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Summary

Wave Simulation in Truncated Domains for Offshore Appli-
cations

Subject and main objective

There is a desire to assess extreme wave loads on offshore structures like Floating
Production, Storage and Offloading (FPSO) vessels, either for design, or for evaluation
when circumstances near the structure change. Design formulae for extreme wave
loads are scarce and have limited validity for specific structures. Simplified theory,
such as linear potential theory, which is often used for motion analysis of offshore
structures, does not represent the hydrodynamics involved in a wave impact with
sufficient accuracy. For this reason, extreme wave loads are often assessed in physical
experiments at model scale. Extreme wave loads may also be simulated by means
of detailed numerical modeling. ComFLOW is the name for a numerical method
specifically developed for simulating wave impact events. Simulation of wave impacts
on offshore structure with ComFLOW is the subject of this thesis.

Simulations should represent wave interaction with the structure as if it were out
at sea. For reasons of efficiency, the computational domain can not be much larger
than the offshore structure it contains. Wave simulation in computational domains
of limited size requires special measures to reduce spurious reflection of waves at the
boundaries of the domain. The main objective of this thesis is to find or develop
means to efficiently reduce spurious reflection from the boundaries in ComFLOW.

Numerical method

ComFLOW is based on the Navier-Stokes equations. For the derivation of the nu-
merical method in ComFLOW, a finite volume discretization for Cartesian grids has
been adopted. The discretization yields a skew-symmetric operator for the convec-
tive term and a symmetric operator for the viscous term in the momentum equation,
resembling the symmetry properties of the analytical operators. Forward Euler time
discretization is applied, in which the pressure term is evaluated implicitly. Substi-
tuting the discrete momentum equation in the discrete continuity equation gives a
Poisson equation for the pressure which is solved iteratively by means of Successive
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Over-Relaxation (SOR) with an optimal choice for the relaxation coefficient in case
the absorbing boundary condition derived in this thesis is not applied in the simula-
tion. When the absorbing boundary condition is required, the Poisson equation (with
additional terms resulting from the discretization of the absorbing boundary condi-
tion that do not fit the typical Poisson-stencil) is solved with a general sparse-matrix
solver, in which the stabilized Bi-Conjugate Gradient (BiCGSTAB) iteration method
is combined with an Incomplete Lower-Upper preconditioner (ILU(ε)).

The free surface in ComFLOW is advected by means of an improved Volume of Fluid
(iVOF) algorithm. The improvement consists of a local height function that aggre-
gates fluid in a stencil of three cells in all spatial directions when fluxing fluid. The
local height function reduces mass loss and so-called flotsam and jetsam, a numerical
artifact consisting of disconnected droplets of fluid approximately one grid cell in size.

Spurious wave-energy dissipation

In coarse-grid simulations, a specific amount of grid-size-dependent numerical viscos-
ity is applied to obtain a velocity field without spatial instabilities, effectively result-
ing in a first-order upwind discretization of the convective term in the momentum
equation. Upwind discretization induces spurious wave energy dissipation, which is
undesirable because it reduces the forces involved in a wave impact on the structure.
As a result, the grid size needs to be chosen sufficiently fine to make sure that the
structure in the simulation endures the full impact for the wave condition that was
specified. A better discretization than first-order upwind for the convective term can
reduce spurious wave-energy dissipation. With a better discretization the grid size
can be chosen less fine, resulting in more efficient simulations.

In this thesis, a Lax-Wendroff discretization with a min-max flux limiter was evalu-
ated for the convective term in the momentum equation in simulations with standing
waves. Standing wave simulations are an efficient means to investigate the effect of
different discretizations on the reduction of wave energy dissipation, because all the
physics of wave motion are included without disturbances from incoming wave or
absorbing boundary procedures. The reduction of wave-energy dissipation with Lax-
Wendroff discretization was limited compared to first-order upwind discretization of
the convective term in the momentum equation.

It was hypothesized and found that also the free surface displacement algorithm was a
source for wave-energy dissipation, because VOF with piecewise-constant interface re-
construction (Simple Line Interface Construction, SLIC) includes a first-order upwind
discretization of the fluid flux. The discretization of the fluid flux can be improved
when Piecewise-Linear Interface Construction (PLIC) is adopted. The reduction of
wave-energy dissipation of PLIC compared to SLIC was limited as well.

A considerable decrease of the wave-energy dissipation was only obtained by combin-
ing PLIC in the free surface displacement algorithm with Lax-Wendroff discretization
of the convective term in the momentum equation in propagating wave simulations.
In these simulations, the combination of PLIC and Lax-Wendroff gives 2% wave-
energy dissipation over two wave lengths, whereas the original combination of SLIC
and first-order upwind in the convective term gives 18% wave-energy dissipation.



vii

Wave generation

In ComFLOW, waves are commonly generated by specifying velocities as a Dirichlet
boundary condition at the inflow. The velocities originate from wave theory. Well-
known wave theories for steep waves are Stokes 5th order theory and stream function
theory (Rienecker-Fenton), for which analytical solutions are available. In this thesis,
Rienecker-Fenton solutions are used to generate regular waves at the boundary. It was
investigated how well ComFLOW represents these analytical solutions by means of a
grid convergence study. We considered both the free surface elevation and the vertical
profile of the horizontal velocity two wave lengths away from the inflow boundary.
The free surface in wave crests was approximated reasonably well by ComFLOW

for the finest grid that was considered; in wave troughs, however, there remained a
considerable difference between ComFLOW and the analytical solution. The reason
for the differences during wave troughs is not well understood and further research is
required. Also for the velocity profile during a wave crest there were differences: not
at the free surface, where we would have expected them because of the large gradients
in the velocity, but the differences were mainly near the bottom. This is also part of
continued research.

Steep irregular waves were generated in ComFLOW by using velocities from linear
wave theory with multiple frequency components, and by using velocities obtained
from solutions of a Finite-Difference Finite-Element Method (termed FDFEM in
this work), which is a non-linear potential flow solver. The two generation methods
were compared as follows. The solution for the surface elevation from the FDFEM

method at a certain location was used as a reference solution. Velocity output from
the FDFEM solution was taken two wave lengths’ distance before the reference lo-
cation and imposed onto the ComFLOW domain. The ComFLOW solution at the
reference location was then compared to the reference solution. It was found that
the ComFLOW solution for the free surface elevation agrees well with the FDFEM

solution.

A similar procedure was applied for wave generation with velocities obtained from
linear theory, but now the surface elevation from the FDFEM solution some distance
before the reference location was used. This surface elevation was decomposed into
its Fourier-components. For each component, linear potential theory gives the ve-
locities and the combination of all these velocities provides the total velocity signal
that is imposed onto the ComFLOW domain as a boundary condition. Again, the
ComFLOW solution for the free surface at the reference location was compared to
the FDFEM solution. Now, it was found that there are differences between the two
solutions that do not decrease with increasing grid resolution. It is therefore con-
cluded that linear theory should not be used for irregular wave generation when the
ComFLOW solution is to be compared with experimental results.

Reducing spurious wave reflection at domain boundaries

Waves reflect from computational domain boundaries when no special measures are
taken to prevent reflection. Dissipation zones are often used near domain boundaries
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to induce a rapid decrease of wave energy so that when waves reach the boundary
and reflection occurs, the wave height has reduced to such an extent that spurious
reflection does not interfere with the processes near the structure.

Dissipation zones need to be several wave lengths long to be effective. In many cases,
the part of the computational domain taken up by dissipation zones exceeds the
size of the domain in which the wave interaction with the structure actually occurs.
Dissipation zones take up a considerable amount of the total computational effort
required for the simulation. Local absorbing boundary conditions are a more efficient
alternative to dissipation zones. In this thesis, a local absorbing boundary condition
for long-crested irregular waves is derived that is more efficient and more effective
than a two-wave-lengths-long dissipation zone.

The absorbing boundary condition in this study includes an approximation of the
dispersion relation which is accurate within a range of wave numbers (or, equivalently,
frequencies). It also includes second-order vertical derivatives of the solution variables
along the boundary. The differential equation for the absorbing boundary condition is
discretized implicitly, combined with the discrete momentum equation and included
in the Poisson equation for the pressure. Theoretically, the reflection coefficient, i.e.
the ratio of outgoing wave amplitude and reflected wave amplitude, for this absorbing
boundary condition can be as low as 2% for wave components within the range 0 <
kh ≤ 6. In actual wave simulations with this boundary condition, the obtained
reflection coefficient was 5%. There are two main reasons for the difference between
the theoretical value for the reflection coefficient and the one that was obtained in
simulations: 1. linear potential theory was used to derive the absorbing boundary
condition, whereas the equations that ComFLOW solves for are non-linear; 2. the
second-order vertical derivative cannot be solved near the free surface and needs to
be approximated. The approximation used near the free surface is rather crude and
requires attention in future research.

Validation in 3D

Experiments with a schematized model of a semi-submersible in waves were performed
at MARIN. Waves were generated with a pivoting wave maker at one end of the basin.
At the other end, a parabolic beach was installed to reduce spurious wave reflection.
The model, which was approximately 1m long, was placed in the middle of the basin
and was kept restrained during the experiment. Pressure sensors and wave gauges
were placed at several locations around the columns of the model. Also the deck of
the model was fitted with pressure sensors. During the experiments, there was violent
wave interaction with the model: wave impacts occurred on both columns and many
also reached the deck.

In ComFLOW, a similar setup was created. The computational domain extended
over the full width of the basin. The side walls of the domain (x-z planes) were
configured to represent the side walls of the basin. The incoming-wave boundary
(x-y plane) was positioned approximately one typical wave length in front of the
structure. Here, waves were generated by specifying the kinematics obtained from
an FDFEM simulation that contained the entire basin, including wave maker and
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spending beach. At the outflow end of the computational domain in ComFLOW,
the absorbing boundary condition derived in this study was applied.

For stability reasons, the FDFEM simulation was performed with a relatively coarse
grid and with a smaller water depth than the basin. For this reason, the waves in
this simulation could only compare reasonably well to the waves in the experiment.
And there was another issue. The position of the model relative to the wave board
was not recorded with sufficient precision. At multiple output locations, the free
surface elevation in de FDFEM simulation was compared to the free surface in an
undisturbed test (without structure). The position where the simulation results best
resemble the measurements was selected as most likely location for the model in the
simulation.

Keeping in mind that the waves in the simulation were slightly different from the
waves in the experiment - not only as a result of model errors, but also because
the true water depth in the experiment could not be represented in the FDFEM

simulation the comparison between ComFLOW and the experiment turns out rather
well. Pressures and surface elevations in ComFLOW show good agreement with the
measurements.

The 3D validation of ComFLOW was also an important test for the absorbing
boundary condition that was developed in this thesis. The simulations show that
the boundary condition can be applied in practical simulations with good results.
These simulations could not be performed with a dissipation zone on a desktop com-
puter, because with a dissipation zone it did not fit in memory. It would have been
interesting to compare results between a 3D simulation with an absorbing boundary
condition and one with a dissipation zone. On the other hand, we can conclude that
the absorbing boundary condition enables us to perform simulations that could not
be run on a desktop PC before the boundary condition was there.





Samenvatting

Golfsimulaties voor Offshoretoepassingen in Domeinen van
Beperkte Grootte

Onderwerp en doel

Er is de wens om extreme golfbelastingen op offshore constructies zoals Floating
Production Storage and Offloading schepen (FPSO’s) te kwantificeren, ofwel voor on-
twerpdoeleinden, ofwel om nieuwe omstandigheden voor een constructie te beoordelen.
Er zijn maar weinig ontwerpformules voor extreme golfbelastingen en ze zijn slechts
beperkt geldig voor specifieke constructies. Vereenvoudigde vergelijkingen, zoals bi-
jvoorbeeld die uit lineaire potentiaaltheorie voor golven, worden vaak gebruikt om
bewegingsanalyses te doen, maar ze geven de hydrodynamica in een golfklap slechts
beperkt weer. Om deze reden worden meestal experimenten op modelschaal uitgevo-
erd wanneer golfklappen belangrijk worden geacht. Extreme golfbelastingen kunnen
echter ook met numerieke methodes gesimuleerd worden. Een numerieke methode
die ontworpen is voor het simuleren van golfklappen, hebben we ComFLOW ge-
noemd. Het simuleren van golfklappen op offshore constructies met ComFLOW is
het onderwerp van dit proefschrift.

In simulaties moet de golfinteractie met de constructie worden gerepresenteerd zoals
het op zee gebeurt. Het is niet efficiënt als het rekendomein heel veel groter is dan de
constructie die gemodelleerd wordt. Golfsimulaties in een rekendomein van beperkte
grootte vragen om extra aandacht voor randvoorwaarden om ongewenste reflectie
van golven bij de randen van het domein te reduceren. Het voornaamste doel van dit
onderzoek is om randvoorwaarden te vinden of te ontwikkelen om ongewenste reflectie
bij de randen in ComFLOW te reduceren.

Numerieke methode

ComFLOW is gebaseerd op de Navier-Stokes vergelijkingen. Een Eindige Volumedis-
cretizatie op een Cartesisch rooster is gebruikt om de numerieke methode af te leiden.
Na discretizatie worden een scheef-symmetrische operator voor de convectieve term
en een symmetrische operator voor de visceuze term verkregen; dat zijn dezelfde
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symmetrieeigenschappen die de operatoren op continu niveau hebben. Voor de dis-
cretizatie in de tijd gebruiken we een Forward Eulermethode met de druk impliciet.
Het substitueren van de discrete impulsvergelijking in de discrete contuiteitsvergeli-
jking leidt tot een Poissonvergelijking voor de druk, die iteratief wordt opgelost. In
veel simulaties wordt van Succesive Over-Relaxation (SOR) met een optimale keuze
voor de relaxatiecoefficiënt gebruik gemaakt. In het geval van golfsimulaties met de
randvoorwaarde die in dit proefschrift is afgeleid, kiezen we een gestabiliseerde Bi-
Conjugate Gradient (BiCGSTAB) iteratiemethode, met een Incomplete Lower-Upper
preconditioner (ILU(ε)).

Het vrij oppervlak in ComFLOW wordt verplaatst met een verbeterde Volume-of-
Fluidmethode (iVOF). De verbetering bestaat eruit dat een lokale hoogtefunctie is
gedefinieerd om vloeistof binnen een stencil van drie cellen in alle ruimtelijke richtin-
gen, gezamenlijk te verplaatsen. Door de lokale hoogtefunctie wordt massabehoud
verbeterd en wordt zogenoemde ’flotsam en jetsam’ gereduceerd. Dit laatste is een
benaming voor een numeriek artefact waarbij druppels met de afmeting van ongeveer
een roostercel losraken van het voornaamste vloeistofdeel en niet meer verplaatst
kunnen worden.

Ongewenste dissipatie van golfenergie

In simulaties op een grof rooster is een zekere hoeveelheid artificiële viscositeit nodig
om een snelheidsveld zonder instabiliteit in de ruimte te krijgen. Effectief wordt met
deze viscositeit een eerste-orde upwinddiscretizatie voor de convectieve term in de
impulsvergelijking verkregen. Eerste-orde upwind leidt tot ongewenste dissipatie van
golfenergie, waardoor golfklappen op de constructie wel eens niet zo hard zouden
kunnen aankomen als de bedoeling was. Het rekenrooster moet fijn genoeg worden
gekozen om de dissipatie terug te brengen tot een acceptabel niveau en zo de golfklap
in zijn volle sterkte te laten plaatsvinden. Met een betere discretizatie dan eerste-
orde upwind in de convectieve term van de impulsvergelijking, kan de dissipatie van
golfenergie worden teruggebracht. Het rekenrooster kan dan grover worden gekozen,
waardoor mogelijk sneller gerekend kan worden.

In dit proefschrift hebben we een Lax-Wendroffdiscretizatie met een min-max fluxlim-
iter in de convectieve term van de impulsvergelijking bekeken met staande-golfsimulaties.
Het is handig om bij het evalueren van verschillende discretizaties naar simulaties
met staande golven te kijken, omdat alle fysica van belang aanwezig is, maar mo-
gelijke verstoringen door randvoorwaarden worden uitgesloten. Het effect van de
Lax-Wendroffdiscretizatie viel nogal tegen toen de resultaten met die van eerste-orde
upwind werden vergeleken.

Het werd verondersteld dat ook het verplaatsingsalgoritme voor het vrij oppervlak een
bron voor dissipatie van golfenergie was, omdat VOF met een stukgewijs-constante
reconstructie van het vrij oppervlak (SLIC) een eerste-orde upwind discretizatie van de
vloeistofflux bevat. De discretizatie van de vloeistofflux kan worden verbeterd door
naar een stukgewijs-lineaire reconstructie van het vrij oppervlak (PLIC) te gaan.
In simulaties met staande golven zagen wij echter dat met PLIC de dissipatie van
golfenergie niet heel veel minder was dan met SLIC.
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Een aanzienlijke reductie van energiedissipatie werd pas verkregen toen PLIC voor
het vrij oppervlak werd gecombineerd met de Lax-Wendroffdiscretizatie van de con-
vectieve term van de impulsvergelijking. Dat bleek het duidelijkst in simulaties voor
lopende golven; de combinatie gaf daar 2% golfenergiedissipatie over twee golflengtes
ten opzichte van 18% dissipatie met de oorspronkelijke combinatie van SLIC en eerste-
orde upwind voor convectie.

Golfgeneratie

In ComFLOW worden golven doorgaans gegenereerd door snelheden als Dirichle-
trandvoorwaarde aan de rand van het domein op te leggen. Deze snelheden komen
uit golftheorie. Bekende golftheorieen zijn Stokes 5e-orde en stream function-theorie
(Rienecker-Fenton); hiervoor zijn analytische oplossingen beschikbaar. In dit proef-
schrift zijn voornamelijk golven gegenereerd met Rienecker-Fentonoplossingen. We
hebben onderzocht hoe goed ComFLOW de analytische oplossingen kon reproduc-
eren. Daartoe werd zowel het vrij oppervlak, als het verticale profiel van de horzontale
snelheid vergeleken in een roosterconvergentiestudie. Voor het fijnste rooster kwam
in ComFLOW het vrij oppervlak tijdens golftoppen goed overeen met de analytische
oplossing. In een golfdal was er voor hetzelfde rooster nog een aanzienlijk verschil. Dit
is nog niet goed begrepen en onderdeel van vervolgonderzoek. Ook voor het snelhei-
dsprofiel ten tijde van een golftop waren er verschillen. Niet in de buurt van het vrij
oppervlak, waar we ze vanwege de grote gradiënten in de snelheid hadden verwacht,
maar juist dichtbij de bodem. Ook dit moet verder onderzocht worden.

Steile, onregelmatige golven werden in ComFLOW gegenereerd op twee manieren:
de eerste is met snelheden ontleend aan lineaire golftheorie (meerdere frequentiecom-
penten); de tweede manier is door snelheden te gebruiken uit simulatieresultaten
van een externe methode. De externe methode die hierbij gebruikt werd, een niet-
lineaire potentiaalmethode, hebben we de naam Finite-Difference Finite Element
Method (FDFEM) gegeven. Deze twee golfgeneratiemethoden zijn onderling als volgt
vergeleken. Eerst werd een simulatie gedaan met FDFEM. De oppervlakteuitwijk-
ing op een zekere locatie werd als referentieoplossing beschouwd. De snelheden uit
FDFEM op een locatie enige afstand voor de uitvoerlocatie werden opgelegd aan
ComFLOW op dezelfde locatie. Zo kon de oppervlakteuitwijking op de uitvoer-
locatie uit ComFLOW worden verkregen en vergeleken met de referentieoplossing.
De oppervlakteuitwijking in ComFLOW kwam goed overeen met het vrij oppervlak
in FDFEM.

Een vergelijkbare procedure werd gebruikt om de generatieprocedure met lineaire
frequentiecomponenten te evalueren. Alleen werden nu op enige afstand van de
uitvoerlocatie niet de snelheden verkregen, maar het vrij oppervlak. De tijdreeks
voor het vrij oppervlak werd met een Fouriertransformatie omgezet naar het frequen-
tiedomein. In het frequentiedomein werden van alle golfcomponenten snelheidscom-
ponenten gemaakt, die met een inverse transformatie weer naar tijdreeksen werden
omgezet. Met de tijdreeksen voor de snelheid werden golven gemaakt. Vervolgens
werd op de uitvoerlocatie het vrij oppervlak in ComFLOW met de referentieoplossing
uit FDFEM vergeleken. Bij deze methode bleven, ook na roosterverfijnen, verschillen
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tussen ComFLOW en FDFEM bestaan. De conclusie hiervan is dat golven niet met
snelheden uit lineaire theorie gegenereerd moeten worden als de ComFLOWoplossing
later met metingen uit een experiment vergeleken moet worden.

Ongewenste golfreflectie verminderen bij domeinranden

Zonder maatregelen zijn de randen van rekendomeinen volledig reflecterend. Bij
domeinranden worden daarom vaak dissipatiezones gebruikt om de golfenergie over
een relatief korte afstand te reduceren, opdat de golven, zodra ze bij de rand aankomen
en reflecteren, onvoldoende hoogte hebben om nog tot verstoringen nabij de construc-
tie te kunnen leiden.

Dissipatiezones hebben meerdere golflengtes nodig om effectief te kunnen zijn. In
veel gevallen nemen de dissipatiezones zelfs meer ruimte in beslag dan het deel van
het rekendomein dat nodig is om de golfinteractie met de constructie te simuleren.
Dat kan efficiënter. Lokale absorberende randvoorwaarden zijn een alternatief voor
dissipatiezones en hebben niet al die ruimte nodig. In dit proefschrift wordt een
absorberende randvoorwaarde afgeleid voor langkammige, onregelmatige golven, die
efficiënter is en effectiever dan een dissipatiezone van twee typische golflengtes.

Voor de afleiding van de absorberende randvoorwaarde hebben we de dispersierelatie
voor een bepaalde (beperkte) set golfgetallen nauwkeurig benaderd. Deze benader-
ing is, samen met tweede-orde verticale afgeleiden van de oplossingvariabelen in het
binnengebied, onderdeel geworden van de randvoorwaarde. De differrentiaalvergeli-
jking die zo verkregen wordt, is gediscretizeerd en gecombineerd met de discrete im-
pulsvergelijking. Het resultaat is een uitdrukking voor de druk op het nieuwe tijd-
sniveau die met de Poissonvergelijking gecombineerd is. Theoretisch kan de maximale
waarde van de reflectiecoefficiënt, dat is de verhouding van uitgaande golfamplitude en
gereflecteerde golfamplitude, slechts 2% groot worden voor dimensieloze golfgetallen
tussen 0 en 6. In echte simulaties wordt de maximale reflectiecoefficiënt ongeveer
5%. Het verschil tussen de theoretische en de daadwerkelijk verkregen waarde van de
reflectiecoefficiënt komt hieruit voort: 1. in de afleiding van de randvoorwaarde is lin-
eaire potentiaaltheorie gebruikt, terwijl de vergelijkingen in ComFLOW niet-lineair
zijn; 2. de tweede-orde afgeleide in de verticaal kan niet tot voorbij het vrij oppervlak
worden opgelost. Bij het vrij oppervlak moet deze benaderd worden. De benadering
die we hier gebruikt hebben is nogal grof en daar moet in verder onderzoek aandacht
aan besteed worden.

Validatie in 3D

Bij MARIN zijn experimenten gedaan met een geschematizeerd model van een semi-
submersible in golven. Golven werden gegenereerd met een roterend golfschot aan
een zijde van de tank. Aan de andere zijde was een parabolisch strand aanwezig waar
golfbreken optreedt om ongewenste reflectie van golven te reduceren. Het model was
ongeveer 1 meter lang en is in het midden van de tank geplaatst. Er waren druksensors
op de kolommen en het dek van het model aangebracht en langs de kolommen en
rondom het model waren golfhoogtemeters geplaatst. Tijdens de experimenten vond
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heftige golfinteractie met het model plaats. Golfklappen troffen beide kolommen en
verscheidene golfklappen bereikten het dek.

In ComFLOW werd de hele breedte van het tank gemodelleerd. De zijwanden van
het rekendomein (in x-z-richting) waren volledig reflecterend, net als de zijwanden van
de tank. De hele lengte van de tank paste niet in een rekendomein. De inkomende
golfrand (in x-y-richting) werd daarom op ongeveer een typische golflengte voor de
constructie geplaatst. Hier werden golven gemaakt door snelheden uit een FD-

FEM-simulatie voor te schrijven. Aan de uitstroomzijde van het domein werd de
absorberende randvoorwaarde uit dit proefschrift gebruikt om golfreflectie te reduc-
eren.

Vanwege stabiliteitsproblemen is de FDFEM-simulatie op een redelijk grof rooster
uitgevoerd met een waterdiepte die kleiner was dan in de tank. Om deze reden konden
de golven in FDFEM hoogstens redelijk met die uit het experiment overeenkomen. En
er was nog iets aan de hand. Achteraf bleek dat de positie van het model ten opzichte
van het golfschot niet met voldoende nauwkeurigheid was geregistreerd. Daarom
hebben we op verschillende locaties de oppervlakteuitwijking in FDFEM vergeleken
met die uit een ongestoorde proef (zonder constructie) van het experiment. De locatie
waar de twee het best overeenkwamen werd in ComFLOW als positie van het model
gebruikt.

Als je bedenkt dat de golven in simulaties toch iets anders waren dan in het ex-
periment – niet alleen vanwege modelfouten, maar ook omdat de waterdiepte in het
model niet overeenkwam met de tank – dan pakt vergelijking tussen ComFLOW en
het experiment best goed uit. Drukken en oppervlakteuitwijkingen uit ComFLOW

komen goed overeen met de metingen.

De 3D validatie van ComFLOW was ook een belangrijke test voor de absorberende
randvoorwaarde die hier werd afgeleid. Uit de simulaties blijkt dat de randvoor-
waarde met goed gevolg kan worden ingezet voor praktische simulaties. Deze simu-
laties zouden niet met een dissipatiezone op een PC kunnen worden uitgevoerd, omdat
de som met deze resolutie dan eenvoudigweg niet in het geheugen zou passen. Het zou
interessant zijn geweest om voor deze simulatie de verschillen tussen dissipatiezone
en absorberende randvoorwaarde te beschouwen. Aan de andere kant, kunnen we
hieruit ook opmaken dat door de absorberende randvoorwaarde nu simulaties uit-
gevoerd kunnen worden die voorheen niet mogelijk waren.
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Chapter 1

Introduction

The main topic of this research is the numerical simulation of extreme wave behaviour
near offshore structures. Here, we expound on the position of numerical simulation in
the discipline of Offshore Engineering and formulate an introductory account of what
is to come in the remainder of this thesis.

1.1 Offshore

The ocean is without end. Explorer ships sail the ocean continuously, while they scan
the ocean floor – mapping it, performing seismic tests, interpreting test results – ever
in search of unproven offshore deposits of oil and gas. During exploration, prospectors
are sometimes caught in heavy storms, which induce large vessel motions and even
water on deck, but are hardly ever fierce enough to endanger resuming operation
when the peak of the storm has past. And, oftentimes, weather forecasting will have
foretold when and where the worst of the storm will strike, sufficiently far in advance
for the ship to go around.

Weather forecasting may benefit ships, more permanent installations at sea are not
as mobile and will suffer the worst of a storm when it hits. Once an offshore field is in
production, the platform where the post-processing of oil and gas takes place, will be
connected to the sea bed in more ways than one. This is obvious for bottom founded
structures, which have dominated the offshore industry during the first decades of its
existence, in the shallower waters nearshore. But also floating production platforms,
that have become widespread in recent years, in deeper water, still require mooring
or dynamic positioning to keep them in position. And they are connected to the well
heads at the sea bed by multiple arrays of risers, transporting oil from the bed to the
sea surface (see Fig. 1.1).

