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1 Introduction

The numerical simulation of the Navier-Stokes equations is a challenging endeavor because

small-scale motions have a profound e�ect on the large-scale �ow behavior and cannot simply be

ignored. In spite of the exponential increase in computational power, the computational cost of

resolving all scales of motion in a direct numerical simulation (DNS) will remain prohibitive for

the foreseeable future [1]. In contrast to DNS, large eddy simulation (LES) is a method where only

the large scales of motion are resolved. In LES, the �ow solution u is decomposed as u = ū +u ′

where ū denotes the large-scale solution and u ′
denotes the unresolved-scale solution. Rather

than resolving all small-scale phenomena, the e�ects of u ′
on ū are represented by a so-called

unresolved-scale model.

This thesis is part of a greater e�ort to apply machine learning to the development of �exible and

universal unresolved-scale models. The novelty in the current work is training a neural network

to directly predict the unresolved-scale terms without a priori assumptions on the underlying

functional relationship. Within the variational multiscale framework [2], the computation of ū
does not require pointwise knowledge of u ′; instead, the model need only predict integral values

of u ′
, this is advantageous because u ′

is typically a highly erratic, chaotic signal.

Dutch physicist Jan Burgers �rst suggested using the equation

∂u

∂t
+ u
∂u

∂x
= ν
∂2u

∂x2
(1.1)

as a one-dimensional model of turbulence where ν is a di�usion coe�cient [3]. Burgers’ equation

can be used as a model of the Navier-Stokes equations because it reproduces several features that

are expected of turbulence, such as the formation and decay of weak shocks in a compressible

�uid and viscous dissipation at small length scales [4]. The contribution of this thesis is an

implementation and validation of a neural-network-based unresolved-scale model for Burgers’

equation, which paves the way for future application to the Navier-Stokes equations.

1.1 The Big Picture

There is a clear consensus that LES of high Reynolds-number wall-bounded �ows can only be

performed by resolving the outer layer only [5, 6, 7, 8]. LES therefore requires a so-called wall

model that represents the e�ects of the unresolved motions in the inner layer on the large-scale

�ow. Numerous wall models have been proposed since the conception of LES in the 1960’s, but to

date, none of these models have proven to be universally applicable.

Three recent developments have created new opportunities for the development of wall models:

(1) the exponential increase in computational power, (2) the rise of machine learning, and (3)
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1 Introduction

newfound universalities in wall-bounded �ows. The exponential increase of computational power

has enabled DNS of wall-bounded �ows at Reτ = O(10
3) and it is estimated that Reτ = O(10

4)will

be achievable around the year 2020 [9]. While problems of engineering interest will remain out of

reach for DNS, the capabilities of DNS are su�cient to capture near-wall behavior. So-called “very

large scale motions” or VLSMs control this near-wall behavior which therefore has a modelable

character [8]. It is hypothesized that neural networks can devise wall models by learning from

the interactions between VLSMs and the near-wall behavior. The intention is to resolve VLSMs

in an LES to provide inputs to a neural network.

There are estimates that a universal wall model can reduce the computational cost of simulating

wall-bounded �ows by 99% [6]. If these estimates are true, then the time consumption and the

computational cost of the numerical simulation of turbulent �ows could be reduced to a fraction of

what it is today. Such developments would likely have a strong impact on industries that rely on

computational �uid dynamics (CFD). The aerodynamic design process of aircraft, motor vehicles,

wind turbines, etc. would be quicker and far less costly. It is also plausible that the performance

and e�ciency of transportation systems would increase considerably if engineers could focus

their design e�orts on producing laminar �ow. It is estimated that “up to half of the fuel burned

by a modern airliner during �ight is used to overcome drag due to turbulent boundary layers” [7],

so there certainly is vast potential for improvement.

1.2 Data-Driven Turbulence Modeling

The adoption of machine learning as a tool for turbulence modeling is steadily increasing. This

data-driven approach can be used for developing new turbulence models as well as calibrating

parameters of existing models. Duraisamy et al. [10] suggest a basic six-step procedure for the

development of neural-network-based models:

1. Collect a set of �ow solutions from a truth model (e.g., a DNS).

2. Extract a set of inputs and corresponding outputs from the �ow solutions.

3. Construct a training set from the inputs and outputs of step 2.

4. Select a neural network architecture.

5. Train the neural network on the training set to establish a functional relationship between

the inputs and outputs.

6. Embed the resulting model into a simulation and validate its predictions.

Tracey et al. [11] present a proof-of-concept of the above six-step procedure in which solutions

from the Spalart-Allmaras turbulence model represent the truth model. The authors conclude

their work with a number of useful recommendations:

• The treatment of data and scaling requires much care. Inputs and outputs that have compact

data ranges are ideal because they discourage over�tting.

• All candidate turbulence models must be evaluated within a CFD solver. The authors �nd

that the “testing error on individual data points is often a poor predictor of full �ow solution

quality”.

The recommendations of Tracey et al. are followed in this thesis, particularly the last recommen-

dation of testing the neural networks within an actual simulation.
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1.3 Literature Review

Among the �rst attempts to use machine learning for turbulence modeling is the work of Milano

and Koumoutsakos [12] published in 2002. Milano and Koumoutsakos train a neural network

to predict velocity �elds in the viscous sublayer based on wall-only information. The authors

conclude that it is di�cult to base models on wall-only information because pressure and shear

stress at the wall are in�uenced by large-scale �ow structures. Any attempt at the development

of wall models should therefore incorporate large-scale �ow information in addition to wall-only

information. The work of Milano and Koumoutsakos predates the discovery of VLSMs and it is

now known that there exist interactions that can be used to devise wall models [7].

Sarghini et al. [13] employ a neural network as unresolved-scale model in an LES. The authors

target a computational cost reduction rather than �nding a new or improved functional form. To

this end, a neural network is trained to predict the turbulent viscosity coe�cient cs that is part of

Bardina’s scale similar unresolved-scale model [14]. Sarghini et al. show that their model yields a

computational time saving of about 20% without compromising the accuracy of Bardina’s model.

The neural network is reliable at Reynolds numbers that correspond to the Reynolds numbers

encountered in training, but switching to higher Reynolds numbers requires retraining the neural

network. The authors therefore conclude that their model is not generalizing to new situations.

Over�tting certain properties of the training examples prevents a model from generalizing because

the network has memorized the training examples rather than learning a fundamental underlying

relationship. Generalization and diagnosing over�tting are therefore high priorities in the current

work.

In applications where the concentration of a chemical species is of interest, a scalar equation

must be solved simultaneously with the governing �ow equations. Vollant et al. [15] developed

a neural-network-based unresolved-scale model for LES of such a passive scalar. The authors

conclude that their procedure “leads to an accurate SGS model, as shown by comparison with

classic SGS models in an a posteriori test”. Vollant et al. deliberately choose a new problem in the

a posteriori test and are therefore con�dent that their model has the ability to generalize. The

idea of choosing a previously unseen test problem inspires the approach of this thesis.

In the work of Gamahara and Hattori [16], a neural network is used to establish a functional rela-

tionship between ū and the pointwise unresolved-scale stress tensor in LES. The authors conclude

that a neural network can establish a functional relationship between ū and the unresolved-scale

stress tensor, but with the caveats that: (1) the neural network only performs as well as the

Smagorinsky model, and (2) training is only successful when the �lter size is small. The results

of Gamahara and Hattori show that developing a pointwise predictive model for u ′ is di�cult.

Modeling integral quantities in a variational multiscale framework is more likely to be successful

as statistics of u ′ are easier to predict than u ′ itself.

1.4 Residual-Based Models

The variational multiscale method (VMM) by Hughes [2] is a method where the solution u is

decomposed into a large-scale component ū and an unresolved-scale component u ′ by means of a

projection onto a space of �nite-element basis functions. Hughes [2] proceeds to show that u ′
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1 Introduction

can be expressed in terms of an element-wise Green’s function:

u ′(x) = −

∫
Ω
G(x ,y)R(ū)dΩ (1.2)

where R(ū) is the large-scale residual. Based on (1.2), the unresolved-scales u ′ are said to be

driven by the large-scale residual. In other words,

u ′ = f (ū,R(ū)) (1.3)

Models that build onto this result are referred to as residual-based models and the idea of residual-

based models can be used for the development of unresolved-scale models that are more powerful

than the eddy viscosity model initially used by Hughes et al. [17]. A convenient approximation of

the functional f in (1.3) is obtained by assuming that:

1. If R(ū) = 0, then u ′ = 0.

2. If R(ū) is small, then u ′ is small.

Hughes [2] shows that these assumptions are physically reasonable and lead to the idea of

computing stabilization operators, denoted τ . The unresolved-scales can then be approximated as

the product of τ and the large-scale residual, i.e.,

u ′ ≈ −τR(ū) (1.4)

Equation (1.4) is one of the simplest residual-based models. A more sophisticated model that takes

the dynamics of the unresolved scales into account is

u ′t + τ
−1u ′ = −R(ū) (1.5)

There exist several other residual-based models and the work of Oberai and Hughes [18] contains

a comprehensive overview. The operator τ can be viewed as a volume-average Green’s function

and cannot be derived analytically for all problems. Shakib et al. [19] propose a simple algebraic

form for τ in the one-dimensional Burgers’ equation given by

τ =

√
γ1

(
ū

h

)
2

+ γ2

( ν
h2

)
2

(1.6)

where γ1 = 4, γ2 = 144, and h is the element size. Equation (1.6) is based on the assumption that

u ′ = 0 at the nodes which implies a nodal projection. Results obtained by (1.6) can therefore not

directly be compared to other methods based on the more relevant L2-projector. Nevertheless,

(1.6) serves as a baseline and reference for the development of neural-network-based models.

1.5 Previous Work at TU Del�

An overview of previous work at TU Delft is presented here to establish a context for the current

work. Two strategies for the development of neural-network-based models can be distinguished:

1. A constrained approach where a neural network is integrated as a component of an existing

unresolved-scale model.
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1.6 Motivations for the Current Work

2. An unconstrained approach where a neural network represents the unresolved-scale model

in its entirety and is not constrained by enforcing a certain functional form.

The previous work follows the former approach whereas the current work follows the latter. The

two above approaches are opposing viewpoints and hybrid models in between these two extremes

are also conceivable.

Rather than using γ1 = 4 and γ2 = 144 in (1.6), Durieux [20] trained a neural network to predict

γ1 and γ2 depending on local conditions. This method retains the residual-based formulation and

therefore results in a robust subgrid-scale model. Beekman [21] expanded on the work of Durieux

by evaluating the robustness and suitability of the method at various conditions. The work of

Beekman unveiled divergence issues of unknown origin when the problem is randomly forced.

Kurian [22] retained the idea of training a neural network to predict γ1 and γ2, but investigated

the e�ectiveness of other formulations such as

u ′ = −τP⊥ (R(ū)) (1.7)

and

u ′t + τ
−1u ′ = −τP⊥ (R(ū)) (1.8)

where P⊥ is an orthogonal projector. Kurian con�rmed that (1.6) is insu�cient in randomly

forced problems and found that using the dynamic model in (1.8) yields a signi�cant improvement.

These results show that the unresolved-scales u ′ are not necessarily quasi-steady and u ′t must

therefore be taken into account.

In summary, the results of Durieux, Beekman, and Kurian show that neural networks can improve

the algebraic model in (1.6). Retaining the residual-based formulation results in robust and reliable

models. However, a major de�ciency of the formulation in (1.6) is that there are many cases

where no γ1 and γ2 exist such that (1.6) yields the correct value of τ . In such cases, there is an

error inherent to the rigid algebraic formulation and the advantage of a more liberal approach is

obvious. Furthermore, the ability of the models to generalize to new situations has not yet been

demonstrated because the models were not tested in previously unseen problems.

1.6 Motivations for the Current Work

The current work places emphasis on two points:

• Following the unconstrained approach where a neural network represents the unresolved-

scale model in its entirety and is not limited by a rigid formulation such as (1.6).

• Asserting that the neural network can generalize to new situations by evaluating the

performance of the neural networks on previously unseen test problems.

The viewpoint in the current work therefore stands in contrast to the viewpoint in the work of

Durieux, Beekman, and Kurian. Nevertheless, the contribution of this thesis complements the

previous work on the restricted approach and hybrid models are conceivable in future projects.

Furthermore, clearly demonstrating the property of generalization to new situations is a valu-

able contribution that motivates continued research on neural-network-based models in future

projects.
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Rather than using the rigid algebraic formulation in (1.6), a neural network could be trained to

predict τ directly. The unresolved scales u ′ then result from

u ′ = −τR(ū) (1.9)

or another residual-based scheme such as (1.7) or (1.8). However, these schemes still retain a

rather rigid functional relationship. In actuality, (1.9) merely represents a �rst-order perturbation

approximation and a format such as

u ′ = −τ1R(ū) − τ
2

2
R(ū) − τ 3

3
R(ū) − τ 4

4
R(ū) − . . . (1.10)

is also consistent [23]. Instead of resorting to formulations like (1.9), a neural network can be

trained to directly predict the e�ects of u ′ as a function of large-scale features. There are no

restrictions on the functional relationship between u ′ and the input variables when a neural

network is trained to directly predict the e�ects of u ′.

