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1 INTRODUCTION 

At the National Aerospace Laboratory NLR the research in optimal 

estimation is mainly directed to practical applications in aero- and 

astronautics. Problems as the estimation of the attitude of a spacecraft 

in the presence of modelling errors using the Kalman filter have been 

investigated in the past and have led, among others, to the development 

of a powerful adaptive algorithm to prevent filter divergence. (Refs 

35? 36.) From an engineering point of view, it is of course 

more important to have insight in the operation of the Kalman filter 

under practical circumstances where often modelling errors occur than 

to master all the various ways along which the Kalman filter has been 

derived. 

On the other hand, however, it has been stressed in the literature 

of the past decade that more general and satisfying treatments of the 

optimal estimation problem can be given using martingale theory. First, 

martingale theory has been applied to the Kalman and Kalman-Bucy 

problem where the system disturbances are modelled by Gaussian white 

noises (references 33, 2, 3, 10, 2U, 30, 33). In reference 2k for 

instance it is stated that new optimal recursive estimation equations 

have been derived-, different from the Kalman and Kalman-Bucy results, 

but simpler and computationally more efficient. Secondly, martingale 

theory has been applied to more general estimation problems, i.e. to 

those where the observations are counting processes and where the 

system disturbances are martingales (Refs 5, 31, 32, 3^, 37). 

It was deemed necessary and justifiable, therefore, to study the 

application of martingale theory to optimal estimation problems and to 

consider in particular the implications for the current practical 

filtering work at NLR. Because of the latter aspect this report dis­

cusses only sideways the more general problems referred to above. 

In chapter two the underlying mathematical concepts are briefly 

summarized. Also, for later reference, the Kalman and Kalman-Bucy 

filters are incorporated. 

Martingales are stochastic processes with certain specific proper­

ties which are particularly convenient in cases where new information 

is coming in continually. The precise mathematical definition is given 

in section one of chapter three together with some examples. The only 

assumption on the process, aside from the defining condition, is that 

the process is integrable at any point of time. The remaining sections 
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of chapter three are concerned with the role of martingales in optimal 

estimation. The crucial role of the innovation process associated with 

a given observation process is discussed. Some fundamental results are 

summarized in an innovation and representation theorem and their 

meaning is elucidated. 

In chapter four wide sense martingales are considered, i.e. 

martingales which are quadratically integrable. For a certain class 

of processes or signals optimal recursive estimation equations are 

described. It is shown, using a suitable transformation that the pro­

cesses studied in the Kalman and Kalman-Bucy problem belong to this 

class. The new estimation equations applied to the transformed Kalman 

and Kalman-Bucy problem are seen to be somewhat simpler than the 

original ones. The case of coloured observation noise is easily 

incorporated in the wide sense martingale approach. The effectiveness 

of this approach as regards computation time and implementation is 

analyzed in chapter five for some model problems. 

Finally, in chapter six the main conclusions are summarized. 

2 THE GENERAL CONCEPT OF OPTIMAL ESTIMATION 

2.1 The estimation problem 

In estimation problems one is concerned with a stochastic process 

x(t) (i.e. a family of random variables x(t)) which cannot be observed 

directly but which is related to another process y(t) which is 

accessible to direct observation. The processes x(t) and y(t) are 

called state process and observation process. The general problem is 

to find at any time t an estimate x(t|s) of the state x(t) given the 

record of observations y(x), x^s. For t>s, t = s and t<s the estimation 

problem is called prediction, filtering and smoothing. In a discrete 

time estimation problem both the state and the observation process are 

given at discrete points of time whereas in a continuous time-estimation 

problem both are given for a time interval. The estimate x(t|s) of x(t) 

is required to be optimal in least-squares sense, i.e. it is wanted to 

find the estimate x(t|s) as a function of the observation record such 

that 

<f(fx(t) - x(t|s)yi (2.1) 
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is minimum (the symbol ̂ {x} denotes the expectation of x). 

Each new observation y(t) that comes available adds new information 

to the already existing knowledge. Mathematically this means that there 

is an increasing family of information fields (a-algebras)j?^(t) i.e. 

^(t-)cy(tp) for t <tp, generated by the observation process y(t). The 

state x(t) at time t is generally not completely determined by the 

observations contained in the information fieldj/^(s). Mathematically 

this means that x(t) is not measurable-^( s). However, there exists a 

kind of projection of x(t) on the information field5'(s) generated by 

the observation process y(x), x<s which is completely determined by 

the observations, i.e. which is measurable->*(s). This version of x(t) 

which in general is a non-linear functional of the set y(x), x<s, is 

called the conditional mean of x(t) with respect to the observations 

and is denoted by the symbol ̂ {x(t)|y(x) , x^s}. (Actually, this is only 

one version of the conditional mean, the others being equal to this one 

with probability one.) 

The conditional mean concept plays an important role in the 

definition of martingales. Its importance for least-squares estimation 

follows from the following property. Let x = x(ca) be a random variable 

and f(üj) an w-function which is measurable-^ s) and such that 

^{ |f(üj)x| }<«> , ̂ {Ixl}^» holds. Then, 

<r{f(a,)x|i?'(s)} = f(a))é'{x|^(s)} . (2.2) 

From this equality it follows immediately that 

^{(x-<rfx|5«^(s)})f(a))} - 0 (2.3) 

i.e. x-̂ {x|<?'( s)} is orthogonal to any function f(a)) satisfying the 

assumptions stated above. It follows that 

.f{(x-^>{x|f/(s)}) ^{x\^{s)}} = 0 . 

Hence, for any f which'is ̂ ( s)-measurable 

^{(x-f)2} = <f{(x-^{x|<?^s)})2} 

+ ̂ {(^{x|i?'(s)}-f)2} 

+2^{(x-,f{x|y(s)})(^{x|i/(s)}-f)} 

= ̂ '{(x-i>{x|y(s)})2} +^{(^{x|y(s)}-f)2} . {2.k) 

This shows that if^(s) is the information field generated by the 

observations y(x),x^s, the conditional mean 

^{x(t) ]ƒ(s)} =^{x(t)|y(x) , x^s} is the least-squares estimate of 
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x(t), that is, it minimizes the expression (2.H) over all possible 

functionals f of the observation record y(T),T-^s (Ref. 8). The 

uncertainty in the estimate of x(t) is characterized by the conditional 

variance 

ff{{x{t)-S{x{t)\!^{s)})^\^{s)} (2.5) 

which as the conditional mean generally depends non-linearly on the 

observations y(x), x^s. Moreover, both the conditional mean and 

variance will usually depend on all higher order conditional moments 

which makes the general (i.e. non-linear) optimal estimation problem 

very difficult to solve. 

A considerable simplification of the estimation problem occurs if 

it is only required to find the linear least-squares estimate of 

x(t) given the observations y(x), x^s. If both the state and observa­

tion process are Gaussian, then the linear least-squares estimate is 

at the same time the least-squares estimate. For instance, for two 

Gaussian random variables x. and Xp it follows that the conditional 

mean of x. given Xp is the following linear function of x : 

a 

1 2 x^ ̂  

where p denotes the correlation coefficient between x- and x„ and 
x^Xg 1 2 

a and a respectively are the standard deviations of x. and x . 
x̂  x^ 

Moreover, the conditional variance of x. given Xp is independent of Xp 

and, hence, deterministic: 

^((x,-f{x,|x^})^|xj=.j^(,-pj^^^) . (2.7) 

If X.. and X are non Gaussian, then the right-hand side of equation (2.6) 

gives the linear least-squares estimate of x. given Xp and is sometimes 

called the wide sense conditional mean of x. given x . From (2.6) it is 

clear that if x- and x are uncorrelated then the linear least-squares 

estimate of x. cannot be improved by observing Xp. The proceeding 

discussion can easily be generalized for the state and observations 

being vectors. 
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2.2 The Kalman and Kalman-Bucy filter 

In this section the Kalman filter for the discrete time estimation 

problem and the Kalman-Bucy filter for the continuous time estimation 

problem are recalled. These filters yield recursive equations for com­

puting x(t|t) and the associated covariance matrix 

P.(t|t) =̂  ̂ '{(x(t)-x(t|t)) (x(t)-x(t|t))^} and will be referred to in 

later chapters. 

For the Kalman filter it is assumed that the state process 

x(k)(nxl-vector) is defined at discrete points of time t and satisfies 

a linear difference equation driven by Gaussian white noise w(k) 

(rxl-vector), that is 

x(k+l) = A(k+1,k)x(k) + B(k)w(k) (2.8) 

where w(k)'̂ 'N(o,P (k)) and the initial condition x(o) is X(O)'\'N(X ,P ). 
w 

The observation process y(k) (mxl-vector, m^n) is described by 

y(k) = C(k)x(k) + v(k) (2.9) 

where v(k) (sxl-vector) is another Gaussian white noise, v(k)'̂ jN(o,P (k)). 

Furthermore it is assumed that the initial condition x and the noise 

sequences w(k) and v(k) are independent. A(k+1,k), B(k) and C(k) are 

appropriately dimensional matrices. From the above assumptions it 

follows that the state and observation processes are Gaussian, for all 

discrete points of time t . Hence, the best estimate x(k|jl) in least-
K 

-squares sense of x(k) given the observations y(i), î £ is a linear 

functional of the observations. The filtering solution x(k+l|k+l) is 

found from the measurement update equation: 

x(k+l|k+l) = x(k+l|k) + K(k+1) (y(k+1)-C(k+1)x(k+1|k)j (2.10) 

where the predicted estimate x(k+l|k) of x(k+1) given the observations 

y(i), î k is 

x(k+1|k) = A(k+1,k)x(k|k) (2.11) 

and the Kalman gain matrix K(k+1) is 

K(k+1 ) = P_(k+1 |k) C(k+1 )'^ 
X 

-1 
C(k+1 )P-(k+1 |k) C(k-H)^ + P (k+1) 

(2.12) 

The predicted covariance matrix P~(k+l|k) is -̂  x ' 

P,(k+l|k) = A(k+1,k) P.(klk) A(k+1,k)^ + B(k) P (k) B(k)^ (2.13) 
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and the covariance matrix P.„(k+l|k+l) associated with the filtered 

estimate x(k+l|k+l) satisfies 

P_(k+l|k+l) =P.(k+l|k) -K(k+1) C(k+1) P.(k+l|k) . (2.lU) 
X X X 

Equations (2.10), ..., (2.lU) constitute the Kalman filter for the 

discrete time-filtering problem (2.8) and (2.9). 

For the Kalman-Bucy filter it is assumed that the state process 

x(t) (nxl-vector) is defined for a time interval O^t^l, say, and 

satisfies a linear differential equation 

^ 1 ^ = A(t)a(t) + B(t)w(t) (2.15) 

where w(t) (rxl-vector) in a Gaussian white noise, w(t)'\̂ N(o,P (t)) and 
w 

the initial condition x(0) is x(o)'\̂ N(x ,P ). The observation process 

y(t) (mxl-vector) is described by 
y(t) = C(t)x(t) + v(t) (2.16) 

where v(t) (sxl-vector) is another Gaussian white noise v(t)'vN(o,P (t)). 

