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THESIS OUTLINE

This thesis report is structured as follows. Chapter 1 provides an introduction to the task
of discovering pseudo-phonemes for unsupervised language modeling from raw speech.
Research questions are listed in section 1.1. An overview of our novel approach and main
contributions are given in the section 1.2.

Chapter 2 introduces the background of ZeroSpeech 2021 Challenge, which pro-
posed the task of unsupervised language modeling for raw speech. Chapter 3 presents
supplemental material that provides the deep learning background of our proposed ap-
proach.

Our system can be separated into three components, self-supervised speech repre-
sentation learning, unsupervised segment representation learning, and language mod-
eling. Accordingly, three subsections in chapter 4 give overviews of the related back-
ground for these three components and details of the methods we apply in our systems.

Chapter 5 describes the experiment design with regards to our research questions.
Then, experimental settings, datasets, evaluation metrics and experimental results fol-
low. Finally, discussion of the limitations of the work, conclusions and potential future
works are presented in Chapter 6.

This thesis project is in partial fulfilment of the requirements for the degree of both
Master of Science in Electrical Engineering and Master of Science in Computer Science.
There are shared 31 credits for both programs and 14 credits independent for each pro-
gram. In terms of the thesis report, chapters 1,2,3,5,6 belong to the shard part of both
programs. Section 4.1 and 4.3 belong to the independent part for Master of Science in
Computer Science and section 4.2 belongs to the independent part for Master of Science
in Electrical Engineering.
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1
INTRODUCTION

Young children can perceive words from raw speech and produce simple and coherent
sentences, without being trained on text-annotated speech. Generally, infants first learn
to produce single-syllable or repeated single-syllables, such as "no", "mama", and then
they develop complex vocabularies and the ability to make sentences [1]. Intuitively,
they may achieve this by encoding input speech into their phonetic units (pseudo-phonemes)
[2] and use them to form their unique language models (forming vocabulary, syntactic
and semantic rules). In the meantime, mimicking such ability on machines and devel-
oping a spoken language system without text supervision is of strong research interest,
as it could resolve the conflict between the massive text requirement of traditional lan-
guage models and the shortage of reliable textual resources for most languages in the
world [3]. If we could imitate how children build the zero-text-supervision spoken lan-
guage models on machines, we could provide better language services (translation, etc)
for users of languages lacking textual resources (also called low resource languages).

The Zero Resource speech challenge 2021 (ZeroSpeech 2021) is constructed to build
such zero-text spoken language models [4]. The challenge offers an open-source pipeline
method (baseline) to build a spoken language model without text supervision. Similar
to how children build spoken language systems without text, this method tries to en-
coding raw input speech into discrete units and use them to train language models.
The pipeline method consists of three components, a frame-level speech representa-
tion learning component, a K-means50 clustering module, and a language model (LM),
as shown in figure 1.1. The first two components encode speech into discrete units for
training the language models. Specifically, the frame-level speech representation learn-
ing component applies the contrastive predictive coding (CPC) [5] model to encode raw
audio into frame-level speech representation. The clustering component applies the k-
means algorithm to group previous speech representations into fifty phonetic discrete
units, while 50 was tested to perform best at the acoustic level. For each audio, a discrete
unit sequence is generated by the above two components and is called pseudo-text for
this audio piece. The Language model, implemented with LSTM (low GPU budget sce-
narios) [6] or BERT [7] (both low and high GPU budget scenarios) architecture, is trained

1
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Figure 1.1: System Pipeline of ZeroSpeech 2021 Baseline

on these pseudo-text.

The challenge requires evaluating speech understanding of the zero-text language
modeling system at four linguistic levels, using four corresponding discrimination tasks.
Specifically, they are (1) how well the spoken language modeling system could distin-
guish different phonemes (acoustic level), (2) how well the system could differentiate
existing words from man-made non-words (lexical level), (3) how well the system could
distinguish grammatical sentences from non-grammatical ones (syntactic level), and (4)
how well the system could recognize the semantic similarity between a pair of words
(semantic level).

In this project, our research objective is to obtain a general understanding of ad-
vanced research in spoken language modeling from raw speech and apply the learned
knowledge and techniques to developing our spoken language models from raw speech.
In the next few paragraphs, we will talk about three potential improvements for the Ze-
rosSpeech 2021 baseline model (low-budget scenario) which are encouraging discrete
units to be phoneme-like units, reducing speaker-information in speech representa-
tions, and replacing CPC with other transformer-based architectures. Our zero-text spo-
ken language modeling system is constructed by modifying the baseline system (low-
budget scenario) and these potential improvements. In addition, according to results in
[8], the linguistic level performance mainly improves with using the larger or complex
LMs. As we do not modify language models but follow almost the same setting in the
ZeroSpeech 2021 baseline, we only focus on the performance of acoustic, lexical, and
syntactic levels in our project.

The length of a phoneme, defined as the smallest unit of speech distinguishing dif-
ferent words in linguistics, usually varies from 5ms to hundreds of mileseconds [9]. How-
ever, in the baseline system, every 10ms speech frame is assigned a discrete unit to form
the pseudo-text of speech audios. It is not surprising that we saw many adjacent dis-
crete units are the same. This means words in natural text only differ from each other
in linguistic units, but words in pseudo-text differ from each other in both linguistic
units and time of pronunciation, and the same words in pseudo-text could have dif-
ferent forms. For example, in the baseline system, the audio of the word "mama" might
be converted to pseudo-text "12222133" if the speaker pronounces the vowel longer or
converted to "12213" in the shorter scenario. Here we use numerals to represent differ-
ent discrete units. This suggests that the language model in the baseline has to learn to
eliminate the impact of pronunciation time for the same words. Besides, in our exper-
iments, we saw the clustering module in the baseline did not promise to generate dis-



1

3

crete units that cover all phonemes. According to [4], the Bert language models trained
with forced aligned phonetic transcription to give a nearly full performance on the lexi-
cal level, and much better syntactic level performance than the Bert model trained with
pseudo-text from the baseline. We then assume that if we could make the discrete units
closer to true phonemes, our language modeling system may achieve higher perfor-
mance on the above three linguistic levels. From this assumption, we tried to build a
pipeline method to encode speech into discrete units which mimic phonemes as much
as possible. Because we try to force our system to produce phoneme-like units, we use
the word ‘pseudo-phoneme’ to represent the clustered discrete units. The components
to generate pseudo-phonemes in our system are together called the pseudo-phoneme
encoder.

The frame-level Kmeans clustering module in the baseline may not be optimal in
generating pseudo-phonemes. In an early-stage exploration of the baseline method,
we found in the pseudo-text, it is common to see several nearby frames were assigned
to several different units, while those frames should belong to the same phoneme ac-
cording to the golden transcriptions. This might be because frame-level clustering in
the baseline results in over-fragmented clustering [10, 11], which means the frame-level
clustering module tends to give redundant fine-grained clusters. Besides, we saw that
those fine-grained clusters could not cover all phonemes especially consonants. An al-
ternative solution is segment-level clustering: first, we obtain phoneme boundaries and
cut speech data into variable-length speech segments, then we perform clustering on
those segments. Research in [12] showed that, while both frame-level and segment-
level clustering use the Kmeans clustering algorithm with the same number of clusters,
segment-level clustering can achieve better performance in phone recognition evalu-
ation than frame-level clustering. This suggests that after the segment-level clustering,
the discrete units are more likely to represent a true phoneme than that from frame-level
clustering. This might be because, after phoneme boundary-guided segment represen-
tation learning, a segment representation could contain the more accurate and com-
plete information of a single phoneme than frame representations. This fits the need
of us to discover phoneme-like units. In our project, we, therefore, try to improve the
baseline model by replacing the frame-level clustering method with a segment cluster-
ing method. This method contains three steps: (1) Boundary Learning, which is used
to identify phoneme boundaries in speech frames (2) Segment Representation Learning
for combining speech frame representations between two boundaries into segment rep-
resentations (3) Kmeans Clustering to cluster those segments into several discrete units,
following[12].

Our pseudo-phoneme encoder starts with a frame-level representation learning mod-
ule applying the CPC technique. If we could find better representation learning mod-
ules than CPC, with regards to the spoken language modeling performance, we might be
able to construct a better pseudo-phoneme encoder. We thus proposed two potential
replacements for CPC in the next two paragraphs.

Considering our goal is spoken language modeling, we expect that the speech rep-
resentations would encode speech content and eliminate other information as much as
possible. However, experiment results in [13] show that CPC representations not only en-
code linguistic information but also preserve most of the speaker information. On other
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hand, speaker information remained in speech representations has been seen to cause
performance deterioration on downstream acoustic and lexical discrimination tasks [14,
15]. Thus another improvement we explore for the baseline is to reduce speaker in-
formation in frame-level speech representations. Besides, according to the submission
results from Niekerk [8], applying the speaker normalization method after the speech
representation learning method in the ZeroSpeech 2021 baseline system could improve
performance on all four evaluation scores. The results suggest applying a post step
speaker-invariant technique after the frame-level speech representation learning is pos-
sible to give better language modeling performance. We prefer an independent post-
speaker-invariant technique rather than modify the representation learning method be-
cause training a post method could save much more time. Prevalent traditional speaker
invariant techniques include feature-space maximum likelihood linear regression (fM-
LLR), disentangled speech representation learning, and speaker adversarial training. The
fMLLR estimation based methods relies on the out-of-domain acoustic speech recog-
nition (ASR) model, which means text transcription is used during training. Thus fM-
LLR does not fully meet the requirement of zero-text in the challenge. Besides, [16]
shows that speaker-invariant techniques implemented in the front-end (fMLLR and dis-
entangled approach) might perform better than techniques implemented in the back-
end (speaker adversarial training) for speech representations. In addition, among the
three methods, the disentangled approach is the easiest to implement. In our project,
based on the above observations, we apply a disentangled technique (FHVAE) [17] in
our model, trying to reduce speaker information in the frame-level representations.

The second potential replacement for CPC is using self-supervised transformer-based
representation learning methods. Before ZeroSpeech 2021, this challenge series have
concentrated mainly on discovering discrete linguistic units (subword and word units)
from raw speech data [2, 18–20]. Meanwhile, recent research applying self-supervised
representation learning methods, which generate supervisory resources from unlabelled
data, shows great improvements in downstream speech recognition performance (speech
to text recognition tasks evaluated by word error rate) [21] under the low-resource sce-
nario. Here low-resource scenario means only a few textual resources are used during
fine-tuning the self-supervised method. This suggests that those self-supervised meth-
ods may learn their own language models without text resources. This indicates it is
possible to construct language models without text supervision. ZeroSpeech Challenge
2021 then takes one step forward from previous iterations and aims at learning a lan-
guage model directly from audio. ZeroSpeech 2021 baseline system chose CPC for self-
supervised representation learning, which uses LSTM to obtain contextual information
in the representations. However, state of art research of self-supervised speech recogni-
tion models in low resource scenarios mainly uses transformer architecture to generate
contextualized speech representations [22–26]. Considering the assumption that we ex-
pect self-supervised methods to learn their own language models, transformer-based
architectures are potentially superior over LSTM based architectures, as most state-of-
art supervised language models mainly apply transformer architectures. Therefore, we
think it is worth exploring transformer-based self-supervised representation learning
methods to replace CPC in the baseline system. As in the low resource scenario, wav2vec
2.0 shows the best speech recognition performance [21] which suggests a strong ability
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to learn its own language models, in our project, we try to apply wav2vec 2.0 to replace
CPC in the baseline.

Finally, in our zero-text spoken language system, the pseudo-phoneme encoder is
trained on a large raw English speech dataset. However, practically, English is actually
a high-resource language with a large amount of speech data and textual resources. It
would be interesting to test our system on a true low resource language such as Mboshi
[27], which do not have their own writing system and there are only a small number of
speech data available, to investigate its transferability on other languages. In addition,
we do not perform language modeling on Mboshi, as above mentioned evaluation on
language modeling needs dataset and professional annotations for a certain language.
So we did not consider this in our project.