Direct, pointwise predictions of u ′ are problematic, as shown by Gamahara and Hattori [16].

Fortunately, the variational multiscale framework only requires knowledge of integral values of

u ′ for the computation of ū. The unresolved-scale terms in a variational multiscale formulation of

Burgers’ equation consist of the element-wise integral values given by∫ xr

xl
wu ′tdx︸         ︷︷         ︸

u′t -term

−

∫ xr

xl
wx

(
ūu ′ +

1

2

u ′2
)
dx︸                          ︷︷                          ︸

u′-term

+
1

Re

∫ xr

xl
wxu

′
xdx︸               ︷︷               ︸

u′x -term

, ∀w ∈ W (1.11)

where xl and xr are respectively the left and right boundaries of an element and w are weighting

functions in a setW. A derivation and detailed description of (1.11) is given in Appendix A.

Intuitively, it should be far easier to predict the integral values in (1.11) than u ′ itself. This

alone is a major advantage of the approach in this thesis. The fact that there exists a successful

algebraic model for τ (and by extension, for u ′) suggests that there is a fundamental underlying

relationship between u ′ and large-scale parameters. Thus, it should in principle be possible to

train a neural network to predict the unresolved-scale terms in (1.11). A similar claim can be

made for the Navier-Stokes equations; as mentioned in Section 1.1, the fact that the large-scale

�uctuations in the inner layer are strongly correlated to the large-scale velocity signal in the

log layer suggests that there exists a mechanism through which VLSMs modulate the near-wall

small-scale �uctuations. Thus, a successful implementation of the framework proposed here paves

the way for future implementations as wall models for the Navier-Stokes equations.

1.7 Research Questions

The motivations outlined in the preceding section lead to the following research questions:

Can a neural network establish a functional relationship between large-scale input
features and the integral forms of the unresolved-scale terms?

The integral forms of the unresolved-scale terms consist of the u ′-, u ′x -, and u ′t -terms in (1.11).

The central question in the current work is if these terms can be predicted based on large-scale

input features, and if yes, how accurately.
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1.7 Research Questions

What are appropriate large-scale input features?

A question that naturally follows the previous question is what these large-scale input features

should be. Based on the residual-based formulation in (1.3), ū and R(ū) are obvious candidates.

Furthermore, the input features could be sampled locally or at multiple additional locations such

as the adjacent elements.

Can themodel be simplified by omitting individual unresolved-scale terms?

Omitting the u ′t -term, for example, would simplify the model considerably. It is therefore worth-

while to investigate potential simpli�cations prior to training a neural-network-based model of

the unresolved-scale terms.

What is a successful neural network architecture?

Finding a successful architecture is an iterative process and any textbook on machine learning

will provide guidelines that can assist in this process. Particularly the topology of the neural

network is important as it strongly e�ects the computational complexity of the model.

Howmany examples are required to train a functional model?

An estimate of the minimum number of examples will provide a guideline for future modeling

projects for the Navier-Stokes equations. These estimates are important because running DNSs

to create training data is an expensive and time-consuming process.

Can the neural network generalize to new situations?

The objective of machine learning is the development of models that generalize to new situation.

The model must be tested in problems that are di�erent from the problems seen in training

to assert that it learned an underlying functional relationship and is not merely memorizing

examples.

Under what conditions does themodel fail tomake accurate predictions andwhat are the
implications of these errors?

Neural networks are merely statistical tools and erroneous predictions are therefore unavoidable.

It is important to understand when and why these erroneous predictions occur so that the model

can be improved by tweaking the machine learning architecture or by adjusting the training

examples.

Whatmeasures can be taken to improve the resiliency to erroneous predictions?

No amount of tweaking or improving the training examples can fully prevent erroneous predic-

tions. It is therefore necessary to devise stabilization schemes to mitigate the e�ects of these

errors on the solution.
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2 Variational Multiscale Large Eddy
Simulation of Burgers’ Equation

This thesis builds on the foundation of the variational multiscale method (VMM). The content

of this chapter is an introduction to the variational multiscale method and a description of

the variational multiscale formulation of Burgers’ equation. The unresolved-scale terms in the

variational form of Burgers’ equation are central to this thesis and are therefore discussed in

detail. The chapter concludes with a physical interpretation of Burgers’ equation by evaluating

the energy equation for two di�erent model problems.

2.1 Variational Multiscale Method

The variational multiscale method is a mathematical framework for multiscale problems in physics

�rst published by Hughes [2] in 1995. The VMM is often presented as a framework within the

�nite element method (FEM); it would be redundant to fully cover the �nite element method

here, but the terminology and notation adopted from the �nite element method warrants a brief

introduction.

2.1.1 Finite Element Method

The �nite element method can be used to solve partial di�erential equations (PDEs) by searching

for an approximate solution u(x) in a function spaceV ,

V = span{ψ1(x),ψ2(x), . . . ,ψN (x)} (2.1)

where {ψi }i ∈Is , with Is as the index set {1, 2, . . . ,N }, are the so-called basis functions
1
. The

approximate solution u(x) can be expressed as a linear combination of {ψi }i ∈Is :

u(x) =
∑
i ∈Is

ciψi (x) (2.2)

where ci ∈ R are unknown scalar coe�cients. Figure 2.1 shows an arbitrary one-dimensional

function u(x) expressed as a linear combination of seven local piecewise-linear basis functions.

Notice that the set of basis functionsV in Figure 2.1 inherently satis�es homogeneous boundary

conditions, i.e., u(0) = u(1) = 0. Nonhomogeneous boundary conditions can be satis�ed by special

boundary functions or by simply modifying the system matrix. It is common to speak of linear

elements as elements associated with piecewise-linear basis functions or hat functions.

1
Function spaces and basis functions are analogous to vector spaces and basis vectors in linear algebra. Just like a

vector space is said to be spanned by its basis vectors, a function space is spanned by its basis functions.
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0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
x

0

1
ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7

u

Figure 2.1:An arbitrary function u as a linear combination of seven local piecewise-linear functions,

also known as hat functions.

Without going into too much detail, the basic approach of the �nite element method can be

illustrated with the following general problem:{
L(u) = f , in Ω

u = д, on ∂Ω
(2.3)

where L is an arbitrary di�erential operator and ∂Ω denotes the boundary of the domain Ω. To

derive the weak form of (2.3), multiply the PDE by a weighting function w (chosen from a set

W), and integrate both sides. The weak form of (2.3) is written as
Find u ∈ V such that ∀w ∈ W:∫

Ω
wL(u)dΩ =

∫
Ω
w f dΩ

(2.4)

The sets V and W can be disjoint, but this thesis uses the Bubnov-Galerkin method where

V =W [24]. Explicit mathematical de�nitions and further details such as dealing with boundary

conditions can be found in any textbook on the �nite element method. In this report, the weighting

functions w are piecewise-linear linear functions. Higher-order alternatives exist, but piecewise-

linear functions su�ce for the purposes of the current work.

2.1.2 Large Eddy Simulation and the Variational Multiscale Method

Hughes et al. �rst applied the variational multiscale method to LES in the year 2000 [25]. Hughes

et al. argue that several shortcomings of the classical LES model, such as the non-commutative

�lters necessary for wall-bounded �ows, are eliminated in the multiscale approach. In the same

vein as classical LES, the solution u is decomposed into large-scale and small-scale components,

u = ū +u ′ (2.5)

where ū is the large-scale solution and u ′ is the small-scale solution. Hughes et al. explain that

the interpretation of ū and u ′ is di�erent from classical LES because there exists no simple �lter

10



2.1 Variational Multiscale Method

(a) Nodal projection

x0

u
ū = P(u)
u′ = u − ū

(b) L2 projection

x0

Figure 2.2: Illustration of the projection process with a side-by-side comparison of two common pro-

jectors. The L2 projection provides a good �t in a least squares sense, whereas the nodal

projection is exact at the nodes.

to determine ū from u. Instead, ū is determined from u by a projector P, projecting u onto a

space of �nite element basis functions, i.e.,

ū = P(u) (2.6)

Figure 2.2 illustrates the projection of an arbitrary function u onto a set of piecewise-linear basis

functions. The L2 projection provides a good �t in a least squares sense and is natural to the

Bubnov-Galerkin method, which is based on minimizing the L2 error. The nodal projector is exact

at the nodes, but often produces a greater error within the elements. The small-scale solution u ′

is the result of subtracting ū from u, i.e.,

u ′ = u − P(u) (2.7)

The goal of multiscale LES is approximating u ′ such that the solution represents ū as accurately

as possible. The projector is to be chosen by the user, and both the nodal projection and the L2

projection are common choices. The L2 projection is used in the remainder of this thesis.

2.1.3 Variational Multiscale Formulation of Burgers’ Equation

As mentioned in Chapter 1, Burgers’ equation can be used as a model of the Navier-Stokes

equations because it reproduces features that are expected of turbulence. The strong form of

Burgers’ equation reads as follows:
∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= f (x , t), x ∈ Ω, t ∈ (0,T ] (PDE)

u(x , 0) = I (x), x ∈ Ω (initial condition)

u = д(t), x ∈ ∂Ω, t ∈ (0,T ] (boundary condition)

(2.8)
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2 Variational Multiscale Large Eddy Simulation of Burgers’ Equation

where Re = 1/ν is the Reynolds number
2
, f (x , t) is a forcing function, I (x) is the initial condition,

and д(t) is the boundary value.

To simplify subsequent writing, let

(w,u) =

∫
Ω
wu dΩ (2.9)

This notational convention is common in the context of �nite element methods and the variational

multiscale method. Using (2.9), the variational multiscale form of Burgers’ equation is written

as 
Find ū ∈ W such that ∀w ∈ W:

(w, ūt ) −
1

2

(
wx , ū

2
)
+

1

Re

(wx , ūx ) + unresolved-scale terms = (w, f )
(2.10)

where

unresolved-scale terms = (w,u ′t ) −

(
wx , ūu

′ +
1

2

u ′2
)
+

1

Re

(
wx ,u

′
x
)
, ∀w ∈ W (2.11)

A step-by-step derivation of (2.10) and (2.11) can be found in Appendix A.

2.2 Unresolved-Scale Terms

As shown in Appendix A, the unresolved-scale terms in the variational multiscale formulation of

Burgers’ equation are written as

unresolved-scale terms = (w,u ′t )︸ ︷︷ ︸
u′t -term

−

(
wx , ūu

′ +
1

2

u ′2
)

︸               ︷︷               ︸
u′-term

+
1

Re

(
wx ,u

′
x
)

︸        ︷︷        ︸
u′x -term

, ∀w ∈ W (2.12)

For brevity, the individual integral terms are referred to as the u ′-, u ′t -, and u ′x -terms.

2.2.1 Theu′-Term

The u ′-term, a convective term, is given by

−

(
wx , ūu

′ +
1

2

u ′2
)
= −

∫
Ω
wx

(
ūu ′ +

1

2

u ′2
)
dx , ∀w ∈ W (2.13)

Since w is linear, its derivatives wx are constants and can be taken out of the integral, i.e.,

−wx

∫
Ω

(
ūu ′ +

1

2

u ′2
)
dx , ∀w ∈ W (2.14)

2
The Reynolds number in Burgers’ equation is de�ned as

Re ≡
u

ν

Since the characteristic wave speed u is O(1), the Reynolds number is written as Re = 1/ν .
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2.2 Unresolved-Scale Terms

In the current work, a neural network is trained to predict (2.14) for a given element. Since there

are two (non-zero) weighting functions per element, (2.14) is represented by two integral values.

Since the derivatives wx are constants of the same magnitude, but opposite in sign, the two

integral values are also of the same magnitude, but opposite in sign. The model need therefore

only predict a single integral value; the remaining integral value is obtained by multiplying the

prediction by −1.

2.2.2 Theu′
x -Term

The u ′x -term, a viscous interaction term, is given by

1

Re

(
wx ,u

′
x
)
=

1

Re

∫
Ω
wxu

′
x dx , ∀w ∈ W (2.15)

The constants wx can be taken out of the integral and since Re is a known constant, it need not

be part of the model. Thus, the model need only predict

wx

∫
Ω
u ′x dx , ∀w ∈ W (2.16)

As explained in Section 2.2.1, the derivativeswx are constants of the same magnitude, but opposite

in sign. The model need therefore only predict a single integral value and the remaining integral

value is found by �ipping the sign.

It is worth mentioning that (wx ,u
′
x ) = 0 if a nodal projection is used. Let xl and xr respectively

denote the left and right boundaries of an element. From the fundamental theorem of calculus:∫ xr

xl
u ′x dx = u

′(xl ) − u
′(xr ) (2.17)

Using the nodal projection implies that u ′(xl ) = u
′(xr ) = 0. Therefore,∫ xr

xl
u ′x dx = 0 (2.18)

which yields

1

Re

(
wx ,u

′
x
)
= 0, ∀w ∈ W (2.19)

This explains why the u ′x -term could be omitted in the work of Durieux, Beekman, and Kurian.