Systems with disconnectable turrets exist (complex structures with risers and mooring
lines, around which the floater can turn to keep its bow in head waves), but in most
cases offshore platforms are designed to remain in place and safely endure environ-
mental loading during the economic life time of the structure. It is the responsibility

1
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Figure 1.1: Conceptual design by Atlantia Offshore Ltd. Tension-leg platform with
well heads and risers connected to the sea bed. The TLP connects to an
FPSO some distance away.

of the design team to determine the maximum loading, that has a certain probability
of occurring within this time, and to design the structure to survive these loads.

1.2 Waves

Structures at sea are subject to a variety of environmental loads; during normal
operation, but especially in survival conditions. Currents are always present, exerting
a constant but hardly ever critical force on the mooring system of the structure. Mild
winds and waves yield slight variations in force on top of the constant drag component
imposed by the current. But it is only during heavy storms that forces resulting from
wind and waves become significant.

Strong winds can inflict damage to the structure above the free surface, although
the damage is mostly restricted to non-critical components such as radar towers and
other extruding elements. In spite of the inconvenience, the effect of heavy wind is
of minor importance compared to the damage inflicted by an impacting wave. Wind
may reach velocities of up to three hundred kilometers per hour, but the density
difference between water and air of a factor one thousand makes the consequences of
water impact all the more dramatic.

Design engineers will try to prevent deck impact at all time. A safe minimum distance
is kept between the highest possible wave the structure can encounter, and the deck.
The distance between free surface and deck is called air gap and determining a safe
air gap is a balancing act between economics and probability. The question becomes:
how to determine the maximum wave height that has a certain, low probability of
occurring during the life time of the structure? Satellite measurements have made
statistics of the wave climate available for locations all around the world. But the
wave height near a structure does not depend on the undisturbed wave alone.
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A large structure locally changes the undisturbed free surface elevation. Linear po-
tential theory for waves acknowledges three contributions to the free surface elevation
in the surroundings of a structure in water: (1) undisturbed incoming waves as if the
structure were not there, (2) diffracted waves due to the presence of the structure and
(3) radiated waves resulting from the motion of the structure. For complex structure
geometries, the latter two contributions to the free surface elevation near the structure
can only be determined by experiments on model scale or numerical simulation.

1.3 Experiments

Experiments on model scale are carried out during later stages of the design process.
The basic outline of the structure based on design rules and some preliminary calcula-
tions will then have been completed. Experiments are used to test the performance of
the structure in terms of, for instance, motions for floaters, or run-up and consecutive
deck impact for bottom founded structures, as if the structure was out at sea. To that
end, relevant sea states are created in an experimental wave basin with the structure,
on scale, in position in the basin. During the experiment the motion of the structure
is monitored and measurements of surface elevation and (impact) pressure are taken.

To generate waves, wave boards are installed along one or more sides of the exper-
imental wave basin. A single wave board along the entire side makes long crested
waves, segmented wave boards are used to generate short crested waves. In modern
wave basins, such as the Offshore Basin at the Maritime Research Institute Nether-
lands (MARIN), wave generation is just one of the features available: an experiment
can include waves, current and wind at the same time.

Unfortunately, the information that can be obtained from an experiment is limited.
Constructing a model of the structure is expensive and constructing multiple models
or making minor adjustments to the model during the experiments is not always
possible. The number of sea states that can be tested is restricted by the time made
available in the planning of the basin operator. And during a commercial experiment,
only local measurements of the surface elevation and flow velocities can be taken and
never measurements in the entire basin. It may not be relevant to know the position
of the free surface in the whole basin, but when flow velocity measurements are
concerned, the global flow pattern around the underwater part of the structure can
lead to an important understanding of and may indicate ways to improvement of its
(motion) behaviour.

Experiments are almost always performed on model scale. Scaling laws are available,
as well as recommendations from systematic series of experiments, to convert mea-
surement data on model scale to full scale results. The extrapolation towards full
scale is often uncertain for several reasons. Important physical effects may not be
included in the conversion, or systematic series may not be available for the struc-
ture geometry under consideration. An indication of the scale effects for arbitrary
structure geometries would be of great value.

For reasons of model scale, flexibility, limited time in the basin and measurements of
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a global nature, numerical simulation of a structure in waves can contribute greatly
to the results available from an experiment.

1.4 Numerical simulation

Numerical simulation of structures in waves can at present only contribute to, but not
replace physical experiments. It can probably never completely replace experiments.
There are simply too many parameters a numerical solution depends on, to ever
claim with certainty that the obtained result is as it would be in reality. Among
these parameters are the type of modeling, the numerical approximation of the model
equations, the grid, the algorithm and the implementation. And this list is far from
complete.

For mild, operational wave conditions, linear 3D Boundary Element Methods (BEM)
in the frequency domain have become the offshore industry standard to determine the
motions of a floating structure. Linear BEM methods are an implementation of the
linearized model equations for conservation of mass and momentum (rotation-free),
with linearized boundary conditions at the free surface and near the structure. Only
the underwater part of the structure is modeled and quadrilateral elements are used
to describe the underwater geometry. For each element, or panel, an equation can be
formulated and the system of equations can be rewritten to a matrix equation, where
the left-hand side matrix is completely filled. The matrix is generally small and can
be solved with a direct method in a small amount of time. One matrix equation is
solved per wave frequency and per wave direction, but still, the total computation
time for all frequencies and directions is generally short.

Linearized theory is used far beyond the range of its formal validity with good results
for the vessel’s motions, but the results in terms of fluid kinematics become poor for
truly steep waves. Higher order BEM methods exist, to second order in the frequency
domain [45], to higher order mostly in the time domain [43]. In higher order methods
the free surface is gridded by panels as well, which significantly adds to the number
of panels required for a simulation. But as the number of panels increases and the
order of the method increases, it becomes increasingly difficult and time consuming
to set up the (full) matrix equation and to solve it.

In many types of steep wave simulation, it is more efficient to approximate the model
equations by means of a field method [6]. When overturning waves are present in
the simulation, the bookkeeping concerned with the position and the numbering of
the boundary elements becomes prohibitively difficult; then the use of a field method
comes highly recommended. In a field method the entire domain – and not only the
boundary – is fitted with grid cells and one equation is solved for each cell (see Fig.
1.2). Compared to boundary element methods, the system of equations is larger,
but sparse and very efficient sparse matrix solvers (“Poisson solvers”) are available
that are generally faster for a comparable problem. Grids can be boundary fitted
and adapting to moving geometries in time [49], or they are fixed and the geometry
intersects with the grid, the intersection being different as the structure moves through
the grid and as a function of time [14]. An advantage of conforming grids is that the
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(a) (b)

Figure 1.2: A boundary element grid in (a) vs. a field method grid in (b).

boundary and the location where boundary conditions need to be imposed, is clearly
defined, whereas for intersected grids this is less so. A disadvantage of conforming
grids is that the domain needs to be regridded when the position of the geometry
changes.

For this research, the free surface treatment is what truly sets numerical methods
apart. A grid can adapt to the free surface in the same way it can adapt to a moving
geometry. But when the free surface is overturning as a result of wave breaking or due
to run-up against a structure, adaptive grids are no longer possible. For extreme free
surface events only three methods are suitable. In the level-set method the free surface
is not a sharp interface, but rather diffuse: several layers of cells are used to capture
the position of the free surface. The Volume-of-Fluid (VOF) method does retain a
sharp interface. Here, fluid fragments are transported from one cell to another. After
fluid convection has taken place, the free surface can be reconstructed from the new
filling rates of the cells. In contrast to everything mentioned above, the Smooth-
Particle-Hydrodynamics (SPH) method is a meshless method where fluid particles
of finite size directly exchange momentum with others inside a region of influence
surrounding each particle [37].

1.5 This research

The research contained in this thesis adds to a numerical method, that can simulate
extreme wave impact hydrodynamics against structures. The method is based on
the Navier-Stokes equations for conservation of mass and momentum. The discrete
equations have been obtained by means of the finite volume method on a fixed, Carte-
sian grid. The method has adopted the ‘cut-cell method’ to describe the structure
geometry; as a result, cells in this method can contain both part of the structure and
be partially filled with fluid. The free surface is convected with an improved VOF
method, where a local height function is used to overcome issues with mass conser-
vation and disconnecting droplets, that troubled the original VOF method developed
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by Hirt and Nichols [27].

Previous work on the numerical method contained in the ComFLOW program re-
volved around applications as diverse as liquid sloshing in satellites in zero-gravity
circumstances [16], moving structures in water [14], blood flow through pulsating ar-
teries [35] and wave impact loading on offshore structures [32]. The research with
offshore applications was continued and organised as joint industry project, headed
by MARIN, which attracted support from over twenty participating companies, well
known in the offshore industry. The objective and aim of the project was:

“To develop a dedicated and well validated numerical tool for the offshore
industry to study complex free surface problems, which is flexible in its
application and has a coupling possibility to the other tools of partici-
pants.”

External funding from the Dutch technology foundation STW was used to employ two
PhD students, working on different, new aspects of the numerical method. One has
been based at the University of Groningen and has successfully finished his work on
implementing two-phase (water and air) flow for extreme free surface events in offshore
environments [54]. The other has been stationed at Delft University of Technology
and his work is reported in the present document.

The objective of the work in this thesis is to find or devise methods to generate waves
in numerical domains and to prevent reflection from its boundaries. Methods for wave
generation and reflection prevention have been incorporated in the numerical method
and the ComFLOW program. The topic of generating and absorbing waves by means
of well designed boundary conditions is of crucial importance to the simulation of
waves inside a domain. Adequate boundary conditions improve the quality of wave
simulations and can save computation time and memory. See Chapter 5 and 6 for a
discussion about boundary procedures.

A side aim in this research has been to assess the performance of the free surface
displacement algorithm with regard to the propagation of waves. The numerical
method discussed in this thesis is known to dissipate wave energy over time and
propagated distance. The dissipation is quantified and it is shown in Chapter 4 that
an improved reconstruction of the free surface, along with an improved convection
scheme, can reduce wave energy dissipation.

1.6 Outline

Before the actual results of the research in this thesis are discussed, first the analytical
equations that describe fluid flow are introduced in Chapter 2. The equations are
concerned with conservation of mass, conservation of momentum and the evolution
of the free surface over time.

Chapter 3 contains the discrete representation of the analytical equations mentioned
above and it gives an account of how the equations are solved in our numerical method.
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With Chapter 4 we arrive at a detailed discussion about the free surface displacement
method, about how it performs in wave simulations and about how to improve and
mitigate undesired side effects, such as artificial diffusion of wave energy.

The focus of this research is on generating waves and preventing reflection. Classic
boundary conditions for simulating waves in numerical domains are the subject of
Chapter 5: it provides an overview of the available literature on this subject and it
reports on the performance in terms of reflection of several methods that have been
considered.

The generating absorbing boundary condition in Chapter 6 has been newly devised
for implementation in ComFLOW. It was found that absorbing boundary conditions
in the literature were either of insufficient quality or close to impossible to combine
with our numerical method. The generating absorbing boundary condition for long-
crested dispersive waves in this thesis is both accurate for sea states often found in
offshore environments, and practical to implement. Results of performance tests are
included.

Simulation results, validated by experiments, have been included in Chapter 7. The
simulations include a semi-submersible platform in relatively deep water and a gravity
base structure in relatively shallow water. In the experiment measurements were
taken of free surface elevations and pressures at key positions around the structure;
the measurements are compared to simulation results at the same location.

And, finally, to conclude the discussion, observations regarding the method and the
results obtained from application of the method to offshore structures in waves, have
been collected in Chapter 8 along with several statements with recommendations for
future research.





Chapter 2

Mathematical model

The transition between observation and numerical results is mediated by mathemat-
ical models. A quite general model that describes fluid flow has been attributed the
name Navier-Stokes equations. It is a set of equations that describe the conservation
of mass and momentum, the latter being derived from Newton’s second law applied
to a fluid.

Both water and air are considered fluids and the same equations apply to either fluid.
At sea we mostly observe the interface between water and air. It is when structures
at sea, such as ships or platforms, protrude through the interface, that effects occur
we wish to quantify.

In the application area of offshore engineering the effects are dominated by water,
since water as a result of the density difference carries more momentum. In other
areas, such as naval architecture applied to sailing yachts, the flow of air is of equal
importance for the functioning of the ship as a whole.

The sea and structures at sea exchange momentum. Offshore structures generally
move only at very low velocities and are on average located at one position. But
when a structure is caught in a heavy storm, the sea can cause large motions and
inflict serious damage. In order to compute the forces leading to potential damage,
we try to solve the equations that describe fluid flow. The equations are given in this
chapter.

2.1 Governing equations

The Navier-Stokes equations are a simplified representation of reality. It is not possible
and unnecessary to go down to the molecular level to model fluid flow on the scale
that we are interested in. The fluid is thought to be a homogeneous medium with
equal properties in all directions and continuum mechanics is used to describe its
behaviour.

9
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x

y

z

Figure 2.1: Right-handed Cartesian axis system showing the three main directions.
The xz-plane is highlighted and the direction of positive rotation is
given.

First the axis system is defined. In this thesis a right-handed Cartesian coordinate
system is adopted as depicted in Fig. 2.1. The coordinate axes are indicated by
x = (x, y, z)

T
.

The equations in this thesis are mostly formulated and discussed in 2D in the xz-
plane (highlighted in Fig. 2.1). They can easily be generalized to 3D. Where this is
not apparent or requires additional attention, it will be made explicit.

Now, a control volume Ω is introduced in Fig. 2.2. The change of mass inside the
control volume is equal to the flow of mass over the boundary Γ of the control volume:

∫

Ω

∂ρ

∂t
dΩ+

∮

Γ

(ρu) · n dΓ = 0. (2.1)

In (2.1), ρ is the density of the fluid. The density is a scalar. The velocity is a vector

and represented by u = (u, v, w)
T
, in which u, v and w are the velocities in the three

coordinate directions. The vector normal to the volume boundary is denoted by n.
Eq. (2.1) is known by the name continuity equation.

A similar control volume can be used to derive the equation for the conservation of
momentum. The change of momentum inside the volume depends on the transport
of momentum over the volume boundary, an external force f acting on the entire
volume and a contribution from the normal and tangential stresses:

∫

Ω

∂(ρu)

∂t
dΩ+

∮

Γ

ρu (u · n) dΓ +

∮

Γ

pn dΓ−
∮

Γ

(

µ
(
∇u+∇uT

)
− 2/3µ∇ · u

)

· n dΓ−
∫

Ω

ρf dΩ = 0.

(2.2)

Here, the pressure is represented by p and µ is the dynamic viscosity. The viscosity
depends on temperature and in less extent on the ambient pressure. Temperature
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variation is not included in this research. Therefore, in the remainder of this thesis
the viscosity can be assumed constant.

The external force, in absence of further external loading, is equal to gravity:

F =





0
0
−g



 . (2.3)

In our applications water can be considered incompressible. For incompressible fluids
∂ρ/∂t = 0 and as a result, using Gauss’ divergence theorem:

∮

Γ

u · n dΓ =

∫

Ω

∇ · udΩ = 0. (2.4)

After substitution of (2.4) into Eq. (2.2), the momentum equation for an incompress-
ible, newtonian fluid is obtained:

∫

Ω

∂u

∂t
dΩ+

∮

Γ

u (u · n) dΓ +
1

ρ

∮

Γ

pn dΓ−

ν

∮

Γ

∇u · ndΓ−
∫

Ω

f dΩ = 0,

(2.5)

in which ν is the kinematic viscosity, ν = µ/ρ.

The equations above cannot be solved analytically. They have to be approximated to
obtain results. One approach is to set up a system of discrete equations and solve the
system numerically with a computer. In this thesis, in the next chapter, a numerical
method is described to do just that. Computers, however, have only recently become
powerful enough to perform practical simulations.

In the past, meaningful results have been obtained by means of another approach:
simplification of the equations themselves. The concept of irrotationality, where ∇×
u = 0, allows for the introduction of a potential function Φ, whose derivatives yield
the velocity in the direction of the derivative.

Ω

Γ

n

Figure 2.2: Control volume, in which the equations governing fluid flow are formu-
lated. The volume is indicated by Ω, whereas the boundary of the control
volume is denoted by Γ. The vector n shows the direction normal to the
boundary.
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The following holds for the potential:

∇Φ =





u
v
w



 . (2.6)

Many flow types may be considered as irrotational and the use of the potential leads
to a reduced set of equations that can be solved analytically for these flow types.
With the potential the continuity equation becomes:

∇2Φ = 0, (2.7)

which is the well known Laplace equation.

And after integration, the momentum equation becomes the Bernouilli equation,
which may be applied along a streamline:

∂Φ

∂t
+

1

2
|∇Φ|2 + p

ρ
− F = C, (2.8)

in which F is the integrated force vector and C is an integration constant.

Eqs. (2.7) and (2.8) have been used to derive analytic solutions for regular propagating
waves. This is shown in Appendix A about potential wave theory. Potential wave
theory is used in Chapter 5 to generate waves in numerical simulations.

Free surface

The continuous equations for conservation of mass and momentum are valid in one
fluid. In offshore applications, however, many of the phenomena that need to be
considered during the life time of a structure at sea, occur in the interface between
water and air. The interface between water and air is called free surface.

The actual position of the free surface, S (x, t), in time and space can be resolved
from the conservation of one of these fluids, in this case water:

DS

Dt
=
∂S

∂t
+ u · ∇S = 0. (2.9)

If water is considered incompressible, then ∇ · u = 0 and (2.9) can be rewritten to:

DS

Dt
=
∂S

∂t
+∇ · (uS) = 0. (2.10)

2.2 Boundary conditions

To obtain a solution to the system of partial differential equations describing fluid
flow, boundary conditions need to be imposed. In closed volumes, natural boundary
conditions can be imposed at the boundary:

u = 0. (2.11)
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Eq. 2.11 describes that there is zero flow through the boundary (in normal direction).
When there is flow through the boundary, other boundary conditions are required. In
chapters 5 and 6 equations are derived for waves propagating through the boundary;
in section 5.1 boundary conditions for other types of flow are discussed.

The flow along the boundary, in tangential direction, is also zero. This is often referred
to as the no-slip condition. When the free-slip condition is imposed, the derivative in
normal direction to the boundary of the velocity along the boundary is zero:

∂ut
∂n

= 0, (2.12)

where n denotes the normal direction and the subscript t indicates the tangential
direction.

When the equations for fluid flow are resolved in both water and air, the balance of
forces at the free surface follows from the equations themselves. In case the equations
are solved only in water, the free surface is a formal boundary and boundary conditions
need to be imposed. The boundary conditions at the free surface follow from the
equilibrium of forces in normal direction:

−p+ 2µ
∂un
∂n

= −p0 + σ κ, (2.13)

and in tangential direction:

µ

(
∂un
∂t

+
∂ut
∂n

)

= 0. (2.14)

Here, again, the indices n and t denote the normal direction and the tangential di-
rection. The surface tension is represented by σ and the curvature of the free surface
by κ. Eqs. (2.13) and (2.14) are formulated under the assumption that the fluid is
incompressible and that the pressure in air is constant and equal to p0.

On the scale of offshore structures, the stress resulting from the surface tension is
negligible and in offshore applications the parameter σ is often set to zero.





Chapter 3

Numerical model

In ComFLOW the governing equations for fluid flow are evaluated on finite size
control volumes to formulate a discrete representation of the continuity and the mo-
mentum equation. Control volumes are defined with respect to grid cells and the
combination of cells is called the domain. In this chapter, the discrete system of
equations is derived. It also shows the method to convect the free surface.

3.1 Domain and grid

In our method we have adopted a Cartesian grid, where the grid lines are kept aligned
with the coordinate axes. The grid is structured, but not necessarily uniform; it allows
for a modest amount of stretching.

A structured Cartesian grid has a number of clear advantages in contrast to an un-
structured grid. The discretization is more straightforward and the step towards
higher order discretization can more easily be made. Then again, there are also dis-
advantages to a structured grid: when a small grid distance is desired for accuracy at
one location where large gradients are expected, then the grid distance remains small
throughout the domain. In general, a structured grid requires more grid cells than an
unstructured grid.

Impermeable structures within the domain are represented by a cut-cell method [51],
where the structure intersects with the grid. The intersection results in cells that can
be filled with both fluid and (part of the) structure at the same time. The cut-cell
method is more accurate than a staircase representation of a structure and allows for
the same flexibility that is inherent to a boundary-fitted unstructured grid.

Fig. 3.1 shows a grid cell, in which part of the cell is filled by a section of structure
and the other part filled by water. The normalized volume aperture that can be filled
by water is denoted by F b. The part of the cell that is taken up by structure, then,
is

(
1− F b

)
. Where the structure cuts through a cell face, the normalized surface

aperture An – where n can denote any of x, y and z – is a measure of the face

15
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segment that is open to flow. Fig. 3.3 shows the position of the solution variables

∆x

∆z

As
w∆z

Az
s∆x

F bV

Figure 3.1: Grid cell, which is cut by a section of structure with the positions of
the velocities in the cell faces. The volume aperture F b accounts for
the amount of fluid the cell can contain. The face apertures An define
which part of the cell face is open to flow. In this figure the total volume
of the cell is V = ∆x∆z.

within a cell. Velocities are positioned in the cell faces and the pressure inside a cell is
located in the middle. A grid with staggered solution variables allows for a compact
stencil and avoids the use of special measures to prevent point-to-point oscillations
that can be observed in collocated grids, where the solution variables within a cell are
all positioned at the same location.

Cells can also be partially filled with fluid. In other words, the free surface intersects
with the grid in much the same way a structure does. The volume F s keeps track
of the amount of fluid occupying the cell. F s can never be larger than the volume
apterture F b.

In the domain a labelling system identifies similar cells that call for similar processing.
In this discussion the same labels are used. There is a distinct order in which cells
are labelled. Firstly, Empty cells are identified; they do not contain fluid, but can
become filled at later time. Consecutively, Surface cells are labelled; they are partially
filled with fluid and border to E-cells. S-cells are thought to contain the free surface.
Finally, Fluid-cells can be selected and they border to S-cells and other F-cells. Away
from the free surface F-cells are mostly completely filled with fluid.

Boundary cells can border to any of the cells mentioned before. The cells indicated
by B are filled entirely by the structure that intersects with the grid. In these cells,
F b is zero and they cannot contain any fluid. A visual representation of cells in the
gridded domain is given in Fig. 3.2.
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Figure 3.2: The labeling system identifies Fluid cells, Surface cells, Empty cells and
Body cells

3.2 Continuity equation

The control volume for the continuity equation coincides with a grid cell. Part of the
control volume can be occupied by a section of structure, as shown in Fig. 3.3. Here,
the velocities are shifted towards the center of the face section that is open to flow.
Since the velocity is assumed constant along one cell face, the actual position of the
velocity on a face is irrelevant.

The continuity equation is given in (2.1). For incompressible flow it is restated here:

∮

Γ

u · n dΓ = 0.

The equation can be approximated by accounting for the mass fluxes over the faces
of the control volume. The mass flux over the eastern cell face is Fe = ueA

x
e∆z.

The same goes for the northern, western and southern face. The discrete continuity
equation then becomes:

(ueA
x
e − uwA

x
w)∆x+ (wnA

z
n − wsA

z
s)∆z = 0. (3.1)

3.3 Momentum equation

The momentum equation for incompressible flow consists of: 1. a time derivative, 2. a
convective part, 3. a diffusive part, 4. a pressure contribution and 5. an external force
working on the entire volume. The composing parts are indicated in the following
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equation:

∫

Ω

∂u

∂t
dΩ

︸ ︷︷ ︸

+

∮

Γ

u (u · n) dΓ
︸ ︷︷ ︸

+ ν

∮

Γ

∇u · ndΓ
︸ ︷︷ ︸

1. 2. 3.

− 1

ρ

∮

Γ

pn dΓ

︸ ︷︷ ︸

+

∫

Ω

F dΩ

︸ ︷︷ ︸

= 0.

4. 5.

The time discretization is separated from the space discretization. The control volume
for the momentum equation is shown in Fig. 3.4. The control volume has been
shifted in space with respect to the control volume of the continuity equation. The
space discretization of the time derivative in x-direction is obtained by applying the
midpoint rule:

∫

Ω

∂u

∂t
dΩ =

∂uc
∂t

F b
w∆xw + F b

e∆xe
2

∆z, (3.2)

in which the size of the control volume has been computed as the average of volume
apertures on either side of the control volume.

The time derivative has not been approximated yet; its discrete counterpart will be
introduced later in this chapter, when the space discretization of the remaining terms
in the momentum equation has been discussed.

uw

ue

ws

wn

∆x

∆z

As
w∆z

Az
s∆x

F bV

Figure 3.3: Control volume for the continuity equation. The control volume coin-
cides with a grid cell. The velocities to determine the fluxes over the
faces of the control volume are positioned in the middle of the part of
the cell face that is open to flow.
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Figure 3.4: Control volume for the momentum equation in the presence of a cut
cell. The velocities and distances to approximate the convective term of
the momentum equation are shown at their respective positions in the
grid. The velocities required for the fluxes over the faces of the control
volume are obtained by interpolation.

3.3.1 Convection

The convective term of the momentum equation in x-direction is as follows:

∫

Γ

u (u · n) dΓ.

To approximate this equation, again, fluxes over the faces of the control volume have
to be determined. In these fluxes the distinction has to be made between the convected
quantity, u, and the convecting mass flux, (u · n) dΓ, with which u is convected. These
terms are treated differently.

The convecting mass flux has to be determined at the face of the control volume,
depicted in Fig. 3.4. The face of the control volume is always midway in between cell
faces or between a cell face and a geometry boundary. The mass flux, therefore, is
determined as the average of the velocities on either side of the control volume face.
For the convecting mass flux at the eastern face this yields:

Fm
e =

1

2
(ucA

x
c + ueA

x
e )∆z (3.3)

Note that the averaging is independent of grid size and remains the same on non-
uniform grids. It does depend on whether a cell has been cut by the structure.
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As mentioned, the convected quantities, in this case the velocity u, are treated differ-
ently. The velocity u has to be determined at the eastern control volume face as well,
but a factor α is introduced in the interpolation between velocities on either side of
the volume face:

u = αuc + (1− α)ue.

The factor α is used to specify an upwind bias in the interpolation. When the mass
flux over the volume face is positive, setting α to 1 yields a full upwind discretization
and setting α to 0.5 yields a central discretization. It is known from analysis of the
convection/diffusion equation that central discretization is second order accurate, but
gives spatial instabilities, so called ‘wiggles’, on coarse grids.

Upwind discretization is first order accurate and is free of wiggles on any mesh size.
Compared to central discretization, upwind discretization of the convective term in
the momentum equation gives additional, ‘artificial’ viscosity of the order of the mesh
size. On coarse grids the additional viscosity is much larger than the physical viscosity
ν; it keeps solutions free of wiggles.

Combining the mass flux with the convected quantity u and rearranging terms, gives
the convective flux over the eastern control volume face:

Fc
e =

1

2
Fm

e (uc + ue) +
1

2
α |Fm

e | (uc − ue) . (3.4)

Note that in case α equals 1, an upwind discretization is obtained with Eq. (3.4),
regardless of the direction of mass transport. For completeness, the convective flux
through the northern face is also given below; other fluxes can be determined in a
similar manner:

Fc
n =

1

2
Fm

n (uc + un) +
1

2
α |Fm

n | (uc − un) , (3.5)

in which the mass flux is found to be Fm
n = 1

2 (wcA
z
c + weA

z
n) · 1

2 (∆xw +∆xe).

3.3.2 Diffusion

The diffusive term of the momentum equation in x-direction is stated here:

ν

∮

Γ

∇u · n dΓ.

