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Abstract

In this document we will continue a line of research whichufsges on reviv-
ing partial order planning. We will look at the latest pairpdrtial order planners,
RePOP[31] and VHPOP[43] which both use techniques devdldpe state-space
planners in an attempt to make partial order planning coitigetvith state of the
art state-space planners. We focus on recent advancediangtiandmarks[35] as
exemplified by LAMA[37]. We inquire two lines of research,eis to integrate land-
marks within the heuristic as done by LAMA and the other is tilize landmarks
to split a planning problem into a set of subproblems. We déitail on additional
techniques derived and used and present novel flaw selesttimiegy. Our aim is to
revive partial order planning by taking VHPOP as our basanéa and incorporate
techniques from FF[21], Fast-Downward[17], STeLLa[39MA[37], and the inte-
gration of landmarks in FF[22]. We use the planning probl@mesented at the 3rd
international planning competition[26] and compare theuhs of our approaches to
the original VHPOP.
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Chapter 1

Introduction

Over the course of the last decades, Al and more specificattyaith independent planning
has come a long way. A broad range of planners have been gdedglas have languages.
Applications for planning have steadily increased both umore complex systems that
have been developed requiring more reasoning to be cadralihd the advances in the
field of planning itself. Previously planning was confineateery strict subset of problems
which could only describe a finite set of state transitiorssrmade assumptions which made
it only applicable to a very small range of systems, if anyefhe years the assumptions
have been lifted one by one which allowed planning to be edpido a broader range of
problems and integration in real-life systems was finallggilole (STMP[42], O-Plan[10]).
Successes have been documented with domain specific damhieh enjoy manually writ-
ten rules and heuristic[1][29]. In this work we will solelg lboking at domain independent
planners which can, in principle, be applied to any kind atbem provided that the prob-
lem can be formalized in the given modeling language. Invtigk we will use domain files
which have been written in the language PDDL[16] and we asstva reader is familiar
with this language.

The extensions and evolution of the languages used in plgrivave come a long way
as well, from STRIPS[12], to ADL[32], and finally into PDDL dr8AS[18]. Domains
can now be handled which require temporal reasoning as weibadling numerical flu-
ents. Applications planning can and is applied to includemamous vehicles[25], voltage
power stations[2], etc[28]. In situations where domaireipehdent planners are used, both
in applications and in planning competitions, we see a biiesik the trend of only a decade
ago, then research was mainly focussed on hierarchal ptane partial order planners.
Nowadays the planning landscape is dominated by forwatd-stzace planners and rapid
advances are made in this area while other planning appgeatdhnot enjoy as much atten-
tion as they used to. Although there are some good reasotisigahift in focus, there are
some merits in plan-space planning which are not sharedriafd state-space planners.

In this work we continue a line of work which began with theivaV of partial order
planning by a planner called RePOP[31] published in 200ichvthallenged the pessimism
about the performance of partial order planners by integyadtate-of-the-art state-space
planning techniques into partial order planners and shalvachatic improvements. More
recent work saw VHPOPI[43] entering the IPC-3[26] planningpetition, again making



use of state-of-the-art improvements in state-space pignand which was able to tackle

temporal domains which it won the best newcomer prize. Inabefew years some new

and interesting developments have been made in state-pfmu@ng. For example, the

Causal Graph heuristic[17], landmark integration[22, &34 many other techniques have
been developed which have made considerable impact orpenfice. To continue the line

of work in partial order planning we set out to evaluate thedaadvances in planning and
incorporate and improve upon these techniques in a partiar @lanning context.

In this work we focus on integrating landmarks into the latession of VHPOP and
utilize this information both to improve the existing hatics (much like LAMA[37] did)
and to split the planning problem into smaller subproblehet aire (we hope) easier to
solve than the original problem (as has been previously lespfored in STeLLa[39]).
The novelty in both approaches is the application to paotidér planners instead of state-
space planners and in using a different landmark generatiocess that also deals with
disjunctive landmarks. In addition to these main approsehe consider additional ways to
exploit information by using domain analysis to create ashoew flaw selection strategy
as well as other policies which speed up the search processexpéct that these approaches
will show a decrease in the search space that needs to beexkppVHPOP, due to a more
informed and guided search process, but we anticipate aasein the quality of the plans
(in term of plan length) due to the greedy nature of our apgres.

Our hope is that this renewed effort will revive the inteliegpartial order planning and
present a showcase for its merits. VHPOP will be used as tbe jplanner to build upon
and central to this work are the following state-space masim no particular order: Fast-
Forward[21], Fast-Downward[17], STeLLa[39] and LAMA[37]n the first two sections
we briefly introduce classical and partial order planning give the formal models of both
which is used throughout this document. Next we look at reaemnk done in partial order
planning and then turn to recent advances in state-spacriptawhich are relevant to this
work. Once we have laid down the foundation and the backgrealevant to our planner,
we introduce our planner and discuss how and which techsitfoen other planners have
been integrated into VHPOP and discuss some novel contritsuto partial order planning.
Finally, we consider several configurations and test thiééctveness using the planning
problems from the 3rd international planning competitR@j[and compare it to the original
VHPOP. We end our work with our conclusions and future work.



Chapter 2

Classical planning

One of the earliest fields of research within the planning roomity made some very strict
assumptions regarding the problems they tried to tacklelass@al planning problem is

fully observable, deterministic, finite, static (thingslymappen when an action is exe-
cuted) and discrete (in time, action, objects, and effads)ains[30]. Thus we are dealing
with restricted state-transition systems. Although tlkeisod assumptions allows for system-
atic search algorithms to tackle the problem, a quick glatidgpical problems tackled by
the planning community shows that problems quickly becaomfigasible to solve. In fact,

even with these limitations in place, determining whetleare is a solution is PSPACE-
completel[6].

Peaople in the planning community have come up with seversghogis to solve larger
than trivial planning problems. One of these can be foundhénway languages are con-
structed to formalize planning problems. One of the ealdirguage to formalize classical
planning problems is STRIPS[12] and in a hope to make planaigorithms simpler and
more efficient various restrictions were imposed withoukimg it too hard to describe
problem domains. In STRIPS the representation of the werldecomposed into logical
conditions and states are represented as a conjunctiorsitf/pdirst-order literals. A later
extension to this language is ADL[32] and the defacto stehdnguage in use now is
PDDL][16].

2.1 Formal model

Before we go on to describe actual planners which are abladdé classical planning
problem we give a formal model of a classical planning proble

We denote the whole set of all possible states in the world @splanning problenP
is given as the triplésy, 55, O), where

e S € Sis the initial state.
e 5y € Sis the goal state.

e Qs the set of operators.



We can navigate through the state-space of the world by &ggphctions. The set of
all actions we can execute is formulated by the set of oper@oEvery operatoo € O is
described by the triple = (name prec e f fect$, where

e name, the name of the operator, is a syntactic expressidmedtmn(x,...,Xk),
wheren is a symbol called an operator symbx, ..., Xy are all of the variable sym-
bols that appear anywhere @pandn is unique (i.e., no two operators (dcan have
the same operator symbol).

e prec, the preconditions af, this condition describes which set of literals must hold
in any states € Sbefore it can be executed.

o effects, the effects ab, after the preconditions have been met and the action is ex-
ecuted this field describes how the state from which the metias executed will be
affected. It contains an add-list of positive literals whigill be added to the state
from which the action is executed (literals which are alyetade are ignored) and a
delete-list of negative literals which will be deleted frahe state (literals which are
not true in the current state are ignored).

In effect every operator can thus be instantiated into s¢eetions based on the values
passed to its parameters. An action which is fully instaetias called arounded action

A solution to a planning problem is a sequence of acti@asa, . . . ,a,), corresponding
to a sequence of state transitig(sg, i, . . ., Sh) such thas, 1 = y(s, &) ands is the initial
state and, is the goal statey(sy, ax) denotes a transition from stateby applying actioray
to this state. An action can only be applied if all its predtinds are satisfied by the state
we want to apply it toV pepreqa,) P € S- The new state after applying an action is defined
as:y(sq,ax) = (s« \ effects (ax)) Ueffects (ay), note that the delete effects are handled first
before the add effects.

With the definition of the planning model complete, we are radohe to define the do-
main of a classical planning domain. Given a planning prold® its domainD is specified
as the tuple{S A y):

e Sis the set which contains all possible stat@ = 23! ground atoms of L
e Ais the set of all ground actions &f
e y(s,a) = (s\ effects (a)) Ueffects (a) iff Vpepreqa)P € S

Do note thaty(s,a) is closed unde§, that is to say, the literals added to arrive at a new
state are already part of the first-order langubage

2.2 Planning approaches

In order to tackle problems which can be described by the 8BR&nguage various so-
lutions have been proposed, some more successful thars.othkithese planners can be
categorized into two major families, state-space and pgaee planning. The former will
be discussed in this section and the latter in the next sectio



2.2.1 State-Space planning

The one most straightforward of the two is state-space plgnmhich is the most common
type of search algorithm used in research nowadays. Stat83RIPS are defined as a
conjunction of literals, so it is easy to work out which angacan be applied to any given
state by looking at their preconditions. We define the neigiihood of a given statec
SasN = U,aY(s,a). This form of search is an iterative process in which we hbakl t
neighbourhood set, initially instantiated ldg = {s}, select a state from it and expand its
neighbourhood and add these into the neighbourhood séthmtieighbourhood satisfies
the goal stateN; = {Ni_1UUaca(Y(S,@)) \ S|s € Ni_1} This method is calleébrward state-
space searclor forward-chaining).

Another way of doing state-space search is by starting agtiaé state and working
backwards until we find a state which satisfies the initigiest®his method is calledack-
ward state-space searemnd operates very much the same, but instead of looking fiomac
which are applicable in a state we search for actions whiblege the atoms in a given state
and the resulting state is constructed by removing all effand adding all preconditions.
However, we must make sure that a given action does not undofdhe atoms in the goal
state, if an action satisfies this restriction it is calleshgistent. So what we are looking
for is a sequence of consistent actions which will bring osnfthe goal state to the initial
state. Thus we start with the goal stal, = {sy} and the neighbourhood is defined as
N = {Uacas\ effectga) U preqa)|consistenta) }.

Both forward- and backward-chaining have individual sfitts and weaknesses and
their usability depend on the problem domain and the héesistsed. For instance with
forward state-space search when we check every possiliba dicim any given state it is
clear that the branch factor can be enormous, for example wieeare in the library and
want to pick up a book there may be thousands of possible gicctions we can execute
for every possible book. A lot of actions can be executed hie irrelevant to the actual
goal we try to achieve. On the other hand doing backward-glatening the branching
factor will generally be lower since every action we seledt be relevant to the goal in
some way. But again the same problem arises as we now need ta fiay to backtrack
to the initial state. Consider buying a plane ticket to degton X, while we can assert that
any plane ticket which will get us to X is relevant to the goat I we have no clue how
easy we can get to the departure location from the initiahtioa it still is not helping a
lot. From both examples we can conclude that merely sebpetisearch strategy will get
us nowhere in most cases, if we want to do have any chance aidiadplan at all we will
need some guidance to direct state-space planners.

It is interesting from a historical perspective that whitstward state-space planning is
now considered state-of-the-art, before it was assumedthisamethod was to inefficient
to be practical[42]. In the next chapter we will discuss theshimportant heuristics which
have made forward state-space planning efficient for protsielving.

Heuristics So far we have established that both forward- and back-titasearch algo-
rithms alone are not enough to tackle interesting plannimiplpms. In order to do that
we need good heuristics, or more specifically, once we havedf@a neightbourhood for a



given state we want to be able to determine which of theseugatksest to the goal. In the
context of classic planning we are interested in the stafiehwiequires the fewest number
of actions to get to the goal state. Unfortunately, findirgydélkact number of actions which
need to be added before a goal is reached is as hard as plarseifig Suppose that that
one such an heuristic exists; If we simply choose the stat® four neighbourhood with
the lowest value we will solve the planning problem in polymal time - assuming that the
optimal plan is polynomial in length - which is impossibleowever, some approaches have
been found which gives us a reasonable estimate withoutriegjto much computation.
However, the strength of each heuristic depends on thetsteuof the domain; There is
no silver bullet when it comes to heuristics, some work vegfiim some domains but are
worthless in others, some planners like Fast-Downwardjd/Ap circumvent this issue by
using several heuristics while others employ randomne#isein search and allow restarts
like LPG[14]. This section will describe the most importamtd most used heuristics and
planners in classical planning.

The aim of heuristics is to provide guidance for the planmeam attempt to speed
up the planning process. So it is no use to have an heurigiitiun which takes a long
time to complete because we might be better of without anisteuat all! So an heuristic
estimate must be computed promptly yet still give good guida The informativeness
of an heuristic tells us how ‘informed’ an heuristic is, tligsan estimate of how much
guidance we expect an heuristic to give us. Coupled withishise notion of admissibility,
we say that an heuristic is admissible if every estimateviegfrom any given state to the
goal islessor equalto the actual value. The latter is important if we want to ddiropl
planning because if we explore the best state - as defined adgraissible heuristic - in our
neighbourhood first the first solution we find is guaranteebletdhe optimal solution. It is
very easy to come up with an admissible heuristic - for exanagbkign 0 as an estimate for
every state - the challenge is to come up with an heuristichvis both informed as well
as admissible. We do note, however, that choosing a goodstiewrill not be enough to
tackle all problem domains. Not even if the heuristic is adingerfect, i.e. the heuristic
only differs a constant value from the true heuristic[208idiional techniques which prune
the search space are needed.

The traditional way of constructing a heuristics for probieis to relax the problem and
try to solve the relaxed problem. In state-space plannenetare 3 common heuristics:
Nmax Nadd, andh".

e hnax This heuristic assumes that if the planner solves the mégiudi subgoal, that
all other goals are automatically satisfied as well. Thigisé&a is admissible but not
very informed.

e hyqq This heuristic assumes complete goal independence, ttasay there will be
no interference when trying to solve every subgoal indepetigd This heuristic is
not admissible but better informed thBRay

e hX This heuristic is a generalization bf,a, instead of trying the solve the hardest
subgoal we try to solve the hardest sekafubgoals.hmay is thus equal td'. If the
number of subgoals in the problem is equaktihis heuristic will actually solve the



original problem. This heuristic is admissible and the bighthe better informed it
is, however the computation cost increases polynomi&liasreases[19].

However, trying to find values with the above heuristics mdhiginal planning problem
is equally difficult as planning in the first place. Considey given planning problem with
a given goal statg,, next we introduce a new action which has as its preconditidiratoms
in the goal state and produces a new literal ‘Finished’ ankentlais the new goal state for
our problem. Given that there is only one goal atom to satdifpbove heuristics will be
the same, but finding a solution for out new problem is at laadifficult as the original
problem.