This is not the case in the current work because the L2 projection is used rather than the nodal

projection.

2.2.3 Theu′
t -Term

The u ′t -term, also known as the temporal term, is given by(
w,u ′t

)
=

∫
Ω
wu ′t dx , ∀w ∈ W (2.20)

The u ′t -term cannot be simpli�ed by taking w out of the integral. Since there are two weighting

functions per element, (2.20) is represented by two integral values and the unresolved-scale model

need therefore predict both integral values separately.
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2 Variational Multiscale Large Eddy Simulation of Burgers’ Equation

2.3 Large-Scale Energy Balance

Burgers’ equation obeys the law of conservation of energy, a quantity analogous to the kinetic

energy in the Navier-Stokes equations. The large-scale energy is de�ned as

Ē ≡

∫
Ω

1

2

ū2dx (2.21)

Energy is added to the domain by doing positive work (via the forcing function) and by allowing

energy to �ow into the domain through its boundaries. Energy is removed from the domain by

doing negative work, by letting energy �ow out of the domain, and, most importantly, by viscous

dissipation.

2.3.1 Evolution Equation of Ē

An equation that describes the evolution of the large-scale energy Ē can be derived by substituting

w = ū into the variational form of Burgers’ equation. The evolution equation of Ē is written as

dĒ

dt
= −

1

2

∫
Ω
ū
∂

∂x

(
ū2

)
dx︸                  ︷︷                  ︸

advection

+
1

Re

∫
Ω
ū
∂2ū

∂x2
dx︸             ︷︷             ︸

viscous dissipation

− unresolved-energy terms︸                           ︷︷                           ︸
unresolved-scale transfer

+

∫
Ω
ū f dx︸    ︷︷    ︸

work done

(2.22)

where

unresolved-energy terms =

∫
Ω
ū
∂u ′

∂t
dx +

∫
Ω
ū
∂

∂x

(
ūu ′ +

1

2

u ′u ′
)
dx −

1

Re

∫
Ω
ū
∂2u ′

∂x2
dx (2.23)

A step-by-step derivation of (2.22) and (2.23) can be found in Appendix B.

2.3.2 Model Problems

For technical reasons detailed in Appendix B, (2.22) can (1) only be evaluated globally and (2)

only be evaluated for problems with homogeneous or periodic boundary conditions. Nonetheless,

evaluating (2.22) for two model problems provides useful physical interpretation of Burgers’

equation.

The �rst model problem, featuring a steady forcing function and homogeneous boundary condi-

tions, is given by

∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 1, x ∈ (0, 1), t ∈ (0, 2],Re = 100

u(x , 0) = 0, x ∈ (0, 1)

u(0, t) = 0, t ∈ (0, 2]

u(1, t) = 0, t ∈ (0, 2]

(2.24)
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2.3 Large-Scale Energy Balance

(a) Problem (2.24) at t = 2.0

0.2 0.4 0.6 0.8 1.0
x

-0.4

0.0
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0.8

1.2

1.6

2.0 Exact solutionu
Exact solution ū
Exact solutionu′

(b) Problem (2.25) at t = 2.0
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Figure 2.3: Exact solutions to (2.24) and (2.25) at t = 2.0. Note that the solution to (2.24) has settled into

a steady state whereas the solution to (2.25) has not.

The solution to (2.24) settles into a steady state at t ≈ 1. The second model problem, featuring a

periodic forcing function and periodic boundary conditions, is given by
∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 3 sin(3πx) cos(2πt), x ∈ (0, 1), t ∈ (0, 2],Re = 100

u(x , 0) = 1, x ∈ (0, 1)

u(0, t) = u(1, t), t ∈ (0, 2]

(2.25)

Since the forcing function in (2.25) is unsteady, the solution to (2.25) does not settle into a steady

state. The exact solutions to (2.24) and (2.25) are given in Figure 2.3.

2.3.3 Evaluating the Evolution Equation

Both model problems are solved by DNS and resulting time series plots of the terms in the energy

equation are given in Figure 2.4. The absence of advection is a result of the homogeneous and

periodic boundary conditions. Homogeneous boundary conditions isolate the domain (i.e., energy

is neither entering nor leaving) whereas periodic boundary conditions ensure that the amount of

energy leaving the domain is equal to the amount of energy entering the domain.

Figure 2.4a shows that the unresolved-scales in (2.24) are purely dissipative. The amount of

energy transferred to the unresolved-scales is far greater than the viscous dissipation at the large

scales; this demonstrates that viscous dissipation occurs predominantly at small scales. Since

most energy is dissipated at the unresolved scales, the LES would fail spectacularly in the absence

of a good model for the unresolved scales. Figure 2.4b, on the other hand, paints a completely

di�erent picture; the unresolved-scale transfer term takes on both negative and positive values.

In other words, there can be transfer of energy from unresolved scales to large scales, which is a

phenomenon known as backscatter.
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2 Variational Multiscale Large Eddy Simulation of Burgers’ Equation

(a) Problem (2.24)
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Total large-scale energy Ē
Time rate of change of Ē
Advection
Viscous dissipation
Work done by f
Unresolved-scale transfer

(b) Problem (2.25)
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Figure 2.4: Time series plots of the individual terms of the large-scale energy balance evaluated using

exact solutions to (2.24) and (2.25).
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3 Machine Learning

The conventional approach to programming is solving problems by devising sequences of in-

structions; algorithms. It is hard to apply this approach to problems like recognizing handwritten

digits. Every person’s handwriting is di�erent and capturing these variations makes it hard to

devise a clear-cut algorithm. Computer scientists have long been puzzled about such problems. It

turns out that the solution is surprisingly uncomplicated, but requires a di�erent programming

paradigm: machine learning. Machine learning is based on the concept of automatically extract-

ing statistics from data. Machine learning is a particularly powerful tool when the functional

relationship between inputs and outputs cannot clearly be de�ned or is unknown, like in the case

of unresolved-scale models.

3.1 Neural Networks

Neural networks are one of many machine learning tools. The principle of neural networks is

introduced by investigating the canonical problem of recognizing handwritten digits.

3.1.1 Training Datasets

The MNIST dataset is a set of handwritten digits collected by the United States’ National Institute

of Standards and Technology. The MNIST dataset is composed of 70 000 di�erent 28 × 28 pixel

greyscale images of handwritten digits. Some samples of the MNIST dataset are shown in Figure

3.1. A single training example is composed of 28 × 28 = 784 grayscale values and a corresponding

Figure 3.1: Sample of 6 digits of the MNIST dataset. Published in [26].

output; the digit that the image represents. The grayscale values are called the input features.

In other words, the images are encoded as 28 × 28 = 784-dimensional vectors, denoted x . The

outputs are encoded as 10-dimensional vectorsy. If the image depicts a six, then the sixth element

of the output vector is labelled 1, i.e.,

y =
[
0 0 0 0 0 0 1 0 0 0

]T
(3.1)

Training set is the collective term for all training examples. Because the outputs y are manually

labeled, this type of machine learning is called supervised learning.
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3 Machine Learning

3.1.2 Neurons and Neural Networks

A neural network is composed of so-called neurons. Neurons are computational units that take a

number of inputs and produce an output. Figure 3.2 depicts a neuron with three inputs.

x1

x2

x3

output

Figure 3.2:Depiction of an individual neuron.

The output of the neuron in �gure 3.2 is given by

output = f (x1w1 + x2w2 + x3w3 + b) (3.2)

where xi are inputs,wi are weights, b is a bias, and f is a nonlinear di�erentiable function referred

to as the activation function. There is a certain weightwi associated with every input xi . Equation

(3.2) can also be written as

output = f (x ·w + b) (3.3)

where x and w are respectively the vectors of inputs and weights. The activation function is

typically a smoothed version of the Heaviside step function, i.e., f → 1 as x ·w + b → ∞ and

f → 0 as x ·w + b → −∞.

The neural network for recognizing handwritten digits shown in Figure 3.3 is a collective of

interconnected neurons. The input layer consists of 784 units; one unit for every pixel of the

image. The particular neural network has a single hidden layer of 15 neurons. The word “hidden”

carries no special meaning; it simple means that the layer is neither an input layer nor an output

layer. The output layer consists of 10 units in accordance to the output vector in (3.1).

3.1.3 Training a Neural Network

The set of weights and biases are called the parameters of a neural network. The procedure

referred to as training automatically tunes the parameters of a neural network such that it predicts

the correct result for most, if not all examples in the training set. Training a neural network

requires a measure of how well the neural network is performing, the so-called cost function. A

commonly used cost function is the mean-squared error (MSE) given by

C =
1

2n

∑
x

| |y − ŷ)| |2 (3.4)

where ŷ is the output of the neural network and y is the manually labeled reference output. The

performance of the neural network is optimal if ŷ = y for all x in the training set, i.e., C = 0.

Even though (3.4) does not explicitly show it,C is a function of the parameterswi and bi . Because
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3.1 Neural Networks
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Figure 3.3: The neural network for recognizing handwritten digits.

both the neural network and the cost function are di�erentiable, the cost can be minimized by

updating the parameters as follows:

wi B wi − α
∂C

∂wi
(3.5)

bi B bi − α
∂C

∂bi
(3.6)

where α is the so-called learning rate. Variables like α , the choice of activation function, the

number of hidden layers, the number of hidden units per layer, etc., are called hyperparameters.

The above minimization procedure of C is the fundamental idea behind the backpropagation

algorithm. The backpropagation algorithm essentially solves a minimization problem in a high-

dimensional vector space.

3.1.4 Generalization

The purpose of training a neural network is reliably achieving a high accuracy on samples that

are not included in the training data set; this is referred to as generalization. To evaluate the

ability of a neural network to generalize, the training set is commonly split into a training set, a

validation set, and a test set. The training set is used for training and the validation set is used to

evaluate the performance of the neural network and to tune the hyperparameters. After training,

the neural network is tested a �nal time on the test set.

A neural network that achieves a high success rate on the training set and a low success rate on

the test set is said to be over�tting the training set. The neural network is essentially memorizing

the training set and cannot deal with samples not seen in training. A neural network with the

ability to generalize would achieve a high success rate on both the training set and the test set.

There are a number of design heuristics to ensure that a neural network is able to generalize. Two

examples of these heuristics are regularization and dropout.
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3 Machine Learning

3.2 Neural-Network-Based Unresolved-Scale Model

In the current work, the inputs and outputs are real-valued numbers. Problems of this type are

known as regression problems whereas the example problem in the previous section is called

a classi�cation problem. This is the only signi�cant di�erence with the canonical example of

recognizing handwritten digits.

3.2.1 Outputs

The outputs of the neural network are the element-wise integral values of the unresolved-scale

terms given by

output =

{(
wx , ū

2 +
1

2

u ′u ′
)
,
(
wl ,u

′
t
)
,
(
wr ,u

′
t
)
,
(
wx ,u

′
x
)}

(3.7)

where wl and wr respectively denote the left and right weighting functions of an element. As

explained in Section 2.2, wx is the gradient of either the left or right weighting function.

3.2.2 Inputs

The fact that Shakib’s algebraic model in (1.6) is reasonably accurate suggests that using ū, R(ū),
ν , and h as inputs would at a minimum yield a similarly accurate model. However, the large-scale

residual R(ū) need not be provided explicitly. Since R(ū) is given by

R(ū) = ūt + ūūx − νūxx − f (x) (3.8)

the large-scale residual R(ū) can be provided implicitly via ūt , ū, and f . Since linear elements are

used, the gradient ūx is embodied in ū by providing ū at the element boundaries. The Laplacian

ūxx is zero for linear elements and need not be given. Thus, an appropriate set of input features

should at the minimum contain ū, ūt , f , ν (or Re), and h. The neural network can then learn an

internal representation of R(ū) and ūx if necessary.

3.2.3 The Local Stencil

Sampling the input features ū, ūt , and f at the element boundaries is referred to as the "local

stencil". In other words, the local stencil is given by

input =

{
ūi , ūi+1,

(
∂ū

∂t

)
i
,

(
∂ū

∂t

)
i+1

, fi , fi+1,Re,h

}
(3.9)

where i and i + 1 respectively denote the left and right element boundaries. An illustration of the

local stencil is given in Figure 3.4a.
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3.2 Neural-Network-Based Unresolved-Scale Model

(a) Local stencil
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Figure 3.4: Illustration and comparison of the local stencil and the extended stencil.

3.2.4 The Extended Stencil

Generally, the interaction between u ′ and ū is nonlocal up to a certain correlation length. This

correlation length is not necessarily smaller thanh. It therefore makes sense to devise an "extended

stencil" where information of adjacent elements is included in the input features. The extended

stencil is given by

input =

{
ūi−1, ūi , ūi+1, ūi+2,

(
∂ū

∂t

)
i−1

,

(
∂ū

∂t

)
i
,

(
∂ū

∂t

)
i+1

,

(
∂ū

∂t

)
i+2

, fi−1, fi , fi+1, fi+2,Re,h

}
(3.10)

An illustration of (3.10) is given in Figure 3.4b. The question whether the extended stencil yields

an improvement over the local stencil is answered in Chapter 5.