The proper way to approximate the relation above on a non-uniform grid with cut
cells has been presented by Dröge in [11]. His application was the Direct Numerical
Simulation (DNS) of flow around a cylinder. In that type of application it is imper-
ative that the formation of the boundary layer is represented correctly and that the
flow separation point is predicted accurately.

Extreme wave impact loads on structures are mostly convection driven and the scale
of offshore structures is such that, in general, coarse grids are used in engineering.
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Figure 3.5: For the diffusive term in the momentum equation, the control volume is
defined as if the structure has a staircase geomery. The fluxes are based
on the uncut cell size.

Upwind discretization of the convective term in the momentum equation is the only
suitable choice on coarse grids. And in case of upwind discretization on coarse grids,
the total diffusion is dominated by the artificial viscosity.

Then it becomes a question of conscience: why overcomplicate matters and model
the diffusive term at all? It is true that for coarse grids diffusion is dominated by
artificial viscosity. But artificial viscosity depends on the grid size. For finer grids the
artificial viscosity becomes smaller until for truly fine grids it is of the same order as
the physical viscosity. For this situation we still want a discretization of the diffusive
term that becomes more accurate for smaller mesh sizes.

The discretization adopted here does not account for cut cells; it is derived as if the
structure is represented by means of a staircase approximation. The diffusive flux
over the eastern control volume face in Fig. 3.5 then becomes:

Fd
e =

∫

∆

z
∂u

∂x
dz =

∆z

∆xe
(ue − uc) . (3.6)

And, again, to be complete, the flux over the northern volume face is given by:

Fd
e =

∫

∆

x
∂u

∂z
dx =

∆x

∆zn
(un − uc) . (3.7)

3.3.3 Pressure and gravity

The pressure term in vertical z-direction is as follows:
∮

Γ

pnz dΓ.
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Figure 3.6: When the pressures along all the faces of the control volume have been
integrated, the approximation of the pressure term in the momentum
equation is found to only depend on the pressure difference and the
central cell face aperture.

The pressure has to be evaluated along the faces of the control volume in Fig. 3.6.
The pressure is assumed constant within a cell and with this in mind the pressure
‘fluxes’ can be determined. Note that these fluxes are actually forces that follow from
pressure integration over a volume face.

The force in vertical direction only depends on the horizontal distance over which the
pressure is evaluated, irrespective of the orientation of the control volume face. When
all faces have been accounted for, the pressure term becomes:

∮

Γ

pnz dΓ = pn∆x− pn (1−Az
c)∆x− pzA

z
c∆x, (3.8)

which can be simplified to:

∮

Γ

pnz dΓ = (pn − pz)A
z
c∆x. (3.9)

In most simulations in this thesis, gravity is the only external force. The proper
discretization of the gravity term given below, should follow a similar path as the
discretization of the pressure, since in hydrostatic situations the change in pressure
can only be attributed to gravity, ∇p = −g.
The external force in vertical z-direction is equal to gravity:

∫

Ω

−g dΩ.
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Using Gauss’ theorem the volume integral can be rewritten to a surface integral along
the boundary of the control volume in Fig. 3.6:

∫

Ω

−g dΩ =

∫

Ω

∇ (−gz) dΩ =

∮

Γ

−gzn dΓ.

The gravity ‘fluxes’ over the vertical volume faces in horizontal direction are evaluated
at the same elevation. They are of equal size but opposite in direction. In vertical
direction the fluxes over the horizontal volume faces are evaluated at different eleva-
tions. The integral then becomes:

∮

Γ

−gzn dΓ ≈ −gAz
c∆x (zn − zs) = −gAz

c∆x∆z. (3.10)

When Eq. (3.9) is combined with (3.10) above, we find that the result is the discrete
alternative of ∇p = −g and that we have found the proper discretization of the
external force term. It would not have been possible to include the face aperture Az

c

in the discretization of the gravity force, if the step from volume integral to surface
integral had not been made.

3.3.4 Time discretization

The fluxes that were found in the previous sections can be rewritten to matrix co-
efficients multiplied by vectors that contain the discrete solution variables. We then
obtain a divergence matrix M for the discrete continuity equation:

Mud = 0, (3.11)

where ud contains the discrete velocities.

For the terms in the discrete moment equation we obtain a convective matrix C, a
diffusive matrix D and a gradient matrix G. The entire discrete momentum equation
then becomes:

V ∂ud

∂t
= −C (ud)ud −

1

ρ
Gpd + νDud + Fd. (3.12)

In (3.12) V is a diagonal matrix that contains the control volume size, pd is a vector
containing the discrete pressures and Fd is a vector that accounts for the discrete
external force, which includes grid information. For the convective term this notation
has been chosen to show that it is a nonlinear term and that elements of the vector
ud have been used to construct the matrix.

Now, explicit forward Euler in time is used for the temporal discretization. The
velocities in nonlinear terms of the momentum equation are chosen at the old time
level tn. The velocities in the continuity equation are chosen at the new time level
tn+1 to ensure a divergence free velocity field at this level. As a result, also the
pressure needs to be evaluated at the new time level.
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When the superscripts that indicate the time level are added to the solution variables,
the system of equations becomes:

Mun+1
d = 0, (3.13)

Vun+1
d − un

d

∆t
= −C (un

d )u
n
d − 1

ρ
Gpn+1

d + νDun
d + F n

d . (3.14)

Now, the predictor velocity ũd is introduced. This auxiliary vector will contain the
contributions of convection, diffusion and external forcing at the old time level:

ũn
d = un

d − (C (un
d )u

n
d − νDun

d − F n
d ) . (3.15)

With the predictor velocity, the discrete momentum equation becomes:

un+1
d = ũn

d −∆tV−1 1

ρ
Gpn+1

d . (3.16)

The momentum equation is substituted into the continuity equation in Eq. (3.14).
The pressure vector on the new time level tn+1 remains on the left-hand side of the
equation. The predictor velocity is shifted to the right-hand side of the equation.
With the property that G = −MT we observe that a discrete Poisson equation for
the pressure is obtained:

MV−1MTpn+1
d =

ρ

∆t
Mũn

d . (3.17)

When the pressure vector at the new time level has been resolved, the velocity vector
at the new time level un+1

d can be found from Eq. (3.16).

3.3.5 Stability

The convective matrix derived above is a skew-symmetric operator. The diffusive ma-
trix is a symmetric negative definite operator. Verstappen and Veldman [51] present
an evaluation of the kinetic energy. Due to the symmetry properties of the discrete
convective operator, there is no artificial increase of energy and energy is only dissi-
pated as a result of diffusion.

Dröge and Verstappen [12] show that convective stability for first-order upwind dis-
cretizations is guaranteed as long as the Courant number based on the uncut cell size
remains smaller than one:

∣
∣
∣
∣

u

∆x
+

v

∆y
+

w

∆z

∣
∣
∣
∣
∆t ≤ 1 (3.18)

Diffusive stability is obtained when the following criterion is satisfied:

2ν

(
1

∆x2
+

1

∆y2
+

1

∆z2

)

∆t ≤ 1 (3.19)

The diffusive term in the momentum equation was already determined as if cells were
uncut. Therefore also this criterion is based on the uncut cell size.
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Figure 3.7: Flux of fluid from the donor cell D to the acceptor cell A. The flux
depends on the velocity, time step and cell face aperture Ax

c . Limiter
functions are applied to ensure that the D-cell is not drained beyond its
contents F s

w, and the A-cell not filled beyond its capacity F b
e .

3.4 Free surface

The fluid displacement method in ComFLOW was originally introduced as the Vol-
ume Of Fluid-method by Hirt and Nichols. In this method, fluid fragments are con-
vected from one cell to another, after which the position of the free surface is resolved
by reconstructing it from the filling rates of cells. Fluid convection satisfies the fol-
lowing equation, which is the equivalent of Eq. (2.10) applied to the fluid volume of
a single cell:

∫

Ω

F s dΩ+

∮

Γ

F s (u · n) dΓ = 0. (3.20)

When the fluid convection for all cells has been determined, the position of the free
surface can be reconstructed from the new fluid distribution. From Eq. (3.20) we find
that the change in fluid volume can be determined by accounting for the fluxes over
the cell faces. The convective term in the fluid displacement equation shows strong
resemblance to the convective term in the momentum equation.

The flux over a cell face in horizontal x-direction, when the horizontal velocity ui is
positive, can be approximated as follows:

Fs
w = F s

wuc∆tA
x
c∆z. (3.21)

Sufficiently far away from the free surface the net flux from (and to) a cell is zero.
Near the free surface, however, the flux to and from cells will change their filling rate.
Depending on the sign of the velocity at a cell face, the cell will become a donor or
an acceptor cell (see Fig. 3.7).

Sometimes the flux from a cell might drain the cell beyond its fluid content. Or a cell
might be be filled beyond its capacity. Overfilling and overdraining are prevented by
limiter functions. For the exact form of the limiter functions, refer to [27].
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Figure 3.8: Instead of fluxing the individual VOF-values, shown in (a), the local
height function hc in (b) is used to convect the aggregated fluid in the
array around the central S-cell. In this figure hl = 0.5, hc = 1.1 and
hr = 1.7.

Still, because the donor-acceptor algorithm is applied in multiple directions, and each
direction is dealt with individually, cells may sometimes be filled or drained beyond
their capacity. In the Hirt and Nichols VOF method, cells with F s > F b are artificially
set back to Fb. Cells with F

s < 0 are set back to zero. As a result, mass can be lost
or gained during a simulation, which is undesirable.

Local height function

Due to the cell-by-cell approach in the original VOF-method, fluid is displaced without
consideration for the position of the main fluid body. Consequently, fluid particles
can disconnect from the free surface. If the size of these particles is of the order of
the grid size, they can no longer be convected by means of velocities stemming from
the numerical method. The particles become frozen and will stay in position for the
remainder of the simulation. Disconnecting droplets have become known under the
name flotsam and jetsam [41] and are a well know artefact of the VOF-method.

In this numerical method, a local height function is used to reduce both the occurrence
of flotsam and jetsam, and mass loss due to round-off errors. With a local height
function the cell-by-cell approach is abandoned and an array of cells is used to convect
fluid. Depending on the orientation of the free surface, fluid from multiple connecting
cells is redistributed in such a way that the aggregated fluid connects with the main
body of fluid. The aggregated fluid is stored in a scalar function value and the function
value is used to convect fluid, instead of the filling rates of the individual cells. In
this research an array of three cells in each direction is used, see Fig. 3.8.

According to Kleefsman et al. [33], a local height function reduces the number of
disconnecting droplets to a great extent and brings down mass loss to practically
nothing.
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Figure 3.9: The pressure in a S-cell pS is obtained from interpolation towards the
reference pressure p0. The interpolation depends on the orientation of
the free surface.

3.5 Boundary conditions

Picture the domain as a box with side faces, a bottom face and a top face. The
bottom face of the domain is impermeable by design, as is the top face of the domain.
Impermeability is obtained by setting the following boundary condition:

u · n = 0. (3.22)

The side walls of the domain can either be open or closed. Closed walls result from
application of the same boundary condition in Eq. (3.22) above. Open boundaries
are discussed in Chapter 5.

The main concern with respect to boundary conditions in this section goes out to
the free surface. In simulations where field equations for pressure and velocity are
only solved in water, the free surface functions as a formal boundary and boundary
conditions need to be applied.

Pressure at the free surface

The term MV−1MTpd in Eq. (3.17) cannot be continued beyond the free surface.
Therefore, boundary condition (2.13) for the tension in normal direction to the bound-
ary is applied. On the scale of offshore structures being impacted by waves with wave
lengths in the order of the length of the structure, the effect of viscosity and surface
tension in the boundary condition can safely be ignored.

At the free surface, the effect of atmospheric pressure is modeled by imposing a
reference pressure p0 at the exact position of the free surface. The value of the pressure
in a surface cell then follows from interpolation towards this reference pressure:

pS = αp0 + (1− α) pF , (3.23)
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Figure 3.10: Boundary condition for the velocity at the free surface when it is nearly
horizontal. SE-velocities are extrapolated from within the main body
of the fluid. The direction of extrapolation depends on the orienta-
tion of the free surface. EE-velocities stem from the tangential stress
condition.

in which pS is the pressure in a S-cell and pF is the pressure in a F-cell closest to
the free surface. The direction of interpolation depends on the orientation of the
free surface. Assuming the free surface is almost horizontal and the direction of
interpolation vertical, then the interpolation coefficient becomes (see Fig. 3.9):

α =
∆zF +∆zS

∆zF + F s
S∆zS

. (3.24)

Velocities at the free surface

Velocities near the free surface are indicated with the labels of the cells they are in
between of; the velocity between two F-cells is then labeled as a FF-velocity. In our
numerical method, a momentum equation is solved for FF-, FS- and SS-velocities.
Near the free surface, when SS-velocities need to be computed, the stencil is incom-
plete and boundary conditions for the velocity are required.

Boundary conditions are formulated for SE- and EE-velocities. They are treated
differently. SE-velocities are obtained by extrapolation from the main body of the
fluid. Either constant or linear extrapolation is applied. Linear extrapolation leads
to more accurate wave simulations, but according to [32] it can result in instabilities
and very high velocities near the free surface. The difference between constant and
linear extrapolation is further explored in Chapter 4.

EE-velocities are obtained from the tangential stress condition in Eq. (2.14). It is
formulated in normal and in tangential direction. Here we keep the orientation of the
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free surface grid aligned. When the free surface is (almost) horizontal, the following
condition is applied:

∂u

∂z
+
∂w

∂x
= 0.

The approximation to the equation above is found from central differencing. We then
obtain for the EE-velocity in Fig. 3.10:

uEE = uSS − ∆zS +∆zE
∆xw +∆xe

(we − ww) . (3.25)





Chapter 4

Free surface waves

The numerical method in ComFLOW will be used for wave impact simulations on
offshore structures. In this chapter, the simulation of waves without a structure in the
domain is investigated. Simulations for standing and propagating waves are analyzed
and results are compared to analytical wave theory.

4.1 Definitions

The free surface waves discussed in this research are disturbances of the interface
between water and air. In the absence of external forcing a free surface in a closed
domain will be a plane perpendicular to the direction of gravity. Wind can cause
disturbances and so can, for instance, ships as they travel through the water/air
interface.

Regardless of how they are made, disturbances in the free surface do not stay in one
position. As they propagate away from the source of the disturbance, waves contin-
ually exchange potential energy for kinetic energy and vice versa. When the surface
elevation is measured at a fixed position, the resulting signal will be an oscillation
around some mean level.

Free surface waves have a number of interesting characteristics, which are more easily
discussed when several key concepts regarding waves have been defined in advance.
The mean level, around which the variation takes place, will be called the mean surface
level, abbreviated as MSL. It is customary in offshore applications to have the origin
of the axis system in MSL, with the vertical axis in z-direction pointing upwards.

The variation around MSL is the surface elevation as a function of time and space,
ζ = f (t, x, y). Regular free surface waves with surface elevations much smaller than
one, can be described by periodic functions, such as:

ζ = a cos (t, x, y) . (4.1)

The amplitude of the wave is then denoted by a.

31
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Wave crests are (local) maxima of the function describing a wave. Reversely, wave
troughs are minima. The vertical distance between a wave crest and a consecutive
wave trough is called wave height, H. The distance in time from one wave crest to
another is the period, T . Similarly then, λ can be defined as the wave length, which
is the distance in space between two consecutive wave crests. Note that the preceding
parameters only make sense when waves are regular.

Period and wave length are often converted to their reciprocal parameters: the fre-
quency ω and the wave number k. It is customary in offshore engineering to express
these parameters as angles in radians. Then:

ω =
2π

T
and k =

2π

λ
.

Water is a dispersive medium: long waves propagate faster than short waves. The
wave length depends on the frequency of the regular wave and the water depth, h.
The water depth is the distance between MSL and the bottom. Without bottom
topology variation, the bottom is defined by the plane z = −h. For steeper waves,
the wave length for a given frequency also depends on the wave height. This is a
nonlinear effect.

The equation that describes the interdependence between propagation (or phase)
velocity, c, and wave length is called dispersion relation. The dispersion relation for
small amplitude waves is derived in Appendix A about potential wave theory. The
phase velocity and the dispersion relation will often be used in the chapter about
the absorbing boundary condition, Chapter 6. It will be stated there and thoroughly
discussed.

The variables described above are combined in Fig. 4.1. With the basic wave param-
eters defined, we can investigate how well waves and wave behaviour are represented
within the numerical method described in Chapter 3. Investigation is performed by
careful inspection of the simulation results and comparison to (simplified) theory.

4.2 Accuracy of wave simulations

The numerical method incorporated in the ComFLOW program is designed to be
robust and accurate in terms of pressures and surface elevations in simulations of
violent free surface impact events. Examples of these events are, for instance, a
dambreak against a structure in the flow [32] and internal liquid sloshing inside models
of liquid natural gas (LNG) tanks [54].

Another type of simulation tries to realistically reproduce free surface impact events
in ocean environments. The impact events, then, are the result of the interaction
between free surface waves and a bottom founded or floating structure at sea. This
introduces the additional requirement for the numerical method to accurately simulate
the creation and propagation of free surface waves before the interaction with the
structure leads to violent impact events.
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Figure 4.1: Wave parameter definitions.

The robustness introduced above comes at a price. Upwind discretization of the con-
vective terms in the momentum equation gives stable results on coarse grids, but also
introduces artificial viscosity. Artificial viscosity contributes significantly to energy
dissipation in the system.

Another, often under-appreciated source for artificial energy dissipation is the free
surface displacement method [31]. The donor/acceptor algorithm (DA) introduced by
Hirt and Nichols [27] can be considered as an upwind discretization of the convective
term in the free surface transport equation. No vocabulary such as ‘artificial viscosity’
has yet been attributed to this form of upwind discretization, but it leads to wave
energy dissipation nonetheless.

Surface elevation and (potential) energy are very much related. The result of numer-
ical energy dissipation is that the surface elevation of simulated waves, expressed in
the wave height, becomes smaller over time and propagated distance. The effect of
upwind discretization is stronger in steeper waves (see Fig. 4.4a). In very steep waves,
a significant part of the wave height can get lost to energy dissipation over as little
as one wave length’s distance.

Numerical methods for mild wave behaviour near a structure, such as 3D Boundary
Element Methods (BEM) in the frequency domain, have been around for over twenty
years [38]. Extensive simulations with 3D BEM software can be performed within
the hour. The added value of the time intensive numerical method described above,
is in simulating extreme free surface events in steep waves. It is, therefore, of key
importance that waves remain steep until they reach the structure.

In this chapter the effect of upwind discretization of the convective terms in either
the momentum equation or the transport equation of the free surface, is quantified
and improving alternatives are introduced.
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4.3 Simplifications

To study the individual contributions of the upwind discretization of the convective
terms and the DA method to the overall dissipation of energy, a simplified method is
introduced.

We wish to consider only the additional dissipation as a result of the numerical scheme.
There is also true, physical dissipation of energy due to the diffusive term in the mo-
mentum equation. The dissipation as a result of viscous, diffusive effects is temporarily
ignored by performing simulations in which the kinematic viscosity ν is equal to zero.

Only one phase is considered, which means that the discrete equations are only solved
in that part of the domain that contains fluid (water). The addition of a second fluid
in the form of air above the free water surface and the discretization of the density
transition from water to air can lead to additional dissipation of energy [54].

The final simplification is that a height function is introduced to describe the surface
elevation. A height function is sufficiently adequate to describe waves before breaking.
In comparison to the donor/acceptor algorithm, however, it is far simpler to work out
concepts for improving the accuracy of the free surface description.

The height function is determined by integration of the continuity equation in vertical
direction:

ζ∫

−h

(
∂u

∂x
+
∂w

∂z

)

dz = 0. (4.2)

Rewriting the integral yields:

∂

∂x

ζ∫

−h

u dz − u
∂ζ

∂x
− u

∂h

∂x
+ w| ζ

−h = 0. (4.3)

Note in (4.3) that if the bottom is impermeable, then w|
−h is zero. Also note that

in the absence of bottom variation, ∂h/∂x = 0. The remaining terms exactly equal
the time derivative of the surface elevation in the kinematic free surface boundary
condition in Appendix A:

∂ζ

∂t
+ u

∂ζ

∂x
− w|ζ = 0. (4.4)

After substitution of this equation, the resulting relation for the height function in
analytical form equals:

∂ζ

∂t
+

∂

∂x

ζ∫

−h

u dz = 0. (4.5)

Note that (4.5) is a conservation law in contrast to (2.10) in Chapter 2.
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For the horizontal position, where the surface elevation ζ is to be considered, we con-
sider a vertical column of grid cells. The surface elevation will be evaluated midway in
between column faces in alignment with the horizontal position of the pressure points
in that column. In hydrostatic situations, then, the pressure at multiple elevations in
the column can be directly resolved from the surface elevation.

The vertical column of grid cells is chosen to be the control volume, in which we
approximate Eq. (4.5). Forward Euler is used for the time derivative and the change
in volume depends on the fluxes over the column faces:

ζn+1
c = ζnc − 1

∆xc
(Fe −Fw) , (4.6)

in which Fe and Fw are the fluxes over the eastern and western control volume face.

The total flux over the control volume face consists of the summation of fluxes from
individual cells. For F-cells the flux is equal to

FF = uF∆t∆zF . (4.7)

In S-cells the flux depends on the surface elevation. The surface elevation within a
cell is assumed to be constant. The flux from an S-cell can then be determined as

FS = uS∆t (ζc − zs) , (4.8)

where zs is the vertical coordinate at the south side of the S-cell.

The flux calculation from the S-cell has been illustrated in Fig. 4.2. It shows the
surface elevation in a column of cells midway in between vertical column faces. The
surface cell has been enlarged. The surface elevation is assumed constant within cell
columns and the fluxes at S-cell faces are determined using this assumption.

4.4 Standing waves

4.4.1 Method of testing

To test the free surface displacement method and only the displacement method,
standing wave simulations are performed. Standing waves can be simulated in a
closed domain with natural boundary conditions. A closed domain removes the need
for wave generation and absorption at the boundary, which can interfere with the
results and the interpretation of these results.

Still, standing wave simulations are well suited to assess the performance of the nu-
merical method for free surface events [44], because all the important dynamics are
included: a free surface is present, which can be steep, and the steeper the wave, the
larger the velocity gradients will be. Large velocity gradients are essential. In small
amplitude standing wave simulations, nonlinear effects are negligible and hardly any
energy dissipation is present, because the system will effectively be a set of linear
equations approximated with central discretization.
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uS∆t

ζc − zs

Figure 4.2: Flux from an S-cell. The flux over the eastern cell face is indicated by
the dark grey area. The flux volume depends on the horizontal velocity
in the cell face and the position of the free surface.

The initial condition of the standing wave simulations in this chapter, is a free surface
prescribed by means of a cosine function with a certain amplitude. At time t0 the
free surface is released and a harmonic solution of the free surface is obtained. As
the amplitude of the cosine function is increased, higher harmonics in the free surface
elevation are generated. This is a nonlinear effect, in which energy transfer of a certain
base mode towards higher harmonics takes place.

H0

h

∆xi

∆zk

ζ

xm
ℓ

Figure 4.3: Setup of the standing wave simulation.

The surface elevation is measured in the middle of the domain. The remaining pa-
rameters are summarized in Table 4.1 and shown in Fig. 4.3:
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Table 4.1: Domain and grid

Parameter Symbol Value

Water depth h 10m
Domain length ℓ 50m
Measurement position xm 25m
Horizontal grid distance ∆x 1m
Vertical grid distance ∆zmin 0.5m
Vertical grid distance ∆zmax 1m
Vertical stretch factor ξ 1.05 [-]
Time step ∆t 0.01s
Simulated time T 500s

Over time the surface elevation at a certain measurement location will become grad-
ually lower. In absence of physical energy dissipating mechanisms, the reduction of
the surface elevation can only be attributed to artificial energy dissipation of the
numerical scheme.

Below, two situations are depicted. Figure 4.4 shows the surface elevation at the mea-
surement location over time for increasingly larger amplitude waves. The dissipation
over time is represented by the decreasing wave height over time, made dimensionless
by the initial wave height. It is plotted on logarithmic scale. There is no dissipation
for very small amplitudes, but when waves become steeper, the rate of dissipation
increases. On the left of Fig. 4.4 the actual free surface for the largest amplitude
wave (ζa = 2m) is shown; this wave will be the reference case in this chapter.

The rate of dissipation depends on the grid size. Increasing the resolution leads to
a reduced rate of dissipation. A grid convergence study has been performed to show
what the solution will be, when there is less dissipation in the system. It also shows
what is to be expected of the improved numerical methods discussed in this chapter.
This is depicted in Fig. 4.5.

4.4.2 Velocity extrapolation at the free surface

In one-phase mode, the free surface is an actual boundary and boundary conditions
for pressure and velocity at the free surface are required. In section 3.5 the current
boundary conditions are described. The pressure at the free surface is determined by
interpolation towards a reference pressure p0. SE-velocities are obtained by constant
extrapolation from within the flow field and EE-velocities stem from the boundary
condition that describes the balance of forces at the free surface.

Without viscosity and a boundary layer at the free surface - and on the scale of all
our (offshore) applications this is almost always justified - the way the EE-velocities
are determined is rather arbitrary. Constant extrapolation of these velocities is an-
other choice and as can be seen from Fig. 4.6 the dissipation over time shows similar
behaviour. The line indicated by ’Reference’ in this figure, and similar figures in this
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Figure 4.4: Dissipation in standing waves. In (b), steeper waves have a larger rate
of dissipation. In (a), the actual free surface as a function of time for
the largest amplitude wave in (b).

0 20 40 60 80 100

−2

−1

0

1

2

t [s]

η
[m

]

(a)

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

t/T [-]

H
/
H

0
[-
]

 

 

50x13

100x26

200x52

(b)

Figure 4.5: Dissipation in log-scale in standing waves when the grid resolution is
increased. The initial wave height is equal to H0 = 4m. The actual free
surface for the finest mesh size is shown on the left.

chapter, is the dissipation as a function of time of the original method described in
Chapter 3.

The dissipation behaviour over time changes, however, when instead of constant ex-
trapolation, linear extrapolation is applied to determine both the SE and the EE-
velocities. The direction of the extrapolation depends on the orientation of the free
surface. If the free surface is assumed to be (almost) horizontal, the SE velocity, in this
case a vertical velocity, and the EE-velocity, a horizontal velocity, are extrapolated in
the vertical direction from below, see Fig. 3.10.
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Figure 4.6: Damping of the original method with boundary conditions for the EE-
velocities at the free surface, compared with constant extrapolation for
these velocities. The initial wave height was H = 4m and results are
presented on log-scale.

When linear extrapolation is applied there is less dissipation. The behaviour of the
surface elevation over time is almost the same, but after an equal number of periods,
more of the surface elevation remains in the case of linear extrapolation compared to
the original method. The surface elevation and the dissipation behaviour compared
to the original method are shown in Fig. 4.7.

0 20 40 60 80 100
−2

−1

0

1

2

3

t [s]

η
[m

]

(a)

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

t/T [-]

H
/
H

0
[-
]

 

 

Reference

New

(b)

Figure 4.7: Damping on log-scale when the velocities at the free surface are deter-
mined by linear extrapolation. The initial wave height was H = 4m.
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4.4.3 Free surface reconstruction

The volume-of-fluid VOF method of its own accord does not explicitly resolve the free
surface. Instead, when determining the fluid configuration at the new time level tn+1,
it shifts around fluid fragments from one cell to another with the velocities throughout
the body of the fluid. The new fluid distribution is administrated by means of filling
rates of cells, which relates the fluid volume in the cell to the cell volume itself.

