
Delft University of Technology

Bachelor Thesis

TU Delft, BSc Applied Physics and BSc Applied
Mathematics

Modelling Polyelectrolyte
Multilayer Growth

Author:
Dennis Bouwman

Supervisors:
Dr. Ir. D. den Ouden

Dr. Ir. N.A.M. Besseling

September 29, 2016





Contents

1 Introduction 1

2 A Model for Polyelectrolyte Multilayers 3
2.1 Layer-by-Layer Assembly . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Diffusion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Equilibrium Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Phase Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Equilibrium Conditions on the Interface . . . . . . . . . . . . 9

2.5 Analytical Reduction of the Model . . . . . . . . . . . . . . . . . . . 9

3 Numerical Approach 11
3.1 Weak Formulation and Galerkin’s Method . . . . . . . . . . . . . . . 11
3.2 The Finite Element Method in R . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Assembly of the large matrix and vector . . . . . . . . . . . . 14
3.3 Moving Mesh Method . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Galerkin Equations of the Moving-Mesh Diffusion Equation . . . . . . 17

3.4.1 Galerkin Equations in Matrix Form . . . . . . . . . . . . . . . 18
3.4.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Time Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Fixed Point Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Broyden Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7.1 Newton’s Method and modifications . . . . . . . . . . . . . . . 22
3.7.2 Implementation of Broyden’s Method . . . . . . . . . . . . . . 23
3.7.3 Assuring Convergence of Broydens Method . . . . . . . . . . . 23

4 Implementation 25
4.1 Initial Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



iv Chapter 0: CONTENTS

4.2 Overview of the script . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Difficulties & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 α-Safety-Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Non-convergence . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Instant Equilibrium Assumption for Small-Ions . . . . . . . . 28

5 Results 29
5.1 Inconsistency in the Tie Lines . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Profiles near the Substrate . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Non-Responsive Interface . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusions and Discussion 34

A Derivation of the Stefan Condition 36

B Assembly of the Large Discretisation Matrix 39

C Derivation of the Mesh-Velocity Constraint 41

D Example of Inconsistent Tie-Line Model 43



Chapter 1

Introduction

In many fields of engineering we can find examples of different uses of thin films.
One of these is the organic thin film: polyelectrolyte multilayer (PEM). PEMs can
be fabricated with a processes called the Layer by Layer (LbL) assembly. This
method was invented by [G. Decher and Schmitt 1992] and proved to be a versatile
way of constructing thin layers of polyelectrolytes. Since this publication the LbL
assembly method has been a popular field of study. Recently [Tang and Besseling
2015] presented a model in which the formation of PEMs is treated as a phase
separation of the polyelectrolytes into a concentrated phase (i.e. thin film) and a
dilute phase (i.e. solution). In this study we build on this interpretation, treating
the PEM as a concentrated domain with in-state diffusion and a moving interface on
which we will apply a model of phase separation to specify boundary conditions. We
will restrict our study to a one-dimensional convection-free approach. This model
is formally known as a Stefan Problem. Furthermore, we will present a numerical
approach to find an approximate solution to the set of partial differential equations
describing the formation of PEMs.

In the present paper we will model the PEM formation and discuss a phase separation
model for finding boundary conditions on the interface. Moreover we will discuss the
constraints on the phase separation that were found after scrutinous analysis. Also
we will develop the numerical approach to solve the set of non-linear coupled partial
differential equations, based upon the Finite-Element Method. Furthermore we will
discuss some computational difficulties of this problem and we will present several
recommendations for future studies based on the numerical analysis.

During the simulations we concluded that our current model for is not able to ac-
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curately describe the behaviour of polyelectrolytes during the formation of PEMs.
The main difficulty took place at the interface, which led us to believe that a more
in-depth study is needed to find a suitable model for phase separation. However
we believe that the numerical approach and the physical interpretation of coexisting
phases are promising developments and that future research may lead to accurate
simulations for the evolution of PEMs.

This research is performed as a part of the course Bachelorproject TWN, to obtain
the degrees of Bachelor of Applied Physics and Bachelor of Applied Mathematics at
the Delft University of Technology.



Chapter 2

A Model for Polyelectrolyte
Multilayers

2.1 Layer-by-Layer Assembly

The Layer by Layer (LbL) assembly is a way to fabricate polyelectrolyte multilayers
(PEM) by dipping a substrate alternatively in solutions of poly-cations and poly-
anions. These polyelectrolytes form a layer on the substrate. The formation of
this layer is influenced by electrostatic interactions between chemical components.
These electrostatic interactions can be influenced by adding a simple salt, e.g. NaCl,
to the solution. Once in solution, the salt will dissolve into Na+ and Cl−, which
will be named small ions hereafter. We introduce the following notation: [+] =
ZP+cP+ and [−] = ZP−cP−. These are the concentrations of poly-cations and poly-
anions respectively, expressed in terms of equivalent charge, where Zi is the number
of elementary charges per molecule. cP+ and cP− are the concentration of poly-
cations and poly-anions respectively. Typical magnitudes for ZP+ and ZP− for poly-
electrolytes are between 100 and 100.000. Note that these values of Z are much
higher for poly-electrolytes than for small ions, as ZNa+ = −ZCl− = 1.

During fabrication of a PEM, we can make a distinction between two separate phases.
The concentrated phase ΩC(t) and the dilute phase ΩD(t). In the concentrated phase,
the poly-electrolytes are entangled with one another and make up the film on the
substrate. In the dilute phase, a poly-electrolyte is not entangled and is consid-
ered to be dissolved. In both phases concentrations of small ions are present. The
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position of the interface between the two is defined as Γ(t). The distribution of chem-
ical components can be described with the diffusion equation for charged chemical
components.

2.2 Diffusion Equations

The diffusion of charged chemical components can be described with a Poisson-
Nernst-Planck system of equations. The Nernst-Planck equation is an extension of
Fick’s Diffusion Law including the influence of an electric field. We can write such a
transport equation for each component i:

∂ci(z, t)

∂t
= −∂Ji(z, t)

∂z
, (2.1)

where the flux Ji(z, t), assuming that convection is negligible, is given by:

Ji(z, t) = −Di

(∂ci(z, t)
∂z

+
ZiFci(z, t)

RT

∂ψ(z, t)

∂z

)
. (2.2)

In these equations F is Faraday’s constant, with its physical meaning of the charge
of one mole of elementary charges. ψ(z) is the mean electric potential and Di is the
diffusion coefficient. Note that the flux in Equation (2.2) consists of two distinct
terms. The first term accounts for standard diffusion. The second term accounts for
drift due to an electric field. If this potential is constant then Equation (2.1) reduces
to Fick’s Law for diffusion.

In our case the electric potential is the result of the charge distribution of all the
chemical components. The relation between the electric potential and the charge
distribution is given by the Poisson equation:

∂2ψ(z, t)

∂z2
= − F

ε0εr

∑
i

Zici(z, t), (2.3)

where ε0 and εr are the vacuüm- and relative permittivity respectively.

Finally we shall introduce some reasonable simplifications on the model. First, we
assume that the diffusion coefficients are constant, but different, in each phase. So,
Di = DC

i in the concentrated phase and Di = DD
i in the dilute phase. It is important

to note that in general DC
i � DD

i , this is due to the structure of the concentrated
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phase. As discussed, the polyelectrolytes are entangeled and this greatly constraints
the movement of polyelectrolytes. This effect also applies to small ions to some ex-
tend. The concentration profiles do not have to be be continuous across the interface.
This also means that the electric potential does not have to be continuous across the
interface. This poses some difficulty for finding boundary conditions on the interface.

2.3 Boundary Conditions

Thus far we have developed a model with two distinct domains: ΩC(t) and ΩD(t). In
each of which 4 chemical components are dissolved: [+], [−], [Na+] and [Cl−]. Each
of these components is subjected to a diffusion equation in each domain: Equation
(2.1). Also, we have to find an electric potential across the domains which should
satisfy Equation (2.3) in each domain. In the present approach Equation (2.3) is not
applied to the phase boundary.