1.1. RESEARCH QUESTIONS
In our project, we try to build a language modeling system from a raw speech by re-
placing the discrete encoder in the ZeroSpeech 2021 baseline with a designed pseudo-
phoneme encoder. Out system will be evaluated on phonetic, lexical, and syntactic levels
using metrics from ZeroSpeech 2021 [4]. Besides, we would like to investigate two po-
tential replacements (wav2vec2 and a speaker-invariant CPC) and see if these two could
bring better language modeling performance compared to CPC. Moreover, we would like
to test if our pseudo-phoneme encoder is transferable across different languages and we
plan to use Mboshi for testing.

This leads to the following research questions:

• Could we use a pseudo-phoneme encoder to improve the language modeling per-
formance?

• Will applying a transformer-based self-supervised speech representation method
(wav2vec 2.0) in the ZeroSpeech 2021 baseline system brings better language mod-
eling performance?

• Will applying a post speaker invariant method (FHVAE) to the CPC representation-
learning method improve the performance at the acoustic level?

• Transferability: Is our pseudo-phoneme encoding approach transferable to other
true zero-resource languages (tested by Mboshi)?

1.2. OVERVIEW OF THE PROPOSED PIPELINE APPROACH
In this project, we developed a novel pipeline method to build a language modeling sys-
tem from raw speech. As shown in figure 1.2, it consists of a pseudo-phoneme encoder
for discovering pseudo-phonemes and a language model. Specifically, in the pseudo-
phoneme encoder, the frame-level speech representation module encodes the raw audio
into frame-level representations. The boundary learning module produces the bound-
ary labels from raw audio waves. The segment learning module utilizes the frame rep-
resentations and the boundary labels to produce the segment representations and the
clustering module groups those segment representations into pseudo-phonemes and
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generates pseudo-phoneme sequences. Finally, the pseudo-phoneme sequences are
used to train the language model.

Figure 1.2: System Pipeline of Our Pipeline Approach

Figure 1.3: Transformation process from audio to pseudo-phoneme in the pseudo-phoneme encoder

An example of the Transformation process from audio to pseudo-phoneme in our
pseudo-phoneme encoder is shown in figure 1.3. A signal was first cut into numbers of
10ms speech frames and encoded to be frame representations (yellow vectors). Then
boundary labels (purple bracket) indicate the start and end of a segment. Those frames
that belong to the same segment were encoded into segment representations (green
vectors). Then in the clustering module, segments are assigned to different pseudo-
phonemes.
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2
BACKGROUND

The task of language modeling from the raw speech is proposed in the Zerospeech Chal-
lenge 2021, which belongs to a series of Zero Resource Speech Challenges [1–4]. The
eventual target of this series of challenges is building an end-to-end Spoken Dialog (SD)
system with only sensory data of unknown languages. This ultimate SD system could
help information retrieval, automatic annotation for low-resource languages, and speech
recognition in abnormal situations. Towards this goal, this series of challenges propose
achievable but progressively harder tasks and make all essential techniques of the target
SD system open to public use.

In the ZeroSpeech challenge 2015 and 2017, tasks focused on developing distinguish-
able speech representations to encode phonetic units/word units, which are robust across
different languages and speakers [2, 3]. The ZeroSpeech challenge 2019-2020 aims to im-
prove the quality of encoding phonetic information of phonetic units and requires that
those phonetic units should be able to build a speech synthesizer (text-to-speech with-
out text)[1, 4].

In the ZeroSpeech challenge 2021 [5], the organizers wish to push one step forward
from previous iterations by aiming at building a language model from raw speech audio
without any text supervision. While training the spoken language modeling system from
raw speech, the challenge requires that spoken dataset, LibriSpeech[6] and (optional)
Libri-Light [7]) are the only sources that can be used. The organizers have provided a
pipeline solution [5], consisting of a representation learning method, a clustering mod-
ule, and a language model. This pipeline is the foundation on which we build our system.
The challenge gives baselines of two budget scenarios. The difference between the two
scenarios is the size of the language model applied in the pipeline, while the low resource
scenario uses a language model of a 60-hour GPU budget and the high resource scenario
uses a 1536-hour LM.

To evaluate language models, perplexity is the most popular evaluation metric. How-
ever, this metric varies with the granularity of the training data for language models. In
our context, this metric varies with the granularity of the discrete units sequences (in-
tervals of each discrete unit) fed to the language models. In the challenge, the interval
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is allowed to be self-defined by participants of the Challenge. Thus it cannot be used
in this challenge for model comparison. To resolve this problem, the challenge uses a
zero-shot strategy: to evaluate the speech understanding of the system at a certain lin-
guistic level, the language modeling system is given a simple discrimination task on a
man-made speech dataset. This enables direct human-machine comparison at a cer-
tain linguistic level. To give more details, the challenge requires that the language mod-
els should be able to understand the speech from a natural language at four different
linguistic levels: acoustic, lexical, syntactic, and semantic. The following four discrimi-
nation tasks and corresponding datasets in the ZeroSpeech Challenge 2021 to evaluate
speech understanding of the language models at the four linguistic levels :

• Acoustic Level(Libri-Light dataset [7]), where the system has to judge whether two
input audios, while each contain a triphone such as ’apa’ each and these two only
differ in the middle phoneme), have the same phoneme in the middle or not.

• Lexical Level(sWUGGY dataset) - where the system needs to judge if the word in
the input audio is an existed word or a man-made non-word.

• Syntactic Level(sBLIMP dataset) - where the system needs to judge whether a sen-
tence in a speech utterance aligns with the grammatical rules of the training lan-
guage or not

• Semantic Level(sSIMI dataset) - the system has to assess the semantic similarity
between a pair of words, and judge if the similarity score is proportional to scores
made by experts
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3
DEEP LEARNING BASICS

In our project, we investigate one segment-level and two frame-level deep representa-
tion learning methods. There is no doubt that we have a special focus on speech repre-
sentation learning in a deep learning scenario. These three methods are usually applied
in acoustic speech recognition (ASR) tasks. Thus in this chapter, we will first review the
deep learning background in speech representation learning of acoustic speech recog-
nition (ASR) tasks.

The performance of machine learning (ML) tasks depends on how to represent speech
data [1]. Before the deep learning era, Mel-frequency cepstral coefficients (MFCCs), per-
ceptual linear predictive coefficients (PLPs) [2], and hand-crafted versions of the previ-
ous two, obtained by data pre-processing pipelines, are mainstream speech represen-
tation techniques for speech technologies [3]. Gaussian Mixture Model and Hidden-
Markov-Model models (GMM-HMM) with those features are popular models for analyz-
ing speech. In 1990 [4], researchers found that in phoneme recognition, applying neural
nets (NN) can get better recognition performance than traditional GMM-HMM models.
This suggests NN is the potential to construct better ASR models than GMM. Besides,
humans have few degrees of freedom to produce speech. Thus only a limited range of
acoustic signals can be produced and speech data is reckoned as lying on a low dimen-
sional nonlinear manifold [5], embedded in a high dimensional data space. Yet, HMM
is not efficient to model data distributed in a nonlinear manifold as a lot of parame-
ters and expensive computation are usually needed. Feature learning models like neural
nets, which are the potential to model speech in a less costly way[6, 7], are thus explored
as alternatives to HMM. In 2012 [7], DNNs achieves better performance (lower word er-
ror rate) on ASR tasks than traditional GMM-HMM models. The better performance is
attributed to the ability of DNNs to learn better representations from input speech data.
Since then, varied deep learning architectures, including convolutional neural networks
(CNN), recurrent neural networks (RNN) especially long-short term memory (LSTM)
and gated recurrent units (GRUs), transformers, and a combination of the previous ar-
chitectures are explored in developing speech representation learning methods.

The speech representation learning models can be trained in different ways, such

12
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Figure 3.1: Feed Forward NN, from [1]

as supervised, unsupervised, and self-supervised. In supervised learning, DNNs are
trained by datasets with annotations. This manner usually leads to representations with
more accurate performance in downstream tasks. While in unsupervised learning, an-
notations are not required and this manner is popular for low-resource languages in
which text annotations are lacking. Self-supervised learning [8] in a way converts the un-
supervised scenario into supervised ones by using part of the training data as labels for
other training data. As self-supervised learning does not need annotations, it is usually
recognized as a special type of unsupervised learning. Recent state-of-art ASR models
as well as the models we investigated are constructed by applying self-supervised repre-
sentation learning techniques [9, 10].

In the next several sections, we will introduce the basic deep learning concepts and
basic architectures used in constructing the three speech representation methods we
investigated in our system. Those sections are mostly referring to [1] and [11].

3.1. FEEDFORWARD NEURAL NETWORKS

Feedforward neural networks or multilayer perceptrons (FNN or MLP) are basic deep
learning models and form the basis of other complex architectures. A feedforward neural
network defines a mapping or approximates a function from the output to the input
vector. The “feedforward” indicates that the data flow from the input goes straight to the
output and there is no backward data flow. Feedforward neural networks usually contain
multiple layers and can be represented by a compound function.

As an example shown in figure 3.1, these feedforward neural networks have an input
layer (first layer) with input vector x, a hidden layer (second layer) with weight parameter
vector W and intermediate output h, and an output layer (Third layer) with weight pa-
rameter vector w and output y . The left subimage shows the node view of the networks
and the right shows the vector view. The mapping f (x;W, w) of the feedforward neural
networks can be represented as
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f (x ;W , w ) = f (2) ( f (1)(x)
)

h = f (1)(x) =W >x

f (2)(h) = h>w

y = f (x) = x>W w

(3.1)

Figure 3.2: Commonly used activation functions, from[39]

3.2. NONLINEARITY
Speech data is proposed to be lying on nonlinear manifolds. Yet as stated in the last sec-
tion, naturally, the feedforward neural networks can only approximate linear functions
for data modeling. Differentiable activation functions are then used to introduce non-
linearity to feedforward neural networks. The rectified linear activation function (ReLU
function), the Leaky-ReLU function, the sigmoid function, and the tanh function are
commonly used activation functions.

As indicated by its name, in practice, those functions determine if a node in this layer
could be activated or not. Coming back to the example in figure 3.2, if we introduce a
ReLU function in the hidden layer, the mapping of the feedforward neural networks will
be represented as

f (x ;W , w ) = w> max
{
0,W >x

}
in which if a hidden node is smaller than zero, it will not be calculated/activated by the
networks.
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3.3. OPTIMIZATION
To train a neural network, a loss/objective function and an optimization algorithm (opti-
mizer) to minimize the loss function are needed. During training, the loss function mea-
sures how close the practical output of the network is to the desired output under cur-
rent weights. Usually, loss functions are designed for certain tasks. Common loss func-
tions include Mean Squared Error (MSE) for regression problems and Cross-Entropy for
classification problems. In general, Cross-Entropy and modified versions are commonly
used in ASR tasks. Because of the nonlinearity caused by activation functions, many loss
functions applied in neural networks become non-convex. Thus, iterative and gradient-
based optimizers such as stochastic gradient descent are used in training deep neural
networks.