3.2.5 Additional Input Features

If the elements are distributed over multiple computing nodes, then communication between

nodes can result in signi�cant communication overhead. The extended stencil must therefore be

limited to adjacent elements only. Nevertheless, the input features can be extended in other ways

if the local and extended stencils of the previous sections prove to be insu�cient. Since f is a

known function, the possibility remains to sample f at other locations in addition to the element

boundaries. Furthermore, the time-derivative of f could also be provided. It is also possible to

provide to unresolved-scale terms at the previous timestep.

3.2.6 Neural Network Architecture

The current work is implemented with Keras, an open-source neural-network library written in

Python [27]. Following the recommendation of François Chollet, the author of Keras, the rmsprop
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3 Machine Learning

training algorithm is used and the training set is not split into so-called mini-batches. Given

the training set and validation set, the training algorithm will minimize the mean-squared error

(MSE) on the training set. The mean-absolute error (MAE) on the validation set is used to judge

the performance of the model. Minimizing the MSE and not the MAE yields faster convergence.

The MAE, on the other hand, is more meaningful as a performance metric [28].

3.2.7 Training Procedure

The training procedure can be summarized as follows:

1. Perform a DNS of a training problem.

2. Compute the integral values of the unresolved-scale terms for all elements and for all

timesteps.

3. Find the input values corresponding to the unresolved-scale terms and merge the inputs

and outputs into a dataset.

4. Randomly shu�e the dataset.

5. Split the dataset into a training set and a validation set.

6. Normalize both the inputs and outputs.

The normalization step ensures that all inputs and outputs are scaled to approximately the same

range centered around zero.

3.3 Integration of the Neural Network in the Simulation

Discretization of the Navier-Stokes equations and Burgers’ equation results in a system of nonlin-

ear equations which can be solved using Newton’s method. The iterations in Newton’s method

are typically referred to as corrector passes. There are several ways to integrate a neural-network-

based unresolved-scale model into an LES solver. Two possibilities are:

1. Invoking the neural network once before the corrector passes.

2. Invoking the neural network at every corrector pass.

Both options have advantages and disadvantages. With option (1), the prediction of the neural

network is inevitably based on the solution at the previous timestep. This has the advantage that

the prediction need not be updated during the corrector passes which speeds up convergence.

The disadvantage is that the neural network lags behind in terms of information because it cannot

use the intermediate solutions available in the corrector passes.

The advantage of option (2) is that the neural network can use the intermediate solutions as

inputs to make more accurate predictions. The disadvantage of option (2) is that updating the

predictions at every corrector pass slows convergence. Furthermore, the intermediate solutions

are unphysical solutions not seen in training, which could be problematic. In the current work,

the neural network is invoked at every corrector pass because accuracy is of higher priority than

speed of execution. Further details on the integration of the neural network in the LES can be

found in Appendix C.
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4 Reconstructing ū with Exact
Unresolved-Scale Terms

The unresolved-scale terms in the variational multiscale formulation of Burgers’ equation are

unresolved-scale terms = (w,u ′t )︸ ︷︷ ︸
u′t -term

−

(
wx , ūu

′ +
1

2

u ′2
)

︸               ︷︷               ︸
u′-term

+
1

Re

(
wx ,u

′
x
)

︸        ︷︷        ︸
u′x -term

, ∀w ∈ W (4.1)

If there existed a perfect predictive model for these integral terms, then the LES would yield the

exact large-scale solution ū to any problem. However, any real-world model will be imperfect and

this chapter answers several questions about the e�ects of these imperfections on the large-scale

solution ū. Speci�cally:

• Are the individual terms in (4.1) of equal importance?

• Are any of the terms in (4.1) negligible?

• How does the large-scale solution ū respond to errors in the unresolved-scales?

• How does the signi�cance of the u ′t -term change as ∆tLES is increased?

A perfect model for the unresolved-scale terms does not exist, but it can be emulated by inserting

exact (precomputed) unresolved-scale terms into an LES. Since the LES should yield the exact

large-scale solution ū, this method also serves as a validation of the implementation. Furthermore,

rather than inserting exact unresolved-scale terms into the LES, these values can be deliberately

changed to observe the e�ects on the large-scale solution ū.

4.1 Model Problems

Two model problems are used to answer the aforementioned questions about the e�ects of errors

in the unresolved scales. The model problems are solved by DNS with h = 1

1024
and ∆tDNS = 0.001.

The �rst model problem, featuring a steady forcing function and Dirichlet boundary conditions,

is given by 

∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 1, x ∈ (0, 1), t ∈ (0, 2],Re = 100

u(x , 0) = 1, x ∈ (0, 1)

u(0, t) = 1, t ∈ (0, 2]

u(1, t) = 1, t ∈ (0, 2]

(4.2)

The solution of (4.2) settles in a steady state at t ≈ 1.
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4 Reconstructing ū with Exact Unresolved-Scale Terms

The second model problem, featuring a periodic forcing function and periodic boundary conditions,

is given by
∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= f (x , t), x ∈ (0, 1), t ∈ (0, 2],Re = 100

u(x , 0) = 1 + sin(2πx), x ∈ (0, 1)

u(0, t) = u(1, t), t ∈ (0, 2]

(4.3)

where

f (x , t) = sin(πx) sin(πt) + sin(2πx) sin(2πt) + sin(3πx) sin(3πt) (4.4)

The solution of (4.4) remains unsteady as a result of the unsteady forcing function.

4.2 Solutions sans Unresolved-Scale Model

A comparison between the exact solutions of ū and the LES solutions of ū is shown in Figure

4.1. Near x = 1 in Figure 4.1a, u abruptly changes from u ≈ 1.5 to u = 1 to satisfy the boundary

condition u(1) = 1. This abrupt change takes place over a length scale proportional to ν = 1/Re

and is therefore called a shock (or in this case, a boundary layer). The large-scale solution ū cannot

fully resolve the shock and the associated viscous dissipation. In other words, viscous dissipation

acts on a length scale below the mesh size. As a result, the system accumulates excess energy

and steep gradients emerge throughout the computational domain to dissipate this excess energy.

These oscillations render the LES solution of ū useless. The oscillations are less pronounced

in Figure 4.1b because the gradient of the shock in Figure 4.1b is less steep. Thus, the onset of

oscillations is a mesh resolution problem and occurs if the dissipative length scale is smaller than

the mesh size h [24]. Since the mesh size h in LESs is greater than the dissipative length scale, the

onset of oscillations must be prevented by an unresolved-scale model; an unresolved-scale model

prevents the onset of oscillations by modeling the transfer of energy to the unresolved-scales.

(a) Problem (4.2) at t = 0.5
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Exact solution ū
LES solution ū (no model)

(b) Problem (4.3) at t = 0.5
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Figure 4.1: Comparison between the exact solutions of ū and the LES solutions of ū.
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4.3 Importance of the Individual Terms

4.3 Importance of the Individual Terms

To importance of the individual unresolved-scale terms is examined by starting with an LES sans

unresolved-scale model, inserting the exact terms one-by-one, and observing the change in the

LES solution. The results of this experiment are shown in Figure 4.2. Inserting only the u ′-term

dramatically improves the solution compared to the results sans unresolved-scale model in Figure

4.1. Inserting theu ′x -term in addition to theu ′-term further improves the solution to a point where

it matches the exact solution. As expected from variational multiscale theory, the LES solution

matches the exact solution when all exact unresolved-scale terms are inserted. The u ′-term clearly

is the dominant term, followed by the u ′x -term. These results suggest that the u ′t -term is negligible.

In actuality, the signi�cance of the u ′t -term strongly depends on the timestep in the LES. The

u ′t -term is expected to be negligible because the unresolved-scale terms are quasi-steady at small

timesteps (∆tLES = ∆tDNS).

(a) Problem (4.2) t = 0.5
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2.0 Exact solutionu
Exact solution ū
LES solution ū (withu′)

LES solution ū (withu′ andu′x )

LES solution ū (withu′,u′x , andu
′
t )

(b) Problem (4.3) t = 0.5
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Figure 4.2: LES solutions showing the importance of the individual unresolved-scale terms.

4.4 Significance of theu′
t -Term

The signi�cance of the u ′t -term is examined by omitting the u ′t -term and observing the e�ects

on the LES solution when increasing the timestep. A relevant non-dimensional parameter is the

Courant number given by

C =
u∆t

h
(4.5)

where the characteristic wave speed u is O(1). The results in Figure 4.3 show that the error of

the solution increases as the Courant number increases, implying that the u ′t -term is no longer

negligible and that the unresolved scales are no longer quasi-steady at larger Courant numbers.

This is especially true in highly unsteady problems, as shown in Figure 4.3b. The (w,u ′t )-term

represents work done to the system because it closely resembles the term (w, f ). The sensitivity

to the u ′t -term therefore makes sense because it performs a direct addition or removal of energy.
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4 Reconstructing ū with Exact Unresolved-Scale Terms

(a) Problem (4.2) at t = 0.5
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LES solution ū (withoutu′t ,C = 1.0)

(b) Problem (4.3) at t = 0.5
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Figure 4.3: LES solutions showing the e�ects of omitting the u ′t -term at di�erent Courant numbers. The

u ′t -term is no longer negligible at higher timesteps.

4.5 E�ects of Noisy Predictions

The e�ects of noisy unresolved-scale-term predictions are examined by adding arti�cial noise

to the integral values before insertion into the LES. Arti�cial noise is added by multiplying the

integral values by a uniformly distributed random number centered around 1. For noise levels

of ±10%, the terms are multiplied by a random number in the range [0.9, 1.1]. The results of

this experiment are shown in Figure 4.4 and show that the large-scale solutions ū are virtually

una�ected by noise levels of ±40%. It must however be noted that this particular method of

adding arti�cial noise preserves the mean value and does therefore, on average, still add or remove

the correct amount of energy. This explains why arti�cial noise has such a small e�ect on the

results.

4.6 E�ects of Biased Predictions

The e�ects of biased unresolved-scale-term predictions are more pronounced than the e�ects

of noisy predictions. To introduce a bias of +10%, the unresolved-scale terms are multiplied by

1.1. The results of this experiment are shown in Figure 4.6 and 4.5 for respectively a positive

bias and a negative bias. The e�ects of biased unresolved-scale-term predictions are signi�cant

because a biased predictions result in a shortage or surplus of energy with respect to the exact

solution. The di�erence to the exact solution is most pronounced in Figure 4.5a and 4.6a because

the unresolved-scale terms are purely dissipative in this case. In Problem (4.3), the impact on

the total energy is less severe because there is local backscatter in addition to energy dissipation.

This explains why the e�ects of biased unresolved-scale-term predictions are less pronounced in

Figure 4.5b and 4.6b.
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4.6 E�ects of Biased Predictions

(a) Problem (4.2) at t = 0.5
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(b) Problem (4.3) at t = 0.5
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Figure 4.4: LES solutions showing the e�ects of noise in the unresolved-scale terms.

(a) Problem (4.2) at t = 0.5
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LES solution ū (+40% bias)

(b) Problem (4.3) at t = 0.5
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Figure 4.5: LES solutions showing the e�ect of a positive bias in the unresolved-scale terms.
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4 Reconstructing ū with Exact Unresolved-Scale Terms

(a) Problem (4.2) t = 0.5
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LES solution ū (-40% bias)

(b) Problem (4.3) t = 0.5
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Figure 4.6: LES solutions showing the e�ect of a negative bias in the unresolved-scale terms.

4.7 Chapter Conclusion

It can be concluded that the individual unresolved-scale terms are not equally important; the

u ′-term is dominant, followed by theu ′x -term. The signi�cance of theu ′t -term strongly depends on

the Courant number. If the Courant number is small (e.g.,C = 0.01), then the u ′t -term is negligible

because the unresolved scales are quasi-steady. IfC = 0.1, then the u ′t -term is no longer negligible.

The sensitivity to the u ′t -term can be explained by recognizing that the u ′t -term represents work

done to the system. It therefore performs a direct addition or removal of energy which is not

the case for the u ′- and u ′x -terms. Generally speaking, none of the unresolved-scale terms are

negligible and a neural network must be trained to predict all three terms. The u ′t -term can only

be removed from the model if the Courant number is su�ciently small.

The large-scale solution ū is virtually una�ected by noisy unresolved-scale-term predictions as

long as the mean of the predictions remains unchanged. The solution is much more sensitive

to biased predictions, especially in problems where the unresolved-scales are purely dissipative,

because biased predictions result in a shortage or surplus of energy with respect to the exact

solution. The �nding that the solution is virtually una�ected by noisy predictions is a strong

motivation for the application of neural-network-based models because the predictions of a neural

network are inherently noisy.
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5 Learning theu′-Term and theu′x-Term

As mentioned in Chapter 4, a universal model for the unresolved scales would correctly infer

the integral form of the unresolved-scale terms regardless of the forcing function, boundary

conditions, initial condition, Reynolds number, mesh spacing, and timestep. The purpose of this

chapter is training a neural network that satis�es a subset of these requirements. The insights

gained from solving a simpli�ed problem are used to solve more general problems in the two

subsequent chapters.