If we want to gain insight in how the interface Γ(t) evolves in time, then we need
to determine the movement of the interface in the normal direction, vn. Also, we
need to know about the equilibrium of coexisting phases, but this subject will be
discussed later. If we want to solve this system of equations, then we have to find a
sufficient number of boundary and interface conditions.

Lets start with some simple boundary conditions, at z = 0 there exist a no-flux
boundary condition for the components. This means that the substrate is impene-
trable. This gives:

Ji(z, t)
∣∣
z=0

= 0. (2.4)

On the other side, at z = zmax the concentrations of the components are held con-
stant, the value of this constant depends on the experimental setup. This boundary
condition simulates the inflow of chemical components. This gives:

ci(z, t)
∣∣
z=zmax

= constant. (2.5)

Now we shall concern us with the boundary conditions on the interface. These con-
ditions impose an extra difficulty because the phase interface in general has no fixed
position, whereas the conditions on z = 0 and z = zmax are fixed. Therefore we make
the following assumption: the transfer of poly-ions between the two phases is not
restricted by a reaction constant. In other words, a poly-electrolyte at the interface
that wants to enter the other phase can do so instantaneously, this is opposed to
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an interface were absorption is dominated by a reaction process. Therefore the con-
centrations assume equilibrium values on either side of the interface instantaneously.
We define z = zIC as the concentrated side of the interface and z = zID as the dilute
side. Then we have the boundary conditions:

ci(z, t)
∣∣∣
z=zIC

= cICi,eq(t), (2.6)

and
ci(z, t)

∣∣∣
z=zID

= cIDi,eq(t). (2.7)

Where cICi,eq(t) and cIDi,eq(t) are the respective equilibrium concentrations at the inter-
face.

Now we will take a look at the velocity of the interface. If an interface is moving then
it is subject to the Stefan boundary condition. This boundary condition originates
from conservation of mass and therefore has to hold for each chemical component.

cICi,eq(t)vn(t)− J ICi (t) = cIDi,eq(t)vn(t)− J IDi (t). (2.8)

The flux does not have to be be continuous across the interface and therefore the
subscripts ‘IC’ and ‘ID’ are necessary to indicate the concentrated side or the dilute
side of the interface. Note that the normal velocity of the interface vn is defined to be
directed outward of ΩC(t) and inward of ΩD(t). The derivation and interpretation
of Equation (2.8) can be found in Appendix A.

We conclude this section with the boundary conditions on the electric potential.
It should come as no surprise that we have two Dirichlet conditions at z = 0 and
z = zmax:

ψ(0, t) = ψ0, (2.9)

where ψ0 is due to some characteristic charge of the substrate and

ψ(zmax, t) = 0. (2.10)

Furthermore we define two more Dirichlet boundary conditions to account for the
potential step accros the interface:

ψ(z, t)
∣∣∣
z=zIC

= ψIC(t), (2.11)

and
ψ(z, t)

∣∣∣
z=zID

= ψID(t). (2.12)
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2.4 Equilibrium Conditions

2.4.1 Phase Equilibrium

In this section we will look at the equilibrium conditions of phases. We will regard
the combination of the two phases as an unstable mixture. With an unstable mixture
we mean a mixture that tends to separate into distinct phases. In our model, the
solution of poly-electrolytes and small ions is obviously not stable. We rather say, the
solution is in the phase-coexistence of ΩC(t) with ΩD(t). To describe the proportions
of these phases in equilibrium we make use of a phase diagram. In a phase diagram
we set the poly-cation charge concentration on the vertical axis and the poly-anion
charge concentration on the horizontal axis. Every point in this diagram corresponds
to some initial mixture of respective concentrations. In this diagram we draw two
important types of curves. First is the binodal curve: this curve, graphed as an
ellipse in the phase diagram, determines the unstable (inside of the ellipse) and
stable (outside of the ellipse) regions in the phase diagram. If some initial mixture
is in the unstable region of the binodal curve then it is considered unstable and
will tend to separate into two distinct stable coexisting phases. The second type of
curves are the tie lines. A tie line connects two points on the binodal that represent
coexisting phases. In other words, the compositions of the stable coexisting phases
in which an initial mixture will separate can be found by looking at the intersections
of the binodal curve and the tie lines. An example of such a phase diagram can be
found in [Tang and Besseling 2015]. With this important property in mind we will
take a closer look at the binodal curve and tie lines.

We simplify our model with very simple binodal curves and tie lines. Our binodal
curves are given by:

[−]D = CD + [+]D for the dilute phase and (2.13)

[−]C = CC + [+]C for the concentrated phase. (2.14)

The parameters CC , CD < 0 are considered to be known. For physical reasons it
must hold that CC < CD. It can easily be verified by noting that CC = CD implies
that there is no phase separation and CC > CD implies that the coexisting dilute
phase is more concentrated then the concentrated phase, which would be infeasible.
For the tie lines we use the equation:

[−] = κ[+], (2.15)
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with −∞ ≤ κ < 0.
Note that there must be a tie line for every unstable mixture. Therefore the param-
eter κ specifies a particular tie line but also it gives information about the coexisting
phases in equilibrium. To make this point more clear, we rewrite equations (2.13)
through (2.15) into: 

[−]D = κ
κ−1

CD

[+]D = 1
κ−1

CD

[−]C = κ
κ−1

CC

[+]C = 1
κ−1

CC

(2.16)

It can be seen that, for given CC and CD, the unknown parameter κ completely
determines the coexisting phases. The phase diagram can be seen in Figure 2.1. One
can observe that for κ close to −1, this is a very reasonable assumption.

Figure 2.1: The phase diagram with simplified binodal curves and tie lines. For
example κ = −1 is drawn.

Furthermore, the phases should be neutral with respect to charges. It would be the
same to state that:

[+]C + [Na+]C = −
(
[−]C + [Cl−]C

)
, (2.17)

[+]D + [Na+]D = −
(
[−]D + [Cl−]D

)
. (2.18)
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2.4.2 Equilibrium Conditions on the Interface

In our model, the small ions and the electric potential will behave according to a
Donnan-type equilibrium. A Donnan-type equilibrium is a situation where a semi-
permeable membrane obstructs large molecules (the poly-electrolytes in our case) to
diffuse in a coexisting phase setup. However, small ions can penetrate this membrane
and therefore there will not be an ‘ordinary’ equilibrium. In a two-phase model, it
is known that the phases are in equilibrium if there respective chemical potentials µ
are equal:

µC = µD, where µi = µ∗ +RT log

(
[Na+]i[Cl−]i γNaCl,i

(c∗i )
2

)
, (2.19)

in this equation there are a few aspects that deserve some attention. µ∗ is a material
property, and thus the same for both phases. (c∗i )

2 is a constant to make the argument
of the logarithm dimensionless and is also the same for both phases. The activity
coefficient γNaCl,i = 1, that is to say that we consider the simple salt solution as
ideal-dilute. If we consider these aspects, then at equilibrium it must hold that:

[Na+]C [Cl−]C = [Na+]D[Cl−]D. (2.20)

Because we assumed in Equations (2.6) and (2.7) that on the interface the concentra-
tions are at equilibrium therefore Equation (2.20) must hold on Γ(t). There are also
some difficulties with the calculation of the potential across the interface. Because
the concentration profiles are not continuous we cannot, in general, find the electric
potential step on the interface with the Poisson equation, Equation (2.3). However,
we can find this step with the Nernst Equation, which relates it to the equilibrium
concentrations of the simple salt on either sides:

ψIC − ψID = −kBT
q

log

(
[Na+]IC

[Na+]ID

)
= +

kBT

q
log

(
[Cl−]ID

[Cl−]IC

)
. (2.21)

These conditions are sufficient to solve the problems with the electric potential which
arise if the interface is considered as a discontinuity.