3.3.1. STOCHASTIC GRADIENT DESCENT

Figure 3.3: Example of Gradient Descent from [1]

Assume we have the loss function f (x), the goal is to find the x∗ that we could obtain
the minima of f (x). If we have a small movement according to Taylor expansion we have

f (x +ε) = f (x)+ε f ′(x)+O
(
ε2) (3.2)

For a convex problem, such as the example shown in figure 3.3, moving along the
direction of the negative gradient could decrease the value f (x). We could also prove it
mathematically. If we choose a small fix step size, also called learning rate ŋ > 0, and
ε=−ŋ f ′(x) we have

f
(
x −η f ′(x)

)= f (x)−η f ′2(x)+O
(
η2 f ′2(x)

)
. (3.3)

if f ′(x) is not zero and ŋ is small enough so that high order terms are approximately
zero then f (x −ŋ f ′(x)) will be smaller than f ′(x) or we could say f ′(x) will decrease.
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In practice, we have loss functions with the form of f (x;θ) , where x is the input vector
and θ is the parameter vector. Our goal is to find the optimal θ∗ that gives the minima of
the loss function. The optimization procedure is

• Calculate the gradient ∇θ f (x,θ)

• Updating the parameters θ′ = θ−η∇θ f (x,θ)

• Repeat untill conditions of θ acomplished

When the amount of data is too large, this calculation is not realistic, an alternative is
to randomly select a batch of m′ data samples and use them to update the weights. The
updating step is then adapted to θ′ = θ−η 1

m′
∑m′

i=1∇θ f
(
x(i ),θ

)
3.3.2. ADAM
Because of the existence of large amounts of local minima in realistic non-convex prob-
lems, researchers developed many additional algorithms [12]. Mini-batch stochastic
gradient descent can be more efficient by collecting larger sets of observations in one
mini-batch [13]. The momentum method can accelerate convergence by aggregating
history gradients [14]. RMSprop and Adagrad [15, 16] proposed per-coordinate scaling-
related optimization algorithms. Adam [17] applies all the above advanced modules and
is proved to be a robust and effective optimization method. Now Adam is a default opti-
mization method for training neural networks.

3.4. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural networks (CNN) [18] are originally proposed for image recogni-
tion problems with their unique advantage of capturing spatial structures of images, as-
suming nearby pixels are correlated with each other. CNN is also superior in enormous
reduction of the number of parameters compared to fully connected layers. This archi-
tecture and assumption can also be applied to speech. In [18], CNN-based systems were
presented theoretically to obtain speech features that are robust during short temporal
shifting, then the HMM with CNN hybrid models were successfully applied and showed
better performance in speech recognition tasks than HMM-DNN [19]. Pure CNN models
with pre-training such as convolutional RBM are also proved to achieve the comparative
results with hybrid models [20]. Now many state-of-art systems in speech recognition
will also use CNN structure as part of the model [9, 21]. As an example shown in fig-
ure 3.4, CNN typically contains convolutional layers with several feature maps, pooling
layers, and other fully connected layers. Activation functions such as ReLU are used if
there are multiple convolution layers. In this example [20], the input of CNN is three-
channel visualized audio filter banks, while each feature map in the convolution layer
learns from a limited frequency range of the input filter banks. The pooling layer sub-
samples the feature maps. Other fully connected layers flatten the representation and
are used for classification.

3.4.1. CONVOLUTION LAYER
The convolution layer is the core of CNN. In this layer, as a 2-D example shown in figure
3.5, the input feature vector I and the kernel K also called a filter or feature detector
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Figure 3.4: Convolutional neural networks in speech recognition, from [20]

are processed with a cross-correlation operator to generate the output S. The mark *
represents the cross-correlation operator. The computing between these three feature
vectors can be shown as

S(i , j ) = (K ∗ I )(i , j ) =∑
m

∑
n

I (i +m, j +n)K (m,n) (3.4)

Convolution Layers have some conventional terminologies. For a certain kernel, the
output of a convolutional layer is also called a feature map. Each node/neuron stores
a feature map. The receptive field for an element x in the convolutional layer means
the number of all previously used input space elements that join in the calculation of x.
Stride for the convolutional layer means how many elements in the input we move when
the kernel starts the next calculation. In practice, there might be multiple input feature
vectors or the input is a tensor In this case, the number of input feature vectors is usually
called channels.

3.4.2. POOLING LAYER
The pooling layer, or usually known as the subsampling layer in speech processing, re-
duces the size of the feature maps over a region. Pooling can be realized by maximum or
average functions. The pooling layer could help to control the usage of memory.

3.5. RECURRENT NEURAL NETWORKS
While training DNNs and CNNs, we assume that data samples are independent and
identically distributed (i.i.d.) [11]. In speech recognition tasks, however, this assump-
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Figure 3.5: Two-dimensional cross-correlation for the input and the kernel to generate the output. The first
windowed output value calculated by the windowed input and the kernel, from [1]

tion is usually not true, since speech data is in ordered sequences. Random permutation
of such data will cause information change. For example, if we randomly permute the
audio signal in a conversation, then some natural language information in such data
might be lost. Besides, in speech-to-text tasks, the input size might be variable-length
and we expect a corresponding variable-length sequenced output.

To deal with such sequence modeling tasks, recurrent neural networks (RNN) were
proposed [22]. The idea behind RNN is to share parameters in different parts of the
model which guaranteed to extend or apply the model to data of different lengths or
more general, different forms. This idea could be applied in convolution layers across
1-D temporal sequences, but compared to RNN it is rather short in temporal modeling,
which means the output is usually related to several neighbor inputs, while RNN theo-
retically allows its output to be related with a long-range of previous input sequences.

To explain the RNN, here in this section we used computational graphs. We first
introduce a classical recurrent process as shown in figure 3.6. The process can be repre-
sented as the following formula. It is recurrent because the definition of state s at time
t is the same as the definition of the previous state s−1 at time t1. They share the same
parameters θ
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Figure 3.6: A computational graph for a classical recurrent process, from [1]

s(t ) = f
(
s(t−1);θ

)
(3.5)

To adapt to the realistic problem, where we expect the current state to be influenced
by both the previous states and the current input, we introduce the following model
shown in figure 3.7.

Figure 3.7: The left is a simplified/circuit diagram for a recurrent network without outputs. The right is the
unfolded version of the left, from [1]

In this case the input x at time step t is given to the state h at time step t. In RNN, those
states are called hidden states because they are not observed. The formula becomes

h(t ) = g (t ) (x (t ), x (t−1), x (t−2), . . . , x (2), x (1))
= f

(
h(t−1), x (t );θ

) (3.6)

It can be seen that the current hidden states h at time t is related to all previous input.
In practice, RNN will add a layer of output o, utilizing hidden states for prediction as an
example shown in figure 3.7.

According to the computational graph of the RNN in figure 3.8, we could see some
insights into the difficulties of updating parameters U, W, V. On one hand, the param-
eters can only be updated when a total sequence is completely processed. Besides, for
long-hidden state chains, the derivative can easily become zero or infinite, which is often
known as the gradient vanishing or explosion problem [11].

The standard RNN introduced in this section has limitations in long-range relation-
ship learning. Specifically, for long-range relationship learning, the gradient explosion
or vanishing problem might be caused in the following three situations.

• A. Some early observations in the sequences are very important which makes their
gradient too large and then impacts the latter gradient.
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Figure 3.8: An example of RNN model, from [1]

• B. There will be some uninformative input in the middle of sequences.

• C The sequences might consist of several different logical chunks.

Correspondingly, to resolve the gradient explosion or vanishing problem, we would like
to add some techniques that could store some early important information, skip unin-
formative input and reset the internal state while it is necessary.

3.5.1. GATED RECURRENT UNITS
To improve the long-range relationship learning of RNN models, Gated Recurrent Units
were proposed [23, 24].

GRU achieved the above functions by adding gating mechanisms. As shown in figure
3.9, given a previous hidden state and current input, the reset gate determines how much
we preserve the previous hidden state Ht-1 in the candidate hidden state Hat Ht. The
update gate determines in the final calculation of the current hidden state Ht, what the
proportion is the previous state and the current candidate state. Specifically, this process
can be represented as

Rt =σ (Xt Wxr +Ht−1Whr +br )

Zt =σ (Xt Wxz +Ht−1Whz +bz )

H̃t = tanh(Xt Wxh + (Rt ¯Ht−1)Whh +bh)

Ht−1 = Ht−1 ¯Zt + (1−Zt )¯ H̃t

(3.7)

Where Wxr ,Whr ,br are weights and bias for reset gate, a Wxz ,Whz ,bz are weights and
bias for update gate, Wxh ,Whh ,bh are for hidden forward process. The activation func-
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Figure 3.9: An illustration for Gated Recurrent Units, from [11]

tion makes the values of reset gate vector falls in interval [0,1], the t anh function promises
the candidate vector falls in interval [-1,1].

When there are some important early states, the reset gate can promise in candidate
hidden states, the new input will occupy a smaller proportion. If uninformative input
occurs, the update gate could just discord the new input information. When different
logical chunks occur, reset gate could help to increase the input proportion and the up-
date gate could help reduce the proportion of the old state.

3.5.2. LONG SHORT-TERM MEMORY
Similar to GRU, as shown in figure 3.10, Long Short-Term Memory(LSTM) [24] is also
proposed to resolve gradient vanishing and explosion in learning of long-range temporal
relationships but with a more complex design. Comparable with functions of reset and
update gates in GRU, three gates, including input gate It, output gate Ot and forget gate
Ft, are implemented in LSTM. Their calculations are shown as following

It =σ (Xt Wxi +Ht−1Whi +bi )

Ft =σ
(
Xt Wx f +Ht−1Wh f +b f

)
,

Ot =σ (Xt Wxo +Ht−1Who +bo)

(3.8)

where Wxi ,Wx f ,Wxo ∈Rd×h and Whi ,Wh f ,Who ∈Rh×h are weight parameters for input,

forget, output gate respectively and bi ,b f ,bo ∈R1×h are bias parameters.
A gated memory cell Ct is introduced into LSTM to determine how much to add new

information. This cell is in shape the same as hidden states, thus it is sometimes re-
garded as a special form of hidden states. Similar to candidate hidden state in GRU, In
LSTM, a candidate memory cell Ĉt is computed by
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Figure 3.10: An illustration for Long Short-Term Memory, from [11]

The information in the current state of the memory cell Ct is determined by the input
gate, which controls the amount of additional new information stored in the candidate
hidden states, and the forget gate, which decides the remaining proportion of the old
memory cells. Then the final calculation of the current hidden state Ht is defined by the
output gate dot product with the current memory cell activated by tanh function. To be
specific, this can be shown as

Ct = Ft ¯Ct−1 + It ¯ C̃t

Ht = Ot ¯ tanh(Ct )
(3.9)

3.6. TRANSFORMER
In this section, we would like to introduce the transformer, a replacement for sequential
RNN models that struggle from costly training due to long-time dependency. The trans-
former is a sequence-to-sequence (S2S) architecture that only employs self-attention
blocks [25] for sequential learning. It was originally proposed for natural language tasks
but is now pervasively applied in all kinds of deep learning tasks. The next few sections
will explain the basic operation of transformers: self-attention operation and multi-
variable version: multi-head self-attention. Then we introduce how to leverage posi-
tion information through positional coding techniques. Finally, we introduce a common
encoder-decoder structure to build a transformer.

3.6.1. SELF-ATTENTION
The core technique behind transformers is the self-attention mechanism and is inspired
by the attention mechanism of humans. Biologically, attention is a limited resource. For
example, at each second, humans receive massive sensory input from eyes, ears, and
other sensory organs, but humans usually focus on a very small piece of sensory data
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such as an image. This important technique is learned in evolution because not all input
data are equally important for surviving [11].

