes of searching.

7.1 Original VHPOP

We start of by listing the results of the unmodified VHPOP planner with the above configu-
ration. We use the same settings as were used during the IPC-3competition. The results are
listed in tables 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6. We note thatVHPOP is quite strong on most
domains except the Depots and FreeCell domains where only a couple of solutions could
be found by VHPOP.

45



Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 206 667 24 10 20
pfile02 69336 194537 14105 15 11189
pfile03 - - - - -
pfile04 - - - - -
pfile05 - - - - -
pfile06 - - - - -
pfile07 66662 283183 12230 25 29094
pfile08 - - - - -
pfile09 - - - - -
pfile10 81382 641195 14814 26 40742
pfile11 - - - - -
pfile12 - - - - -
pfile13 283927 957550 70261 25 61032
pfile14 - - - - -
pfile15 - - - - -
pfile16 704852 5443651 143872 28 467973
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.1: Depots results - VHPOP

7.2 FF approach

We first turn to the FF approach and discuss the results below.We should note however
that the current implementation still has some bugs, sometimes it fails to start planning and
simply announces that no solution was found. We have yet to track down the source of this
bug, to indicate when this happens we denote a * in the result table.

7.2.1 Depots domain

Unfortunately we were unable to solve any of the depots problems.

7.2.2 Driverlog domain

The results of the driverlog domain are listed in table 7.7. When we compare this table
to the original VHPOP we might get a little discouraged. As the problems become more
difficult the search space considered by the planner blows up. Part of this can be attributed

46



Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 16 57 0 8 0
pfile02 10950 20533 2122 21 616
pfile03 65 184 65 13 4
pfile04 29432 65673 5562 16 2112
pfile05 541 1547 81 19 40
pfile06 63 253 5 11 8
pfile07 79 357 5 15 16
pfile08 3699 10015 660 25 360
pfile09 241 836 34 27 40
pfile10 142 611 15 18 32
pfile11 12600 47941 2577 23 1312
pfile12 - - - - -
pfile13 8682 33141 1900 29 1484
pfile14 107311 401125 22731 41 22413
pfile15 3971 27063 784 44 1344
pfile16 - - - - -
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.2: DriverLog results - VHPOP

to the fact that the broken causal links upon achieving everylandmark layer are broken and
need to be achieved again, but this is not the main reason why we see these results. When
we analyzed the behaviour of our planner and how it traversedthrough the landmark layers
we see a critical flaw occurring at every single instance where more drivers and trucks are
available to deliver the packages; Recall that we force the planner to make a decision when
faced with a disjunctive landmark, for example when faced with a choice of a number of
trucks to pick up a particular package, it has very little information to go on to determine
how hard it will be to get a particular truck at that location the same goes for getting a driver
into a truck. From the planner’s point of view it can make use of any available option from
the landmarks which are not in the closed list and is unable todiscriminate between them
as the rest of the planning problem will only become apparentwhen advancing to the next
layer.

In short the planner is forced at higher layers (i.e. closer to the goal) to make a decision
regarding the distribution of resources and how to make use of them, while this might ul-
timately prove to be a very bad distribution but the planner has no way of knowing this in
advance. So while it might decide that driverd3 will be driving truck1, it might be that in
order to get to this state we need to execute a lot of actions while in the initial state there
might be a truck which sharesd3’s location and might be a more suitable choice. A couple
of solutions are available to this problem, we come back to them in the conclusions.
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 6 73 0 1 4
pfile02 1847 15101 407 6 248
pfile03 30 281 2 6 20
pfile04 3149 16581 664 8 412
pfile05 1041 8725 195 12 252
pfile06 1490 16678 282 12 448
pfile07 23513 207784 4512 16 6960
pfile08 7549 52456 1454 13 2160
pfile09 2644 30422 492 23 1664
pfile10 4151 59890 832 24 2748
pfile11 16505 256396 3461 16 8672
pfile12 8951 134851 1797 23 6800
pfile13 33793 350983 6687 27 22969
pfile14 60904 1566157 12091 35 107567
pfile15 223588 5305991 36994 41 558375
pfile16 - - - - -
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.3: ZenoTravel results - VHPOP

In table 7.8 we see the results when we disable the ADCG heuristic to compute the flaw
orderings. We can clearly see that using the ADCG heuristic benefits the overall planning
process.