2.5 Analytical Reduction of the Model

The model presented in the previous sections allows for some analytical simplifica-
tion. By combining equations, in a similar fashion as performed to obtain Equation
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(2.16), we shall perform a reduction of the model. We start with the equations for
electric neutrality and their effect on the phase equilibrium conditions. Specifically
the substitution of Equation (2.16) and Equations (2.17) and (2.18). From this we
find:

[Na+]IC = −[Cl−]IC − CC

(
κ+ 1

κ− 1

)
, (2.22)

[Na+]ID = −[Cl−]ID − CD

(
κ+ 1

κ− 1

)
. (2.23)

Now we take a closer look at the interface conditions at equillibrium. We will sub-
stitute the expressions we found from the previous result into Equation (2.20). We
shall then derive an expression for κ:

[Na+]C [Cl−]C = [Na+]D[Cl−]D,(
−[Cl−]C − CC

(
k + 1

k − 1

))
[Cl−]C = (−[Cl−]D − CD

(
k + 1

k − 1

)
)[Cl−]D,(

k + 1

k − 1

)
=

([Cl−]C)2 − ([Cl−]D)2

CD[Cl−]D − CC [Cl−]C

(
= τ
)
,

k =
τ + 1

τ − 1
.

Furthermore, given ψID we can find an expression for the potential step Equation
(2.21):

ψIC = ψID − kBT

q
log

(
[Cl−]IC

[Cl−]ID

)
(2.24)

To conclude: if the parameters [Cl−]IC , [Cl−]ID, ψID, vn are known then we can cal-
culate the remaining parameters: κ, [+]IC , [−]IC , [+]ID, [−]ID, [Na+]ID, [Na+]IC , ψIC

with the above defined equations. However, these 4 parameters are not known. In
Section 3.7 we will discuss how we can find an approximation of these parameters.
This will finish the physical side of the model. If all the parameters are known
then we have properly defined all the boundary conditions. After this the mathe-
matics shall provide us with an approximation for the concentration profiles after a
small time step and we can start the whole process of finding the proper boundary
conditions again.
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Numerical Approach

This chapter contains all the necessary mathematics that was used during the project.
We start with some general theory about the weak formulation of a partial differen-
tial equation. Secondly, we present a one dimensional Finite Element Method. We
continue by discussing how to track the interface with a moving mesh. Then we
combine all the theory to define the Galerkin Equations in matrix form of this prob-
lem, also we will show how to apply boundary conditions. Furthermore we explain
how we found the solution of the Galerkin Equations, which are defined implicitly.
We end this chapter with a section on Broyden Iterations, this numerical method is
necessary to approximate the interface conditions.

3.1 Weak Formulation and Galerkin’s Method

Every PDE can be expressed in an alternative but equivalent form called the weak
formulation. The solution of this weak formulation therefore is equivalent to the
solution of the PDE. Therefore instead of solving our PDE directly, we find our
solution by defining and solving the weak form.

The reason we want to express a PDE in this alternative form is that this weak
form can be solved by the Finite Elements Method (FEM), a powerful numerical
technique which is used extensively in this research. More information about FEM
can be found in the following section. For now, we will concern us with a general
PDE on a domain Ω of the form:

Lu = f, (3.1)
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where u ∈ Σ and Σ = {u : u is smooth}. Further L is the differential operator
defined over a space Ω and f is a function independent of u. Let us subtract f
from the right-hand side, multiply by some arbitrary test function v ∈ Σ0. Where
Σ0 = {v : v is smooth , v = 0 when u = u0}, thus if u has an inhomogeneous
Dirichlet boundary condition, then we choose v to be zero on that boundary. Then
integrate over the domain Ω to obtain:∫

Ω

(vLu− vf) dΩ = 0, for every v. (3.2)

In general L can contain any higher order derivatives. If that is the case, it is
necessary to use Gauss’ Theorem to reduce the higher order derivatives to the lowest
order possible. Equation (3.2) reduced to the lowest possible order of derivatives is
called the weak form of Equation (3.1).

To find the solution of the weak form we shall use Galerkin’s Method. This method is
based on the approximation of the unknown solution u by a finite linear combination
of basis functions:

uk(z̄) =
k∑
q=1

uqφq(z̄), (3.3)

and substitute this in the weak form, Equation (3.2). After substitution we are left
with k unknowns corresponding with the coefficients of the approximation of u. So
for a unique solution we need k equations. These can be obtained by choosing the
arbitrary test function to be one of the basis functions φp. After these substitutions
we are left with k equations with k unknowns:

k∑
q=1

uq

∫
Ω

φpLφqdΩ =

∫
Ω

φpfdΩ, for every p = 1 . . . k. (3.4)

These equations are called the Galerkin Equations and they provide the means to
approximate the solution of the PDE by obtaining the unknown coefficients uq who
together with the chosen basis functions construct uk(z̄), the solution of the weak
form.

3.2 The Finite Element Method in R

The previous section provided us with a set of equations called the Galerkin Equa-
tions which provide the means to approximate the solution of the weak form of a
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PDE and equivalently the solution of the PDE itself. In this approach a set of arbi-
trary basis functions {φq}kq=1 plays an important role. The Finite-Elements Method
is concerned with choosing this set of basis functions. The main idea behind FEM
is to divide the domain Ω into subparts called “elements”. Each basis function then
can be defined on each element separately and we can perform element-wise approx-
imations. Moreover, with this method we can formulate the Galerkin Equations as a
matrix-vector product. This discretisation makes the final calculations fairly simple
and efficient.

First the division of Ω into elements. In R we can view Ω as an interval which can
be divided into subintervals called elements: ek = [zk−1, zk], this means that they
are disjoint almost everywhere. Note that it is not required for the elements to have
the same length, moreover the union of all the elements equals Ω. This is actually
an important property of the elements, this allows us to find the integral over Ω by
evaluating the sum of integrals over each element separately.

Because of this property it would be wise to define the basis functions on each element
separately: ∫

Ω

(φpLφq − φpf) dΩ =
N−1∑
k=1

∫
ek

(φpLφq − φpf) dΩ. (3.5)

Moreover the sum of these integrals will be much easier to evaluate if the basis
functions are zero in all but a few elements. These remarks motivate the following
properties of the basis functions:

(1) : φq is linear in each element,

(2) : φq(xp) = δpq.

These properties uniquely define a set of basis functions. The typical shape of a basis
function is graphically presented in Figure 3.1. We leave it to the reader to confirm
that these basis functions indeed satisfy the constraints imposed by the weak form.

With this choice of basis function we shall evaluate the system of Galerkin Equations.
Because of Equation (3.5) it suffices to evaluate each element ek separately and add
them together afterwards. This motivates matrix and vector notation since we have
an equation for every test function φp and this equation is the sum of integrals
over elements ek. On element [zk−1, zk] the only functions that have a non-zero
contribution are φk−1 and φk. This means that at most 6 of the integrals over an
element differ from zero. We shall store these integrals locally in a matrix called the
element-matrix and a vector called the element-vector. The element-matrix is given
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Figure 3.1: An example of two basisfunctions. This image is copied from [CBC n.d.].

by:

Sek =

[∫
ek

(φk−1Lφk−1) dΩ
∫
ek

(φk−1Lφk) dΩ∫
ek

(φkLφk−1) dΩ
∫
ek

(φkLφk) dΩ

]
. (3.6)

In the same way we can construct the element-vector :

f ek =

[∫
ek
φk−1fdΩ∫

ek
φkfdΩ

]
. (3.7)

These elements are relatively small and it is convenient to evaluate these with simple
well-known numerical rules such as the trapezoid rule. Once all the element-matrices
and element-vectors are computed it is a matter of assembling to obtain the large
matrix S and the large vector F to obtain the Galerkin Equations from Equation
(3.4) as a matrix-vector product:

Sū = F. (3.8)

3.2.1 Assembly of the large matrix and vector

We have seen that all the information for the approximation is stored locally in the
element-matrices and element-vectors. From this local form of information we have



3.3 Moving Mesh Method 15

to construct the large matrix and vector. This construction is called ‘assembly’. The
best way to look at the assembly is with an example, therefore the reader is referred
to Appendix B for a comprehensible example. This should make the following, more
general approach, easier to understand.

