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SUMMARY

This thesis addresses new methods and applications of ptychography which is a scan-
ning Coherent Diffraction Imaging(CDI) method for reconstructing a complex valued
object function from intensity measurements recorded in the Fraunhofer or Fresnel diffr-
action region. The technique provides a solution to the so-called ’phase problem’ and is
found to be very suitable for Extreme Ultraviolet (EUV) and X-ray imaging applications
due to its high fidelity and its minimum requirement on optical imaging elements. More-
over, abundant studies show that ptychography is able to provide a wide field-of-view
and retrieve the illumination probe also. During the last two decades, ptychography has
been successfully demonstrated with X-ray radiation sources, electron beams and visible
light sources.

Chapter 1 is an introductory chapter which gives an overview of CDI techniques. The
goal is to provide the necessary knowledge so that readers with different background can
easily understand the following chapters. This chapter contains three parts. For the first
part we introduce the problem statement of CDI, the approximations that are commonly
used in CDI, i.e. the projection approximation, the Fraunhofer approximation, and the
required conditions of these approximations. This part also includes the introduction
about the discrete Fourier transform, the chirp-Z transform, the issue of sampling and
the coherence requirements. The second part of this chapter gives a brief introduction
about iterative and non-iterative phase retrieval methods in CDI. For the final part of
this chapter, we discuss the fundamental of ptychography which is the main topic of this
thesis. We first derive an iterative ptychographic algorithm based on the steepest descent
method, then explain the extended field-of-view and the ambiguities in ptychography.
Some of the recent developments of ptychography are included in this part as well.

For performing phase retrieval in the EUV regime more efficiently, developing poly-
chromatic ptychography is desirable. As an alternative to the existing ptychographic
information multiplexing (PIM) method, we present in Chapter 2 an another scheme
where all monochromatic exit waves are expressed in terms of the amplitude of the
transmission function and the thickness function of the object. Our proposed algorithm
is a gradient based method and its validity is studied numerically. In addition, the sam-
pling issue which appears in the polychromatic ptychography scheme and its influence
to the reconstruction quality are discussed.

In Chapter 3 we investigate the performance of ptychography with noisy data by
analyzing the Cramér Rao Lower Bound (CRLB). The lower bound of ptychography is
derived and numerically computed for both top-hat plane wave and structured illumi-
nation. The influence of Poisson noise on the ptychography reconstruction is discussed.
The computation result shows that, if the estimator is unbiased, the minimum variance
for Poisson noise is mostly determined by the illumination power and the transmission
function of the object. Monte Carlo analysis is conducted to validate our calculation re-
sults for different photon flux numbers. Furthermore, the performance of the maximum

ix
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likelihood method and the approach of amplitude-based cost function minimization is
studied in the Monte Carlo analysis.

In Chapter 4 we present a parameter retrieval method which combines ptychogra-
phy and additional prior knowledge about the object. The proposed method is applied to
two applications: (1) parameter retrieval of small particles from Fourier ptychographic
dark field measurements; (2) parameter retrieval of a rectangular structure with real-
space ptychography. The influence of Poisson noise is discussed in the second part of
the chapter. The CRLB in both applications is computed and Monte Carlo analysis is
used to verify the calculated lower bound. With the computation results we report the
lower bound for various noise levels and the correlation of particles in application 1. For
application 2 the correlation of parameters of the rectangular structure is discussed.

The thesis is concluded with Chapter 5 where the main contribution of this thesis is
listed. Furthermore, the unfinished work during my PhD and the possible extensions of
the topics discussed in this thesis are addressed in this last chapter.
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2 1. INTRODUCTION

1.1. INTRODUCTION OF CDI
Coherent Diffraction Imaging (CDI) is a class of computational imaging approaches,
where an object is illuminated by a fully coherent light beam and the scattered light is
collected by an electronic image sensor array. The technique is useful in wavelength
ranges where imaging components are not available or difficult to use. In CDI, the ob-
ject of interest can be 2D or 3D, reflective or transmissive. The detected light is an elec-
tromagnetic wavefield which typically oscillates at 1014 ∼ 1019Hz. This oscillation is too
rapid to be captured by the image sensor, hence only the time-averaged intensity of the
wavefield can be measured. For this reason, half of the information, namely the phase,
of the wavefield is lost if we do not consider any polarization effect. Therefore, the re-
construction of the object is mostly unsatisfactory. This is called ’the phase problem’
because one needs to find a way to recover the phase, i.e. the wavefront, of the wave-
field, so that sufficient knowledge about the wavefield is obtained and backward propa-
gation of the wavefield can be done [1–4]. Solving the phase problem is crucial in x-ray
microscopy [5–11], electron microscopy [12–14], astronomy [15, 16], optical microscopy
[17, 18] and other signal processing applications. The computational methods that are
designed to solve the phase problem are called ’phase retrieval’ algorithms [2, 4, 19–
23]. These algorithms are particularly useful when other phase-imaging techniques, e.g.
holographic methods [24–26], Shack-Hartmann sensing [27–29], etc., are not available or
unpractical. One of the recently developed phase retrieval algorhtms, namely ptychog-
raphy [30–36], is the main topic that is addressed in thesis. Note that the polarization
effects are neglected throughout this thesis since they are used in Chapter 2 - Chapter 5.