The scope of the model is limited by �xing the Reynolds number, mesh spacing, and timestep;

speci�cally, Re = 100, hLES =
1

8
, and ∆tLES = ∆tDNS = 0.001, which corresponds to a Courant

number of 0.01. As demonstrated in Chapter 4, theu ′t -term can be omitted at this Courant number,

leaving only the u ′- and u ′x -terms to be modeled. Fixing the Reynolds number and mesh spacing

removes two variables from the problem and thereby simpli�es the complex relationships between

the inputs and outputs.

The neural network is trained on a dataset obtained from a training problem. Part of the dataset

is set aside as the validation set and used to determine the optimal hyperparameters of the model.

Finally, the model is tested in two test problems that are not seen in training. This is done to

assert that the model is capable of generalizing to new situations.

5.1 Inputs and Outputs

As discussed in Section 3.2, the set of input features can consist of a local stencil or an extended

stencil. The local stencil contains input features local to the element under consideration, i.e.,

input =

{
ūi , ūi+1,

(
∂ū

∂t

)
i
,

(
∂ū

∂t

)
i+1

, fi , fi+1

}
(5.1)

whereas the extended stencil contains features of the two adjacent (left and right) elements in

addition to the features of the local stencil, i.e.,

input =

{
ūi−1, ūi , ūi+1, ūi+2,

(
∂ū

∂t

)
i−1

,

(
∂ū

∂t

)
i
,

(
∂ū

∂t

)
i+1

,

(
∂ū

∂t

)
i+2

, fi−1, fi , fi+1, fi+2

}
(5.2)

Since the u ′t -term is omitted in the current chapter, the outputs are two real-valued numbers

given by

output =

{(
wx , ū

2 +
1

2

u ′2
)
,
(
wx ,u

′
x
)}

(5.3)

where wx is the gradient of one of the two weighting functions of the element. As explained

in Section 2.2, the outputs corresponding to the remaining weighting function are obtained by

�ipping the sign of the prediction.
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5 Learning theu ′-Term and theu ′
x -Term

5.2 Training

The training examples must capture all phenomena that are encountered in the future application

of the model. The main phenomena in Burgers’ equation is the formation of shocks (i.e., large

gradients
∂u
∂x ) because the dissipation of energy takes place at the length scales of these shocks.

The training problem, given by

∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 3 sin(3πx) cos(2πt), x ∈ (0, 1), t ∈ (0, 5],Re = 100

u(x , 0) = 1, x ∈ (0, 1)

u(0, t) = 1 + 0.75 sin(0.4πt), t ∈ (0, 5]

u(1, t) = 1 − 0.75 sin(0.4πt), t ∈ (0, 5]

(5.4)

exhibits a wide variety of shocks as a result of the highly unsteady forcing function and boundary

conditions. The forcing function and boundary conditions in (5.4) are deliberately chosen to

create a dataset in which all sorts of phenomena are present, including local backscatter.

The exact solution to (5.4) is obtained by DNS using hDNS =
1

1024
and ∆tDNS = 0.001. The training

set is derived from the exact solution by evaluating the unresolved-scale terms using hLES =
1

8
and

∆tLES = ∆tDNS = 0.001. The dataset consists of 40 000 examples, since the LES-mesh consists of 8

elements and using ∆tLES = 0.001 for t ∈ (0, 5] yields a total of 5000 timesteps. As recommended

by Ng [29], 20% of the examples are set aside as the validation set. The training set therefore

consists of 32 000 examples and the validation set consists of 8000 examples.

5.3 Validation

The most important hyperparameter is the topology of the neural network, i.e., the number of

hidden layers and the number of hidden units per hidden layer. The mean absolute errors (MAEs)

of 20 arrangements are given in Table 5.1. To put the MAEs into perspective, consider that the

outputs are scaled to a range of approximately [−1, 1] as a result of the normalization step. The

results in Table 5.1 show that there is a clear bene�t to adding hidden layers over adding units to

a single hidden layer. For example, in spite of its much lower capacity, model #30 (3474 trainable

parameters) yields a lower MAE on the validation set than model #25 (61 442 trainable parameters).

Furthermore, the errors on the training set are close to the errors on the validation set. This

indicates that none of the models over�t the training data and it is therefore unnecessary to

employ techniques to combat over�tting (e.g., regularization and dropout). Comparing the MAEs

in Table 5.1a and 5.1b, it is clear that the errors of the models trained on examples using the

extended stencil are consistently lower than the errors of the models trained on examples using

the local stencil. This undeniably proves that the additional data in the extended stencil contains

useful information.

The best performing model in Table 5.1 is neither the model with the most trainable parameters

nor the model with the most layers; the best performing model is model #31 with a modest 9282

learnable parameters and 3 hidden layers of 64 units per layer. An overview of the remaining

hyperparameters is given in Table 5.2; motivations for selecting these hyperparameters are given

in Section 3.2.6.
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5.3 Validation

(a) Local stencil

# Hidden layers and units Parameters Training MAE Validation MAE

1 {16} 146 0.1549 0.1565

2 {64} 578 0.0875 0.0899

3 {256} 2306 0.0563 0.0560

4 {1024} 9218 0.0383 0.0397

5 {4096} 36 866 0.0378 0.0373

6 {16, 16} 418 0.1048 0.1058

7 {64, 32} 2594 0.0425 0.0434

8 {64, 64} 4738 0.0323 0.0296

9 {16, 16, 16} 690 0.0722 0.0730

10 {64, 32, 16} 3090 0.0327 0.0367

11 {64, 64, 64} 8898 0.0211 0.0214

12 {16, 16, 16, 16} 962 0.0625 0.0646

13 {64, 64, 32, 16} 7250 0.0212 0.0218

14 {64, 64, 64, 64} 13 058 0.0177 0.0194

15 {16, 16, 16, 16, 16} 1234 0.0612 0.0597

16 {64, 64, 64, 32, 16} 11 410 0.0197 0.0207

17 {64, 64, 64, 64, 64} 17 218 0.0186 0.0191

18 {16, 16, 16, 16, 16, 16} 1506 0.0531 0.0562

19 {64, 64, 64, 64, 32, 16} 15 570 0.0189 0.0200

20 {64, 64, 64, 64, 64, 64} 21 378 0.0187 0.0198

(b) Extended stencil

# Hidden layers and units Parameters Training MAE Validation MAE

21 {16} 242 0.0823 0.0829

22 {64} 962 0.0354 0.0359

23 {256} 3842 0.0218 0.0221

24 {1024} 15 362 0.0166 0.0171

25 {4096} 61 442 0.0163 0.0163

26 {16, 16} 514 0.0484 0.0494

27 {64, 32} 2978 0.0182 0.0184

28 {64, 64} 5122 0.0147 0.0161

29 {16, 16, 16} 786 0.0441 0.0444

30 {64, 32, 16} 3474 0.0174 0.0161

31 {64, 64, 64} 9282 0.0134 0.0132

32 {16, 16, 16, 16} 1058 0.0355 0.0358

33 {64, 64, 32, 16} 7634 0.0145 0.0136

34 {64, 64, 64, 64} 13 442 0.0141 0.0144

35 {16, 16, 16, 16, 16} 1330 0.0324 0.0312

36 {64, 64, 64, 32, 16} 11 794 0.0145 0.0139

37 {64, 64, 64, 64, 64} 17 602 0.0149 0.0145

38 {16, 16, 16, 16, 16, 16} 1602 0.0362 0.0372

39 {64, 64, 64, 64, 32, 16} 15 954 0.0153 0.0140

40 {64, 64, 64, 64, 64, 64} 21 762 0.0162 0.0174

Table 5.1: Comparison of the mean absolute errors (MAEs) of 40 di�erent models.
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5 Learning theu ′-Term and theu ′
x -Term

Dataset Training examples 32 000

Validation examples 8000

Model Type Densely connected neural network

Input units 4 (local stencil) or 12 (extended stencil)

Output units 2

Hidden layers and units See Table 5.1

Trainable parameters See Table 5.1

Activation function relu
Regularization N/A

Dropout N/A

Training algorithm Optimizer rmsprop
Loss function mse
Batch size N/A

Epochs 100

Performance Training MAE See Table 5.1

Validation MAE See Table 5.1

Table 5.2: Summary of the dataset, hyperparameters, and performance of the neural network.

5.3.1 Visualizing the Performance on the Training and Validation Sets

To make a qualitative assessment on how well the models in Table 5.1 match the examples, a

time series of predictions is compared to the exact solution. Figure 5.1 shows a time series plot

of the predictions of model #1 (i.e., the “local stencil, low capacity model) and the predictions of

model #31 (i.e., the “extended stencil, high capacity model”). Notice that model #1 is the worst

performing model and model #31 is the best performing model in Table 5.1. For clarity, Figure

5.1 only shows the predictions for the right-most element of the domain (i.e., x = [0.875, 1]).

Figure 5.1 shows that both the low- and high-capacity model reproduce the behavior of the exact

solution. The predictions of the high-capacity model almost perfectly match the ground truth data

whereas the predictions of the low-capacity model exhibit more noise. The models are expected

to perform well because these examples are part of the training and validation set. The challenge

is training a model that performs well in the a posteriori tests.

5.4 Performance Evaluation

The models are tested on two test problems that are substantially di�erent from the problem used

to generate the training examples. This is done to assess the ability of the models to generalize to

new situations. There are two methods for testing the model on the two test problems:

1. Assembling a test set by DNS of the two test problems and evaluating the neural network

on these inputs. The model is tested on individual data points.

2. Running an LES of the test problems where the neural network is invoked at runtime of

the LES. The model is tested within an actual LES.

Method (1) allows for a direct comparison between predictions and the exact solution, but the

model is not evaluated within an actual LES. In Method (2), the model is evaluated within an

actual LES which allows erroneous predictions to a�ect the further course of the simulation.
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5.4 Performance Evaluation
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Figure 5.1: Time series of the predicted and exact u ′- and u ′x -terms in Problem (5.4) on the right-most

element of the domain, i.e., x ∈ (0.875, 1).

5.4.1 Test Problems

The two test problems are categorically di�erent from the model problem in (5.4). The �rst test

problem, employing a steady forcing function and Dirichlet boundary conditions, is given by

∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 1, x ∈ (0, 1), t ∈ (0, 2],Re = 100

u(x , 0) = 1, x ∈ (0, 1)

u(0, t) = 1, t ∈ (0, 2]

u(1, t) = 1, t ∈ (0, 2]

(5.5)

and the second test problem, employing an unsteady forcing function and periodic boundary

conditions, is given by
∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 20(x3 − x6) sin(2πt), x ∈ (0, 1), t ∈ (0, 2],Re = 100

u(x , 0) = 1 + sin(2πx), x ∈ (0, 1)

u(0, t) = u(1, t), t ∈ (0, 2]

(5.6)

The forcing functions and boundary conditions in (5.5) and (5.4) clearly have no resemblance to

those in the training problem. To perform well on the above two test problems, the model must

learn a fundamental underlying relationship between the input features and the unresolved-scale

terms.

33



5 Learning theu ′-Term and theu ′
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5.4.2 Performance on Individual Data Points

A comparison of the predictions of the high-capacity model and the low-capacity model is given

in Figure 5.2. These results are obtained by running the model on all individual data points;

errors do therefore not a�ect the future evolution of the solution. Figure 5.2 shows that the

model is certainly not perfect; the low-capacity model is biased in Figure 5.2a and both models

yield a signi�cant error between t = 0.25 and t = 0.5 in Figure 5.2b. This timeframe overlaps

with the timeframe when the shock traverses through the element. The local conditions change

dramatically when the shock enters the element through the left boundary and when the shock

leaves the element through the right boundary. The model is not fully prepared for a steep moving

shock even though the training problem features moving shocks. Nonetheless, Figure 5.2 shows

that both models reproduce the overall behavior of the exact solution. This con�rms that both

models have the ability to generalize to new situations.

5.4.3 Performance at Runtime of an LES

Figure 5.3 shows the solutions to problems (5.5) and (5.4) at two separate timesteps. The LES

solutions in Figure 5.3 are obtained by invoking the neural networks at runtime of the LES.

Erroneous predictions do therefore a�ect the future evolution of the solution. Figure 5.3 shows that

the LES solution using the high-capacity model is in excellent agreement with the exact solutions

whereas the LES solutions using the low-capacity model have a noticeable error, especially

near the steep gradient in Figure 5.2b. Nonetheless, even the low-capacity model is a dramatic

improvement over the LES solution obtained without an unresolved-scale model. These results

show that small errors in the predictions do not necessarily build up over time and cause the

solution to diverge from the exact solution.

5.5 Chapter Conclusion

Training a neural network to learn the u ′- and u ′x -terms of Burgers’ equation has been a success.