If we want to construct a matrix Spq =
[∫

Ω
(φpLφq) dΩ

]
from the element-matrices

then we have to, by Equation (3.5), add the contributions of the element-matrices
in such a way that the topology of the problem is not disturbed. The observation
that basisfunction φp only has a contribution on element ep−1 and ep is an important
factor. Therefore, we only have to add the entry of an element-matrix to the right
entry in the large matrix. In this one dimensional approach: we have to add entry
Seki,j to Sk+(i−1),k+(j−1), perform this for all the entries of every element-matrix and
the assembly of the large matrix is complete. The assembly of the large vector is
done in an analogous way.

3.3 Moving Mesh Method

In this research we use a Moving Mesh Method to track the interface between the
concentrated and dilute phase at z = zΓ. In general the location of the interface is
not situated on a point in the mesh. Even if initially zΓ was located on a mesh point,
then after some arbitrary time the interface will have moved and is not necessarily
located on a mesh point. This inability to track the interface precisely gives rise to
discretisation errors, because numerical values can only be evaluated on mesh points
we have to approximate the location of the interface with the nearest mesh point.
With a moving mesh we would like to minimize this effect.

The Moving Mesh method ensures that the location of the interface is always precisely
on a mesh point. The idea is that we give every point in the mesh a velocity vmesh(z, t)
such that the location of the interface stays on the same mesh point, i.e. zΓ(tn+1) =
zΓ(tn) + vΓ

(
zΓ(tn)

)
∆t. Note the approximation that for small time steps the velocity

of the interface vΓ is constant during the timestep. Moreover, the boundary points
of the mesh must remain constant, i.e. z0(tn+1) = z0(tn) and zmax(tn+1) = zmax(tn).
The choice for vmesh(z) is arbitrary, as long as the topology of mesh points remains
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unaltered. We have used the following linear extension:

vmesh(z, t) =


vΓ

z
zΓ

for z ∈ [0, zΓ]

vΓ

(
1− z−zΓ

zmax−zΓ

)
for z ∈ [zΓ, zmax]

Provided that: −zΓ < vΓ∆t < zmax − zΓ

(3.9)

The above mesh velocity has all the desired properties if it satisfies the condition
described in the above equation. For a thorough analysis on this matter, the reader
is referred to Appendix C.

The Moving Mesh has an important effect on the concentration profiles. Whereas
before the time derivative of the concentration only had a physical meaning, change
due to a flux gradient, now there is also a non-physical contribution, change due to
moving mesh points. This contribution exists because we introduced a time depen-
dency of the grid points. We will have to take this non-physical effect into account
in the diffusion equation and also in our discretisation. Therefore we will look at the
total-time derivative of a concentration profile:

dc(z(t), t)

dt
=
∂c

∂t
+
dz

dt

∂c

∂z
. (3.10)

Using Equation (2.1) and the fact that dz
dt

equals the mesh velocity we can write this
as:

dc(z(t), t)

dt
= −∂J

∂z
+ vmesh (z(t))

∂c

∂z
. (3.11)

Also, in the discrete sense, if vmesh(tn) is known then we can calculate the new mesh:

zm(tn+1) = zm(tn) + vmesh(zm(tn))∆t, for m = 0 . . . N . (3.12)

To conclude: a Moving Mesh that tracks the interface introduces a non-physical effect
on the change of concentration. For this it is necessary that the interface velocity at
each timestep is known so that a proper extension to a mesh velocity can be made.
Further, we took a closer look to the diffusion equation by inspecting the total time
derivative as can be seen in Equation (3.11) which is to be evaluated on the updated
mesh described iteratively by Equation (3.12).
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3.4 Galerkin Equations of the Moving-Mesh Dif-

fusion Equation

In this section we will combine the theory from Galerkin’s Method, FEM and the
Moving Mesh to derive an expression for the concentration profiles after a time step
of ∆t. In order to do that we first consider the Galerkin Equations of our PDE.
For convenience we postulate our diffusion equation again in its full form for each
chemical component i:

dci(z(t), t)

dt
= −∂Ji

∂z
+ vmesh (z(t))

∂ci
∂z
,

= −Di
∂

∂z

(
∂ci(z(t), t)

∂z
+ βici(z(t), t)

∂ψ(z, t)

∂z

)
+ vmesh (z(t))

∂ci
∂z

.

(3.13)

With βi = ZiF
RT

.

From here on we denote ci(z(t), t) = ci and ψ(z, t) = ψ to avoid notational clutter.
Completely analogous to previous sections we start with approximating ci(z(t), t)
with a finite linear combination of basis functions φq, multiply this by some test
function φp and integrate over the domain Ω. For the left-hand side we obtain:

dci
dt

=⇒
k∑
q=1

dci,q
dt

∫
Ω

φpφqdz, (3.14)

For the right hand side we can apply the same calculations, only we do this for
each term separately. But first we note that it is possible to reduce the order of the
derivatives corresponding to the flux by using integration by parts. This gives:

−Di
∂Ji
∂z

=⇒ −
∫

Ω

Diφp
∂Ji
∂z

dz,

= −DiφpJi

∣∣∣
∂Ω

+

∫
Ω

Di
dφp
dz

Jidz.

(3.15)

It should be clear that the values at the boundary ∂Ω vanish due to the boundary
conditions. Now that we have reduced this expression to the lowest possible order
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we rewrite the integral into two distinct terms:∫
Ω

Di
dφp
dz

Jidz =

∫
Ω

Di
dφp
dz

[
∂ci
∂z

+ βici
∂ψ

∂z

]
dz,∫

Ω

Di
dφp
dz

∂ci
∂z
dz +

∫
Ω

Diβici
dφp
dz

∂ψ

∂z
dz.

(3.16)

Now we are ready to use the FEM approximations for the variables ci and ψ in
Equation (3.16): ∫

Ω

Di
dφp
dz

∂ci
∂z
dz = Di

k∑
q=1

ci,q

∫
Ω

dφp
dz

dφq
dz

dz, (3.17)

∫
Ω

Diβici
dφp
dz

∂ψ

dz
dz = Diβi

k∑
q=1

ψq

∫
Ω

ci
dφp
dz

dφq
dz

dz. (3.18)

Note that we did not use the approximation for ci in Equation (3.18). As we shall
see later on, leaving this term explicit with respect to ci will make it much easier to
evaluate the element-matrices.

Finally we consider the discretisation of the mesh velocity term:

vmesh (z(t))
∂c

∂z
=⇒

k∑
q=1

ci,q

∫
Ω

vmesh(z(t))φp
dφq
dz

dz. (3.19)

With all of these results above we can finally write Equation (2.1) as a system of
Galerkin Equations. For every p the Galerkin Equation is given by:

k∑
q=1

dci,q
dt

∫
Ω

φpφqdz =
k∑
q=1

[
Dici,q

∫
Ω

dφp
dz

dφq
dz

dz +Diβiψq

∫
Ω

ci
dφp
dz

dφq
dz

dz + ci,q

∫
Ω

vmeshφp
dφq
dz

dz

]
.

(3.20)

3.4.1 Galerkin Equations in Matrix Form

In the previous sections we found the weak formulation for the diffusion equation
with the moving mesh taken into account, Equation (2.1). The system of Galerkin
Equations is given in Equation (3.20). In this section we will construct the element-
matrices that allow us to write the system of Galerkin Equations as a matrix vector
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product. Before we begin we remind that the basisfunction φp is only nonzero on
elements ep and ep−1. And that we can evaluate the integrals over each element
separately.