Figure 3.11: Inspiration of Attention Mechanism from human to machine, from [11]

In [26], attentional cues that direct how humans arrange attention are divided into
two different types, nonvolitional cue, and volitional cue. Nonvolitional cue is based on
how salient and conspicuous an object is, while the volitional cue is task-dependent. For
example, as shown in the upper subimage of figure 3.11, there are five objects in the right
column, and in the middle, the cup of coffee is conspicuously red as other objects are not
colored. This feature (color) which shows saliency and conspicuity of the cup coffee is a
nonvolitional cue. However, because our task is to read a book, our attention is directed
by this idea to find a book for this task and this task-dependent idea is a volitional cue.
Translating this idea in the context of the machine attention mechanism, queries are
volitional cues and on a certain query, we use keys (nonvolitional cue) to find the suit-
able values (objects like a book) to generalize the output (accomplish the task: reading a
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book), as shown in the bottom sub-image of figure 3.11.
Self-attention is generally a weighted average sequence-to-sequence operation. The

calculation can be shown as follows

qi = Wqx i ki =W kx i v i =W v xi

w ′
i i = q>

i kj

wi j = softmax
(
w ′

i j

)
yi =

∑
j

wi j v j

(3.10)

Where qi ,ki , vi , xi , yi means the i−th query vector, key vector, value vector input and
output vector, weights for self-attention or weighted average operation are generated by
the dot product of query vector and key vector. As shown in figure 3.12, a random i − th
input vector will be used in three ways, form the query vector for i − th output, form the
key vector, and value vector for every output.

Figure 3.12: Illustration of the self-attention calculation, query vector colored red, key vector colored blu and
value vector colored green, from [27]

3.6.2. MULTI-HEAD SELF-ATTENTION
Sometimes researchers would like to train more than one group of key, query, value pa-
rameters to learn different properties. In this case, multi-head attention (MHA) is useful.



3.6. TRANSFORMER

3

25

We could train two groups in parallel and concatenate them after the attention operation
and reduce dimension to suitable numbers by final fully connected (FC) layer as shown
in figure 3.13. It is also possible to cut input into several chunks and assign correspond-
ing groups of k,q, and v parameters for them.

Figure 3.13: Multi-head illustration of self-attention,from [11]

3.6.3. POSITIONAL CODING
In many sequential tasks, we would like to use self-attention in an autoregressive way,
which means we expect output at time step i is only related to previous input (time < i ).
To achieve this, we could multiply the weights of self-attention by a masking vector as
shown in figure3.14, weights that are used to future input compared to output are ar-
ranged to zero. As the self-attention operation itself does not consider position infor-
mation/sequence order, we usually add positional coding to mark the positions for each
input vector [].

Figure 3.14: Masking operation to use self-attention in an autoregressive way,from [27]

3.6.4. ENCODER-DECODER STRUCTURE OF TRANSFORMERS
The transformer encoder-decoder structure proposed in [25] is shown in figure 3.15. The
Encoder consists of n repeated blocks in the left dotted frames. Each encoder block con-
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tains two sublayers. The first sublayer consists of a multi-head attention layer and an
add & norm layer. The second is composed of an FFN layer and an add & norm layer.
The add & norm layer is used to add a residual connection followed by a layer normal-
ization, which helps to train deep neural networks faster and more accurately. The input
is first converted to embeddings by convolutional layers and the positional encoding is
added to the input embedding before being fed to the encoder.

The design of the decoder is very similar to the encoder. The decoder also consists of
n repeated blocks in the right dotted frames. Each block consists of three sublayers, two
sublayers are the same with encoder and one sublayer consisting of masked multi-head
attention and an add & norm layer. The middle sublayer is also called encoder-decoder
attention whose queries are from the previous decoder sublayer but keys and values are
from the encoder. The masked multi-head self-attention is allowed to reach future posi-
tions and the masking ensures that the later encoder-decoder attention would not reach
those future positions.

During the training of this transformer structure, the encoder attention receives a
preprocessed input embedding sequence and maps it to a latent embedding sequence.
This latent embedding sequence is passed to the encoder-decoder attention as key and
values. Meanwhile, the masked decoder attention received preprocessed embeddings
and map it to another latent embedding and passed to encoder-decoder attention as
queries. The decoder then uses them to generate desired sequences. The softmax al-
gorithm in the FC layer is applied and a loss function of cross-entropy is adopted to
compare final decoder sequences and labels to update transformer parameters.
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4
PIPELINE OF CONSTRUCTING

LANGUAGE MODELLING SYSTEM

FROM RAW SPEECH

In this project, we develop a pipeline method to construct a language modeling system
from raw speech. The pipeline consists of three components, the self-supervised frame-
level speech representation module which encodes the raw audio into frame-level rep-
resentations. The unsupervised segment learning module learns the segment represen-
tations and clusters those segment representations into pseudo-phonemes. The first
two components are together called pseudo-phoneme encoders. Finally, the pseudo-
phoneme sequences are used to train the language model module. In the next few sec-
tions, we will introduce those components in more detail.

4.1. PSEUDO PHONEME ENCODER

In phonetic linguistics, a word is often represented as a string of phonemes, as an
example of the Transcription column shown in table 4.1. A phoneme (examples shown
in first row in 4.1) is a speech sound and is defined as the smallest unit to change a word
to another [1]. Generally, a phoneme in speech signals lasts from 5ms to hundreds of ms.
The International Phonetic Alphabet (IPA) is a standard phonetic alphabet developed
for most languages in the world, and there are many other alphabets, such as ARPAbet
[2] for American English, developed for a more compact phonetic alphabet for certain
languages.

In our problem, a low-resourced context is given, while we assume the speech data is
from a language without any text resources. The goal of the pseudo-phoneme encoder
is to construct a pseudo-phoneme alphabet with discovered phoneme-like units that
are able to used by language models distinguishing different words and learn high-level
linguistic knowledge for an unknown language. Our idea of discovering such phoneme-
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Symbol Word Transcription
[zh] ambrosia [ae m b r ow zh ax]
[l] licorice [l ih k axr ix sh]
[w] kiwi [k iy w iy]
[r] rice [r ay s]

Table 4.1: Examples of ARPAbet phone symbol transcription to represent words,from [1]

like units is first to divide a speech audio into segments with boundaries close to true
phoneme boundaries of the language, while neighborhood segments should be discrim-
inative to each other. Then, we cluster those segments into pseudo-phoneme units.

To achieve this idea, we develop an phoneme encoder consists of a frame-level rep-
resentation learning method, which is responsible for generate frame-level representa-
tions which are discriminative to each other when they belong to different phonemes,
and a segment-level clustering module to learn segments, constrained by reliable bound-
ary lables, from previous frames and cluster the segments into units.

The next two sections will introduce the frame-level representation learning method
and segment-level clustering method we investigate in our project.

4.2. SELF-SUPERVISED SPEECH FRAME REPRESENTATION LEARN-
ING

In our spoken language modeling system, the first step is to transform the raw audio
input into frame-level speech representations, which preserves the content of the speech
utterance and eliminates other information as much as possible. This step is done by a
self-supervised speech frame representation learning module.

In the next few subsections, we will briefly review the background of speech rep-
resentation learning. Then an introduction for self-supervised speech representation
learning and the two self-supervised speech representation learning methods we inves-
tigated in our pipeline method will be given.

4.2.1. SPEECH REPRESENTATIONS

Figure 4.1: An illustration of the sound waveform of phoneme in the air, from [1]

The raw speech audio is a complex series of continuous changes in air pressure gen-
erated by human vocal organs [1], as shown in figure 4.1. To record human speech in
machines for analyzing and processing, speech receivers such as microphones convert
the raw audio into analog electric signals and digitize those signals by sampling and
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quantization. As frequencies of general human speech information are below 10k Hz,
according to Nyquist rules, the sampling rate of 20k Hz is enough and the 16k Hz sam-
pling rate is widely applied in practical applications. After digitizing, 1-second speech
audio is represented by 16k sampled values.

The performance of machine learning tasks highly depends on input features. In
machine learning tasks for speech processing and analyzing, more informative and com-
pact speech features, also called representations, compared to sampled audio values are
expected. Traditionally, characteristics of speech in the frequency domain and percep-
tual domain (pitch, loudness) are utilized for building more informative and compact
representations. A general procedure of constructing such representations [3] is

• A. slice speech signals into short-term frames, for example, 10ms frame with 50%
overlapping and a 30ms window.

• B. Perform some calculations on each speech frame such as energy computing.

• C. (optional) Perform some calculations on a batch of short frames to obtain long-
term features. For example, we would like a feature containing the content of a
word. In this case, we may need to combine hundreds of short-term frames to
generate one feature.

Simple speech representations such as log-energy, zero-crossing rate, and complex ones
such as Mel-frequency cepstral coefficients (MFCC) are popular traditional features for
speech-related tasks. For decades, feature engineering where experts manually design
features like the above ones by leveraging characteristics of speech, and designing classi-
fication or prediction models considered separate problems. However, feature engineer-
ing usually requires a lot of labor. Researcher expect a less hand-crafted way to obtain
features for downstream tasks. Then, in 2006, a work of training deep neural networks
for representation learning automatically appeared[4] and was soon followed by large
amount of research in representation learning with deep models. In speech processing
area, the success of representation learning methods with DNNs first appeared in de-
creasing word error rate (WER) on ASR task [5]. Since then varied deep architectures
were applied in speech representation learning.

4.2.2. SELF-SUPERVISED SPEECH REPRESENTATION LEARNING
Deep models for speech representation learning can be trained in different ways such
as supervised, unsupervised, and self-supervised. Supervised deep learning can learn
well-fitted representations for certain tasks. However, manuel labels are required and for
speech data, annotations are usually expensive and scarce, especially for low-resource
languages.

Self-supervised learning is a particular type of learning method, which do not need
labels for training a model. Figure 4.2 shows an illustration of how self-learning tasks
are constructed. In general, the strategy of self-supervised learning is to used one part of
input data as labels (pale-blue data) and train the network predict this part from other in-
put data (light-purple data). The loss functions are calculated between predicted output
and labels made by part of data. This strategy has been widely used in time-series data
representations (predict the data of a certain moment from other moment, future from
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Figure 4.2: A summary of self-supervised learning constructing manners, from [6]

past or past from future). In self-supervised speech representation learning, common
tasks are usually constructed in an autoregressive manner, by using the past to predict
the future [7, 8].

In the context of self-supervised speech representation learning, the prediction per-
formance of self-supervised tasks/pretext tasks is often not important. What we care
about is the learned representation. Specifically, we concern if the learned intermedi-
ate representation can capture expected linguistic knowledge, structural or contextual
information and if those representations can perform well in downstream ASR or other
speech understanding tasks. In the next two subsections, we will introduce two self-
supervised structures, wav2vec 2.0 and contrastive predictive coding, with which we ex-
perimented within our system.

CONTRASTIVE PREDICTIVE CODING

The Contrastive Predictive Coding (CPC) model overview is shown in figure 4.3 [9]. The
input raw audio data are transformed into a compact latent space by encoder genc . Then
the encoded representation z is fed into the autoregressive model gar to generate con-
textualized representation c. The autoregressive models use context representation at
the present time step to predict the encoded representation in several future steps (pos-
itive example).

In practice, each future step prediction corresponds with one predictor and a loss
function. Each future prediction is compared to several irrelevant predictions, in which
the autoregressive models use context representation at present time step to predict the
encoded representation in random selected time steps (negative examples). The goal is
to generate representations that are highly related with neighboring future representa-
tions and highly unrelated with distant random representations. To train this end to end
model, the Noise-Contrastive Estimation is used for the InfoNCE loss function, which
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Figure 4.3: Illustration of Contrastive Predictive Coding framework which learns contextualized speech
representations, from [9]

can be shown as

LN =−E
X

[
log

fk (xt+k ,ct )∑
x j ∈X fk

(
x j ,ct

)]
(4.1)

wherein the numerator is the t + k step prediction result with the kth prediction
function. The denominator is the sum of prediction results of ct with other random time
step representations. The intermediate representation z and c can be used in different
downstream tasks and the contextualized ones are recommended for speech recognition
representation.