Setting the hyperparameters as recommended by Chollet results in a fully functional unresolved-

scale model, regardless of whether a high-capacity model or a low-capacity model is used. This

is a remarkable result because the low capacity model is the worst model in Table 5.1 and the

high capacity model is the best model in Table 5.1. This implies that the underlying functional

relationship is rather simple; it does not require a large network to learn a functional unresolved-

scale model.

As recommended by Duraisamy et al., the models are not only tested on individual data points,

but also within an actual LES. Both the low- and high-capacity models successfully pass the a

posteriori tests and yield a dramatically improved solution in comparison to the solution without

an unresolved-scale model. It can therefore be concluded that both models have successfully

learned a functional relationship between the input features and the unresolved-scale terms. The

models are not perfect, but errors in the predictions do not signi�cantly change the evolution of

ū compared to the exact solution.
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(b) Problem (5.6), right-most element of the domain
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Figure 5.2: Time series of the predicted and exact u ′- and u ′x -terms at individual data points on the

right-most element of the domain, i.e., x ∈ (0.875, 1).
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(a) Problem (5.5), t = 0.2
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Figure 5.3: LES solutions to Problem (5.5) and (5.6) at separate timesteps obtained by testing the neural

network within the simulation.
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The results of Chapter 4 show that the u ′t -term must be modeled for an accurate reconstruction

of ū when the Courant number is 0.1 or greater. In most LESs of engineering applications, the

timestep and associated Courant number are much greater than in DNSs because the time scales

of engineering interest (e.g., for the computation of aeroelastic vibrations) are much greater than

the small timesteps required for DNSs. Thus, there is a strong motivation to extend the model

with the ability of inferring the u ′t -term.

6.1 Inputs and Outputs

Given the success of the extended stencil in Chapter 5, it is unnecessary to continue using the

local stencil. There is therefore only one set of input features given by

input =

{
ūi−1, ūi , ūi+1, ūi+2,

(
∂u

∂t

)
i−1

,

(
∂u

∂t

)
i
,

(
∂u

∂t

)
i+1

,

(
∂u

∂t

)
i+2

, fi−1, fi , fi+1, fi+2

}
(6.1)

Compared to the set of outputs in Chapter 5, the set of outputs in the present chapter is extended

by the two u ′t -terms. Thus, the set of outputs is given by

output =

{(
wx , ū

2 +
1

2

u ′u ′
)
,
(
wl ,u

′
t
)
,
(
wr ,u

′
t
)
,
(
wx ,u

′
x
)}

(6.2)

where wl and wr are respectively the left and right weighting functions of a given element. For

reasons given in Section 2.2, wx is the gradient of only one of these two weighting functions.

6.2 Training

A summary of the dataset, hyperparameters, and performance of the neural network is given in

Table 6.1. The training problem remains unchanged from Chapter 5, i.e.,

∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 3 sin(3πx) cos(2πt), x ∈ (0, 1), t ∈ (0, 5],Re = 100

u(x , 0) = 1, x ∈ (0, 1)

u(0, t) = 1 + 0.75 sin(0.4πt), t ∈ (0, 5]

u(1, t) = 1 − 0.75 sin(0.4πt), t ∈ (0, 5]

(6.3)

In the same vein as in Chapter 5, the exact solution to (6.3) is obtained by DNS using hDNS =
1

1024

and ∆tDNS = 0.001. The training examples are derived from the DNS results using hLES =
1

8
and

∆tLES = 0.01, which corresponds to a Courant number of 0.1. The number of examples reduces

from 40 000 to 4000 because there are 500 distinct LES timesteps rather than 5000 in Chapter 5.
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6 Learning theu ′
t -Term

Dataset Training examples 3200

Validation examples 800

Model Type Densely connected neural network

Input units 12

Output units 4

Hidden layers and units {64, 64, 64}

Trainable parameters 9412

Activation function relu
Regularization N/A

Dropout N/A

Training algorithm Optimizer rmsprop
Loss function mse
Batch size N/A

Epochs 300

Performance Training MAE 0.0328

Validation MAE 0.0334

Table 6.1: Summary of the dataset, hyperparameters, and performance of the neural network.

6.3 Validation

As shown in Table 6.1, 20% of the examples are set aside as the validation set. The model achieves

a MAE of 0.0328 on the training set and a MAE of 0.0334 on the validation set. To put these

numbers in context, consider that the outputs are normalized to approximately the range [−1, 1].

The fact that the training MAE is virtually equal to the validation MAE indicates that the model

does not over�t the training data. The high-capacity model of Chapter 5, on which the current

model is based, achieves training and validation MAEs of respectively 0.0134 and 0.0132. The

di�erence in training and validation MAEs between the current and previous chapters is a result

of the greatly reduced number of examples. A comparison of the predicted and exact u ′t -terms in

the training problem is given in Figure 6.1. There is an excellent match between the predictions

and the exact solutions which implies that a neural network can successfully learn the u ′t -terms

based on the inputs in (6.1).

6.4 Performance Evaluation

After training and validation, the model is tested in previously unseen problems to assert its

ability to generalize to new situations. To this end, the two test problems from Chapter 5 are used.

The �rst test problem is given by

∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 1, x ∈ (0, 1), t ∈ (0, 2],Re = 100

u(x , 0) = 1, x ∈ (0, 1)

u(0, t) = 1, t ∈ (0, 2]

u(1, t) = 1, t ∈ (0, 2]

(6.4)
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Figure 6.1: Time series of the predicted and exact u ′t -terms on the right-most element of the domain in

Problem (6.3), i.e., x ∈ (0.875, 1).

and the second test problem is given by
∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 20(x3 − x6) sin(2πt), x ∈ (0, 1), t ∈ (0, 2],Re = 100

u(x , 0) = 1 + sin(2πx), x ∈ (0, 1)

u(0, t) = u(1, t), t ∈ (0, 2]

(6.5)

As discussed in Chapter 5, there are two methods to test the model: (1) testing on individual data

points, and (2) testing within an actual LES.

6.4.1 Performance on Individual Data Points

Figure 6.2 shows the predictions of the model based on individual data points obtained by DNS of

Problem (6.5). The predictions do match the large swings of the exact solution, but there are high

localized errors, especially between t = 0.25 and t = 0.50. The errors in predicting the u ′- and

u ′x -terms are comparable to the errors in Figure 5.2b. Based on the qualitative �ndings of Figure

6.2, the model in the current chapter is comparable in performance to the model in Chapter 5,

despite the much smaller dataset.

6.4.2 Performance at Runtime of an LES

An LES of Problem (6.4) runs without issue and yields the same results as in Figure 5.3. This

is no surprise, as (w,u ′t ) ≈ 0 in Problem (6.4) and the model is able to predict this. Di�culties
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u
′
+

1 2

u
′2

) d
x

Exact solution
Prediction

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

-0.50

-0.25

0.00

0.25

0.50

0.75

∫ 1 0
.8

7
5

w
lu
′ t
d
x

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

-1.0

-0.5

0.0

0.5

1.0

∫ 1 0
.8

7
5

w
r
u
′ t
d
x

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

-7.5

-5.0

-2.5

0.0

2.5

5.0

∫ 1 0
.8

7
5

w
x
u
′ x
d
x

Figure 6.2: Time series of the predicted and exact unresolved-scale terms at individual data points on

the right-most element of the domain in Problem (6.5), i.e., x ∈ (0.875, 1).
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Figure 6.3:Distributions of the unresolved-scale terms in the training set.

emerge when running an LES of Problem (6.5) where (w,u ′t ) , 0. Erroneous predictions cause

the solution to grow uncontrollably. The predictions for the (w,u ′t )-term appear to trigger this

behavior because the solution is reasonably accurate when the predicted u ′t -terms are omitted.

A potential cause is that the intermediate results in the Newton process do not have a physical

meaning. Physically meaningless examples are not part of the training set and the neural network

model is therefore not trained to handle these inputs.

6.5 Stabilization

Neural networks are statistical tools and erroneous predictions are unavoidable, regardless of

how well the neural network is trained. The failure to run an LES of (6.5) shows that a procedure

is necessary to handle erroneous predictions. Figure 6.2 shows that the erroneous predictions

far exceed the normal range of the unresolved-scale terms. For example, the exact u ′x -term has a
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Figure 6.4: Comparison of lower and upper limits to the neural-network outputs.

range of approximately [−2.5, 2.5] whereas the predictions have outliers as low as -7.5 and as high

as 5. A rudimentary stabilization scheme could therefore be limiting the unresolved-scale terms

to prevent the outliers present in Figure 6.2. Figure 6.3 shows that the unresolved-scale terms

in the training set approximately follow a binomial distribution centered around 0. It therefore

makes sense to set the limits at certain percentiles of these distributions.

Imposing limits on the neural-network predictions indeed prevents the solution from growing

out of control. Figure 6.4 shows that setting the lower and upper limits at respectively the 1st

and 99th percentiles yields the closest result to the exact solution. A second try to run LESs of

the test problems with limits in place yields the results in Figure 6.5. The results are in excellent

agreement with the exact solutions and even slightly superior to the results in Chapter 5.

6.6 Chapter Conclusion

The neural work is able to learn a functional relationship between the input features and the

u ′t -terms just as well as it is able to learn a functional relationship between the input features and

the other unresolved-scale terms. Compared to Chapter 5, the number of training examples is

reduced by a factor of 10 from 32 000 to 3200 and the number of outputs is doubled from 2 to 4. In

spite of this, the neural network does not underperform the neural network trained in Chapter 5.

This con�rms that the number of training examples can safely be reduced to 3200.

Testing the neural network within an LESs leads to problems. In an LES of Problem (6.4), erroneous

predictions cause the solution to grow uncontrollably. A rudimentary stabilization scheme where

the neural-network predictions are limited prevents the solution from growing uncontrollably.

Setting the lower and upper limits to respectively the 1st and 99th percentiles of the training

dataset yields results closest to the exact solutions. Using this stabilization scheme, the LES of

Problem (6.4) runs without issues. These results show that the model has the ability to generalize

even if the Courant number is increased to 0.1 and predictions of the u ′t -terms are necessary.
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Figure 6.5: LES solutions to Problem (6.4) and (6.5) at separate timesteps obtained by testing the neural

network within the simulation.
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7 Generalization of Reynolds Number and
Element Size

In Chapter 5 and 6, the scope of the model is limited by using a constant Reynolds number and

element size (speci�cally, Re = 100 and hLES =
1

8
). In the current chapter, a neural network is

trained to learn a functional relationship that takes the Reynolds number and element size into

account. Thus, the model is almost completely universal; there are no restrictions on the forcing

function, boundary conditions, initial condition, Reynolds number, and element size.

7.1 Inputs and Outputs

Compared to Chapter 5, the input features are extended by the Reynolds number and the mesh

spacing, i.e.,

input =

{
ūi−1, ūi , ūi+1, ūi+2,

(
∂ū

∂t

)
i−1

,

(
∂ū

∂t

)
i
,

(
∂ū

∂t

)
i+1

,

(
∂ū

∂t

)
i+2

, fi−1, fi , fi+1, fi+2,Re,h

}
(7.1)

A relevant non-dimensional number is the Peclet number given by

Pe =
uh

ν
(7.2)

The cell Peclet number can in principle replace Re and h in (7.1). The output features remain

unchanged from Chapter 5 and are given by

output =

{(
wx , ū

2 +
1

2

u ′u ′
)
,
(
wx ,u

′
x
)}

(7.3)

7.2 Training

With the exception of the Reynolds number, which is no longer a constant, the training problem

remains unchanged from Chapter 5, i.e.,

∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 3 sin(3πx) cos(2πt), x ∈ (0, 1), t ∈ (0, 5]

u(x , 0) = 1, x ∈ (0, 1)

u(0, t) = 1 + 0.75 sin(0.4πt), t ∈ (0, 5]

u(1, t) = 1 − 0.75 sin(0.4πt), t ∈ (0, 5]

(7.4)
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Reynolds number Mesh spacing Peclet number Possible examples Actual examples

Re = 10 hLES =
1

6

Pe = 1.67 30 000 30 000

Re = 10 hLES =
1

8

Pe = 1.25 40 000 30 000

Re = 10 hLES =
1

12

Pe = 0.83 60 000 30 000

Re = 100 hLES =
1

6

Pe = 16.7 30 000 30 000

Re = 100 hLES =
1

8

Pe = 12.5 40 000 30 000

Re = 100 hLES =
1

12

Pe = 8.3 60 000 30 000

Re = 1000 hLES =
1

6

Pe = 167 30 000 30 000

Re = 1000 hLES =
1

8

Pe = 125 40 000 30 000

Re = 1000 hLES =
1

12

Pe = 83 60 000 30 000

Table 7.1:Overview of the con�gurations of the training problem.

Exact solutions to (7.4) are obtained by DNSs using hDNS =
1

1024
, ∆tDNS = 0.001, and Re ∈

{10, 100, 1000}. The gradients of the shocks do not change strongly when the Reynolds number is

increased beyond Re = 1000. Conversely, the necessity of an unresolved-scale model diminishes

as the Reynolds number is smaller than Re = 10. The neural network should therefore be able to

learn both extremes from examples with Re ∈ {10, 100, 1000}.