We shall write Equation (3.20) as:

M
dc̄i
dt

= Sc̄i +Q(c̄i)ψ̄, (3.21)

where we define c̄i and ψ̄ as the column vectors with the respective coefficients and
the matrices M,S,Q(c̄i) are constructed by there respective element-matrices:

M ek
pq =

∫
ek

φpφqdz, (3.22)

Sekpq = Di

∫
ek

dφp
dz

dφq
dz

dz +

∫
ek

vmeshφp
dφq
dz

dz, (3.23)

Qek
pq(c̄i) = Diβi

∫
ek

ci
dφp
dz

dφq
dz

dz. (3.24)

We will use the Newton-Cotes formula to evaluate these integrals. We then get the
following element-matrices using the construction as was used with FEM:

M ek =
‖ek‖

2

[
1 0
0 1

]
. (3.25)

Sek =
Di

‖ek‖

[
−1 1

1 −1

]
+

1

2

[
−vmesh(zk) vmesh(zk)
−vmesh(zk+1) vmesh(zk+1)

]
. (3.26)

Qek(c̄i) =
Diβi
2‖ek‖

[
−ci(zk)− ci(zk+1) +ci(zk) + ci(zk+1)
+ci(zk) + ci(zk+1) −ci(zk)− ci(zk+1)

]
. (3.27)

So far we have a discretisation of the moving-mesh diffusion equation for each chem-
ical component separately. We shall couple these in one matrix-vector equation.
Furthermore we also add the Poisson Equation (2.3), but before we can do that we
have to write it in the following matrix-vector form:

Rψ̄ =
∑
i

Tic̄i, (3.28)

where we can construct R and Ti in a similar way. This gives:

Rek =
1

‖ek‖

[
−1 1

1 −1

]
, (3.29)

T eki = − ZiF
2ε0εr

[
1 0
0 1

]
. (3.30)
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If we combine all the equations for every chemical component and the Poisson equa-
tion in matrix form then we get the following system of equations:

Mdx̄

dt
= Sx̄, (3.31)

M
M

M
M

∅

 d

dt


c̄1

c̄2

c̄3

c̄4

ψ̄

 =


S1 Q1(c̄1)

S2 Q2(c̄2)
S3 Q3(c̄3)

S4 Q4(c̄4)
T1 T2 T3 T4 −R



c̄1

c̄2

c̄3

c̄4

ψ̄

 (3.32)

3.4.2 Boundary conditions

The result of the previous section, Equation (3.31), does not yet account for the
boundary conditions. In this section we will develop a general approach for imple-
menting a Dirichlet type boundary condition.

The implementation is done by altering the rows of the matrices ofM and S in such
a way that at time step n+ 1 the boundary condition is satisfied. The addition of a
vector f̄ allows to also implement inhomogeneous conditions. The following defines
the used row alterations, for a boundary condition at position k:{

rowk (M) = 0̄
rowk (S) = 0̄ and Skk = 1

We shall verify that this satisfies a general Dirichlet boundary condition and more-
over, we shall evaluate the value of f̄ at location k to see how this accounts for inho-
mogeneous boundary conditions. First we shall look at the Dirichlet type boundary
condition, this gives for the kth row:

rowk (M)
dx̄

dt
= rowk (S) x̄+ f̄(k),

0 = x̄(k) + f̄(k),

x̄(k) = −f̄(k).

Therefore by carefully choosing f̄(k) we can satisfy the boundary conditions. It
follows that for the homogeneous case we can choose f̄(k) = 0 and for the inhomo-
geneous case we choose f̄(k) to be equal to minus the desired value at time step
n+ 1.
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To conclude, in general it is possible to implement Dirichlet type boundary conditions
into Equation (3.31) with a few simple steps. We have to alter the rows of the
matricesM,S corresponding to the location of the boundary condition. Furthermore
the addition of a vector f̄ containing zeros except for the elements corresponding to
the location of the boundary condition allows us to also implement inhomogeneous
conditions. This ensures us that x̄ satisfies the boundary conditions at time step
n+ 1.

3.5 Time Step

From the previous section we found that we take the boundary conditions into ac-
count if we add the vector f̄ from the previous section to Equation (3.31). In this
section we will use Euler Backward to solve for one time step. This can be done in
the following way:

Mdx̄

dt
= Sx̄+ f̄ ,

M
(
x̄n+1 − x̄n

∆t

)
= Sn+1x̄n+1 + f̄n+1,

(M−∆tSn+1) x̄n+1 =
(
Mx̄n + ∆tf̄n+1

)
,

x̄n+1 = (M−∆tSn+1)−1 (Mx̄n + ∆tf̄n+1

)
. (3.33)

Note that this equation cannot be solved directly. This is due to the fact that Sn+1

is dependent on x̄n+1. However, as shall be clear in the next section, this is can be
done with Fixed Point Iterations. But for now, we take a moment to appreciate the
result.

3.6 Fixed Point Iterations

As mentioned before, we will solve Equation (3.33) for x̄n+1 using Fixed Point Iter-
ations. First we observe that Equation (3.33) is indeed of the form x̄n+1 = g (x̄n+1),
where g is some function. Then we can solve it with the following iteration:

x̄m+1
n+1 = g

(
x̄mn+1

)
=
(
M−∆tSmn+1

)−1 (Mx̄n + ∆tf̄n+1

)
. (3.34)
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Moreover we have to make an initial guess, for this we take x̄0
n+1 = x̄n the value at

the previous time. Because the ∆t will be small, the change in x̄ will also be small.
Therefore justifying this initial guess. These iterations will generate a sequence{
xmn+1

}
m∈N that will converge towards x̄n+1. Thus solving Equation (3.34) for one

time step.

3.7 Broyden Iterations

Given all the boundary conditions, we would be able to solve Equation (3.34) and
solve all the concentration profiles and the electric potential at tn+1. However, as
discussed in Section 2.5, the boundary conditions on the interface are in general
unknown. This section contains the theory necessary to find the interface conditions.
First we will develop a modification to Newton’s method, with this modification the
iterations are less laborious to compute. Later we shall use this new method to
approximate the interface boundary conditions of each chemical component as well
as for the electric potential. Thus making it possible to make a calculation for the
unkowns at tn+1.

3.7.1 Newton’s Method and modifications

Newton’s Method is concerned with finding the root of a set of n nonlinear equations.
Written as:

σ̄(χ̄) = 0̄. (3.35)

Where χ̄ is a column vector of n independent variables and σ̄ the column vector
of functions σi. Let χ̄j be the jth approximation to the solution of Equation (3.35)
and σ̄j = σ̄(χ̄j). Further, let Jj be the Jacobi matrix evaluated at χ̄j, defined as
Ji,k = [ σ̄i

∂χk
]. Then the following:

χ̄j+1 = χ̄j − J−1σ̄j, (3.36)

defines a sequence {χ̄j}j∈N that, given a proper initial guess, converges to χ̄.
An important downside of this method is the difficulty in finding the Jacobi ma-
trix. Especially when the partial derivatives are not well-known and laborious to
compute. To relieve this difficulty somewhat, we first introduce the following matrix
Hj defined by the approximation for the jth Jacobi matrix: −J−1

j ' Hj. Instead of
approximating Jj+1 after one iteration, we shall update our previous approximation.
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Our choice for the initial guess of H0 is given by the approximations for each partial
derivative. The formula corresponding with the update of Hj is given by:

Hj+1 = Hj −
(
p̄Tj Hj ȳj

)−1 (
Hjσ̄j+1p̄

T
j Hj

)
, (3.37)

where we defined: p̄j = χ̄j+1 − χ̄j, and ȳj = σ̄j+1 − σ̄j. This formula is taken
from [Broyden 1965]. We can substitute this into the standard formula for Newton’s
Method, Equation (3.35), to obtain:

χ̄j+1 = χ̄j + αHjσ̄j. (3.38)

We introduced α, a parameter which ensures convergence that will be discussed later
in Section 3.7.3. This modification to Newton’s Method is called Broyden’s Method.

3.7.2 Implementation of Broyden’s Method

In the previous section we developed Broyden’s Method in order to find the root of
a set of equations. In this section we will use this new method to find an approx-
imation for the interface conditions. Therefore we begin with the observation that
for given interface conditions the Stefan conditions, Equation (2.8), must hold for
each of the four chemical components. Therefore if we define a function that has
the value of the discrepancy of the Stefan Condition, then all we have to do is find
to root of this function. Moreover it followed from Section 2.5 that we have four
‘defining parameters’ on the interface, it would be logical to choose these parameters
as the variables for the Stefan Condition discrepancy function. A straightforward
way to formulate the problem of finding these defining parameters is to find the
χ̄ =

(
[Cl−]IC , [Cl−]ID, vn, ψ

ID
)

such that:

σ̄i(χ̄) = 0̄. (3.39)

Each σ̄i corresponds to the discrepancy of the Stefan condition of chemical component
i: σ̄i =

(
[ i ]IC − [ i ]ID

)
vn −

(
J ICi − J IDi

)
.