The initial condition x(o) and the noises w(t) and v(t) are assumed to 

be independent. It follows again under the above assumptions that the 

state and observation processes are Gaussian for all t, Ô t'̂ l . The 

filtering solution x(t|t) and the covariance matrix P~(t|t) follow 

from the Kalman-Bucy filter described by equations (2.17), •••, (2.19) 

below: 

^ ^ ^ ^ = A(t)x(t|t) + K(t){y(t) - C(t)x(t|t)} (2.17) 

|- P,(t|t) = A(t)P.(t|t) + P^(t|t)A(t)^ + B(t)P (t)B(t)'̂  + 
dt X X A w 

- P.(t|t)C(t)Vl(t)C(t)P.(t|t) (2.18) 
X V X 

where the Kalman gain matrix is given by 

K(t) = P,(t|t) C(t)^ p-^t) . (2.19) 

Though the filters described above for discrete and continuous 

time look quite the same, their original derivations are quite different. 

One of the aspects of the approaches described in the following chapters 

is a more parallel treatment of the continuous and discrete time filter­

ing problem. 

The mixed problem of a state process x(t) satisfying a differential 
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equation (2.15) with observations given at discrete points of time 

like (2.9) can easily be embedded in the discrete time problem. The 

model problems treated in chapter five are of the mixed or continuous 

discrete type. 

3 MARTINGALES AND ESTIMATION THEORY 

In this chapter martingales are considered in relation to optimal 

estimation theory. The purpose is to describe how martingale theory is 

used to derive recursive optimal estimation equations. 

Martingales are defined in section one and a few examples of 

stochastic processes being martingales are given there. An important 

concept in estimation theory which is discussed in section two, is the 

innovation process associated with a given process. As will be seen, 

the innovation process represents the new information coming in with 

each new realization of the process at hand. In section three a number 

of results is summarized in the form of innovation and representation 

theorems. For example, it is stated that the (non-linear) innovation 

process is a martingale. The remaining sections are concerned with a 

. further study in depth. 

3.1 Martingales 

A martingale is a stochastic process x(t), tGT with a specific 

property for the conditional expectation with respect to a given family 

_^(t), tCT of information fields.^(t) denotes the collection of events 

representing the information available at time t and is in a particular 

problem usually the collection of events generated by one or more of 

the stochastic processes involved up to time t (mathematically, 3(t) is 

a a-algebra of events). Let the familyj3(t), tCT be increasing in the 

sense thatjS (•t.)<=̂ (t ) whenever t <t . The process x(t), tCT is 

called a martingale with respect toj8(t), tCT or a^(t) martingale if 

for each t x(t) is!2'(t) measurable, ̂ {|x(t)|}<'» and 

^'{x(t+dt) - x(t)|^(t)} = 0 dt>0 . (3.1) 

Because of the assumption that x(t) is measurable_^(t), i.e. x(t) is 

completely determined byö(t) for every t, it follows that 
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^{x(t)|^(t)} = x(t) and equation (3.1) may be written then as 

'̂{x(t+dt)|j3(t)} = x(t) dt>0 (3.2) 

for every t. If the family of information fields^(t), t£T is that 

generated by the stochastic process x(t), tCT itself, then x(t) is 

simply said to be a martingale. It follows that if x(t) is a^(t) 

martingale then it is a martingale because 

^{x(t) - x(s)|x(x), x^s} = (?{̂ {x(t) - x(s)|;5,(s)}|x(x), x^s} 

=^{o|x(x), x^s} = 0 t̂ s . • (3.3) 

It follows from ̂ {^{x|^}} = S-{x} that the mean value function ̂ {x(t)} 

of any martingale is a constant. Moreover, the martingale increment 

x(t) - x(s) is orthogonal to x(x), x̂ s i.e. (f{(x(t) - x(s))x(x)} = 0, x<~s 

and ̂ {(x(t) - x(s)) (x(x) - x(a))} = 0, â x4s<:t. Therefore, a martingale 

has uncorrelated increments. From an estimation point of view it is 

important to note that the least-squares estimate of a martingale x(t) 

given the information field^(s) s<t is the same as the least-squares 

estimate of x(s) given the information contained in^(s). Thus, the 

prediction problem is trivial for a martingale. 

The following examples show how to handle definition (3.1). 

Suppose that a sequence of random variables x is given which can be 
-̂^ n n 

•written as x = I y. where the sequence y. has the properties 
i=1 

^ { | y i l } < - > ^ { y i l y i , • • • . y^_^} = o . ( 3 . u ) 

The sequence x is then a martingale because 

^x^^Jx^, ..., x j =5{y^^T + xjx^, ..., x j 

= SIY^^^W^, ..., YJ ^S{xjx^, ..., xj = x^ . (3.5) 

Conversely, if x is a martingale, then the difference sequence y 

defined by 

1̂ =^1 

y = X - X , n>1 (3.6) 
n n n-1 

satisfies (3.H). A sequence y. satisfying (3.^) has been called a 

martingale difference sequence (MD sequence, Refs 2, 31). Hence, 

a sequence x is a martingale if and only if the difference sequence 

y defined by (3.6) is a MD sequence. Property (3.^) is intermediate 

between independence and uncorrelatedness of the y.'s because it 
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expresses that y. i>1 is orthogonal to every (Baire) function 

(t)(y.j, ..., y-_i ) of y , ..., y-_.| (compare chapter 2.1 equation (2.3)). 

Property (3.^) expresses that the least-squares estimate of y. given 

y , ..., y._ does not depend on y , ..., y._ i.e. observing 

y. , ..., y-_., does not help to estimate y. . On the other hand, if the 

y.'s are independent and zero mean then (3.̂ +) holds. 

Suppose 'jh is an increasing sequence of information fields 

(a-algebras) and y is a random variable. Define a sequence x by 

X - ^{yj^ |. Then, x is a 3 martingale because for n»m 
n ^ / n ' n ^ n 

Let W(t), t5-0 be a Brownian motion or Wiener process- Then, 

W(t), t^O has independent increments, zero mean and is a martingale 

because for t̂ -s: 

^{w(t)|w(T),x^s} = ̂ {W(t) - W(s) + W(s)|w(x),T«s} 

= ^{W(t)-W(s)} + W(s) = W(s) . (3.8) 

More generally, any constant mean independent increment process con­

stitutes a martingale. 

As a final remark it is noted that a Markov process does not need 

to be a martingale (the Brownian motion is both a Markov process and a 

martingale). For a Markov process holds 

^•{x(t)|x(x),x^s} = ^{x(t)|x(s)} f*s (3.9) 

which needs not be the same as x(s). 

3.2 Martingale decomposition and innovation processes 

If a process x(t), t£T and an arbitrary (increasing) family of 

information fields (a-algebras) ̂2» (t), t£T are given, martingale decom­

position means that the x(t) process is -written as the sum of two pro­

cesses, one of which is a martingale. To see this, -write 

dx(t) = dB(t) + dM(t) where dB(t) is defined by dB(t) = £{dK(t)|^(t)} 

Then 

^{d M(t)|;^(t)} = ̂ {dx(t) - dB(t)|_;()(t)} 

= 5{dx(t)|;3(t)} - 5{5{dx(t)|j3(t)}|;3(t)} 

= ^{dx(t)^(t)} - ̂ {dx(t)|jj(t)} = 0 . (3.10) 
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It is exactly by choosingyj(t) to be the information field generated by 

the process x(t) itself that the martingale M(t) corresponding with 

x(t) is called the innovation process of x(t). This is because 

dM(t) = dx(t) - (f{dx(t)|x(x), x«t} 

clearly represents the new information in dx(t) not already known at 

time t. In estimation theory, the innovation process associated with 

the observation process plays an important role. 

As an illustration, let the discrete time process x defined by n -̂  .|. n "̂  

X = ^ y. and the continuous time process x(t) = ƒ y(s)ds be given. 

It is wanted to determine the innovation process of x and of x(t) in 

the sense just described. 

Suppose an arbitrary sequence y is given. To start with, the 

sequence M defined by 

M̂  = x ^ - j ^ fy j y^ , • - . . y k . i l (3.11) 
k=1 

is a martingale with respect to x and is called the innovation process 

of X . Also the difference sequence m n ^ n 

m = M - M , n>2 
n n n-1 

= y,-^iyjy^, •--,y^_,} (3.12) 

^ =^1 

is a martingale difference (MD) sequence and is called the innovation 

process of the sequence y . Equation (3.12) expresses that the process 

y consists of a predictable part ̂ {y |y., ..., y .} completely known at 

time t and a MD sequence which is completely unpredictable 

from knowing y-, ..., y . Similarly, the process M(t) defined by 

t 
M(t) = x(t) - ƒ ̂ {y(s)|y(x), x<s} ds (3.13) 

is an x(t) martingale and is called the innovation process of x(t). The 

innovation processes described so far are based on the conditional mean 

with respect to a given information field. The conditional mean or least-

squares estimate is, in general, a non-linear functional of the elements 

of the information field. Analogously, the linear innovation process 

is defined on the basis of the linear least-squares estimate or wide-

sense conditional mean. Let ̂ {y |y., ...» y _.} denote the wide-sense 
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conditional mean of y given y., ..., y ,. The linear innovation nro-
n n 1 ' n-1 

cess M of the process x = ) y is defined by n -̂  n . ̂ , n "̂  
1 = 1 

k=1 

It follows (compare the next section) that the linear innovation process 

M is a process with uncorrelated increments. The difference sequence m n ^ n 

m = M -M , = y - ̂ {y ly^, -.., y A n>2 n n n-1 n ^ n' 1 n-1 ̂  

m^ - M̂  • (3.15) 

is a sequence of uncorrelated random variables and is called the innova­

tion process of y . Also, the linear innovation process M(t) of 

x(t) = ƒ y(s)ds is defined by 
o 

t 
M(t) = x(t) - ƒ |{y(s)|y(x),x<s} ds (3.l6) 

o 

and has uncorrelated increments. 

3.3 Innovation and representation theorems 

In this section a number of results are stated which illustrate 

the role of martingales in estimation theory. These results are called 

innovation and representation theorems and apply, partly, for both con­

tinuous and discrete time, linear and non-linear estimation. They 

express that the observation process is equivalent to the innovation 

process for which, due to its simpler structure, useful representations 

hold. Suppose that the continuous time observation, innovation and 

linear innovation processes are Y(t), M(t) and M(t). Let the corres­

ponding processes for discrete time be denoted by y., m. and m.. (it is 

assumed that the continuous time observations are in an integral form, 

like Y(t) = J f(s)ds. The continuous time innovations are defined then 
o 

in the sense of (3.13) and (3.l6). For discrete time the observations 

and innovations are taken in the sense of (3.12) and (3.15)-) 

The innovation theorem states this: 

a) The innovation process is a martingale that is equivalent to the 

observation process, i.e. the information field generated by the 



innovations is the same as that generated by the observations, 

/(t) = a{Y(s), s<t} = a{M(s), s<t} (3.17) 

and for discrete time 

y^ = o{y., ĵ k} = a{m ĵ k} . (3.18) 

a) The linear innovation process has uncorrelated increments and is 

linearly equivalent to the observations, i.e. 

't) = {all linear combinations of Y(S), ŝ t} 

= {all linear combinations of M(S), s^t} (3.19) 

and for discrete time 

f 

.̂ , = {all linear combinations of y., j^k} 

= {all linear combinations of m-, j^k} (3.20) 
J 

The innovation theorem holds for all discrete time cases and for 

linear observations in all continuous time cases (Refs 12, 17). Under 

certain conditions on the observation process it also holds for con­

tinuous time non-linear innovations for signals in Gaussian white noise. 