7.2.3 Zeno Travel and Satellite domains

Results are listed in table 7.9 and 7.11 respectively. We seethat there is a major hit on
the performance compared to the original. Not only do we solve less problems, but the
problems we do solve tend to explore a larger search space andgive worse plans quality
wise. When analyzing the behaviour of the planner we noticedsome abnormalities, for the
satellite domain we took a look at the 2nd problem file and discovered that the FF heuristic
used to calculate the heuristic from the initial state to thelandmark layers would sometimes
give an inconsistent heuristic value. In this case layer 1 got an heuristic value of four, while
layer 2 got an heuristic value of six. This caused the plannerto favour plans which were in
the 1st layer, rather than plans which already advanced to the second layer.

The other problem we found is that the ADCG algorithm we used to determine the order
in which open condition flaws were solved did not always produce better results with these
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 34 101 3 9 0
pfile02 62 204 7 13 4
pfile03 46 159 3 11 4
pfile04 218 695 36 22 16
pfile05 82 361 9 16 12
pfile06 783 2530 135 21 48
pfile07 165 697 22 23 28
pfile08 166 854 22 26 40
pfile09 1443 6593 276 33 248
pfile10 762 4214 99 32 176
pfile11 129 985 9 33 76
pfile12 1324 8948 215 43 512
pfile13 - - - - -
pfile14 1126 8303 180 45 480
pfile15 1595 12797 249 54 1168
pfile16 1134 9472 173 47 796
pfile17 - - - - -
pfile18 582 4716 63 35 240
pfile19 - - - - -
pfile20 - - - - -

Table 7.4: Satellite results - VHPOP

domains. The results are listed in tables 7.10 and 7.12. Although it is a very small set of
problem we can compare it with it seems that problems from thesatellite domain are better
suited for this heuristic. Additional research will have toshow in which cases the new flaw
selection strategy is most useful.

7.2.4 Rovers domain

The rovers domain is quite a nice domain in the sense that a lotof landmarks can easily
be found. It is not surprising than, that this approach is able to solve the most problems
in this domain as listed in table 7.13. However, again we see that the investigated search
space becomes larger with the more difficult problems. Again, when we remove the variable
ordering restriction we see better results in some problemsand worse in other as listed in
table 7.14.
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 474 678 77 10 12
pfile02 77 113 1 8 4
pfile03 177 241 30 12 4
pfile04 72 107 1 8 8
pfile05 1960 2645 308 23 88
pfile06 807128 1052507 186998 38 84849
pfile07 2315 4420 252 18 164
pfile08 7653 13416 1043 26 724
pfile09 9931 14805 1848 34 880
pfile10 114100 213345 22175 35 15649
pfile11 51148 71259 11642 33 4780
pfile12 5024 10810 720 22 460
pfile13 - - - - -
pfile14 8492 13842 1479 30 980
pfile15 - - - - -
pfile16 - - - - -
pfile17 18509 32703 3399 51 4672
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.5: Rovers results - VHPOP

7.2.5 FreeCell domain

Unfortunately we were unable to produce any results on the free cell domain due to the
aforementioned bug.

7.3 LAMA approach

Having discussed the FF approach we now turn to the LAMA approach which uses the
landmark information as part of the heuristic.

7.3.1 Depots domain

The depots domain is a hard one to tackle for VHPOP and while the FF approach did not
produce any results we see that the LAMA approach does better. In these results we see that
it visits and generates significantly less plans for all problems and runs into far less dead
ends. Surprisingly we also see that the plan quality never degrates and in some cases even
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 7216 52842 1526 11 2716
pfile02 - - - - -
pfile03 - - - - -
pfile04 - - - - -
pfile05 - - - - -
pfile06 - - - - -
pfile07 - - - - -
pfile08 - - - - -
pfile09 - - - - -
pfile10 - - - - -
pfile11 - - - - -
pfile12 - - - - -
pfile13 - - - - -
pfile14 - - - - -
pfile15 - - - - -
pfile16 - - - - -
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.6: FreeCell results - VHPOP

gets better than the original. While we were not able to solvepfile16 we were able to tackle
pfile17. When we inspect the reason for the failure to solve pfile16, we see that our program
is only able to inspect 40% of the plans the original VHPOP inspected before running out
of memory.