Relaxation To make the heuristics applicable in planning we must furtetax the
given problem. One of the reasons why planning is hard isusecaf conflicts between
actions. For example, if we want to visit two people on a daycaenot visit both at the
same time. Driving to the first person is in direct conflicttwdur goal to visit the other
person. We can relax the planning problem further by renpthiese types of conflicts by
ignoring the delete effects of an action. This means thatdpying any given action, the
resulting state will be a superset of the previous state. ddew there is one little caveat
we need to take care of, what if the goal state requires aimegefect? While this is not
a problem with the STRIPS language (it only allows posititerdls in states), extensions
of this language do need to take care of this. The solutioinipls, when we apply the
heuristic we translate all negative effects and negativmatin the goal state and operators
to a new positive atom. We will now define how every heuristarks as described in[5].

haga The estimated cost of achieving a set of goal atgnisom a given states are
obtained by solving the functional equation:

o(ps) & 0 ifpes 2.
’ Minyco(p) [L+-g(preqa);s)]  otherwise '

for all atomsp by means of a Bellman-Ford type of algorithm. Whef@reqa);s)
stands for the estimated cost of achieving thepset{a) from state s an@®(p) stands for
all sets of operators which, combined, ‘add’ p. In this alfn the measurg(p;s) are
updated as:

a(p;s) = agﬂoi(r:))[g(p: s),1+9g(prec(a);s)] (2.2)

starting withg(p;s) = 0 if p € sandg(p;s) = « otherwise, until they do not change.
For the additive heuristib,qq the costg(C;s) of sets of atom€ is defined as the sum
of the costgy(p;s) of the individual atoms in C. We denote such additive costs@gg:

Gada &' > alris (2.3)

The heuristichyqq is then defined as:



def
hadd(S) = Gadd(G,s) (2.4)
hmax Instead of taking the sum of all goal atoms we can defindnthgheuristic as:
def
gmax(C;s) = maxg(r;s) (2.5)
reC
def

h* The last heuristic to define is tH& heuristic in which we search for the most
expensive subset to satisfy. The size of the subset is definéd The costg™(C;s) is
characterized by the equation:

0 if CC s, else
def . .
g"(C;s) =’ { Mingere)[L+gM(B;9)] if [C]<m (2.6)
maxpc pj-md"(D;s)  otherwise

whereB € R(C) if Bis the result of regressing the set of atoth#rough some action
a. Thush(s) &' gm(C;s).

Do note however that given a relaxed problem, finding an agtiptan is still NP-
complete[19]. So we must resort to finding an estimate, aftieoducing partial order

planners we will look at recent advances in planning andickadgch search strategies and
heuristics they employ to solve problems.



Chapter 3

Partial order planners

The other family of planners takes a different approach &mmpihg and can be argued to
be more elegant. The previous discussed search algorithntamcerns itself with a strict
total-ordered sequence of actions from the initial statd¢ogoal state and was only able
to reason about grounded actions directly applicable tetdte under consideration. Plan-
space planning takes a different approach that offers sdwantages over state-space plan-
ning.

Instead of deliberating over single states as nodes wercahgiartial specified plans to
reason about and instead of selecting actions to advanoaiptawe use plan refinement
operations to solve flaws in a partial plan. The reason whyderin a search space is
called ‘partial specified’ is because we can reason aboubunged (or lifted) actions. For
example, if our goal is to get to destination X we might add agraunded action which
will get us a plane ticket to location X but does not specifywhere to depart from. This
is called theleast commitment principland gives a planner more control over the search
strategy as we are no longer bound to specify all details aipt,frrommitting ourselves
to grounded actions as in state-space planning and in gffeatly reduces the branching
factor. Moreover, unlike state-space planning where wersitraurself to a total-ordered
sequence, we do not need to commit ourselves to any spedificiog when choosing an
action. This gives the planner the opportunity to work oresalvgoal atoms independently
before deciding which one is achieved first or resolve ang kirmutex relations due to the
ordering. Despite these flexibilities there are some bidi@hges to overcome when using
plan-space planning.

In the next section we give a formal definition of partial @and discus how planning
problems are generally solved in that context.

3.1 Formal model

A (partial) plan can be represented by a tufeL, O, B), whereA is a set of operatorg,

a set of causal link) a set of ordering constraints defining a partial order on teé\s
andB a set of binding constraints on the action parametBrs: Q if ground actions are
used). Each actioa is an instance of some operatin the planning domain and a plan
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can contain multiple instances of the same operator. A téingka a; 3 a; represents a
commitment by the planner that preconditigof actiona; is to be fulfilled by an effect of
actiona;.

When given a planning problem, an initial partial plan is grted by creating two
additional actions:ag which contains as effects all literals in the initial staeand a.
which has as preconditions all literals of the goal stgtél he partial plan is now generated
by adding these two actions and by ordermgeforeas: ({ap,ax},0,{ay < 8w },0).

Instead of defining a neighbourhood of possible actions kvbén be executed given a
certain state, a refinement planner works by adding elentergplan in order to remove
flaws in the plan. Fixing a flaw is called plan refinement. A flean @ither be an open
condition— g;, which represents preconditi@nof an actiong; which is not yet supported
by another action, or an unsafe link (or threat)i aj, whose conditiorg can unify with
the negation of an effect of an actiag that could possibly be ordered betwesgranda,;.
There are 3 different solutions to this problem: 1) Eitheis ordered before; (demotion);
2) a is ordered aftem; (promotion); 3) or a binding constraint is introduced sot tite
effect of ax cannot unify withqg (separation). Once we find a plan without any flaws we
have found a solution, if on the other hand we cannot refineptany further and we have
not found a solution yet the problem is unsolvable.

During the planning process a partial order planner kege tof its plan-space in the
setP. During every iteration a plap € P is selected and then a flaw is selected to be
resolved inp. All possible refinements resolving the flaw are returnedaddkd tdP, until
eitherP is empty (denoting that no solution has been found) or a piimowt flaws is found
(a solution).

3.2 Plan selection strategies

During each iterations two important choices need to be mfud of all which partial
plan to work on and secondly which flaw to select to resolveoriiter to achieve good
performance we must again rely on good heuristics, but velsettee search space in state-
space is finite this inotthe case in plan-space, this is due to the fact that we do paggent
the states explicitly in plan-space planning. While thigegius a lot of freedom on how to
plan we also lose information available to us in state-spéa@ning. In this and next section
we will discuss how this translates into search procedundshauristics we can apply.

Like in state-space planning we want to base our decisiontb@avance constructing
a plan based on the notion of distance to the goal. While iata-si{pace representation we
had direct access to the state we are working on the stateantialplan is ambiguous at
best. Because we adhere to the principle of least commitar&hbecause we do not need
to select the actions of a plan in any particular order it islesr how a partial plan can
be translated into a state. This gives us problems when wie tegtimate the number of
actions needed to find a solution, the heuristics used ia-sface planning cannot directly
be used in partial order planning, so we need to find new mettmdeal with this.

Lacking an explicit state representation, partial ordanpérs have originally resorted
to counting the number of flaws in a plan to estimate the woret@lone before reaching



a solution. Because we are interested in a plan with as faanacas possible the heuristic
function is:

f(s) =g(s)+h(s) (3.1)

This equation can be used in a best-first search algorithmléotswvhich plan to extend
next. g(s) = |A| (the number of actions) arfa(s) is the estimate of work still to be done.
Possible heuristics include counting all flaws or only thenbar of open conditions. While
this gives us some guidance in general these notions do veagilear idea of far we are
from a goal nor is this heuristic admissible, because maltypen flaws could be resolved
by one single action. But even if there is only one open caitthe above heuristics
do not take into consideration how much more work needs toobe tb satisfy this open
condition. This is the main reason why partial order plastave fallen behind the perfor-
mance of state-space planners recently. However, in latgsters we will describe some
new developments in partial order planners which are gfoshted to the heuristics for
state-space planners.

3.3 Flaw selection strategies

After we have selected a plan from our plan-space based oewaistic we need to identify
the flaws in this plan and choose which one to resolve firstst [6if all we must identify
that there are several types of flaws which can occur (seesqilaond that solving one type
before another might enhance the search process. In thegdite a lot of strategies have
been proposed in which order flaws should be selected and fikefibrtunately so far no
iron clad rule has been found which works best in every sidnaand it is not clear that
one will ever be found. However, based on some benchmarkgmsbsome strategies are
considered better than others[34]. In this section we ihtce the basic notation.

Cost of repairing a flaw  An inherent property of a flaw in a partial plan is that it will
not go away unless we explicitly work on it. For example, mtatspace planning we might
add an action to satisfy a goal atom, but the same action aildgfy another goal atom
as well. In partial order planning every causal link betwaeneffect of an action and a
precondition of goal atom is made explicitly by adding onécQurse we can, by adding an
action, use the same action to solve multiple open conditipnadding causal links. This
allows us to look at every single flaw independently and chexk many options we have
to solve this single flaw. As discussed before, all flaws nedaethandled separately, the
ordering in which these flaws are resolved can lead to a signifireduction to the search
space.

To do flaw selection we use the notion of ‘most constrainedaisé’ which is exten-
sively used in CSPs (constraints satisfaction problemshemive have to decide which
variable to resolve first it is an good idea to assign a valubdanost constrained variable,
that is the variable with the smallest domain of values taskedrom. Consider for example
solving a SuDoKu puzzle, one way of solving this puzzle is:
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1. Scan the puzzle row per row and select the first empty spotdf@and assign it a
number which is unique in its row, column, and block.

2. Repeat (1) until we either find an empty spot which we camsstgn a number or
solved the puzzle. In the former, clear the last assigneckidnd repeat (1), in the
latter case we are done!

It is clear to see while this algorithm will solve any SoDoKuzgle it is not the most
efficient way to do so. If would be much faster to concentrai¢he spots which have very
few choices, the obvious example being one. If a spot onlyohaspossible choice it must
take that choice and by propagating this effect through tiezlp we might able to solve
the puzzle without doing any search at all! A proper SuDoKeztel has only one possible
solution to its problem so if we have a spot with 9 possible bera 8 of these will be false.
If we choose to make this variable the start of our searchvieeould potentially end up
searching 8 different branches while if we start with a Magawith only two choices there
is less chance to take a wrong branch and even if we do the bthach is guaranteed
to succeed. Choosing the most constrained variable wil alew us to detect dead ends
faster as we have less alternatives to try in the case ofdailu

In the case of flaw selection, based on the flaw there are a mohbessible resolutions
to this flaw:

e Open conditions:
An open goaly in planP can be solved by the following resolutions:

— The number of literals in the initial state which can unifythwg;

— The number of action effects of actions already in the paplen which can
unify with g;

— The number of action effects of new actions that can unifygit

e Threads:
Threads can be distinguished in two cases:

— Non-separable threads, in this case there is a causal limkeba two actions
a N a;j, whose conditiorg unifies with the negation of an effect of an actan
that could possibly be ordered betweganda;. In this case we cannot separate
the negation and causal link. So our only option is to demotereomoteay,
giving us two options.

— Separable threads, in this case we have a similar situatiothis time we can
separate the negation of the causal link by adding a bindingtcaint. However
if we are dealing with a predicate kfvariables we only need to make sure one
of these is unequal to the causal link. Thus addinghoices to the possible
resolutions.



Preference strategies Depending on the most constrained variable heuristic alone
proves not to be sufficient to yield an effective planner. fpliove upon this heuristic
authors have looked a possible orderings in which flaws shioellresolved given a partial
plan[34]. Some of these strategies depend on the cost &alydined above, but others
only consider the type and order in which the flaws were intoed to the partial plan. We
will use the following notation to describe various stragsg

e 0. open conditions
e n: non-separable threads

e s: separable threads

t: static open condition

I: local open condition
e U: unsafe open condition

The first three we have already detailed. A static open cimdis a condition which
occurs in the initial state of a problem but cannot be affétigany actions, i.e. it does not
appear in the effects of any action. A local open conditiothéssubset of open conditions
which is related to the most recently added action to the tilanstill has open conditions.
And lastly, an unsafe open condition flaw is an open conditibat would be threatened if
we would add a causal link.

The different order or tie-breaking strategies are:

e LIFO (last in first out)

FIFO (first in first out)

LC (lowest cost)

R (random)

New (achieves an open conditions by using a newly creatéohact

Given this notation we can now denote strategies as follows:

e {0}LIFO - Always prefer open conditions, and always prefer the mestmt added
subgoals.

e {0}LIFO/{n}LC/{s}R - Prefer open conditions in LIFO order, followed by non-
separable threads in cost order, followed by separabladkri random order.

e {n}o_1/{0}LIFO/{n,s}R - Look for forced non separable threads, that is open con-
ditions which either have only 1 solution or none (this woinldicate a dead end),
followed by open conditions in LIFO order, followed by rami@elections of either
non-separable or separable threads.

When discussing actual planners in the next chapter we eflidwhich strategy they
use.
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Chapter 4

Previous work on partial order
planners

Recent years have seen a renewed interest in partial ordenipy with planners like
REPOP[31] and VHPOP[40] which are both based on UCPOP[38keRrch interest in
partial order planners had previously waned after inteasearch up until the first half of
the last decade. While partial order planning is an attragtianning framework it suffers
from some serious problems which researchers up to thi¢ paire failed to solve.

On the positive site, partial order planners allow for vegxithle planning and execution
when compared to forward chaining state-space plannerseré\the latter only allows,
given a current state, to select a transition to move to the state, the former allows
to work on several aspects of a given plan by refining the plasdiving a flaw. One
could even argue that this approach is actually more akimptg compared to state-space
approaches. Another benefit is execution flexibility, ongagial order planner has found
a solution it need not be a total ordered set of actions whégdrio be executed. Rather it
is a partial plan which can be executed in several ways addinecan be ordered in several
ways.

Despite all its merits, partial ordered planning has beekitgy behind state-space plan-
ners like FF[21], LPG[14], LAMA[37], which show consisténbetter results in planning
benchmarks. The main reason why partial order planners leee falling behind is be-
cause of the lack of proper search guidance. Where state-gpanners have an explicit
state description to work from and to derive an heuristienfrdt is not clear how such an
explicit state can be derived from a partial plan. For exanlwe take a look at the
plan selection heuristic for UCPOP which is defined @ |OC| + |UC| as the default,
this algorithm is alike a A* heuristic as analyzed by Gerednd Schubert[15], but not
informative nor admissible.

More recent planners have improved both plan and flaw setebguristics by adapting
techniques from state-space planners and integrating ititenthe context of partial order
planners. In this section we will look at two recent advanicegartial planners, REPOP
and VHPOP.
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4.1 RePOP

One of the first attempts to revive partial order planning Wa®OP[31]. In their paper,
Nguyen and Kambhampati challenges, what they call, theajirey pessimism about the
scalability of partial order planning. They observed ti&t techniques developed for state-
space planners could also be implemented for partial orfdemprs and set out to see if
the performance of partial order planners could be improlrethis section we will briefly
describe the techniques used to gain better performancehvaliows RePOP to compete
with the GraphPlan[3] planner.