This is discussed more extensively in section 3.5. The innovation 

theorem also holds for continuous time non-linear innovations for point 

processes (Refs 31, 33). Point processes are not discussed further (see 

references 5, 31, 32, 3^, 37). 

The representation theorem reads as follows: 

a) Every process Z(t), with uncorrelated increments wrt^(t) (3.19) 

can be written as a Wiener integral of the linear innovations M(t), 

t 
Z(t) = ƒ /5(s)divi(s) (3.21) 

o 

(where the kernel /5 is deterministic) and for discrete time, every 

uncorrelated sequence z, wet •€ (3.20) can be -written as 

with a deterministic sequence g, . 

b) Every martingale U(t), •wrtj7(t) (3.17) can be written as a stochastic 

integral of the innovations M(t), 

t 
U(t) = ƒ a(s)dM(s) (3.23) 

o 

where a(t) is B.y{t) predictable process and for discrete time every 
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martingale difference sequence u, "wrt j? can be written as 

^ = \ ^ (3.2M 

with anj?', predictable sequence a . 

(Note: The sequence a is called'?' predictable if for every k a 
K K K 

belongs to i^ .. A similar definition holds for continuous time.) 
K.— I 

The representation theorem holds for all linear cases in discrete 

and continuous time. It also holds for the continuous time non-linear 

case for both signals in Gaussian white noise and signals observed 

through point processes. Finally it holds for the discrete time non­

linear case for point processes but not for the discrete time non-linear 

case for signals in Gaussian white noise. 

3.^ Application to linear discrete and continuous estimation 

In this section it is shown how the innovation and representation 

theorem can be used to derive recursive estimation equations in the 

linear case. 

Consider first the linear discrete time model of chapter 2.2 

x(k+l) = A(k+1,k)x(k) + B(k)w(k) (2.8) 

y(k) = •C(k)x(k) + v(k) (2.9) 

where the initial condition x and the white noise sequences v(k) and 

w(k) are assimied to be uncorrelated. Denote by x(k|£) the linear least-

squares estimate of x(k) given the observations y( 1 ) , ..., y(ll). Let 

the sequence of linear spaces-/ be defined as in (3.20) and consider 

the sequence of random variables z(k) where 

z(k+l) = x(k+l|k+l) - A(k+1,k)x(k|k) 

= x(k+l|k+l) - x(k+l|k) . (3.25) 

To show that the sequence z(k+1) is an uncorrelated sequence wrt the 

sequence of linear spaces.^, . it must be demonstrated that z(k+l) 

belongs to -4, . and moreover that it is uncorrelated with the elements 

of/^ , i.e. with y(j) for j^k. It is clear that z(k+1 ) is an element of 

^ and ^{z(k+l)} = 0. It follows that z(k+1 ) is uncorrelated with all 

elements of .̂  because 
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^{z(k+l)y(j)^| = -«?{(x(k+l) - x(k+l|k+l))y(j)^j + 

+^|fx(k+l) - A(k+1,k)x(k|k)jy(j)^| 

= A(k+1,k)^|(x(k) - x(k|k))y(j)^} + B(k)^|w(k)y(j)^} 

= O for j<k . (3.26) 

Therefore, according to the representation theorem the sequence z(k+l) 

can be -written as 

z(k+1) = K(k+1)m(k+1 ;3.27) 

where the sequence K(k+1) is deterministic and the linear innovation 

sequence m(k+1) is 

m(k+l) =y(k+l) - C(k+1)x(k+1|k) . 

The gain K(k+1) can be solved from (3.27) as 

(3.28) 

K(k+1) = 
^ z(k+l)m(k+l)-

m(k+1)m(k+1)" 
(3.29) 

Combining the results so far it is found that 

x(k+l|k+l) = x(k+l|k) + K(k+I){y(k+1) - C(k+1)x(k+1|k)} (3.30) 

where the gain K(k+1) can be derived from (3.29) using the system 

description. Elaboration of this yields exactly the Kalman gain already 

given in chapter 2.2: 

K(k+1) = P.(k+1|k)c(k+1)• C(k+l)P-.(k+1 |k)C(k+1 ) + P (k+1) 
-1 

: 2 . i 2 ) 

where the predicted covariance matrix P^(k+1 jk) satisfies equation 

(2.13). 

Consider now the linear continuous time problem 

^ 1 ^ = A(t)x(t) + B(t)w(t) ;2.15) 

y(t) = C(t)x(t) + v(t) (2.16) 

where the noises w(t) and v(t) are white and Gaussian and uncorrelated 

as described in chapter 2.2. The description (2.15) and (2.16) is not 

the rigorous integral form for the continuous time estimation problem. 

Therefore, the innovation and representation theorem as described in 

section 3.3 cannot be applied directly. An intuitive derivation quite 
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similar to the discrete case treated above may be given, however.-

A rigorous treatment is described in section 3.6. The linear least-

squares estimate x(t|t) given the observations y(s), s<t is expressed 

as 

t 
x(t|t) = ƒ g(t,x)y(x)dx (3.31) 

o 

and the linear innovation process m(t) of y(t) is defined by 

m(t) = y(t) - C(t)x(t|t) . (3.32) 

It can be shown that the linear innovation process m(t) is equivalent 

to the observations y(t) and moreover that it is a Gaussian white noise 

(derivative of a process with orthogonal increments). Therefore, the 

representation (3.31) can be expressed equivalently in terms of the 

innovation process m(t) as 

t 
x(t|t) = ƒ h(t,x)m(x)dx . (3.33) 

o 

The step from (3.31) to (3.33) is the essential one. Because the linear 

innovation process m(t) is a white noise, the kernel h(t,x) can be 

determined explicitely using the definition of the least-squares 

estimate x(t|t), i.e. 

x(t) - x(t|t) jm(s)'̂ i = 0 ŝ t . (3.3U) 

Substitution of the representation (3.33) of x(t|t) in (3.3^) yields 

t 
^jx(t)m(s)^| = ƒ h(t,x)5|m(T)m(s)^|dx 

= h(t,s)P.(s) • (3.35) 
m 

where P-v(s) is given by |!im(s)m(s) \ = P>.(s) 6(o). The latter equality in 
ITi L J ^ 

(3.35) follows from the whiteness of the linear innovation process ra(t). Tt 

has been shown (Ref. 12) that the linear innovation process m(t) is not 

only a white noise but also has the same covariance as the observation 
noise, i.e. P>̂ (s) = P (s). Therefore, the least-squares estimate ' m V 
x(t t) can be written as 
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t 

or 

x(t|t) = ƒ 5|x(t)m(x)^j P;;̂ (x)m(x)dx 

x(t|t) = J 5|x(t)m(T)^} P;^(x) (y(x)-C(x)x(x|x))dx (3.36) 

Notice the similarity between this representation and the discrete 

time equations (3.30) and (3.29). Differentiating equation (3.36) with 

respect to t and using the system dynamics it follows that x(t|t) 

satisfies the differential equation 

|^x(t|t) = A(t)x(t|t) + K(t){y(t) - C(t)x(t|t)} (3.37) 

where K(t) and P.,(t|t) satisfy equations (2.19) and (2.l8). Hence, 

equation (3.37) together with (2.18) and (2.19) constitutes exactly 

the Kalman-Bucy filter. 

In this section the derivation of the Kalman and Kalman-Bucy filter 

using the theory previously described has been sketched. Essentially, it 

amounts to showing that the observations and innovations are equivalent 

(linearly). Due to the fact that the innovation process has simpler 

structure than the original observations, the estimation problem based 

on the innovations is relatively easy to solve then. 

Application to non-linear estimation 

It has been described in section three of this chapter that for 

the continuous time non-linear case the representation theorem holds 

and under certain conditions on the observation process also the innova­

tion theorem. The latter states that the innovation process is a 

martingale and that the information fields (a-algebras) generated by 

the innovation process and the observation process are equivalent, i.e. 

there is no loss of information when the original observations are 

replaced by the innovations. In this section mainly the innovation 

approach of Kailath e.a. (Ref. 9) is outlined. 

Let the observation process y(t) be given by 

y(t) = Y(t) + v(t) ô t̂ l (3.38) 

where yit) and v(t) are independent stochastic processes, v(t) being 

zero mean Gaussian white noise and ̂ <v(t)v(s) f = I 6(t-s). The signal 

Y(t) is related to the state x by an expression of the form 
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Y(t) = C(x(s), s^t) 

i.e. Y("t) is a functional of past and present values of the state. The 

signal Y('t) is assumed to be zero mean, not necessarily Gaussian but 

with the properties 

ƒ ^JY(t)^Y(t)| dt<-

and 

|Y(t)UM<- O^t^l . (3.39) 

The innovation process m(t) corresponding with the observation process 

y(t) is defined by 

m(t) = y(t) - Y(t|t) (3.i+0) 

where Y('t|'t) denotes the least-squares estimate of Y("t) given the 

observations up to time t (compare equation (3.32)). Under the assumptions 

stated the equivalence of the innovations and observations has been 

proved in reference 9- Moreover, it has been proved that the innovation 

process m(t) is a Gaussian white noise with the same covariance as the 

observation noise, i.e. ^^m(t)m(s) f - I ó(t-s). This result is sur­

prising because if Y("t) is non-Gaussian then neither y(t) nor Y("t|t) is 

Gaussian. From the equivalence of observations and innovations it 

follows that the least squares estimate x(t|s) of x(t) given the obser­

vations is the same as that given the innovations, i.e. 

x(t|s) = ^•{x(t)|y(x), x^s} = ^•{x(t)|m(x), x^s} . (3.i+l) 

By definition, the least-squares estimate x(t|s) is orthogonal to 

every functional measurable with respect to the information field 

(a-algebra) generated by the observations or, equivalently, the innova­

tions. Therefore, 

5{(x(t)-x(tJ3))f^| = 0 (3.i+2) 

for every functional f measurable with respect to the information field 

^{s) = a{y(x), x^s} = a{m(x), x<s}. The importance of these steps is 

that (non-linear) functionals of Gaussian white noise have special 

representations in the form of stochastic integrals. Applied to x(t|s) 

this means that x(t|s) can be written as 

s 
x(t|s) = ƒ h(t,x, {m(a), 0«a<x})m(x) dx (3.^3) 

o 
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where the kernel h(.,x,.) at time x depends on all innovations up 

to time X. The representation (3.^3) is clearly a generalization of the 

representation (3.33) for the linear case. Substituting (3.^3) in the 

condition (3.^2) and using representations for f similar to (3.^3) it 

can be sho-wn that x(t|s) can be -written as 

x(t|s) = ƒ dx(t)m(x)^|m(a), O^0<T[m(x)dx iS.kk) 
o ^ ^ 

which generalizes the representation (3.36) for the linear case. 

However, the essential difference is that in the non-linear least-

squares estimate (3.HU) the kernel is itself a conditional expecta­

tion which is not suitable for direct computation. 

The general representation (3.^^) can be evaluated for various 

special cases. The most direct generalization of the Kalman-Bucy 

problem is the following, where the state and observation process 

satisfy 

1^ x(t) = A(t,x(t)) + B(t,x(t))w(t) (3.^5) 

y(t) = C(t,x(t)) + v(t) . {3.k6) 

The matrices A, B and C depend non-linearly on the current value of 

the state x(t) and the Gaussian white noises w(t) and v(t) are assumed 

to be independent. By differentiating the representation (3.Hi+) and 

using (3.^5) and (3.^6) it can be shown that x(t|t) is the solution of 

the differential equation 

1^ x(t|t) = A(t,x(t)) + K(t)m(t) (3.U7) 

where 

A(t,x(t))= 5{A(t,x(t))|m(a), a<t} 

C(t,x(t))= 5"{C(t,x(t))|m(a), a<t} (3.̂ +8) 

K(t) = €'{x(t)m(t)^|m(a), a<t} 

and 

m(t) = y(t) - C(t,x(t)) (3.1+9) 

A(t,x(t)) and C(t,x(t)) represent the least-squares estimates of 

A(t,x(t)) and C(t,x(t)) respectively. 