Although the filling rates do not specify the exact position of the free surface, it
can be reconstructed approximately from the filling rates by considering the filling
rate in one cell in relation to the filling rates in the surrounding cells. Free surface
reconstruction positions the fluid within a cell in such a way that the transition in
the free surface between cells becomes less discontinuous.

The process of free surface reconstruction is best illustrated by a series of consecutive
images that show the most basic reconstruction techniques. The images are shown
in Fig. 4.8. The left-most illustration shows the filling rates, or VOF-function values,
without an indication of where the free surface might be. No reconstruction has taken
place.

1.01.0

1.0

1.0

1.0

1.0

1.0

1.0

0.3

0.6 0.1

0.8

(a) VOF (b) SLIC (c) PLIC

Figure 4.8: Methods of free surface reconstruction.

The illustration in the middle shows the free surface when the free surface is kept grid
aligned. The configuration of the fluid within a cell is determined from the filling rates
of the surrounding cells. This method of reconstruction is often referred to as simple
line interface calculation or SLIC. The free surface of the wave, which is represented
by the VOF-function values, is approximated rather crudely and the transitions in
the free surface between cells are staircased and discontinuous.

On the right, in Fig. 4.8c, a much better free surface approximation is depicted. The
free surface is still a straight line (or a plane in 3D), but the normal to the free surface,
the free surface orientation, is not necessarily grid aligned. In the piecewise linear
interface calculation (PLIC) the transitions in the free surface are still discontinuous,
but the errors associated with the discontinuities are greatly reduced compared to the
SLIC method.
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One of the most apparent numerical errors in performing simulations with the SLIC
free surface reconstruction is the occurence of flotsam and jetsam [41]. These are
droplets that disconnect from the main body of the fluid due to the poor representa-
tion of the free surface in combination with the donor/acceptor algorithm. Another
numerical error often encountered in literature is that SLIC is not mass preserving as
a result of round-off errors when SLIC is combined with the donor-acceptor algorithm.

Some authors [16] combine SLIC with a local height function to prevent disconnecting
droplets and to ensure mass conservation. The local height congregates fluid fluxes
from multiple cells and transports them as a whole from one set of cells to another.
The number of cells, of which the fluid fluxes are combined, varies among authors.
In our method, 3×3 cells in 2D are used, Afkhami and Bussmann [1] use 3× 5 cells.
The local height function, they reason, saves them the computational cost of using a
PLIC method, which is reportedly [54] very time consuming.

While disconnecting droplets are reduced and the loss of mass is prevented by using
SLIC free surface reconstruction and a local height function, other numerical errors
remain. One, often unappreciated, aspect of the donor-acceptor algorithm is dissi-
pation. In essence, the donor-acceptor algorithm is an upwind discretization of a
transport equation. Upwind discretization of the convective term in the momentum
equation (see Chapter 3) is known for its dissipative properties and that it leads to
artificial viscosity. Upwind discretization of the convective term in the fluid transport
equation also induces artificial diffusion.

This section intends to quantify the dissipation and present an alternative. The
height function (note: not local height function) introduced in a previous section
is combined with the concept of piecewise linear reconstruction (PLiC) of the free
surface. The slope of the free surface within an S-cell is calculated and the slope is
used to determine the amount of fluid that can be fluxed from that cell.

The slope ai of the free surface within a cell in 2D depends on the surface elevation
to the left and the elevation to the right of this cell. It may be regarded as a central
discretization of the free surface gradient ∂ζ/∂x. On a uniform grid:

ai =
ζi+1 − ζi−1

∆xi +∆xi+1
. (4.9)

The surface elevation is defined in the center of the cells. The surface elevation itself is
not a volume. But when the surface elevation ζi within a column of cells is assumed
constant, as has been done to determine the volume fluxes across cell faces, then
Fig. 4.9a shows that ζi diminished by the z-value of the bottom face of the S-cell does
represent a sort of volume:

VS = ∆xi (ζi − zS) . (4.10)

Reconstruction of the free surface must not change the volume VS in the S-cell in order
to conserve mass. Mass conservation on the level of a cell is required for two reasons:
first and foremost because the method of reconstruction needs to be combined with
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Figure 4.9: Volume in an S-cell. Left shows the volume when SLIC is used. Right
shows the maximum slope of the free surface reconstruction when the
volume is required to stay the same.

the donor/acceptor algorithm; secondly because the fluid cannot be shifted towards
cells where velocities are not defined. Therefore, the slope of the free surface needs
to be limited. This is shown in Fig. 4.9b. Once the reconstructed free surface at a
cell face reaches the top or bottom of the cell, the maximum slope is obtained. This
implies that:

|ai| ≤ min

(
2 (ζi − zS)

∆xi
,
2 (zN − ζi)

∆xi

)

. (4.11)

The slope limiter reduces the accuracy of the piecewise linear reconstruction, but a
consistent mass conserving alternative in combination with the height function is not
readily available.

Once the slope in an S-cell has been calculated, the fluxes at the cell faces are deter-
mined. The flux follows from an integration of the fluid distribution function over a
distance ui∆t. The fluid fluxed from the cell equals

Fi =
(

ζi +
ai
2
∆xi

)

ui∆t−
ai
2
(ui∆t)

2
, (4.12)

when ui is positive. When ui−1 is negative, the fluid flux equals

Fi−1 =
(

ζi −
ai
2
∆xi

)

ui−1∆t+
ai
2
(ui−1∆t)

2
. (4.13)

The fluid fluxes are indicated schematically in Fig. 4.10.
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Figure 4.10: Fluxes from an S-cell when PLIC is applied.

The piecewise linear reconstruction of the free surface has been applied in a standing
wave simulation. The parameters for this simulation are the same as in Table 4.1.
The surface elevation at the measurement position in the middle of the domain is
plotted as a function of time in Fig. 4.11. Compared to the original method, the
dissipation over time shows the same behaviour. The dissipation, however, is slightly
less: after 20 periods, 65% of the original wave height remains.
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Figure 4.11: Wave damping on log-scale when piecewise linear reconstruction of the
free surface is used instead of piecewise constant reconstruction. The
initial wave height was H = 4m.
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4.4.4 Convective term in the momentum equation

The original method described in Chapter 3 uses either upwind or central discretiza-
tion of the convective term in the momentum equation. The central discretization pos-
sesses the energy conserving properties, but requires a certain minimum grid spacing
to be free of spatial instabilities (‘wiggles’). The minimum grid spacing requirement
is usually too demanding for a desktop pc to perform a simulation with an offshore
application.

Offshore applications, with a focus on impact calculations, do not require an accurate
representation of boundary layers. The default option in these simulations is almost
always a first order upwind discretization of the convective term. First order upwind
introduces artificial viscosity and it can be seen that first order upwind not only has
an effect on boundary layers, but also on the overall energy level in the system. As a
result of artificial viscosity, the surface elevation in standing wave simulations rapidly
decays over time.

Other discretizations of the convective term in the momentum equation are possible.
Since central discretization is not available, some use second order upwind discretiza-
tion to reduce energy dissipation [54] during simulations. Second order upwind re-
quires a larger stencil. The larger stencil cannot be used at boundaries, such as the
bottom, solid walls on either side of the domain and also the free surface. At those
locations first order upwind discretization is used, which implies that the space dis-
cretization throughout the domain is a combination of first order upwind and second
order upwind.

Second order upwind also has a very restrictive stability limit for the time integra-
tion. Second order upwind discretization of the convective term in combination with
Forward Euler time discretization requires a CFL criterion which is much smaller
than one. [54] therefore also chooses a higher order time discretization. The Adams-
Bashforth time discretization is an explicit time integration method that combines
information from two consecutive time levels to determine the solution variables at
the new level.

In our numerical method, the grid locations where solution variables are determined,
can change from one time level to the other. To apply Adams-Bashforth time in-
tegration at these locations then requires information that has never before been
determined. One option to deal with the lack of information is to extrapolate vari-
ables to those locations when required. Another option is to apply the default forward
Euler time integration at those locations. The time integration procedure then varies
between cells. Also note that the time integration procedure of the free surface con-
vection is still Forward Euler.

The discretization of the convective term in the momentum equation can be improved
without the need for a larger stencil at the boundaries and without the need for
another time integration method to overcome the reduced stability properties of the
higher order spatial discretization method.

Lax-Wendroff discretization techniques combine the time and spatial discretization.
The solution variables at the new time level follow from an interpolation of the vari-
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ables at the old level in the space-time plane. For a proper discretization of the
convective term, solution variables at the faces of the momentum control volume are
required, see Fig. 4.12.
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Figure 4.12: Lax-Wendroff discretization of the momentum flux. To determine the
flux over the plane xi+1/2 an interpolation is performed between ui and
ui+1. The interpolation coefficients depend on the direction of ui+1/2

and the time step ∆t.

The interpolation depends on the direction of the velocity at the cell face. When
ui+1/2 ≥ 0, linear interpolation for the flux at cell face xi+1/2 according the Lax-
Wendroff method yields

Fi+1/2 = Fm
i+1/2





(
∆xi+1

2 + ui+1/2∆t
)

ui +
(

∆xi+1

2 − ui+1/2∆t
)

ui+1

∆xi+1
,



 (4.14)

in which Fm
i+1/2 is the mass flux ui+1/2∆z.

In Eq. (4.14) one can recognize a local CFL-criterion, which will be be denoted by

ηi+1/2 =
ui+1/2∆t

∆xi+1
. (4.15)

Thus, when the velocity at the face of the momentum volume is positive, the flux at
that face becomes

Fi+1/2 = Fm
i+1/2

[

ui +

(
1

2
− ηi+1/2

)

(ui+1 − ui)

]

(4.16)

and when mass flux Fm
i+1/2 is negative

Fi+1/2 = Fm
i+1/2

[

ui +

(
1

2
+ ηi+1/2

)

(ui+1 − ui)

]

. (4.17)
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The fluxes at the remaining faces of the momentum control volume can be determined
in a similar manner. With all convective fluxes known, the predictor velocity ũ can
be calculated as in Eq. 3.15.

The Lax-Wendroff method is stable by design for CFL smaller than one.

4.4.5 Flux limiters

The Lax-Wendroff discretization as implemented is sensitive to spatial instabilities.
If initially no wiggles are present, they will not be generated during a simulation. In
our method, however, they will always be present. The extrapolation of velocities at
the free surface, as described in section 4.4.2, is inherently imperfect.

The extrapolation introduces a deviation from the rest of the method, resulting in
a discontinuity of either the first derivative (constant extrapolation) or the second
derivative (linear extrapolation). The discontinuity generates wiggles and these wig-
gles at the free surface are transported downward into the body of the fluid, see
Fig. 4.13.

To prevent wiggles the Lax-Wendroff method described above can be extended with
flux limiters. The flux limiter used will adhere to the Total Variation Diminishing
(TVD) concept. The following limiter function, Ψ, is introduced:

Ψ = min (max (0, ri) , 1) , (4.18)
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Figure 4.13: Horizontal velocity profile in vertical direction at t = 2.5s and x =
21.5m when the Lax-Wendroff convection scheme is used. In (a)
wiggles are present. When flux limiters are used on top of the Lax-
Wendroff scheme, there are no wiggles, but the velocities are signifi-
cantly reduced.
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in which:

ri =

(
ui − ui−1

∆xi

)(
ui+1 − ui
∆xi+1

)
−1

. (4.19)

The limiter function is included into the flux calculation as in Eq. (4.20). When
Fm

i+1/2 ≥ 0:

Fi+1/2 = Fm
i+1/2

[

ui +

(
1

2
− ηi+1/2

)

Ψ(ri) (ui+1 − ui)

]

(4.20)

and when Fm
i+1/2 ≤ 0:

Fi+1/2 = Fm
i+1/2

[

ui +

(
1

2
+ ηi+1/2

)

Ψ(1/ri+1) (ui+1 − ui)

]

. (4.21)

When the velocities vary only mildly (ri ≥ 1), then the simulation benefits from
the full potential of the Lax-Wendroff discretization and there will hardly be any
dissipation. In the case of larger variations, increasingly less of the Lax-Wendroff
discretization is used, until for large variations in velocity, ri ≤ 0, the limiter function
is zero and upwind is the resulting discretization. Upwind will give the maximum
amount of dissipation in order to prevent wiggles.

The results of the Lax-Wendroff discretization, extended with flux limiters, for the
standing wave simulation are shown in Fig. 4.14. In this simulation Lax-Wendroff
for convection has been combined with the piecewise linear reconstruction of the
free surface. The surface elevation at the measurement location shows clear benefit
from the improvements that have been suggested in this chapter. The standing wave
simulation now shows less dissipation than the original method described in Chapter 3.
Whereas the standing wave lost 50% of the initial wave height after 20 periods in
Fig. 4.6, this has been reduced to 25% in Fig. 4.14.

4.5 Propagating waves

Different discretization methods to reduce wave energy dissipation in standing wave
simulations have been discussed. Linear extrapolation of the velocities at the free
surface was found to improve the results compared to the original method, as well as
a piecewise linear reconstruction of the free surface and a different discretization of
the convective term in the momentum equation.

The different methods will now be applied to the simulation of propagating waves.
This chapter will not go into the generation of waves, nor will it show how to prevent
wave reflection at the boundaries. These aspects of wave simulations will be discussed
in Chapter 5 and 6. The main concern here is to quantify wave energy dissipation in
simulations of propagating waves.

Waves in this experiment are regular and propagate in positive x-direction. Therefore,
the wave height will decrease in this direction as a result of energy dissipation. The
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Figure 4.14: Wave damping on log-scale when the Lax-Wendroff for the convec-
tive term in the momentum equation is used, compared with upwind
discretization in the original method. The initial wave height was
H = 4m.

initial wave height is four meters at a period of six seconds. The water depth is ten
meters. For this period, wave height and water depth, the wave length is close to fifty
meters. Considering the ratio of wave height to wave length and wave length to water
depth, these are mildly steep waves in shallow water and, as a result, nonlinear terms
in the system of equations are considerable.

Reflected waves are not allowed to contaminate the results. The length of the domain
is to be such, that reflection is prevented during the simulation. The fastest wave
components propagate at c =

√
gh and the domain length following from the criterion

of no reflection is equal to L =
√
ghTmax, where Tmax is the duration of the simulation.

The duration should be long enough for a stable wave system to develop. A stable
wave system is free of initialization effects and is obtained when the wave height at
one location no longer varies in time. After 140 seconds this is true for at least ten
consecutive wave lengths. The wave parameters and the numerical parameters, are
summarized in Table 4.2.

As a first estimate of what to expect from the more accurate discretization methods, a
grid convergence study with the original method is performed. In the grid convergence
study, the grid was kept uniform. Cells measure 1m in both directions for the coarsest
grid and the mesh size is reduced once to 0.5m and a second time to 0.25m. Results
for the dissipation as a function of the position in the domain are shown in Fig. 4.15.
As the mesh width decreases, dissipation is reduced. On the finest grid, there is a
distance of about one wave length, in which there is no visible dissipation. This is
thought to originate from the discrepancy between the analytical solution imposed
at the boundary and the discrete solution inside the domain. After one wave length
a stable solution is obtained. The dissipation coefficient can be obtained from the
slopes of the lines in Fig. 4.15.
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Table 4.2: Domain and grid

Parameter Symbol Value

Water depth h 10m
Horizontal grid distance ∆x 1m
Vertical grid distance ∆zmin 0.5m
Vertical grid distance ∆zmax 1m
Vertical stretch factor ξ 1.05 [-]
Time step ∆t 0.01s
Simulated time T 150s
Domain length ℓ 1500m
Measurement position tm 140s
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Figure 4.15: Dissipation of wave energy as waves propagate through the grid. Three
different grids were used to obtain these results. As the grid resolution
increases, the dissipation is reduced.

In Fig. 4.16 the surface elevation as a function of the horizontal position is plotted
at time t = 140s. The figure also shows the normalized wave height on logarithmic
scale, from which the dissipation coefficient can be found. These results have been
obtained with the original method in ComFLOW. When the method features the
techniques that have been described above – linear extrapolation of the velocities
at the free surface, piecewise linear reconstruction of the free surface and the Lax-
Wendroff scheme with flux limiters – less wave energy is dissipated over distance.
This is shown in Fig. 4.17, where the original method is compared to the improved
method.
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Figure 4.16: In (a) on the left, the surface elevation as a function of the horizontal
position at t = 140s. The surface elevation has been obtained with
the original numerical method in ComFLOW. In (b), the normal-
ized wave height at several consecutive wave lengths. It is plotted on
logarithmic scale to visualize the dissipation coefficient.
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Figure 4.17: Wave energy dissipation, when instead of the original method, linear
extrapolation of the velocities at the free surface, piecewise linear re-
construction of the free surface and the Lax-Wendroff method with flux
limiters are used.

4.6 Discussion

Standing waves

When the dissipation as a function of time in the standing wave simulations is com-
pared to the dissipation as a function of location in the propagating wave simulations
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(Fig. 4.18), it is found that the Lax-Wendroff method with flux limiters gives better
results for propagating waves than it does for standing waves. More specifically, the
Lax-Wendroff method in Fig. 4.18 performs worse than the upwind method. This is
puzzling, since the Lax-Wendroff scheme reduces to an upwind discretization when
the limiter for very large gradients is set to zero. Results worse than upwind, then,
are not expected. This subject is still a matter of ongoing research.
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Figure 4.18: Wave energy dissipation for several combinations of discretizations.
In (a), dissipation as a function of time in standing wave simulations.
Combinations of two letter codes in the legend, such as ln for linear
and sl for SLIC, were used to indicate methods. Then, upslbc indicates
the original method. In (b), dissipation as a function of location in the
propagating wave simulations.

Propagating waves

With regard to propagating waves, it has to be stressed again, that the numerical
method in ComFLOW has not been developed for the main purpose of wave prop-
agation. Its strength is in the accurate and stable simulation of highly distorted free
surface configurations after wave impacts on structures and in the accurate represen-
tation of impact pressures.

The domain in an impact simulation is generally confined to the direct surroundings
of the structure, with the domain boundaries not more than one or two significant
(effective) wave lengths away from the structure. Dissipation is required for stable
results. Unfortunately, dissipation also affects the representation of waves in the
domain. Wave energy is dissipated as waves propagate through the domain, reducing
the wave height of waves before they reach the structure.

In this chapter, it was found that wave dissipation is affected by the extrapolation
of the velocities at the free surface. Linear extrapolation of the velocities gives less
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dissipation than constant extrapolation. Dissipation also results from the free surface
displacement algorithm: when piecewise linear reconstruction of the free surface is
used rather than piecewise constant, wave energy dissipation is reduced. The final
improvement was found in a different scheme for the convective term in the momentum
equation. When the Lax-Wendroff method with flux limiters is used, the effect of
artificial viscosity is reduced, resulting in less dissipation.

Relatively simple numerical techniques have been used to significantly bring back wave
energy dissipation. In propagating wave simulations the energy dissipation, measured
at a location four wave lengths away from the input boundary, has been reduced to
just a couple of percent. In standing wave simulations, the energy dissipation after
twenty periods has been reduced to 25%, when the Lax-Wendroff method is used.
Considering the relative simplicity of the numerical techniques used in this chapter,
further improvements in bringing back wave energy dissipation seem within reach.
Additional research is required: it should consider (1) free surface reconstruction
methods better than piecewise linear and (2) higher order convection schemes in the
momentum equation.



Chapter 5

Incoming and outgoing waves

In the preceding chapters of this thesis, simulations have been discussed without
much attention for the boundaries of the domain. The boundaries were mostly closed
(u ·n = 0), except in the section about propagating waves. Here, velocities according
to non-linear potential theory for waves were prescribed; that will be discussed later
in this chapter.

A range of free surface phenomena, such as fuel sloshing inside satellites [16] and
sloshing inside LNG tanks [54], can be simulated with closed boundaries. Offshore
applications, however, often require open boundaries. To illustrate this requirement,
several stages in the study of a green water event on the deck of an FPSO with
subsequent impact are discussed [5].

Suppose our main interest is in the loads and pressures as a result of impact with a
structure on deck. To this end a breaking dam or dambreak simulation is performed.
The initial condition of dambreak simulation is a reservoir of water, which is released
when the simulation starts. Water will flow in the direction of a structure some
distance away. Fig. 5.1 shows an image of the flow when it impacts with the structure.
Note that open boundaries are not required for this type of simulation, since there is
no interest in what happens after the impact has past.

Experimental research has shown that the impact depends on the shape of the ship’s
bow. Numerical simulation can be employed to study the effect of a different bow
flare on the resulting impact with the structure on deck. Now, the bow is carefully
modelled, an initial condition with a reservoir of water is defined and, again, the
water is released when the simulation starts. Fig. 5.2 shows the water as it goes
over the deck and impacts with the structure. In agreement with the previous line of
reasoning, open boundaries are not required for this simulation either.

From further research it was found that there is an influence of the wave system
around the ship and the relative surface elevation in front of the ship, on the resulting
green water event and impact. The situation of a ship in waves requires an entirely
different domain setup, because now wave propagation and the motion of the ship
need to be simulated accurately as well, see Fig. 5.3. In theory, the boundaries can

53
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Figure 5.1: Dambreak against a structure in the path of the flow.

Figure 5.2: Dambreak against the bow of a ship.

remain closed, if the domain is chosen large enough to prevent spurious wave reflection
from the boundaries. In practise, we have only limited time and memory available
and we wish to dedicate these resources to the part of the ship where the impact will
take place.

In simulations with waves around structures, the size of the domain without reflection
is truncated, i.e. the boundary of a smaller domain is positioned close to the structure
and boundary conditions are imposed as if the structure was in the larger domain.
The boundary of the smaller domain is called an artificial or open boundary. In this
chapter, boundary procedures for open boundaries are discussed.
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Figure 5.3: Green water on the deck of an FPSO in waves

5.1 Boundaries and boundary conditions

Fig. 5.4 shows a representation of a domain with boundary Γ, in which a smaller
domain with artificial boundary B has been defined. If Γ is infinitely far away from
B, the domain enclosed by Γ is called an unbounded domain. On B, open boundary
conditions are imposed for waves propagating from the larger domain to the smaller
domain, and for waves originating from the smaller domain propagating toward the
larger domain.

Γ

B

Figure 5.4: The natural boundary of a region is indicated by Γ. Within this region
a domain with artificial boundary B is created that is open to flow. In
wave simulations boundary B should be open to waves that go into the
domain and waves that come out of the domain.

Waves from the larger domain toward the domain enclosed by B are defined as in-
coming waves; waves in the reverse direction, toward the larger domain, are called
outgoing waves. In the literature, boundary procedures for incoming waves are treated
differently from procedures for outgoing waves. In this thesis, too, methods for wave
generation at boundary B are discussed separately from methods to prevent the re-
flection of outgoing waves. But we have to keep in mind that in offshore applications,
boundaries are to be open for incoming waves and outgoing waves at the same time;
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this is an important requirement for the design of a boundary procedure in our nu-
merical method.

Before wave generation and spurious wave reflection are elaborated upon, the classic
boundary conditions for open boundaries in numerical domains are discussed. We will
also briefly show the way these boundary conditions are implemented in ComFLOW.

5.1.1 Dirichlet for the velocity

The Dirichlet condition specifies a certain value for a solution variable. If a velocity
over a certain distance such as the water depth, is specified at the domain boundary,
then, depending on the direction of the velocity, a fluid flux into or out of the domain
is imposed. Note that solid wall boundary conditions are a subset of open boundary
conditions. The prescribed velocity is then zero and there is no flux through the
boundary.

Due to the fact that the solution variables are staggered over a cell, there are two
configurations of the domain boundaries on either side of the domain. See Fig. 5.5.
The domain boundaries are chosen to coincide with the position of the velocity in the
cell. At one side of the domain, then, a halo cell or mirror cell is required to specify
the velocity. Mirror cells are labeled with O. Mirror cells in the figures throughout this
research are indicated by dashed lines. They are used to impose boundary conditions.
The boundary itself is indicated by a bold solid line.

F FO

uw ue

Figure 5.5: The boundary of the domain in horizontal direction. On the left of the
domain a mirror cell is required to impose a Dirichlet condition for
the velocity. These cells are labeled O. On the right of the domain the
boundary coincides with the position of the horizontal velocity ue in the
F-cell.

5.1.2 Dirichlet for the pressure

Also pressures can be specified at the boundary of a domain. To specify a pressure,
mirror cells on either side of the domain are required as shown in Fig. 5.6. A pressure
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gradient over the domain boundary will generate an acceleration of the flow. From
the acceleration a new velocity is determined and the velocity at the new time level
is used, in turn, to calculate the fluid flux over boundary.

The momentum equation is discretized across the boundary. To obtain fluxes over
the faces of the control volume that are outside the boundary, velocities need to
be extrapolated beyond the boundary. Either constant or linear extrapolation from
within the domain is used to obtain the velocities. They are indicated as uw and ue
in Fig. 5.6.

In flow simulations the Dirichlet condition for the pressure is often used to prescribe
a hydrostatic pressure variation at the boundary. The hydrostatic pressures are as-
sociated with a certain water level and this boundary condition will keep the average
water level at the boundary fixed to a value.

F F OO

uw ue

pw pe

Figure 5.6: Mirror cells used to impose a Dirichlet condition for the pressure in
horizontal direction. The velocities uw and ue are required to complete
the discretization of the convective term across the boundary. They are
obtained by constant or linear extrapolation.

5.1.3 Neumann for the pressure

Instead of specifying the pressure itself, we can specify the pressure gradient. Imposing
the pressure gradient requires the same mirror cells as in Fig. 5.6, but in these cells
an equation, which relates the pressure on the outside of the domain boundary to
pressures on the inside, needs to be solved. The most common equation solved at the
boundary is the following:

∂p

∂n
= 0. (5.1)

Eq. (5.1) allows for the effect of convection and diffusion over the boundary. To
complete the stencil for the velocities at the boundary, the velocities uw and ue in
Fig. 5.6 need to be extrapolated from the inside of the domain.
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The classic Neumann condition for the pressure presented in this section is not well
suited to prevent wave reflection, because it imposes zero acceleration. It works
adequate in simulations of steady flow, but a boundary condition for waves needs to
account for the time-varying wave dynamics near the boundary.

5.2 Wave generation

In experimental wave basins, waves are often generated by piston-type or flap-type
wave makers. Piston-type wave boards generate waves by making a translational
motion in normal direction to the wave board. They are mostly used in shallow water
wave basins to generate long waves with a constant horizontal velocity (u) profile in
vertical direction.

Short waves are generated by waves boards rotating around an underwater pivot point,
see Fig. 5.7. The wave board is not a good approximation of the exponential horizontal
velocity profile found in short waves and, therefore, spurious wave modes are generated
in addition to the propagating waves the wave board means to create. The spurious
wave modes include freely propagating waves, bound waves and evanescent waves,
of which the amplitude decreases exponentially with greater distance from the wave
board. Because of evanescent waves, a model-scale structure is always placed a certain
distance away from the wave maker.

Figure 5.7: Wave basin where waves are generated with wave boards on the left-hand
side of the basin.

The options to generate waves in experimental basins are limited, whereas the degrees
of freedom in a numerical domain are far more numerous. In a numerical domain
the ‘exact’ velocity profile, whether constant or exponential, can be imposed on the
boundary by means of a Dirichlet condition for the velocity, see Fig. 5.8. The better
the exact velocity profile is approximated, the fewer spurious wave modes are gener-
ated at the boundary. The velocities are found from either analytical wave theory or
an external method, specifically designed for wave generation. Here, several methods
for generating regular and irregular waves are examined.
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Figure 5.8: Numerical domain, in which waves are generated by means of the expo-
nential velocity profile on the left-hand side of the domain.

5.2.1 Regular waves

Analytical theory is available for both small amplitude waves (with ka ≪ 1) and
steep, large amplitude waves. It is briefly summarized and results from steep regular
wave simulations are presented, in which waves have been generated with velocities
obtained from theory.