The training examples are derived from the exact solutions by evaluating the unresolved-scale

terms using hLES ∈
{

1

6
, 1

8
, 1

12

}
and ∆tLES = ∆tDNS = 0.001, which corresponds to a Courant number

of 0.01. As shown in Table 7.1, the number of examples per scenario is limited to 30 000 to

avoid a bias towards small mesh spacings in the training set. The combined dataset consists of

270 000 examples. Setting aside 20% of the examples yields a training set consisting of 216 000

examples and a validation set consisting of 54 000 examples. The MAEs on the training and

validation sets are respectively 0.0510 and 0.0489 which indicates that the model does not over�t

the training set. A detailed validation is omitted because the predictions are on par with Figure

5.1 in Chapter 5. The hyperparameters of the neural network remain unchanged from Chapter 5

and are summarized in Table 7.2.

7.3 Performance Evaluation

The two test problems remain unchanged from Chapter 5. The �rst test problem is given by

∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 1, x ∈ (0, 1), t ∈ (0, 2]

u(x , 0) = 1, x ∈ (0, 1)

u(0, t) = 1, t ∈ (0, 2]

u(1, t) = 1, t ∈ (0, 2]

(7.5)
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7.3 Performance Evaluation

Dataset Training examples 216 000

Validation examples 54 000

Model Type Densely connected neural network

Input units 14

Output units 2

Hidden layers and units {64, 64, 64}

Trainable parameters 9412

Activation function relu
Regularization N/A

Dropout N/A

Training algorithm Optimizer rmsprop
Loss function mse
Batch size N/A

Epochs 100

Performance Training MAE 0.0510

Validation MAE 0.0489

Table 7.2: Summary of the dataset, hyperparameters, and performance of the neural network.

and the second test problem is given by
∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= 20(x3 − x6) sin(2πt), x ∈ (0, 1), t ∈ (0, 2]

u(x , 0) = 1 + sin(2πx), x ∈ (0, 1)

u(0, t) = u(1, t), t ∈ (0, 2]

(7.6)

In contrast to Chapter 5 and 6, the Reynolds number and mesh spacing in (7.5) and (7.6) are

variables. To assert the model’s ability to generalize, (7.5) and (7.6) are solved for Re ∈ {20, 2000}

and hLES ∈
{

1

7
, 1

15

}
. These Reynolds numbers and mesh spacings are chosen to test the model at

both low and high Reynolds numbers and at both large and small element lengths. Furthermore,

Re = 2000 and h = 1

15
are well outside the scope of the training set to further test the model’s

ability to generalize.

7.3.1 Performance within an LES

The LES solutions to (7.5) and (7.6) are respectively given in Figure 7.1 and 7.2. The dissipative

length scales can be almost completely resolved when Re = 20 and no unresolved-scale model is

required. This is con�rmed in Figure 7.1a, 7.1b, 7.2a and 7.2b because the LES solutions sans model

match the exact solutions. The LES solutions show that the neural network correctly models the

absence of unresolved scales when Re = 20. Conversely, an unresolved-scale model is absolutely

necessary when Re = 2000. The gradients of the shocks are steep and the dissipative length

scales can no longer be resolved. This is con�rmed in Figure 7.1c, 7.1d, 7.2c and 7.2d because

the LES solutions sans model deviate strongly from the exact solutions. The neural network

correctly models the unresolved-scale terms Re = 2000 since the LES solutions are close to the

exact solutions.
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Figure 7.1: LES solutions to Problem (7.5) obtained by testing the neural network within the simulation.
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7.3 Performance Evaluation
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Figure 7.2: LES solutions to Problem (7.6) obtained by testing the neural network within the simulation.
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Figure 7.3: Time series of the predicted and exact u ′- and u ′x -terms at individual data points on the

right-most element of the domain in Problem (7.6), i.e., x ∈ (0.875, 1).

7.3.2 Stabilization

The model is pushed to its limits in the presence of steep moving shocks. The inputs and outputs

change dramatically when a shock enters the domain of an element, particularly when the mesh

spacing is small. In Problem (7.6), this results in erroneous predictions that cause uncontrolled

growth of the solution in the same vein as in Chapter 6. Figure 7.3 shows the predictions of the

model based on individual data points. The predictions have extreme outliers that exceed the

exact solution by up to two orders of magnitude. Application of the rudimentary stabilization

scheme of Chapter 6 prevents the solution from growing uncontrollably and results in the solution

given in Figure 7.2d.

7.4 Chapter Conclusion

The neural network is trained on examples where Re ∈ {10, 100, 1000} and hLES ∈
{

1

6
, 1

8
, 1

12

}
. After

training and validation, the model is used in LESs of two test problems where Re ∈ {20, 2000} and

hLES ∈
{

1

7
, 1

15

}
. The neural network correctly learned to generalize for high Reynolds numbers

because Re = 2000 is well outside the scope of the training set. Conversely, the tests at Re = 20

show that the neural network learned that no unresolved-scale model is required when the

Reynolds number is small. Furthermore, the model is able to handle both large and small elements,

even when the elements are much smaller than in the training set, such as in the tests where

h = 1

15
. Thus, it can be concluded that the neural network learned a fundamental underlying

functional relationship and therefore has the ability to generalize when presented with previously

unseen inputs.
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8 Conclusion

Revisiting the research questions, the following conclusions are drawn:

Can a neural network establish a functional relationship between large-scale input
features and the integral forms of the unresolved-scale terms?

The results of testing the neural networks on both individual data points as well as within

actual simulations show without doubt that a neural network can learn a functional relationship

between the large-scale input features and the unresolved-scale terms. The models achieve mean

absolute errors (MAEs) on the validation sets of less than 0.05 without much tweaking and some

optimization of the hyperparameters reduces the MAE to 0.015. To put these numbers into context,

consider that the outputs are normalized to approximately the range [−1, 1].

What are suitable large-scale input features?

The variables ū, ūt , and f sampled at the element boundaries constitutes the so-called local

stencil. Both ūx and R(ū) can be computed from the variables in the local stencil and need not be

provided explicitly. The local stencil yields a functional model because it is known from variational

multiscale theory that u ′ is driven by ū and the strong residual of ū. The extended stencil, where

the input features are also sampled at both adjacent elements, yields an improvement over the

local stencil if the correlation length exceeds the element length.

Can themodel be simplified by omitting individual unresolved-scale terms?

The results show that the u ′-term is the dominant term and must always be modeled. Modeling

the u ′x -term in addition to the u ′-term does improve the solution considerably, but not nearly as

dramatically as the u ′-term. The u ′t -term is a special case; it can be omitted without penalty if the

Courant number is small (e.g., C = 0.01). The importance of the u ′t -term increases as the Courant

number increases; at C = 0.1, the u ′t -term can no longer be omitted. Thus, the unresolved scales

are quasi-steady at small timesteps whereas at large timesteps, this is no longer true.

What is a successful neural network architecture?

Due to the small number of inputs (12–14) and outputs (2–4), it makes little sense to use an

architecture other than a densely connected neural network. It is therefore no surprise that

a densely connected neural network with ReLU activation functions is highly successful in

the current work. The results show that an architecture with three hidden layers of 64 units

per layer is close to optimal, but this optimum will vary per problem. None of the models

su�ered from over�tting the training dataset; implementing regularization or dropout is therefore

unnecessary.
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8 Conclusion

Howmany examples are required to train a functional model?

The models in Chapter 5, 6, and 7 are trained on training sets consisting of respectively 32 000

examples, 3200 examples, and 270 000 examples. These numbers cannot be directly compared

because the training set in Chapter 7 covered a wide range of Reynolds numbers and mesh

spacings whereas the Reynolds numbers and mesh spacing were �xed in Chapter 5 and 6. The

model trained on 3200 examples achieves a mean absolute error on the validation set of 0.0344,

which is in the same order of magnitude as the errors of the remaining models. The dataset in

Chapter 7 can therefore likely be reduced to 27 000 examples and still be su�ciently large to train

a functional model that is nearly universal.

Can the neural network generalize to new situations?

The models are tested on two test problems with di�erent boundary conditions, forcing functions,

Reynolds numbers, and mesh spacings than the training problem. The neural networks perform

remarkably well in these tests; the LES solutions are close to the exact solutions in all cases, even

if the Reynolds number far exceeds the Reynolds number seen in training. It can therefore be

concluded that the neural networks have truly learned an underlying physical relationship and

can generalize to new situations.

Under what conditions does themodel fail tomake accurate predictions andwhat are the
implications of these errors?

When steep moving shocks cross into an element, the unresolved scales change dramatically. In

these cases, the models sometimes make erroneous predictions that exceed the exact solution by

two orders of magnitude. The implication of these erroneous predictions is a surplus of energy

that triggers the solution to grow uncontrollably. This shows that measures must be taken to

combat the e�ects of errors.

Whatmeasures can be taken to improve the resiliency to erroneous predictions?

Tweaking the hyperparameters and improving the training dataset can improve the accuracy

of the neural network, but neural networks are statistical tools and erroneous predictions can

therefore never completely be avoided. Solutions to instabilities caused by erroneous predictions

must therefore be implemented at the level of the simulation. A rudimentary stabilization scheme

consists of �ltering extreme outliers by imposing lower and upper limits to the outputs of the

neural network. This rudimentary stabilization scheme is capable of preventing the solution to

grow uncontrollably. Testing shows that setting the lower and upper limits to respectively the 1st

and 99th percentiles of the training set yields results that closely match the exact solutions.
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9 Discussion and Recommendations

The unconstrained approach in the current work stands in contrast to the constrained approach in

the previous work at TU Delft. In the current work, the neural network represents the unresolved-

scale model in its entirety whereas in the previous work, the neural network is integrated into an

existing unresolved-scale model. The constrained approach retains the residual-based formulation

which improves the robustness of the unresolved-scale model. The unconstrained approach results

in a larger function space which enables the neural network to learn subtle nuances or otherwise

hard-to-understand edge cases. A fair comparison between the unconstrained and the constrained

approach is not possible at this point because the previous work does not include performance

evaluations in previously unseen test problems. The results in the current work show that the

unconstrained approach su�ers from robustness issues and an a posteriori stabilization scheme is

necessary to get these issues under control. Robustness could be improved by �nding a middle

ground between the unconstrained and the constrained approaches where the residual-based

formulation is restored, i.e., a hybrid method.

The rudimentary stabilization scheme employed in the current work imposes lower and upper

limit on the outputs of the neural network where the limits are based on a statistical analysis of

the training examples. While this scheme can �lter extreme outliers, it cannot prevent erroneous

predictions that are within the bounds of the limits. A physics informed stabilization scheme could

monitor the local transfer of energy to the subgrid scales to prevent erroneous predictions. It is

known that the unresolved-scales are predominantly dissipative and large amounts of backscatter

should therefore raise a red �ag. Furthermore, implementing methods akin to successive over-

relaxation in the corrector passes of Newton’s method may also prevent the solution from growing

uncontrollably while at the same time improving the rate of convergence. Investigating advanced

stabilization scheme could be considered a topic of future work.

Now that both the unconstrained and the constrained approach have been applied to Burgers’

equation, there are enough results to justify continued research on neural-network-based wall

models for the Navier-Stokes equations. Developing a neural-network-based unresolved-scale

model for the three-dimensional Navier-Stokes equations is in many ways more complicated

than developing a model for the one-dimensional Burgers’ equation. There are many individual

unresolved-scale terms, there are more large-scale �ow parameters that should be considered as

input features, the extended stencil now includes adjacent elements in all dimensions, etc. As

a �rst step, the process in Chapter 4 should be repeated for the Navier-Stokes equations. That

is, running a DNS of a representative model problem, computing the unresolved-scale terms,

and substituting the (modi�ed) precomputed terms into an LES of the same model problem. It

is worthwhile to investigate if any of the unresolved-scale terms can safely be omitted from a

model. Thereafter, a �rst neural network can be trained on a dataset derived from a DNS. A

one-dimensional Navier-Stokes problem can be used initially to smoothen the transition from

Burgers’ equation to the Navier-Stokes equations.
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A Derivation of the Variational Multiscale
Form of Burgers’ Equation

The strong form of Burgers’ equation is written as

∂u

∂t
+

1

2

∂

∂x

(
u2

)
−

1

Re

∂2u

∂x2
= f (x , t), x ∈ (0, 1), t ∈ (0,T ] (PDE)

u(x , 0) = I (x), x ∈ (0, 1) (initial condition)

u(0, t) = 0, t ∈ (0,T ] (boundary condition)

u(1, t) = 0, t ∈ (0,T ] (boundary condition)

(A.1)

For the sake of simplicity, the boundary conditions in (A.1) are homogeneous, but other types of

boundary conditions are equally valid.