The representation {3.kk) for the least-squares estimate x(t|s) 

is expressed completely in terms of the innovations and based on the 

equivalence of observations and innovations under the conditions 

described. In reference 10 important theoretical results like (3.̂ +7) 



are given, based on martingale theory and which hold under weaker 

conditions on the signal Y('t), but which are expressed in both the 

observations and the innovations. 

3.6 Martingale approach of Balakrishnan 

In "A martingale approach to linear recursive state estimation" 

(Ref. 3) Balakrishnan has given an elegant proof of the innovation and 

representation theorem as described in chapter 3.3 for the linear con­

tinuous time filtering problem. This section gives an outline of his 

approach and a remark- on some related work. 

Let the state be described by 

t t 
x(t) = ƒ A(s)x(s)ds + ƒ B(s)dW(s) (3.50) 

o o 

and the observations by 

t t 
Y(t) = ƒ C(s)x(s)ds + ƒ D(s)dW(s) (3.5l) 

o o 

where W(t) is a Brownian motion. Notice that the form in which the noise 

is given in the system (3.50) and (3.50 implies a corre.''.ation between 

the system and observation noise. The state x(t) is assumed to be an 

(nxl)-vector, whereas the Brownian motion W(t) and the observation pro­

cess Y(t) are (rxl)- and (mxO-vectors respectively. Letj?(t) be the 

information field generated by the observation process f(s),s^t, i.e. 

;/(t) = a{Y(s), s«t} and let x(t|t) = 5{x(t)|Y(s), s<:t} be the filtered 

least-squares estimate of x(t) given the observations up to time t. 

The innovation process Z (t) associated with the observation -̂  o 
process Y(t) is defined by 

t 
Z^(t) = Y(t) - ƒ C(s)x(s|s)ds (3.52) 

o 

and is anir(t) martingale. Under the assumption that D(t)D(t) >0 for 

every t it has been proved that for every t 

^(t) = a{Y(s), ŝ t} = a{z (s), ŝ t} i.e. the information fields 

(a-algebras) generated by the observation and innovation processes are 

the same. Another process Z (t) is defined by 
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t 
Z^(t) = x(t|t) - ƒ A(s)x(sls)ds (3.53) 

o 

where the subscript s in Z (t) refers to the state. The -process Z (t) -̂  s -̂  s 

can be sho-wn to be alsoan jA(t) martingale. According to the representa­

tion theorem of section 3.3 the state martingale Z (t) can therefore 

be written as 

t 
Z^(t) = ƒ a(s)dZ^(s) (3.5^) 

o 

where a(s) has to be determined yet from the system description. The 

way this has been done by Balakrishnan is as follows. First, it was 

proved that the filtered least-squares estimate Z (t|t) of the state 

martingale given the innovations up to time t can be written as 

Z (tjt) = 5{Z (t)|Z^(s), ŝ t} s s o 

t 
= ƒ r.^(s)dZ (s) (3.55) 

12 o o 

where 

and 

r^2(t) = P^2(*)/^22(^^ (3-^^^ 

( t+A t+A m , 1 
P.p(t) = lim 1 S\j dZ (s) ƒ dZ (s)^l^(t) 

2̂ A^O A l-t ^ t ° J 

= P . ( t | t ) C ( t ) ^ + B(t )D(t )^ (3.57) 

P . ( t | t ) = S.\(x{t) - x ( t | t ) ) (x ( t ) - x ( t | t ) ) ^ | (3.58) 

r "t+A t+A 1 
P ( t ) = lim lS\j dZ (s ) ƒ dZ {sV\!/{t)\ 

A->0 A "-t ° t -• 

= D(t)D(t) '^ . (3.59) 

But because Z (t) is an^(t) martingale it follows that Z (t) isir(t) 
s s 

measurable for every t and hence measurable with respect to the a-algebra 

generated by the innovation process Z (s),s-$t, which, as was shown above, 

is the same as.^(t). Thus it follows that the least-squares estimate 

Z (t|t) of the state martingale Z (t) is Z (t) itself and the latter can 
s ' s s 
be written as 

I 
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t 
Z (t) = ƒ r,„(s)dZ (s) (3.60) 
S l ld o 

o 

which is the required representation (3.5^). Combining the results 

found so far it follows that 

x(t|t) = ƒ A(s)x(sls)ds + ƒ (P.(s|s)c(s)'^ + B(S)D(S)^) 
o o ^ "̂  ^ 

JD(S)D(S)^| dZ^(s) (3.60 

or after differentiation with respect to t: 

-J- x(t|t) = A(t)x(t|t) + |p.-(tlt)C(t)'̂  dt ' |_ X x(t|t) = A(t)x(t|t) + ={p.-(t|t)C(t)'' + B(t)D(t)'̂ }> * 

{ D(t)D(t)^r|r Z (t; dt o 
where 

dZ^(t) = dY(t) - C(t)x(t|t)dt (3.62) 

and which combined with the equation 

^ P.(tjt) = A(t)P.,(t|t) + P.(t|t)A(t)^ + B(t)B(t)'^ + 
dt X ' • X X ' 

-|p.(t|t)C(t)T+ B(t)D(t)^| |D(t)D(t)^}"^|c(t)P^(t|t) + D(t)B(t)^| 

(3.63) 

for P.,(t|t) is exactly the Kalman-Bucy filter for the continuous time 

linear filtering problem with correlated system and observation noise. 

In reference 2 a similar derivation of the Kalman-Bucy filter is 

given, however, based on a different state martingale Z (t). The state 

martingale used there is x(t|s), i.e. the least-squares estimate of 

x(t) given the observations Y(X), X.$S up to time s. For fixed t and s 

varying it can be shown that x(t|s) is a martingale in s with respect 

tof?'̂ (s) = a{Y(x), x^s}. This state martingale has also been used in 

reference 1 to solve the smoothing problem where it proved to be a 

more natural one than the state martingale of Balakrishnan. 
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k WIDE-SENSE MARTINGALE APPROACH 

In the linear-estimation problems considered in the proceeding 

chapters it was assumed that the state x(t) satisfied a linear differ­

ence or differential equation driven by white noise. It is well known 

(Refs U, 26) that the solution x(t) generated then is a wide-sense 

Markov process (defined in section k.l). Moreover, it is known that a 

wide-sense Markov process can be -written as a linear transformation of 

a wide-sense martingale (defined in section U.l). The wide-sense 

martingale approach described in this chapter and developed for both 

discrete and continuous time estimation has resulted in recursive 

estimation equations, based on noisy observations, for a signal 

x(t) = (j)(t)u(t), x(t) and u(t) being wide-sense Markov and wide-sense 

martingale respectively. Because of the linear relation between both 

signals the whole estimation problem can be carried through for the 

wide-sense martingale u(t) which gives due to the martingale property 

simpler and more clear derivations as well as results. 

It will be shown that the signals studied in the Kalman and 

Kalman-Bucy problem can easily be brought into the form x(t) = <t)(t)u(t) 

considered here. It might therefore seem contradictory that the 

recursive estimation equations are simpler than the original ones. 

However, as will be seen, there is a linear relation between them and 

it is just this linear transformation that causes the simplification. 

After a discussion of wide-sense martingales and Markov processes 

in section k.^, a very general form of the linear discrete time estimia-

tion problem, including coloured observation noise is discussed in 

section k.2. The linear continuous time estimation problem for observa­

tions in additive white noise is discussed in section k.3. 

1+.1 Wide-sense martingales and wide-sense Markov processes 

Many concepts in the theory of stochastic processes have both a 

wide-sense and a strict-sense version although the phrase strict sense 

is usually omitted. For example, martingale is shorthand for strict-

sense martingale. In the definition of martingales given in chapter 3.1 

it was required for the stochastic process to be integrable, i.e. for 

all t ̂ {|x(t)I}«». (This is because the conditional expectation is only 

defined for integrable random variables.) Wide-sense properties always 

require the process to be square integrable, i.e. for all t 5{|x(t)|^}<°°. 
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The most natural way to study wide-sense processes then is in the 

Hilbert space of quadratically integrable random variables on a 

probability space (f̂ ,(ji,P). 

Thus, let L (ü) be the Hilbert space of (nxl)-dimensional random 

vectors x(t) that are square integrable, i.e. ̂ •|x(t) x(t)?<«' for each 

t. Further, let Lp(x;t) denote the subspace of Lp spanned by x(s), ŝ t 

and Lp(x(t)) the subspace spanned by x(t). The norm || . || defined in the 
n II II f T 1 

Hilbert space L„{Q,) is given by ||x(t)||= ̂ •jx(t) x(t)r for every x(t, 

L (ĵ ). It follows that for every z in Lp(r2) there is a unique element 

z in Lp(x;t) such that 

m 

z-z = m m z-u|i (1+.1 
u£L2(x;t) 

i.e. z is the linear least-squares estimate (or wide-sense conditional 

mean) of z based on Lp(x;t). The linear least-squares estimate z is 

orthogonal to the elements of Lp(x;t), i.e. 

ĵ(z-z)u'̂ ^ = 0 for every u£L2(x;t) (U.2) 

and is therefore called the projection of z on Lp(x;t). From here on 

the symbols (z|L (x;t))and (Z|L (x(t)) are used for the projections of 

z on,Lp(x;t) and Lp(x(t)) respectively. 

Identifying Lp(x;t) with the past of the process x(t) up to the 

present inclusive and Lp(x(t)) with the present, wide-sense Markov 

processes and wide-sense martingales are defined as follows. A square 

integrable vector process x(t) is called a wide-sense Markov process 

if for ŝ t 

(x(t)|L2(x;s)) = (x(t)|L2(x(s))) (U.3) 

i.e. the projection of the future on the past up to and including the 

present is the same as the projection on the present only. A second 

order process x(t) is called a wide-sense martingale if for s<t 

(x(t)|L2(x;s)) = x(s) (h.k) 

i.e. the projection of the future on the past up to the present 

inclusive is the present itself. For a wide-sense Markov process it 

follows from equation {k.3) that 

(x(t)|L2(x;s)) = F(t,s)x(s) (U.5) 
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where F(t,s) is annxm-matrix function of t and s. Hence, the wide-

sense martingales constitute a subclass of the wide-sense Markov 

processes. More generally, it has been sho-wn in the literature that 

when the covariance matrix function of a wide-sense Markov process 

x(t) is non-singular for all t,s then x(t) can be written as a non-

singular linear transformation of a wide-sense martingale u(t), that 

is,x(t) = (f)(t)u(t) and L (x;t) = Lp(u;t). It is for this class of pro­

cesses that the derivation of recursive estimation equations is given 

in the following sections. 

Wide-sense martingale approach; discrete time 

In this section recursive estimation equations for a certain class 

of discrete time signals are described. 