WAV2VEC 2.0
The diagram of Wav2vec 2.0 [7] is shown in figure 4.4. The convolutional neural net-
works referred to as CNN, encode the raw audio signals into latent speech representa-
tions. These representations are then passed to a masked transformer network to embed
context information into the speech representations. In the meantime, the model learns
to quantize these latent representations to form two quantizer codebooks. Each code-
book contains hundreds of entries which are called discrete units. Two codebooks are
used to enable product quantization, which is used in the prior work of wav2vec2 and
shown to result in better ASR performance. The self-supervised task or, in this case, the
contrast task is to distinguish the true discrete unit (positive) from the distracted ones
(positive).

The loss function consists of two parts, contrastive loss and diversity loss with a
tuned hyperparameter α

L =Lm +αLd (4.2)

The goal of optimizing contrastive loss is to distinguish true quantized latent rep-
resentation q at time t (in the numerator) with other K uniformly random-selected dis-
tracted latent representation (in the denominator). The calculation of the contrastive
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Figure 4.4: Illustration of wav2vec 2.0 which learns contextualized speech representations using quantized
speech units, from [7]

loss is following

Lm =− log
exp

(
sim

(
ct ,qt

)
/κ

)∑
q̃∼Qt exp

(
sim

(
ct , q̃

)
/κ

) (4.3)

where sim represents the similarity calculation.

sim(u, v ) = u>v/‖u‖‖v‖ (4.4)

There are two codebooks with hundreds of entries each in the wav2vec 2.0 model. To
encourage two codebooks to be learned differently and entries to be used in an equal
way, the diversity loss is calculated by maximizing the entropy of the averaged softmax
distribution of codebook G over the codebook G and entry V.

Ld = 1

GV

G∑
g=1

−H
(
p̄g

)= 1

GV

G∑
g=1

V∑
v=1

p̄g ,v log p̄g ,v (4.5)

4.2.3. SPEAKER-INVARIANT SPEECH REPRESENTATION LEARNING
The above two self-supervised structures do not specifically aleviate speaker informa-
tion, but speaker information is shown as a harmful noise in speech recognition tasks
[10]. In this section, we will introduce the model that we used to learn speaker-invariant
speech representations.

4.2.4. FACTORIZED HIERARCHICAL VARIATIONAL AUTOENCODER
Speech is usually considered stationary in short frames (10-30ms), but many noise might
be stationary in a longer segment. This means the speech information are encoded in
frame levels but noisy information are encoded in segment or utterance levels. Thus if
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Figure 4.5: Illustration of the factorized hierarchical variational autoencoder, from[11]

we could factorize the speech into different levels in a suitable way, it is possible to ex-
tract or disentangle solelyclean speech from noise information signals. The illustration
of how factorized hierarchical variational autoencoder (FHVAE) [11] works is shown in
figure 4.5. The encoder in the yellow box learns to generate two types of latent repre-
sentations z1, z2 from sequential data with a factorized hierarchical graphical model. As
an example in figure 4.5, a clean utterance (reference speaker) and a noisy one (noisy
speaker) are fed to the encoder and the encoder learns to encode linguistic content into
z1 and speaker-noise content into z1. The decoder model is designed to replace the
noisy z1 with clean z1. Noisy speech representation z1 and clean z2 are combined to
form a new denoised clean output speech utterance containing the speech content of
original noise utterance.

4.3. UNSUPERVISED SPEECH SEGMENT UNIT LEARNING
As mentioned in previous sections, our pseudo-phoneme encoder consists of a frame-
level representation learning method and a segment-level clustering method. After frame
representation learning, we use the segment-level clustering method to discover pseudo-
phonemes from frame-level speech representations, preparing for later language mod-
eling. In this chapter, we will introduce our three-step segment-level clustering method
to learn unsupervised speech segment units from speech frame representations.

As shown in figure 4.6, we first construct a self-supervised boundary detector, con-
sisting a phone boundary learning with two additional voice activity detection modules
(VAD), to detect boundary labels. Then we use the averaging to obtain segment-level
representations and finally we use Kmeans-50 Clustering to generate pseudo-phonemes.
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Figure 4.6: An overview of segment level clustering in our pipeline method

4.3.1. BOUNDARY DETECTOR
In our system, we employ self-supervised boundary detection [12] as our framework of
boundary detector. This architecture was the state-of-art boundary detection algorithm
in TIMIT and Buckeye dataset by the beginning of our project, but has now been slightly
surpassed currently by [13].

Figure 4.7: overview of the self-supervised boundary detection method, from [12]

As shown in figure 4.7, the system contains an encoder which encodes speech x1, x2, ....
into frame-level representations z1, z2, ..... This system was optimized on a contrast loss,
in which lower loss is obtained when the current frame z1 is close to the one neighbor
frame z2 and far from some random selected frames. This model is very similar to the
contrast predictive coding architecture but it do not apply autoregressive models(AR).
This is because researchers found applying AR will decrease the performance of bound-
ary detection tasks. By using the contrast loss, the system encourages speech represen-
tation z1 to be learned similar to the next step speech representation z2 and unsimilar to
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a randomly selected set of speech representations. The loss function can be shown as

D (zi ) = {
z j : |i − j | > 1,z j ∈ z

}
L̂ (zi ,DK (zi )) =− log

esim(zi ,zi+1)∑
z j ∈{zi+1}∪DK (zi ) esim

(
zi ,z j

)
L = ∑

x∈S

∑
zi∈ f (x)

L̂ (zi ,DK (zi ))

(4.6)

where D(zi ) represents the random negative example set and the similarity is calcu-
lated by

sim(u, v ) = u>v/‖u‖‖v‖ (4.7)

The boundary is determined by a peak detection algorithm [14] among the disimilar-
ity score. The hyperparameter prominence, which measures how far a peak stands out
from the lowest contour line of a signal, is automatically optimized by compare network
prediction and validation label using a chosen metric such as precision. It could also be
hand-crafted after the training.

score(zi ) =−sim(zi ,zi+1) (4.8)

4.3.2. REMOVAL OF SILENCE SEGMENTS
In terms of the VAD, in practice we found too many silence frames in the inpur will lead to
performance decrease in phone boundary learning. Thus we need a preprocessing step
to remove silent segments in the input. In our project, a voice activity detector (VAD)
is used to detect the silent frames and generate speech-present/unpresented labels. We
use those labels to cut out the silent audio in the input. The VAD algorithm applied in
our system is an unsupervised segment-based method for robust voice activity detection
(rVAD) [15] because it is current state-of-art unsupervised VAD method in Aurora, one of
the commonly used dataset for silence recognition [16].

As an overview shown in figure 4.8, rVAD consists of two denoising steps/passes and
a voice activity detection step. In step 1, high-energy speech segments are detected by
a SNR estimation method, posteriori signal-to-noise ratio weighted energy difference
(pSNRD). Then, detected noise is set to zero. In step 2, these segmentations are en-
hanced to remove the remaining noise by minimum mean-square error (MMSE). In step
3, the enhanced segments were extended to include voiced sounds, unvoiced sounds,
and the pSNRD is used again to detect voice activity. In this process, the enhanced seg-
ments are used as anchors for detecting speech in other unprocessed sounds, which is
more efficient in processing large amount of data. Labels of 1 (speech present) and 0
(not presented) indicates the preserving or cutting out of speech data in our system.

In our system, we use voice activity detectors (VAD) in advance to remove large si-
lence segments (>80ms). This is to avoid removing low-energy speech sounds. Instead,
the post-VAD is used to check if there are still boundary labels inside shorter silence seg-
ments (<80ms). If yes, remove it.
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Figure 4.8: Overview of the voice activity detection of rVAD, from [15]

4.3.3. AVERAGING

Downsampling and averaging are two common segment learning methods. However, as
downsampling usually leads to increasing of dimensions of the representation. Consid-
ering that our representations are already 512 dimension, we prefer averaging method in
case increasing dimensions cause higher difficulty for latter clustering. Thus we chose
the averaging as our segment learning method.

As shown in figure 4.9, the averaging process in our system is that given the frame
representation z1, ..., zn and boundary labels which indicate the boundary frame with
label 1 and others with label 0, the frame representations between two boundary labels
are averaged equally to form segment representations s1, ..., sq .
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Figure 4.9: illustration of averaging process in our method

4.3.4. KMEANS CLUSTERING
In the third step of segment-level clustering, we need the Kmeans algorithm to cluster
segment representations into pseudo-phonemes. As an example shown in figure 4.9,
given a certain distant function such as euclidean distance, the K-means clustering pro-
cedure is calculated as follows:

• Initialize cluster centroids randomly.

• Repeat the following two steps until conditions are satisfied or until convergence:
A. For every point i, set its cluster label c to be the closest cluster centroid

c(i ) := argmin
j

∥∥∥x(i ) −µ j

∥∥∥2
(4.9)

B. For each cluster j, set the new centroid in this cluster to be the center of all new
points in this cluster

µ j :=
∑m

i=1 1
{
c(i ) = j

}
x(i )∑m

i=1 1
{
c(i ) = j

} (4.10)
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Figure 4.10: Illustration of how a Kmeans-2 clustering is constructed in steps from (a) to (f), from [1]

4.4. LANGUAGE MODELS
Language models are also called probabilistic language models because they assign prob-
abilities to judge how probable can the sequences of linguistic units (such as words,
characters) be seen in the training dataset. Given some previous context information
of a sequence, language models can predict the next linguistic unit. The N-gram model
is the most popular traditional language model. This model estimates the probability
model of the current linguistic unit over up to n of previous units. Recently, in language
modeling tasks, state of art results are achieved by RNN-based or Transformer-based
language models, which have the advantage of the unfixed size of the previous context.

There are two types of evaluation of language models, extrinsic and intrinsic evalu-
ation [1]. Extrinsic evaluation means evaluating different language models in a certain
context of application and see how much performance improvement can be brought by
new language models. This is also the most popular evaluation. For example, in wav2vec
2.0 [7], LSTM language models and 4-gram models are compared by comparing the ac-
curacy of speech transcriptions. This is usually cost-inefficient as it requires running
large end-to-end models several times. Another option is intrinsic evaluation, which
measures intrinsic characteristics could be obtained directly from LMs and indepen-
dent of any other application such as perplexity, which calculated by normalized inverse
probability of test dataset.

In our spoken language modeling system from raw speech, we use pseudo-phonemes,
a self-defined language annotation to train language models. Following the setting of the
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ZeroSpeech Challenge 2021, where LSTM and BERT are applied in the baselines of dif-
ferent GPU budgets, we also explored these two architectures in our system for scenarios
of different GPU budgets. We will give an introduction to these two language models in
the next two subsections. Perplexity metric varies with the granularity of the training
data fed into language models. In our context, this metric varies with the time intervals
between each discrete unit. This time interval can be of any time length, determined
by the discrete unit encoder or pseudo-phoneme encoder in our case. Thus different
spoken language systems cannot be compared using the perplexity scores. To resolve
this difficulty, Zerospeech 2021 proposed their language modeling evaluation metrics
in which four discrimination tasks with corresponding datasets are used to evaluate the
language models at four linguistic levels. Those evaluation metrics are explained in more
detail in chapter 5.

4.4.1. DNN BASED LANGUAGE MODELS

RNN-based language models especially LSTM-based and transformer-based language
models are current state-of-art models for natural language processing (NLP) [17, 18].
However, in what situation should we choose one of the mentioned two models is still an
open question, depending on datasets and tasks. A general assumption is that transformer-
based architectures have potential to be trained with much larger amount of input data
[18] and parameters to obtain better performance than other language models. While
under the context of a small dataset (thousands of utterances) for text classification
problems[19], some results shows that LSTM performs better than transformers. In our
case, we mainly consider a low-budget scenarios, with fewer than 60 hours on an V100
GPU required for language training, the dataset for training language model contains 960
hours speech data. A pair of low-budget LSTM and comparable-scale BERT are provided
forthis scenario and we also explore both structures in our projects. In this section, we
will introduce the basic concepts of the two language models used in our experiments.