7.3.2 Driverlog domain

The results for the driverlog domain are depicted in table 7.16. When we compare these
results we notice that our approach is better in nine problems and the original one in four
(excluding pfile14) so our approach does a little better although the original VHPOP was
able to solve pfile14 while we were not. We note that the plan quality does in general
remains the same, in some cases the plan quality degrades quite badly (e.g. pfile10).

7.3.3 Zeno Travel domain

The results for the zeno travel domain are listed in table 7.17. Unfortunately we were not
able to solve all problems the original VHPOP was able to handle. While advantage is
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 66 195 2 8 8
pfile02 281130 534563 3505 23 51483
pfile03 94 307 0 16 32
pfile04 109958 226141 2147 19 11381
pfile05 5181 16487 0 21 1650
pfile06 48 213 0 12 24
pfile07 - - - - -
pfile08 - - - - -
pfile09 - - - - -
pfile10 - - - - -
pfile11 - - - - -
pfile12 - - - - -
pfile13 - - - - -
pfile14 - - - - -
pfile15 - - - - -
pfile16 - - - - -
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.7: Driverlog results - FF approach

Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 259 690 0 8 40
pfile02 - - - - -
pfile03 477 1319 3 16 100
pfile04 388307 755132 7230 20 65176
pfile05 10134 29476 40 21 2944
pfile06 49 213 0 12 20

Table 7.8: Driverlog results (variable ordering disabled)- FF approach
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 6 61 0 2 8
pfile02 19723 133146 760 10 2572
pfile03 2034 15650 8 11 556
pfile04 4582 31240 107 14 992
pfile05 - - - - -
pfile06 - - - - -
pfile07 - - - - -
pfile08 - - - - -
pfile09 - - - - -
pfile10 - - - - -
pfile11 - - - - -
pfile12 - - - - -
pfile13 - - - - -
pfile14 - - - - -
pfile15 - - - - -
pfile16 - - - - -
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.9: ZenoTravel results - FF approach

Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 6 61 0 2 12
pfile02 15572 133142 210 10 3280
pfile03 1354 12952 0 11 576
pfile04 6735 46665 057 15 2368

Table 7.10: ZenoTravel results (variable ordering disabled) - FF approach

gained in the few cases, when we compare the number of plans generated at the expense of
plan quality, that were solved. Overall we would have to conclude that this approach does
not benefit VHPOP in the Zeno Travel domain.

7.3.4 Satellite domain

The results for the satellite domain are depicted in table 7.18. These results are more encour-
aging than the Zeno Travel domain, interestingly we were able to solve a problem which
the original VHPOP could not solve while on the other hand we were not able to solve two
problems the original one did. Overall the results favour the LAMA approach as it gener-
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 * * * * *
pfile02 - - - - -
pfile03 1454 4164 72 17 236
pfile04 - - - - -
pfile05 4313 19488 0 22 864
pfile06 - - - - -
pfile07 - - - - -
pfile08 - - - - -
pfile09 - - - - -
pfile10 - - - - -
pfile11 - - - - -
pfile12 - - - - -
pfile13 - - - - -
pfile14 5407 45869 2 50 9360
pfile15 - - - - -
pfile16 16453 115749 35 53 11529
pfile17 17887 121224 132 47 10649
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.11: Satellite results - FF approach

Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile03 1707 4159 180 17 228
pfile05 4247 19432 0 22 1056
pfile14 - - - - -
pfile16 13783 111106 113 52 9832
pfile17 19227 127870 132 47 13481

Table 7.12: Satellite results (variable ordering disabled) - FF approach
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 214 336 0 11 12
pfile02 72 152 0 9 8
pfile03 632 829 10 16 56
pfile04 416 582 2 14 28
pfile05 385 674 0 27 56
pfile06 76986 136955 322 41 19273
pfile07 68728 88376 1468 30 6784
pfile08 - - - - -
pfile09 - - - - -
pfile10 - - - - -
pfile11 - - - - -
pfile12 3876 6809 39 24 1472
pfile13 - - - - -
pfile14 - - - - -
pfile15 - - - - -
pfile16 - - - - -
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.13: Rovers results - FF approach

Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 155 235 0 11 8
pfile02 72 151 0 9 8
pfile03 356 485 4 16 36
pfile04 275 389 2 12 24
pfile05 422 719 0 23 56
pfile06 64693 102840 283 41 11485
pfile07 1066296 1481439 6038 30 104598
pfile12 87305 162150 1203 24 30654