2.1 Definition of the estimation problem 

Let the state x(k)((nxl)-vector) be given by 

x(k) = (t)(k)u(k) k = 0,1,2,... (1+.6) 

where (ii(k) is a known (nxn)-matrix time function and u(k) ((nxl )-vector) 

is a discrete time wide-sense martingale, zero mean and with covariance 

matrix P (k) = 5^u(k)u(k) ?. The state x(k) is then a wide-sense Markov 

process. Let the observation process y(k) ((mxl)-vector) be given in 

the form 

y(k) = C(k)x(k) + v(k) (2.9) 

or 

y(k) = H(k)u(k) + v(k) (1+.7) 

where H(k) = C(k)(j)(k) and v(k) ( (mxl )-vector) is additive noise. Assume 

that the initial condition u(o) = u is uncorrelated with the observa­

tion noise v(k), k = 0,1,2,... . For the observation noise three cases 

are distinguished. These are: white observation noise uncorrelated or 

correlated with the martingale increment and coloured observation noise 

correlated with the martingale increment. A usual approach to coloured 

observation noise is to assume that it is generated by a linear differ­

ence equation driven by white noise. The approach described here is to 

give the coloured observation noise by an equation of the form 

v(k) = ij;(k)m(k) where m(k) ((mxl )-vector) is a wide-sense martingale 

and hence, v(k) a wide-sense Markov process. 
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The linear least-squares estimate x(k|jl) of x(k) is given by the 

.projection of x(k) on the subspace Lp(y;£) of L (ü), i.e. 

x(k|£) = (x(k)|L^(y;£)) . (U.8) 

The subspace Lp(y;£) of L (fi) is spanned by vectors F(i)y(i), 

i = 1, ...,£ where F(i) are arbitrary n x m matrices. It follows 

immediately from the linear relation {k.6) between the signals x(k) 

and u(k) that the linear least-squares estimate x(k|£) and u(k|£) of 

x(k) and u(k) are related to each other as 

x(k|£) = (j)(k)ü(k|£) 

X(k|£) = (j)(k)ü(k|£) • {k.9) 

P.(k|£)= (j)(k)P.,(k| £)(t)(k)''̂  X u. 

where ü(k|£) = fu(k)|L2(y;£)), ü(k|£) = u(k) - ü(k|£) and 
r I I T I 

P,(k|£) = ^jü(k|£)u(k|£) >. Therefore, the estimation problem for 

x(k) can be solved once the estimation problem for u(k) has been solved, 

using the equations (U.9). 

After the description of the recursive estimation equations for 

the wide-sense martingale u(k), the Kalman problem is discussed at the 

end of each subsection below. 

U.2.2 'White observation noise uncorrelated with the martingale increment 

Let the observation noise v(k) be zero mean white noise, 

^jv(k)v(£) > = P (k)6, . and uncorrelated with the martingale increment, 

i.e. 

5'|f u(k+l)-u(k) jv(j)^| = 0 for all j,k . (l+.IO) 

It follows then immediately that for k>£ fu(k) - U(£)|L (y;£)j = 0 and 

the predicted estimate ü(k|£) is found to be 

Ü(k|£) = (u(k)|L^(y;£)) = (u(k) - u(£)|L^(y;£)) + 

+ (u(£)|L^(y;£)) - Ü(£|£) (U.ll) 

i.e. the predicted estimate ü(k|£) for all k>?, is equal to the filtered 

estimate ü(£|£). In reference 21 the smoothing, filtering and prediction 

problem are treated in detail (see also Ref. 22). Here we are mainly 

interested in the filtered estimate ü(k k) which satisfies 
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ü(k|k) = ü(k|k-1) + K(k 

K(k) = P^(k|k-1 )H(k)'̂  

y(k) - H(k)u(k|k-1 

H(k)P.(k|k-l)H(k) + p (k) -1 

P..(k|k) = P.,(k|k-1) - K(k)H(k)P.(k|k-1 ) 

(U.12) 

{k.^3) 

ik.^k) 

where H(k) = C(k)(f)(k) and the predicted estimate ü(k|k-l) and the 

associated covariance matrix satisfy 

ü(k|k-l) = ü(k-1|k-l) (U.15) 

P.-(k|k-l) = P,(k-l|k-l) + P (k) - P (k-O . {k.^6) 

The following initial conditions complete the filtering equations for 

the estimation problem considered here: 

u(l|o) = 0 P~(l|0) = P^(1) . (U.17) 

Notice that the structure of the filtering equations {k.^2), ..., (H.lU) 

is the same as that of the Kalman filter (2.10), (2.12) and (2.lU) for 

a state x(k) given by x(k+0 = x(k) + B(k)w(k). It is interesting to 

establish that the stochastic process ü(k|k) k = 0,1,2,... which is 

defined by the filtered estimate is a zero mean wide-sense martingale. 

To prove this, observe that for k̂ £ 

fü(k|k)|L2(ü;£)j = iïu(k)|L2(y;k)j|L2(ü;£)j 

= ^^(u(k)|L^(y;k))|L^(y;£))|L2(Ü;£)) 

= (^u(k)|L^^(y;£))|L2(Ü;£)) 

= rÜ(k|£)|L2(ü;£)j = fÜ(£|£)|L2(ü;£)J 

= ü(£|£) 

because f or k $.£ Lp(y;k)3L (y ;£)3Lp(ü;£). 

Consider now the Kalman problem. As described in chapter 2.2 the 

state x(k) is then given by a linear difference equation driven by 

white noise w(k): 

x(k+l) = A(k+1,k)x(k) + B(k)w(k) 

x(o) = X 
;2 .8 ; 

The observations are given by equation (2.9). The initial condition x 

and the noise sequences w(k) and v(k) are assumed to be independent. 
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The solution of the difference equation (2.8) can be written in the 

form 

> ) = (j)(k,o)]x° + I (f)(o,i)B(i-l)w(i-l)[ 
I- i=i J 

{k.^Q) 

where 
k 

(j)(k,o) = n A(i,i-i) , <j)(o,k) = (j)(k,o)"^ . {k.^9) 
i=1 

Hence, by the definition 

, k 
u(k) = x° + I ())(o,i)B(i-l)w(i-l) 

i=1 (i+.20) 

u(o) = x(o) = X 

the signal x(k) can be w.-itten in the form x(k) - <}> (k,o)u(k). To show 

that u(k) is a wide-sense martingale it must be proved that for every 

k,£,k>£ 

fu(k)|L2(u;£)j = u(£) k>£ . (U.2l) 

It follows from definition (i+.20) that for k>£ 
k 

u(k)-u(£) = I (J)(o,i)B(i-l)w(i-l) and therefore, 
i=£+1 

f{(u(k)-u(£))u(j)^| = I <}.(o,i)B(i-o4w(i-l)x°) + 
^^ • -• i=£+1 "- ^ 

k j f 1 
+ I (f)(o,i)B(i-l) I (()(o,n)B(n-l)^-^w(i-l)w(n-l)^[ . 

i=£+1 n=1 '• -• 

Because the sequence w(k) is white and independent of x it follows 

that 

5|(u(k)-u(£)ju(j)^} = 0 k>£»j . . (1+.22) 

Hence (U.20 holds. The wide-sense martingale u(k) satisfies the 

linear difference equation driven by white noise 

u(k+0 = u(k) + (})(o,k+l)B(k)w(k) . 

Furthermore, 

^|(u(k+l)-u(k)jv(j)^| = (t)(o,k+l)B(k)5|w(k)v(j)4 = 0 (U.23) 

because the noise sequences w(k) and v(k) are independent. Thus, the 

martingale increment is uncorrelated with the observation noise in 
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the Kalman problem. 

If it is assumed that ^{x } = 0 then u(k) is zero mean and its 

covariance matrix P (k) = ̂ •|u(k)u(k) [• is 

P^(k) = ̂ j x V } + I (̂ (o,i)B(i-1)̂ |w(i-l)w(i-l)̂ |B(i-l)̂ <),(o,i)̂  . 

"̂̂  {k.2k) 

Thus, the covariance matrix P (k) of the wide-sense martingale u(k) is 

completely known given the initial covariance matrix ̂ •s x x ^ and the 

system noise covariance matrix ^jw(k)w(k) r = P (k). 

Therefore, using equations (H.20), (U.21), (H.23) and {k.2k) it 

is shown that the Kalman problem can be written in the form x(k) = 

(t)(k)u(k) where u(k) is a wide-sense martingale with known covariance 

matrix P (k) and the martingale increment uncorrelated with the 

observation noise. Hence, the Kalman problem can be solved alternatively 

by using the algorithm (U.12), ..., (̂ +.17) of the wide-sense martingale 

approach in conjunction with the equations {k.9). Whether the direct 

approach using the Kalman filter or the alternative one is more 

efficient is discussed in chapter 5. 

3 White observation noise correlated with the martingale increment 

Let the observation noise be zero mean white noise, 

i.e. 

u e b u i i e UUÜCJ. V a i^xu i i I I U J - Ö C UC z - e i u m e a i i w i i x u e i i u x t > e , 

?jv(k)v(£) f = P (k)6 and correlated with the martingale increment, 

^{('^k+r\y('^^7 " ^(^•'\£ ^"""^ ^̂ ^ '̂̂  • (1+.25) 

It follows that for k>£+1 (u(k)-u(£)|L2(y;£)j = 0 and the predicted 

estimate u(£+i|£) for i>1 satisfies 

u(£+i|£) = (u(£+i)-u(£+l)|L2(y;£)j + fu(£+0|L2(y;£)j 

= ü(£+1|£) i>1 (U.26) 

i.e., the i-step predicted estimate (i>l) is equal to the one step 

predicted estimate. 

Due to the correlation between the martingale increment and the 

observation noise, it is simplest for this case to give a recursion for 

the one step predicted estimate ü(k+1|k) and to compute the filtered 

estimate ü(k+1|k+1) from ü(k+1|k) separately. The recursion for 

ü(k+1|k) is 
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ü(k+1|k) = ü(k|k-0 + K(k+1|k) y(k) - M(k)ü(k|k-l) 

K(k+1|k) = P..(k|k-1 )H(k) + S(k) H(k)P-.(k|k-l)H(k) + P (k) 

{k.2l) 

:i4.28) 

P.-(k+1 |k) = P.(k|k-1 ) - P~(k|k-1)H(k) + S(k) 

H(k)P.(k|k-l)H(k)-^ + P (k) 

+ P (k+1) - P (k) 

_l 
H(k)P~(k|k-1)H(k)^ + s(k)^ 

where the initial condition is 

ü(l|o) = O , P~(1|o) = P (1) 

(U.29; 

:i+.3o; 

The process ü(k+l|k) k = 0,1,2,... is a zero mean wide-sense martingale. 

The filtered estimate ü(k|k) is related to the predicted estimate 

ü(k|k-l) and the observation y(k) by 

ü(k|k) = ü(k|k-1) + K(k) y(k) - H( k)ü(k|k-l) 

where 

K(k) = P~(k|k-1)H(k)-
1-1 

H(k)P~(k|k-l)H(k)'- + P (k) 

:u .3i ) 

(I+.32; 

P~(k k)" = P-,(k k-1) - P..(k k-1 )H(k) 
u ' u ' u ' 

H(k)P,(k|k-1)H(k)-' + 

+ P (k) 
V 

-1 
H(k)P~(k|k-l) . u ' :u.33) 

The structure of the above algorithm is the same as that of the Kalman 

filter for a state x(k) satisfying x(k+1) = x(k) + B(k)w(k) where the 

system and observation noises w(k) and v(k) are correlated. 