Linear potential theory

Consider the linearized Euler equations for irrotational flow with the following bound-
ary conditions: (1) the impermeable bottom boundary condition, (2) the dynamic free
surface boundary condition, stating that at the free surface, the pressure is equal to a
reference pressure, and (3) the kinematic free surface boundary condition, which re-
lates the change in position of the free surface to the vertical velocity. If, in addition,
small amplitude waves with ζa ≪ 1 are assumed and the boundary conditions at the
free surface are approximated by first order expansions around z = 0, we can derive
an exact analytical solution to this system of equations in terms of the potential (see
Appendix A):

Φ =
ζag

ω

cosh k (h+ z)

cosh kh
sin (kx− ωt) .

Velocities are obtained from the potential by ∇Φ = (u, v, w)
T
and these velocities can

be imposed on the boundary of the domain to generate regular waves. Linear theory
is often used beyond its formal range of validity. The generation of steeper waves in
numerical domains requires velocities from z = 0 to the actual position of the free
surface at z = ζ. In engineering, we have adopted two methods to determine these
velocities.

The first method disregards the boundary at z = 0 and extends the exponential
velocity profile toward z = ζ. The second method, Wheeler stretching, was developed,
because the velocities obtained from exponential extrapolation, were considered to
overestimate the velocities in the actual wave crest. Wheeler stretching is a vertical



60 Chapter 5 Incoming and outgoing waves

coordinate transformation, by means of which the velocity at z = 0 is positioned at
z = ζ and a continuous profile between bottom and free surface is achieved.

Exponential velocity extrapolation and Wheeler stretching are compared when non-
linear stream function theory is discussed in the next section.

Non-linear stream function theory

Linear theory is only formally valid for small amplitude waves. In larger amplitude
waves, the nonlinear terms in the system of equations become larger and can no
longer be ignored. Linear potential theory uses a first order expansion of the solution
variables around a mean value. Higher order expansions are possible: these are called
Stokes’ expansions. Stokes’ expansions are formulated for deep water and mildly
nonlinear waves.

The potential solution to the second order Stokes’ expansion can still be derived
by hand. For higher order expansions, numerical techniques are required. In the
literature, Stokes’ expansions go up to very high order [8]; practical implementations
for use in a numerical method go up to fifth order [15].

Since Stokes’ theory is limited to deep water and because higher order formulations
become increasingly more difficult, Rienecker and Fenton [42] derived an approach
that does not share these limitations. In Rienecker-Fenton theory for regular steep
waves, the full solution is composed of a summation of N base stream function com-
ponents with different unknown amplitudes:

Ψ (x, z) = B0z +

N∑

j=1

Bj
sinh jkz

cosh jkh
cos jkx. (5.2)

The summation of stream function components is substituted into the kinematic and
dynamic free surface boundary condition at the actual free surface. In this way a
system of nonlinear equations is obtained, where the primary unknowns are the am-
plitudes of the composing wave modes and the wave number they all share. The
variables are solved for by Newton’s method for a system of nonlinear equations. The
Rienecker-Fenton solution is an analytical solution to the nonlinear system of equa-
tions, in which the only approximation is the truncation of the number of components,
N .

Figure 5.9 compares velocity profiles for steep waves, in deep water and in shallow wa-
ter. The velocity profiles have been determined with linear theory, Wheeler stretching,
5th order Stokes’ theory and Rienecker-Fenton theory. There is a difference between
Rienecker-Fenton and Stokes in shallow water. This was expected, because Stokes
theory is limited to application in deep water. Since Stokes’ theory is an expansion
around the mean free surface, the approximation near the free surface is better than
near the bottom. The comparison also shows that Wheeler stretching does not give
better results; Wheeler stretching should not be used to impose steep regular waves.
In this thesis, we have adopted Rienecker-Fenton theory to generate waves at the
boundary.
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Figure 5.9: Velocity profile in a steep wave. The profiles have been determined with
several analytical wave theories for regular waves.

Results

Rienecker-Fenton theory is used to generate steep regular waves in a domain. The
water depth is 10m and the length of the domain LD is chosen such, that reflection
from the downstream boundary is prevented during the time of the simulation. It
can be determined by considering the shallow water limit of the phase velocity LD =√
gh tmax.

Simulations are started from rest and the velocity signal at the boundary is ramped
up over two wave periods to minimize initialization errors. Fig. 5.10 shows the free
surface over two wave lengths from the boundary where waves with H = 4m and
T = 6s are generated, after 24 periods have past. A stable solution over this distance
has been obtained, i.e. that the wave height at a given position no longer changes in
time. Different grid resolutions have been compared amongst each other and with
theory. The surface elevation in the coarse grid simulations does not approximate
the free surface well. With higher grid resolutions, the numerical solutions approach
the Rienecker-Fenton solution, but the difference remains substantial, especially near
the wave troughs. The main reason for the difference is thought to be the vertical
grid resolution: in wave troughs almost the same fluid flux as in a wave crest, is
represented by significantly less grid cells.

In comparing the horizontal velocity profiles two wave lengths away from the boundary
(Fig. 5.11), we find that the profile is quite different from the analytical profile, both
at the bottom and near the free surface. The difference is not caused by the inflow,
because for all grid resolutions the velocities at the inflow are very near to the theory,
as they should be.

At the free surface the convective terms of the momentum equation cannot be resolved
entirely. It shows that the extrapolation performed on the velocities to close the
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Figure 5.10: Free surface over two wave lengths at t = 144s. The free surface in
numerical simulations with different grid resolution is compared to the
Rienecker-Fenton solution.

system of equations, is not perfect. Alternatives for the extrapolation, however, are
not readily available, as has been described in the previous chapter. The extrapolation
error becomes smaller when the vertical resolution near the free surface is increased.

The difference between theory and the numerical results near the bottom was unex-
pected. It was thought that differences in the velocity profile would become apparent
near the free surface, because the larger velocity gradients are found especially near
the free surface. From Fig. 5.11 it seems that for higher grid resolutions, the velocity
profile near the free surface are approximated quite well, but near the bottom the
differences are still significant. This requires further research.
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Figure 5.11: Horizontal velocity profile near the inflow in (a). In (b), the velocity
profile two wave lengths away from the boundary.
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5.2.2 Irregular waves

Analytical theory for steep irregular waves is not available. To generate steep waves,
wave kinematics at the boundary are extracted from an external non-linear potential
method, which has been specifically designed for the simulation of wave propagation
over larger distances. When a specific sea state, of which only the surface elevation
at a single position has been recorded, needs to be simulated, we use linear potential
theory.

Linear potential theory

A registration of an irregular surface elevation can be decomposed into its Fourier
components. The amplitudes and phases are used to determine the potential solution
for each individual component and the total potential is obtained by summation of
the potential’s components:

Φ =
∑

i

φi, (5.3)

in which vector φ is the Fourier transform of Φ.

Linear theory, again, is only formally valid for waves with kai ≪ 1. In steeper
waves, the non-linear interaction between components is not accounted for and the
kinematics obtained from linear theory will not resemble the actual physics. In the
section containing the results of steep irregular wave simulations, waves generated
with linear theory are compared with the non-linear solution of an external potential
method.

External non-linear potential method

The numerical method described in Westhuis [55] is a non-linear potential flow model,
implemented as a field method for a free surface conforming finite element mesh
(FEM). The primary unknowns are the potential values defined at the nodes of the
mesh and the velocities required in the kinematic free surface boundary condition are
resolved by finite difference (FD) of the potential values near the free surface. In this
thesis, we will refer to this method as FDFEM.

The FDFEM in [55] is a second order method without significant wave energy dissipa-
tion. In addition, the free surface boundary condition is resolved accurately, because
the surface elevation is clearly defined by the position of the uppermost grid nodes.
For this reason, FDFEM is better suited for wave propagation over large distances
than ComFLOW. In very steep waves, FDFEM can become unstable as a result of
saw-tooth instabilities also found in [34]. Before the instabilities occur, however, it is
highly accurate. This has been confirmed by validation with experimental results in
[55].

Wave kinematics are obtained from FDFEM by finite difference of the potential
values. After interpolation in time and space, the kinematics are used to generate
waves in our numerical method.
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FDFEM Results

Irregular waves are generated at the boundary with kinematics from the external
FDFEM. The FDFEM simulation is performed on a very long domain, in which
reflection during the time of the simulation cannot occur. The water depth is 10m
and waves from a JONSWAP spectrum with Hs = 4m and Tp = 7s are created by
a flap-type wave maker that pivots around a point at z = −9m. Ten elements in
vertical direction are used with a stretch factor of 10%. In horizontal direction the
grid distance is equal to 1m. Wave kinematics are obtained from a position 200m
away from the wave board and used as input for our numerical method.

After 14 significant peak periods the surface elevation over a length of 200m is com-
pared between ComFLOW and FDFEM. It is depicted in Fig. 5.12. At this moment
in time, the signal consists of low frequency components and higher frequency compo-
nents. Three grid resolutions were used and the difference between methods becomes
smaller when the grid resolution is increased.The high frequency components are not
represented well on the coarsest grid, but the difference between our numerical method
and FDFEM becomes smaller when the grid resolution is increased.
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Figure 5.12: Free surface over two wave lengths at t = 144s. The free surface in nu-
merical simulations with different grid resolution is compared with the
FDFEM solution. Kinematics at the inflow boundary of ComFLOW

obtained from the FDFEM solution.

Fig. 5.13 shows the horizontal velocity profiles at t = 14Tp near the inflow and 200m
away from the inflow. Near the inflow the velocity profiles are the same as the one
obtained from FDFEM, although there is a slight difference for the coarsest grid.
Further away from the boundary, the differences are larger. The finer grid gives better
results. Almost the same conclusion as in the regular wave tests applies here: the
difference between ComFLOW and FDFEM near the free surface becomes negligible
for the highest resolution. And for this resolution, there still is quite a difference
between the velocities near the bottom.
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Figure 5.13: Horizontal velocity profile near the inflow in (a). In (b), the velocity
profile two wave lengths away from the boundary. Kinematics at the
inflow boundary of ComFLOW obtained from the FDFEM solution.

Linear results

A simulation with waves generated by kinematics from linear theory (continuing the
exponential profile of the velocities in vertical direction) is performed and compared to
a FDFEM simulation. At x = 200m, a Fourier decomposition of the surface elevation
is used to obtain the amplitudes and phases of the individual wave components.
From the components, we determine the velocities at the boundary of a ComFLOW

domain.
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Figure 5.14: Free surface over two wave lengths at t = 144s. The free surface in
numerical simulations with different grid resolution is compared to the
FDFEM solution. Kinematics at the inflow boundary of ComFLOW

obtained from linear potential theory.
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After 14Tp, when there are both long and short components in the domain, the surface
elevation over a distance 200 ≤ x ≤ 400 is compared between generation methods.
Fig. 5.14 shows that there is a clear difference between waves generated with linear
theory, and those generated by the actual velocities from FDFEM. The difference is
mostly caused by the wave kinematics at the boundary, see Fig. 5.15.
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Figure 5.15: Horizontal velocity profile near the inflow in (a). In (b), the velocity
profile two wave lengths away from the boundary. Kinematics at the
inflow boundary of ComFLOW obtained from linear potential theory.

5.2.3 Discussion

Regular waves have been generated with linear potential theory and non-linear stream
function theory. Regular waves should always be generated with a non-linear theory,
because it is more accurate and there are no disadvantages to using the Rienecker-
Fenton solution.

When the numerical simulation of steep regular waves is compared with analytical
theory, we find clear differences. The differences become smaller in higher grid reso-
lutions, but even for the finest grid a slight deviation remains.

We have generated irregular waves with a Fourier decomposition of the surface eleva-
tion from FDFEM, in combination with linear potential theory. The surface elevation
in this simulation has been compared with the surface elevation from FDFEM. There
were differences, which did not improve with higher grid resolutions. These differ-
ences are attributed to the incorrect inflow: linear potential theory yields different
kinematics than full non-linear simulation.

Linear theory for irregular wave generation can be used when we wish to simulate
a sea state to obtain statistics of, for instance, motions or impacts. However, to
simulate an actual, deterministic event as it occurred in an experimental wave basin,
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we need to generate waves with the kinematics of an external non-linear method to
be able to compare results.

5.3 Preventing reflection

In experimental basins, wave reflection is reduced by either beaches, or by Active
Reflection Compensation (ARC). Beaches induce wave breaking and dissipation of
wave energy, see Fig. 5.16. Dissipation effectively prevents reflection of short wave
components, but longer wave components are dissipated to a limited extent. Long
wave components run up on the beach and are sent back with almost full reflection.

Figure 5.16: In experimental wave basins, the reflection of waves is prevented by a
beach that induces wave breaking and the resulting wave energy dissi-
pation

ARC is installed on wave boards, see Fig. 5.17. It is a control system to prevent re-
flection by means of the wave maker motion, in response to surface elevation measure-
ments or measurements of the total force on the wave board. Only limited accuracy
can be obtained with active reflection compensation for three main reasons. Firstly,
the surface elevation measurements are affected by the motion of wave board. A
second, related reason is that also evanescent wave modes near the board disturb the
accurate measurement of outgoing waves, although they can be partly compensated
for. The third and final reason is that the motion of the wave board is limited: long
waves require a very long stroke, which is not available.

Modelled beach geometries and ARC can be used in numerical domains as well, but
better performance in terms of reflection can be obtained with other methods, which
will be discussed in this section: (1) dissipation zones, (2) kinematics from external
methods and (3) non-reflection boundary conditions.

5.3.1 Dissipation zones

Dissipation zones reduce wave energy within the domain before they reach the down-
stream boundary. They are found under many names, being called numerical beaches,
dissipating layers, sponge layers and absorbing layers, among other names. [29] gives
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Figure 5.17: Active reflection compensation is installed on the wave boards in an
experimental wave basin. The surface elevation or total force on the
wave board is measured to identify outgoing waves and reflection is
prevented by the subsequent motion of the board.

an account of several dissipation zones. Here, we will specifically mention pressure
damping.

In a pressure damping zone, an additional pressure, proportional to the vertical ve-
locity at the free surface, is defined:

ps = α (x) w (x, t)|ζ , (5.4)

in which α represents a coefficient that is gradually increased to reduce reflection from
inside the pressure damping zone itself.

Analogously to a physical beach in the basin, a pressure damping zone is more efficient
for short wave components than for long wave components, because the dissipation
is proportional to the vertical velocity. The vertical velocities in long waves are small
and, therefore, long dissipation zones are required to sufficiently prevent reflection.

An efficient dissipation zone is the Perfectly Matched Layer (PML), introduced by
Berenger [2]. Whereas pressure damping can easily be incorporated into the pres-
sure boundary condition at the free surface, the PML requires an additional set of
equations to be solved. These equations are derived as follows: harmonic solutions
are analytically continued to infinity. The analytical solutions are formulated in com-
plex space, where harmonically varying solutions become exponentially decaying so-
lutions. Then a coordinate transformation from complex space to real coordinates is
performed. Part of the domain, in real coordinates, will then feature exponentially
decaying wave solutions. And, finally, the domain can be truncated at the location
where the amplitude of the propagating wave modes has decayed to an acceptable
level.

Regardless of the efficiency, a dissipation zone requires a substantial part of the do-
main to dissipate wave energy. Consequently, the domain is larger than the direct
surroundings of the structure, where the main interest lies. And the larger the domain,
the more computation time and memory are required.

Finally, we would like to note that it does not seem likely that dissipation zones for
outgoing waves can be combined with incoming waves going through the dissipating
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region. This is a serious impediment for the use of dissipation zones on all sides of
domains for offshore applications.

5.3.2 Matching to external solutions

We have used wave kinematics from external methods (FDFEM) to generate waves
on the upstream side of the domain. On the downstream side, it is possible, in
theory, to use those kinematics for wave absorption. If the differences between the
kinematics in the external method and the internal method are small, then a local
boundary condition by means of imposed kinematics has been devised. It will be
called a matching procedure to exterior solutions.

Figure 5.18: When wave kinematics are prescribed at the downstream end of the
domain, a local boundary condition in terms of velocities is obtained.
This is called a matching procedure to external solutions.

However, ComFLOW will not be used to study wave propagation alone, but to ob-
tain results for impacting waves against structures. A structure inside the domain
will change the surrounding wave field. According to linear theory, there are three,
separate contributions to the total wave field near a structure: undisturbed incom-
ing waves, diffracted waves and radiated waves, originating from the motion of the
structure.

In Wellens et al. [53], a procedure was suggested to incorporate the effects of diffraction
and radiation into the boundary condition along the extremities of the domain. A
linear, frequency domain boundary element method was used to account for both
incoming and outgoing waves in the velocities imposed at the boundary during the
simulation. And also the initial condition was a developed solution obtained from
BEM. As expected, the procedure worked well for mildly steep waves. For steeper
waves the procedure is less accurate. This is caused by the difference in resolved phase
velocity between linear theory and the actual non-linear simulation of steep waves.

To give an indication of the reflection error, a wave simulation was performed without
a geometry present. The period T is 10.0s, the wave height H = 3.0m and the water
depth h = 10.5m in a domain of 100.0m long. Fig. 5.19a shows the surface elevation
in the middle of the domain when linear potential theory is used to impose inflow
and outflow kinematics. As a comparison, the same simulation was performed with
Rienecker-Fenton and the results are shown in Fig. 5.19b.
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Figure 5.19: Surface elevation in the middle of a 100.0m domain when linear kine-
matics at inflow and outflow are used in (a). In (b) the surface ele-
vation for the same simulation is shown when Rienecker-Fenton kine-
matics are used at the boundaries.

The simulated surface elevation in Fig. 5.19a, for which linear kinematics were used at
the boundary, suffers greatly from spurious reflection. It looks better when non-linear
kinematics are used, although the graph shows some effect of interference from the
boundary. These results seem to lead to the conclusion that non-linear kinematics
should be used at the boundary of a computational domain. Unfortunately, non-linear
analytic theory that accounts for diffraction and radiation as a result of a structure
in the domain does not exist. Non-linear numerical time domain methods to account
for these effects [43] are just as time intensive as ComFLOW and suffer from the
same need to impose boundary conditions. As a result, the investigation of matching
procedures to external solutions was discontinued.

5.3.3 Non-reflecting boundary conditions

There is a vast amount of literature on the subject of non-reflecting boundary con-
ditions (NRBCs), but not many have been specifically designed for use in non-linear
methods to simulate extreme free surface wave impact events. NRBCs found in liter-
ature have been predominantly combined with simple, linear partial differential equa-
tions (PDEs) from a wide range of application areas, such as optics, meteorology,
oceanography and more.

Tsynkov [47] gives a very thorough account of several complicated NRBCs for simple
PDEs. In this discussion, we will only highlight what is considered to be important
for the design of an NRBC in ComFLOW.

Non-reflecting boundary conditions have many names. The ones most often encoun-
tered are: artificial boundary conditions, radiation conditions and absorbing boundary
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conditions. Although ‘non-reflecting boundary condition’ or ‘weakly reflecting bound-
ary condition’ is, in our opinion, a better description of the functionality, the term
‘absorbing boundary condition’ or ABC is found more often and will be adhered to
from here on.

The derivation of an exact ABC, at least in linear circumstances, goes along these
lines: (1) the system of equations is transformed to the frequency domain, (2) in the
frequency domain we solve for the outgoing wave modes, (3) the solution for outgoing
wave modes is transformed back to the time domain to obtain an ABC operator. The
resulting operator is global in time and global in space.

The global nature of the exact ABC operator is undesirable, since its discrete imple-
mentation requires storage of all previous time steps, and requires processing of all
spatial grid points at every time. Different authors have therefore approximated the
exact ABC in different ways.

For steady problems the Dirichlet-to-Neumann map (DtN) is a well known formulation
of an exact ABC [21]. The boundary condition has the following form:

∂u

∂n
= −M u, (5.5)

in which u is the solution variable in the wave equation under consideration and M
is the DtN map. The name DtN originates from this boundary condition, since it
relates a Dirichlet datum to a Neumann datum in normal direction to the boundary.

The exact DtN is often truncated in the number of harmonics to save computation
time. Of course, the DtN is then no longer exact. Keller and Givoli [30] have proposed
an implementation for a finite element formulation in a circular domain, which requires
limited truncation and only marginally adds to the overall computation time. This is
an important requirement of an ABC: it should yield accurate absorption of outgoing
waves with a reflection coefficient of only a few percent for a range of wave numbers.
But, at the same time, it should not lead to a substantial increase of the computational
effort.

Givoli and Patlashenko [20] have suggested another approach: they consider a local-
ized ABC, which may be of low order, but which is still highly accurate for a range
of harmonics. The accuracy is obtained by an optimization of the coefficients in the
local ABC; the optimal coefficients are those, which approximate the exact DtN to
the greatest extent.

For time dependent problems, Grote and Keller [22] introduced an exact ABC that
is local in time, but global in space. They derive a formulation featuring higher
derivatives in normal direction to the boundary. Because higher derivatives may
cause difficulties in numerical implementations, it is shown for circular (spherical)
shaped domains how to reformulate the boundary condition to an expression that
features only first-order derivatives along the boundary.

A general observation with respect to exact, global boundary conditions is that they
cannot be implemented without approximating the expression in time, in space and
in the number of harmonics that is considered. For certain domain shapes, either
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circular, spherical or ellipsoidal, some of the global nature of the exact ABC can be
retained. These ABC formulations cannot be generalized to Cartesian coordinates.

Another observation is that the exact ABCs never consider both outgoing and in-
coming waves; the formulations do not seem to be suited for this extension. Open
boundaries for incoming and outgoing waves are a major design requirement for an
ABC in offshore applications. And our numerical method has been formulated using
Cartesian coordinates by design. Exact absorbing boundary conditions will therefore
not be considered for use in ComFLOW.

5.4 Discussion

In this chapter, boundary conditions for wave generation have been discussed, as well
as methods for reflection prevention. Adequate methods for wave generation have
been found: we will use Rienecker-Fenton theory to simulate regular waves and an
external method, FDFEM, in simulations with irregular waves.

Additionally, several methods for preventing reflection have been discussed. Dissi-
pation zones are most probably not suited for offshore applications, because they
cannot dissipate outgoing waves and leave incoming waves unaffected at the same
time. When only outgoing waves need to be considered, it can be said that they
perform well for short waves. However, the dissipation of long waves requires dissi-
pation zones of several (long) wave lengths in size. In 3D, this would yield significant
amounts of computer resources.

We prefer to devote these resources to the accuracy of the wave impact event itself.
We have therefore discussed a matching procedure with a local velocity boundary
condition, in which the velocities at the inflow boundary and at the outflow boundary
account for the incoming wave. It was clear that linear potential theory should not be
used in case of steep waves, because the phase velocity in linear theory does not match
the non-linear solution. Better results were obtained with non-linear potential theory,
although some reflection could be observed because the the discrete solution in the
ComFLOW-domain does not exactly match the analytical solution. This method of
prescribing velocities at the boundaries does not account for the structure inside the
domain. We can expect that disturbances from the structure will fully reflect at the
boundary with this method.

Multiple absorbing boundary conditions have been considered, but none have been
found that can readily be incorporated into our numerical method. From this discus-
sion, we have been able to formulate a set of requirements for the design of an ABC
for use in ComFLOW:

1. The ABC needs to be accurate and bring back reflection from the boundaries
to an acceptable level.

2. The boundaries where the ABC is defined, are to be truly open boundaries,
i.e. transparent to incoming and outgoing waves at the same time.

3. The computational resources to prevent reflection should be marginal compared
to the computational effort to determine the solution itself. Global ABCs do
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not satisfy this requirement and we will only consider ABCs, that are local in
time and local in space, from here on.

4. It should be possible to position the boundary close to the structure, not further
away than a length comparable to the size of the structure.

5. The ABC needs to be formulated on a rectangular, Cartesian grid domain.
6. The stability of the system of equations inside the domain should not be affected

by the ABC.





Chapter 6

Generating absorbing

boundary condition

In this chapter we discuss a local absorbing boundary condition for incorporation
into our numerical method. The offshore applications demand that the boundaries
are open to incoming and outgoing waves. Consequently, the boundary condition
requires the combined functionality of wave generation and wave absorption, within
the constraint of an efficient algorithm, that does not disproportionately increase the
computational effort. A fortiori, the use of a well-designed boundary condition should
rather reduce than increase the computational effort, because without significant spu-
rious reflection, the boundaries can be positioned closer to the structure inside the
domain.

In coastal regions, only shallow water waves need to be considered. The phase velocity
of wave components in shallow water is only marginally different from the shallow
water limit

√
gh. Wave absorbing boundary conditions for the numerical simulation

of waves in coastal applications, need only consider the direction of waves reaching the
boundary. In deep water, however, both the angle with respect to the boundary and
the phase velocity of wave components (dispersion) near the boundary are relevant
for the design of a boundary condition.

6.1 Literature overview

Literature concerning boundary conditions for the numerical simulation of free surface
waves in three dimensions, in which direction and dispersion are both accounted for
at the same time, has not been found. A great number of authors consider and
devise boundary conditions for the multi-dimensional wave equation, often only in
two dimensions and in the xy-plane. Far fewer ever mention dispersion and hardly
any have discussed dispersion in boundary conditions for the numerical simulation of
free surface waves in the xz-plane.

75
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For a detailed report of (mostly) local absorbing boundary conditions, refer to the
review article of Givoli [17]. Here we will give a brief review of the relevant literature
about local absorbing boundary conditions and discuss three aspects in particular:
(1) directionality, (2) dispersion and (3) incoming and outgoing waves. The direction
of waves is important in short-crested wave simulations. We will discuss dispersion
for long-crested waves in deep water. And, finally, incoming and outgoing waves are
considered, accounts of which have been mostly encountered when ABCs were devised
by means of characteristic variables.

6.1.1 Short-crested waves

The starting point for the derivation of local absorbing boundary conditions is often
the planar wave equation given by:

(
∂2

∂t2
− c2∇2

)

Φ = 0. (6.1)

Fourier transform of the wave equation, yields the dispersion relation, which relates
frequency to wave number:

ω2 − c2
(
k2x + k2y

)
= 0. (6.2)

If the dispersion relation is solved for kx, the following is obtained:

kx = ±ω
c

√
1− s, (6.3)

in which s equals k2yc
2/ω2.

Inverse Fourier transform of this expression gives the exact boundary condition oper-
ator, which is nonlocal in time and in space, due to the

√
1− s in Eq. (6.3). Non-local

absorbing boundary conditions are considered impractical in numerical implementa-
tions. Therefore, Engquist and Majda [13] suggested a series approximation of the
term

√
1− s to obtain increasingly better performing local absorbing boundary con-

ditions.

The zeroth order approximation of
√
1− s is 1+O (s). The inverse Fourier transform

of kxφ, in which φ is the Fourier transform of Φ, results in the following operator:

(
∂

∂t
+ c

∂

∂x

)

Φ = 0. (6.4)

Eq. (6.4) is a boundary condition, which is exactly absorbing for outgoing waves with
velocity c, propagating in the positive direction perpendicular to the boundary at
y = ymax. In engineering it is known as the Sommerfeld condition [46]. It performs
less well for waves under an angle with the boundary.
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A better boundary condition for waves under an angle with the boundary, is the oper-
ator that results from a first-order approximation of the square root in the dispersion
relation. The first-order approximation is expanded below:

√
1− s ≃ 1− s

2
+O

(
s2
)
. (6.5)

When the approximation is substituted into the dispersion relation, then inverse
Fourier transform of the dispersion relation yields the following operator:

(

c
∂2

∂t∂x
− ∂2

∂t2
+
c2

2

∂2

∂y2

)

Φ = 0. (6.6)

From Eq. (6.6) we find that higher order approximations of the dispersion relation
give higher derivatives in the absorbing boundary condition operator. By means of
higher derivatives in the ABC, waves with larger incoming angles to the boundary
are accurately absorbed.

