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Abstract: This study proposes a new approach to determine phenomenological or physical relations
between microstructure features and the mechanical behavior of metals bridging advanced statistics
and materials science in a study of the effect of hard precipitates on the hardening of metal alloys.
Synthetic microstructures were created using multi-level Voronoi diagrams in order to control
microstructure variability and then were used as samples for virtual tensile tests in a full-field
crystal plasticity solver. A data-driven model based on Functional Principal Component Analysis
(FPCA) was confronted with the classical Voce law for the description of uniaxial tensile curves of
synthetic AISI 420 steel microstructures consisting of a ferritic matrix and increasing volume fractions
of M23C6 carbides. The parameters of the two models were interpreted in terms of carbide volume
fractions and texture using linear mixed-effects models.

Keywords: synthetic microstructure; stress–strain diagram; FPCA; Voronoi diagrams; Voce law;
linear mixed-effects model

1. Introduction

Describing mechanical properties of macroscopic materials in relation to their mi-
crostructural features has been the focus of many studies. Multiple attempts to formulate
physics-based and phenomenological models can be found in the literature [1–6].

The high number of microstructural parameters, the interrelation among them, and ex-
ternal factors, such as measurement accuracy and limited experimental control, make the
identification of a clear relation between microstructure features and mechanical properties,
such as material strengthening, very hard to achieve. Accounting for multiple physical
factors increases reliability but often results in complex models requiring a trustworthy
acquisition of parameters. Phenomenological models are popular due to their simplicity,
but they typically lack a clear physics-based interpretation of their parameters. These
parameters can be related to microstructure features by designing appropriate experiments
that isolate the effect of specific variables. However, controlling microstructures to identify
certain relations is a very ambitious goal in real experiments.

The relationship between the volume fraction of carbides and the flow stress has been
the subject of several studies [7–10]. However, as claimed in [11], it is hard to experimentally
separate the precipitation contribution to the work-hardening due to the complex nature of
steel microstructures. The use of synthetic microstructures in combination with statistics
tools may help to formulate an alternative. This concept was explored in this work by
introducing a new statistical modeling approach.

Materials 2022, 15, 892. https://doi.org/10.3390/ma15030892 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15030892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-7695-3209
https://orcid.org/0000-0003-4983-1043
https://orcid.org/0000-0002-1376-6123
https://orcid.org/0000-0001-8733-4713
https://orcid.org/0000-0003-4708-5868
https://doi.org/10.3390/ma15030892
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15030892?type=check_update&version=1


Materials 2022, 15, 892 2 of 20

As a proof of concept, this technique was applied to the analysis of the effect of M23C6
carbide volume fraction on the uniaxial tensile behaviour of AISI 420 steel.

The first step is the synthetic generation of microstructures. An appropriate model for
representing steel microstructures needs to be selected. The advantage of the generation
of model microstructure is the possibility of building microstructures with a complete
control of their morphology that will allow the identification of specific relations between
the microstructure features and the mechanical behavior of the material. In [12], a very
extensive review on the representation of the morphology of microstructures is presented.

In the present work, the synthetic generation of microstructures was based on match-
ing (or partially matching) statistical and stereological parameters of the real microstruc-
tures [13].

Methods like Voronoi tessellations [14], cellular automata [15], and Monte Carlo
Potts models [16] are commonly applied for the generation of virtual microstructures.
Specifically, Voronoi tessellations are at the forefront of the geometrical models used
for representing polycrystalline microstructures, since the growth process of their cells
mimics the growth of grains after nucleation [6,17]. Even the most basic case, the Poisson–
Voronoi diagram, has shown its power in approximating single-phase microstructures [12].
For more complex microstructures, models such as controlled-Voronoi diagrams [6,18],
Laguerre-Voronoi diagrams [19], and multi-level Voronoi diagrams [20,21] have been
proposed. In this study, the latter model was considered. One of the advantages of using
multi-level Voronoi diagrams is the possibility of including grains with a variety of size
and shape distributions of different phases or precipitates, making the resulting synthetic
microstructure more realistic.

Seventy synthetic microstructures with an increasing carbide volume fraction and
different texture were generated. More specifically, ten different randomly generated
crystallographic textures were considered, and, for each of these configurations, seven
microstructures with identical geometrical properties but different carbide volume frac-
tions were generated. The idea behind this computational design, called a randomized
block design, is to prevent the rise of “spurious relations” due to the well known influ-
ence of the orientation on the strain development [22]. After the generation of synthetic
microstructures, simulations of the mechanical behavior of the material were performed.
For this purpose, the Düsseldorf Advanced Material Simulation Toolkit (DAMASK) [4]
was used. DAMASK combines a crystal plasticity formulation with finite-element and
spectral solvers, allowing for instance to perform large scale simulations [23], to model
damage or fracture [24] or to reproduce the local strain development under uniaxial tensile
deformation [25].