LSTM

As shown in figure 4.11 [20], given a LSTM unit on the left, a general LSTM-based lan-
guage model contains an input layer, output layer, hidden layer, and projection layer
(optional). In the input layer, the linguistic units are generally encoded by 1-of-K coding
where K is the number of types of a certain linguistic unit (if K is a phoneme, K is the
number of the type of phonemes). In the right of the figure 4.11, the input layer encode
an input as "1" Softmax activation function with cross-entropy loss is often used in the
output layer to produce probabilities in the output layer. Hidden layers consist of sev-
eral LSTM units to learn linguistic knowledge, and the projection layer is usually used to
normalize/standardize the input.

LSTM based models are relatively harder to use hardware acceleration compared to
transformer based models. Thus time cost of training LSTM with the same parame-
ters are usually higher. Transformer-based models, in the opposite, can be easily im-
plemented in a parallel way. Int the Next section, we will introduce the most popular
transformer based models, BERT [21] in natural language modelling tasks.
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Figure 4.11: lstm-based natural language model architecture. The left represents an LSTM unit and the right is
the LM overview, from [20]

BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS

BERT stands for Bidirectional Encoder Representations from Transformers [21], which is
proven to achieve great performance on many language-based tasks and is now a default
model for NLP research. The core of BERT is a stack of transformer blocks.

Figure 4.12: General working procedure of BERT. First, pre-training of masked LM is done by feeding
unlabeled text data, then a downstream task training is used to fine-tune the BERT, from [21]

A general workflow of BERT is shown in figure 4.12. Pretraining BERT in a certain
unsupervised way and then fine-tune BERT with labels for downstream tasks such as
Question- Answer System. There are two different tasks can be used in pretraining. Next
Sentence Prediction (NSP), focusing on understanding semantic relationships between
two sentences, and Masked LM, for language modelling. In our project, we only use
the BERT for training language models with Masked LM task, so fine-tune step is not
performed. Specifically in our task, we mask part of the input randomly, and then predict
those masked part.
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5
EXPERIMENTS AND RESULTS

In our project, our goal is to learn and leverage advanced speech techniques to build a
spoken language modeling system from raw speech. We plan to construct our system by
modifying the ZeroSpeech 2021 baseline. Specifically, we replace the discrete unit en-
coder in the baseline with a designed pseudo-phoneme encoder, which is the potential
to generate phoneme-like units. We would like to investigate if applying this pseudo-
phoneme encoder in our spoken language modeling system can improve the baseline
system.

Besides, our pseudo-phoneme encoder relies on the frame-level representation learn-
ing module applying the CPC technique. If we could find representation learning mod-
ules that can achieve better language modeling performance, we might be able to con-
struct a better pseudo-phoneme encoder. We thus proposed two potential replacements
(wav2vec2 and a speaker-invariant CPC) for CPC and we plan to explore if they could
bring better language modeling performance compared to CPC in the experiments.

Moreover, we would like to test if our pseudo-phoneme encoder is transferable across
different languages and we plan to use Mboshi for testing the transferability.

Based on the above ideas, we set up four research questions and four corresponding
experiment series. In this chapter, we will first present datasets and evaluation metrics
involved in the four experiment series. Then in the next four sections, we will explain the
experiment content, settings, and results for each experiment series.

5.1. DATASET
To construct the language modeling system from raw speech, we use LibriSpeech 960h
dataset (460h clean and 500 noisy English speech) [1] and clean-6k version of the Libri-
light [2] dataset (6kh hours English speech). These two datasets only contain raw speech
and thousands of speaker labels. Besides, a 10 minutes Libri-light labeled dataset is used
in the experiments of the pseudo-phoneme encoder, to evaluate the boundary detection
performance of the boundary detector. Moreover, Zero speech challenge 2021 provides
access to its Benchmark evaluation dataset [3]. In our project, the Libri-light ABX dataset,
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sWUGGY dataset, and sBLIMP dataset are used for the language modeling evaluation at
acoustic, lexical, and syntactic levels.

In terms of transferability experiments, we use the Mboshi (Bantu language spo-
ken in Congo-Brazzaville) corpus [4] consists of 5k speech utterances (approximately
4 hours of speech) with text translations in French and phonetic speech translations.
The Mboshi dataset provides a test set of 0.5k utterances with high quality of phoneme
transcription (golden standard) and a training set of 4.5k utterances with relatively lower
quality of phoneme transcription (silver standard).

5.2. EVALUATION METRICS

5.2.1. EVALUATION METRICS FOR LANGUAGE MODELING AT THREE LINGUIS-
TIC LEVELS

In our project, we will use the following three discrimination tasks to evaluate the speech
understanding of the language modeling system at three linguistic levels.

In acoustic Level, the system has to judge whether two input audios, while each con-
tain a triphone such as ’apa’ each and this two only differ in the middle phoneme), have
the same phoneme in the middle or not. The ABX metric is to access acoustic level.
Given a and x, which are tokens belonging to the same triphone group A (of cardinality
nA) and b belonging to a different triphone group B (nB ), we compute the ABX score as
following

ê(A,B) := 1

nA (nA −1)nB

∑
a,x∈A
x 6=a

∑
b∈B

[
1d(b,x)<d(a,x) +

1

2
1d(b,x)=d(a,x)

]
(5.1)

This score is computed and normalized across all possible pairs from different triphone
groups. If the wrong case happens, when the distance between b and x is not larger than
the distance between a and x, the score will increase. Thus, lower ABX scores mean fewer
wrong discrimination cases and better acoustic level performance and the ABX score is
between [0,1].

At the lexical level, the system needs to judge if the word in the input audio is an ex-
isted word or a man-made non-word. Similarly, at the syntactic level, the system needs
to judge whether a sentence in a speech utterance aligns with the grammatical rules of
the training language or not. To obtain the interpretable scores of the two levels, we
compute and compare the pseudo-probability of an input pair. At the lexical level, for
example, a pair of an existed word and a non-word are given to the Language model
to compute the pseudo-probability. In the correct case, the pseudo-probability of an
existed word should be higher than a non-word. The lexical score is calculated by aggre-
gating all correct cases divided by the number of all cases. A similar calculation is done
for the syntactic score, which is calculated by aggregating the number of correctly dis-
criminated grammar/non-grammar pairs divided by the number of all input pairs. Thus,
higher scores mean fewer wrong discrimination cases are preferred for both lexical and
syntactic levels. Both scores are within the range of [0,1].
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5.2.2. EVALUATION METRICS IN BUILDING THE PSEUDO-PHONEME EN-
CODER

The phoneme segmentation/boundary detection of the pseudo-phoneme encoder is
evaluated by following four commonly used boundary detecting metrics, Precision, Re-
call, F1 score, R-value, and a self-defined metric, limited precision. Precision, Recall,
F1-score are used to measure the performance of the phone segmentation. R-value is to
evaluate the degree of over-segmentation when input audio is segmented into too many
subcomponents (too many boundary labels where wrong ones are much more than cor-
rect ones). A higher R-value means lower over-segmentation. This limited precision is
a special version of precision eliminating multiple counting. Multiple counting means
when the differences between a true boundary time label and multiple predicted labels
all fit the tolerance, all of the multiple predicted labels are regarded as correctly pre-
dicted. Over-segmentation happens, but the precision and R-value score cannot detect
it. The limited precision will only count one predicted label as true and others are not
counted.

Those metrics are calculated in the following formulas, where tp represents true pos-
itive, FP represents false positive, fn represents false negative, tp(limited) represents true
positives which have a one-to-one corresponding true label in the ground truth.

P = Precision = t p

t p + f p

LimitedPrecision = t p(l i mi ted)

t p + f p

R = Recall = t p

t p + f n

F1 = 2∗ P ∗R

P +R
OS = R/P −1

R-value = 1− |r1|+ |r2|
2

r1 =
√

(1−R)2 + (OS)2, r2 = −OS +R −1p
2

(5.2)

Higher scores of the five metrics are preferred, within the range of [0,1].

5.2.3. EVALUATION METRICS IN BUILDING SPEAKER-INVARIANT CPC
In experiments of speaker-invariant CPC. We need to evaluate if speaker information is
reduced in the speaker-invariant CPC representations compared to the original CPC rep-
resentation. We train an extrinsic speaker classification task for this evaluation. Specifi-
cally, two uniform speaker classification models are trained by the two different speech
representations, respectively. Lower classification performance means, using the certain
representation learning method, the speaker classification model is harder to recognize
speakers. This indicates there is less speaker information remained in the representa-
tions.

Simple classification accuracy, calculated by the number of correct predictions di-
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vided by the total number of examples, is used for evaluating the speaker classification
performance. In our case, lower classification accuracy indicates less speaker informa-
tion embedded in the representations.

5.2.4. THE BASELINE AND SHARED SETTINGS IN FOUR EXPERIMENTS
In this section, we give an introduction to the shared settings in four experiments. Espe-
cially, as the first three experiments all compared to the baseline performance and our
spoken language modeling system also utilized parts of the baseline, it would be helpful
to first explain the baseline in detail in this subsection.

The low budget baseline [3] in the ZeroSpeech 2021 is set as the baseline of the first
three experiments. The low-budget means 60 training hours on one V100 GPU for train-
ing language models (LSTM or BERT-small). The baseline is consisted of

• CPC-big+Kmeans50+LSTM

while the language models are with the following parameters:

Language Models L HD ED FFD H Number of Parameters
BERT-small 8 512 512 2046 8 28M
LSTM 3 200 1024 200 22M

Table 5.1: Paramters of LSTM and BERT-small

L is the number of hidden layers; Row in ED, HD, and FFD shows the dimension of
the embedding layer, hidden layer, and feed-forward layer respectively; H represents the
number of attention heads, in BERT-small architecture.

Training language models with LSTM and BERT-small all used the same hyperpa-
rameters follow [3]. In all experiments, the language models are trained with Librispeech
960h dataset. The language models are implemented by fairseq [5]. All experiments are
conducted with PyTorch [6] on TU Delft clusters with V100 GPUs. If without extra expla-
nation, the LSTM model is trained with a total batch size of 163k tokens, while The BERT
models were trained with a total batch size of 524k tokens. The learning rate for both
models was prepared to a peak of 1∗105.

5.3. EXPERIMENTS FOR APPLYING PSEUDO-PHONEME ENCODER
In this set of experiments, we want to answer the first research question: Could we use
a pseudo-phoneme encoder to improve the language modeling performance compared
to the baseline?

To answer this question, we first need to construct a pseudo-phoneme encoder con-
sisting of a frame-level representation learning method and a segment-level clustering
method. Then we train the language models with pseudo-phoneme sequences gener-
ated by our encoder.

To produce phone-like units, the pseudo-phoneme encoder should fulfill two re-
quirements: (1) Reliable boundary labels are obtained to divide speech into segments (2)
Segments are discriminative to each other when they belong to different phonemes/phonemes
sequences. As the CPC representations are shown to be discriminative to each other
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when belonging to different phonemes and close to each other when belonging to the
same ones (proved by very low ABX scores), the second requirement is satisfied while
the first is satisfied. Besides, In our project, we define reliable boundary labels as at least
three of the five phone segmentation scores calculated from the labels, are higher than
scores calculated by unit label boundaries in the baseline system. The pseudo-phoneme
encoder with reliable boundary labels is regarded as qualified and can be considered for
language modeling tasks.

The goal of the phoneme encoder is to generate phoneme sequences with which lan-
guage models can differentiate words and learn high-level linguistic knowledge. Thus, to
find the best encoder, we set up the BERT-small language model, to investigate different
settings of an encoder and choose one of the highest language modeling performances
as our final pseudo-phoneme encoder. Then, as with different settings of the encoder,
the generated pseudo-phoneme sequences can differ in size. This means the parame-
ters of the language models might need to be modified to get the best performance. Thus
we also adapted the language models to fit the low-budget criteria, to make our model
compared to the baseline.

