Connective opportunities of reinforced glass segments

Design and validation of an edge-integrated connection for beam segments

Student: Bram Teeuwen
Number: 1362062
Date: 03-07-2015
Location: CiTG room G

First mentor: Dr. ir. Fred Veer
Second mentor: Prof. ir. Rob Nijsse
Third mentor: Dr.-Ing. Tillmann Klein
External examiner: Ir. Steven Steenbruggen
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer of compressive and shear force
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Content

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer of compressive and shear force
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Structural glass:

Using glass as a structural material, for beams, columns and shear walls for example.

- Why would you use glass?
- What about safety?
Why would you use glass?

Apple cube 1, 2006

Apple cube 2, 2011
Introduction

- Structural glass
- Research focus

Design

- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation

- Prototypes
- Performance

Conclusion

Apple cube 1, 2006
Apple cube 2, 2011
Overview

Introduction

- Structural glass
- Research focus

Design

- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation

- Prototypes
- Performance

Conclusion

What about safety?

Risk = Chance \times Consequences

Glass is brittle, so the consequences of failure are large.

To compensate, the chance has to be very small.

It would be better to focus on decreasing the consequences.
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

By bonding a steel section in the edge of the beam, safe failure behavior can be achieved.
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

3 options for 6+ meter beams:

- Segmented beam

- Splice laminated beam

- Continuous beam
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Segmented beams have many advantages

- Easy to produce
 - Standard size glass panes
 - Standard size equipment
 - Standard size autoclave

- Easy to transport
 - Standard size truck

- Not bound to linear geometries
Despite these advantages, architects avoid the use of segments.

The key reason to use glass beams is transparency, but the connection between beam segments reduces the transparency.
Opportunity

Reinforcement seems to offer the opportunity for a highly transparent, edge-integrated, connection for beam segments.
A metal section is not transparent, but by integrating it in the opaque looking edge, it hardly reduces the transparency.

<table>
<thead>
<tr>
<th>Angle</th>
<th>0°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
<td>36%</td>
<td>18%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Research question:
• How to connect reinforced glass beam segments, in an edge-integrated way, in order to obtain a highly transparent connection?

Sub questions:
• What kind of glass beam segments need to be connected?
• How are glass beam segments currently connected?
• How to transfer compressive, tensile and shear force, between the edges of the segments?
• How does the designed connection performs?
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer of compressive and shear force
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Design

• Segmented reinforced beam

• Transfer of compressive and shear force

• Transfer of tensile force

• Performance
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Research on reinforced glass beams

Result: Beam of 18 meters, consisting of 3 segments of 6 meters
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Transfer of compressive and shear force
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Design

To transfer the compressive and shear force, there is chosen for an edge integrated profile.

Frontview

Topview

Section A A’
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

How to deal with large dimensional tolerances of glass?

Ideal connection

Result of tolerances
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Design

- Splitting the profile

Validation

- Prototypes
- Performance

Conclusion

Compressive & shear

- Leveling after lamination
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Design

Material for profile

- Aluminum & polycarbonate
- Young’s modulus of glass is 70 GPa

Aluminum $E = 70$ GPa

Polycarbonate $E = 2.5$ GPa
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Design

Autoclave lamination

- Cooling down from 130 °C to about 20 °C
- Thermal expansion of glass is 9 μstrain/°C

Compressive & shear

Aluminum CTE = 23 μstrain/°C

Polycarbonate CTE = 65 μstrain/°C
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Transfer of tensile force
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Concept

Internal pin, bolted to the bottom of the square hollow section
The tensile force has to be transferred over a large length and by many bolts, to transfer it very gradually.

But, due to the effect of unequal strain, the first bolts will transfer most of the force.

To equally divide the force over the bolts, the bolts are loaded at their yield strength. It limits the amount of force they transfer.
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
 - Transfer compressive/shear
 - Transfer of tensile force
 - Performance

Validation
- Prototypes
 - Performance

Conclusion

Design

Tensile force

- 50 x stainless steel M6 bolts

Coupling pin, made of tungsten heavy alloy
Performance of the total connection

The performance is based on three criteria:

- Transparency
- Strength
- Stiffness
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Overview

Design

Performance

Strength

Continuous beam

Segmented beam

Strength

![Graph showing stress in glass](image)

Legend:
- Segmented
- Continuous

Strength

Continuous beam

Segmented beam
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Design Performance

Stiffness

Continuous beam

Segmented beam
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Validation Prototypes

<table>
<thead>
<tr>
<th>Original</th>
<th>Prototype 1</th>
<th>Prototype 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 - 10 - 5 mm glass</td>
<td>10 - 10 mm glass</td>
<td>8 - 8 mm glass</td>
</tr>
<tr>
<td>10x10x1.0 mm steel</td>
<td>15x15x1.5 mm steel</td>
<td>20x20x2.0 mm steel</td>
</tr>
</tbody>
</table>
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Performance

Unfortunately, safe failure behavior was not achieved.

Partly because the glass did not fail at the expected load, probably due to the small scale and the reproduction.

Partly because the strength of the connection is limited by the used approach of loading the bolts at their yield strength.

To reach safe failure behavior with the used approach, the difference between the design and actual strength should be as low as possible. The difference between the yield and ultimate shear strength should be as high as possible.
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Research question:
• How to connect reinforced glass beam segments, in an edge-integrated way, in order to obtain a highly transparent connection?

Compressive & shear force

Aluminum strips

Tensile force

Internal pin, bolted to the bottom of the hollow section
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Based on the results, the connection performs quite well, and further improvement seems to be possible.

More research and testing is necessary, but for now the concept of an edge integrated connection seems to be feasible.

Transparency is quite a subjective criteria, but it is likely this connection is more transparent than the existing connections.

It is expected a connection like this makes the use of segmented beams more attractive for architects.
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion
Overview

Introduction
- Structural glass
- Research focus

Design
- Segmented reinforced beam
- Transfer compressive/shear
- Transfer of tensile force
- Performance

Validation
- Prototypes
- Performance

Conclusion

Connective opportunities of reinforced glass segments

Design and validation of an edge-integrated connection for beam segments

Student: Bram Teeuwen
Number: 1362062
Date: 03-07-2015
Location: CiTG room G

First mentor: Dr. ir. Fred Veer
Second mentor: Prof. ir. Rob Nijsse
Third mentor: Dr.-Ing. Tillmann Klein
External examiner: Ir. Steven Steenbruggen