In material strengthening simulations, via uniaxal tensile testing, the main results are
stress–strain curves, in this case corresponding to microstructures with different carbide
volume fractions and textures. For understanding the influence of these microstructural
parameters on the stress–strain curve, two different approaches were considered. The
first is to study the influence of the microstructural features on the parameters of the Voce
model [26]. The Voce model has proven its validity in modeling the plastic deformation of
materials with different carbon content [27]. The second approach is a new data-driven
approach based on functional data analysis. The stress–strain curves are treated as real-
izations of a functional model, and their variability is studied using Functional Principal
Component Analysis (FPCA). Although the use of principal component analysis and of the
functional extension of the method, FPCA, is not very common in materials science, some
interesting applications can be found in [28,29]. FPCA is one of the most common tools in
functional data analysis, used for understanding the different sources of variability among
functions [30].

For interpretation purposes, a modified version of the classical approach was proposed:
the functions are not centered on the mean of all curves but on the expected stress–strain
curve one would observe for a microstructure without carbides.
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For both approaches, the dependence of the model parameters on the carbides volume
fraction is explained using linear mixed-effects models [31]. The advantage of using mixed-
effects models is the possibility of respecting the hierarchical structure of the data [32].
In fact, the primary interest is on the effect of the carbide volume fraction, but the texture
can be responsible for a variance increase and therefore needs to be taken into account
as well.

Finally, the validity of the results was evaluated qualitatively comparing the ap-
proaches.
The article outline is the following. In Section 2.1, the synthetic microstructure generation
using the multi-level Voronoi diagram is presented. The experimental design and the choice
of the microstructural parameters are described and discussed. A brief analysis of textures
is presented.

After introducing the crystal plasticity software and the advantages of using simula-
tions, the results of the simulated mechanical behaviour of the different microstructures
obtained via DAMASK are shown in Section 2.2. In Section 2.3, after having reviewed the
basic model for the tensile behaviour of steels, the stress–strain curves corresponding to
the different synthetic microstructures are statistically analyzed: in Section 2.4, the results
for the Voce model are reported; in Section 2.5, the functional data analysis approach is
introduced, and the results are shown. Linear mixed-effects models for interpreting the
model parameters in terms of the carbide volume fraction and the texture are introduced in
Section 2.6. Interpretation of the results and goodness of fit are discussed in Sections 3. The
results and final considerations are discussed in Section 4, and conclusions are presented in
Section 5.

2. Materials and Methods
2.1. Synthetic Microstructures Generation

This section describes the generation of synthetic microstructures containing geomet-
rical, physical, and mechanical information in agreement with the microstructure features
of the materials to study. The synthetic microstructures generated in this work aim to
represent typical annealed AISI 420 steel microstructures containing increasing volume frac-
tions of coarse M23C6 carbides embedded in a ferritic matrix. Geometrical and mechanical
information of the material used are given and validated in a previous study [25].

For studying the influence of carbides volume fraction on work hardening, taking
into account the variation caused by the texture, a randomized block experiment with two
classification factors was set. During deformation the grains in a polycrystalline material
tend to rotate in relation to the loading mode [33], and therefore specific initial texture
conditions can lead to different mechanical responses. In randomized block experiments,
the two factors have different roles and importance: one factor is called the blocking
factor and it represents a known source of variability in the experiment; the other is
called the experimental factor, and the purpose of the study is to determine if there are
systematic differences with respect to its values [31]. In this specific case, the texture is the
blocking factor, and it defines ten different blocks, each one containing seven synthetic
microstructures homogeneous in all their geometrical, chemical, and physical properties
except for the levels of the experimental factor, the carbides’ volume fraction.

First, the geometrical structure underlying the microstructure was created. The multi-
level Voronoi diagram was selected as a model for representing the microstructures. As pre-
viously mentioned, the advantage of using multi-level Voronoi diagrams is the possibility
of accounting for complex microstructures, including non-convex grains and different
grain-size and shape distributions for grains of different phases or precipitates. The idea
behind the construction of multi-level Voronoi diagrams is to stack layers of tessellation
with decreasing intensity parameters of the generator points. Without loss of generality we
introduce the multi-level Voronoi diagrams considering two tessellation layers.
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Consider two finite sets of distinct points in Rd, X1 = {xk1 : k = 1, . . . n} and X2 =
{xi2 : i = 1, . . . m} and m < n. Here, {xk1} are the generator points of the first-level
tessellation, and the first-level cells are defined as

Ck1 = {y ∈ Rd : ||xj1 − y|| ≤ ||xk1 − y||, j 6= k}, k = 1, . . . , n. (1)

Here || · || is the usual Euclidean norm. Let for all xi2 ∈ X2

Ii = {k ∈ (1, . . . , n) : ||xi2 − xk1|| ≤ ||xi2 − xl1||, l 6= k}, i = 1, . . . , m, (2)

be a set of indices. The cells of the resulting multi-level Voronoi tessellation, also referred
as second-level cells or grains, are given by:

C∗i =
⋃

k∈I1

Ck1, i = 1, . . . , m. (3)