As for the Kalman problem (2.8) and (2.9), it can be seen from 

equation (U.23) that correlated martingale increment and observation 

noise corresponds with correlated system noise and observation noise, 

i.e. 

w(k)v(j)^| = S(k)6 
kj 

{k.3k) 

The direct algorithm for this version of the Kalman problem consists 

of a recursion for the predicted estimate x(k+l|k) and a separate 

algorithm for computing the filtered estimate x(k|k) from x(k|k-l) and 

y(k) like equations (U.31), (̂ +.32) and (̂ +.33). (See for example 

Ref. 11.) 
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k.2.k Coloured observation noise correlated with the martingale increment 

Let the observation noise be zero mean coloured noise. A usual 

apDroach is to assume that the coloured noise v(k) is generated by a 

linear difference equation driven by white noise n(k), that is 

v(k+l) = a(k+1,k)v(k) + n(k) 
(H.35) 

v(o) = v° 

where v and the white-noise sequence n(k) are independent. But the 

solution v(k) of equation (̂ +.35) can be written as 

k 

I 
i=1 

v(k) = A(k,o){v° + _̂  A(o,i)n(i-l)} (U.36) 

where 
k 

A(k,o) = n a(i,i-l) , A(o,i) = A(i,o)"^ . {k.3l) 
i=1 

Now define the process m(k) by 

k 
m(k) = v° + I A(o,i)n(i-l) 

i=1 (U.38) 

m(o) = V 

The coloured noise v(k) can be written then as v(k) = A(k,o)m(k) 

where m(k) satisfies the linear-difference equation driven by white 

noise n(k) 

m(k+0 = m(k) + A(o,k+On(k) . (1+.39) 

It follows that the process m(k) is a zero mean wide-sense martingale 

(compare the Kalman problem at the end of section U.2.2) with 

covariance matrix P„(k) = i^<m(k)m(k) r where 
m 

P^(k) =^.|v°v°"} + I A(o,i)^|n(i-l)n(i-l)^}A(o,i)^ 

= Pjĵ (k-I) + A(o,k)5|n(k-l)n(k-l)^iA(o,k)^ . {k.ko) 

Using this result, the observations y(k) can be written in the form 

y(k) = H(k)u(k) + A(k,o)m(k) {k.k^) 

where both u(k) and m(k) are wide-sense martingales. It follows from 

the above analysis that the case of coloured observation noise v(k) 

can be more generally described by v(k) = ijj(k)m(k) where m(k) is a 

zero mean wide-sense martingale with known covariance matrix then by a 
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o . 

linear difference equation for v(k). 

Assume further that the initial condition v^ is independent of thf 

martingale u(k) for every k and that the martingale increment 

u(k+0 - u(k) is correlated with the white noise n(k) as follows: 

5|(u(k+l) - u(k))n(j)^j = S(k)ö 

Then, for j:$k 

kj • 
{k.k2) 

1) - u(k))v°^l + 5|(u(k+l) - u(k))m(j)^} = ̂ {(u(k+ 

I ^|fu(k+l) - u(k))n(i-l)'^iA(o,i)'^ = 0+0 = 0 {k.k3) 

I(j)^ + 

i=1 

and therefore (j-̂ k) 

,^j(u(k+l) - u(k))y(j)^} = 5{(u(k+l) - u(k))u(j)^}H( 

+ 5J(u(k+0 - u(k))m(j)^|A(j,o)^ = 0 + 0 = 0 {k.kk) 

because u(k) is a wide-sense martingale. Equation (U.l+i+) implies that 
for k>£, u(k) - u(£) is orthogonal to L (y;£). Therefore, 

ü(k|£) = fu(k)|L2(y;£)) = M k ) - u( £) | L^(y;£) j + 

+ (u(£)|L^(y;£)) = Ü(£|£) (I4.I15) 

that is, the predicted estimate ü(k|£) is equal to the filtered 

estimate ü(£|£) for all k>£. 

It remains now to give an equation for the filtered estimate 

u(£|£) of the wide-sense martingale u(£) given observations y(i), i<£ 

in coloured martingale noise m(i) as in equation k.k^. The filtering 

equations are 

ü(k|k) = ü(k|k-1) +' K(k) "^ / y(k) - a(k,k-1)y(k-1) - H(k)ü(k|k-1) 

K(k) = P.(k|k-l)H(k) + S(k-1 P.^(k|k-1) 
y 

{k.k6) 

{k.kl) 

P..(k|k-1) = H(k)P^(k|k-l)H(k)^ + H(k)Q(k-1 )H(k-l)'^ * 

a(k,k-l)'^ + a(k,k-1 )H(k-1 )Q(k-1 )H(k)" + 

+ H(k)s(k-1) + S(k-l)^H(k)'^ + P (k-1) + 

- a(k,k-1 )H(k-1 )Q(k-1 )H(k-1 )\(k,k-l )'̂  {k.kQ) 

where 
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ïï(k) = H(k) - a(k,k-OH(k-l) {k .kq) 

Q(k-1) = P^(k) - P^(k-I) (U.50) 

and finally 

P^(k|k) = P,(k|k-0 - K(k) H(k)P-(k|k-l) + S(k)^] . (U.50^) 

The predicted estimate ü(k|k-l) and covariance matrix satisfy 

ü(k|k-l) = ü(k-1 |k-l) (I+.5I ) 

P-.(k|k-l) = P.(k-l|k-l) + P (k) - P (k-1) (U.52) 

u ' u ' u u 

whereas the initial conditions are 

u(l|o) = O , P^(l|o) = P^(1) . (lt.53) 

The process ü(k|k), k = 0,1,2,... is a zero mean wide-sense martingale. 

Notice that in the measurement update, equation (U.U6) for the 

filtered estimate two observations are processed simultaneously. The 

algorithm is of the type developed by Bryson and Henrikson (Ref. 6) 

for coloured noise, avoiding the augmented state procedure which, as 

is well known, often gives rise to ill conditioned problems. 

In this approach the first observation is still processed by 

using the augmented state procedure. 

The type of Kalman problem covered by the wide-sense martingale 

approach considered in this section consists of observations in 

coloured noise v(k) (equations (̂ .7) and (U.35)) where the driving 

noise n(k) is correlated with the system noise w(k), 

5J(u(k+l) - u(k))n(j)^} = A(o,k+OB(k)^{w(k)n(j)^} (H.5M 

i.e. S(k) = A(o,k+l)B(k) in {k.k2). Therefore, it is an extension of 

the already cited approach of Bryson and Henrikson where it was assumed 

that the driving noise n(k) and the system noise w(k) were independent. 

k.3 Wide-sense martingale approach; continuous time 

In this section the continuous time version of the estimation 

problem using the wide-sense martingale approach is discussed, however, 

only for the simplest case of uncorrelated martingale increment and 

observation noise. For 0-$t̂ 1 , say, let the state process x(t) 

((nxl)-vector) be given in the form 
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x(t) = (̂ (t)u(t) (i+.55) 

where (})(t) is a known matrix time function and u(t) ((nxl )-vector) is 

a continuous time zero mean wide-sense martingale with covariance 

matrix P (t) = ̂ •|u(t)u(t) >. The state x(t) is a wide-sense Markov 

process then. Suppose that the observation process is an (mxl)-vector 

process Y(t) where m^n and such that the martingale increment 

u(t)-u(s) is uncorrelated with the past of the observations, i.e. 

{̂(|u(t) - U(S))Y(X)^| = 0 x^s<t (I+.56) 

The l i n e a r l e a s t - s q u a r e s e s t i m a t e s x ( t | s ) and ü ( t | s ) of x ( t ) and 

u ( t ) g i v e n t h e o b s e r v a t i o n s Y ( X ) , X ^ S a r e r e l a t e d t o each o t h e r 

e x a c t l y a s i n t h e d i s c r e t e t i m e c a s e , t h a t i s 

x ( t | s ) = (})(t)Ü(t | s ) 

x ( t | s ) = ( J ) ( t ) u ( t | s ) (U.57) 

P . ( t | s ) = ( l ) ( t ) P . ( t | s ) ( ) ) ( t ) * 
X u. 

Also the following prediction result is completely analogous to the 

discrete time case: 

ü(t|s) -= ü(s| s) t>s (I+.58) 

P.(t|s) = P.(s|s) + P (t) - P (s) . (H.59) 

To solve the filtering problem for ü(s|s), let the observations 

be given by 

t t 
Y(t) = ƒ C(s)x(s)ds + ƒ D(s)dW(s) (U.60) 

o o 

or, using x(s) = (l)(s)u(s) 

t t 
Y(t) = ƒ H(s)u(s)ds + ƒ D(s)dW(s) (U.61) 

o o 

where H(S) = C(s)<{i(s) andW(t) is a standard Wiener process independent 

of the wide-sense martingale u(t). (This implies that condition (U.56) 

holds.) Moreover, let C(s) and D(S) be continuous functions of time 

and let R(t) = D( t )D(t )'̂ >0. It is proved in reference 2k that the 

filtered estimate ü(s|s) is a wide-sense martingale and that it can be 

written as 
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t 

ü(t|t) = J K(s)dM(s) (U.62) 
o 

where the kernel K(s) is an n x m matrix function, independent of t and 

M(S) is the innovation process of the observations defined by 

t 
M(t) = Y(t) - ƒ H(s)u(s|s)ds {k.63) 

o 

and such that Lp(M;t) = Lp(Y;t) (compare equations (̂ +.62) and (U.63) 

with equations (3.52) and (3.55) of Balakrishnan). The recursive 

filtering equations for u(t) are now readily obtained. Combining 

{k.62) and (U.63) and differentiating with respect to t yields 

|rü(t|t) = K(t) ̂  {k.6k) 
dt dt 

where i t can be shown t h a t 

-1 
K(t) = P . ( t | t ) H ( t ) V ( t ) (I+.65) 

and 

| ^ P . ( t | t ) = | ^ P ^ ( t ) - P ~ ( t | t ) H ( t ) V \ t ) H ( t ) P ~ ( t | t ) . (U.66) 

Equations (U.58), (U.59), {k.6k), ..., (1+.66) determine completely the 

prediction and filtering problem for u(t), whereas the solution for 

x(t) can be found using the equations (1+. 57 ). 

Consider finally the Kalman-Bucy problem, where the state x(t) 

is generated by a linear differential equation 

•|r x(t) = A(t)x(t) + B(t)w(t) 
dt 

x(o) = x° (2.15) 

driven by Gaussian white noise w(t) independent of the observation 

noise. As remarked before, x(t) is then a wide-sense Markov process 

and can be written as 

x(t) = (t)(t,o)|x° + J (J)"-^(s,o)B(s)w(s)dsi (U.67) 
^ o ^ • 

where the state transition matrix (t)(t,o) satisfies the matrix differ­

ential equation 

1^ (j)(t,o) = A(t)(|)(t,o) , (t)(o,o) = I . (U.68) 
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If the process u(t) is defined by 

t 
l S , 0 )ii\S)V\Sj<lS 

k.69: 

u(t) = X + ƒ (j) (s,o)B(s)w(s)ds 
o 

u(o) = X 

then the state x(t) can be written in the form x(t) = (j)(t,o)u(t) where 

u(t) is a (continuous time) wide-sense martingale. 

It satisfies the differential equation 

|- u(t) = (^~^t,o)B(t)w(t) 
(H.70) 

u(o) = X 

driven by white noise w(t) and is therefore, in the absence of system 

noise simply a constant, i.e. it is equal then for every t,o<t̂ 1 to 

the initial condition x . 