4.1.1 Plan selection heuristics

To select which plan to refine first, RePOP takes a differeptagrh than UCPOP to es-
timate the amount of actions still needed to find a plan. ltsdoet rely on counting the
number of flaws, but adopts a technique very similar torthg heuristic, although it does
account for positive interactions between actions. To ik RRePOP makes use of a serial
planning graph. It builds a planning graph from the initi@tesy. Letlev(p) be the index
of the level in the planning graph that a propositipiiirst appearsSoc be the subset of
all propositions which make up the open conditions, &dS) be the index of the first
level at which all propositions i&oc appear. Letps be the proposition irfgoc such that
lev(ps) = max, s, lev(pi). Itis assumed thaps is possibly the last proposition Byc that

is achieved during execution. Lat be an action in the planning graph that achiegem
the levellev(ps). We can achievgs by addingas to the plan. Given this, RePOP defines its
cost heuristic for the set of open conditions:

cost(Soc) = costas) + cos(SU prec(as) \ effectgas)) 4.1)

wherecostas) = 1 if as ¢ A and 0 otherwise. The final heuristic i$(s) = |A] +wx
cost(Soc), where wis set to 5.

4.1.2 Additional improvements

Although RePOP does not introduce new flaw selection siesed does does conduct
reachability analysis to prune unattainable partial pkams tries to postpone commitment
to solving threats as long as possible by allowing for disjiwe ordering constraints. So
instead of solving a threatened causal Iéml& a;j, which is threatened by actiag, by de-
moting or promoting it. RePOP adds a disjunctive orderingst@int(ay < &) V (aj < a)

to the plan. Next a constraint propagation rule is applieghetime a new ordering con-
straint is added to the plan. Basically when we add an orgaromstraint which matches
one of the ordering constraints in a disjunctive binding veeard the other possible order-
ings in the disjunctive ordering constraint. For examglaniordering(ax < &) is added to
the ordering® and(ax < &) V (aj < &) € O, we redefindd as:O = OJ(ax < &) \ (ak <
)V (aj < a). What this technique hopes to achieve is when faced with aafarlink,
instead of choosing a definite solution directly (i.e. proenar demote) postpone this deci-
sion until we can not longer ignore it or we are forced to makeraering which will solve



this outstanding flaw as well. Effectively it tries to redadbe search space as we do not
need to branch directly when faced with this flaw.

The other technique concerns itself with mutal exclusiveppsitions. While most par-
tial order planners will only consider a causal link threat# when we are faced with an
action which negates the specific proposition the link actie There are more threats
which are not directly obvious. Sometimes it is possibla tha proposition are mutal
exclusive and cannot appear at the same time in the plan. $\nveay to find such mutal
exclusive propositions is by looking at the level-off pooftthe plan graph, any mutexes
present at that level are state invariants.

4.2 VHPOP

The 3rd international planning competition[26] in 2002 sawevival of a partial order
planning by a planner called VHPOP[43]. The aim of the aigheas to incorporate the
advances which had been made in CPS-based planning aitgerdtihd state-space planning
as heuristics search into partial order planners.

VHPORP is a partial order planner which is loosely based on OBB3] and incorpo-
rates quite a number of interesting plan and flaw selectitragegies. But most important
of all, while we claimed that one of the biggest challengegaofial order planners is to find
good heuristics as it lacks a explicit state description PPdefines a variation df,qq
which can be used in its search while still accounting foritp@sinteractions. On top of
that is uses a tie-breaking heuristic in case it gets stuck mateau.

As we have claimed earlier, there is no silver bullet whewihes to defining heuristics
for domain independent planners. VHPOP takes the approaaimhing multiple planners
concurrently with different flaw selection strategies.

4.2.1 Temporal reasoning

To handle temporal domains VHPOP uses an STN with a constrased interval approach[40],

in other words it uses the STN to record the temporal comésr@ind during search queries
this STN to check for consistencies of plan refinements. SNds for Simple Temporal
Network and is used to define temporal constraints betweies gleend and start points of
actions. Given that we can use an STN to record the particutiaring of a partial plan,
there is no real need for the set of partial ord®rsTo record the start and end points of
a durative action, every such action is split up into two redge, (start time) andy; (end
time). To allow for a compact representation the STN is regméed by a d-graph[11]. The
d-graph is a complete directed graph, where each gdget; is labeled by the shortest
temporal distanced;j, between the two time nodgsandt; (i.e. t; —t; < dj). Internally
such a graph is represented by a matrix which records therelif€e in time between any
two start and end points. To account for the start point, aitiadal time pointty is added
which represent time zero.

Constraints are added to the STN whenever new actions aerladgden conditions
are resolved and ordering constraints are imposed. Theiolurd;, of a durative action
g is specified as a conjunction of simple duration constraits: c, wherec is a real-
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valued constant anshe {=,<,>}. Each simple duration constraint gives rise to temporal
constraints between the time nodgs ;) andt; when addingg; to a partial plan. The
temporal constraints, in terms of the minimum distadgdetween two time points, are as
follows:

O =C Ch_12 =CACg_1=—C (4.2)
o <c thi_12 <cC (4.3)
o >c thigi1<—cC (4.4)

The semantics of PDDL dictates that every action be schddiietly after time zero.
To ensure this we allow for a minimal time gapbetween these two time points, i.e.
Visodei—10 < —€. This is also the general method to encode that a time pontidiprecede
another time point.

Every time a temporal constraint is added to VHPOP all thetekbpaths that could
have been affected are updated. This operation can be egeial®(|A|?) time, thus it is
quite a costly action to perform.

Once a plan without flaws has been found we still need to deelicin to execute which
action. Given the STN we have any number of possible schedulahich to execute the
plan because the STN gives us the tightest constraints. ySardering that does not violate
these constraints is valid. Since we are trying to minimtze makespan we choose the
times as early as possible as our final schedule for the plan.

4.2.2 Plan selection heuristics

One of the other important features of VHPOP is that it bridie gap between plan-state
planning and heuristics used in state-space planningeddstf relying on the number of
flaws to select a plan to work on it uses an adapted versionedigthy heuristic where it
tries to account for positive interaction between actiofise problem in defining such an
heuristic remains that we are dealing with partial plansraotdvith explicit state represen-
tations. Instead we look for potential actions which couhtifyuwith any open conditions
in a partial plan, or more formal:

Given a literalq, let GA(q) be the set of ground actions having an effect that unifies with
g. The cost of the literad| can then be defined as:

0 if g unifies with a literal that holds initially
hadd(q) = minaeGA(q) hadd(a) if GA(C]) 75 0 (4.5)
oootherwise

A possitive literalg holds initially if it is part of the initial conditions. A negive literal
—q holds initially if g is not part of the initial conditions. The cost of an acteis defined
as:

hadd(a) =1+ hadd(preqa)) (4.6)



Which follows the same definition df,qq in state-space planners. The cost to handle

other language constructs is given in the next list:

Existentially quantified variables haqd(3X.9) = haga(®) 4.7)
Conjunctions hadd(/\(g) = Z hada(@) (4.8)
Disjunction  haqq \/(g mlnhadd (@) (4.9)

The additive heuristic for a partial plamwith open condition se©C(1) can now be
defined as follows:

hadd(n) = Z hadd(q) (4.10)
i»a;eOC(T[)

Like our previous discussion of thggq heuristic this algorithm is not admissible and
will not perform very well for strong interconnected promle. VHPOP tries to account
for the possible positive interaction by looking at alre@atisting actions in the plan which
produce an effect that could be unified with the given litefthis can only be the case if
the given action can be ordered before the action requiniaditeral. Or more formally:

(1) = 0 if 35, € As.t. an effect of; unifies withg anda; < aj ¢ O
add @a 500 haga(q) otherwise
(4.11)
Note that this algorithm is weaker thhp[21] as it only takes actions into account which
are already part of the plan and not action which are added Idbnetheless this heuristics
is a big step up from the previous partial order planners wbidy rely on counting flaws
for plan selection.

4.2.3 Flaw selection strategies

VHPOP used a combination of 4 flaw strategies during the IRGr8petition, these flaw
selection strategies are:

e MW-Loc: {n,s}LR/{0}MWyq4q

e MW-Loc-Conf: {n,s}LR/{u}MWaqq/{l }MWagqd
e LCFR-Loc: {n,s,u}LR/{0}LR

e LCFR-Loc-Conf:{n,s,u}LR/{I}LR

VHPOP uses all flaw selection strategies in unison by stadiplanning procedures
at the same time. Every planning procedure runs for 100@titers before switching to
the next. The planning process stops once the first soluiéound. The reason for doing
so is that every flaw selection strategy has its own strergtdsweaknesses and by using
multiple at the same time hopefully at least 1 will be suigatar the problem at hand.
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Chapter 5

Recent advances In forward-state
planning

Having discussed the last advancements in partial ordenplg we will now turn to the

recent advances in state-space planning and in particotesafd-state planning. In our
discussion we will only limit ourself to the planners whicte aelevent to our work. Other
planners like LPG[14], for example, while relevant in plarghin general will not be cov-

ered in this work. The focus on this section is mainly on theriséics employed by these
planners as we will not adopt their search algorithms.

5.1 Fastforward

The introduction of Fast-Forward(FF)[21] in 2001 was a égpaip from the HSP planner[5][4].
It combines some clever search techniques and a bettematbheuristic than used so far.
FF is a forward-chaining search-based planner, uses taredtlplanning graph heuristic

to guide its search and two different search strategies doefisolution to a planning prob-
lem. FF has performed very well in the AIPS-2000 planning petition where it won two
“outstanding performance” awards for its performance a‘flally automatic” track. It is
noted that FF finds solutions very quickly although the dqualf the plans (i.e. plan length)
tends to vary with respect to the degree of optimality. FFoissidered a big milestone in
planning and a lot of subsequent planning systems were bagdd on FF or used the FF
heuristichy.

5.1.1 Heuristic

The main aspect of FF is the heuristic it applies to plannirablems. It adapts thb,gg
heuristic from HSP by using a GraphPlan-style algorithmstilt relaxes the plan by ig-
noring delete effects, but for every state it builds a refeplanning graph to the goal state
which only contains positive effect and solves this problamolynomial time. A solution
to a relaxed plan graph is given BS= (Oy,...,Om— 1) whereQ; is the set of actions se-
lected in action layer, andmis the number of the fact layer first containing all goal atoms
The heuristic is computed as follows:
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h(s) = ol 5.1
(s) i:o;m' | (5.1)

When searching for a plan in the relaxed plan graph it is dfiest to find the shortest
plan as possible. To accomplish this the following hewsstire used in how to solve the
relaxed plan. When faced with a choice which action to seétestipport a fact, if there is
a no-op available to make this happen always go with the ndtdbis it not the case then
we select the action whose preconditions seems the easmshieve:

Difficulty(o) = Z min{i|p is a member of fact layer numbgr (5.2)
peprego)

Furthermore the actions are linearised in the order in witiely get selected. Finding
an optimal linear action linearisation for a parallel seadhiever<D; is NP-complete. This
solution will be found in polynomial time.

The given heuristic is not admissible but informed which igreat step up from the
hmax andhygq heuristics described before. Because we actually constnataxed planning
graph and solve this one we take both all goal atoms and y®sitteractions between
actions into account.

5.2 Fast-Downward

Another take on domain analysis was taken in 2004 with thiedliction of Fast-Downward[17],
which won the ICAPS 2004’s classical track. One of its feadlis that it does not use PDDL

as the planning language directly but first translates @ antanguage calleBAS[18]. In

this representation values are not proportional, but rvaliied, e.g. a truck that is associ-
ated with a location is represented in PDDL with one projpmsifor every location, with
only true in any given state. IBAS a variable is created for the location of the truck and it
can have exactly one value amongst the locations. CleaI$A8 representation is more
intuitive to grasp and it also prunes the number of possiialies which can be represented.
Giving the last example, if we havelocations the number of states representable in PDDL
is 2" while in SAS there are exactly states.

Before some actual search can take place we must transl&Bh fepresentation into
the accordingSAS representation. While we will not discuss the actual metiged in
Fast-Downward the idea is that if we find a collection of prsifional values which can
be represented by a singBAS variable we know that only one of these propositions can
be true at any time. This is an invariant condition of the dionthat exactly one of these
propositions is true or in Graphplan terminology all paifstese propositions must be
mutex.

AlthoughSAS does not allow us to define domains which cannot be defined DLRD
does uncover some hidden constraints of the domains whidh be used to our advantage.
This is exactly what Fast-Downward does.



5.2.1 SAS representation

A conciseSAS representation of a planning task can be generated fromieatypDDL
representation automatically[18].

Definition 5.2.1 A SAS planning task is a tuplél = (V, O, sy, sy) Where:

e V is a finite set of multi-valuedtate variableseach with a finite domain p. A fact
is a pair (v,d) (also written v— d), where ve V and de D,. A partial variable
assignment s is a set of facts, each with a different varighle use set notation such
as (v,d) € s and function notation such a$v$ = d interchangeably.) A state is a
partial variable assignment defined on all variables V.

e O is a set of operators, where an operatoed is a tuple(nameprec, effects of
partial variable assignments.

e 5 IS a state called the initial state.
e 5y is a partial variable assignment called the goal.

An operator o= (nameprec effects € O is applicable in state s if preC s. In that case,
it can be applied to s, which produces the stdtevish s(v) = effectgv) where effects)
is defined and’év) = s(v) otherwise. We write[s] for S. For operator sequences =
(01,...,0n), We write $r1 for s[01]. .. [0q] (Only defined if each operator is applicable in the
respective state). The operator sequeriég a plan iff g C sp[11.

Each state variable of8AS planning task has an associated directed graph which cap-
tures the ways in which the value of the variable changesitir@perator application[23].

Definition 5.2.2 The domain transition graph(DTG) of a state variable ¥ of an SAS
task (V,0,%,5y) is the digraph(Dy,A) which includes an ar¢d,d’) <= d # d’ and
there is an operatofnameprec, effects € O with preqv) = d or preqv) undefined, and
effectgv) = d'.

5.2.2 The causal graph heuristic

Once we have created the DTGs for the variables of a problesrknew how the value
of a variable can change and which transitions are possiti@den the different values.
However, a DTG does not stand alone and for most problems Di¥iEfave external
dependencies with other variables to make its transitidhgse external dependencies are
captured in a causal graph(CG).

Definition 5.2.3 Let N be a SAS planning task with variable set V. The causal graph of
M (CG(MN)), is the directed graph with vertex setV containing an@&’) if ve VAV €
V Av =V and one of the following conditions is true:

e The domain transition graph of has a transition with some condition on v.
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e The set of affected variables in the effect list of some dpemcludes both v and'v

In the first case, we say that an arc is induced by a transitimmddtion. In the second case
we say that it is induced by co-occurring effects.