Loosely speaking, given the two point sets X1 and X2 (m < n), all first-level cells are
merged if their generator points are nearest to the second generator point with respect to
all others. If the sites of both the first and the second tessellation are generated according to
Poisson processes, Φ1 and Φ2, with intensity parameters λ1 and λ2, respectively (λ1 > λ2),
we refer to the resulting tessellation as a multi-level Poisson–Voronoi diagram,MV (Φ1,Φ2)

.
However, unlike the case of the tratidional (one-level) Poisson–Voronoi diagrams, there is
not a single parameter (the intensity parameter of the underlying Poisson process) deter-
mining the distribution of the geometrical characteristics of the grains. In fact, at least two
intensity parameters are now responsible for the resulting grain geometry and morphol-
ogy. Taking values of λ1 relatively low (satisfying λ1 > λ2) results in a tessellation with
non-convex grains and with irregular boundaries. As λ1 increases (limiting case λ1 → ∞),
the resulting diagram approaches to the one-level Poisson–Voronoi diagram based on the
second-level generating points, and therefore the resulting grains are convex.

For the construction of synthetic microstructures, the values of the intensity parameters
of the first- and second-level cells are chosen to approximately match the experimental
values of the volume fractions and of the mean grain size of the material under study.
For representing the annealed AISI 420 stainless steel with M23C6 carbides (the AISI 420
steel used in this study contains 0.32 wt.% C, 0.2 wt.% Si, 0.3 wt.% Mn, and 13.7 wt.% Cr),
λ2 = 0.5 and λ1 = 3, which means that the ferrite grains and the carbides precipitates of the
synthetic microstructures have mean volumes equal to 2 µm3 and 0.33 µm3, respectively.
The values of the main geometrical features of 1000 grains of the AISI 420 sample used for
creating the synthetic microstructures are shown in Table 1.

Table 1. Estimated moments of the geometrical features of 1000 grains obtained by EBSD measurements.

(a) Ferrite (b) Carbides

Volume Fraction 0.968 Volume Fraction 0.032
Mean Volume (µm3) 2.58± 0.05 Mean Volume (µm3) 0.45± 0.03

Mean Area (µm2) 4.43± 0.07 Mean Area (µm2) 0.70± 0.03

For representing the two-phase nature of the material, the intensity parameter of the
first-level tessellation needs to take into account the volume fractions of the ferrite grains
and of the carbides. Therefore, the intensity of the first-level cells is decomposed as:

λ1 = λ
f
1 + λc

1,

where λ
f
1 is the intensity of the ferrite phase grains, and λc

1 is the intensity of the carbides.
Considering that the observed volume fraction of carbides in stainless steels is usually
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between 0.03 and 0.11 [25,34], seven different values were considered for λc
1, namely: 0,

0.01, 0.03, 0.05, 0.07, 0.09, and 0.11; since the value of λ1 is fixed, λ
f
1 changes accordingly.

The geometry of the synthetic microstructures is shown in Figure 1.

(a) (b) (c) (d) (e) (f) (g)

Figure 1. 3D multi-level Voronoi diagrams with increasing level of λc
1: (a) λc

1 = 0, (b) λc
1 = 0.01,

(c) λc
1 = 0.03, (d) λc

1 = 0.05, (e) λc
1 = 0.07, (f) λc

1 = 0.09, (g) λc
1 = 0.11.

This exact same generation was repeated for each of the ten blocks given by the
different textures; hence, in total, 70 microstructures were considered. Whereas the ferrite
grain size was kept steady, not changing the value of the intensity of the second-level
grains, the orientations of the grains were randomly assigned. The ten diverse randomly
produced textures are shown in Figure 2.
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Figure 2. ODFs (ϕ2 = 45◦ ODF sections) corresponding to each of the ten different crystallo-
graphic textures in the ferrite phase under study. An orthorhombic sample symmetry was assumed.
Above each texture, it is shown the maximum texture intensity in random units and the Taylor factor
calculated using the full-constraints Taylor model (M).

More specifically, Figure 2 shows the ten ϕ2 = 45◦ planes of the orientation distribu-
tion functions (ODFs) corresponding to each of the generated carbides-free RVEs (Figure
1a). Although orientations were randomly generated, the number of grains in the RVE
was relatively small (50 grains), and therefore the obtained texture deviates from what is
commonly known as a random texture. The maximum intensity value varied from approx-
imately 3.5 to 8 random units. The deviation between these textures was assumed to be
reasonable for the range of variation observed in real materials. Figure 2 also shows the
Taylor factor, M, calculated for each texture using a full-constraints (FC) Taylor model [35].
The Taylor factor represents the degree of plastic shear in the material with respect to the
applied macroscopic strain and can be used to estimate the texture effect in macroscopic
mechanical behavior. For individual BCC grains, the calculated Taylor factor ranges from
1.78 to 3.71, while the factor calculated using the FC model for an ideal random texture is
in BCC metals 2.71 [36], which is relatively close to the values shown in Figure 2.