1.1.1. FUNDAMENTALS OF CDI
Let us first consider the configuration as shown in Fig. 1.1, which is a simplified trans-
mission setup for a CDI experiment and has been often used in the CDI literature. How-
ever, it is worth noting that there are other configurations where the same CDI algo-
rithms can be applied, as will be discussed later in this chapter.

In Fig. 1.1, a fully coherent light beam with temporal frequency ω, denoted by P ,
is used to illuminate an object of interest, with complex transmission function O. The
light wave propagates through the object and is scattered by it. The exit wave immedi-
ately transmitted or reflected by the object propagates through free space and forms a
diffraction pattern. The intensity I of the diffracted wavefield is recorded by a 2D im-
age detector, e.g. a charge-coupled device (CCD). The goal of CDI is to reconstruct the
complex valued object function O from the measured diffraction pattern.

Fig. 1.1 is a lensless imaging setup. Compared to conventional lens-based imaging
systems, it has the following advantages:

(1) It is possible to retrieve the complex valued transmission function, i.e. the amplitude
and the phase of the object, without using a reference beamline. This is because the
wavefront deviation introduced by the object is encoded in the recorded pattern due
to diffraction. However, we note that we have to retrieve the phase of the field in
detector plane.

(2) Suppose one can reconstruct the complex transmission function of the object from
the recorded coherent diffraction pattern, the resolution of the reconstruction is not
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complex transmission
function of object

free space

coherent diffraction pattern

O (r)

I (r’)

coherent
illumination

intensity
measurement

P (r)

Figure 1.1: A simplified setup illustrating a CDI experiment.

limited by any imaging optics. The resolution is then only limited by noise and by
the numerical aperture defined by the size of the detector.

MODELING OF THE WAVEFIELD

Throughout this thesis, we consider the object and the free space as consisting of a linear,
isotropic and nonmagnetic media, and furthermore that free space is lossless. The object
may partially absorb the wavefield. In this thesis we use a Cartesian coordinate system[
x, y, z

]T where the z-axis coincides with the optical axis of the system. Let r be the
position vector of a point in real space:

r = [
x, y, z

]T = [r⊥, z]T , (1.1)

where r⊥ denotes the transverse coordinates r⊥ = [
x, y

]T

The governing equations which describe the propagation of the wavefield both in-
side and outside the object are Maxwell’s equations [25, 37–41]:

∇·D(r, t ) = 0, (1.2)

∇·B(r, t ) = 0, (1.3)

∇×E(r, t ) = ∂B(r, t )

∂t
, (1.4)

∇×H(r, t ) = ∂D(r, t )

∂t
. (1.5)

Here E(r, t ) is the electrical field and B(r, t ) the magnetic strength, D(r, t ) and H(r, t ) are
auxiliary fields which are the magnetic field, respectively. Assuming the bandwidth of
the light is sufficiently narrow, E, D, B and H in linear and isotropic media are related by:

D(r, t ) = ϵ0E(r, t ), (1.6)

B(r, t ) = µ0H(r, t ), (1.7)
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where ϵ0 is the relative permittivity and µ0 the relative permeability of the medium.
Combining Eq. (1.2) - Eq. (1.7), we can derive:

∇2E(r, t )− ϵ0µ0

c

∂2

∂t 2 E(r, t ) = 0, (1.8)

∇2H(r, t )− ϵ0µ0

c

∂2

∂t 2 H(r, t ) = 0, (1.9)

where c is the speed of light in vacuum. Suppose we neglect the polarization effects, it
is seen that every Cartesian components of E and H obeys the same scalar differential
equation:

∇2U (r, t )− ϵµ

c

∂2

∂t 2 U (r, t ) = 0. (1.10)

A generic method for solving Eq. (1.10) is the technique of separation of variables, in
which the wavefield is written in the form of a time-harmonic field:

U (r, t ) = U (r)e−iωt , (1.11)

where ω> 0. Substituting Eq. (1.11) into Eq. (1.10) leads us to the Helmholtz equation:

∇2U (r)+k2n2
r (r)U (r) = 0, (1.12)

where k = 2π/λ denotes the wave number and nr = p
ϵµ is the refractive index of the

medium, and λ is the wavelength in vacuum.