The computation of the causal graph heuristic is done bygusipath finding algorithm
the find the shortest paths through the DTGs of every goal a@olependently. While
traversing the DTG related to a goal atom we try to find thetslsbpossible path from the
initial value of that variable. To account for extra work wthimight need to be done (e.g.
we need to move a truck to the same location as the packagesliedan be loaded), every
time we hit a precondition which is not satisfied we solve ti&33 related to the unsatisfied
literals in similar fashion and take the number of steps s&my as the weight attached
to traversing an edge in the DTG. A major difference betwéésnheuristic and heuristics
utilized by FF and HSP is that it actually takes the intemgiinto account of DTGs directly
connected by the causal graph and updates the value of iablearaccording to the effects
of the transitions. Thus it does not allow for multiple vabféhe same variable to hold true
at the same time.

For example take the following problem from the same domAipackage is located at
locationA, atruck is located at locatidn which is also the goal location of the package and
the graph is constructed like depicted in figure 5.1. UsirgRR heuristic it will realize it
needs to drive the truck to A, load the package and unloadhiha D. But because it does
not take into consideration the delete effects, when ithes& it assumes that the truck can
be at any location in the graph and thus simply unloads thkaggc The heuristic value is
5. But suppose the truck has moved to locatonow, using the FF heuristic we will again
get 5 as the heuristic. In other words the whole driving seqe¢o the package is a plateau.
If, on the other hand, we use the causal graph heuristic lir@gbrd the fact that the truck
needs to move to locatiofs and once it has arrived there that it needs to drive back.i$n th
case even the causal graph heuristic will give us the truadtieuof 8.

()

Figure 5.1: Simple road network.

This is one of the fundamental strengths of the causal grapfistic, if the causal graph
does not contain any cycles, is that it will always return titue heuristic for achieving a
goal atom. Unfortunately this is hardly ever the case. Ifélae cycles in the causal graph
there is no way to identify the order in which to evaluate tbets for transitions in the
DTGs and propagate them upwards. The approach taken bypBastward is to cut cycles
in the causal graph by removing dependencies which causgythes, edges which affect
the least preconditions are removed first. This means tharakencies which affect the
most preconditions are preserved. With the cycles remowvedam again use a pathfinder
algorithm to find the shortest path within every DTG linkedatgoal atom.



The heuristic can be formalized as:

heg = Z cost(Vs, Vg) (5.3)
VESy

Wherecost(d,d’) stands for solving the subproblefh, gy with the value ofv in the
initial state isd (s[v] = d) and the goal value &'. Per goal atom, only that particular variable
and its parents (as defined in the CG) are considered. Bewauassume an acyclic graph
we can apply a Dijkstra algorithm to calculate the transitiosts in the DTGs from every
node to every other node. We start with the variables whigl ha dependancies according
to the CG, we can simply apply Dijstra to calculate the distabetween every node pair
d,d’ € Dy, resulting in the optimal costost,(d,d’) for every pair. Next we move to the
variables which have dependencies on other variables wiaieh already been computed.
We modify the original Dijkstra algorithm to take into acedthe cost of solving the parent
variables from their current valueto the goal valueg. To calculate the transition cost
cost(d,d’) we simply add all costs for achieving the parent variablemfthe current state
to the precondition as defined by the transition arc. So if weeha transition arc with
preconditions for a set of variablesi = ey,...,v, = &,, where alle, € € Dy and cost, «
already computed, we define the cost function as follows:

cost(d,d') =1+ Z cost, ¢ (5.4)

Note that with every transition made during the computatibthe algorithm, we keep
track of our state. Thus if we find a transition which decrsabke cost from somd < D,
to d’ € Dy by following an arc with some edgewe will change the state accordingly:
sv] = z. By doing this we are able to take advantage of the contextvairiable and get
better heuristic values as highlighted in the example above

While the causal graph heuristic is very good at domains watlor few cycles in the
causal graph, if the interdependencies between variabdegeay strong the algorithm will
break down as we need to delete a lot of information by rengpdependencies in the
causal graph. One of these problems is the blocks world domaihich a planner must
find a sequence of actions to stack and unstack blocks onetmbbach some goal state.
We are only able to interact with the top most block of eachetowo there is a very tight
interconnection between the different blocks. In orderitournvent this weakness Fast-
Downward use$i; as a second heuristic to solve the problem in parallel in teseausal
graph heuristic fails.

5.2.3 ADCG

In 2008 a version of the causal graph heuristic was introdiwedled additive-disjunctive
causal graph heuristic(ADCG)[27] which does not requirdreak the cycles in the CG.
Effectively it does not even require the CG at all to comphtetteuristic. In order to do this
the ADCG heuristic assumes subgoal independence and withke positive interactions
into account, this allows it to calculate an heuristic vali#hout breaking cycles in the CG.
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The way in which we can do this is quite straight forward. tnially, given a start
valuevs and a goal valuegy such that both are part of the same variableWe search for
the shortest path in the DTG and solve external dependetwcaber DTGs independently.
The additive-disjuncitve causal graph heuristic is given a

dEf

hS(s) " 5 hxjxe) (5.5)

XSSy

Wherex;s is defined as the value of the variabdén s5. Now to calculate the actual
heuristic we start from the values of all variables as defindkde initial state and try to find
the shortest path for all variables defined in the goal sBézause we treat every subgoal
independently, actions applied to satisfy a certain tretimawill have no effect on the state
of other search branches. The function is defined as:

def {0 if X’ =X ,else (5.6)

h(xX'|X)=q "
mInoEOlXGOprec/\X"GOfoects[l +h(x|x') + 2 X EOprec|Xi £X h(xi[x)]

where we look for the minimal path to achieve vakfefrom valuex'. If the value of
the given variable is equal to the goal value we return 0. @tise we look for the set of
transitions with minimal cost. Note that we also take cargobfing any other preconditions
which are not part of the variablé andx” belong to. In order to do this, we first calculate
the state which results from achievirdgrom x'. This is the value ok/ which is written as
s(x|xX') and obtained by replacing all values for the affected véggmby applyingo to the
current state with the values @ect

5.3 Landmarks

The last advancement we will discuss, which is also mostaeltdo our work, is landmarks[35].

Landmarks are states in a plan which must necessarily biediibefore we can reach the
goal state. Furthermore, given an ordering between theskenarks, we can use this infor-
mation to guide planner towards its final goal and hopefutisne up with better solutions
which require less time to compute.

5.3.1 Finding landmarks

Unfortunately finding all landmarks for planning problemai® SPACE-hard problem[22],
so we necessarily have to consider an incomplete subsdtlahdimarks. The most trivial
landmarks are the original goals, but if we note that allaxtiwhich can achieve any of
these goals have a similar precondition, we can mark thisopidition as a landmark as
well. Unfortunately this will give us a very small set of landrks for most domains, so
additional work is necessary to unearth more landmarks.

Except finding landmarks it is also beneficial to find ordediegween landmarks. For
example, the notion of reasonable orders[24] states thatraopgoalsA and B which, if
ordered so thaB is achieved beford, it is not possible to reach a state in whiglandB are



both true, from a state in which justis true, without having to temporarily destréy in
that case it is reasonable to achieve B before A to avoid wasecy effort. In the literature
the following orderings have been defined:

o Natural orderingA — B, iff in each operator sequence wh&¢s true, at timed, Ais
true at some timg < i.

e Necessary orderingA —, B, iff in each operator sequence wh@és true, at timd,
Ais true at timd — 1.

o Greedy-necessaryA —g, B, iff every operator sequence wheleis first added at
timei, Ais true at time — 1.

e Reasonable orderingA —, B, iff starting from any state wherB was achieved
before A:B must be true at some point later than the achievemeft afid one must
deleteB on the way toA.

e Obedient reasonable ordering: — B, iff given a set of reasonable ordering con-
straintsO, if a planner commits to obey all the ordering constraitn©jmA —, B
arises because of this.

In order to find landmarks and their orders, methods whidtzetihe RPG[22](MRPS)
and DTGs[37][36] have been devised.

Intuitively when we use RPGs to find landmarks, what we carsdmnstruct the RPG
and leave out any operator which would achieve some litek&lhen the RPG levels off, the
last layer of facts is an over-approximation of the set offdlcat can be achieved befdrim
the planning task. Any operator that is applicable to thés l@yer and achievdds possibly
the first achiever of. When we take a disjunctive set of literals from the first achis’
shared preconditions, such that a set contains one preicomfdict from each first achiever,
these sets from disjunctive landmarks.

The actual method is more sophisticated than describedeadmod we refer to the re-
spective paper for a detailed description. We will providerendetail about the approach
adopted in LAMA since our solution is based on their methoderiving landmarks. The
method of finding landmarks is quite similar td1R"S, but differs in a number of funda-
mental ways. In contrast to the previous method it only @éasrisound orderings and it takes
into account disjunctive landmarks. Lik&1RPC it creates disjunctive sets of facts from the
preconditions of first achievers of a landmdlsuch that a set contains one precondition
fact from each first achiever &. In order for these preconditions to be considered land-
marks it is required that they stem from the same predicateéel; Each sef found this
way is then recorded as a disjunctive landmark and ordereeldgrnecessarily befoi.

If Bis a disjunctive landmark, then the first achiever8are all operators which achieve
one if the facts irB. Additional landmarks can be derived from doing graph asialgn the
DTGs. If every path from the value of a variable in the inis&tesy to the value in the
goal statesy needs to visit a certain node, we mark this node as a landritagkway to test
this is by removing a single node from the DTG and test if theill a path between the
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two nodes. If not this node can also be added as a landmarkwaitbe naturally ordered
after the initial value.

5.3.2 Search with landmarks

After finding landmarks, there is still a question of how tdizg these as good as possi-
ble. One possible way is by constructing a landmark grapbdas the ordering between
landmarks, where the vertices are the landmarks and thes enlgaghe orderings. Because
the landmark generation process usedLfisf*”C does not guarantee to produce sound or-
derings between landmarks cycles in this graph may occumagrd to be broken. Once
this is done, we can decompose the planning task into snwll#asks which need to be
accomplished in succession. The landmarks are presentbe fanner as a disjunctive
goal and upon achieving one of the landmarks, this is reménaed the landmark graph
and the process continues until the landmark graph is empthiah point the planner is
asked to construct a plan to the actual goal from its curretés This process is called
LMm'oca[22] and results show a speedup on most domains but at thesxpé plan quality.
Unfortunately due to the fact that the landmark generatimtgss can create unsound or-
derings the search process sometimes fails to find solutim@renit previously was able to
solve problems without the landmark heuristic.

A better approach was introduced by the planner LAMA[37],ckihis based on the
Fast-Downward code base and also uses some of its heurigtesway it utilizes land-
marks is by simply counting how many more landmarks need tadhéeved before the
goal is satisfied. It also accounts for landmarks which ageiired multiple times during
search. The heuristic employed to estimate the number dfriarks which still needs to
be achieved is defined ab= n— m+ k, wheren is the total number of landmarks) is
the number of landmarks that are accepted, lagl the number of accepted landmarks
that are required again. A landmaBkis accepted in a statif it is true in that state and
all landmarks ordered befori® are accepted in the predecessor state from whialas
generated. An accepted landmark is required again if itigrne insand it is the greedy-
necessary predecessor of some landmark which is not adcepieen this heuristic it can
be simply integrated with other heuristics we have desdrtiefore, although it would not
benefit admissible-heuristics directly as adding the laar#trheuristic would make it non-
admissible. Nonetheless, experiments have shown thajratbeg this information with
other heuristics yields better results[36]. LAMA was adijuthe winner during the ICAPS
'08 competition for the “Sequential satisficing track” arildearning tracks domains”.

54 STellLa

Along with VHPOP another planner called STelLLa[39] entetied IPC-3 competition.
This planner tries to gain better planning speedups by dorimg a general technique
of decomposing a planning problefs, sy, O) into several subproblems of the forif=
(1S_1,1G;i,0), wherelG; is an intermediate goal an&_1 is the state reached by solving
the previous subproblem. The first subproble®y = sp and the last subproblen@,, = s
These subproblems are solved by any planner to obtain éptarioi1,0;2,...,0;j) and the



final plan can be found by concatenating the plBnsP = PioP,o---oP,. The idea is
that solving these subproblems in sequence should be d¢haiesolving the problem as
a whole. Previous work has identified two ways of splittingralglem up into subprob-
lems, for example SGPIlan[7] tries to solve every goal atotependently and later ‘glue’
them together, this work was later extended in TSGP[9]. Tdmoohposition technique in
STel La, however, does not split the planning problem “eaity’ but rather ‘horizontally’.
Which means that instead of asking the planner to solve thé gjate, the planner must
solve a sequence subproblems and use their solution to thalwveext subproblem until the
final goal state is reached.

One of the nice features of STeLLa is that it provides a geffiermework for problem
decomposition which can be applied to virtually any planhetheir experiments STelLLa
has been tested with FF, LPG, and VHPOP as the base planrbe ¢ase of VHPOP ex-
perimental results show considerable speedups in seadcteadered previously unsolved
problems solvable in the same time span.

5.4.1 Constructing the subproblems

In order to construct the set of subproblems STelLLa useatidmarks generation process
from LMRPH22]. Given a landmark generation gra@h= {V,E}, where every vertex ¢ V
represents a landmark and every edgek is labeled with the type of ordering between its
two vertexes:e = {from,to,edgetypé, a subproblem is generated such that the following
two properties hold:

e Consistency property: All literals in G must be consistent with each othérl’ €
IG : —inconsistendl,1").

e Ordering property: A literal belongs to arlG if and only if all of its predecessor
nodes in the&5(V, E) have been included in a previous IG befbre| € IG; : V|, inV :
"<l —=I"elGjAj<i.

Two literals are inconsistent if they cannot simultanepuslexist in the same correct
planning state. STelLa uses the inconsistent functionigeavby the TIM API[13] to
approximate this relationship. Based on these relatipgsand the ordering between the
landmarks the following ‘active interference’ rules ardinled by STelLa to compute the
subproblems. Given three consecuti@s: IG;_1,I1G;j,|1G;j,1, and letl andl’ be two land-
marks the belong t&:

1. If | belongs tolG;_1, | will be propagated tdG;, until a successor literal i is
visited through a necessary order.

2. If two inconsistent landmarksand|’ belong tolG; andl’ is a propagated literal,is
delayed tdGj 1.

3. If two inconsistent landmarkisand!’ belong tolG;, and there is a literdl, in the
previouslG such that, —, I/, thenl is delayed tdG; 1.
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4. If two landmarkd andl’ belong tolG;, and there is a landmatK so thatl” —p I’
andl” is inconsistent with, thenl is delayed because the plan should achléfiest
in order not to delet&’ with |.

Every subproblem is now constructed as follows:

1. First, an approximation ti6s; is computed with all the landmarkshat have a prede-
cessor literal’ € IG;_1 : IG; = {l e G/3 €IG;_1 : " <I}.