A.1 Weak Form of Burgers’ Equation

The method of weighted residuals involves multiplying the PDE by a so-called weighting function

w and integrating over the domain. The resulting equation is required to hold for all w in the set

of weighting functionsW. The application of the method of weighted residuals to (A.1) gives∫
1

0

w
∂u

∂t
dx +

1

2

∫
1

0

w
∂

∂x

(
u2

)
dx −

1

Re

∫
1

0

w
∂2u

∂x2
dx =

∫
1

0

w f dx , ∀w ∈ W (A.2)

The application of integration by parts to the second and third terms in (A.2) yields∫
1

0

w
∂u

∂t
dx −

1

2

∫
1

0

dw

dx
u2dx +

1

2

[
wu2

]
1

0
+

1

Re

∫
1

0

dw

dx

du

dx
dx−

1

Re

[
w
du

dx

]
1

0

=

∫
1

0

w f dx , ∀w ∈ W (A.3)

The boundary terms in (A.3) disappear because the weighting functions are assumed to vanish at

the boundaries. To simplify subsequent writing, let

(w,u) =

∫
1

0

wu dx (A.4)

In the �nite element method, u is approximated as a linear combination of a �nite set of functions

V and this thesis uses the Bubnov-Galerkin method where V = W. Using the notational

convention in (A.4), the variational from (or weak form) of (A.1) is written as
Find u ∈ W such that ∀w ∈ W:

(w,ut ) −
1

2

(
wx ,u

2
)
+

1

Re

(wx ,ux ) = (w, f )
(A.5)
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A Derivation of the Variational Multiscale Form of Burgers’ Equation

A.2 Variational Multiscale Form of Burgers’ Equation

The goal of multiscale LES is computing ū, the large-scale component of u that lives inW. In

this thesis,W is a set of piecewise-linear functions. Substituting u = ū + u ′ into (A.5) yields

(w, (ū + u ′)t ) −
1

2

(
wx , (ū + u

′)2
)
+

1

Re

(wx , (ū + u
′)x ) = (w, f ) , ∀w ∈ W (A.6)

and can be rearranged as

(w, ūt ) −
1

2

(
wx , ū

2
)
+

1

Re

(wx , ūx ) + (w,u
′
t ) −

(
wx , ūu

′ +
1

2

u ′2
)
+

1

Re

(
wx ,u

′
x
)
= (w, f ) , ∀w ∈ W (A.7)

The terms in (A.7) that contain u ′, u ′x , and u ′t are referred to as the unresolved-scale terms. The

variational multiscale form of (A.1) is therefore written as
Find ū ∈ W such that ∀w ∈ W:

(w, ūt ) −
1

2

(
wx , ū

2
)
+

1

Re

(wx , ūx ) + unresolved-scale terms = (w, f )
(A.8)

where

unresolved-scale terms = (w,u ′t )︸ ︷︷ ︸
u′t -term

−

(
wx , ūu

′ +
1

2

u ′2
)

︸               ︷︷               ︸
u′-term

+
1

Re

(
wx ,u

′
x
)

︸        ︷︷        ︸
u′x -term

, ∀w ∈ W (A.9)

For the sake of brevity, the individual integral forms of the unresolved-scale terms are referred to

as the u ′-, u ′t -, and u ′x -terms.
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B Derivation of the Large-Scale Energy
Balance

As shown in Appendix A, the variational multiscale form of Burgers’ equation is written as
Find ū ∈ W such that ∀w ∈ W:

(w, ūt ) −
1

2

(
wx , ū

2
)
+

1

Re

(wx , ūx ) + unresolved-scale terms = (w, f )
(B.1)

where

unresolved-scale terms = (w,u ′t ) −

(
wx , ūu

′ +
1

2

u ′2
)
+

1

Re

(
wx ,u

′
x
)
, ∀w ∈ W (B.2)

Substituting w = ū into (B.1) and (B.2) yields an evolution equation for the large-scale energy

Ē. This evolution equation would be incomplete because the boundary terms that follow from

integration by parts cannot be omitted if w = ū. Instead, reverting integration by parts and then

substituting w = ū yields∫
Ω
ū
∂ū

∂t
dx +

1

2

∫
Ω
ū
∂

∂x

(
ū2

)
dx −

1

Re

∫
Ω
ū
∂2ū

∂x2
dx + unresolved-energy terms =

∫
Ω
ū f dx (B.3)

where

unresolved-energy terms =

∫
Ω
ū
∂u ′

∂t
dx +

∫
Ω
ū
∂

∂x

(
ūu ′ +

1

2

u ′u ′
)
dx −

1

Re

∫
Ω
ū
∂2u ′

∂x2
dx (B.4)

Equation (B.3) can be written
1

as

∂

∂t

∫
Ω

1

2

ū2dx +
1

2

∫
Ω
ū
∂

∂x

(
ū2

)
dx −

1

Re

∫
Ω
ū
∂2ū

∂x2
dx +unresolved-energy terms =

∫
Ω
ū f dx (B.5)

or

∂Ē

∂t
= −

1

2

∫
Ω
ū
∂

∂x

(
ū2

)
dx︸                  ︷︷                  ︸

energy �ux

+
1

Re

∫
Ω
ū
∂2ū

∂x2
dx︸             ︷︷             ︸

viscous dissipation

− unresolved-energy terms︸                           ︷︷                           ︸
unresolved-scale model

+

∫
Ω
ū f dx︸    ︷︷    ︸

work done

(B.6)

Equation (B.6) is the evolution equation of the large-scale energy Ē.

1
Application of the chain rule on the time derivative gives

∂

∂t

(
1

2

ū2

)
=

1

2

∂

∂t

(
ū2

)
=

1

2

· 2ū ·
∂ū

∂t
= ū
∂ū

∂t
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B Derivation of the Large-Scale Energy Balance

B.1 Evaluating the Energy Balance

Application of integration by parts to the energy �ux and viscous terms in (B.6) yields

∂Ē

∂t
=

1

2

∫
Ω
ūxū

2dx −
1

2

[
ū3

]
∂Ω
−

1

Re

∫
Ω
ū2

xdx +
1

Re

[ūūx ]∂Ω − UETs +

∫
Ω
ū f dx (B.7)

where UETs is shorthand for unresolved-energy terms. The element-wise evaluation of (B.7) is

complicated because the [ūūx ]∂Ω-term requires knowledge of ūx at the boundaries of the elements,

but ūx is discontinuous because piecewise-linear elements are used. Instead, the energy balance

can be evaluated globally by using homogeneous or periodic boundary conditions. In that case,

the boundary terms disappear and the energy balance is given by

∂Ē

∂t
=

1

2

∫
Ω
ūxū

2dx −
1

Re

∫
Ω
ū2

xdx − UETs +

∫
Ω
ū f dx (B.8)

All terms in (B.8) can be evaluated by numerical integration.

B.2 Evaluating the Unresolved-Energy Terms

Equation (B.8) contains the unresolved-energy terms given by (B.4). Since u ′ is unknown, the

unresolved-energy terms must be expressed in terms of the integral forms of the unresolved-scale

terms predicted by the neural network. Application of integration by parts to (B.4) yields

unresolved-energy terms =

∫
Ω
ūu ′t dx −

∫
Ω
ūx

(
ūu ′ +

1

2

u ′u ′
)
dx +

1

Re

∫
Ω
ūxu

′
x dx (B.9)

where the boundary terms disappear because the energy balance is evaluated globally using

homogeneous or periodic boundary conditions. Recall from Section 2.1.1 that ū is a linear

combination of the weighting functions, i.e.,

ū(x) =
N∑
i=1

ciwi (x), ūx (x) =
N∑
i=1

ciwx,i (x) (B.10)

Substituting (B.10) into (B.9) yields

unresolved-energy terms =

N∑
i=0

ci

[∫
Ω
wiu

′
t dx −

∫
Ω
wx,i

(
ūu ′ +

1

2

u ′u ′
)
dx +

1

Re

∫
Ω
wx,iu

′
x dx

]
(B.11)

Comparing (B.11) to (B.2), it is easy to see that

unresolved-energy terms =

N∑
i=1

ci · unresolved-scale terms (B.12)

Recall that ci = ūi if piecewise-linear basis functions are used. Thus, (B.12) can be written as

unresolved-energy terms =

N∑
i=1

ūi · unresolved-scale terms (B.13)

The contribution of the neural-network-based predictions of the unresolved-scale terms to the

large-scale energy balance can thus be quanti�ed with little e�ort.
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C Implementation Details

The variational multiscale form of Burgers’ equation is written as
Find ū ∈ W such that ∀w ∈ W:

(w, ūt ) −
1

2

(
wx , ū

2
)
+

1

Re

(wx , ūx ) + USTs = (w, f )
(C.1)

where USTs is shorthand for unresolved-scale terms. For the sake of illustration, the backward Eu-

ler time-marching scheme is used here. The actual implementation uses a higher-order trapezoidal

scheme. The backward Euler time-marching scheme is given by

∂ū

∂t
=
ū − ūprevious

∆t
(C.2)

where ūprevious denotes the solution at the previous timestep. Substituting (C.2) into (C.1) and

reverting to an integral notation yields∫
Ω
w
ū − ūprevious

∆t
dx −

1

2

∫
Ω
wxū

2dx +
1

Re

∫
Ω
wxūxdx + USTs =

∫
Ω
w f dx , ∀w ∈ W (C.3)

Let {wi (x)}
N
i=1

denote the functions inW and de�ne the index set Is = {1, . . . ,N }. Equation

(C.3) can then be written as∫
Ω
wi

ū − ūprevious

∆t
dx −

1

2

∫
Ω
wi,xū

2dx +
1

Re

∫
Ω
wi,xūxdx +USTs =

∫
Ω
wi f dx , i ∈ Is (C.4)

which is a nonlinear system of N equations with N unknowns.

C.1 Newton’s Method

Systems of nonlinear equations can be solved using Newton’s method, which requires a vector of

residuals and the Jacobian matrix. The N residuals ri (c) = 0 are given by

ri (c) =

∫
Ω

(
wi

ū − ūprevious

∆t
−

1

2

wi,xū
2 +

1

Re

wi,xūx −wi f

)
dx + USTs, i ∈ Is (C.5)

where c is the vector of coe�cients. The derivatives of the unresolved-scale terms are not included

in the Jacobian. This is not problematic because Newton’s method will also converge without

a perfectly correct Jacobian. The following two derivatives are used in the derivation of the

Jacobian:

ū(x) =
∑
i ∈Is

ciwi (x),
∂ū

∂c j
=
∂

∂c j

N∑
k=1

ckwk = w j ,
∂ūx
∂c j
=
∂

∂c j

N∑
k=1

ckwk,x = w j,x (C.6)
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C Implementation Details

Using the two derivatives in (C.6), the Jacobian of r (c) is derived as follows:

Ji, j =
∂ri
∂c j
=

∫
Ω

∂

∂c j

(
wi

ū − ūprevious

∆t
−

1

2

wi,xū
2 +

1

Re

wi,xūx −wi f

)
dx , i, j ∈ Is

=

∫
Ω

(
1

∆t
wi
∂ū

∂c j
−wi,xū

∂ū

∂c j
+

1

Re

wi,x
∂ūx
∂c j

)
dx , i, j ∈ Is

=

∫
Ω

(
1

∆t
wiw j −wi,xūw j +

1

Re

wi,xw j,x

)
dx , i, j ∈ Is

(C.7)

The slightly incorrect Jacobian may have an impact on the number of corrector passes required

for convergence. The Newton-Galerkin method for Burgers’ equation that results from (C.5) and

(C.7) is given in Algorithm 1. The starting guess is either the solution of the previous timestep or

the initial condition if there is no previous solution.

Algorithm 1 Newton-Galerkin method for Burgers’ equation

1: Choose a starting guess c1

2: for k = 1, 2, 3, . . . do . Corrector passes

3: Assemble the Jacobian matrix Jk and the residual vector rk with entries

rki =

∫
Ω

(
wi

ūk − ūprevious

∆t
−

1

2

wi,x

(
ūk

)
2

+
1

Re

wi,xū
k
x −wi f

)
dx + USTs, i ∈ Is

Jki, j =

∫
Ω

(
1

∆t
wiw j −wi,xū

kw j +
1

Re

wi,xw j,x

)
dx , i, j ∈ Is

4: Modify Jk and rk to account for the boundary conditions

5: Solve the linear system

Jkδk = −rk

6: ck+1 ← ck + δk

7: end for

C.2 Assembly of the Residual Vector

The assembly of the vector of residuals r within the corrector passes is detailed in Algorithm 2.

The neural network is invoked once for all local node in all elements, but not for all integration

points because the neural network already predicts integral values. There are only two local

nodes per element because the basis functions are piecewise linear.

Algorithm 2 Assembly of the vector of residuals r

1: for e = 1, 2, 3, . . . do . Loop over all elements

2: for j ∈ {1, 2} do . Loop over the two local nodes

3: for ip = 1, 2, 3, . . . do . Loop over all integration points

4: Compute the partial integral and add it to ri where i = e + j − 1

5: end for
6: Invoke neural network and add prediction to ri where i = e + j − 1

7: end for
8: end for
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