Higdon [26] generalized this theory. He shows that the Engquist and Majda boundary
condition is a less efficient subset of the following product of operators:

J∏

j=1

(
∂

∂t
+ cj

∂

∂x

)

Φ = 0. (6.7)

In fact, in his article he proves the theorem that absorbing boundary conditions
are either 1) of this form, 2) unstable or 3) suboptimal. The reflection coefficient
associated with the Higdon boundary condition, shares a similar form:

R =

J∏

j=1

(
cj − ce
cj + ce

)

. (6.8)

Because the term in between parentheses in Eq. (6.8) is always smaller than one, it
is clear that the reflection coefficient R becomes smaller as the order of the ABC
increases. The order of the boundary condition, in this sense, reflects the number
of products J used to construct the operator. Increasing the order of the boundary
condition reduces reflection considerably. For instance, when the boundary condition
with J = 1 gives 10% reflection for a certain wave mode, it will give 1% reflection
with J = 2.

Higher order ABCs feature higher derivatives. As the order of the ABC increases,
it becomes increasingly difficult to implement the numerical equivalent of the higher
derivatives at the boundary. Givoli [18] reports that Higdon operators beyond order
three are rarely found in the literature.

However, ABCs of even infinite order can theoretically be constructed, since Collino
and Joly [9] introduced auxiliary variables to avoid the use of higher derivatives.
Instead of N th derivatives, then a system of N + 1 additional equations is solved at
the boundary.
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Collino’s idea has found widespread interest, see the review article concerning high
order local boundary conditions by Givoli [18]. Auxiliary variables have been used in
Nth order ABCs derived by Grote and Keller [23], Givoli and Neta [19] and Hagstrom
and Warburton [24], among others. The Hagstrom-Warburton formulation of the
auxiliary system of recursive equations is:

(

a0
∂

∂t
+ c

∂

∂x

)

Φ = a0
∂

∂t
ξ1 (6.9)

(

aj
∂

∂t
+ c

∂

∂x

)

ξj =

(

aj
∂

∂t
+ c

∂

∂x

)

ξj+1 for j = 1, 2, . . . , N (6.10)

ξN+1 = 0 (6.11)

The set of equations features none higher than first derivatives. Still, the implemen-
tation of first derivatives becomes a problem in the corners of rectangular domains.
There, special corner conditions have to be formulated. The state of the art with
respect to ABCs is described in a recent article by Hagstrom et al. [25].

6.1.2 Dispersive waves

There are two ways to account for dispersion at the boundary: one is to use a low
order boundary condition and combine it with with an estimator for the actual phase
velocity at the boundary; the second is to use higher order boundary conditions. As
an example of the former, we mention Orlanski [39]. He suggests the use of the
Sommerfeld condition, with a dynamic approximation of the phase velocity, obtained
from the solution itself:

c = − ∂Φ/∂t

∂Φ/∂x
. (6.12)

Fig. 6.1 shows a representation of the phase velocity, when the Orlanski boundary
condition is applied to an irregular wave signal conforming to a JONSWAP spectrum
with Tp = 15s. It shows rather large discontinuities in the resolved value for c,
coinciding with the times where the denominator in (6.12) becomes zero, which can
and will lead to an unstable simulation. The only way this ABC can be applied, is
when a low-pass filter is applied in the dynamic estimator. Of course, filtering will
lead to a reduced accuracy of the ABC and more spurious reflection.

Dispersion of free surface waves in the xz-plane has not been an explicit subject in
much of the literature regarding high order absorbing boundary conditions. Most
authors [19, 25, 26] show that their approach to ABCs transcends to dispersive media
by means of the Klein-Gordon equation in the xy-plane:

(
∂2

∂t2
− c2∇2 + f2

)

Φ = 0, (6.13)

in which f is a dispersion parameter used to model the earth’s rotation for application
in meteorology or oceanography. With the dispersion parameter, the ABC changes
only slightly.
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Figure 6.1: The resolved phase velocity c as a function of time, when the Orlanski
boundary condition is used. The discontinuities result from the zero
crossings of the denominator in the equation for c. The irregular wave
signal was generated with a JONSWAP spectrum with Tp = 15s.

Dispersion is not a material property of water, but results primarily from the presence
of the free surface. We know of only one article by Dgaygui and Joly [10], that
discusses absorbing boundary conditions for the simulation of free surface waves in
the xz-plane. Herein, an exact, non-local ABC-operator is derived. Subsequently, the
exact operator is simplified by means of rational approximations to yield an ABC,
which is local in space and local in time. Finally, numerical results are presented for
simulations of long waves with a zeroth order and a first order boundary condition.
With the latter ABC, the reflection was generally small; exact figures have not been
mentioned.

6.1.3 Incoming and outgoing waves

In section 6.1.1, local boundary conditions for the planar wave equation were derived
from an exact non-local boundary condition derived by Engquist and Majda [13]. A
different way to derive boundary conditions is by means of the method of characteris-
tics discussed by Blayo and Debreu [3]. Here, the method of characteristics is applied
to the wave equation.

Consider again wave equation (6.1), but now in one dimension in the direction normal
to the boundary:

(
∂2

∂t2
− c2

∂2

∂n2

)

Φ = 0, (6.14)

in which n is the outward normal direction.

Eq. (6.14) can be factorized as follows:
(
∂

∂t
− c

∂

∂n

)[(
∂

∂t
+ c

∂

∂n

)

Φ

]

= 0. (6.15)
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The term
(

∂
∂t + c ∂

∂n

)
Φ in Eq. (6.15) is constant along lines dn/dt = −c. We call this

term the incoming characteristic variable.

A boundary condition for wave equation (6.14) is obtained by assigning a value to
the incoming characteristic variable. When no waves enter the computational domain
through the boundary, the boundary condition becomes:

(
∂

∂t
+ c

∂

∂n

)

Φ = 0.

It is no coincidence that the boundary condition obtained in this way is equal to the
Sommerfeld equation (6.4) in section 6.1.1.

It is customary in the literature concerning ABCs to set the right-hand side in (6.4)
equal to zero, but it is not required. When the incoming characteristic receives a non-
zero time-dependent right-hand side value, we are sending in waves over the boundary,
while outgoing waves may leave the computational domain unaffected. In this way, a
- what we will call - Generating Absorbing Boundary Condition (GABC) is obtained.

According to Carpenter [7] and Perkins et al. [40], the Sommerfeld equation with
non-zero right-hand side value should be formulated as follows:

(
∂

∂t
+ c

∂

∂n

)

Φ =

(
∂

∂t
+ c

∂

∂n

)

Φin. (6.16)

In Eq. (6.16), the right-hand side value consists of the same characteristic combination
of operators as on the left-hand side, but now they are applied to the known function
Φin.

The method of characteristics is also employed by Verboom and Slob [50] and Van Don-
geren and Svendsen [48]. These authors derive boundary conditions for the Non-linear
Shallow Water equations (NSW). The NSW are composed of a system of equations
that cannot be combined into a single equation such as wave equation (6.1). Charac-
teristic equations are then obtained by diagonalizing the system with the matrix of
eigenvectors. The boundary condition for the NSW by Van Dongeren and Svendsen
[48] is demonstrated to give less than two percent reflection for long-crested waves,
irrespective of the wave direction in the computational domain.

6.2 Motivation

The discussion in the previous chapter resulted in a set of requirements for a boundary
procedure to be used in combination with our numerical method. Global boundary
procedures have been considered, zonal procedures seemed promising, but the con-
clusion was that for reasons of efficiency, local methods would be more suitable.

Literature regarding local absorbing boundary conditions has been studied. It turns
out that absorbing boundary conditions of arbitrarily high order can be constructed
and implemented at the boundary. Results obtained with this method are promising.
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Yet, in formulating a decision which absorbing boundary condition will suffice for our
method – and to which order – some concerns regarding these methods have to be
expressed.

The high order ABCs have so far only been combined with very simple differential
equations, such as the planar wave equation and the Klein-Gordon equation. The
results obtained are for highly schematic wave scattering simulations, which have
little practical relevance. With regard to practicality, we cite from the concluding
remarks of Hagstrom et al. [25]:

“However, the way to achieving such a level of practicality [for application
in engineering, PW] is still very long.”,

and

“[. . . ] for applications in weather prediction and oceanography, the ABC
must be turned into an ‘open boundary condition’ which allows not only
free passage of waves from the computational domain Ω outside, but also
passage into Ω of waves incoming from the exterior.”

and finally

”Extension to three dimensional geometry is also very important.”

With high esteem for the theoretical work performed in developing ABCs of arbitrary
high order, we feel this is not the way to obtain practical and stable boundary condi-
tions for the numerical method in this thesis. It is unclear if an N th order boundary
condition is really required. In practical simulations, five percent reflection for wave
components within the frequency band where most of the wave energy resides in the
spectrum, is an acceptable level of accuracy. We will consider low order ABCs first
and improve from there.

Another important design requirement for an ABC in offshore applications is the two-
way transparency to waves. The auxiliary variables required for high order boundary
conditions, complicate matters with respect to incoming waves. Additionally, the
extension to three dimensions is not only ‘important’, in Hagstrom’s words, but also
necessary for application in ComFLOW. Apart from the feasibility of a 3D imple-
mentation of high order ABCs, also the computation time will become restrictive. In
high order ABCs, an extra system of equations needs to be solved along the entire
boundary and in 3D this additional system cannot be considered small compared to
the total number of equations within the domain.

At present we do not see how to combine the high order boundary condition approach
with a substantial number of our design requirements. In this research, therefore, we
set out to develop a practical ABC for the benefit of physically relevant simulations
of extreme wave-structure hydrodynamics. The ABC combines the work of Higdon,
Dgaygui&Joli and Blayo&Debreu, with physical properties of waves that can be ob-
tained from potential theory. The focus, at first, will be on dispersion in irregular
long crested waves.
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6.3 Derivation

In this section, we derive an absorbing boundary condition for long-crested, irregular,
dispersive waves in any water depth with normal incidence to the boundary.

In shallow water, or - more correct - in the shallow water limit for kh → 0, there is
no dispersion. If the Sommerfeld boundary condition is used for shallow water wave
simulations, it reads as follows

(
∂

∂t
+ c

∂

∂n

)

Φ = 0,

in which tuning coefficient c should be chosen equal to
√
gh.

In shallow water, the phase velocity
√
gh is constant. One model for describing

irregular waves is to think them composed of infinitely many regular wave compo-
nents. If we, for reasons of notation, consider an irregular wave to be composed of
a discrete number of wave components with frequencies ωj and wave numbers kj for
j = 1, 2, · · · , N , then in the shallow water limit the phase velocities cj for these wave
components are all equal to

√
gh. The Sommerfeld boundary condition is equally

accurate for all N wave components.

It is different in deeper water, for kh > 0. Here, the phase velocity is a function of
the dimensionless wave number kh

cj =
√

gh

√

tanh (kjh)

kjh
for j = 1, 2, · · · , N. (6.17)

When the Sommerfeld boundary condition is used in deep water wave simulations, it
will not be equally accurate for all wave components. To demonstrate the accuracy
of the Sommerfeld boundary condition, we consider the reflection coefficient

Rj =
c− cj
c+ cj

for j = 1, 2, · · · , N. (6.18)

The reflection coefficient for the Sommerfeld condition is derived in Appendix B.

In the Sommerfeld boundary condition, c is a tuning coefficient, which can be chosen
freely. But what is an appropriate choice for c in irregular waves where each wave
component j has a different phase velocity cj? From Eq. (6.18), we see that there
is one value for c that gives zero reflection; the reflection coefficient is zero for the
wave component j that has a phase velocity cj equal to c. Wave components with cj
close to c will have very little reflection, but as cj deviates more from c, the reflection
coefficient for those wave components becomes larger and larger.

At sea, wave energy comes in so-called wave energy spectra. Depending on the weather
conditions, the distribution of the wave energy over the frequency range can be de-
scribed by a JONSWAP spectrum, a Pierson-Moskovic spectrum or some other spec-
tral shape [28]. These theoretical spectral shapes show that there is little wave energy
at the (very) low frequencies, more wave energy at higher frequencies until the wave
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energy reaches a maximum at the peak frequency fp of the spectrum, after which
there is again increasingly less wave energy at higher frequencies in the ’tail’ of the
spectrum. We will call the phase velocity associated with the peak frequency of the
spectrum cp and the wave number associated with the peak frequency of the spectrum
kp.

An absorbing boundary condition is applied to let wave energy leave the numerical
domain. The optimal choice for c in the Sommerfeld boundary condition with irregular
wave simulations, then, is that c, which corresponds to the cj at the peak frequency
of the spectrum, i.e. cp, because that is the wave component with the most energy.

Figure 6.2 shows a JONSWAP spectrum with ωp = 1.5s−1 and Hm0 = 1m in the left
panel. The right panel of Figure 6.2 shows the theoretical reflected wave spectrum as
a function of frequency for three different choices for c: c = c

(
2
3kph

)
, c = cp = c (kph)

and c = c
(
3
2kph

)
. The amount of reflected wave energy corresponds to the surface

below the lines in Figure 6.2. The figure clearly demonstrates that c = c (kph) gives
the lowest amount of reflected wave energy and, therefore, is the optimal choice when
the Sommerfeld condition is used to absorb irregular waves.
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Figure 6.2: JONSWAP spectrum and the Sommerfeld reflection spectrum for three
choices of the tuning coefficient c.

The theoretical amount of reflected wave energy for the JONSWAP spectrum in Figure
6.2b is considerable, even for the optimal choice for c. We would like to improve upon
the performance of the Sommerfeld condition in irregular wave simulations. To start
the derivation of an improved absorbing boundary condition for irregular free surface
waves, we transform the Sommerfeld condition to Fourier space

(−ωj + ckj)φj = 0 for j = 1, 2, · · · , N. (6.19)

Here, φj is the Fourier transform of Φ. The optimal boundary condition for irregular
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waves in the frequency domain would be as follows

(−ωj + cjkj)φj = 0 for j = 1, 2, · · · , N. (6.20)

where cj follows from Eq. (6.17). In this relation, every wave component is absorbed
with a coefficient cj that corresponds to the actual phase velocity for wave component
j. Unfortunately, Eq. (6.20) cannot be transformed back to normal space.

Eq. (6.20) does provide us with the inspiration to derive an improved absorbing bound-
ary condition with respect to the Sommerfeld condition. Apparently, when the co-
efficients cj are chosen in accordance with the actual phase velocity obtained from
the dispersion relation, there is zero reflection for every wave component. On the
other hand, when coefficient c in the Sommerfeld equation is chosen such that it cor-
responds to only one value in the dispersion relation, there is considerable reflection.
Clearly, the better we approximate the dispersion relation in our absorbing boundary
condition, the less reflection we obtain.

The concept of approximating the dispersion relation is illustrated in Fig. 6.3. In
Fig. 6.3, the normalized dispersion relation is shown in combination with a function

f : kh→ c (6.21)

that approximates the dispersion relation in the range kh ∈ [0, 10]. This is how the
Sommerfeld condition deals with irregular waves: the difference between the disper-
sion relation and the approximating function f is an indication of how much reflection
there will be for a wave component. Wave components with phase velocities cj that
are close to c will have little reflection, whereas wave components with cj different
from c will reflect more. The reflection coefficient as a function of kh for this choice
for c is shown in Fig. 6.3b.

Now, we will introduce a rational polynomial in kh that is a better approximation to
the dispersion relation than the constant function f

g : kh→
√

gh
a0 + a1 (kh)

2

1 + b1 (kh)
2 . (6.22)

The coefficients a0, a1 and b1 can be chosen such that different kh-ranges of the
dispersion relation are approximated well. With a0 = 1, a1 = 3

20 and b1 = 19
20 , the

dispersion relation is approximated near kh = 0 with fourth-order accuracy, as can
be shown by means of a series expansion. This is illustrated in Fig. 6.4. It gives the
dispersion relation and the approximation with function g. In Fig. 6.4, the theoretical
reflection coefficient for this choice of the coefficients is shown. Here, one can see that
the reflection coefficient with a rational approximation is smaller than with a constant
approximation of the dispersion relation for a large range of values for kh.

Next, we substitute c = g into boundary condition (6.19)

(

−
(

1 + b1 (kjh)
2
)

ωj+

√

gh
(

a0 + a1 (kjh)
2
)

kj

)

φj = 0 for j = 1, 2, · · · , N.
(6.23)
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Figure 6.3: Approximation of the dispersion relation with a constant function f ,
which is characteristic of the Sommerfeld condition, in Fig. (a). In
Fig. (b), the reflection coefficient associated with a constant function f .
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Figure 6.4: Approximation of the dispersion relation with a rational function g,
which is part of the improved boundary condition for irregular waves, in
(a). In (b), the reflection coefficient associated with the rational func-
tion g.

Note that Eq. (6.23) is multiplied by
(

1 + b1 (kjh)
2
)

.

Still, boundary condition (6.23) cannot be transformed back to normal space, because
it is non-linear in kj . We will try to eliminate the k2j from the boundary condition.

The wave number kj can be found by taking derivatives of the solution in space.
In linear theory, the solution to the system of equations is given by the potential.
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Propagating wave components in the time domain satisfy the following relation for
the potential

φj =
ζa
kjg

cosh (kj (z + h))

cosh (kjh)
ei(kjx−ωjt). (6.24)

By taking the second-order derivative in x-direction, we obtain an expression, which
is −k2j times the potential

∂2

∂n2
φj = −k2jφj . (6.25)

Eq. (6.25) could be used to eliminate the k2j from the boundary condition. A disad-
vantage of using horizontal derivatives in the boundary condition is that, in the nu-
merical implementation, these derivatives would have to be evaluated with one-sided
discretizations, because there are no grid points beyond the boundary. One-sided
approximations are known to be rather inaccurate.

Derivatives along the boundary may be evaluated with central discretizations. For
this reason, we prefer to use derivatives in vertical direction to eliminate the k2j from
the boundary condition. The second-order derivative of potential function (6.24) in
vertical direction is equal to k2j times the potential itself

∂2φj
∂z2

= k2jφj . (6.26)

Eq. (6.26) is substituted in boundary condition (6.23) to yield

(

−
(

1 + b1h
2 ∂

2

∂z2

)

ωj+

√

gh

(

a0 + a1h
2 ∂

2

∂z2

)

kj

)

φj = 0 for j = 1, 2, · · · , N.
(6.27)

The absorbing boundary condition in Eq. (6.27) is linear in kj and can be transformed
back from Fourier space. In normal space, the absorbing boundary condition becomes

((

1 + b1h
2 ∂

2

∂z2

)
∂

∂t
+
√

gh

(

a0 + a1h
2 ∂

2

∂z2

)
∂

∂n

)

Φ = 0. (6.28)

With Eq. (6.28), we have derived an absorbing boundary condition that gives little
reflection for wave components within a range of kh-values for which the rational
approximation of the dispersion relation in Eq. (6.22) is accurate.

6.4 Stability

The boundary condition derived in the previous section accurately absorbs waves in
a range of kh-values where the dispersion relation is well approximated. The range
can be chosen by adjusting the parameters a0, a1 and b1. Not every set of parameters
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leads to a stable solution. This is best explained by elaborating on the different types
of wave phenomenon.

Propagating waves are not the only type that satisfies the linearized system of equa-
tions in Appendix A. Propagating waves are a specific solution that is characterized
by periodic behaviour in time and horizontal space, and exponential behaviour in
vertical direction.

Evanescent waves are another solution type. These show periodic behaviour in time
and vertical direction, but now the exponential behaviour is in horizontal space.
Evanescent waves are mainly observed near wave boards in experimental facilities
and their existence is due to wave boards not being of exactly the same shape as the
vertical, exponential profile of the propagating waves they mean to create.

The final type that satisfies the linearized system, does not exist in reality; it is a nu-
merical artifact that becomes relevant when the ABC is combined with the system of
equations. It features periodic behaviour in vertical space and exponential behaviour
in horizontal space and in time. If such a mode exponentially grows, instead of de-
cays in time, it will lead to an unstable simulation. This wave type is an unphysical
artefact of the numerical solution process and will from here on be termed ’spurious’
wave mode.

It is possible to derive a dispersion relation, an expression that relates frequency to
wave number or phase velocity to wave number, for all the wave modes above. The
analytical phase velocity c(kh) can then be combined with the approximate phase
velocity of the ABC, ca(kh), into a reflection coefficient:

Rabc =
ca(kh)− c(kh)

ca(kh) + c(kh)
. (6.29)

For propagating wave modes the reflection coefficient is used to determine the per-
formance of the ABC. The ABC performs well if the reflection coefficient is below
a certain value. It gives full reflection if Rabc is equal to one. Note that when the
reflection coefficient is larger than one, energy is added to the system. This is unde-
sirable for an absorbing boundary condition for propagating waves, since it leads to
an unstable solution. For propagating wave modes this does not occur.

Spurious wave modes, however, can lead to an unstable solution. For certain choices
of the tuning parameters a0, a1 and b1, exponentially growing wave modes in time
will be part of the solution. Now the reflection coefficient can be used to derive stable
sets of parameters. If the reflection coefficient for spurious wave modes stays below
one, no unphysical increase of energy will be observed near the boundary and the
solution process remains stable.

The dispersion relation for spurious modes is:

csp =
√

gh

√

tan(kh)

kh
. (6.30)

The absorbing boundary condition with the second derivatives in the vertical ap-
plied to the spurious wave potential Φsp leads to the following approximation of the
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dispersion relation:

ca =
√

gh
a0 − a1(kh)

2

1− b1(kh)2
. (6.31)

Note in (6.31) that the second derivatives, combined with the cosine-behaviour of the
spurious modes in vertical direction (see Appendix A) leads to minus-signs in the
approximation of the phase velocity.

The dispersion relation for spurious waves and the approximation of the boundary
condition are substituted into the expression for the reflection coefficient. The abso-
lute value of the reflection coefficient needs to remain smaller than one:

|Rsp| =
∣
∣
∣
∣

ca(kh)− csp(kh)

ca(kh) + csp(kh)

∣
∣
∣
∣
< 1. (6.32)

The expression for the dispersion relation of the spurious wave mode is substituted
into the reflection coefficient, along with the expression for the approximation of the
dispersion relation by the boundary condition. The stability criterion then becomes

a0−a1(kh)
2

1−b1(kh)
2 −

√
tan(kh)

kh

a0−a1(kh)
2

1−b1(kh)
2 +

√
tan(kh)

kh

< 1 (6.33)

Eq. (6.33) has singularities, where the denominator has roots. Consider the following
functions

f1 : kh→
√

tan (kh)

kh

f2 : kh→ a0 − a1 (kh)
2

f3 : kh→ 1− b1 (kh)
2

(6.34)

Functions f1 and f2 in (6.34) are plotted in Fig. 6.5. The figure shows only the
real values of f1. It has imaginary values in the range kh ∈ [π/2, π]. The range
of imaginary values gives us the opportunity to ensure stability. If the roots of the
functions f2 and f3 in Eq. (6.34) are chosen in the range where f1 has imaginary
values, then instability cannot occur. This puts restrictions on the values for the
coefficients a1 and b1. In Fig. 6.5, the function f2 is plotted with a0 = 1 and two
different values for a1, a1 = a0/π

2 and a1 = a0/4π
2. With these values for a1, the

roots of f2 are precisely on the outer limits of the range kh ∈ [π/2, π]. Therefore, the
first requirement for stability is that a1 has a value between a0/π

2 and 4a0/π
2.

The same line of reasoning applies to the function f3 in Eq. (6.34) and the value
for b1. The second requirement for stability, then, is that the value for b1 is chosen
between 1/π2 and 4/π2.

The third and final requirement for stability comes from the limit behaviour of the
reflection coefficient in Eq. (6.33). If we consider the limit kh → ∞ of the reflection
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Figure 6.5: Roots of the reflection coefficient’s denominator.

coefficient, it is found that b1 should be larger than a1 to ensure that R ≤ 1 and,
hence, stability. This is a stronger requirement for stability than that b1 should be
larger than 1/π2: the value for b1 should in fact be between a1 and 4/π2.

Summarizing the inequalities for the coefficients

a0
π2

< a1 <
4a0
π2

and

a1 < b1 <
4

π2
.

(6.35)

The behaviour of Eq. (6.33) is the same for every interval kh ∈ 〈nπ/2, nπ] for n =
1, 3, 5, · · · . If the coefficients a1 and b1 are chosen in such a way that the roots of
the functions f2 and f3 are in these intervals, stability is ensured. Within these
constraints, one is free to approximate the dispersion relation for propagating wave
modes as best he can. Fig. 6.6 gives an example of what the reflection coefficient for
a spurious wave mode looks like when either a stable set of coefficients – a0 = 1.05,
a1 = 0.12 and b1 = 0.31 – or an unstable set of coefficients – a0 = 1.05, a1 = 0.10
and b1 = 0.31 – is chosen. Here, the stability criterion that a1 has to be larger than
a0/π

2 is violated.

The following, stable choice for the parameters - a0 = 1.040, a1 = 0.106, b1 = 0.289 -
approximates the dispersion relation in the range kh ∈ 〈0, 6] with a reflection coeffi-
cient R of at most 0.02, see Fig. 6.7.
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Figure 6.6: Reflection coefficient of a spurious wave mode for a stable set of co-
efficients – a0 = 1.05, a1 = 0.10 and b1 = 0.31 – and the reflection
coefficient for an unstable set – a0 = 1.05, a1 = 0.12 and b1 = 0.31.
Solution modes become unstable when the reflection coefficient is larger
than one.
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Figure 6.7: Reflection coefficient for a stable set of parameters. The reflection co-
efficient is smaller than 2% over a range of kh ∈ 〈0, 6].

6.5 Incoming and outgoing waves

At the boundary, incoming waves need to be specified while preventing re-reflection
of outgoing waves at the same time. In the ABC, we follow Carpenter [7] and Perkins
et al. [40] and prescribe the incoming characteristic with a non-zero right-hand side
consisting of the same combination of operators applied to the incoming wave poten-
tial, see Section 6.1.3.
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With a non-zero right-hand side, absorbing boundary condition (6.28) becomes:

[(

1 + b1h
2 ∂

2

∂z2

)
∂

∂t
+

√

gh

(

a0 + a1h
2 ∂

2

∂z2

)
∂

∂x

]

Φ = Rin, (6.36)

in which:

Rin =

[(

1 + b1h
2 ∂

2

∂z2

)
∂

∂t
+

√

gh

(

a0 + a1h
2 ∂

2

∂z2

)
∂

∂x

]

Φin.

Here, Φin is the incoming wave potential. The incoming wave potential at the bound-
ary varies as a function of time. Now that the incoming wave has become part of the
boundary condition, a Generating/Absorbing Boundary Condition for long-crested
dispersive waves has been obtained that we will abbreviate to GABC. This is a truly
open boundary condition, through which waves can enter and leave the domain over
the same boundary at the same time with little spurious re-reflection of waves within
the rational approximation’s range of accuracy.

6.6 Numerical implementation

6.6.1 Discrete equations

The ABC in (6.28) is used as a boundary condition for outgoing waves in ComFLOW.
Our numerical method solves for velocities and pressures and, therefore, the ABC
needs to be expressed in terms of the same variables.

In potential theory the velocity in n-direction is related to the derivative of the po-
tential Φ in that direction:

∂Φ

∂n
= ub. (6.37)

The subscript b now indicates that the velocity is defined exactly on the domain
boundary. To derive an expression for the pressure, the Bernoulli equation is lin-
earized. Then:

∂Φ

∂t
= −pb

ρ
− gz. (6.38)

For notation purposes the density in the remainder of this section is assumed to be
equal to one. Again, in (6.38), the subscript b indicates that the pressure is defined
at the domain boundary. After substitution of (6.37) and (6.38) into the ABC, an
expression in terms of pressure and velocity at the domain boundary is obtained:

−
√

gh

(

a0 + a1h
2 ∂

2

∂z2

)

ub +

(

1 + b1h
2 ∂

2

∂z2

)

pb = gz +Rin. (6.39)
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ub
pipi−1

F O

∆n

∆z

Figure 6.8: Definition of the solution variables at the boundary. The boundary con-
dition is applied to solve for pi. It is positioned in the center of the
mirror cell outside the domain.