2. Secondly, this first approximation is refined in three atag
a) Delay landmarkkthat have a predecessor litekaih G such that’ has not been
visited (Ordering property).
b) Propagate the corresponding literals friggy 4 to 1G;.
¢) Check remaining interference rules between the liténalS;.
A special case is applied to literals frog Once a literah € sy has been included in

anlG, g will be propagated unless an inconsistent landmark is attoidee saméG. In this
caseg will be delayed to the ladt.



Chapter 6

Integrating landmarks in VHPOP

Having discussed the most recent advances in both partal gtanning and state-space
planning, we will now proceed to discuss our contributiorpatial order planning which
follows in the footsteps of RePOP and VHPOP. As we have semh, duccessfully inte-
grated techniques adopted from advances in state-spau@miao gain a more competitive
advantage. The most recent advance in planning is the sfictadaptation of landmarks in
planning to gain better performance both speed and quaiig,\sis exemplified by LAMA.
Earlier work on integrating landmarks in FF, in which therpiar would only see the land-
marks closest to him effectively splitting the planning fgemm in vertical slices to work
though also showed good results speed wise but took a biggenthe quality of the
produced plans.

In this work we will adopt both approaches in the context atiphorder planning and
see if in doing so we can raise the competitiveness levelefatest partial order planner,
VHPOP. The reason why we choose VHPOP is for a couple of readwst of all it is
the last partial order planner to have competed in a intemeait planning competition, in
2003, so we have a good benchmarks set the planner will woskioch will serve as a
good reference point. Secondly, the program is designedrndla multiple flaw and plan
selection heuristics which made it easily adaptable to eeds.

In the following sections we first describe our approach tegrate landmarks into
VHPOP by adopting the previously described ‘FF approachictv means that landmarks
will not solely function as part of the heuristic functionytivather serve to slice the planning
problem of in vertical slices which need to be solved in sesit. UnlikeLM'°%@ which is
quite straightforward we will see that guiding the plannéthvthis approach needs a little
more work when applied to partial order planning. Next, wedhe ‘LAMA approach’ by
using the landmarks solely as an heuristic guidance on t&H&OP’s ordinary heuristic
and report on the found results. Finally we discuss some télcaniques we found during
our research and which can help to prune the search spacePOYPHIsing landmarks and

information derived from th&AS representation and we discuss a novel way to do flaw

selection based on the ADCG heuristic[27].
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6.1 FF approach

In this section we describe the method employed to split @opllanning problem into
subproblems, using landmarks. These are also used in theawton in which we present
our novel flaw selection strategy. One of the earliest paperandmarks detailed a way
to split planning problems using landmarkd\V{'°¢@[22]), by successively planning to the
“nearest” landmark until all are visited. We propose a dédfé approach. First we discuss
the process we used to derive landmarks and the modificatiemsake in comparison with
earlier approaches. Next we explain how lwedmark generation grapis used to split the
problem up into consecutive planning problems and finallyrep®rt on the heuristics used
and results obtained.

6.1.1 Deriving landmarks

Wheread M'°@ successively plans to the “nearest” landmark, in VHPOP weatdave
the same option as we lack an explicit state definition. Eunttore, landmark orderings
derived using thé. MRPC algorithm are not sound which can distort the planning msce
and can cause the planning process to fail on a task, evegttttbe underlying planning
process is complete.

For this reason we use the landmark generation proceseddrwRichter, Helmert and
Wesphal[36] which produces sound orderings, leading tdshplans and an improved suc-
cess rate, compared kMRCP, when applied to the same planners. The process we use to
generate the landmark layers is quite similar to the appraeaopted by STelLLa, but does
very in some significant ways. First of all, we also considsjuactive landmarks and em-
ploy a different technique to handle inconsistencies withhdmark layers. Where STelLLa
uses a preprocessing algorithm to make sure every subpratales not contain inconsistent
landmarks we allow for inconsistent landmarks and let tlepér decide which landmark
it wishes to utilize. Furthermore, where STelLLa only coesida general framework which
can be applied to any planner we focus solely on partial goiemers and in effect derive
more techniques based on landmarks than discussed in tkeow@TelLLa.

6.1.2 Determining the ordering of landmarks

As discussed before, because VHPOP lacks an explicit sptegentation it is not clear
how we adopt the.M'°@ approach by planning to the “nearest” landmark. For exam-
ple, consider the driverlog domain and suppose that themarkl closest to a goal is
(at packagé s1) and the goal isat packagé s2). From a planning perspective it is unclear
how this problem can be solved, lacking information regagdhe location of the trucks and
potential drivers. All we know about the other variableshisit goal value, an interesting
approach — which is not pursued here — might be to inverse beopditions and effects
of actions. This approach would mimic th#1'°@ approach closer than the approach we
pursued, we leave this for future work.

In our approach we insist that every landmark layer is a fdigcribed state, which
means that for every variable a value is defined. When a laridgeneration graph is
constructed we notice that several types of orderings camrdietween landmarks, recall:



e Natual orderingA — B, iff in each operator sequence wh@és true, at timd, A is
true at some timg < i.

e Necessary orderingd —n, B, iff in each operator sequence wh&és true, at timd,
Alis true at timd — 1.

e Greedy-necessary orderings —gn B, iff every operator sequence wheeis first
added at time, Ais true at tima — 1.

e Reasonable orderingA —, B, iff starting from any state wherB was achieved
before A:B must be true at some point later than the achievemeft afid one must
deleteB on the way toA.

e Obedient reasonable ordering: —, B, iff given a set of reasonable ordering con-
straintsO, if a planner commits to obey all the ordering constraitn©jm —, B
arises because of this.

Given a landmark generation gragh= {L,E}, where every vertek € L represents a
landmark and every edgee E is labelled with the type of ordering between its two vertexe
e = {from,to,edgetypé. The landmark generation graph can be split up into separate
landmark layers by iteratively grouping all landmarks thave no incoming edges. We
start by labelling all landmarks as active. The first set nfilaarks is the initial state. After
every iteration we label all discovered landmarks as imacind repeat the procedure, until
all landmarks have been marked as inactive. For every laridmea denote the iteration
number at which it was made inactive, which we refer to asaper numberthis procedure
ensures that, if landmaitl is ordered beforé& in the landmark generation graph, then the
layer number of; < I».

This process does not guarantee a correct ordering of thessabch variable will take,
it will only create a correct ordering for the explicit ordeys which are defined in the
landmark generation graph. Unfortunately, finding all laxagks and their ordering is a
PSPACE-complete problem[22], so we cannot hope to ever firb@ect orderings. Note
that this means that we can have multiple values for the samieble in a single layer. How
we deal with this issue will be explained in the next sectidrere we explain the process
of creating the actual landmark layers. Relating this waakkoto STelLa, this process
guarantees the ordering property.

6.1.3 Creating the landmark layers

Now we propose our stratification technique. Given a set obpH landmarks and their
respectivelayer number H= (I.n) : | € L; andn € N, we divide these into consecutive
subsets(y, Xo, ..., Xn, such that every subset defines a state. The number of sigeqtsl
to maxn € N. For the remainder of the discussion we will add a notion oéationality:
because we are doing a goal-directed search, we say thatstheutbset is the goal set and
the last is the initial state.

Definition 6.1.1 A landmark I L defines a variable ¢V if
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e | is not disjunctive and the value o D,
e Iflin respect of v is inconsistent, i.8gc|Ipcia € DyAb e DyAa#b.
Definition 6.1.2 A set of landmarks L defines a stat®jfy Jjc || defines v.

Definition 6.1.3 Theminimal landmark layeat layer j is defined as the subsef. XThe
value of every state variables/V is defined as:

X = riTliP<|’i> € H|l defines v

This definition ignores all landmarks that do not define aalde, but it gives us a
stratification of the planning problem. However, the chsicepresented by disjunctive
landmarks are an essential part of planning, especially@s nesources are available to
accomplish a task. For example, given a landmark (&teroverl s1) v (at rover2 sl) it is
unclear if this landmark defines the locationroferl and / orrover2 Either one or both
could be true, but this will only become clear during the piag process and we cannot
determine this in advance. Therefore we continue to travéirs next layers searching for
the set of earliest landmarks which defines all variablesol¥ariable has been defined in
any landmark we default to the value given in the initial stahich defines a variable by
definition. For example if we look at figure 6.1 which is dedvieom driverslog problem
file pfile01 we see there is an ambiguity over which driver ¢gedrive the truck to its goal
location. Note that none of these landmarks define the Jarfab either driver, forcing us
to include the location of the drivers from the initial staieevery landmark layer.

t driverl p1-0 OR
at driverl p1-0

at packagel sO at packagez s0 at driverl s2

\Qn\ l”

t driverl sO QR
at truckl s0 emphy truckl at driver? s0

N b

driving driverl truck1OR
driving driver2 truckl

V

at truckl s1

at driverl s1

Figure 6.1: Landmark generation graph for pfileO1 - Drivgr{atoms from the initial and
goal state have been grayed out).

At a bare minimum we could opt to ignore landmarks which aréigoous in which
case we end up with thminimal landmark layesetXi, Xo, ..., Xs. The problem with this
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approach, however, is that as more objects are included lianaipg problem we see that
this ambiguity is an essential part of planning. Very raidywe see non-disjunct or even
conjunct set of landmarks which can be usefully utilizedpbtsip the planning problem

into several layers. Therefore we account for the ordenirigrination derived from the

landmark generation graph by adding a speleiatimark actionto the planning problem,

which is defined as an action which contains all landmarksckviire part of a landmark
layer but do not define a variable and are ordered before themai landmark layer as

defined above.

Definition 6.1.4 Given aminimal landmark layeiX; and the set oflayer numbersthe
landmark actiorat layer j is defined as the subset YThe set of landmarks for a state
variable ve V, for which theminimal landmark layewas found atayer number is defined
as:

Y= | (I,i) e H|I-~ defines v

i>x>]

We can now define the successiaadmark layersasz;, Z,, ..., Z,, wherez; = (X, Y;).

6.1.4 Using landmark layers in planning

Given that we have stratified the planning problems into aaud layers, we will now
describe the modifications which had to be made to the ofigilaaner to make effective
use of these landmark layers. In this section we will desctite several aspect which
needed to be modified. We will start off with the plan selettieuristic and later discuss a
novel way of doing flaw selection.

Plan selection heuristic Given a planning problen® : (A ,L,O,B), we define the first
subproblem as?; = ({aw, X1, Y1},0,{X1 < Y1,X1 < 8, Y1 < @ },0). In the previous section
we have discussed ttendmark actiorwhich serves as an extra ‘state’ from which VHPOP
can use atoms from, provided they do not interfere withrtti@mal landmark layer The
reason why we can do this is because we know fromlahdmark generation grapthat
all the values of the landmarks in thendmark actionwill occur at some point after the
values of the landmarks in the minimal landmark layer forgwariable respectively. Thus
the planner can safely assume that any value frontetigmark actions already satisfied,
given that causal links it supports does not interfere withsal links supported from the
minimal landmark layemecause of the ordering constraints. There is a catch howeve
because all landmarks added to thedmark actionare disjunctive landmarks, there is
no guarantee that all these landmarks are true, i.e. we tareai these landmarks as
conjunctive landmarks but rather force the planner to matiecéce which of atoms in the
disjunctive landmarks are true. This highlights why we il theminimal landmark layer
which the planner can fall back on in case the value of a vigriednnot be derived from
any of the disjunctive landmarks.

To estimate the number of steps that must still be completad the currentandmark
layer to the initial state, we apply the FF heuristig. Sincehi uses the RPG to derive its
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heuristic it can account for the possibly inconsistent gate as it simply accumulates all
positive effects. Other heuristics likgy from Fast-Downward cannot be applied directly
because these heuristics assume that goal states do nainceaniables to which multiple
values are assigned. Although variations on these heagrisiin be constructed, e.g. by
considering the set of conflicting values independently takthg the maximum. This line
of research is not pursued in this research and is left fogiplesfuture work.

To solve the planning probler®, we use VHPOP, but with a couple of changes. Most
importantly, whenever a causal link is created from eitkgor Y;, we remove all atoms
from the corresponding action that refer to the same stafabla but assign it a differ-
ent value. This allows the planner to choose which valuesngistadisjunctive landmarks
should be assigned. To guide the planner, the FF heurigtic#culated every time values
are removed from any action. Note that in our implementatiendo not consider the dif-
ferent orderings within thtandmark action it could very well be that there is a sequence
of ordered landmarks — assigning a different value to theesaaniable — but when one
landmark is chosen all other options are no longer congidef@is is also an option to
extent upon in future work.

Once the subproblem is solved, we move on to the next sulggroblo do this, we first
remove thdandmark actionand minimal landmark layeand all causal links it supports.
Next we insert the next séX;, Y}, with the appropriate orderingsX; < Vi, X1 < 8w, Y1 <
a. } as before. After calculating the FF heuristic the procesepgated until a solution is
found for the last subproblem which is the initial state. sT$wlution is the final plan.

Flaw selection heuristic As we have seen before, partial order planners have nevar bee
known for very ‘smart’ flaw selection strategies, earlierkvocused a lot on the order of
typesof flaws, e.g. solve unsafe links before treating open cardit etc. Pollack, Joslin,
and Paolucci[34] came up with a slightly more sophisticdlaad select strategy which takes
the actual estimated cost into consideration and arguédlioasing to select the flaw with
the minimal repair valu¢o,n,s}LC yield better results than previous developed strategies
in a selected set of benchmarks. In this section we will preaenew approach to flaw
selection which will not only look at the type and cost of agyiflaw as previous methods
have, but rather analysis how a particular flaw is relatetiéaést of the problem and from
this analysis select the most constrained flaw for valudtish

To do this we make use of the previous discussed additiyerdisve casual graph
heuristic (ADCG). The idea is that instead of only lookingla cost and type of a given
flaw we place the flaw in a broader context and check how thaarirelated to the flaw
is constrained in the planning problem. We do this by chegkire links in the Causal
Graph to estimate how constrained a variable is, based onutinder of incoming edges.
In the original Causal Graph heuristic cycles needed to bkelr in order to determine the
order in which the variables should be evaluated. This in gave a particular ordering
on the variables, from least to most constrained. In thealitee a common technique in,
for example, CSP, is to assign the most constrained vasdinkt so in case a dead end is
detected it can be pruned as quick as possible. We want tg tppkame principle to the
flaw selection strategy in partial order planners.

While the following method might not be applicable in mosamiers it fits very well



with planners which use a stratifying approach[8, 39], beeahe subproblems between the
landmark layers are relatively small in scope compareddonthole problem. We observe
that, in order to solve these subproblems, only a small $udfsal operators needs to be
considered. For example if we have a landmark layer withradks occupied by a driver
and packages loaded in various trucks, we only need to camdiive actions to get the
trucks to the drop-off points for the packages and do not neexsbnsider the actions for
getting the drivers and packages into the trucks. In othedsydf we place this discussion in
the context of the Causal Graph heuristic, instead of bnggdycles by checking the number
of incoming edges we can remove cycles first by checking waéations are relevant.