2.2. Virtual Tensile Test

Once the synthetic microstructures are ready, the second step is to perform the virtual
experiments. The uniaxial strain and stress development in the different synthetic mi-
crostructures is simulated integrating a crystal plasticity model and a spectral solver based
on the Fast Fourier Transform (FFT) implemented in the DAMASK software (Düsseldorf
Advanced Material Simulation Toolkit [4]). A thorough description of the model and
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settings used in simulations can be found in [4,25]. The stress in the reversible-strain regime
depends only on the elastic strain expressed as the Green–Lagrange strain tensor and the
material’s specific stiffness. A hardening law based on the viscoplastic formulation of [37]
was implemented to describe the irreversible part of the tensile curve. Parameters for AISI
420 ferrite and M23C6 carbides defined in the model constitutive equations can be found
in Table 2. Validation of the parameters has been performed in [25]. The values Cii are
components of the elastic stiffness tensor; γ̇0 is the initial shear rate; nslip is related to the
material’s sensitivity to strain rate; τ

η
C is the critical shear for stress flow for the slip plane

η; τsat is the saturation shear stress; h0 is the initial hardening; and a is a dimensionless
parameter related to the material’s hardening.

Table 2. Materials parameter for DAMASK model implementation.

Parameter Unit Ferrite M23C6 Carbides

C11 GPa 233 550.8
C12 GPa 135 225.9
C44 GPa 128 140
γ̇0 s−1 0.001 0.001

nslip - 10 200
τ

η
C MPa 80 1600

τsat MPa 250 1800
h0 MPa 549.4 20000
a - 2.25 1.1

A longitudinal strain rate of 0.0001 s−1 under uniaxial conditions was imposed in all
cases. In Figure 3, the stress–strain curves corresponding to the 70 different microstructures
are shown. The color code represents the carbide volume fraction (λc

1). The deformation
regime and hardening behavior of the different curves vary with the strain. The resulting
strain–stress curves are clearly affected by the carbide volume fraction and less by the
texture that slightly influences the variability within microstructures with a certain carbide
fraction. In fact, it is not easy to distinguish the different curves associated to the different
textures in the ferrite phase (Figure 3). The influence of carbide volume fraction and texture
on strain–stress curves is further investigated in the following sections.

Figure 3. Stress–strain curves. Different colors indicate different values of the volume fraction of the
carbides in the range [0, 0.11], with different symbols indicating different textures in the ferrite phase.

2.3. Statistical Analysis

Two approaches were proposed and assessed in this study to relate microstructure
features of the artificial microstructures shown in Figure 1 to the functional responses
shown in Figure 3: (1) a parametric model based on a mathematical law and (2) a data-
driven model based on functional principal component analysis. The formulation of the
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first approach requires the selection of a law. The strain-hardening response of a material
is typically studied using true stress–true-strain curves, as obtained from uniaxial tensile
tests. This section revisits some of the models most commonly used to describe the tensile
curves of metals.

The total strain ε is decomposed into elastic and plastic strain:

ε = εe + εp. (4)

While elastic strain will be recovered as the material is unloaded, plastic strain is
permanent. The elastic component εe is proportional to the stress σ, following the well-
known Hooke’s Law [38]:

εe = σ/E (5)

where E is called the elastic or Young’s modulus. However, there is no consensus on how to
describe the plastic component εp with a single mathematical expression. As the material is
subjected to plastic deformation, it will become stronger as a result of work hardening, and
the stress required to apply further plastic deformation will increase. Many expressions
have been proposed to describe this behavior. In general, the plastic deformation part of
the stress–strain curve of several metals can be represented by a power-curve relation [39]:

σ− σy = K · εn
p (6)

where K is the strength coefficient and n the strain hardening exponent. Equation (6) is also
known as the Hollomon equation [40]. The Hollomon equation is one of the most widely
accepted for representing the plastic part of the stress–strain diagram. However, especially
for stainless steels, the use of the Hollomon equation is not always recommended [41].

Another commonly used expression, proposed by Ludwik [42], is:

σ = σ0 + L · εq
p (7)

where σ0 is the friction stress, and L and q are material constants. However, this expression
is found not to be appropriate for austenitic stainless steel [41]. A modified version of
Equation (6), usually accepted for austenitic stainless steels and in the presence of carbide
precipitates [41], was proposed by Ludwigson [43]:

σ = k1εn1
p + exp (k2 + n2εp), (8)

where k1, n1, k2, and n2 are material parameters. Modified versions of the Hollomon
and Ludwigson equations [27] have also been proposed for metals with different carbon
contents. In fact, carbon content is known to be one of the primary factors influencing the
strain hardening [27,44].