In this experiment series, we compare boundary detection and language modeling
performance and for different settings of constructing the pseudo-phoneme encoder, to
select the best one. In addition, as acoustic level, ABX evaluation metric requires equal
intervals between each unit, yet our pseudo-phoneme sequences are of a variable inter-
val, so we only evaluate our system in the lexical and syntactic levels. Besides, during the
selection of the best pseudo-phoneme encoder, we only use lexical level evaluation as a
reference while selecting the best phoneme encoder, because the evaluation of syntactic
is time-consumption (at least 24 hours for each model).

5.3.1. SETTINGS

The pseudo-phoneme encoder investigated in the next section consists of the pretrained
CPC-big followed by a segment-level clustering method. The segment-level clustering
method includes a boundary detection CPC, trained by 100 hours of clean librispeech
data, with the same hyperparameters in [7], rVAD method (The hyperparameter of rVAD
is chosen to be 0.4), and a Kmeans clustering.

A series of different settings of the pseudo-phoneme encoder is explored to find the
best phoneme encoder. Specifically, (1) if a lower handcrafted prominence rather than
the default one is used (2) if a post-vad method is used are explored. The best encoder
is chosen when (1) the phone segmentation scores of the encoder are more reliable than
scores calculated by the unit boundary of the baseline. (2) the lexical performance is bet-
ter. To keep all models comparable to the baseline, kmeans-50 is chosen for all models.
Tolerance of 25ms is used to obtain the phone segmentation score.’

After we selected the best encoder, we adapt the language models for the best en-
coder to obtain the best language modeling performance. We finally chose the BERT-
middle architecture with a smaller batch of masked tokens at 160k, more training epochs
to form the final language modeling system compare to the baseline. The detailed pa-
rameters of the BERT-middle are in the following table compared to the standard low-
budget language model BERT-small. The only difference is we add up one more layer for
training.
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Language Models L HD ED FFD Number of Parameters
BERT-small 8 512 512 2048 28
BERT-middel 9 512 512 2048 31.5

Table 5.2: Parameters comparison of the language models used in the baseline and our pseudo-phoneme
encoder based system

5.3.2. RESULTS
In table 5.3, to select the best encoder as our pseudo-phoneme encoder, and our encoder
performs better on precision, R-value and limited-precision. The F1 scores of the two
models are very close.

Method Precision Recall F1 R-value LPrecision Lexical score
Baseline 0.60 0.96 0.74 0.40 0.30 0.61
Boundary CPC+vad 0.71 0.74 0.73 0.76 0.58 0.52
Boudary CPC+vad
(High recall, Low Prominence)

0.61 0.82 0.70 0.64 0.49 0.560

Boudary CPC+vad+postvad
(High recall,Low Prominence)

0.63 0.83 0.71 0.64 0.49 0.579

Table 5.3: Boundary detection and acoustic level performance with Tolerance 25ms

In table 5.3, we can see that compared to baseline, all three encoders perform better
on precision, limited precision, and R-value, and the encoder with default prominence
0.09 and vad method performs the best among three encoders. The best encoder, how-
ever, for language modeling is chosen to be BoundaryCPC+vad+postvad, with a promi-
nence at 0.02 who gives the best lexical scores among all other encoders. Compared to
all other three encoders, the best encoder performs better on recall scores.

Method Lexical Syntactic GPU Budget Practical GPU cost
Baseline 0.61 0.52 60 /
pseudo-phoneme encoder+BERT-small 0.579 0.51 60 fewer than 20
pseudo-phoneme encoder+BERT-middle 0.620 0.54 >60 47

Table 5.4: A comparison of language models with different clustered unit encoders and different LM scale on
960 hours training data

In ZeroSpeech 2021 Challenge, the GPU budget of Language models, which is the re-
quired highest training hours for language models, is used to determine if two models
can be compared to each other. When we train the language model with BERT-small,
which has a theoretical GPU budget of 60 in ZeroSpeech 2021, we actually use fewer
than 20 hours to get our model converged. This model gives a lower lexical and syn-
tactic performance than the baseline. Thus we investigated other size and parameters
of the BERT model as language models and finally chose BERT-middle and trained it
for 60 hours (converged at around 47 hours) for comparison. In this model, the lexical
and syntactical levels are shown to be better than the ZeroSpeech baseline, with 1.6%
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Methods dimension Traning data frame-interval Training cost
CPC-small 256 LibriSpeech clean-100h 10ms 60h 1GPU
CPC-big 512 Libri-Light clean-6kh 10ms 3d 8GPU
wav2vec2 base-960 512 LibriSpeech 960h 20ms 1.6d 64GPU

Table 5.5: The difference in parameters of the three representation learning method

System Pipeline for Language Modelling from Raw Speech
Chance random guess results for each evaluation
CPC-small CPC-small+Kmeans50+LSTM
Baseline CPC-big+Kmeans50+LSTM
wav2vec2+k50 wav2vec2+Kmeans50+LSTM

Table 5.6: Pipeline composition for three language modeling system in Experiments for RQ1

improvement in the lexical level and 3.8% improvement in the syntactic level.

5.4. EXPERIMENTS FOR REPLACING CPC WITH WAV2VEC2
In this set of experiments, we want to answer the second research question: Will apply-
ing a transformer-based different speech representation method (wav2vec 2.0) in the Ze-
roSpeech 2021 baseline system bring better language modeling performance in acoustic,
lexical, and syntactic levels?

We train the language models by replacing the CPC with the pretrained wav2vec
base-960 model and compare it to the baseline with the language modeling performance
at the three linguistic levels.

5.4.1. SETTINGS
In this experiment, we use the pretrained wav2vec2 base-960 model as our representa-
tion learning. As shown in table 5.5, training a wav2vec2 is very time-consuming, while
the wav2vec2 base-960 model was trained for 1.6 days on 64 V100 GPU. Thus in our sys-
tem, we only use the pretrained model rather than training from scratch. However, this
wav2vec2 model is trained with 960 hours of speech, while the baseline CPC is trained
with 6k hours of speech. Considering the amount of dataset that may impact the perfor-
mance, we also compare the language modeling system trained with CPC-small (trained
with 100 hours speech) [3] to the wav2vec2 model. The default frame-interval is 20ms
for the wav2vec2 model and we preserve the default settings.

In total, we compare the language modeling performance among the following four
systems in 5.6. The chance model is to indicate if the trained language model performs
better than a random guess for each linguistic level. The last three models differ only in
the representation learning method.

5.4.2. RESULTS
As shown in table 5.7, in the acoustic level (tested in clean/other dataset) and the lexical
level, wav2vec2 model-based LM performs worse than the baseline and the CPC-small.
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System Acoustic Scores Lexical Scores Syntactic Scores
Chance 0.49/0/50 0.5 0.5
CPC-small 0.10/0.14 0.55 0.51
Baseline 0.06/0.09 0.61 0.52
Wav2vec2 0.31/0.32 0.52 0.494

]

Table 5.7: Language modeling performance with our wav2vec2 model and other models)

Besides, according to [3], only when the performance of LMs is better than the chance
model can we describe an LM as available in modeling at a certain linguistic level. For
the wav2vec2 model, however, in this set of experiments, only acoustic and lexical per-
formance are better than chance models.

5.5. EXPERIMENTS FOR CPC WITH SPEAKER-INVARIANT TECH-
NIQUE

In this set of experiments, we want to answer the question: Will applying a post speaker
invariant method (FHVAE) to the CPC representation learning method bring better acous-
tic level performance?

In this experiment, we want to use FHVAE to remove the speaker information in the
CPC representations and we are interested in how this could improve the CPC repre-
sentations for acoustic performance. There are two sub-questions for this question. (1)
Can FHVAE be applied after CPC eliminates the speaker information in CPC represen-
tations? (2) Can FHVAE applied after CPC achieve better acoustic language modeling
performance?

We first trained the FHVAE with 512-dimension CPC representations as input to gen-
erate 280-d speaker-invariant speech representations as output, following the settings
and parameters in the original paper of FHVAE [8]. Then we train two speaker-classification
models with speaker-invariant speech representations and CPC representations respec-
tively. As speaker-invariant speech representations is targeted as an improved version
of CPC representations to remove speaker information. We mainly compare the acous-
tic level to see if we could improve the CPC representations by this speaker-invariant
technique.

5.5.1. SETTINGS
In the experiment of developing speaker invariant CPC representations, we have two
sub-questions. For the first sub-question, we train two softmax-regression classifiers for
speaker classification with ZeroSpeech baseline CPC and speaker invariant CPC repre-
sentations, respectively, to see if the accuracy of the speaker could decrease in the latter
case. For the second sub-questions, we use the same baseline model in the wav2vec2 ex-
periment and see how LSTM with speaker invariant CPC representations and kmeans-50
perform on language modeling evaluations. The speaker invariant CPC representation is
obtained by training an FHVAE, with hyperparameters same in . with ZeroSpeech base-
line CPC representations of 100 hours Librispeech clean data.

The training data consists of 100 hours of randomly selected data from Librispeech-
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Representation Learning Method Speaker Classification Accuracy Acoustic Scores
CPC-big 81% 0.06/0.09
CPC-big + FHVAE 26% 0.19/0.21

Table 5.8: Speaker classification accuracy and acoustic level performance for speaker invariant CPC
representation methods, compared to CPC

960 with 297 speakers. they are first processed to CPC representations and then fed to
FHVAE along with its speaker labels.

5.5.2. RESULTS
In this experiment set, we try to obtain speaker-invariant representations by CPC + FH-
VAE based model to see if it could improve the acoustic performance of the CPC model.

In table 5.8, for CPC + FHVAE representations, the speaker recognition accuracy is
26% compared to 81% in ZeroSpeechCPC. It means applying FHVAE successfully re-
duces the speaker information. However, by comparing the acoustic scores, we can
see that this speaker-invariant representation performs much worse at the acoustic level
compared to the CPC models.

5.6. EXPERIMENTS FOR TRANSFERABILITY OF THE PSEUDO-PHONEME

ENCODER
In this set of experiments, we want to answer the fourth research question: Is our pseudo-
phoneme encoding approach transferable to other true zero-resource languages (tested
by Mboshi)?

In our project, we expect the pseudo-phoneme encoder can produce units that (1)
the boundary indicates by pseudo-phoneme units is closer to true boundaries (2) pseudo-
phoneme units can be used for language models learning lexical and other high-level
linguistic knowledge.

As we do not have language modeling evaluation datasets for Mboshi, we only focus
on the transferability of the first characteristics.

In this experiment, we adapted the pseudo-phoneme encoder to Mboshi and com-
pared our boundary detection performance to other research working on the same task
and the same dataset.

5.6.1. SETTINGS
To adapt the pseudo-phoneme encoder, we follow the following procedure:

• Retrain the ZeroSpeech baseline CPC-big with Mboshi for 15 epochs

• Train boundaryCPC+vadp encoder with Mboshi from scratch to get boundary la-
bels

• Use boundary labels for segmentation of retrained CPC representations

• Kmeans clustering and get boundary labels indicated by clustered unit sequences
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• Calculate the boundary detection performance metrics

We use 4k utterances raw Mboshi audio for training data and 0.5k utterances for test-
ing (golden standard). We trained our boundary detection CPC and kmeans-50 cluster-
ing with Mboshi training data with 4k training utterances and retrained the CPC repre-
sentation learning module with Mboshi training data. We did not train ZeroSpeech base-
line CPC from scratch with Mboshi because in practice we found this model requires a
large amount of data to achieve fairly good modeling performance while the boundary
detection CPC does not. The boundary detection performance was evaluated by the 0.5k
utterances dataset.