In order to estimate the operators that will be relevant ébrieg a subproblem between
two landmark layers we make use of the ADCG heuristic. Ther $light modification
made to the actual heuristic, because we can have a sitwatiere a variable starts with
multiple values assigned to it. For simplicity we assume #gllapossible start values are
true, so the pathfinding algorithm is modified to be able taecwjih this. While searching
for the shortest path per goal atom we keep track of the oprsrapplied in the process and
store all applied operators per subgoal. We store the s#itaferators which correspond to
the shortest path according to the ADCG heuristic. Next weegdize the operators found
by this process by allowing the arguments of the operatoleteeplaced with any object
which shares the same DTG structure. That is to say, anytdhgcshares the same values
and transitions can replace an existing argument value.

Definition 6.1.5 A variable ve V is the defining value fora DTG d, if
o [d|>2.
e For every node, v is one of its arguments.
e For every transition, v is one of its parameters.

e There is no other v V |w # v for which the above hold.

Definition 6.1.6 A DTG d, is isometric with DTG ¢, if all of the following conditions hold:
e |di] = |da],

e Every node in gdhas an equivalent node in dor which the proposition is the same
and the terms are all equal except for the defining variabtebfith DTGs, and vice
versa.

e Every transition in @ has an equivalent transition impdor which the preconditions
are the same, equal except for the defining variable for bakEBand for which the
from andto nodes are isometric, as defined above, and vice versa.

For example, if a solution is found which has at least oneedaietion we replace that
one action with all drive actions for all trucks and driverkigh effectively share the same
range of states they can be in. The reason for doing this steecause in the real plan we
might use any combination of values for the variables asraegits and we cannot derive
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this information directly from the heuristic. This is esfly relevant when using the

ADCG heuristic, because it assumes goal independence dintbtvsee the advantage of
using multiple resources at the same time, though this niighvital in solving the problem

at hand. So we make a very optimistic assumption by assurhaigtl variables that share
the same range of states and transitions could be used.

Once we have this extended set of operators, we construaisaOaraph and will only
consider this identified subset of all possible operatoremithis point we use the normal
cycle breaking algorithm of Fast-Downward[17] to find theafimariable ordering that we
use for our flaw selection algorithm. Given a set of flaws tood®ofrom, we only consider
the subset that is — according to the presented flaw selestiiategy — most constrained.
To distinguish between the most constrained flaws, we us#aiveselection strategies of
VHPOP.

6.1.5 Example

As an example of how all of the above comes together we wid thk 3rd problem from the
Driverlog domain (pfile03) and see how this problem is decasep into landmark layers
and how the flaw selection strategy works out on every layer.

Landmark layers First, we detail the landmark layers as they are construbtethe
landmark generation process. The landmark generatiom gsagepicted in Figure 6.2.
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Figure 6.2: Landmark generation graph for pfile03 - Drivgrlo

Following the landmark layer generation process as outlatmve will cut the problem
up into 5 layers as depicted in Table 6.1.

The last layer represents the initial state and the firstrltye goal state. The layers
show a nice progression towards the goal state. First terdrboard the trucks, next the
packages are loaded and finally the packages are deliveeettutks are at the right place



Layer driverl | driver2 | truckl | truck2 | packagel| package2 package3 | package4
Oth Layer | - at s2 atsl |ats2 | atsl atsl ats2 -

1st Layer | 1 T T 1 in trucklv 1 1

in truck2
2nd Layer| 1 1 at sO 1 1 intrucklv | 7
in truck2
3rd Layer | driving truckly | T 1 1 1 1 1
driving truck2
4th Layer | atsl \ at sO atsl |ats2 | atsO ats0 atsl atsl

Table 6.1: Stratification of pfileO3 for Driverlog

Layer transition
Oth to 1st Layer

Necessary operators
Unload, Drive, Disembark

Ordering (least to most constraint)
Drivers — Trucks— Packages

1st to 2nd Layer| Load Driverl — Packages— Truck — Driver2
2nd to 3rd Layer| Load, Drive Drivers— Truck — Package
3rd to 4rd Layer | Load, Drive Packages— Trucks— Drivers

Table 6.2: Variable ordering of pfile03 for Driverlog

and so is the driver. One of the challenges in Driverlog frbwa planner’s perspective is
to recognise that a truck will not move until there is a driireit and packages cannot be
delivered without a truck able to pick them up and delivemhé&so, when we look at the
goals, we see that there is an order in which the problem nasblyed: first we need to
deliver the packages, then we need to drop the trucks atghtladcation and last we need
to get the drivers to where they belong.

Flaw selection strategy Interestingly, when we examine the orderings constraietved
from our flaw selection heuristic we see an interesting pattéhen the planner traverses
through the landmark layers. We will not show the actualdearogress, but rather com-
ment on the actions which the ADCG heuristic deems necessagive the next landmark
layer upon solving the current one. The results are depiotédble 6.2.

As we can see from this table, our flaw selection strategyadlgtarrives at the same
ordering as we would hope for, to get from the goal layer tofitst landmark layer, by
first solving the most constrained variables (the packagiesh place the trucks at the right
locations and finally get the drivers to where they need to\Wé&en we look at the next
layer where a subset of the packages need to be loaded, weasdleet packages variables
are now less constrained than the variables for trucks,eswhil remain stationary. The
next layer is concerned with getting the first subset of pgekanto the trucks and, due to
the drive actions, the priority switches back again. Finallhen we get to the initial state,
we see that the constraints ordering is completely opp#frsite the previous layer, as the
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drivers are now the most constrained. This is because wetoeget the drivers into the
trucks and the trucks at the right locations to pick up the $isbset of packages.

Although this is a particularly good example, where this flelection strategy works
out very well, this need not necessarily always be the casaeMer, for the examples we
have tested, we get consistently good results.

6.1.6 Search process

Having discussed the various heuristics we use in our ptaammthe method of stratifying
the landmark generation graph inemdmark layerswe will now explain the search pro-
cess. We did not change the VHPOP searching algorithm, satad heuristics and flaw
selection strategy as detailed above. The major changetismi now apply VHPOP to
smaller subproblems and force it to solve the problem bylitagla sequence of subprob-
lems.

The general outline of how to solve a problem is defined aserga& planning prob-
lemP: (A/L,O,B), we define the first subproblem & = ({aw., X1,Y1},0,{X1 < Y1,X1 <
30,Y1 < 8w },0). To estimate the number of steps that must still be completed the
currentlandmark layerto the initial state, we apply the FF heurislig. Sincehg uses the
RPG to derive its heuristic it can account for the possibopirsistent goal state as it simply
accumulates all positive effects. To solve this problem w&e VHPOP, but with a couple
of changes. Most importantly, whenever a causal link istet&rom eitherX; or Y;, we
remove all atoms from the corresponding action that refénécsame state variable but as-
sign it a different value. This allows the planner to chooséctvvalues amongst disjunctive
landmarks should be assigned. To guide the planner, the E#stie is recalculated every
time values are removed from any action.

Once the subproblem is solved, we move on to the next sulgroblo do this, we first
remove thdandmark actionandminimal landmark layemand all causal links it supports.
Next we insert the next séiX;, Y}, with the appropriate orderingsX < Vi, X1 < 8w, Y1 <
a. } as before. After calculating the FF heuristic the procesepgated until a solution is
found for the last subproblem which is the initial state. sT$wlution is the final plan.

One thing we tried to do early on in this project is to allow galdinks to persist over
layers if the causal link in question was ‘deeper linked'ntlae nextandmark layer For
example, if a causal link is made between an atom from fromirtiti@l layer to the goal
layer, we would not break this link when advancing througheta and only remove those
causal links which were actually linked to the nlxtdmark layer However, we soon found
out that this policy severely drags the planner down as @risdd to stick to a decision early
on in the planning process which may prove to be erroneodishéylanner might only find
out a number of landmark layers later at which time it will dee spend a severe amount
of time to backtracking to resolve this mistake. To avoid #ituation we remove all causal
links made to any of the actions from tlendmark layer

Additionally, when we find a solution forlandmark layemwhich is not the initial state,
we allow for unsafe links to persist if such a flaw can be solegdooth demoting and
promoting the threatening action. This adheres to the k@smitment principle because
we do not force the planner to make an arbitrary decisiondiber leave the question open



until we are forced to resolve it.

6.2 LAMA approach

A more recently adopted approach has been the direction LAsEAtaken, not using land-
marks directly in the search procesd.84°°@ did, but incorporating them into the heuristic
function. LAMA takes the approach of counting the numberasidmarks that need to be
accepted, plus the ones that are required again. In thieseee will discuss how we have
adapted this method and applied it to guide the heuristicHiP@P.

The easiest way to integrate counting from LAMA is by cougtthe number of land-
marks that need to be achieved in total and decrease thisetuenbry time we make a
causal link that supports a previously unsupported lankim@ao the heuristic function be-
comes:| = n—m, wheren is the total number of landmarks amdalis the distinct set of
landmarks which have an achiever. This way of incorporakmgimarks in the heuristic
function, is simplistic as it takes neither the ordering tiw@ need to reachieve landmarks
into account.

LAMA defines a landmark that must be reachieved as: “An aeckf#ndmark ige-

quired againif it is not true insand it is the greedy-necessary predecessor of some landmark

which is not accepted”. In order to calculate this part oftibaristic, LAMA needs to keep
track of how landmarks have been achieved, thereby keepengrtlering of the landmarks
as part of the heuristic. The latter aspect is harder to boidHPOP since we are not
required to specify any particular ordering between differsteps in the plan. However, it
is possible to check whether the ordering is satisfied betvieedmarks by checking if it
is possible to impose a certain ordering between steps imtialgalan, or to wait until an
ordering constraint is imposed before checking this cairgtr In our implementation we
decided to go for the latter option and only consider a larrfraahieved is all parents are
also accepted and explicitly ordered before this landm@itkce we plan for the goal back-
wards to the initial state, so we consider the landmarks lwvhieke up the goal accepted
and from there work our way backwards.

To check if a particular landmark needs to be reachieved,ontbalfollowing: for every
landmark which has been achieved we check if it has any (greztessary children it
depends on. If this is the case we add all these dependencéekst and, after establish-
ing which landmarks have been achieved, we run a post praolcasshecks whether, for
every (greedy-)necessary dependency, there is at leaghahés satisfied or whether all
of them are satisfied for the greedy-necessary and necesshanngs respectively. so the
heuristic function now become$:= n— m+ k, wherek is the number of landmarks that
need to be reachieved. This function is quite similar to theristic used by LAMA and, as
with LAMA, we will use this approach on top of the existing histic function utilized by
VHPOP.

41



42

6.3 Additional techniques

In addition to considering how to use landmarks to increasgerformance of VHPOP we
also experimented with other techniques. In this sectiomyiwe a short overview of these
techniques and how we applied them to VHPOP.

6.3.1 Pruning by looking at (greedy-)necessary landmarks

When looking closely at the definition of (greedy-)necegdandmarks we notice that it
defines a set of criteria which must be met before a landmarkbeaachieved. In other
words it limits the number of operators which can be appleesipport the given landmark.
If we know that every operator sequence whBres (for the first time) added at timie
Ais true at timei — 1, then we can prune all operators which can achiwehich have
a different value for the variable associated withthan A. e.g. if we have a necessary
landmark(at truckl s1) —p, (driving driverl truckl), than we can prune any operator which
has(driving driverl truckl) as an effect but does not hgat truckl sl) as its precondition.
Assuming the ordering between landmarks is sound, this eameffective way of pruning.
Unfortunately, necessary landmark orderings are very gaeedy-necessary landmarks
are more common especially in domains like rovers. Howgueming actions based on
greedy-necessary orderings can lead to an incomplete gplamwe might prune away
necessary actions. In our experiments it turned out thatobion sometimes caused slight
improvements in planning, but in the majority of the casesaiised the planner to fail to
find a solution where it previously did, so we disabled thisapfrom our planner.

6.3.2 Solve earliest flaws first

When we look for open conditions to solve, it might be wortile/to only consider the
earliest set of flaws, i.e. the set of open conditions, peialbr, which are all ordered
as early as possible according to the landmark generataphgrFor example, if we are
looking for a way to drop a package at some location, but we Ima¢ yet worked out how
the package will be picked up, it might be worthwhile to elshiathis first, before heading
to the drop-off location. We found that this improved thenpiing process in all cases we
tested it on.

6.3.3 Prune unsafe states as quick as possible

We noticed that the original planner sometimes allows ferganeration of plans in which
an unsafe link is unsolvable. Although this unsafe link witentually be resolved, it might
take several refinement steps before the planner realizesitot resolve the threat. So
whenever we encounter an unsafe link, we first test whetlditectly solvable by either

demoting or promoting. Separation is not an option in ouecsismce we only use grounded
actions in our current planner.



6.3.4 Goal hiding

When using landmarks to split the problem into subproblerasexperimented with not
showing all the goals to the plannarpriori but rather only letting it solve the goals for
which there is no landmark in the landmark action relatechtotame variable. In doing
so, a goal atong that is a value of state variables visible on landmark layexif g ¢ Y.
Thus, we force the planner to only work on goals for which thle® in the current landmark
layer can be directly established because the value is définghat layer, or there are no
disjunctive landmarks between the current layer and therlsghere a value is defined.
Once a goal has been unveiled to the planner it remains @iBitan that point on.

We explore this idea because disjunctive landmarks thatodalefine a variable are
usually used to accomplish something else, other than thalagoal values for the variables
involved. For example a landmark lika truckl slv at truck2 slis not included to get
either truck to the goal state but rather to accomplish addndmark first. Thus, we first
focus on the variables for which we have a value defined in tineent landmark layer, or
know that no intermediate steps are defined in subsequeatthkk layers, and experiments
have shown that this vastly decreases the search spacedimated to investigate.
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Chapter 7

Results

Now that we have discussed all our methods for integratiate sif the art planning tech-
nology in a partial order planning context we will now evdkighese strategies. In order
to do so we have taken all the IPC-3 STRIPS domains: Depotsefog, ZenoTravel,
Satellite, Rovers, and FreeCell and tested our configuratimainst the original VHPOP.
We have chosen to take the latest possible version of VHP&Bon 3.0 (Beta), released
on October 7, 2005. This is the same version we used as ougefrark. One thing we
want to stress is that our current code is not optimized feedp but rather tests whether
the number of visited and generated plans are decreased Ha#dr heuristic guidance. A
lot of prototyping went on during the construction of abovethods and no time was left to
do any optimization of the code. For example our ADCG heigristes a dijkstra algorithm
where an A* algorithm would be much faster, we calculate tiiper of landmarks which
are achieved or need to be reachieved every time a plan isrgotesl instead of caching
this information and only update it when necessary.