Voce also proposed a model to describe the plastic flow of metals [26]. The Voce
law provides a phenomenological description of the hardening effect produced by the
accumulation of plastic deformation, but it is also possible to give a physical interpretation
to its parameters [45]. In its simplest form, the Voce law determines the plastic flow of
the material in terms of only three parameters. This law has the problem that the stress
stabilizes at a certain level of deformation, and this behavior is not commonly observed in
metallic materials. In [46], a modified version of the original Voce law was proposed, in
which the addition of a fourth parameter allows for an asymptotic hardening rate at large
strains. This extended Voce law takes the form:

σ = τ0 +
(
τ1 + θ1εp

)[
1− exp

(
−εpθ0/τ1

)]
. (9)

In the classical law, θ1 is zero.
However, describing the stress response to strain deformation over the different stages

of the tensile test and for a whole range of materials with a single expression is hardly
possible [27,47]. In this study, the focus is not only on the identification of a good model for
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describing the whole range stress–strain behavior but mainly on understanding how the
carbide volume fraction influences it. All the described models are potential candidates
for such purposes. We selected as a phenomenological model the extended Voce model,
and we compared the results with a data-driven model.

2.4. Voce Model

For estimating the parameters of the Voce model described in Equation (9), a nonlinear
weighted least-squares approach was used [48]. The fitted curves are displayed in Figure 4.

Figure 4. Fitted stress–strain functions using Voce hardening law. Different colors indicate different
values of the volume fraction of the carbides in the range [0, 0.11].

Although some small deviations were observed around a strain of 10%, in general,
the model is capable of reproducing the curves simulated by DAMASK with good accuracy.
A measure of the goodness of fit is reported in Section 3.1.

2.5. Data-Driven Approach

In this section, the influence of the carbides volume fraction on the resulting stress–
strain curves (Figure 3) is described in a functional framework. Studying the stress–strain
data obtained from the digital experiment as functional data, the aim was to identify an
underlying function that can describe the general stress–strain curve for stainless steel
and explain its variability in terms of carbide volume fraction. A common approach to
represent functional data is assuming an expansion of each sample curve in terms of a linear
combination of basis functions [49]. In the most-common settings the basis functions are
fixed in advance, and then the coefficients need to be estimated as the main step. Functional
Principal Component Analysis (FPCA) constitutes an alternative approach in which the
basis functions are estimated in the process.

Principal Component Analysis and its functional extension have been successfully
used for data complexity reduction and variability interpretation [30]. The idea is that a
function Xi(t) can be expressed in terms of the following expansion:

Xi(t) = µ(t) +
∞

∑
k=1

Aikφk(t), (10)

or approximately (by truncation) as

XiK(t) ≈ µ(t) +
K

∑
k=1

Aikφk(t) (11)

In the conventional FPCA, µ(t) is the functional mean, obtained as the mean of all
the functions Xi(t); φk(t) are the orthonormal eigenfunctions obtained from the spectral
decomposition of the covariance function Γ(t, s); and Aik =

∫
(Xi(t) − µ(t))φk(t)dt are

called the Functional Principal Component Scores. A more-detailed description of the
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method can be found in [30]. FPCA attempts to find the dominant modes of variation
around an overall trend function [50]. In this case, the assumption is that the overall trend
is represented by the stress–strain curve for the microstructure without carbides and that
the distance from this baseline function is due to the increasing carbide volume fraction
and the different texture. A slight modification of the FPCA approach was proposed in this
context. The difference with the traditional approach is in the centering of the functions.
More precisely, the functions are not centered on the functional mean but on the expected
stress–strain curve one would observe for a metal microstructure without carbides. The
modified principal component decomposition is:

XiK(t) ≈ µ0(t) +
K

∑
k=1

Aikφk(t), (12)

and
Aik =

∫
(Xi(t)− µ0(t))φk(t)dt (13)

are the modified functional principal components scores. The scores of individual curves
on the main eigenfunctions can be used for description, clustering, classification, and
prediction [51].

The first step for the modified FPCA approach is defining the mean stress–strain curve
for microstructures without carbides. Using the stress–strain values obtained for the ten
different microstructures corresponding to the ten different textures, the mean stress–strain
curve for the microstructure without carbides is defined as:

σ̂0(ε) =
1

10

10

∑
j=1

σj0(ε), (14)

where σj0 is the stress–strain curve corresponding to j-th texture. In Figure 5, the ten
different stress–strain curves corresponding to the microstructures without carbides and
the mean stress–strain curve (red line) are shown. The gradient color is based on the Taylor
factor M.

Figure 5. Mean stress–strain curve for microstructures without carbides (red line). Different colors
indicate different textures in the ferrite phase with different Taylor factor M.

Secondly, the original stress–strain data are centered to the mean stress–strain curve
for microstructures without carbides as shown in Figure 6.
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Figure 6. Stress–strain centered to the expected stress–strain for microstructures without carbides.
Different colors indicate different values of the volume fraction of the carbides in the range [0, 0.11].

Then, we can perform the modified FPCA. The first two eigenfunctions are plotted
in Figure 7. Looking at the behavior of the first eigenfunction φ1, for low strain levels
corresponding to the elastic part of the curve, the variance among the curves was low; it
reached its maximum around 0.05 strain, and then it slightly decreased. The interpretation
of the second eigenfunction φ2 was less intuitive. As the second principal component must
be orthogonal to the first one, it defined a less-important mode of variation. It accounted
for 2.0% of the total variation and consisted of a high negative contribution for the very low
strain values followed by a high positive contribution correspondent to high strain values.