Hence, to find the linear least-squares filtered estimate 

x(t|t) of x(t) given by (2.15) based on the observations one can 

either use the Kalman-Bucy filter or the wide-sense martingale approach. 

It follows from the definition of u(t) for the Kalman-Bucy problem 

that the derivative of the covariance matrix P (t) in the differential 

equation for the error covariance matrix P~(t|t) is given by 

f ^ p ^ ( t ) = r ^ ( t , o ) B ( t ) p ^ ( t ) B ( t ) ^ r ^ ( t , o ) ^ . (U.71) 

Hence, the u(t) filtering equations of the wide-sense martingale approach 

for the Kalman-Bucy problem are: 

^ Ü(t|t) = K(t) ||^ Y(t) - C(t)u(t|t)l- (U.72) d t ^ " ' ^ xvvu; ^ ^ 

1^ P,(t|t) = (t) ^t,o)B(t)P^(t)B(t)^(t) ^t , o ) ^ + 

- P.(t|t)H(t)V^(t)H(t)P.(t|t) {k.l3) 

K(t) = P,(tIt)H(t)V^(t) . {k.lk) 

These have to be supplemented with equations (1+.57) to yield estimates 

for the state x(t). A comparison of the u(t) filter with the Kalman-

Bucy filter as given in chapter 2.2 clearly reveals the effect of the 

transformation x(t) = (j)(t ,o)u(t). The original system dynamics is 
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brought into a form with A(t) = 0 which causes some terms in the 

Kalman-Bucy filter to disappear. On the other hand, the remaining terms 

are made more complicated. 

APPLICATION OF WIDE-SENSE MARTINGALE APPROACH TO SOME MODEL PROBLEMS 

In the preceeding chapter the wide-sense martingale approach has 

been described. It has also been shown that the Kalman and Kalman-Bucy 

problem can be brought into the form considered there by solving the 

state equation and -writing x(t) = (()(t,o)u(t) where ({>(t,o) is the state 

transition matrix. Therefore, the Kalman and Kalman-Bucy problem can 

be solved by estimating the state x(t) directly (in this chapter also 

called x(t) filter) or by estimating u(t) and transforming these 

estimates into estimates for x(t) (in this chapter called u(t) filter). 

To compare both approaches a couple of model problems has been 

simulated and solved with each algorithm. These model problems together 

with some elucidating comment on the computational aspects are dis­

cussed in this chapter. 

5.1 Model problem one 

Consider the linear least-squares estimation of the state x(t) of 

a system based on observations y(k) where the state is given by 

dt 

x(o) 

x(t) = A(t)x(t) + B(t)w(t) 

o 

:t) = 

A(t) = 

= X 

^x^(t)X 

\ x2 ( t )y 

f' -"o\ 

I to o 
^ o I 

[41 

B(t) = 

, w(t) = 

/w (t: 

u^{t) 

/b (t) b (t 

V b^,(t) b^^(t) 
21 22 

(5.0 

(5.2) 

The state equation (5.0 is driven by Gaussian white noise w(t). The 

state transition matrix (t)(t,o) of the homogeneous system 
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dt 
x(t) = A(t)x(t) is 

<f)(t,o) = 

/cos üj t -sin 0) t\ 
/ o o \ 

\sin O) t cos co t/ 5.3; 

and the state equation (5.0 describes the motion of a second-order 

oscillator perturbed by noise. The state x(t) can be -written then as 

or 

where 

x(t) = (l)(t,o)jx° + ƒ ())~̂ (s,o)B(s)w(s)ds|' 
^ o 

x(t) = (f>(t,o)u(t) 

t 
u(t) = x° + ƒ (J) ^(s,o)B(s)w(s)ds 

o 

u(o) = X 

:5.M 

5.5; 

:5.6) 

It follows that u(t) is a wide-sense martingale if x is uncorrelated 

with the white noise w(t) for every t. In differential form u(t) 

satisfies 

5r u(t) = 4) ^(t,o)B(t)w(t; dt (5.7) 

Assume that scalar observations y(k) are given at discrete, not 

necessarily equidistant, points of time by 

y(k) = C(k)x(k) + v(k) (5.8) 

or 

where 

y(k) = H(k)u(k) + v(k)' 

C(k) = (c^(k) C2(k)] , H(k) = C(k)({)(k,o) 

(5.9) 

(5.10) 

and v(k) is zero mean Gaussian white noise with ̂ {v(k)v(£)} = P (k)6 

and uncorrelated with x and the system noise w(t). Notice that x(k) 

and ii(k) are used to denote x and u at the time t, of the k-th observa-
k 

tion. 

As described in chapter four, the wide-sense martingale approach 

consists of two steps: 

0 Processing of the observations y(k) k = 1,2,... to obtain estimates 

u(k|k) of the signal u(k) 
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2) Computation of estimates x(k|k) of the state x(k) using the 

relations 

x(k|k) = (fi(k,o)u(k|k) (5.11) 

P5,(k|k) = <|)(k,o)P,(k|k)(i>(k,o)̂  . (5.12) 

The Kalman filter yields x(k|k) directly. Notice that in the absence 

of system noise the filtered estimate u(k|k) is exactly the least-

squares estimate of the initial state x given the observations 

y(i), i = 1,2,..., k. Hence, the wide-sense martingale gives the 

smoothed least-squares estimate of the initial condition x from which 

the filtered estimate x(k|k) is computed using (5.11). 

The filtering problem for the continuous time signal x(t) with 

observations available at discrete points of time is embedded in a 

discrete time filtering problem by integrating the system dynamics 

between successive observations. Hence, 

x(k+l) = (j)(k+1 ,k)x(k) + n(k) (5-13) 

where 

\+1 
n(k) = ƒ <J)(tĵ .̂|,s)B(s)w(s)ds . (5.1^) 

^k 

Assuming that the system noise w(t) is constant, w(t) = w(k), between 

successive observations, it follows that 

x(k+l) = (l)(k+1 ,k)x(k) + E(k)w(k) (5.15) 

and 

where 

u(k+0 = u(k) + F(k)w(k) (5.16) 

\+1 
E(k) = ƒ (}>(t̂ ^̂ s)B(s)ds (5.IT) 

F(k) = J 4. (s,o)B(s)ds . (5.18) 
t, 

The Kalman filter described in chapter 2.2 can be applied to the system 

described by equation (5.15) and the observations given in (5.8) if 

P (k) = 5<w(k)w(k) > is given. The wide-sense martingale algorithra 

(1+.12), ..., (1+.16) can be applied to the system described by 
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equation (5.I6) and the observations given in (5.9). Equation {k.]6) 

for the prediction of the covariance matrix of the estimation error may 

be replaced by 

P.,(k+l|k) = P.,(klk) + F(k)P (k)F(k)^ . (5.19) 
u u w 

At this point some remarks on the difference, from a computational 

point of view between the Kalman and the wide-sense martingale approach 

can be made already. It is clear, for the simplest case in which there 

is no system noise, that the prediction from t to t . for the wide-

sense martingale u is trivial. The prediction step for the Kalman 

filter requires computation of the state transition matrix (|)(k+1,k) 

and matrix multiplications for the estimate and its covariance matrix. 

Notice that for this particular model problem the matrix (|)(k+1 ,k) 

depends only on the time difference between observations. In case of 

equidistant observation times it needs therefore to be computed only 

once. The same holds for the matrix E(k) for the case with system noise 

provided that the system matrix B(t) is constant. However, even in the 

latter case some form of computation is needed for the matrix F(k) 

(5.18) in the wide-sense martingale approach. Moreover, the inverse 

of the state transition matrix is required there. As for the measure­

ment update, the algorithm of the wide-sense martingale approach needs 

the modified observation matrix H(k) = C(k)(|)(k,o) instead of C(k). 

Thus, the wide-sense martingale approach requires the computation of 

the transition matrix (t)(k,o) for the measurement update whereas the 

Kalman approach needs (j)(k+1 ,k) in the prediction step. 

Clearly, the wide-sense martingale approach for the computation 

of the filtered estimates •u(k|k) needs fewer matrix multiplications 

than the Kalman approach. However, it must be realized that the former 

yields estimates of the wide-sense martingale u and that the transforma­

tion by way of (5.11 ) and/or (5-12) is required to yield the correspond-

ding results for the state x. The use of this transformation after each 

measurement update will decrease the possible gain in computation time 

of the wide-sense martingale approach considerably. Apparently, one may 

expect the wide-sense martingale approach to be more efficient if the 

transformation (5-10 and in particular (5.12) is not required after 

each measurement update. The need of the transformation (5.10 and/or 

(5.12) will generally depend on the problem at hand. For example, in 

case of a relatively high measurement rate it might not be necessary 
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to use (5.11) and/or (5.12) more than, say, once per ten measurement 

updates. 

Both algorithms have been tested on a Cyber 72 digital computer. 

The dynamical system (5-15) has been simulated, with as well as without 

system noise, together with the observations (5-8). Numerical parameterE 

used are: ' . 

time between observations t, ,--t, =0.1 s 
k+1 k 

(0 = 0.628 rad/s o 

observation matrix C(k) = (I.O 2.0) 

observation noise variance P (k) = (0.9)^ 

2.0 

initial state x = 

1 .0, 

Additional values used in case of system noise are: 

(0.02)2 

system noise covariance matrix 

system noise coefficient matrix 

(0.U2)' 

1 .0^ 

1 .0; 

observation noise variance P (k) = (0.3)^ 

In all cases 1000 observations have been processed and the following 

initial estimates have been used: 

/1.5\ • /(0.3)2 0 \ 

ü(o|o) = x(o|o) = , PQ(O|O) = P.(olo) = 

\0.5/ \0 (0.8)2J 

The results with regard to computation time are presented in 

tables 1 and 2 where x(t) filter denotes the Kalman filter and u(t) 

filter the wide-sense martingale algorithm inclusive of the transforma­

tion (5.11) and (5.12) after the specified number of measurement updates 

It can be read from table 1 that without system noise the u(t) filter 

needs 7.2 % less computation time than the x(t) filter if both the 

state estimate and the corresponding error covariance matrix are 

computed from the martingale estimates after every ten observations. 

The gain in computation time rises to 1I+.5 % if the transformation of 
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the error covariance matrix is omitted completely. For the latter case 

an improvement to I6.O % is obtained if the transformation of the 

state is done only after every 20 observations. For the x(t) filter 

the state transition matrix (t)(k+1 ,k) has been calculated for each 

measurement update as it would be required for the case of non-

equidistant measurement times. For the present example it was found 

that the x(t) filter needed 6.100 seconds execution time if (()(k+1,k) 

was computed only once. 

It is interesting to compare the filtering results. Figure 1 gives 

for the x(t) filter the estimates x.(k|k) and Xp(k|k) which, apart 

from the first few hundred observations coincide with the simulated 

states x-(k) and Xp(k). The oscillatory character of the state is 

clear. The standard deviation o~ (k|k) of the estimation error 
^ 1̂ 

X (kjk) = X (k) - X (k|k) is presented in figure 2 and shows the 

expected relatively fast decay during the first part of the filtering 

process. Figure 3 presents the correlation coefficient between x,(k|k) 

and X (k|k). In figure k the filtered estimates u (k|k) and üp(k|k) are 

sho-wn. From this figure the convergence of the filtered estimates to 

the exact initial condition is clear. The standard deviation o^ (k|k) 
U-

of the estimation error ü..(k|k) = u (k) - ü.(k|k) is given in figure 5 

and the correlation coefficient between ü.(k|k) and ü^(k|k) in figure 6. 