The solution variables are staggered within a cell. The domain boundary is chosen
such that it coincides with the position of the horizontal velocity ub.

It is essential that the velocity and pressure in the ABC are defined at the same
position. Any other configuration would lead to phase differences between solution
variables at the boundary and additional spurious reflection. The pressure at the
boundary is obtained from linear interpolation between the pressures on either side
of the boundary:

pb =
1

2
(pi−1 + pi) . (6.40)

It is equally essential that the pressure and the velocity at the boundary are defined at
the same point in time. For a boundary condition in terms of pressures, the pressure
at the boundary is determined at time tn+1. The horizontal velocity at the new time
level un+1

b can be eliminated by means of the momentum equation at the boundary:

un+1
b = un+1

i−1 = ũi−1 −
∆t

∆x
(pi − pi−1)

n+1
. (6.41)

Note that ũ includes convective and diffusive terms, see Eq. (3.15).

The second derivatives in the ABC are approximated by the operator in (6.42). The
operator has been derived for a stretched grid in the vertical direction and is second
order accurate, see Fig. 6.9. It reads

V =





V1

V2

V3



 =
1

1
2∆zz∆zn (∆zz +∆zn)





∆zn
−∆zz −∆zn

∆zz



 . (6.42)

Now the following vectors for the horizontal velocity and the pressure are introduced:

ũ =





ũk−1

ũk
ũk+1



 , p =





pk−1

pk
pk+1



 . (6.43)
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By combining (6.39) through (6.43) a discrete equation for the absorbing boundary
condition is obtained:

(
Clz Cxl Cln

)
pi−1 +

(
Czl Cc Czr

)
pi =

gzk +
(
Nzl Nc Nzr

)
ũi−1 +Rin.

(6.44)

The matrix coefficients in C are equal to (see Fig. 6.9 for the position of these coeffi-
cients):

Clz =

(

−χτ + 1

2
ψ

)

V1

Cxl = −ϕτ + 1

2
−

(

χτ − 1

2
ψ

)

V2

Cln =

(

−χτ + 1

2
ψ

)

V3

Czl =

(

χτ +
1

2
ψ

)

V1

Cc = ϕτ +
1

2
+

(

χτ +
1

2
ψ

)

V2

Czr =

(

χτ +
1

2
ψ

)

V3.

The coefficients in N are as follows:

Nzl = χV1

Nc = ϕ− χV2

Nzr = χV3.

In the relations above, these coefficients were used:

ϕ =
√

gha0, χ =
√

gha1h
2, ψ = b1h

2 and τ =
∆t

∆n
.

Equation (6.44) has been set up as an equation for pi in a mirror cell outside the
domain. It features only pressures at the new time level tn+1 on the left hand side, and
horizontal velocities that include convective and diffusive terms on the old time level
tn on the right hand side. The structure of the discrete ABC bears great resemblance
to the pressure Poisson equation derived in section 3.3.4 and can therefore easily be
combined with the field equations for the inside of the domain.

Setting up the extended pressure Poisson equation is one matter, solving it is another.
The left-hand side matrix includes coefficients that are not common in a regular
Poisson solver stencil. The stencil at the boundary in 2D is shown in Fig. 6.9.

The matrix, including the additional coefficients of the absorbing boundary condition,
is not symmetric, nor diagonally dominant. The SOR routine in [4] fails to converge.
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pi

Figure 6.9: Stencil of pressures at the boundary to determine pi by means of the
absorbing boundary condition. Dashed lines on the right of the boundary
indicate the outside of the domain. The encircled pressure points are
not part of the default Poisson matrix.

In this research a BiCGSTAB method with ILU(ε) preconditioner for solving general
sparse matrix equations is used. This solver is not optimized for the problem under
consideration and will often be slower than SOR. Deriving an optimized solver for
matrices without diagonal dominance is a research subject in itself and will not be
addressed in this thesis.

6.6.2 Bottom and free surface

The discrete ABC combines variables from three consecutive horizontal layers to ap-
proximate the second derivative in vertical direction. No solution variables are de-
termined below the bottom. Therefore, at the bottom, hydrostatic pressure variation
and no variation of the horizontal velocity are assumed:

pb,k−1 = pb,k + g∆zk−1, ub,k−1 = ub,k. (6.45)

The conditions in Eq. (6.45) are substituted into the equation that applies to the
cell directly above the bottom. The situation at the boundary near the bottom is
sketched in Fig. 6.10.

At the free surface almost the same situation occurs, see Fig. 6.11. In single phase
simulations no pressures and velocities are determined above the free surface. How-
ever, additional conditions such as those near the bottom are not available. And since
the largest velocity variation occurs near the free surface, it seems important for a
properly functioning ABC to accurately approximate the second derivative there.

The most obvious solution is to derive an operator for a one-sided second derivative.
The operator only uses solution variables from below the free surface. Unfortunately,
applying a one-sided operator for the second derivative near the free surface resulted
in unstable simulations. Due to the complexity of the equations at the boundary and
at the free surface, it proved impossible to perform analysis to derive stability criteria.
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pi,k

pi,k−1

pi,k+1

pi−1,k

pi−1,k−1

pi−1,k+1

ub,k

ub,k−1

ub,k+1

Figure 6.10: Implementation of the absorbing boundary condition at the bottom.
The solution variables below the bottom are expressed in the solution
variables above the bottom.

Instead, a compromise was implemented. In the cell containing the free surface, no
second derivative is calculated. In the O-cell nearest to the S-cell inside the domain,
an ordinary Sommerfeld equation, such as (6.4), is solved with a well chosen value
for c(o). This equation is implemented at the cost of accuracy, but at the moment an
alternative is not available.

6.7 Waves under an angle with the boundary

Until now, we have only considered long-crested waves with normal incidence to the
boundary; long-crested waves were assumed in the derivation of the absorbing bound-
ary condition and in the implementation. The assumption is justified, because we
often perform long-crested wave simulations, even in three dimensions. But when a
structure is included in the domain, it generates wave diffraction (and radiation) in
all directions around the structure. Diffracted waves can impinge on the boundary at
any angle.

To study the reflection coefficient of the absorbing boundary condition for waves under
an angle with respect to the boundary, the axis system in Fig. 6.12 is introduced. The
vector normal to the boundary will be called n and the angle with this vector is defined
as θ.
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pi,kpi−1,k

ub,k

E

F

S

O

O

O

Figure 6.11: At the free surface near the boundary no second derivative is calculated.
Instead, a Sommerfeld equation is solved at the SO-cell boundary.

θ

n

B

Figure 6.12: Axis system at the boundary. Waves can impinge on the boundary at
an angle. The angle θ is defined with respect to the boundary’s normal
vector n.

Waves propagating with a certain phase velocity c, under an angle with the boundary,
appear to approach the boundary at a higher velocity. The apparent velocity needs
to be accounted for in the absorbing boundary condition:

(
∂

∂t
+

c

cos θ

∂

∂n

)

Φ = 0. (6.46)

Analogous to the discussion regarding dispersive waves, boundary condition (6.46)
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can never be imposed, because the directions θi of the individual wave components
φi cannot be resolved at the boundary. The term c/ cos θ is therefore approximated
by either a fixed value (Sommerfeld) or the rational approximation of the dispersion
relation that has been introduced earlier in this chapter.

In Fig. 6.13, the reflection coefficient in percentages of the Sommerfeld condition,
with c/ cos θ = 2/3

√
gh, is compared to that of the rational approximation, with

a0 = 1.040, a1 = 0.106, b1 = 0.289. It has been determined for a range of kh-values
and angles of incidence between zero and ninety degrees. In these figures, the area
where the reflection coefficient is below five percent has been enclosed by a bold line;
five percent reflection is considered tolerable in practical simulations for wave impacts.
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Figure 6.13: Reflection coefficient in percentages as a function of the incidence
angle θ and the dimensionless wave number kh. The Sommerfeld
condition is compared to the ABC with a rational approximation.
In the boundary condition we have used c/ cos θ = 2/3

√
gh and

a0 = 1.040, a1 = 0.106, b1 = 0.289, respectively.

From Fig. 6.13, we find that the performance of the ABC is not much better than
the Sommerfeld condition in terms of the range of angles. If less reflection of waves
at larger incident angles with the boundary is desired, we need to account for this
angle in the boundary condition. There is literature available, see section 6.1.1, but
ABCs for waves under an angle are not addressed in this thesis. This is part of future
research concerning ABCs in the ComFLOW-3 project.

6.8 Results

In this section, the performance of the absorbing boundary condition will be tested.
The performance is better when there is less reflection. The reflection coefficient will
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be obtained from irregular wave simulations with an ABC at the downstream end of
the domain and compared to the theoretical reflection coefficient.

There are ways to determine the propagation direction and the frequency content from
a set of wave signals, measured at multiple carefully chosen locations [52]. These meth-
ods, however, perform worse as waves become steeper and they will wrongly attribute
numerical effects, such as phase lagging or wave energy dissipation to propagating
waves.

In this research, therefore, another method to assess the performance of the ABC
in practical circumstances is proposed. First a wave simulation is performed in an
infinitely long domain. ’Infinite’, in this sense, means that the domain length is
chosen such, that during the entire measurement time, reflected waves cannot reach
the measurement location. The required domain length can be obtained from the
phase velocity of the fastest propagating wave components and the duration of the
simulation, Ld =

√
gh tmax.

Then another simulation is performed. This simulation is the same as the previous
simulation in every respect, except for the domain length and the boundary procedure
at the outflow end of the domain. Measurements of the surface elevation, taken at
exactly the same positions, are compared to measurements on the ‘infinite’ domain.
Everything being the same, the difference can only be attributed to the boundary
procedure. The infinite domain and the shorter domain with the boundary condition
are shown in Fig. 6.14; the figure also indicates the measurement position in the
middle of the short domain.

In this way, different boundary procedures may be compared. Three comparisons are
made:

• Sommerfeld vs. ABC

• Dissipation zone vs. ABC

• ABC vs. combined short dissipation zone and ABC

The setup of the simulations is outlined in Tables 6.1 through 6.3. The domain is 2D,
which means that only long crested waves are considered. The domain sizes and the
grid distances are stated in Table 6.1. The cells have a uniform size in the horizontal
direction and are stretched in the vertical direction. In a study by Meskers [36] it
was found that the quality of simulated waves increases with decreasing time step.
And in order to be sure that not only the measurement position in space, but also
the measurement positions in time are the same throughout all simulations, the time
increment ∆t is kept fixed and small.

The simulations are started from rest: at t0 there are no waves in the domain and
the velocities ~u are zero. Waves are imposed on the left of the domain by means of
linear potential theory. With a linear ramp function the signals of surface elevation
and velocities at the inflow boundary are gradually built up over a period of 20s.
The irregular wave signal consists of a superposition of regular wave components that
accord with a realistic JONSWAP spectrum, see Table 6.2. For more information on
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(a)

GABC

(b)

Figure 6.14: Simulation in a long domain and simulation in a short domain with
the GABC at the end. Surface elevation measurements are taken in
the middle of the short domain and compared to the surface elevation
in the long domain to determine the reflection.

default wave spectra and how a spectrum is obtained from a time series, the reader
is referred to Holthuijsen [28].

The coefficients of the outflow boundary conditions are in Table 6.3. The coefficients
for the ABC are tuned in such a way that the reflection coefficient over the range
kh ∈ 〈0, 6] is never larger than 0.02. The Sommerfeld boundary condition at the free
surface has only one coefficient to tune, the outgoing phase velocity c(o). The best
choice for the outgoing phase velocity is the one associated with the peak period of
the spectrum.

[36] gives the optimal configuration of a beach when linear theory is assumed. The
length of the beach, expressed in number of wave lengths, will be determined based
on the wave length associated with the peak period of the spectrum. The optimal
number of wave lengths for this simulation, when a theoretical reflection coefficient
of 0.02 is desired, is two. The slope of the damping function is based on the peak
frequency. Then, finally, in the case of the combined ABC and beach, the beach
length is chosen much shorter; the slope however remains the same.

The wave signal at the measurement location in the infinite domain ζref is subtracted
from the wave signals in the domains where boundary procedures were applied, so
that a reflection signal is obtained. The wave and reflection signals are decomposed
into their Fourier components. The Fourier components are then converted to both
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Table 6.1: Domain and grid

Parameter Symbol Value

Water depth h 100m
Domain length ℓ∞ 10000m
Domain length ℓ 400m
Measurement position xm 200m
Horizontal grid distance ∆x 1m
Vertical grid distance ∆zmin 0.2m
Vertical grid distance ∆zmax 4.95m
Vertical stretch factor ξ 1.05 [-]
Time step ∆t 0.01s
Simulated time T 600s

Table 6.2: JONSWAP spectrum

Parameter Symbol Value

Peak period Tp 15s
Significant wave height Hs 4m

spectra and reflection coefficients. Finally, the parameters are compared to the values
they should theoretically have and to each other. This is displayed in Figures 6.15
through 6.17.

The Sommerfeld condition performs best for one kh-value, the one it has been tuned
for. Both the theoretical reflection coefficient and the reflection coefficient obtained
from the results are zero. Away from this kh-value the performance quickly becomes
worse. Results from the Sommerfeld simulation agree well with theory.

The ABC, which has the distinguishing feature to be accurate over a range of kh-
values, performs better than the Sommerfeld condition. The amount of wave energy
that is reflected is marginal compared to the input spectrum. However, the reflec-
tion coefficient for the shorter waves is worse than theory. There are three possible
reasons for the difference between theory and practise: first, it may be attributed
to the procedure to determine the spectra. The simulation period was rather short
compared to the peak period of the spectrum and there may not have been enough
zero crossings to properly determine the reflection spectrum. The second reason may
be the Sommerfeld condition in the S-cell at the boundary. This relation was tuned
to the peak period of the spectrum and will especially cause reflection of shorter com-
ponents, in which the velocity gradients are largest at the free surface. And finally,
non-linear effects near the boundary are not accounted for. This may also result in
more reflection than anticipated.

Although the dissipation zone was specifically tuned for the peak frequency of the
spectrum, see [36], its performance at this frequency does not agree well with what
was expected. With a size of two times the tuning wave length and the chosen slope of
the damping function, the expected value of the reflection coefficient was |R| = 0.02.
The obtained value was one. All of the wave energy at this kh-value was reflected. We
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Table 6.3: Coefficients of the boundary procedures

Parameter Symbol Value

ABC coefficient a0 1.05 [-]
ABC coefficient a1 0.12 [-]
ABC coefficient b1 0.31 [-]
Outgoing phase velocity c(o)/

√
gh 0.58 [-]

Beach length ℓbeach 200m
Beach length ℓabc 50m
Slope damping function β 0.05 [-]

believe this is due to non-linear effects in the dissipation zone. Because the derivation
in [36] is based on linear theory, it could not have predicted this behaviour.

In addition, the behaviour of the dissipation zone for very long waves was alarming.
Although almost no energy for the very long waves was present in the input spec-
trum, it seems to have been generated as a result of non-linear interaction within the
dissipation zone. The dissipation zone does seem to perform well for the short waves
with kh-values larger than π.

The final simulation was performed with a dissipation zone combined with the ab-
sorbing boundary condition. The results in Fig. 6.17 show that they supplement each
other’s strong points. The ABC did not perform very well for the shorter waves.
And now a short beach with a small slope of the damping function takes care of
those, while the ABC prevents the reflection of the longer waves. The ABC with a
dissipation zone is a meaningful combination at the outflow end of the domain. At
the inflow end of the domain, we must note, a dissipation zone would extract wave
energy from the incoming waves, which is undesirable naturally. For this reason, we
do not recommend combining the ABC with a dissipation zone at the inflow end of
the domain.



102 Chapter 6 Generating absorbing boundary condition

0 1 3 6 10 16 23
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kh [-]

c/
√

g
h

[-
]

 

 

Exact

GABC

0 0.25 0.5 0.75 1 1.25 1.5

ω [rad/s]

(a)

0 1 3 6 10 16 23
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

kh [-]

c/
√

g
h

[-
]

 

 

Exact

GABC

0 0.25 0.5 0.75 1 1.25 1.5

ω [rad/s]

(b)

0 1 3 6 10 16 23
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

kh [-]

|R
|[

-]

 

 

Theoretical reflection coefficient

Simulated reflection coefficient

0 0.25 0.5 0.75 1 1.25 1.5

ω [rad/s]

(c)

0 1 3 6 10 16 23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

kh [-]

|R
|[

-]

 

 

Theoretical reflection coefficient

Simulated reflection coefficient

0 0.25 0.5 0.75 1 1.25 1.5

ω [rad/s]

(d)

0 1 3 6 10 16 23
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

kh [-]

S
[m

2
s]

 

 

Theoretical reflected spectrum

Simulated reflected spectrum

0 0.25 0.5 0.75 1 1.25 1.5

ω [rad/s]

(e)

0 1 3 6 10 16 23
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

kh [-]

S
[m

2
s]

 

 

Theoretical reflected spectrum

Simulated reflected spectrum

0 0.25 0.5 0.75 1 1.25 1.5

ω [rad/s]

(f)

Figure 6.15: Reflection – Sommerfeld in the left column vs. ABC in the right col-
umn. The top row, in (a) and (b), shows the exact linear dispersion
relation and the approximations made by the applied boundary condi-
tions. The second row, in (c) and (d), shows the theoretical reflection
coefficient compared with the reflection coefficient that was obtained
numerically. The bottom row shows the theoretical reflection spectrum,
compared with the numerically obtained reflection spectrum.



6.8 Results 103

0 1 3 6 10 16 23
0

1

2

3

4

5

6

7

8

9

kh [-]

|R
|[

-]

 

 

Theoretical reflection coefficient

Simulated reflection coefficient

0 0.25 0.5 0.75 1 1.25 1.5

ω [rad/s]

(a)

0 1 3 6 10 16 23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

kh [-]

|R
|[

-]

 

 

Theoretical reflection coefficient

Simulated reflection coefficient

0 0.25 0.5 0.75 1 1.25 1.5

ω [rad/s]

(b)

0 1 3 6 10 16 23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

kh [-]

S
[m

2
s]

 

 

Theoretical reflected spectrum

Simulated reflected spectrum

0 0.25 0.5 0.75 1 1.25 1.5

ω [rad/s]

(c)

0 1 3 6 10 16 23
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

kh [-]

S
[m

2
s]

 

 

Theoretical reflected spectrum

Simulated reflected spectrum

0 0.25 0.5 0.75 1 1.25 1.5

ω [rad/s]

(d)

Figure 6.16: Reflection – Dissipation zone in the left column vs. ABC in the right
column. The top row, in (a) and (b), shows the reflection coefficients
that were obtained numerically. The bottom row, in (c) and (d) shows
the reflection spectra.
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Figure 6.17: Reflection – ABC in the left column vs. combined dissipation zone
and ABC in the right column. The top row, in (a) and (b), shows the
reflection coefficients that were obtained numerically. The bottom row,
in (c) and (d) shows the reflection spectra.



Chapter 7

Validation study

In this chapter, 3D ComFLOW wave simulation results are compared with exper-
imental results. The simulations are performed with the GABC specified at the
boundaries to prevent re-reflection of waves back into the domain. We will describe
the experimental setup and provide an overview of the relevant parameters in the
numerical simulations.

7.1 Introduction

A semi-submersible is a floating structure used for offshore drilling and/or offshore oil
production. The structure is characterized by a deck on multiple free surface piercing
columns and a large submerged pontoon. This configuration has been designed for
its favourable motion behaviour: it has a relatively large underwater volume and
relatively small surface level area. The mass-stiffness ratio yields a high natural
period, which is outside the range of excitation for the location where the semi-
submersible is installed.

A semi-submersible is not very mobile and can be caught in heavy storms at sea.
A pivotal aspect in the design of a semi-submersible is that the deck is kept free of
impact, even in heavy storm. The distance between the free surface and the deck is
called air gap. The design team will try to keep the air gap as small as possible for
economic reasons, but large enough to prevent the deck from being hit by a wave.

The minimum air gap cannot be determined from the meteocean data alone. The
interaction between the water and the structure – and especially the underwater
pontoon – locally generates extra high waves relative to the motion of the structure.
3D boundary element methods are often used to derive statistics on what the relative
wave height will be and to determine the chance of deck impact. BEM methods,
however, are not suitable to determine the forces associated with a deck impact if it
were to occur.
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In addition to the BEM simulations, a series of experiments is often performed to
proof the design. Numerical simulation (other, more detailed than BEM) can be
of great value to support the experiments. Simulations beforehand might indicate
the areas that deserve special interest. Simulations afterwards can be performed to
examine if small variations may lead to a better design.

Before any conclusions can be drawn from the numerical results, it is imperative
to determine if the numerical method is adequate to simulate a semi-submersible in
ocean environments. During the development of ComFLOWspecifically designed
experiments have been performed at the Maritime Research Institute Netherlands
(MARIN) to validate the results. One of these experiments has been for a semi-
submersible.

7.2 Experiment

The model of the semi-submersible consists of two columns and a pontoon under
water, see Fig. 7.1. The experiments were performed at scale 1:50. The model was
kept restrained during the experiments, because a restrained model gives the largest
amount of diffraction and run-up of water on the columns. Deck impacts are al-
most guaranteed. This is highly undesirable for an actual design, but gives the best
circumstances to validate the numerical model.

Figure 7.1: Wave impact on the semi-submersible model during a regular wave test.

The experiments were performed in a very long, but quite narrow wave basin. Waves
were generated with a pivoting wave board at one of the narrow ends of the tank. At
the opposing end a beach was present to induce wave breaking and reduce reflection.
The model was placed a considerable distance away from the wave board.

During the experiment surface elevations were measured around and in between
columns. Surface elevations were also measured some distance away from the struc-
ture, both in front of and behind the structure. The columns and the deck were
equipped with pressure transducers to be able to monitor the build-up of pressure
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during a wave impact. Figure 7.2 shows the positions of the wave probes and pres-
sure transducers that will be used to compare numerical simulation results to the
experimental results.
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Figure 7.2: Transducer locations

Several sea states were created: regular long crested waves of different periods and
wave heights, and a number of irregular long crested sea states. In Table 7.1 the test
identification numbers of the experiments used in this chapter are given, along with
the wave heights and periods associated with these tests.

Table 7.1: Wave height and period of regular wave experiments

Test ID H [m] T [s]

202002 8.0 9.0
202003 15.0 11.0
202006 10.25 11.0
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7.3 Simulation

Several simulations have been performed. The effect of a grid improvement was stud-
ied and is reported without much attention to the specific wave absorbing boundary
conditions used for these simulations. Then, a sensitivity study is performed: we
investigate how the results change when the boundary, with different ABCs, is placed
closer to the structure. And, finally, to show the type of simulation the GABC was
designed for, results of an irregular wave simulation over a significant time span are
presented.

7.3.1 Grid study

Two simulations are compared to each other and to the experiment. The experimental
data comes from test 202003. One simulation was performed with a mesh size of
∆x = 0.8m on a uniform grid. For the other, the mesh was refined to a size of
∆x = 0.5m. It was not possible to compute with even finer grids on the PCs that
were at our disposal.

The domain size in x-direction was chosen to correspond to two wave lengths, one
in front of the structure and one wave length on the trailing side of the structure.
The wave length equals around L = 200m. In the y-direction the full width of the
experimental basin was modelled, which results in a total size in this direction of
200m, with the structure in the middle. In the vertical direction, too, the total depth
of the basin was modelled, which is 175m at prototype scale.

The simulation is started with the wave kinematics prescribed throughout the domain.
Note that analytical wave theory is used to obtain the kinematics and that they do
not include the effect of diffraction. In other words: the initial wave field is wrong.
But it is thought that results resembling the experiments, are obtained in less time
than when the simulation is started from rest.

At the inflow, analytical wave theory is used during the course of the simulation.
We have used 5th-order Stokes theory [15] to determine the surface elevation and
the kinematics at the boundary. At the outflow, a Sommerfeld equation with c =
18.16m/s, was used to absorb outgoing waves.

The numerical results are compared to the experimental time traces starting at t =
1104s. During the following 35 seconds the signal is fairly regular. The comparison
is shown in Figs. 7.3 and 7.4: Fig. 7.3 shows the surface elevation at the locations
indicated in Fig. 7.2 and Fig. 7.4 shows the pressure over time as a result of consecutive
wave impacts.

The numerical results are in reasonable agreement with the experiment. The agree-
ment of the impact pressures with the experiments and the signal of the wave probe
in between columns, is better than the agreement of the surface elevation in front of
and behind the structure. A reason for this may be the initial wave field that was not
similar to the wave field in the experiments at t = 1104s.

Although the results resemble the experiment fairly well, a converged solution was
not yet obtained. Unfortunately, it will be some time before desktop PCs can deal
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Figure 7.3: Numerical results of the surface elevation for two grid resolutions. Nu-
merical results are compared to the experimental results of test 202003.

with an even larger number of cells. A smaller mesh size may be possible when the
domain size is decreased and the boundaries of the domain are positioned closer to
the structure.

7.3.2 Sensitivity study

The aim of the sensitivity study is to observe how the results change when different
wave absorbing boundary conditions are used and when the domain boundary is
located closer to the structure.

The test that was used in this section, is 202002. The setup of the simulation is similar
to the setup in the previous section. Here, however, the mesh was kept constant at
∆x = 1.6m and the size of the domain in x-direction now equals two times L = 131m.

We compare the results of the following variations:

- GABC at the inflow and at the outflow, when the boundaries are at x = ±L

- Sommerfeld at the outflow with the boundaries at x = ±L
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Figure 7.4: Numerical results of the pressure for two grid resolutions. Numerical
results are compared to the experimental results of test 202003.

- GABC at the inflow and at the outflow, when the boundaries are at x = ±0.5L

- Sommerfeld at the outflow with the boundaries at x = ±0.5L

The starting time of the simulations was t = 1104s and the comparisons are made
over a time of 35 seconds. In the Sommerfeld condition, the phase velocity was set to
c = 14.58m/s. The results are shown in Fig. 7.5.

These numerical experiments were intended to show that the GABC gives stable
results for 3D simulations. And they were meant to show that the GABC gives similar
results to the implementation of the Sommerfeld relation. For regular waves it cannot
be expected that the GABC performs better than the Sommerfeld relation: for the
frequency the latter has been tuned to, the GABC might even give results worse than
the Sommerfeld condition, but only at this frequency and no more than2%.

The results, however, were similar at the outflow end of the domain. Compared to
a simulation with a Sommerfeld relation at just the outflow end of the domain, the
simulations with the GABC differed in one important respect: the inflow end of the
domain was generating waves and preventing re-reflection at the same time. The
absorbing nature of the inflow boundary is important for this type of simulation.
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Figure 7.5: Numerical results of the surface elevation versus experimental results of
test 202002. GABC and Sommerfeld boundary conditions are compared.
And the distance of the boundary to the structure has been varied from
one wave length to half a wave length.

One can tell from Fig. 7.5a that in the latter stages of the simulation there is a clear
difference between the Sommerfeld-results with the boundary at 0.5L and the GABC-
results with the boundary at 0.5L. The difference is due to re-reflections and they
are starting to influence the results at REL 10, see Fig. 7.2. The differences due to
re-reflection will only become larger as the simulation time increases.