0.00 0.05 0.10 0.15 0.20

−
4

−
3

−
2

−
1

0
1

2
3

Strain

φ

φ1

φ2

Figure 7. First two eigenfunctions obtained with the modified FPCA performed on the 70 stress–
strain curves.

From the plot of the two FPCA scores, A1 and A2 (Figure 8), some additional consid-
erations can be drawn. Figure 8a shows that one could interpret A1 as the effect of the
different carbide volume fraction, while Figure 8b shows that A2 corresponds to the effect
of the different random textures.
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(a) λc
1 (b) Texture

Figure 8. Plot of the two FPCA scores obtained for the 70 stress–strain curves. Different co lours
indicate in (a) different values of the carbides’ volume fraction in the range [0, 0.11] and in (b) different
textures in the ferrite phase.

One of the aims of FPCA is a reduction in the model complexity. Therefore, given that
the first functional principal component explains more than 98% of the total variance around
the expected stress–strain curve for the microstructure without carbides, the analysis was
reduced to just this component (see Figure 9).

Figure 9. Plot of the FPCA scores correspondent to the first functional principal component φ1 and
the observed values of carbide volume fraction λc

1 for the 70 stress–strain curves. Different colors
indicate different textures in the ferrite phase.

The results of the model are shown in Figure 10.
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Figure 10. Fitted stress–strain functions using FPCA model (Equation (18)). Different colors indicate
different values of the the carbides in the range [0, 0.11].

2.6. Linear Mixed-Effects Model

In this section, linear mixed-effects models are used for expressing the two different
model parameters in terms of the carbide volume fraction and the texture. Mixed-effects
models are a class of models especially used when the data present a clustered or grouped
structure. They are employed to describe the relation between a response variable and
the explanatory variables, giving a different role to the classification factors. Two effects
were considered:

Fixed effects, which concern parameters associated with the levels of the experimental
factor or of the explanatory variable whose effect needs to be primarily investigated;
Random effects, which concern parameters associated with the levels of the blocking
factor or better associated with individuals or groups drawn at random from a population.

Let yi = [yi1, . . . , yini ] denote the vector of responses in the i-th cluster, i = 1, . . . , k;
Xi denotes the matrix of explanatory variables for which fixed effects are assumed; let
βi be the corresponding vector of fixed parameters; Zi denotes the matrix of explanatory
variables for which the random effect is assumed; and let αi be the corresponding vector of
random parameters. We considered a linear mixed model that assumes heterogeneity of
the intercepts only. The model assumptions are:

• yi|(Xi, 1α0i) ∼ Nni (Xiβ, 1α0i, σ2 Ini )

• α0i ∼ N(0, σ2
α),

where α0i represents the vector of random intercepts. The model formula is:

µi = β0 + α0i + β1xi, (15)

with µi indicating the expected response.

3. Results

Four different linear mixed models (15) were used for evaluating the relationship
between the parameters of the Voce model and the carbide volume fraction and texture. As
previously stated, the carbide volume fraction represents the experimental factor, and it is
assumed to have a fixed effect on the model parameters; instead, the texture is the blocking
factor for which a random effect on just the intercept of the model is assumed. These
assumptions were confirmed by Figure 11, which indicates that the slope of the relationship
between the Voce-model parameters and the carbide volume fraction is independent of the
texture, but the intercept does vary with the texture.
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(a) τ0 (b) τ1

(c) θ0 (d) θ1

Figure 11. Plot of the estimated Voce-model parameters (τ0 (a), τ1 (b), θ0 (c), θ1 (d)) and the observed
volume fraction of carbides for the 70 different microstructures (different symbols indicate different
textures in the ferrite phase).

Using Equation (15), the four models are:

τ0i = 187.5 + α0j + 101.4 λc
1i, α0j ∼ N(0, 3.549), i = 1, . . . , 70, j = 1, . . . , 10

τ1i = 268.3 + α0j + 621.5 λc
1i, α0j ∼ N(0, 6.033), i = 1, . . . , 70, j = 1, . . . , 10

θ0i = 8688.5 + α0j + 42064.6 λc
1i, α0j ∼ N(0, 269.269), i = 1, . . . , 70, j = 1, . . . , 10

θ1i = 382.9 + α0j + 205.1 λc
1i, α0j ∼ N(0, 16.617), i = 1, . . . , 70, j = 1, . . . , 10

(16)

where all parameters have stress units. Substituting these expressions in the Voce law
(Equation (9)) results in the stress–strain curves shown in Figure 12.

The same approach was used for giving a physical meaning to the functional principal
component score A1 in terms of carbides’ volume fraction and texture. The resulting linear
mixed model is:

A1i = −1.351 + α0j + 355.793 λc
1i, α0j ∼ N(0, 3.320), i = 1, . . . , 70, j = 1, . . . , 10. (17)

Combining Equations (12) and (17), the final model for a generic stress–strain curve
is then:

σ̂i(ε) = σ̂0(ε) + [−1.351 + α0j + 355.793 λc
1i]φ1(ε, ) α0j ∼ N(0, 3.320), (18)
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Figure 12. Plot of the estimated stress–strain curve using the Voce model with parameters modeled
in terms of the carbide volume fraction and texture in the ferrite phase via linear mixed models.