We used an F1 score with a tolerance of 20ms, according to the research work we
compared with. Besides, two settings of the pseudo-phoneme encoder are trained and
tested, one with the VAD method and another without the VAD method. This is because
VAD is mainly to improve the Librispeech dataset, so we tested two settings to see if VAD
is still required for the Mboshi dataset.

5.6.2. RESULTS

Method F1 score
S Feng,et al.[9]
Yusuf et al. [10]
Ondel et al. [11]

62.90 ± 0.15
59.15 ± 1.51
59.50 ± 0.78

Our pseudo-phoneme encoder 58.91
Our pseudo-phoneme encoder (remove post-VAD) 59.04

Table 5.9: Boundary Detection Performance of the Two Pseudo-Phoneme Encoders

In table 5.9, the first three rows show boundary detection performance with an F1
score in other research. The last two rows are the performance of our pseudo-phoneme
encoders. The best performance is achieved by Feng [9] in the first row but we can see
that our results are comparable to other research. Besides, removing post-VAD methods
in our pseudo-phoneme encoder leads to a slight performance improvement of 0.1%.
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6
DISCUSSION AND CONCLUSION

In our project, we built a language modeling system from raw speech with a pseudo-
phoneme encoder, investigated two potential replacements we proposed for the CPC
representation learning method in the low-budget ZeroSpeech 2021 baseline system,
and explored transferability on Mboshi for our pseudo-phoneme encoder to answer the
following research questions (RQ):

1. Could we use the pseudo-phoneme encoder to improve the language modeling
performance?

2. Will applying a transformer-based self-supervised speech representation method
(wav2vec 2.0) in the ZeroSpeech 2021 baseline system brings better language mod-
eling performance?

3. Will applying a post speaker invariant method (FHVAE) to the CPC representation
learning method improve the performance at the acoustic level?

4. Transferability: Is our pseudo-phoneme encoding approach transferable to other
true zero-resource languages (tested by Mboshi)?

In the last chapter, we see that for RQ1 we achieved a better performance than the
low-budget ZeroSpeech 2021 baseline at the lexical and syntactic levels by using the
selected best pseudo-phoneme encoder. For RQ2 and RQ3, the result shows that both
wav2vec2 and speaker-invariant CPC did not perform better than CPC for language mod-
eling. Moreover, for RQ4 the results show that pseudo-phonemes of Mboshi give compa-
rable boundary recognition scores with other research thus we can conclude the pseudo-
phoneme encoder is transferable to Mboshi. An discussion for the results will be shown
in the next section.

6.1. DISCUSSION
1. Could we use the pseudo-phoneme encoder to improve the language modeling

performance?

57
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In experiments we applied a pseudo-phoneme encoder, considering the practi-
cal training time fit the low-budget requirements, our pseudo-phoneme encoder-
based language modeling system achieved better performance than the ZeroSpeech
baseline at the lexical and syntactic level. Our assumption is that words repre-
sented by pseudo-text from the baseline differ from each other in both linguistic
units and time of pronunciation, and the same words in pseudo-text could have
different forms. This increased difficulties of language modeling. The segmenta-
tion step in our system may help to resolve this problem by the group of the frames
that belong to the possibly same phoneme. However, though our goal is to discov-
ering phoneme-like units, we do not directly evaluate how our pseudo-phoneme
sequences are similar to the true phonetic transcription but only rely on the lan-
guage modeling performance to indirectly judge the performance of the pseudo-
phoneme encoder.
Future work could be exploring better metrics and loss functions to train an end-
to-end pseudo-phoneme encoder and evaluate the similarity between pseudo-
phoneme sequences and phonetic transcription.

2. Will applying a transformer-based self-supervised speech representation method
(wav2vec 2.0) in the ZeroSpeech 2021 baseline system brings better language
modeling performance?

In experiments to apply wav2vec2 in spoken language modeling, the acoustic-level
evaluation is much worse than ZeroSpeech CPC. However, wav2vec2 is shown in
[1] to perform well in predicting word transcription in low resource scenarios (fine-
tuned with 10 minutes labeled data). There might be several reasons for the bad
performance.

(a) The quantized wav2vec2 representation is not suitable for distance-based
clustering. The loss function of wav2vec2 encourages current quantized frame
representation to be distinguished enough from other distant time steps, but
it does not constrain nearby quantized frame representation to be close to
the current frames. If the quantized representations are lying in the data
space sparsely, distance-based Kmeans clustering may find it difficult to clus-
ter those representations.

(b) The quantized representation is generated by the encoder of wav2vec rather
than a contextual representation from transformer layers. We chose the quan-
tized representation for clustering because authors of wav2vec2 use it for
downstream ASR tasks. However, considering that CPC in the baseline used
contextual representations for clustering, it is possible that contextual repre-
sentations are more suitable to be fed into unsupervised clustering.

(c) The wav2vec2 pre-trained model we used is not the best model for ASR per-
formance in a low-resource scenario.

Future work involved with wav2vec2 architecture could consider training it from
scratch with the same loss function with ZeroSpeech CPC or exploring representa-
tions from a series of transformer layers in wav2vec2. Also, representations of the
best wav2vec model (wav2vec2-XL) could be explored.
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3. Will applying a post speaker invariant method (FHVAE) to the CPC representa-
tion learning method improve the performance at the acoustic level?

In experiments to apply FHVAE to construct speaker-invariant representations,
the speaker information is proved to be reduced than ZeroSpeech CPC represen-
tations so FHVAE is successful to remove part of speaker information. However,
the speaker-invariant representations do not achieve better acoustic level perfor-
mance. The decreased performance of the speaker-invariant representation at
acoustic level might be due to the the dimension reduction process of FHVAE re-
moving too much phonetic information in the representations. According to the
original paper of FHVAE [2], whose input is 200 dimensional speech features and
the output is 32-d features. From this paper, we set a similar proportion of in-
put/output size which prune the CPC representations from 768-d to 280-d rep-
resentations. However, the ABX score is very high for this 280-d representation
which indicates, a lot of wrong discrimination happens. This might because in
this pruning process, some information important for spoken language model-
ing have been lost. Future researchers who plans to modify CPC representations
might need be cautious in reduce representation dimensions.

4. Transferability: Is our pseudo-phoneme encoding approach transferable to other
true zero-resource languages (tested by Mboshi)?

In transferability experiments, the results show that the pseudo-phonemes en-
coder of Mboshi give comparable boundary recognition scores with other research
which indicates our encoder approach could be transferable to other languages.
We also see that additional processing steps such as removing post-VAD could fur-
ther improve the performance, which suggests rVAD method is less efficient in
Mboshi that in English Librispeech dataset.

6.2. CONCLUSIONS
In this thesis project, we proposed a new pipeline method for language modeling from
raw speech. Specifically, we developed a pseudo-phoneme encoder and applied it to
modify the low-budget ZeroSpeech 2021 baseline. The system was evaluated in acous-
tic, lexical, and syntactic levels and achieves better performance than the low-budget
ZeroSpeech 2021 baseline at lexical and syntactic levels. Besides, we investigated two
speech representation learning methods, wav2vec2 and CPC with a speaker-invariant
approach (FHVAE), and the result shows that both did not perform better than CPC for
language modeling at the three linguistic levels. Moreover, we investigated the trans-
ferability of our pseudo-phoneme encoder in other languages (tested by Mboshi). The
results show that the pseudo-phonemes of Mboshi give a comparable boundary recogni-
tion score with other research which indicates our encoder approach can be transferable
to other languages.
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markov model for acoustic unit discovery,” arXiv preprint arXiv:1904.03876, 2019.

[72] C. Chakraborty and P. Talukdar, “Issues and limitations of hmm in speech process-
ing: a survey,” International Journal of Computer Applications, vol. 141, no. 7, pp.
13–17, 2016.

[73] M. Löffler, A. Y. Zhang, and H. H. Zhou, “Optimality of spectral clustering in the
gaussian mixture model,” arXiv preprint arXiv:1911.00538, 2019.

[74] P. Godard, G. Adda, M. Adda-Decker, J. Benjumea, L. Besacier, J. Cooper-Leavitt,
G.-N. Kouarata, L. Lamel, H. Maynard, M. Müller et al., “A very low resource lan-
guage speech corpus for computational language documentation experiments,”
arXiv preprint arXiv:1710.03501, 2017.

[75] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O. Nieto, “li-
brosa: Audio and music signal analysis in python,” in Proceedings of the 14th python
in science conference, vol. 8. Citeseer, 2015, pp. 18–25.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


REFERENCES 67

[76] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in
python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[77] G. Le Godais, T. Linzen, and E. Dupoux, “Comparing character-level neural lan-
guage models using a lexical decision task,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers, 2017, pp. 125–130.

[78] A. Warstadt, A. Parrish, H. Liu, A. Mohananey, W. Peng, S.-F. Wang, and S. R. Bow-
man, “Blimp: The benchmark of linguistic minimal pairs for english,” Transactions
of the Association for Computational Linguistics, vol. 8, pp. 377–392, 2020.

[79] Y.-A. Chung and J. Glass, “Speech2vec: A sequence-to-sequence framework for
learning word embeddings from speech,” arXiv preprint arXiv:1803.08976, 2018.

[80] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[81] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolutional neural network
structures and optimization techniques for speech recognition.” in Interspeech,
vol. 11. Citeseer, 2013, pp. 73–5.

[82] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neu-
ral computation, vol. 1, no. 4, pp. 541–551, 1989.

[83] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novak, and A.-r. Mo-
hamed, “Making deep belief networks effective for large vocabulary continuous
speech recognition,” in 2011 IEEE Workshop on Automatic Speech Recognition &
Understanding. IEEE, 2011, pp. 30–35.

[84] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 8, pp. 1798–1828, 2013.

[85] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students learn better: On
the importance of pre-training compact models,” arXiv preprint arXiv:1908.08962,
2019.


	Preface
	Thesis Outline
	Introduction
	Research questions 
	Overview of the proposed pipeline approach
	titleReferences

	Background
	titleReferences

	Deep Learning Basics
	Feedforward Neural Networks
	 Nonlinearity
	 Optimization
	Stochastic gradient descent 
	Adam

	Convolutional neural network
	 Convolution Layer
	 Pooling Layer

	Recurrent Neural Networks
	 Gated Recurrent Units
	 Long Short-Term Memory

	Transformer
	Self-Attention
	Multi-Head Self-Attention
	Positional Coding
	Encoder-Decoder Structure of Transformers

	titleReferences

	Pipeline of Constructing Language Modelling System from Raw Speech
	Pseudo Phoneme Encoder
	Self-supervised Speech Frame Representation Learning 
	 Speech Representations 
	 Self-supervised Speech Representation Learning 
	Speaker-invariant speech representation learning
	 Factorized hierarchical variational autoencoder 

	Unsupervised Speech Segment Unit Learning 
	 Boundary Detector 
	 Removal of silence segments 
	 Averaging
	 Kmeans Clustering

	Language models
	 DNN based Language Models

	titleReferences

	Experiments and Results
	Dataset
	Evaluation Metrics
	Evaluation Metrics for language modeling at three linguistic levels
	Evaluation Metrics in Building the Pseudo-Phoneme Encoder
	Evaluation Metrics in building speaker-invariant CPC
	The Baseline and Shared Settings in Four Experiments

	Experiments for Applying Pseudo-Phoneme Encoder
	Settings
	Results

	Experiments for Replacing CPC with Wav2vec2
	Settings
	Results

	Experiments for CPC with speaker-invariant technique
	Settings
	Results

	Experiments for Transferability of the Pseudo-Phoneme Encoder
	Settings
	Results

	titleReferences

	Discussion and Conclusion
	Discussion
	Conclusions
	titleReferences

	Appendix
	titleReferences