7.3.3 Irregular wave simulation

In the previous sections, simulations were performed that started from a developed
wave field (of which it was mentioned that it was wrong). The simulations were com-
pared to experimental results starting at an arbitrary moment in time. At this time,
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multiple waves will have passed the structure causing wave diffraction and reflection
of the diffracted waves at the tank walls. With this approach, the comparison between
numerical results and the experiments can never entirely be without differences.

In this section, we try to start the simulation from a situation at rest and an initially
undisturbed free surface. The nonlinear potential flow model, described in section
5.2.2, is used to propagate waves from the wave board to the structure. The free
surface and kinematics at a certain location in the the potential flow model are used
to drive the waves at the boundary of the ComFLOW domain. In this approach,
initialization errors are reduced to nill.

For the experiment, test 202006/401009 was used. In itself this test is not an irregular
wave test, but the first couple of waves, before the wave signal starts to become regular,
satisfy an irregular and somewhat steep pattern; the loading on the structure as a
result of these waves will be substantial.

Nonlinear potential flow simulation

The nonlinear potential flow model, coined FDFEM in this document, is run with a
grid distance of 5m in horizontal direction. The total size of the domain in horizontal
direction equals 10,000m with a pressure damping beach at the downstream side and
a pivoting wave board at the upstream side of the domain.

In vertical direction the domain is 150.0m deep and 14 cells with significant grid
stretching were used; at the free surface the vertical cell size was 1.65m and the
bottom the cell size was 21.4m. Note that the depth of the domain is not the same as
in the experiment. This is due to stability issues with the FDFEM model, see also
[34]. By chance, the described setup of the simulation could compute until the end.
Grid improvements and an increased depth, however, all lead to instabilities.

The results of the FDFEM simulation at location x = 5315m are shown in Fig. 7.6.
The results are compared to the experimental results of an undisturbed wave test
over 120 second starting at t = 580s. Unfortunately, the exact position of the wave
probe with respect to the wave board is unknown. The current location is our best
estimate found after several simulations.

The larger waves in the FDFEM simulation are slightly steeper, but otherwise the
signals are almost identical. There can be tree reasons for the differences between
the FDFEM simulation and the experiment. Firstly, the depth in the simulation
is smaller than in the experiment. Secondly, there may have been some dissipation
in the experiment as a result of wave breaking or interaction with the side walls of
the basin. And finally, the resolved surface elevation may not have been a converged
solution. These statements cannot be verified because of reasons stated above.

2D Simulation of the undisturbed wave

To check how well the representation of the free surface in ComFLOW compares to
the free surface in FDFEM, a 2D simulation in ComFLOW, with the kinematics from
FDFEM, is compared to the original free surface in the potential flow simulation.
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Figure 7.6: Comparison of the free surface at x = 5315m between a FDFEM sim-
ulation and the results of test 202006/401009.

The downstream boundary in ComFLOW is located at x = 5156m. This is where
the kinematics from FDFEM are used. The outflow boundary is positioned at x =
5356m. Here, the GABC is used to reduce reflection of waves back into the domain.

In ComFLOW, 300 cells were used in horizontal direction without any stretching. In
the vertical direction 75 cells were applied with a stretching coefficient of 5% and the
focus point of the stretching at the mean surface level z = 0.

In Fig. 7.7 the free surface at x = 5315m in ComFLOW is compared with the free
surface in the potential flow model. The ComFLOW simulation is started at t = 580s
and lasts for 120 seconds.

The initial steep wave in ComFLOW is higher than the same wave in FDFEM. In the
ComFLOW simulation there has been some overturning when that first wave reaches
its highest point. The subsequent wave in ComFLOW is slightly lower than the one
in FDFEM. This is to be expected, because numerical dissipation in ComFLOW will
affect the largest waves the most. The remainder of the free surface signals compares
reasonably well.

3D Simulation

The dimensions of the domain in x and z-direction have remained the same for the
3D simulation. But in the y-direction the boundaries of the domain were chosen
to coincide with the basin walls, each positioned 100m away from the center of the
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Figure 7.7: Comparison of the free surface at x = 5315m between a FDFEM sim-
ulation and a ComFLOW simulation.

structure. The center position of the structure, measured with respect to position of
the wave board, was fairly uncertain. Our best estimate is x = 5306m.

In x-direction the domain was 300m large and 200 cells were used, without grid
stretching. In y-direction the domain was 200m and 75 cells were used with a stretch-
ing factor of 2%, starting at the center of the structure. In vertical direction 75 cells
were used from the bottom at z = −150m to the top of the domain at z = 20m. In
z-direction a stretching factor of 5% was used.

The GABC was used at the downstream boundary but not at the upstream boundary.
Fig. 7.8 shows the free surface that was determined in the 3D simulation in several
snap shots. Note that the first wave in 7.8a is breaking; it is unsure if this wave was
also breaking in the experiment.

The free surface has been compared to the 202006 experiment at several wave probe
locations. Fig. 7.9 shows the surface elevation as a function of time for wave probes
along the center line of the structure.

The surface elevation in the simulation is too high at the time of the first high wave
and the resulting first impact with the structure. At the time of the second steep
wave the free surface is lower than in the experiment. This is expected behaviour: in
the 2D simulation, where ComFLOW was indirectly compared to the experiment, it
was already noticed that the first steep wave in the simulation was too high and that
the second steep wave was not high enough.

The same results can be found in the outputs of the pressure sensors. The result for
three different transducers are shown in Fig. 7.10. There the first impact leads to a
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(a) t = 582.3 + 34.4s (b) t = 582.3 + 36.6s

(c) t = 582.3 + 46.0s (d) t = 582.3 + 51.2s

(e) t = 582.3 + 58.0s (f) t = 582.3 + 64.0s

Figure 7.8: Snapshots of the simulation at several time instances.

pressure, which is too high, and the second impact shows a pressure variation that
does not come high enough.

7.4 Discussion

Pressures from the simulation compare well to the experiments, albeit that they have
to be corrected for the difference between the wave signal and the numerical input
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Figure 7.9: Numerical results of the surface elevation compared to the experimental
results of test 202006.

signal determined with ComFLOW or FDFEM or a combination of the two. This
seems fairly logical: if the input signal is not entirely correct, the output signals can
never be perfect either.

Fair comparison between ComFLOW and the experiment is only possible if we can
get the incoming wave signal correcly into the computational domain. The principle
has been demonstrated with FDFEM in this thesis, but we believe that research
should be devoted to an accurate and stable far field solver that can be used together
with ComFLOW.
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Figure 7.10: Numerical results of the pressure compared with the experimental re-
sults of test 202006.





Chapter 8

Concluding remarks

The incorporation of the numerical method in this thesis into ComFLOWyields a
versatile and fast program, which is dedicated to simulating wave impacts on offshore
structures where the free surface can take on any which shape. Comparison to results
of experiments, designed especially for validation, has shown that it is accurate in
terms of (impact) pressures and surface elevations near the structure. The method
remains stable, even for highly distorted free surfaces as a result of wave breaking or
otherwise overturning waves.

The discrete equations that are solved, are based on the Navier-Stokes equations for
conservation of mass and momentum. A cut-cell method is incorporated to describe
the structure’s geometry. A very simple discretization without regard for cut cells
has been adopted for the diffusive term in the momentum equation; this is justified
because the method is not intended for an accurate representation of boundary layers
or turbulent effects. Violent free surface impacts are dominated by convection and
in coarse grid simulations used in engineering, diffusion is dominated by artificial
viscosity due to upwind discretization of the convective term. The discretization of
the diffusive term will only become important for very fine grids.

Energy dissipation in wave simulations

Artificial dissipation, unfortunately, also affects the simulation of standing and prop-
agating waves, where it becomes apparent in the loss of wave height. As standing
waves oscillate in time or propagating waves travel over distances in the order of a
wave length, energy is lost to dissipation and the wave height becomes smaller. The
effect of artificial dissipation is stronger in steeper waves. The dissipation was found
to be caused by both the artificial viscosity mentioned above, and the free surface
displacement algorithm to almost equal extent.

The donor-acceptor algorithm used in the Volume-of-Fluid method can be interpreted
as an upwind discretization of the free surface convection and upwind discretization
is known to induce dissipation. The energy dissipation can be reduced by either a

119
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more accurate free surface reconstruction (piecewise linear in this thesis), or by a
more accurate discretization of the convective term in the momentum equation. The
combination of both gives good results and reduces energy dissipation to an even
greater extent.

The path to improvement seems clear. Now, piecewise linear reconstruction of the
free surface is used. A continuous, perhaps even quadratic, reconstruction of the free
surface can be feasible and may lead to better results.

Generating and absorbing waves

In this research, wave kinematics obtained from nonlinear stream function or potential
theory are imposed as Dirichlet condition for the velocity at the boundary. Rienecker-
Fenton theory is used to generate steep regular waves and an external potential flow
method is used to generate irregular waves. Proper simulation of waves in a numerical
domain, however, is impossible without adequate measures to prevent wave reflection.

A common approach to prevent waves from reflecting, is to add a numerical dissipation
zone to the calculation domain, in which the wave height is reduced over distance until
there is none left to reflect. A dissipation zone, in theory, requires several wave lengths’
distance to dissipate all wave energy and this takes up undesired computation time
and memory. Alternatively, local absorbing boundary conditions can be employed to
prevent reflection. Local ABCs do not require extending the domain and are therefore
more efficient. There is an abundance of literature on the subject of ABCs, but the
seemingly best performing methods were found to be inadequate for use in practical
simulations that actually resemble anything found out at sea. ABCs in the literature
are either very simple and do not perform well enough, or they are very complex and
can only be used in combination with very simple differential equations.

This thesis introduces a newly devised generating absorbing boundary condition that
yields truly open boundaries – open to outgoing waves and, at the same time and
over the same boundary, open to incoming waves. The starting point for the deriva-
tion of the GABC is the Sommerfeld condition, which is perfectly absorbing for one
wave component with one propagation velocity. This velocity is specified in the Som-
merfeld condition by means of a tuning parameter. It was found that the range of
absorbed wave components can be extended by replacing the tuning parameter with
an approximation of the linear dispersion relation in terms of the wave number. When
second derivatives of the solution variables in the vertical direction are substituted
for the wave number, it yields an equation for the GABC giving less than two per-
cent reflection for a range of components. Stability issues loom when the GABC is
implemented, but the mechanism, by which instabilities occur, is well understood
and stability criteria have been formulated. The stability criteria hardly restrain the
absorbing performance of the GABC.

It was found in numerical simulations for irregular waves with the GABC that the
reflection coefficient can be as low as 5% for mildly steep waves. This is somewhat
higher than the 2% that was derived from theory, but quite comparable to the amount
of reflection that is said to be obtained in experimental basins and flumes. The differ-
ence between theory and practice here mainly lies in the fact that non-linearity has
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not been accounted for in the GABC: bound frequency components do not propagate
at phase velocities that can be predicted with linear theory.

When the current formulation of the GABC is included in the system of equations,
additional coefficients in the left-hand-side matrix are required. The coefficients are
uncommon to default Poisson solvers and therefore a general sparse matrix solver
with an ILU decomposition has been used to solve the pressure matrix equation at
every time step. The general solver is slower and takes up a lot more memory than
specialized, fit-to-purpose ways to obtain the solution to the system.

When research involving the GABC is continued, serious attention is to be devoted to
the Poisson solver, because it can make the solution process considerably more efficient
in terms of memory and noticeably faster. Since the additional coefficients are only
required in the equations for cells along the boundary of the domain, simulations
including the GABC should not be much slower than simulations without.

The GABC as is, still, leaves ample room for improvement. The optimization has
focused on dispersivity of long crested waves in normal direction to the boundary, but
in 3D domains waves can arrive at the boundary under any angle. Waves under an
angle with the boundary are not absorbed very well with the current implementation
of the GABC and future research involving absorbing boundary conditions will have
to take directionality into account.

In the derivation of the GABC, linear potential theory has been used extensively to
arrive at the final formulation. It might be possible to include non-linear effects for
better performance in simulations with very steep waves. And as a final recommen-
dation it should be noted that the GABC needs to be generalized to include currents.
Incorporating the functionality into an extended formulation of the GABC seems
possible, but it will require substantial effort.

Comparison to experimental results

It was not necessary to compare numerical results with the GABC to experimental
results to demonstrate the absorbing performance. It is, however, required that the
numerical method as a whole can be used for practical simulations for the offshore
industry. In this thesis, the numerical method is compared to model scale experiments
performed at MARIN.

Three dimensional simulations featuring the GABC at the incoming and outgoing
wave boundary, were compared to experimental results. The side walls of the domain
along the direction of wave propagation were fully reflecting, just as in the experiment
itself. A schematized semi-submersible that was kept restrained during the simula-
tions, was positioned in the middle of the domain. As a result of wave diffraction
around the semi-submersible, not only wave components with normal incidence to
the boundary will be present in the domain, but also wave components under an
angle with the boundary.

The GABC is not designed to account for wave directionality, but performs sufficiently
accurate up to incident wave angles of around 30 degrees. The absorbing boundaries
need to be placed at such a distance that most of the wave components arrive at
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the boundary at an angle below 30 degrees. It was found that with the GABC, the
domain need not be much larger than the structure inside to obtain results that are
very close to the experiment. New development of the GABC is required to place the
incoming and outgoing wave boundaries even closer to the structure: it then needs to
actively account for the direction of the incident wave components.

Future outlook

Currently, a new STW project involving ComFLOW, with three new PhD students,
is being worked on. One of the PhD students is working on improving the GABC
by including directional effects. He is also working on the free surface displacement
algorithm. During his part of the project he will try to include piecewise linear
reconstruction (PLIC) of the free surface in the displacement algorithm.

Another PhD student is working on the convective and viscous part of the momen-
tum equation. His main objective is to make ComFLOW ready for simulating mild
turbulent effects, but a advantageous side effect that addresses the recommendations
in this thesis is that with a better discretization of the convective part of the momen-
tum equation, the amount of numerical viscosity and, hence, spurious wave energy
dissipation is greatly reduced.

The third PhD student has numerical efficiency as his main topic. One of the main
disadvantages of a Cartesian grid is that grid refinement extends throughout the
entire domain leading to small cells where the represented physics do not require
this accuracy. We would like to use small cells near the structure and only near the
structure. For this reason, the third project focuses on local grid refinement, in which
grid transitions from one to two, or one to three cells can be present.

When the aforementioned project has finished, the main recommendations from this
thesis will have been addressed.
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Appendix A

Potential theory for waves

Consider the Laplace equation:

∇2Φ = 0, (A.1)

with the following linearized boundary conditions:

∂Φ

∂z
= 0 at z = −h, (A.2)

∂Φ

∂t
+ gζ = 0 at z = 0, (A.3)

∂ζ

∂t
− ∂Φ

∂z
= 0 at z = 0. (A.4)

Assuming periodic behaviour in horizontal space and time, a solution to the system
of equations above equals:

Φ =
ag

ω

cosh k(h+ z)

cosh kh
ei(ωt−kx), (A.5)

in which ω and k are related by the dispersion relation:

ω2 = kg tanh kh. (A.6)

Eq. A.5 is the propagating wave mode solution to the system of equations in A.1
and A.4. Other solution modes, however, also satisfy the system. If k = −iki is
substituted in A.5 and A.6, then the following is obtained:

Φ =
ag

ω

cos ki(h+ z)

cos kih
ei(ωt)e−kix, (A.7)

and:

ω2 = −kig tan kih. (A.8)
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128 Appendix A Potential theory for waves

This is the solution for evanescent wave modes and the dispersion relation that goes
with these modes.

During our work with the absorbing boundary condition, it was found that there is
another type of solution that satisfies the system of equations:

Φ =
ag

α

cos ki(h+ z)

cos kih
eαte−kix, (A.9)

with the dispersion relation:

α2 = kig tan kih. (A.10)

These are modes that, depending on the sign of α, either grow or fade away. We
have called them ’spurious’ modes and it is imperative for stability that in numerical
simulations the sign of α is always negative.



Appendix B

Reflection coefficient

Consider the Sommerfeld equation applied to a potential function Φj :

(
∂

∂t
+ c

∂

∂n

)

Φj = 0 for j = 1, 2, · · · , N. (B.1)

In (B.1), c is a tuning parameter and j is an index to identify propagating waves
modes with different frequenties ωj . The boundary condition has been formulated in
normal direction to the boundary.

The Sommerfeld equation is an absorbing boundary condition for waves. In this
section, we will derive the reflection coefficient for different types of wave modes. The
following two wave modes can be identified:

• propagating wave modes

• evanescent wave modes.

Propagating wave modes

Suppose that at frequency ωj , we can identify one outgoing and one incoming wave
component. Then, potential function Φj is equal to:

Φj = Φout
j +Φin

j for j = 1, 2, · · · , N, (B.2)

where Φout
j = Aout

j exp i(ωjt− kjn) and Φin
j = Ain

j exp i(ωjt+ kjn). Aout
j and Ain

j

are the amplitudes of the respective wave modes.

Outgoing wave modes leave the domain over the boundary in the direction of n.
The incoming wave mode is triggered by the outgoing wave mode when boundary
condition (B.1) is not perfectly tuned to wave mode j. This is what we call reflection.
The reflection coefficient is found from the quotient of incoming and outgoing wave
mode amplitude.
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To obtain the reflection coefficient, the following derivatives are required:

∂Φj

∂t
= iωjΦj

∂Φout
j

∂x
= −ikjΦout

j

∂Φin
j

∂x
= ikjΦ

in
j

(B.3)

Substitution of (B.3) into Eq. (B.1) and evaluation of the obtained expression at x = 0
yields:

(ckj − ωj)A
out − (ckj + ωj)A

in = 0 for j = 1, 2, · · · , N. (B.4)

Then, the reflection coefficient is found to be:

R =
Ain

Aout
=
c− ωj/kj
c+ ωj/kj

for j = 1, 2, · · · , N, (B.5)

in which ωj/kj can be recognized as the expression for the exact phase velocity of
a wave mode with frequency ωj and wave number kj . The value for the reflection
coefficient for propagating wave modes is always between 0 and 1.

Evanescent wave modes

For evanescent wave modes, the same superposition of outgoing and incoming wave
mode as for propagating modes is substituted in boundary condition (B.1), which,
after manupulation, leads to a reflection coefficient for these modes. Evanescent modes
are of the form:

Φout
j = Aout

j exp (iωjt− kjn)

Φin
j = Ain

j exp (iωjt+ kjn) .
(B.6)

The difference between evanescent modes and propagating modes is the behaviour
in n-direction. Evanescent modes decrease exponentially in space, whereas propating
modes show oscillatory behaviour.

In the boundary condition, the following derivatives need to be evaluated:

∂Φj

∂t
= iωjΦj

∂Φout
j

∂x
= −kjΦout

j

∂Φin
j

∂x
= kjΦ

in
j

(B.7)
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Here, the main difference with the propagating modes is that the space derivatives
yield ±kjΦj instead of ±ikjΦj . By substituting (B.7) into Eq. (B.1), the following
reflection coefficient is obtained:

R =
c− iωj/kj
c+ iωj/kj

for j = 1, 2, · · · , N. (B.8)

In relation (B.8), a complex vector divided by its complex conjugate is recognized.
The length of the resulting vector is always equal to 1, which can easily be seen
by converting (B.8) to polar coordinates: r exp−iϕ/r exp iϕ = exp−2iϕ with ϕ the
phase change given by tan−1 ωj/kjc. This means that evanescent wave modes always
have a reflection coefficient of 1.





Dankwoord

Het is klaar. Iedereen die wel eens een onderzoekje heeft gedaan, weet echter dat
klaar vooral betekent dat iemand vindt dat het nu wel genoeg is zo. Dat is meestal
niet de onderzoeker.

Voor de inhoud van mijn proefschrift ben ik veel dank verschuldigd aan Mart Bors-
boom van Deltares. Halverwege mijn tijd als AIO ben ik om inhoudelijke redenen
van aanpak veranderd. De aanpak uit mijn eerste twee jaar staat in twee papers,
maar daar heb ik in dit proefschrift niet veel tijd en tekst aan besteed. Zonder Mart
zou mijn proefschift daarom leeg zijn; en nagenoeg alles dat er nu in staat heb ik van
hem geleerd, al zal hij geen enkele verantwoordelijkheid willen nemen voor de manier
waarop ik het heb opgeschreven. Ik vond en vind het leuk om met Mart aan onder-
zoek te werken, maar ik heb het ook leuk gevonden met hem mijn nieuwe schoenen
te verpesten in de kniediepe sneeuw op de heuvels rond Oslo en om met hem naar
concerten in de Boerderij te gaan van bands die voor het laatst populair waren in een
tijd dat de modernste tablet niet de iPad, maar de kleitablet was.

Naast Mart is ook Arthur Veldman van de Rijksuniversiteit Groningen voor mij on-
misbaar geweest. Hij is wat mij betreft de platoonse idee van de hoogleraar, in al zijn
aspecten, behalve benaderbaarheid en punctualiteit. Hij is namelijk ook nog eens een
zeer warme persoon en hij is altijd op tijd. Als je AIO bent bij Arthur, krijg je het
idee dat je deel uitmaakt van een familie. En het moet er als een familie uit hebben
gezien als we voor het project weer eens op reis gingen: Arthur in looppas voorop,
omdat hij altijd bang is ergens te laat te komen, en zijn gevolg erachteraan.

Aan René Huijsmans van de TU Delft ben ik, naast mijn dank, ook mijn excuses
verschuldigd. Hij heeft de ondankbare taak gehad mij te motiveren tot het afronden
van mijn proefschrift in een tijd dat ik me veel te druk maakte over mijn werk bij
Deltares en over de situatie thuis. Nu het bijna zover is, en mijn verdediging eraan zit
te komen, ontstaat bij mij de gedachte dat het toch wel fijn is om zaken af te ronden.
René is mede verantwoordelijk voor die gedachte.

Ik wil ook graag Jo Pinkster bedanken, van de TU Delft destijds, maar inmiddels van
het florerende bedrijf Pinkster Marine Hydrodynamics, dat hij het na mijn afstuderen
met mij aangedurfd heeft als AIO in het ComFLOW-2-project. Ik vind het jammer
dat hij mijn tijd als AIO niet uit heeft kunnen zitten, maar ik begrijp heel goed dat
nieuwe uitdagingen als ondernemer niet te lijden moeten hebben van de rompslomp
uit het (recente) verleden.
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Ik heb niet veel werkgevers versleten, in ieder geval voor zover het geschoold werk
aangaat, maar ik heb in beide gevallen veel geluk gehad. Ik heb met veel plezier bij
de sleeptank van Maritieme Techniek gewerkt. Toen ik net bij Deltares begon, miste
ik de koffie om tien uur ’s ochtends en om drie uur ’s middags vreselijk. Niet vanwege
de koffie, want die is bij de TU ook niet te drinken, maar omdat het zo’n prettig
platform is voor intercollegiaal overleg. Dank aan Roel, Rina, Hans, Frits, Arthur,
Michiel, Lex, Peter Poot, Piet, Alex, Jan en Peter Naaijen voor de koffie. Dank ook
aan Guido met wie ik een paar goede avonden in de kroeg heb doorgebracht, al kan
ik ze me niet herinneren. En dank aan Pepijn en Evert-Jan, mijn paranimf, met wie
ik als vrienden omging.

In Groningen kwam ik altijd met veel plezier bij Rik op bezoek. Ik heb me erg aan
Rik kunnen optrekken, omdat hij altijd wel alles op tijd af had. Rik talmt niet, maar
raast gewoon door. Succes met je nieuwe baan. Met Roel, mijn ‘broer’ in Groningen,
vind ik het nog steeds erg gezellig. Het is altijd fijn als er na drieëneenhalf uur
treinen een kop koffie voor je klaarstaat. Jammer alleen dat je gezwicht bent en we
ons tegenwoordig met automatenkoffie moeten behelpen.

Bij Deltares heb ik het gevoel op mijn plaats te zijn, niet het minst vanwege mijn
collega’s. Twee mensen wil ik graag expliciet noemen. Ik dank Martijn de Jong,
omdat hij niet meteen op dag één naar huis is gevlogen toen hij in de gaten kreeg
met wie hij drie weken in Zuid-Korea door moest brengen. Ik kijk nog steeds graag
naar de foto’s van dat avontuur, alle 4000 natuurlijk, niet de samenvatting van slechts
1000 stuks. Daarnaast wil ik Marcel van Gent danken, omdat hij als afdelingshoofd
vierkant achter de mensen in zijn groep staat, ook als dat minder vanzelfsprekend is.

Ook onze bovenburen, Marc en Daniëlle, hebben bijgedragen aan dit proefschrift. In
mijn eindsprint van jongstleden augustus, die uiteindelijk toch weer een marathon is
geworden, hebben zij tijdens de vakantie hun eetkamertafel aan mij ter beschikking
gesteld, zodat ik ook overdag aan mijn proefschrift kon werken zonder dat Ben met
zijn versie van het verhaal het toetsenbord beroerde. Dank, en we zullen jullie missen
als buren.

Mijn dank gaat uit naar mijn clubgenoten, omdat ze me alweer bijna 15 jaar, plus of
min een paar maanden – ik geloof toch min een paar maanden – in hun midden dulden.
Hard werken is alleen leuk als je af en toe kunt ontspannen; gedurende het weekend of
tijdens een weekje bijna-Lapland, of jaarlijks op een vierkante, stalen schuit die zelfs
met een kernreactor aan boord de vijf knoop nog niet zal halen. Ik wil Jan-Willem in
het bijzonder nog even noemen, omdat hij zich voorafgaand aan een skivakantie door
mijn proefschrift heeft weten te worstelen en daarna nog steeds zin had om op reis te
gaan. Dank daarvoor.

Aan mijn tijd bij filosofie heb ik leuke vrienden overgehouden. Ik ben erg gesteld
op de traditie van candlelight suppers met Liesbeth, Jeffrey en Freya, ook al zal het
vanwege alle recente gezinsuitbreiding waarschijnlijk steeds vaker een lunch worden
zoals de laatste keer. Met Jeffrey, mijn paranimf, heb ik ook menig avond in de kroeg
doorgebracht. Nu ik voor een tweede keer in dit dankwoord moet zeggen dat niet alle
avonden mij meer even helder voor de geest staan, realiseer ik me dat hier wel eens
sprake van een probleem zou kunnen zijn. Wij moeten nodig weer eens naar de kroeg

134



om dat te vergeten.

Dit is de plek om mijn zusje te zeggen dat we weliswaar tegenpolen zijn, maar dat je
me daardoor niet minder dierbaar bent. Ik vind het fijn om te zien dat je het nu zo
goed voor elkaar hebt. Ik wil ook graag mijn ouders bedanken, omdat jullie mij altijd
mijn gang hebben laten gaan en zelf mijn weg hebben laten kiezen. Ook heb ik op
deze manier de gelegenheid stil te staan bij de keren dat jullie voor mij klaarstonden
als ik me weer eens in de nesten had gewerkt. Dank. Ik hoop niet dat het ooit nodig
is, maar ik zal er zijn als jullie een beroep op mij moeten doen.

Lieve Ben, klein begonnen en nu ben je alweer zo’n grote vent. Je had je eigen tempo,
maar de laatste tijd kan ik je nauwelijks bijhouden. Je maakt het me makkelijk een
trotse papa te zijn. Lieve Bernadette, ik mopper weleens dat je me van mijn werk
houdt, maar je bent de fijnste afleiding die ik me kan wensen. Er is nogal wat gebeurd
sinds ik je ken en we hebben ons niet uit het veld laten slaan. Dat geeft vertrouwen
voor de toekomst die we binnenkort met ons vieren tegemoet gaan. Alles met jou
lijkt zo vanzelfsprekend en dat is nu juist zo bijzonder. Dank dat je me zo achter de
broek hebt gezeten de laatste maanden; zonder jou was het niet gelukt.
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