All experiments were run on a Intel Pentium 4 processor mgon 3.40GHz with 1GB
of memory and we cut of the search after 10 minutes of searchin

7.1 Original VHPOP

We start of by listing the results of the unmodified VHPOP pkrwith the above configu-
ration. We use the same settings as were used during the tB@y3etition. The results are
listed in tables 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6. We note\VRROP is quite strong on most
domains except the Depots and FreeCell domains where ordyglecof solutions could

be found by VHPOP.
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Problem| Plans visited| Plans generated Dead ends #Steps| Time (ms)

pfile01 | 206 667 24 10 20

pfile02 | 69336 194537 14105 15 11189
pfile03 | - - - - -
pfile04 | - - - - -
pfile05 | - - - - -
pfile06 | - - - -
pfile07 | 66662 283183 12230 25 29094
pfile08 | - - - - -
pfile09 | - - - - -
pfilel0 | 81382 641195 14814 26 40742
pfilell | - - - - -
pfilel2 | - - - - -
pfilel3 | 283927 957550 70261 25 61032
pfilel4 | - - - - -
pfilel5 | - - - - -
pfilelé | 704852 5443651 143872 28 467973
pfilel7 | - - - - -
pfilel8 | - - - - -
pfilel9 | - - - - -

pfile20 | - - - - -

Table 7.1: Depots results - VHPOP

7.2 FF approach

We first turn to the FF approach and discuss the results bélggvshould note however
that the current implementation still has some bugs, sonestit fails to start planning and
simply announces that no solution was found. We have yetatk tdown the source of this
bug, to indicate when this happens we denote a * in the reshik t

7.2.1 Depots domain

Unfortunately we were unable to solve any of the depots probl

7.2.2 Driverlog domain

The results of the driverlog domain are listed in table 7.7hewWwe compare this table
to the original VHPOP we might get a little discouraged. As gioblems become more
difficult the search space considered by the planner blow$ag of this can be attributed



Problem| Plans visited| Plans generated Dead endg #Steps| Time (ms)
pfileO1 | 16 57 0 8 0
pfile02 | 10950 20533 2122 21 616
pfile03 | 65 184 65 13 4
pfile04 | 29432 65673 5562 16 2112
pfile05 | 541 1547 81 19 40
pfile06 | 63 253 5 11 8
pfile07 | 79 357 5 15 16
pfile08 | 3699 10015 660 25 360
pfile09 | 241 836 34 27 40
pfilel0 | 142 611 15 18 32
pfilell | 12600 47941 2577 23 1312
pfilel2 | - - - - -
pfilel3 | 8682 33141 1900 29 1484
pfilel4 | 107311 401125 22731 41 22413
pfilel5 | 3971 27063 784 44 1344
pfilele | - - - - -
pfilel7 | - - - - -
pfilel8 | - - - - -
pfilel9 | - - - - -
pfile20 | - - - - -

Table 7.2: DriverLog results - VHPOP

to the fact that the broken causal links upon achieving elargmark layer are broken and
need to be achieved again, but this is not the main reason \elsee these results. When
we analyzed the behaviour of our planner and how it travettseadigh the landmark layers
we see a critical flaw occurring at every single instance e/imeore drivers and trucks are
available to deliver the packages; Recall that we force lener to make a decision when
faced with a disjunctive landmark, for example when facethi choice of a number of
trucks to pick up a particular package, it has very littleoinfiation to go on to determine
how hard it will be to get a particular truck at that locatitie same goes for getting a driver
into a truck. From the planner’s point of view it can make ukany available option from
the landmarks which are not in the closed list and is unabtiscriminate between them
as the rest of the planning problem will only become appamdm@n advancing to the next
layer.

In short the planner is forced at higher layers (i.e. clogeh¢ goal) to make a decision
regarding the distribution of resources and how to make @iseem, while this might ul-
timately prove to be a very bad distribution but the planres ho way of knowing this in
advance. So while it might decide that driva8 will be driving truckl, it might be that in
order to get to this state we need to execute a lot of actionike whthe initial state there
might be a truck which share3’s location and might be a more suitable choice. A couple
of solutions are available to this problem, we come backeatin the conclusions.
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Problem| Plans visited| Plans generated Dead ends #Steps| Time (ms)
pfileO1l | 6 73 0 1 4
pfile02 | 1847 15101 407 6 248
pfile03 | 30 281 2 6 20
pfile04 | 3149 16581 664 8 412
pfile05 | 1041 8725 195 12 252
pfile06 | 1490 16678 282 12 448
pfile07 | 23513 207784 4512 16 6960
pfile08 | 7549 52456 1454 13 2160
pfile09 | 2644 30422 492 23 1664
pfilel0 | 4151 59890 832 24 2748
pfilell | 16505 256396 3461 16 8672
pfilel2 | 8951 134851 1797 23 6800
pfilel3 | 33793 350983 6687 27 22969
pfilel4 | 60904 1566157 12091 35 107567
pfilel5 | 223588 5305991 36994 41 558375
pfilele | - - - - -
pfilel7 | - - - - -
pfilel8 | - - - - -
pfilel9 | - - - - -
pfile20 | - - - - -

Table 7.3: ZenoTravel results - VHPOP

In table 7.8 we see the results when we disable the ADCG higuiascompute the flaw
orderings. We can clearly see that using the ADCG heurigtiebts the overall planning
process.

7.2.3 Zeno Travel and Satellite domains

Results are listed in table 7.9 and 7.11 respectively. Welsgtethere is a major hit on
the performance compared to the original. Not only do weesddgs problems, but the
problems we do solve tend to explore a larger search spacgiemdavorse plans quality
wise. When analyzing the behaviour of the planner we notstede abnormalities, for the
satellite domain we took a look at the 2nd problem file andalisced that the FF heuristic
used to calculate the heuristic from the initial state tolémelmark layers would sometimes
give an inconsistent heuristic value. In this case layertlagdeuristic value of four, while
layer 2 got an heuristic value of six. This caused the platmé&vour plans which were in
the 1st layer, rather than plans which already advancecetedbond layer.

The other problem we found is that the ADCG algorithm we usetktermine the order
in which open condition flaws were solved did not always poadbetter results with these



Problem| Plans visited| Plans generated Dead endg #Steps| Time (ms)
pfileO1 | 34 101 3 9 0
pfile02 | 62 204 7 13 4
pfile03 | 46 159 3 11 4
pfile04 | 218 695 36 22 16
pfile05 | 82 361 9 16 12
pfile06 | 783 2530 135 21 48
pfile07 | 165 697 22 23 28
pfile08 | 166 854 22 26 40
pfile09 | 1443 6593 276 33 248
pfilel0 | 762 4214 99 32 176
pfilell | 129 985 9 33 76
pfilel2 | 1324 8948 215 43 512
pfilel3 | - - - - -
pfilel4 | 1126 8303 180 45 480
pfilel5 | 1595 12797 249 54 1168
pfilele | 1134 9472 173 47 796
pfilel7 | - - - - -
pfilel8 | 582 4716 63 35 240
pfilel9 | - - - - -
pfile20 | - - - - -

Table 7.4: Satellite results - VHPOP

domains. The results are listed in tables 7.10 and 7.12.04gh it is a very small set of

problem we can compare it with it seems that problems frons#étellite domain are better
suited for this heuristic. Additional research will havestmw in which cases the new flaw
selection strategy is most useful.

7.2.4 Rovers domain

The rovers domain is quite a nice domain in the sense that @f laindmarks can easily
be found. It is not surprising than, that this approach i€ dblsolve the most problems
in this domain as listed in table 7.13. However, again we baethe investigated search
space becomes larger with the more difficult problems. Agairen we remove the variable
ordering restriction we see better results in some probkemasworse in other as listed in
table 7.14.
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Problem| Plans visited| Plans generated Dead ends #Steps| Time (ms)
pfile01 | 474 678 77 10 12
pfile02 | 77 113 1 8 4
pfile03 | 177 241 30 12 4
pfile04 | 72 107 1 8 8
pfile05 | 1960 2645 308 23 88
pfile06 | 807128 1052507 186998 38 84849
pfile07 | 2315 4420 252 18 164
pfile08 | 7653 13416 1043 26 724
pfile09 | 9931 14805 1848 34 880
pfilel0 | 114100 213345 22175 35 15649
pfilell | 51148 71259 11642 33 4780
pfilel2 | 5024 10810 720 22 460
pfilel3 | - - - - -
pfilel4 | 8492 13842 1479 30 980
pfilel5 | - - - - -
pfilele | - - - - -
pfilel7 | 18509 32703 3399 51 4672
pfilel8 | - - - - -
pfilel9 | - - - - -
pfile20 | - - - - -

Table 7.5: Rovers results - VHPOP

7.2.5 FreeCell domain

Unfortunately we were unable to produce any results on the ¢ell domain due to the
aforementioned bug.

7.3 LAMA approach

Having discussed the FF approach we now turn to the LAMA aggrovhich uses the
landmark information as part of the heuristic.

7.3.1 Depots domain

The depots domain is a hard one to tackle for VHPOP and whid=thapproach did not

produce any results we see that the LAMA approach does bkttirese results we see that
it visits and generates significantly less plans for all prois and runs into far less dead
ends. Surprisingly we also see that the plan quality nevgradies and in some cases even



Problem| Plans visited| Plans generated Dead endg #Steps| Time (ms)
pfileO1 | 7216 52842 1526 11 2716

pfile02 | - - - - -
pfile03 | - - - - -
pfile04 | - - - - -
pfile05 | - - - - -
pfile06 | - - - - -
pfile07 | - - - - -
pfile08 | - - - - -
pfile09 | - - - - -
pfilel0 | - - - - -
pfilell | - - - - -
pfilel2 | - - - - -
pfilel3 | - - - - -
pfilel4 | - - - - -
pfilel5 | - - - - -
pfilele | - - - - -
pfilel7 | - - - - -
pfilel8 | - - - - -
pfilel9 | - - - - -
pfile20 | - - - - -

Table 7.6: FreeCell results - VHPOP

gets better than the original. While we were not able to spfile16 we were able to tackle
pfilel7. When we inspect the reason for the failure to solMe8i we see that our program
is only able to inspect 40% of the plans the original VHPOR@tsed before running out
of memory.

7.3.2 Driverlog domain

The results for the driverlog domain are depicted in tablé.7 When we compare these
results we notice that our approach is better in nine probkland the original one in four
(excluding pfile14) so our approach does a little betteroaltiin the original VHPOP was
able to solve pfilel4 while we were not. We note that the plaaligudoes in general

remains the same, in some cases the plan quality degradesaqdly (e.g. pfile10).

7.3.3 Zeno Travel domain

The results for the zeno travel domain are listed in tabl&.7Unfortunately we were not
able to solve all problems the original VHPOP was able to landVhile advantage is
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Problem| Plans visited| Plans generated Dead ends #Steps| Time (ms)
pfile01 | 66 195 2 8 8
pfile02 | 281130 534563 3505 23 51483
pfile03 | 94 307 0 16 32
pfile04 | 109958 226141 2147 19 11381
pfile05 | 5181 16487 0 21 1650
pfile06 | 48 213 0 12 24
pfile07 | - - - - -
pfile08 | - - - - -
pfile09 | - - - - -
pfilel0 | - - - - -
pfilell | - - - - -
pfilel2 | - - - - -
pfilel3 | - - - - -
pfilel4 | - - - - -
pfilel5 | - - - - -
pfilele | - - - - -
pfilel7 | - - - - -
pfilel8 | - - - - -
pfilel9 | - - - - -
pfile20 | - - - - -
Table 7.7: Driverlog results - FF approach
Problem| Plans visited| Plans generated Dead ends #Steps| Time (ms)
pfile01 | 259 690 0 8 40
pfile02 | - - - - -
pfile03 | 477 1319 3 16 100
pfile04 | 388307 755132 7230 20 65176
pfile05 | 10134 29476 40 21 2944
pfile06 | 49 213 0 12 20

Table 7.8: Driverlog results (variable ordering disableBJ approach




Problem| Plans visited
pfileO1 | 6
pfile02 | 19723

Plans generated Dead ends #Steps| Time (ms)
61 0 2 8

133146 760 2572
pfile03 | 2034 15650 8 556
pfile04 | 4582 31240 992
pfile05 | - - - - -
pfile06 | - - - - -
pfile07 | - - - - -
pfile08 | - - - - -
pfile09 | - - - - -
pfilel0 | - - - - -
pfilell | - - - - -
pfilel2 | - - - - -
pfilel3 | - - - - -
pfilel4 | - - - - -
pfilel5 | - - - - -
pfilele | - - - - -
pfilel7 | - - - - -
pfilel8 | - - - - -
pfilel9 | - - - - -
pfile20 | - - - - -

Table 7.9: ZenoTravel results - FF approach

Problem| Plans visited
pfileO1 | 6

Plans generated Dead ends #Steps
61 0 2

Time (ms)
12

pfile02
pfile03
pfile04

15572
1354
6735

133142
12952
46665

210
0

057

10
11
15

3280
576
2368

Table 7.10: ZenoTravel results (variable ordering disdold-F approach

gained in the few cases, when we compare the number of plawesaged at the expense of
plan quality, that were solved. Overall we would have to dadhe that this approach does
not benefit VHPOP in the Zeno Travel domain.