Table 7.14: Rovers results (variable ordering disabled) - FF approach
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 74 268 4 10 16
pfile02 17933 54949 1391 15 7324
pfile03 - - - - -
pfile04 - - - - -
pfile05 - - - - -
pfile06 - - - - -
pfile07 19385 87625 644 21 10857
pfile08 - - - - -
pfile09 - - - - -
pfile10 12554 93609 688 24 11109
pfile11 - - - - -
pfile12 - - - - -
pfile13 25651 108797 2477 25 16961
pfile14 - - - - -
pfile15 - - - - -
pfile16 - - - - -
pfile17 40833 222170 2883 27 57907
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.15: Depots results - LAMA approach

ates less plans to find a solution in eleven of the fourteen problems both planners solve and
without sacrificing plan quality for most of these.

7.3.5 Rovers domain

The results for the rovers domain are listed in table 7.19. From the rovers domain we are able
to extract a lot of landmarks, while in the FF approach we already saw some good progress
with the LAMA approach we are able to generate results for allproblem files in this domain.
Although the quality of the generated plans do take a hit, theperformance comparing the
inspected search space is a lot better than the original VHPOP implementation for every
single problem.

7.3.6 FreeCell domain

The results for the free cell domain are listed in table 7.20.Although we cannot say to much
based on a single result, it seems that greedily trying to satisfy landmarks does not work in
our favour in this particular domain.
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 25 74 0 7 0
pfile02 9816 20091 190 21 1052
pfile03 47 148 0 13 8
pfile04 15433 37805 661 20 1908
pfile05 559 1527 4 18 84
pfile06 392 1310 2 11 60
pfile07 58 252 0 15 16
pfile08 2025 5934 44 25 492
pfile09 149 612 0 27 48
pfile10 755 2997 2 29 200
pfile11 41884 181885 999 23 8908
pfile12 - - - - -
pfile13 3635 17044 90 29 1500
pfile14 - - - - -
pfile15 3127 26423 9 47 3192
pfile16 - - - - -
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.16: DriverLog results -LAMA approach
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 6 73 0 1 8
pfile02 1598 14453 8 6 328
pfile03 28 279 1 6 20
pfile04 6429 32965 591 9 1080
pfile05 800 6912 0 12 260
pfile06 813 9694 9 15 456
pfile07 - - - - -
pfile08 - - - - -
pfile09 6501 80226 311 24 6060
pfile10 3424 48773 227 27 3416
pfile11 - - - - -
pfile12 - - - - -
pfile13 - - - - -
pfile14 50945 1598721 973 35 103762
pfile15 - - - - -
pfile16 - - - - -
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.17: ZenoTravel results - LAMA approach
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 31 98 0 9 0
pfile02 55 197 0 13 4
pfile03 43 156 0 11 8
pfile04 8190 2382 35 22 1016
pfile05 73 351 0 16 16
pfile06 753 2511 14 21 200
pfile07 580 2472 2 26 164
pfile08 131 736 0 26 100
pfile09 698 4032 1 31 552
pfile10 489 2988 0 34 328
pfile11 - - - - -
pfile12 1153 8886 10 43 1740
pfile13 1698 17022 2 60 9372
pfile14 1008 8297 1 45 780
pfile15 905 8893 6 51 1408
pfile16 997 9452 1 47 996
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.18: Satellite results - LAMA approach
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 105 179 1 12 4
pfile02 78 114 0 8 4
pfile03 100 156 0 14 8
pfile04 62 92 0 8 8
pfile05 394 537 7 25 44
pfile06 2957 4305 112 42 532
pfile07 216 337 0 18 28
pfile08 409 635 1 29 96
pfile09 3717 5619 50 38 772
pfile10 1793 2928 19 37 436
pfile11 3820 5639 112 37 888
pfile12 266 496 0 25 92
pfile13 9917 16883 141 52 3932
pfile14 2551 4333 46 35 664
pfile15 3474 6659 61 43 1136
pfile16 4870 4870 74 46 2160
pfile17 12875 21417 149 59 5016
pfile18 5592 12362 63 47 3872
pfile19 14682 32557 157 73 15545
pfile20 67907 144963 990 99 131108