Moreover, multiplying the coefficient of the linear mixed model by the eigenfunction
φ(ε), the effect of the different textures and of the carbides volume fractions at any point of
the stress–strain curve can be evaluated (Figures 13a,b).

(a) (b)

Figure 13. Effect of texture in the ferrite phase (a) and of the carbides’ volume fractions (b) in the
stress–strain curves.

3.1. Goodness of Fit

As a measure of goodness of fit of the two proposed models, the root mean square-error
(RMSE) and the mean absolute error (MAE), the most commonly used scale-dependent
metrics [52], were computed for every curve and for both models.

The RMSE is the square root of the mean of the square of all errors (RMSE =√
1
n ∑N

i=1(yi − ŷi)2). The MAE expresses the average model-prediction error in the units of

the variable of interest (MAE = 1
n ∑N

i=1(|yi − ŷi|). Both the RMSE and the MAE are good
measures for evaluating the model performance [52], and values close to the random exper-
imental uncertainty indicate good model fitting [53]. Figure 14 shows the goodness-of-fit
of the two models and suggests that the two models are reasonably good in representing
the tensile behavior of the synthetic microstructures (the order of magnitude of the both
the RMSE and the MAE values of the two models can be compared to the overall standard
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deviation of the stress data that is in the range [12.1; 13.4] MPa representing the intrinsic
variability of the data). (Density in Figure 14 is the ratio between the frequency and the
width of the class. Note that the scale of the graphs related to the Voce-law approach and
the FPCA approach are different.) The ranges of values of both the RMSE and the MAE for
the model based on the Voce law are much smaller with respect to the ones based on the
FPCA approach. This means that the accuracy of Voce-law fitting is more or less the same
for all the textures and the carbide volume fractions considered; on the other hand, the
FPCA model is very accurate for some stress–strain curves, but, for most curves, the fitting
is not as precise as the Voce model. It should be noted that the model based on the Voce law
describes only the plastic strain, whereas the FPCA approach considers the whole-range
stress–strain curve.
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Figure 14. Histograms of the RMSE and the MAE (values in MPa) computed for all curves using the
model based on the Voce law (a–c) and the FPCA approach (b–d).

4. Discussion

This work presents a simulation-based approach for investigating the influence of
the M23C6 carbides on the stress–strain behavior of AISI 420 steel. Using as a starting
point geometrical and mechanical information provided in [25], the first step was the
generation of synthetic microstructures representing the material under study. Among the
models used to describe material microstructures, multi-level Voronoi diagrams prove to
be sufficiently flexible for representing the material under study [25]. With this approach,
it is possible to control the morphology of the microstructures, modifying one feature
at the time, which is not feasible by using experimental thermomechanical treatments.
In this specific case, we changed just the carbide volume fraction. For avoiding spurious
influences on the microstructure-property relation by the texture, ten different randomly
generated textures were considered. In future work, it would be interesting to study the
effect of other microstructure features, e.g., placing the carbides at specific locations such as
grain boundaries.
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Two approaches, the extended Voce model and Functional Principal Component
Analysis (FPCA), were followed to understand the influence of carbide fraction on the de-
velopment of the stress–strain curve controlled by the possible effect of the texture. The aim
of this work was not finding the best fitting for the strain–stress curve but illustrating two
different methods for obtaining insight into the mechanical behavior of the material using
information on microstructure features. This was achieved by the application of a linear
mixed model. Voce and other typical models used to describe the material strain–stress
curve entail the assumption of a law and then the fitting of parameters. The FPCA ap-
proach has the advantage of not requiring any assumption, and it can directly evaluate the
influence of an input parameter on the investigated mechanical behavior. In this respect,
the approach based on FPCA allows to study the effect of the two microstructural variables,
carbides’ volume fraction and texture, at any point of the stress–strain curve, highlighting
differences in the intensity of the effect in the different stages of the tensile testing.

The analysis of the linear-mixed model shows that in the Voce model, the carbide
volume fraction strongly influences the parameters τ1 and θ0, corresponding to the back-
extrapolated critical resolved shear stress (CRSS) and the initial hardening, respectively.
Instead, τ0, the initial CRSS, and θ1, the asymptotic hardening rate, are mainly influenced
by the texture. In particular, textures with a high Taylor factor present a high value of τ0.
The relation with θ1 is less clear, but it indicates that textures with a high Taylor factor
correspond to lower values of θ1. In the particular case of the evaluation of the effect
of carbide fraction on the strain–stress curve of AISI 420 steel, the potential of FPCA is
exemplified in Figure 13. Figure 13 shows that carbides influence more markedly the
first part of the plastic flow, from yielding and up to around 0.05 strain, compared to the
reference without carbides. In the virtual tensile curves it can be observed that the yield
strength increased up to ≈90 MPa, followed by a strong hardening. From 0.05 strain,
the effect of carbides became weaker. This behavior was more prominent as the carbide
volume fraction increases. That makes the effect of the volume fraction of carbides on the
ultimate tensile strength less strong than on the yield stress, causing an increment of at
maximum ≈82 MPa corresponding to a 13% carbide volume fraction. These observations
are in agreement with the clear influence of the carbides on the initial hardening parameter
of the Voce model but not on the asymptotic hardening rate.