3.7.3 Assuring Convergence of Broydens Method

Previously we defined a variable α to assure convergence of Broydens Method. In
this section we will explain some details about this parameter.
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In each iteration of Newton’s Method, the previous value is updated. The magnitude
and direction of this update are determined by the term −J−1σ̄j. Normally, if the
initial guess is within the region of convergence, each successive iteration is closer to
the root then the previous one. This is due to the fact that analytic evaluation of the
Jacobi matrix ensures that the direction (and magnitude) of this update is perfect. In
the case of Broyden iterations however, the Jacobi matrix is approximated. With the
updated Jacobi matrix we will update our guess with the term Hjσ̄j. It is clear that
since Hj is an approximation to the Jacobi matrix that the direction and magnitude
of the update contain slight deviations. Thus we have introduced an error, and we
will update χ̄j to χ̃j+1, instead of to χ̄j+1. In general, the difference between χ̃j+1

and χ̄j+1 can be arbitrary. Therefore it is not given that the approximation at tn+1 is
better then the approximation at time tn. Even worse, χ̃n+1 might as well be located
outside the region of convergence. This is of course a very serious problem.

Before we provide a solution for this problem, we make the following statement. Let
Hjσ̄j be an approximation for −J−1σ̄j. Further, let χ̄j be the jth approximation to
χ̄ and define: χ̃j+1 = χj + Hjσ̄j, the updated value with an error such that it is a
worse approximation for χ̄ then χ̄j. Then there must exist a point χ̃′j+1, somewhere
along the line segment L = [χj, χ̃j+1] that is the best possible approximation for
χ̄. This statement can be verified as follows: if not every point in L is a worse
approximation then there should exist at least one point that gives the best possible
approximation, call this point χ̃j+1, moreover there exists some α ∈ (0, 1) such that
χ̃j+1 = χj + αHjσ̄j. This follows from the Extreme Value Theorem. A side note, if
every point in L gives a worse approximation for χ̄, then we choose χ̃′j+1 = χ̄j and
we can not find a better approximation with this given Hj within L. In this case
we say α = 0. Thus the introduction of the parameter α ensures convergence of the
Broyden Iterations. One method for finding the value of α is called Line Search.
However, we will use a more rudimentary approach. This approach is based on the
reasonable assumption that if Hj approximates −J−1 well enough, then for small α
there should always exist a χ̃j+1 that is a better approximation for χ̄ then χ̄j. Thus
in a trial-and-error fashion, we check every update for given α and if it does not
improve our guess then we divide α by 2 until we find a better approximation.
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Implementation

In this section we will present several aspects of the implementation of the theory.
Moreover this section will serve as a comprehensive guide into understanding how the
implementation works. First of all we will discuss the choice for the initial condition.
Then we will present a graphical overview of the numerical algorithm. Later we will
discuss several difficulties that arose during implementation and we will state some
ideas for improvement to overcome these difficulties.

4.1 Initial Condition

For the initial condition we have taken the two domains to be completely coexisting
phases. Therefore for given κ we are able to determine the concentration profiles
for the polyelectrolytes in both domains. Further we take the initial concentration
profiles for salt to be constant in both domains, and equal to the respective poly-
electrolyte concentration in the concentrated domain. This implies a linear electric
potential with no jump across the interface.

4.2 Overview of the script

In Figure 4.1 a schematic overview of the script is presented.
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Initial Guess for
x̄n+1 and vn+1

at time tn+1

Calculate
χ̄ and ψ̄

Approximate H0

Are the Stefan
Conditions
satisfied?

Hj → Hj+1

and find cor-
responding ∂χ̄

Is χ̄ + ∂χ̄ an
improvement?

∂χ̄ → 1
2
∂χ̄

Update: vn+1,
vmesh, x̄n+1, the

mesh and all
the boundary

conditions

tn+1 → tn

no

no

yes

yes

Figure 4.1: A flowchart serving as an overview of the script.
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4.3 Difficulties & Discussion

Now we will discuss several difficulties that arose during implementation, and present
several ideas to overcome them.

4.3.1 α-Safety-Protocol

This problem concerns to choice of the convergence parameter α. It occurs when,
during Broyden iterations, we want to update χ̄j when it is actually a very good guess
already. As discussed earlier, the code we will try to find an α in a trial-and-error
fashion by evaluating the updated guess and if necessary dividing α by 2. Because
χ̄j is already a good guess the value of α needs to be really small, in the order of
10−64 is not uncommon. Because this is done in a trial-and-error fashion, the process
of finding such a small α is very time consuming.

One way of reducing time can be by using a better algorithm to find a feasible value
for α. However we used a simpler approach. If the update of χ̄j was very small,
that is to say ||αHjσ̄j|| < 10−10, then we choose α = 0. Clearly the change in χ̄j
is negligible and thus the given guess is good enough. Therefore we do not need to
search for a very small α and we can simply adopt the current guess χ̄j. We note
however, that in general a small α does not necessarily imply a good guess. For
example, it might be possible that the build up of approximation errors in Hjσ̄j will
result in a erroneous update. In such a case it might be better to make a new (and
better) evaluation of Hj and continue the process.

4.3.2 Non-convergence

As discussed earlier, we had great problems with the convergence of our numerical
process. This problem cascaded through the whole program, causing difficulties in
choosing proper length of time steps, initial guesses and physically logical constants.
One culprit is the Fixed-Point iterations Method. This method proved to be the
foremost reason for non-convergence. Therefore it would be an improvement to
substitute this method with a more rigid numerical technique. Making this process
more robust would properly lead to more freedom for experimenting with varying
constants and allow a more diverse choice for important coefficients.
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4.3.3 Instant Equilibrium Assumption for Small-Ions

One of the great challenges of this method is to track both the evolution of the
polyelectrolyte concentration profiles as well as the evolution of the simple salt con-
centration profiles. This is more difficult then expected because of the widely varying
diffusion coefficients. In some cases, the simple salts have a diffusion rate of an or-
der of 106 higher then that of the polyelectrolyte. A result of this is that a large
number of time steps were needed to simulate the evolution of both of the types of
concentration profiles. We think that this allows the build up of errors which leads
to erroneous results. A simple suggestion would be to increase the time step, but
that leads to convergence problems. However we would like to propose a reasonable
assumption which might alleviate this problem.

Since the diffusion coefficient of salt is so much larger then those of the polyelec-
trolytes, it would be reasonable to assume that the salt concentration profiles assume
instant equillibrium at each time step. The steady state solution of Equation (2.1)
for given ψ is given by:

ceq(z, t) = c∞e
Ziq

kT
ψ(z,t), (4.1)

where c∞ is some constant defined by the boundary conditions. Our suggestion is
that we replace Equation 3.13 by a correctly discretised expression based on this
steady state solution. Possibly this assumption will make it possible to reduce the
number of time steps necessary to track the evolution of polyelectrolyte concentration
profiles. Thus reducing the calculation time.
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Results

In this section we will explain the main results that led to important conclusions.
First we will discuss what properties are not allowed in a tie-line. Secondly we will
discuss the two obstacles that arose during simulations. These are: “oscillations in
the concentration profiles near the substrate” and ”non-responsive interface”.

5.1 Inconsistency in the Tie Lines

During the research, we found that there exist some restrictions on the tie line model
for phase separation. Appendix D contains one example of such an inconsistent
model. The use of such a model in the implementation will lead to a numerical
catastrophe. Thus, during the research, we deduced a constraint for the tie line
model. Using the simplification for the binodal curves as discussed in the paper, any
tie line that has the following property:

[+]C + [−]C = [+]D + [−]D 6= 0, (5.1)

is inadmissable. Note however that only the tie line for which this property applies
is inadmissable. However since any tie line may be used during phase coexistence, it
would be wise to chose a tie line model with only admissable tie lines.