Table 7.19: Rovers results - LAMA approach
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Problem Plans visited Plans generated Dead ends #Steps Time (ms)
pfile01 97700 569256 13379 12 55471
pfile02 - - - - -
pfile03 - - - - -
pfile04 - - - - -
pfile05 - - - - -
pfile06 - - - - -
pfile07 - - - - -
pfile08 - - - - -
pfile09 - - - - -
pfile10 - - - - -
pfile11 - - - - -
pfile12 - - - - -
pfile13 - - - - -
pfile14 - - - - -
pfile15 - - - - -
pfile16 - - - - -
pfile17 - - - - -
pfile18 - - - - -
pfile19 - - - - -
pfile20 - - - - -

Table 7.20: FreeCell results - LAMA approach
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Chapter 8

Conclusion and future work

We set out to improve the competitiveness of partial order planning by modifying the latest
version of VHPOP and include planning techniques developedover the last decade for state-
space planning. As discussed before, one of the fundamentalweaknesses of partial order
planners is not having an explicit state representation which limits the informativeness of
heuristics which have been developed until now. In this workwe tried to develop better
heuristics by exploiting landmark information. We have explored two different ways to
exploited landmarks, firstly we tried to change the search process by splitting the problem
into consecutive subproblems and secondly by integrating them into the heuristics. On top
of that we developed a novel flaw selection strategy which exploits the CG and checks
through the ADCG heuristic which actions are relevant and utilize this information to do
more informed cycle breaking than the original CG heuristic. This allows us to do apply a
more informed flaw selection strategy and gain better performances in most domains when
applying the FF approach.

But whereas previous attempts (RePOP and VHPOP) were able tobook significant im-
provements, our experimental results do not suffice to make the same claim. However, we
were able to make improvements over VHPOP with the LAMA approach and while the FF
approach did not yield better results we did show the effectiveness of our new flaw selection
strategy. Furthermore, we do believe that this work can be extended and has a lot of scope
to put partial order planning back on the map as we discuss in this section.

8.1 FF approach

We note that the results for our first approach, splitting up the problem, does not yield very
good results. When compared with STeLLa, we notice that we achieve a worse performance
even though we use a sound ordering between the landmarks where STeLLa does not[38].
Part of this can be attributed to the fact that, upon achieving each landmark layer, some
causal links are broken and need to be achieved again, but this is not the main reason why
we see these results. When we analyze the behavior of our planner and how it traverses
through the landmark layers we see a critical flaw occurring in every single instance where
more resources are available to accomplish a task, e.g. multiple drivers and trucks are
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available to deliver the packages; Recall that we force the planner to make a decision when
faced with a disjunctive landmark. So, for example, when faced with a number of trucks
to pick up a particular package, the planner has very little information to use to determine
how hard it will be to get a particular truck to that location;the same applies for getting a
driver into a truck. From the planner’s point of view, it can make use of any available option
from the landmarks which are not in the closed list and it is unable to discriminate between
them, as the rest of the planning problem will only become apparent when advancing to the
next layer. The only guidance is provided by the change in thehff heuristic. In short the
planner is forced at higher layers (i.e. closer to the goal) to make a decision regarding the
distribution of resources and how to make use of them, when there is too little information
to guide its search and poor choices can lead to very poor performance.

8.1.1 Lifted representation v.s. grounded actions

One of the lines of research we are pursuing is to allow disjunctive bindings of variables,
allowing the planner to avoid making a premature decision. As we have seen with the
rovers and the driverlog domains, any planning domain wheremultiple resources could be
used to satisfy a property (e.g. multiple alternative trucks to deliver a package) our planner
commits itself to a disribution of resources with little to no heuristic guidance. Only at a later
landmark layer, when the planner has already committed to a distribution of the resources,
will it be able to assess whether it has chosen a good distribution. Although most problems
we have considered do not have any dead ends, the planner willgo back and forth between
the different landmark layers as it tries other distributions of the resources. In effect, the
more resources there are, the larger the set of combinationsand hence the harder it is for the
planner to actually solve the problem.

Another problem we encountered was that the heuristic values between successive land-
marks are not always monotonically decreasing which forcesthe planner, upon reaching a
new landmark layer, to fall back immediately to a partial plan that tries to achieve the
previous landmark layer, until all partial plans become bigenough to dominate the worse
heuristic value of the new landmark layer.