The interpretation of the results obtained from Voce and FPCA models are in line
with experimental results on an AISI 420 steel with a 0.03 carbide fraction, in which it was
demonstrated that the contribution of carbides (and grain boundaries) to the development
of heterogeneous local strains decreases with macroscopic strain [25]. It was discussed,
in line with Fleck et al. [54], that the observed high hardening rate at low plastic strains
originates from a dominant effect of long-range back stresses generated by a misfit between
the soft ferrite matrix and the hard M23C6 carbides. This misfit is closely related to the
development of interface dislocations or geometrically necessary dislocations (GND) at the
hard–soft region interfaces. These deformation mechanisms are not explicitly taken into
consideration by the crystal plasticity model, and thus there should be another explanation
for the results obtained in the Voce and FPCA approaches. In the representative volume
elements (RVEs), high internal stresses are developed at ferrite–carbide interfaces at low
plastic strain, which are necessary for the simultaneous compatible deformation of hard
and soft regions. This fact is shown by Hidalgo et al. [25]. It is reasonable to argue that
as the volume fraction of carbides increases, the strain incompatibilities between M23C6
carbides and the ferrite matrix increase. Hence, the internal stresses will be higher and
so will the effect of carbides on the strain–stress curve as depicted in Figure 13. The local
strains in the RVEs become more homogeneous as the plastic strain increases and the
grains reorient more favorably for deformation. This suggests that the internal stresses that
originated from strain incompatibilities have a smaller effect on the overall macroscopic
strain and that the grain orientation also plays a role in deformation.

Figure 13 displays that the influence of texture on the plastic flow obtained from
FPCA model, independently of it having positive or negative effect, is stronger as the
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strain increases. The influence is in general stronger as the texture (read Taylor factor)
deviates more from the reference value, although there is not an obvious trend. In any
case, textures with a variation in Taylor factor (value corresponding to random texture)
cause a slight variation on the yield strength of ≈5 MPa. It is worth noting that the Taylor
factor represents the average effect of the orientation of all grains and that small or large
dispersion of orientations can lead to a similar Taylor factor. Moreover, the Taylor factor
given by the full-constraint Taylor model does not take into account grain-interaction
mechanisms. The interaction between grains significantly influences the deformation.
The orientations might not be uniformly distributed, and some grain clusters can impair
a strong effect on deformation, which is not solely explained by the Taylor factor. Hence,
the Taylor factor cannot be expected to be fully representative for the variability of texture,
especially in RVEs with a small number of grains. Nevertheless, the kind of variability
obtained in the current experiments is considered positive for validating the strengths of
the FPCA model.

As pointed out previously, the reader should bear in mind that tensile curves have been
created from the application of a phenomenological hardening law in a crystal plasticity
model previously applied and validated in [25]. This hardening law is rather simple but has
demonstrated to be sufficiently accurate in predicting metals’ behavior upon the application
of deformation. Moreover, steels do not typically exhibit a random texture or precipitates
with equivalent size as assumed in this work. Despite these artificial limitations introduced
in the current study, the proposed simulation set up enabled to prove the advantages of
using FPCA approaches for a better understanding of the relation between microstructural
and mechanical properties. An interesting, more-advanced application is, instead of di-
rectly applying a macroscopic model, to use FPCA to find a hardening law dependent on
the carbide volume fraction to use in crystal plasticity models. Such an approach will give
better results, since its implementation is more sophisticated. Another interesting applica-
tion of FPCA is to find the dependence of hardening on non-microstructural parameters,
but loading conditions, like the strain rate and the temperature directly from experimental
stress–strain curves.

5. Conclusions

1. The design of a randomized-block experiment allows to study the contribution of
the M23C6 carbides on the stress–strain behavior of AISI 420 steel controlling for the
possible confounding effect of the textures.

2. Multi-level Voronoi diagrams prove to be a flexible model that allow to represent the
microstructure under analysis.

3. The approach is simulation-based, and hence it is fully reproducible and tuneable for
other microstructure-features and mechanical-properties investigation.

4. The FPCA model is a flexible approach that does not require any physical assumption
and that can be applied also for modeling the mechanical behavior, highlighting the
effect of the different sources of variations given by the microstructural features.

5. Linear mixed-effects models are able to give a clear interpretation of the model param-
eters of both the Voce and the FPCA model in terms of the carbide volume fraction
and the textures.

6. The presented research methodology can be applied to other alloys with different
precipitates such as graphite in cast iron or intermetallics in superalloys.
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