The derivation of this condition starts with the fundamental equations of electro-
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neutrality at the interface:

{
[Na+]IC = −[Cl−]IC −

(
[+]IC + [−]IC

)
,

[Na+]ID = −[Cl−]ID −
(
[+]ID + [−]ID

)
.

(5.2)

We introduce the notation: ΣI = [+]I + [−]I . Combination of this in the interface
equilibrium condition, Equation (2.20), results in:

(
−[Cl−]IC − ΣIC

)
[Cl−]IC =

(
−[Cl−]ID − ΣID

)
[Cl−]ID.

This can be rewritten into:

−ΣIC [Cl−]IC + ΣID[Cl−]ID =
(
[Cl−]IC

)2 −
(
[Cl−]ID

)2
.

Now we assume Σ = ΣIC = ΣID. If Σ = 0 then Equation (5.2) would immediately
simplify. However if Σ 6= 0, then the previous equation allows for some simplification:

−Σ
(
[Cl−]IC − [Cl−]ID

)
=
(
[Cl−]IC − [Cl−]ID

) (
[Cl−]IC + [Cl−]ID

)
,

Σ = −
(
[Cl−]IC + [Cl−]ID

)
.

And thus, from Equation (5.2) we find:

{
[Na+]IC = [Cl−]ID,
[Na+]ID = [Cl−]IC ,

(5.3)

Since these [Na+] and [Cl−] have opposite signs, the only solution would be the
trivial solution:

[Na+]IC = [Na+]ID = [Cl−]IC = [Cl−]ID = 0. (5.4)

This is an unlikely result. Therefore we conclude that a tie line with the property:
ΣIC = ΣID 6= 0 is inadmissible.
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5.2 Simulations

During the simulations we concluded that the current implementation is unable to
correctly simulate the concentration profiles. In this section we will show which
difficulties prevented a decent simulation. These difficulties arose near the boundary
corresponding to the substrate and on the interface. Moreover we will also show that
we can correctly simulate the inflow into the dilute domain

5.2.1 Profiles near the Substrate

In Figure 5.1 we see the concentration profiles of the polyelectrolytes, globally and
zoomed in near the interface. In this simulation there exist negative concentrations.
We think that the reason for these values is that the initial guess does not account
for the electrostatic interactions near the substrate. The numerical iterations will
diverge here, thus leading to unfeasible values.

Also in this simulation, one can see that the inflow into the dilute domain is very
similar to the expected penetration of a high concentration solution in a diffusion-only
medium. This leads us to believe that this model does properly simulate diffusion
near the inflow boundary and away from the substrate or on the interface.

5.2.2 Non-Responsive Interface

Other simulations that were performed concerned the behaviour of the polyelec-
trolytes on the interface. In this simulation we have inflow of polyelectrolytes and
we tried to simulate the growth of the PEM. In order to do this we had to make a
few adjustments to the model, because otherwise the errors near the substrate would
cause the simulation to diverge before there would be any possibility of interface ma-
nipulation. Therefore we chose the dilute domain to be relatively short, also we chose
a very high inflow of polyelectrolytes. By doing this we were able to significantly
alter the conditions on the dilute side of the interface.

In Figure 5.2 we can see how the concentration profiles have evolved with this setup.
Because of the high concentration inflow, we would expect the PEM to grow, however
the position of the interface remained unchanged. From this we conclude that the
model of phase separation is too simplistic to realistically model the behaviour of
the interface, as we expect a change in the location of the interface.
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Figure 5.1: Global polyelectrolyte concentration profiles together with a zoom near
the substrate. The red dot denotes the position of the interface. The red crosses
highlight the zero-concentration line
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Figure 5.2: Concentrations profiles of the polyelectrolytes with high inflow. In this
case vn = 3.57 · 10−4. The red dot denotes the position of the interface.



Chapter 6

Conclusions and Discussion

In this research we were not able to fully describe the evolution of PEM over time.
However we believe that this approach to PEM growth is promising. For example we
were able to simulate the penetration of high concentrations on the inflow boundary.

Also, we found that not every tie line is admissible, leading to inconsistent models of
phase separation if one were to be used. This is a fundamental result which follows
from the equilibrium equations on the interface and electro-neutrality.

Another important observation is that the setup for PEM growth, high polyelec-
trolyte inflow, had no significant effect on the movement of the interface. During the
simulations, the Stefan Conditions are properly satisfied, thus leading us to believe
that the model on the interface is too simplistic. We recommend that for future
research a more elaborate approach for describing the behaviour of chemical compo-
nents on the interface is investigated.

During simulations we found that the concentration profiles near the substrate con-
tain negative values. We will give a suggestion on the origin of this error:
On the substrate boundary we have an in-homogeneous Dirichlet boundary condition
for the potential. Physically speaking, the substrate has a fixed, in our case nega-
tive, electric potential value. Then it follows from electrostatic interactions that the
poly-cations are attracted towards the substrate and the poly-anions are repelled.
In theory the poly-cations will reverse the surface charge of the substrate, the poly-
anions will then reverse the resulting surface charge of the poly-anions and so on.
We expect that this effect should be damped out. However, in our simulations this
effect is not damped out and thus in following time steps the oscillations intensify
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until concentrations become negative, numerical iterations diverge soon thereafter.
Because of this simulation we expect that the initial guess near the substrate is not
sufficiently chosen. For future research we recommend that the concentrated domain
is not chosen as a completely homogeneous coexisting phase, but that it is such that
the electrostatic interactions with the substrate’s surface charge are in equillibrium.
One example might be as presented in Figure 6.1. The use of the upwind Petrov-
Galerkin Method might be a numerical alternative to stabilize the solution and avoid
any unrealistic oscillations.

Figure 6.1: One example of an initial guess, this image is copied from [Schönhoff
2003]

Furthermore we recommend that future research will incorporate the instant-equilibrium
assumption for the small-ions. Since the different chemical components have greatly
varying diffusion coefficient, many time steps are needed to accurately describe the
movement of all the chemical components. We think that this reasonable assumption
will make to researcher able to better simulate the PEM behaviour.



Appendix A

Derivation of the Stefan Condition

In this section we shall give an elaborate explanation of the origin of the Stefan
Condition. This condition is often used in moving boundary value problems, for
example the interface between two phases. The Stefan Condition is a reformulation
of the conservation of mass principle and therefore, in our research, it must hold for
every chemical component independently. It is sufficient to derive this condition for
an arbitrary chemical element in a two phase environment and then subject every
chemical component to it.

To begin, we define M(t) as the total mass of the chemical element in the entire
domain. Since our domain has no sources present, the only way the total mass can
change is by the flux across its boundaries. We assumed a no-flux boundary at z = 0,
Equation (2.4) and therefore it must hold that:

dM(t)

dt
= −J(zmax). (A.1)

Now we focus our attention on an expression forM(t). An intuitive way is to integrate
the concentration profile across the entire domain. Since we have two distinct phases,
we can integrate over each separately. This results in the following:

M(t) =

∫ zΓ(t)

0

cC(z, t)dz +

∫ zmax

zΓ(t)

cD(z, t)dz. (A.2)

We can also try to find an expression for the derivative of M(t). Because of the
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linearity of the derivative we can say:

dM(t)

dt
=

d

dt

(∫ zΓ(t)

0

cC(z, t)dz
)

+
d

dt

(∫ zmax

zΓ(t)

cD(z, t)dz
)
. (A.3)

We can not evaluate these terms directly because the interval over which we integrate
is dependent on time. However, if we assume that there exists some antiderivative
F (z, t) of cC(z, t) with respect to z, we get the following expression:

d

dt

(∫ zΓ(t)

0

cC(z, t)dz
)

=
d

dt

(
F (zΓ(t), t)− F (0, t)

)
, (A.4)

note that the right hand side can be solved with use of the chain rule:

d

dt

(
F (zΓ(t), t)− F (0, t)

)
=
∂F

∂z

∣∣∣
z=zΓ

dzΓ

∂t
+
∂F

∂t

∣∣∣
z=zΓ
− ∂F

∂t

∣∣∣
z=0

. (A.5)

The physical meaning of dzΓ
∂t

is the speed at which the location of the interface moves.
We call this speed the normal velocity vn, where the normal vector of the interface
is pointing outward of ΩC(t). Now we try to eliminate the function F (z, t) from the
right-hand side of Equation (A.5):

∂F

∂z

∣∣∣
z=zΓ

dzΓ

∂t
+
∂F

∂t

∣∣∣
z=zΓ
− ∂F

∂t

∣∣∣
z=0

= cC(zΓ(t), t)vn +

∫ zΓ(t)

0

∂cC

∂t
(z, t)dz, (A.6)

according to the Fundamental Theorem of Calculus. From the diffusion equation it
follows that:

∂cC

∂t
(z, t) = −∂J

C

∂z
(z, t), (A.7)

and therefore:∫ zΓ(t)

0

∂cC

∂t
(z, t)dz = −

∫ zΓ(t)

0

∂JC

∂z
(z, t)dz = −JC(zΓ(t), t)+JC(0, t) = −JC(zΓ(t), t).