Possible ways to extend on this is either by changing the search algorithm and do not
allow the planner to fall back on a previous landmark layer. This could be seen as an
adaptation of enforced hill-climbing[21] but on a coarser level. However this approach
will loose the completeness property as we cannot be sure that a partial plan found for a
landmark layer can be refined to find a solution to the next. Opting for this solution would
however solve another problem we have encountered with inconsistent heuristics from the
landmark layers to the initial state. For some problems we found that the heuristic value
could be higher for a landmark layer which is supposed to be closer to the initial state.
When we encountered such a situation the planner would, uponreaching a landmark layer
with an higher heuristic function than the previous landmark layer, immediately fall back to
the previous layer until all partial plans become big enoughto overcome the worse heuristic
value.

One way to handle the decision making when encountering a disjunctive landmark is to
allow the planner to make partial bindings to variables. So instead of deciding, for example,
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which driver should drive which truck in the Driverlog domain, we allow the planner to
produce a partial plan that contains the actiondriving truck1 var1, wherevar1 = driver1∨
driver2∨ . . .drivern. This will require us to use lifted actions. Both VHPOP and RePOP
make use of grounded actions in order to be competitive with state-space planners but we
believe that dealing with variable binding constraints canhave many advantages in the work
we pursue. With the use of disjunctive landmarks we can allowthe planner to reason about
‘move truck1 from s1 to s2 and use any of these drivers ...’ or ‘deliver package1 with any
of these trucks ... driven by any of these drivers ...’. Not only is this form of planning
more intuitive but also adheres to the least-commitment principle and — we believe —
will revive the importance of partial order planning, as it will be able to cope with larger
problem instances. A study of RealPlan[41] shows that most planners, paradoxically, have
more trouble finding a solution when given more resources. This is partly because most
state-space planners ground all actions prior to planning,which can take up quite some
time, but also because they tend to explore all possible actions from the current state.

We hope that by using a lifted representation we can reason ona more abstract level
about planning problems and delay making commitments aboutresource usage until we
have more information available and are able to make a more informed decision than we are
currently able to.

8.1.2 STeLLa

As we have seen, STeLLa uses a very similar approach in their first version of this planner.
Judging from their paper[39], they were able to come up with better results than we could
manage. The major difference is that they restrict themselves to non-disjunctive landmarks
and useLMRPG to derive their landmarks. Also they use additional interference to deal
with inconsistent literals in a subproblem. Preliminary work to adopt the same type of
interference in our work did not show any advantage, but it would definitely be interesting
to see what would happen if we would only concentrate on non-disjunctive landmarks and
check if the landmarks derived by LAMA show similar results.

8.2 LAMA approach

When using the landmarks solely for heuristic guidance we see that greedily trying to reach
the landmarks, in the appropriate order, gives better results in most problems we have con-
sidered in this work (with the exception of ZenoTravel and FreeCell). However, the gains
are not substantial enough to compete with the latest generation of state-space planners. It
remains a fundamental difficulty in partial order planners to find good heuristics to guide
search, since we lack an explicit state representation. That is why we believe that the best
way to move the field of partial order planning forward is the approach outlined above and
use the lifted representation to plan on a more abstract level and postpone decision-making
about variable bindings as long as possible.
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8.3 Closing remarks

Apart from adjusting above approaches one aspect we have notcovered yet in this section
is the usage of the original heuristics and flaw selection strategies. Although we devised
a new flaw selection strategy which can be used in addition to the existing ones, we kept
the original heuristics and flaw selections strategies in place. Although the authors have
tried to optimize these heuristics for this particular benchmark set, it need not be the most
advantageous setup for our techniques. So subsequent research in this area might help to get
rid some of the weaknesses outlined above. We should, however, not expect the heuristics
to solve all our problems as more fundamental changes need tobe made to gain significant
improvements[20].

We do not think that major progress is going to be made by solely using ground actions
and foregoing lifted actions. While utilizing techniques developed for state-space planners
has proven beneficial for partial order planning it has not been able to put partial order plan-
ning on an equal footing with state-space planning. The lastplanning competition where
a partial order planner competed was in IPC-3 (VHPOP) and there it was outperformed by
state-space planners like LPG. To gain speed RePOP and VHPOPresorted to using only
grounded actions, and while Younes and Simmons[44] argue that using grounded actions
reduces the amount of actions which need to be explored we think that the potential bene-
fit of using a lifted representation has not been explored by either VHPOP nor RePOP. We
think that using a lifted representation in combination with disjunctive variable bindings will
allow partial order planners to gain an advantage in larger and resource rich domains and
hopefully give partial order planning a competitive edge over current state-space planners.
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