In figure 7 the dotted lines correspond with x,(k|k) and x (k|k) as 

they have been computed from u (k|k) a,nd ü (k|k) using 5.11. The result 

of the transformation has been plotted after every 30 observations. 

These estimates were found to coincide exactly with the x(t) filter 

results. Finally, figure 8 shows their correlation coefficient. 

Consider now the results for the case -with system noise. For both 

the u(t) and x(t) filter the contribution of the system noise to the 

predicted covariance matrices P(k+l|k) has been computed for each 

observation. Thus, for the x(t) filter the execution time found is 

representative for the case of non-equidistant measurement times. It 

is seen from table 2 that the gain in computation time for the u(t) 

filter has decreased to 2.5 % or 8.7 % depending on the transformation 

of the error covariance matrix. The filtering results of this case are 

shown in figures 9 to I9. In figure 9 the simulated x.(t) is presented; 

as a reference also the x..(t) without system noise is shown there. 

Figure 10 gives the filtering results of the x(t) filter whereas 

figure 11 shows the corresponding standard deviation. It is seen that 

this decreases faster, initially, then for the case without system noise. 
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This is caused by the fact that the measurement noise standard deviation 

has been taken much lower here. This overcompensates the uncertainty 

added to the state by the system noise. The correlation coefficient is 

sho-wn in figure 12. In figure 13 the filtering results ü (t|t) and 

Ü (t|t) are sho-wn globally and in figures ^k and 15 in more detail. It 

is clear that due to the system noise the exact u(t) signal is no 

longer constant. The figures l6 and 17 give a comparison of the exact 

and estimated u(t) values. Figure l8 shows the course of the standard 

deviation a~ (k|k). The figure indicates that this standard deviation, 
U-| 

due to the effect of system noise does not decrease monotonically. This 

is shown even more clearly in the enlargement of figure I9. 

Model problem two 

The preceeding problem was rather simple in that the state 

transition matrix was known analytically and the state vector consisted 

of only two elements. Consider now the more complicated case where the 

s1 

satisfies the differential equation 

itate vector has four elements, x(t) = ( x-(t )Xp(t )x.̂ (t )xi (t) I and 

l^x(t) = Ax(t) 

XlOj = X 

5.20) 

where 

A = 

0.50\ 

0.25 

/-O.l+O 0.10 0.20 

0.10 -1.00 0.1+0 

0.20 0.1-!0 -1.00 -0.10 

0.50 0.25 -0 .10 - i . o o y 

o 
X = 

r-i) 
1 

2.0 

2.5, (5.21) 

This model problem has no direct physical interpretation. Because the 

eigenvalues of the matrix A are all real and less than zero, the solution 

of the system (5.20) and (5.21) tends to zero as t increases. The state 

transition matrix ct)(t,o) of the system 5.20 satisfies the differential 

equation 

— (|)(t,o) = A(j)(t,o) 

(j)(o,o) = 1 (unit matrix) 

and can be written as 

:5.22) 
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(|>(t,o) = l ~ (t-o)^ . (5.23) 

i=0 ^• 

For small values of t it can be approximated by 

9 9 

^(t,o) = I + At + ̂  (5.2l4) 
or 

A24-2 A34-3 A 4 X 4 
<t>(t,o) = I + At + ̂  + ̂  + ̂  . (5.25) 

For larger t values the system (5.22) can be integrated numerically to 

yield (()(t,o). Alternatively, ^{t) can be computed as a product of state 

transition matrices ())(i,i-l) where t.-t. is small enough to use (5. 2U ) 

or (5.25) for (|)(i,i-1 ). 

It is wanted again to find the linear least-squares estimate of 

x(t) based on the observations 

y(k) = C(k)x(k) + v(k) (5.8) 

where 

C(k) =(1.0 1.0 1.0 1.0) 

and v(k) is zero mean Gaussian white noise uncorrelated with the initial 

state X . Both the Kalman approach and the wide-sense martingale approach 

are used to solve this problem and a comparison of their results is made. 

In the Kalman approach the state transition matrix (j)(k+1 ,k) is required 

for the prediction of the state at the time t, ,. of the next observation. 
k+1 

In the wide-sense martingale approach the transition matrix c})(t,o) is 

used again to transform the state x(t) into a wide-sense martingale 

u(t), x(t) = 4>(t,o)u(t). As a consequence, the observations take the 

form 
y (k) = H(k)u(k) + v(k) (5.9) 

where H(k) = C(k)<J'(k,o). One thousand observations have been simulated 

at time intervals of 0.05 seconds. For the Kalman approach cf)(k+1 ,k) has 

been computed for each measurement update using equation (5-25). It has 

been assumed therefore that the measurement times could be non-equidistant 

but the matrix products A (l-Si<l+) have been computed only once. For the 
k 

wide-sense martingale approach <f>(k+1 ,0) = II (j)(i+1,i) has been used with 
i=0 

(|)(i+1,i) again according to equation (5.25). 

Table 3 gives a summary of the computation time required by both 

algorithms. It is clear that due to the increased number of elements in 
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the state vector the total execution time has approximately doubled. 

The wide-sense martingale approach is 7.7 % faster than the Kalman 

approach if the transformation (5.11 ) and (5.12) is applied after every 

10 observations for both the state estimate and the error covariance 

matrix. If the latter is omitted completely, a gain in computation timio 

of 13.8 % is obtained. These results are approximately the same as for 

the first model problem. 

Consider finally the estimation results. In figures 20 up to 23 

inclusive, the four simulated elements of the state vector are plotted 

together with their estimated values using the Kalman approach. The 

similarity is good. The corresponding standard deviations are shown in 

figures 2k and 25. Figure 26 shows the estimates u and ü converging 

to the exact initial values 1.5 and 1.8 respectively. In figure 27 the 

estimates u.-, and Ui are shown, together with the exact values u.-̂  = 2.0 

and Ui = 2.5. The corresponding standard deviations are sho-wn in 

figures 28 and 29. Although the achieved accuracy of the estimates of 

the wide-sense martingale u is not very high, the filtering results are 

clearly consistent. Finally, in figures 30 and 31 the exact values and 

the estimation results for x. and x, using the wide-sense martingale 

approach and the transformation (5.11) are shown. The drawn curves 

represent the exact values whereas the top of each peak corresponds 

•with an estimated value. The result of the transformation has been 

plotted for every 30 observations in figures 30 and 31. From the figures 

it seems that there is no difference in the Kalman results and the wide-

sense martingale approach results for the state x(t). A careful analysis 

of the numerical results confirmed this. The transformed standard 

deviations were also found to be equal to the Kalman filter results. 

6 CONCLUSIONS 

A study of literature on martingales in estimation theory has been 

carried out, guided by the intent to consider the implications for the 

present day practical filtering work at NLR. Attention has been directed 

at the recursive estimation equations of Kalman and Kalman-Bucy. Some 

experimental work concerning the efficiency of an estimation algorithra 

based on martingales is also described. 

Martingales are stochastic processes with a specific structure 
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defined in terms of given increasing information fields. It follows 

from the definition that the increments of a martingale have a property 

which is intermediate between the properties of independence and 

uncorrelatedness. With respect to estimation, a number of theoretical 

results concerning martingales and linear as well as non-linear 

estimation are summarized in the form of an innovation and representation 

theorem. These are useful in that they provide insight in the structure 

of the estimation problem. Using them, a simple derivation of the Kalman 

and Kalman-Bucy filter has been sketched. The knowledge and insight 

gained during the study are also important because they offer the possi­

bility to study more general estimation problems of the types described 

in some of the references (Refs 5, 31, 32, 3I+, 37) and, probably, to 

attack practical estimation problems at NLR which at present cannot be 

handled. It is therefore of importance both to study the more general 

estimation problems and to make up an inventory of them at NLR. 

Finally, "a wide-sense martingale approach" has been analyzed. This 

approach yields recursive linear estimation equations for the class of 

state processes x(t) modelled by x(t) = (})(t)u(t) where u(t) is a wide-

sense martingale with known covariance and <^{t) is a known matrix 

function of time. The observations may be corrupted by either white or 

coloured noise. The estimation equations hold for the wide-sense 

martingale u(t) but, due to the linearity of the state model, the 

estimates of the actual state x(t) can be directly computed. The new 

estimation equations are more general than the Kalman and Kalman-Bucy 

filters in the sense that the state models on which the latter are 

based can be transformed into the above form. It was claimed in the 

literature that this approach applied to the Kalman and Kalman-Bucy 

problem would be more efficient. This claim has been investigated in 

this report by means of numerical simulation of some model problems. 

The wide-sense martingale approach has been found to be more efficient 

indeed, but the amount of gain is highly dependent on the number of 

times the estimates of the actual state x(t) are computed from the 

estimates of the wide-sense martingale u(t). 
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TABLE 1 

Comparison of execution time for x(t) and u(t) filter for second-

order oscillator (model problem one) without system noise 

x(t) filter 

u(t) filter 

u(t) filter 

u(t) filter 

seconds 
execution 
time 

6.381 

5.920 

5.1+28 

5.362 

transformation 5.11/5.12 used after 
every N observations 

state vector (5-10 
N 

10 

10 

20 

covariance matrix (5.12) 
N 

10 

TABLE 2 

Comparison of execution time for x(t) and u(t) filter for second-

order oscillator (model problem one) with system noise 

x(t) filter 

u(t) filter 

u(t) filter 

seconds 
execution 
time 

8.25I+ 

8.0I+6 

7.535 

transformation 5.11/5.12 used after 
every N observations 

state vector (5.11) 
N 

10 

10 

covariance matrix (5.12) 
N 

10 
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TABLE 3 

Comparison 'of execution time for x(t) filter 

and u(t) filter for model problem two 

x(t) filter 

u(t) filter 

u(t) filter 

seconds 
execution 
time 

II+.65O 

13.528 

12.631 

transformation 5.11/5-12 used after 
every N observations 

state vector (5-11) 
N 

10 

10 

covariance matrix (5.12) 
N 

10 
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Fig. 1 Estimated components of state vector x using Kalman filter 
(model problem 1; no system noise) 
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Fig. 2 Estimated standard deviation of state vector element x using Kalman filter 
(model problem 1; no system noise) 
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using Kalman filter (model problem 1; no system noise) 
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Fig. 4 Exact and estimated components of wide-sense martingale u 
(model problem 1; no system noise) 
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Fig. 9 Simulated state vector element x with and without system noise 
(model problem 1) 
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Fig. 10 Estimated components of state vector x using Kalman filter 
(model problem 1; system noise) 
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Kalman filter (model problem 1; system noise) 
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Fig. 13 Exact components of wide-sense martingale u 
(model problem 1 ; system noise) 
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(model problem 1; system noise) 
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Fig. 17 Exact and estimated second component of wide-sense martingale u 
(model problem 1; system noise) 
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Fig. 18 Estimated standard deviation of first component of wide-sense 
martingale u (model problem 1; system noise) 
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Fig. 20 Exact and estimated first component of state vector x using 
Kalman filter (model problem 2) 
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Kalman filter (model problem 2) 
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Fig. 22 Exact and estimated third component of state vector x using 
Kalman filter (model problem 2) 
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Kalman filter (model problem 2) 
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