(A.8)
Note that JC(0, t) = 0 because of the no-flux boundary condition we imposed at
z = 0. If we combine Equations (A.4) to (A.8), then we end up with:

d

dt

(∫ zΓ(t)

0

cC(z, t)dz
)

= cC(zΓ(t), t)vn − JC(zΓ(t), t). (A.9)
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We can repeat these steps in a similar fashion for the integral over the dilute phase
in Equation (A.3). Note the important difference JD(zmax, t) 6= 0 because we use a
different boundary condition at z = zmax. We can find the expression:

d

dt

(∫ zmax

zΓ(t)

cD(z, t)dz
)

= −cD(zΓ(t), t)vn + JD(zΓ(t), t)− JD(zmax, t). (A.10)

The final step is to combine Equations (A.1), (A.3), (A.9) and (A.10) to obtain:

cC(zΓ(t), t)vn − JC(zΓ(t), t) = cD(zΓ(t), t)vn − JD(zΓ(t), t), (A.11)

or in more convenient notation:

cIC(t)vn(t) + J IC(t) = cID(t)vn(t) + J ID(t). (A.12)

We have arrived at the Stefan Condition in its final form. Each side of Equation
(A.12) has unit [mol m−2s−1], the unit of flux. This is logical if we take another look
at Equation (A.12). It relates the difference in fluxes across the interface, which is
equivalent to accumulation of mass, to the growing of the concentrated phase, which
is equivalent to the moving interface. This fact is more intuitive if we write the
Stefan Condition as: (cIC − cID)(t)vn(t) = (J IC − J ID)(t). Here we can also see why
an interface in a two phase setting tends to change. Because the two phases have
different diffusion coefficients there can be a difference of flux across the interface.
This mass has to go somewhere, or has to come from somewhere. The only option
to account for this is movement of the interface. Another important aspect is that
this equation gives information about the movement of the interface, since we can
find vn if we know all the concentrations and fluxes on either side of the interface.
This is extremely important for simulations of the growth of PEMs.



Appendix B

Assembly of the Large
Discretisation Matrix

We shall give the reader a simple and comprehensible example for the assembly of a
large matrix from several element matrices. For simplicity we consider 3 elements of
the same size and we say that the element matrices are given by:

Sek =

[
1 1
1 1

]
, for every k ∈ (1, 2, 3).

Next, we start with an empty large matrix. Iteratively we shall add the contributions
of every element-matrix. This yields the following calculations.
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Se1 =

[
1 1
1 1

]
=⇒ S =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



Se2 =

[
1 1
1 1

]
=⇒ S =


1 1 0 0
1 2 1 0
0 1 1 0
0 0 0 0



Se3 =

[
1 1
1 1

]
=⇒ S =


1 1 0 0
1 2 1 0
0 1 2 1
0 0 1 1


The process terminates after the last element. We have successfully assembled the
large matrix S. The assembly of a large vector is very similar.
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Derivation of the Mesh-Velocity
Constraint

In this section we are going to derive the conditions under which the the linear
mesh velocity, chosen in Equation (3.9), satisfies two conditions. First condition, we
want our mesh to remain within the domain, therefore the boundary of our domain
should have zero velocity. In our case this leads to: vmesh(0, t) = vmesh(zmax, t) = 0.
Secondly, the topology of our mesh must not change. Equivalently in discrete terms,
at time n for every point znk after time step ∆t it must hold that zn+1

k < zn+1
k+1 .

We remind that the linear mesh velocity is given by:

vmesh(z, t) =


vΓ

z
zΓ

for z ∈ [0, zΓ]

vΓ

(
1− z−zΓ

zmax−zΓ

)
for z ∈ [zΓ, zmax]

It should be clear that for z = 0 and z = zmax the velocity reduces to zero. Thus
satisfying the first property. Now we assume that at time n the mesh has a well
defined topology znk < znk+1. Then after some time step we have zn+1

k = znk +
∆tvmesh

(
znk+1

)
, analogous for zn+1

k+1 . Then, at time n+ 1 it should follow that:

zn+1
k+1 − z

n+1
k > 0,

(znk+1 − znk ) + ∆t
(
vmesh(znk+1)− vmesh(znk )

)
> 0.
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Now we consider znk ∈ [0, znΓ], then:

(znk+1 − znk ) + ∆tvΓ

(
znk+1−z

n
k

zΓ

)
> 0

(znk+1 − znk )
[
1 + ∆tvΓ

zΓ

]
> 0.

Since we assumed that (znk+1 − znk ) > 0 it must hold that: ∆tvΓ > −zΓ.
Now consider znk ∈ [znΓ, zmax]:

(znk+1 − znk ) + ∆tvΓ

(
znk−z

n
k+1

zmax−zΓ

)
> 0,

(znk+1 − znk )
[
1− ∆tvΓ

zmax−zΓ

]
> 0

Now we can say that it must hold that: ∆tvΓ < zmax − zΓ. Because we have chosen
an arbitrary mesh point k, these conditions should ensure that the topology remains
unaffected after a time step.

Combining these conditions we find that the linear mesh velocity has the desired
properties if it satisfies the condition:

−zΓ < ∆tvΓ < zmax − zΓ.



Appendix D

Example of Inconsistent Tie-Line
Model

During the research we found that not every model for the coexisting phases is
feasible. In this appendix, we will provide an example of an inconsistent model.
This model is of importance because it was the model we initially used, until we
found that it was inconsistent.

We choose for the tie lines the set of parrallel lines: [−] = A− [+]. Furthermore we
use the same approximation for the binodal curves:

[−]D = CD + [+]D, (D.1)

[−]C = CC + [+]C . (D.2)

Where CC < CD < 0 Then we obtain the following for phase-seperation at the
interface: 

[−]D = 1
2

(
A+ CD

)
[+]D = 1

2

(
A− CD

)
[−]C = 1

2

(
A+ CC

)
[+]C = 1

2

(
A− CC

) (D.3)

If we combine this with the equations for electroneutrality:

[+]C + [Na+]C = −([−]C + [Cl−]C), (D.4)

[+]D + [Na+]D = −([−]D + [Cl−]D), (D.5)
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then we obtain:

[Na+]C = −(A+ [Cl−]C), (D.6)

[Na+]D = −(A+ [Cl−]D). (D.7)

From the equilibrium condition on the interface we can easily find:

[Na+]C [Cl−]C = [Na+]D[Cl−]D, (D.8)

−(A+ [Cl−]C)[Cl−]C = −(A+ [Cl−]D)[Cl−]D, (D.9)

=⇒ A = −([Cl−]D + [Cl−]C). (D.10)

If we combine this expression with Equations (D.6) and (D.7) then we find:

[Na+]C = [Cl−]D, and [Na+]D = [Cl−]C . (D.11)

Since the components of the disassociated salt have an opposite sign, the only solution
to these equations is the trivial solution: [Na+]C = [Cl−]D = [Na+]D = [Cl−]C = 0.
This is undesirable, because then the only admissible tie line would be A = 0 and
the model would not hold for every initial unstable mixture. To conclude, the choice
of tie lines and binodal curves leaves us with inconsistencies in the model.
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