7.3.4 Satellite domain

The results for the satellite domain are depicted in talil8.7These results are more encour-
aging than the Zeno Travel domain, interestingly we were #blsolve a problem which
the original VHPOP could not solve while on the other hand veeamnot able to solve two
problems the original one did. Overall the results favoer tAMA approach as it gener-
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Problem

Plans visited

Plans generate

] Dead ends

#Steps

Time (ms)

pfile01
pfile02
pfile03
pfile04
pfile05
pfile06
pfile0Q7
pfile08
pfile09
pfile10
pfilell
pfile12
pfilel3
pfile14
pfilel5
pfilel6
pfilel7
pfile1l8
pfile19
pfile20

45869
115749
121224

*

72

Table 7.11: Satellite results - FF approach

Problem

Plans visited

Plans generate

] Dead ends

#Steps

Time (ms)

pfile03
pfile05
pfile14
pfile16
pfilel7

1707
4247
13783
19227

4159
19432
111106
127870

180
0

113
132

17
22
52
47

228
1056

9832
13481

Table 7.12: Satellite results (variable ordering disaptdeF approach




Problem| Plans visited| Plans generated Dead endg #Steps| Time (ms)
pfile01l | 214 336 0 11 12
pfile02 | 72 152 0 9 8
pfile03 | 632 829 10 16 56
pfile04 | 416 582 2 14 28
pfile05 | 385 674 0 27 56
pfile06 | 76986 136955 322 41 19273
pfile07 | 68728 88376 1468 30 6784
pfile08 | - - - - -
pfile09 | - - - - -
pfilel0 | - - - - -
pfilell | - - - - -
pfilel2 | 3876 6809 39 24 1472
pfilel3 | - - - - -
pfilel4 | - - - - -
pfilel5 | - - - - -
pfilele | - - - - -
pfilel7 | - - - - -
pfilel8 | - - - - -
pfileld | - - - - -
pfile20 | - - - - -
Table 7.13: Rovers results - FF approach
Problem| Plans visited| Plans generated Dead ends #Steps| Time (ms)
pfileO1 | 155 235 0 11 8
pfile02 | 72 151 0 9 8
pfile03 | 356 485 4 16 36
pfile04 | 275 389 2 12 24
pfile05 | 422 719 0 23 56
pfile06 | 64693 102840 283 41 11485
pfile07 | 1066296 1481439 6038 30 104598
pfilel2 | 87305 162150 1203 24 30654

Table 7.14: Rovers results (variable ordering disabledj approach
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Problem| Plans visited| Plans generated Dead ends #Steps| Time (ms)

pfileO1 | 74 268 4 10 16

pfile02 | 17933 54949 1391 15 7324
pfile03 | - - - - -
pfile04 | - - - - -
pfile05 | - - - - -
pfile06 | - - -
pfile07 | 19385 87625 644 21 10857
pfile08 | - - - - -
pfile09 | - -
pfilel0 | 12554 93609 688 24 11109
pfilell | - - - - -
pfilel2 | - - - - -
pfilel3 | 25651 108797 2477 25 16961
pfilel4 | - - - - -
pfilel5 | - - - - -
pfilele | - - - - -
pfilel7 | 40833 222170 2883 27 57907
pfilel8 | - - - - -
pfilel9 | - - - - -

pfile20 | - - - - -

Table 7.15: Depots results - LAMA approach

ates less plans to find a solution in eleven of the fourteehlgnas both planners solve and
without sacrificing plan quality for most of these.

7.3.5 Rovers domain

The results for the rovers domain are listed in table 7.18nRhe rovers domain we are able
to extract a lot of landmarks, while in the FF approach weaalyesaw some good progress
with the LAMA approach we are able to generate results fgoralblem files in this domain.
Although the quality of the generated plans do take a hitpérdormance comparing the
inspected search space is a lot better than the original \HP@lementation for every
single problem.

7.3.6 FreeCell domain

The results for the free cell domain are listed in table 74though we cannot say to much
based on a single result, it seems that greedily trying isfgdandmarks does not work in
our favour in this particular domain.



Problem| Plans visited| Plans generated Dead endg #Steps| Time (ms)
pfileO1 | 25 74 0 7 0
pfile02 | 9816 20091 190 21 1052
pfile03 | 47 148 0 13 8
pfile04 | 15433 37805 661 20 1908
pfile05 | 559 1527 4 18 84
pfile06 | 392 1310 2 11 60
pfile07 | 58 252 0 15 16
pfile08 | 2025 5934 44 25 492
pfile09 | 149 612 0 27 48
pfilel0 | 755 2997 2 29 200
pfilell | 41884 181885 999 23 8908
pfilel2 | - - - - -
pfilel3 | 3635 17044 90 29 1500
pfilel4 | - - - - -
pfilels | 3127 26423 9 47 3192
pfilele | - - - - -
pfilel7 | - - - - -
pfilel8 | - - - - -
pfilel9 | - - - - -
pfile20 | - - - - -

Table 7.16: DriverLog results -LAMA approach
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Problem| Plans visited| Plans generated Dead ends #Steps| Time (ms)
pfileO1l | 6 73 0 1 8
pfile02 | 1598 14453 8 6 328
pfile03 | 28 279 1 6 20
pfile04 | 6429 32965 591 9 1080
pfile05 | 800 6912 0 12 260
pfile06 | 813 9694 9 15 456
pfile07 | - - - - -
pfile08 | - - - - -
pfile09 | 6501 80226 311 24 6060
pfilel0 | 3424 48773 227 27 3416
pfilell | - - - - -
pfilel2 | - - - - -
pfilel3 | - - - - -
pfilel4 | 50945 1598721 973 35 103762
pfilel5 | - - - - -
pfilele | - - - - -
pfilel7 | - - - - -
pfilel8 | - - - - -
pfilel9 | - - - - -
pfile20 | - - - - -

Table 7.17: ZenoTravel results - LAMA approach




Problem| Plans visited| Plans generated Dead endg #Steps| Time (ms)
pfile01 | 31 98 0 9 0
pfile02 | 55 197 0 13 4
pfile03 | 43 156 0 11 8
pfile04 | 8190 2382 35 22 1016
pfile05 | 73 351 0 16 16
pfile06 | 753 2511 14 21 200
pfile07 | 580 2472 2 26 164
pfile08 | 131 736 0 26 100
pfile09 | 698 4032 1 31 552
pfilel0 | 489 2988 0 34 328
pfilell | - - - - -
pfilel2 | 1153 8886 10 43 1740
pfilel3 | 1698 17022 2 60 9372
pfilel4 | 1008 8297 1 45 780
pfilel5 | 905 8893 6 51 1408
pfilel6 | 997 9452 1 47 996
pfilel7 | - - - - -
pfilel8 | - - - - -
pfileld | - - - - -
pfile20 | - - - - -
Table 7.18: Satellite results - LAMA approach
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Problem| Plans visited| Plans generated Dead ends #Steps| Time (ms)
pfileO1 | 105 179 1 12 4
pfile02 | 78 114 0 8 4
pfile03 | 100 156 0 14 8
pfile04 | 62 92 0 8 8
pfile05 | 394 537 7 25 44
pfile06 | 2957 4305 112 42 532
pfile07 | 216 337 0 18 28
pfile08 | 409 635 1 29 96
pfile09 | 3717 5619 50 38 772
pfilel0 | 1793 2928 19 37 436
pfilell | 3820 5639 112 37 888
pfilel2 | 266 496 0 25 92
pfilel3 | 9917 16883 141 52 3932
pfilel4 | 2551 4333 46 35 664
pfilel5 | 3474 6659 61 43 1136
pfilelé | 4870 4870 74 46 2160
pfilel7 | 12875 21417 149 59 5016
pfilel8 | 5592 12362 63 47 3872
pfilel9 | 14682 32557 157 73 15545
pfile20 | 67907 144963 990 99 131108

60

Table 7.19: Rovers results - LAMA approach




Problem

Plans visited

Plans generate

1 Dead ends

#Steps

Time (Ms)

pfile01
pfile02
pfile03
pfile04
pfile05
pfile06
pfile07
pfile08
pfile09
pfile10
pfilell
pfilel12
pfilel3
pfilel4
pfilel5
pfilel6
pfilel7
pfilel8
pfile19
pfile20

97700

569256

13379

55471

Table 7.20: FreeCell results - LAMA approach
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Chapter 8

Conclusion and future work

We set out to improve the competitiveness of partial ordenping by modifying the latest
version of VHPOP and include planning techniques develapedthe last decade for state-
space planning. As discussed before, one of the fundameetknesses of partial order
planners is not having an explicit state representatiorchvhimits the informativeness of
heuristics which have been developed until now. In this weektried to develop better
heuristics by exploiting landmark information. We have lexgd two different ways to
exploited landmarks, firstly we tried to change the searcicgss by splitting the problem
into consecutive subproblems and secondly by integratismtinto the heuristics. On top
of that we developed a novel flaw selection strategy whicHaitspthe CG and checks
through the ADCG heuristic which actions are relevant atliz@tthis information to do
more informed cycle breaking than the original CG heuristibis allows us to do apply a
more informed flaw selection strategy and gain better pevdoces in most domains when
applying the FF approach.

But whereas previous attempts (RePOP and VHPOP) were ab@mtosignificant im-
provements, our experimental results do not suffice to makeame claim. However, we
were able to make improvements over VHPOP with the LAMA apphoand while the FF
approach did not yield better results we did show the effenttss of our new flaw selection
strategy. Furthermore, we do believe that this work can benebed and has a lot of scope
to put partial order planning back on the map as we discugssrsection.

8.1 FF approach

We note that the results for our first approach, splittinghgogroblem, does not yield very
good results. When compared with STeLLa, we notice that \nige a worse performance
even though we use a sound ordering between the landmarke BfieLLa does not[38].

Part of this can be attributed to the fact that, upon achgedach landmark layer, some
causal links are broken and need to be achieved again, Busthot the main reason why
we see these results. When we analyze the behavior of oungslamd how it traverses
through the landmark layers we see a critical flaw occurninenmery single instance where
more resources are available to accomplish a task, e.g.ipheutirivers and trucks are
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available to deliver the packages; Recall that we force lwener to make a decision when
faced with a disjunctive landmark. So, for example, wherdawith a number of trucks
to pick up a particular package, the planner has very littfermation to use to determine
how hard it will be to get a particular truck to that locatidhge same applies for getting a
driver into a truck. From the planner’s point of view, it camke use of any available option
from the landmarks which are not in the closed list and it ighie to discriminate between
them, as the rest of the planning problem will only becomeaagt when advancing to the
next layer. The only guidance is provided by the change irhghieuristic. In short the
planner is forced at higher layers (i.e. closer to the gaathake a decision regarding the
distribution of resources and how to make use of them, wheretis too little information
to guide its search and poor choices can lead to very pocopeahce.

8.1.1 Lifted representation v.s. grounded actions

One of the lines of research we are pursuing is to allow didjua bindings of variables,
allowing the planner to avoid making a premature decisiors we have seen with the
rovers and the driverlog domains, any planning domain wharkiple resources could be
used to satisfy a property (e.g. multiple alternative teuttkdeliver a package) our planner
commits itself to a disribution of resources with little to lneuristic guidance. Only at a later
landmark layer, when the planner has already committed istahdition of the resources,
will it be able to assess whether it has chosen a good distibuAlthough most problems
we have considered do not have any dead ends, the planngoviiick and forth between
the different landmark layers as it tries other distribngiaf the resources. In effect, the
more resources there are, the larger the set of combinatimhkence the harder it is for the
planner to actually solve the problem.

Another problem we encountered was that the heuristic sdleéween successive land-
marks are not always monotonically decreasing which foticeplanner, upon reaching a
new landmark layer, to fall back immediately to a partialrpthat tries to achieve the
previous landmark layer, until all partial plans become dngugh to dominate the worse
heuristic value of the new landmark layer.

Possible ways to extend on this is either by changing theckesgorithm and do not
allow the planner to fall back on a previous landmark layehisTcould be seen as an
adaptation of enforced hill-climbing[21] but on a coarsevel. However this approach
will loose the completeness property as we cannot be suteatpartial plan found for a
landmark layer can be refined to find a solution to the nextinggor this solution would
however solve another problem we have encountered witmgis@nt heuristics from the
landmark layers to the initial state. For some problems wmdothat the heuristic value
could be higher for a landmark layer which is supposed to beetlto the initial state.
When we encountered such a situation the planner would, tgaarhing a landmark layer
with an higher heuristic function than the previous landiayer, immediately fall back to
the previous layer until all partial plans become big enctagbvercome the worse heuristic
value.

One way to handle the decision making when encounteringjandis/e landmark is to
allow the planner to make partial bindings to variables.r&&tead of deciding, for example,



which driver should drive which truck in the Driverlog domaiwe allow the planner to
produce a partial plan that contains the actiiving truckl vag, wherevar; = driverlyv
driver2V ...driver,. This will require us to use lifted actions. Both VHPOP andRé&
make use of grounded actions in order to be competitive viétespace planners but we
believe that dealing with variable binding constraints hawe many advantages in the work
we pursue. With the use of disjunctive landmarks we can afl@planner to reason about
‘move truckl from sl to s2 and use any of these drivers ...deliver packagel with any
of these trucks ... driven by any of these drivers .... Nolyas this form of planning
more intuitive but also adheres to the least-commitmentcipile and — we believe —
will revive the importance of partial order planning, as itlwe able to cope with larger
problem instances. A study of RealPlan[41] shows that miasiners, paradoxically, have
more trouble finding a solution when given more resourceds iBhpartly because most
state-space planners ground all actions prior to plannitgch can take up quite some
time, but also because they tend to explore all possibleratrom the current state.

We hope that by using a lifted representation we can reasanraore abstract level
about planning problems and delay making commitments atematurce usage until we
have more information available and are able to make a mtvemed decision than we are
currently able to.

8.1.2 STellLa

As we have seen, STelLLa uses a very similar approach in th&ivérsion of this planner.

Judging from their paper[39], they were able to come up witids results than we could
manage. The major difference is that they restrict thenesaio non-disjunctive landmarks
and useLMRPC to derive their landmarks. Also they use additional intenfiee to deal

with inconsistent literals in a subproblem. Preliminaryrkvéo adopt the same type of
interference in our work did not show any advantage, but itld@efinitely be interesting

to see what would happen if we would only concentrate on risjotttive landmarks and
check if the landmarks derived by LAMA show similar results.

8.2 LAMA approach

When using the landmarks solely for heuristic guidance weelsat greedily trying to reach
the landmarks, in the appropriate order, gives better tegumost problems we have con-
sidered in this work (with the exception of ZenoTravel andd&ell). However, the gains
are not substantial enough to compete with the latest gemeraf state-space planners. It
remains a fundamental difficulty in partial order plannerdimd good heuristics to guide
search, since we lack an explicit state representationt i§lehy we believe that the best
way to move the field of partial order planning forward is tipp@ach outlined above and
use the lifted representation to plan on a more abstract denkpostpone decision-making
about variable bindings as long as possible.
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8.3 Closing remarks

Apart from adjusting above approaches one aspect we haveoweted yet in this section

is the usage of the original heuristics and flaw selectioategies. Although we devised

a new flaw selection strategy which can be used in additiohdcekisting ones, we kept

the original heuristics and flaw selections strategies atel Although the authors have
tried to optimize these heuristics for this particular benark set, it need not be the most
advantageous setup for our techniques. So subsequentiesethis area might help to get

rid some of the weaknesses outlined above. We should, howesteexpect the heuristics

to solve all our problems as more fundamental changes neselntade to gain significant

improvements[20].

We do not think that major progress is going to be made byyakihg ground actions
and foregoing lifted actions. While utilizing techniquesvdloped for state-space planners
has proven beneficial for partial order planning it has nehbable to put partial order plan-
ning on an equal footing with state-space planning. Thegkstning competition where
a partial order planner competed was in IPC-3 (VHPOP) anek tih@vas outperformed by
state-space planners like LPG. To gain speed RePOP and ViéX0ORed to using only
grounded actions, and while Younes and Simmons[44] argateutfing grounded actions
reduces the amount of actions which need to be explored wk that the potential bene-
fit of using a lifted representation has not been exploreditneeVHPOP nor RePOP. We
think that using a lifted representation in combinatiortvdisjunctive variable bindings will
allow partial order planners to gain an advantage in largerrasource rich domains and
hopefully give partial order planning a competitive edgerasurrent state-space planners.
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