FREE SPACE PROPAGATION AND PLANE WAVE EXPANSION

In free space the refractive index is 1, therefore a wavefield Uf, which propagates propa-
gating in free space, obeys:

∇2Uf(r)+k2Uf(r) = 0. (1.13)

Note that we will not consider polarization effect in this thesis. Suppose we want to study
the propagation of the wavefield from plane z = 0 to plane z = z ′, as shown in Fig. 1.2.
Let k be 3D Cartesian coordinates in reciprocal space:

U  (r  ,0)

z=0 z=z’

f ┴

[k  , k  ]┴

┴
z

U  (r’  , z’)┴

[k  , k  ]┴

┴
z

propagation
f

Figure 1.2: The propagation of the wavefield in free space.

k = [
kx ,ky ,kz

]T = [k⊥,kz ]T . (1.14)
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The definition of kz and its sign can be found in Eq. (1.18).
We start by Fourier transforming Uf with respect to (w.r.t.) r⊥:

F⊥ (Uf) (k⊥, z) =
∫

Uf(r⊥, z)e−ik⊥·r⊥dr⊥, (1.15)

where F⊥ denotes 2D Fourier transform. The inverse Fourier transform is given by:

Uf(r⊥, z) = F−1
⊥ (F⊥ (Uf)) (r⊥, z) = 1

4π2

∫
F⊥ (Uf)e ik⊥·r⊥dk⊥. (1.16)

By substituting Eq. (1.16) into Eq. (1.13), it follows that:

∂2

∂z2 F⊥ (Uf) = −(
k2 −|k⊥|2

)
F⊥ (Uf) . (1.17)

Eq. (1.17) has two fundamental solutions and one of which is given by:

F⊥ (Uf) (k⊥, z) = F⊥ (Uf) (k⊥,0)e i
p

k2−|k⊥|2z = F⊥ (Uf) (k⊥,0)e ikz z . (1.18)

The another solution is given by replacing e i
p

k2−|k⊥|2z and e ikz z in Eq. (1.18) by e−i
p

k2−|k⊥|2z

and e−ikz z , respectively. Here the square root kz =
√

k2 −|k⊥|2 is positive imaginary
when |k⊥| > k and is positive real otherwise. The first case occurs for evanescent waves,
the latter for propagating waves. In this thesis we choose to use the solution given in Eq.
(1.18) so that the wave propagates or is exponentially decreasing along the +z direction.
Combining Eq. (1.16) and Eq. (1.18) we conclude:

Uf(r⊥, z) =
∫

e i(k⊥·r⊥+kz z) ·F⊥ (Uf) (k⊥,0)dk⊥, (1.19)

where e i(k⊥·r⊥+kz z) can be regarded as a plane wave and F⊥ (Uf) (k⊥,0) can be regarded
the spatial field of a plane wave with wave vector k = [k⊥,kz ]T . Therefore, Eq. (1.19)
shows that the wavefield Uf is a superposition of infinitely many propagating plane waves
and evanescent waves in the free space. In this thesis, evanescent waves are not of inter-
est. Although the integral Eq. (1.19) includes evanescent waves, i.e. waves with |k⊥| > k,
we shall omit these waves in the rest of this thesis.

THE WAVEFIELD FROM A SCATTERING OBJECT

When a scattering object with a volume V is excited by a time-harmonic incident field
Uin, it is common to write the total wavefield U as:

U (r) = Uin(r)+Uscat(r), (1.20)

where Uscat is the scattered field. Uin and Uscat satisfy:

∇2Uin(r)+k2Uin(r) = 0, (1.21)

∇2Uscat(r)+k2Uscat(r) = −k2 (
n2

r (r)−1
)
U (r). (1.22)
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To solve Eq. 1.22, a scalar Green’s function G(r′,r) is used [40], which satisfies:

∇′2G(r′,r)+k2G(r′,r) = −δD(r′− r), (1.23)

and δD(r) = δD(x)δD(y)δD(z) is the Dirac delta function which is defined such that for
every continuous function f (t ):∫ ∞

−∞
f (t )δD(t − t ′)d t = f (t ′). (1.24)

In free space, G(r′,r) is an outgoing spherical wave given by:

G
(
r′,r

) = 1

4π

e ik|r′−r|
|r′− r| , (1.25)

which is a spherical wave with amplitude decreasing with distance to the point source.
By substituting Eq. (1.23) into Eq. (1.22) we have [25, 41]:

Uscat(r′) =
∫

k2 (
n2

r (r)−1
)
U (r)G(r′,r)dr, (1.26)

and hence the total wavefield is:

U (r′) = Uin(r′)+
∫

k2 (
n2

r (r)−1
)
U (r)G(r′,r)dr, (1.27)

which is a very useful equation, called the Lippmann-Schwinger integral equation, for
solving the forward scattering problem, i.e. computing U (r′) when Uin(r) and n2

r (r)−1
are known. Eq. (1.27) is also useful for solving the inverse scattering problem, i.e. com-
puting n2

r (r)−1 provided that U (r′) has been measured for a set of incident fields Uin(r).
However, the inverse problem is considered difficult to be solved both analytically and
numerically [42]. To gain some insight, it is convenient to make the assumption that the
scattering object is weakly scattering and sufficiently thin, because then the Lippmann-
Schwinger integral equation can be simplified.

THE WEAK SCATTERING APPROXIMATION

Now we focus on the wavefield scattered by the object Uscat. When the volume of the
object is sufficiently small and the refractive index of the object is close to that of free
space, i.e. n2

r (r)−1 is sufficiently small, one can approximate Uscat by [25]:

Uscat(r′) ≈ U (1)
scat(r′) =

∫
k2 (

n2
r (r)−1

)
Uin(r)G(r′,r)dr, (1.28)

which is the weak scattering approximation or the first Born approximation. In this ap-
proximation we assume the object is only excited by the incident beam and multiple
scattering can be neglected. Note that when n2

r (r)− 1 is large, the higher order of the
Born series have to be considered and the multiple scattering effect must be included
in the model [25]. This requires that the Lippmann-Schwinger equation is solved nu-
merically. Alternatively, higher order Born approximations could be computed, however
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the Born series typically does not converge when the optical contrast is larger. To nev-
ertheless the Born series, one can apply a Pade approximant [42]. However, the strong
scattering regime is out of the scope of this thesis and hence we assume that the weak
scattering approximation is valid throughout this thesis.

In most applications of CDI, it is common that the size of the scattering object is
much smaller than the distance between the object and the detector, i.e.

∣∣r′∣∣ ≫ |r|. For
this case the Green’s function can be approximated by:

G(r′,r) ≈ 1

4π

e ik|r′|
|r′| e

−ik |r|2
2|r′| e

−ik r′ ·r
|r′| , the Fresnel approximation, (1.29)

≈ 1

4π

e ik|r′|
|r′| e

−ik r′ ·r
|r′| , the Fraunhofer approximation. (1.30)

By substituting Eq. (1.30) into Eq. (1.28) we get:

U (1)
scat(r′) ≈ k2

4π

e ik|r′|
|r′|

∫ (
n2

r (r)−1
)
Uin(r)e

−ik r′ ·r
|r′| dr

= k2

4π

e ik|r′|
|r′| F

[(
n2

r (r)−1
)
Uin(r)

](
k

r′

|r′|
)

, (1.31)

where F is 3D Fourier transform. It is seen that, within the weak scattering and the
Fraunhofer approximation, the amplitude of the scattered wavefield U (1)

scat is the 3D Fourier
transform of

(
n2

r −1
)
Uin. If Uin is a plane wave and hence can be written as e ikin·r, the

scattered wavefield can be written as:

U (1)
scat(r′) ≈ k2

4π

e ik|r′|
|r′| F

[(
n2

r (r)−1
)](

k
r′

|r′| −kin

)
. (1.32)

If the scattering is elastic, i.e. wavenumber of the scattered wavefield equals |kin|, then
Eq. (1.32) is the 3D Fourier transform of

(
n2

r (r)−1
)

evaluated on a part of a sphere in
reciprocal space, namely the Ewald sphere. In this thesis we stay within the elastic scat-
tering regime and the Fraunhofer approximation (adaptation to the case of detectors at
Fresnel distances are straightforward).

THE PARAXIAL DIFFRACTION FORMULAS AND THE PROJECTION APPROXIMATION

Since Uin is a solution of Eq. (1.21), i.e. the Helmholtz equation in free space, it is allowed
to expand Uin into plane waves as in Eq. (1.19). By substituting Eq. (1.19) into Eq. (1.31)
we have:

Uscat(r′) ≈ k2

4π

e ik|r′|
|r′|

∫
Uin(r⊥,0)e

−ik
r′⊥·r⊥
|r′| dr⊥

∫ 0

−zo

(
n2

r (r)−1
)

e
i
(
kz z−k z′z

|r′|
)
d z, (1.33)

where zo is the thickness of the scattering object which is contained in the slab −zo ≤ z ≤
0 and z ′ is the detector plane, as shown in Fig. 1.3.

To further simplify the model, it is common to use the paraxial approximation. That
is, only the part of the scattered wavefield which predominately propagates in the posi-
tive z-direction is measured by the detector. Therefore, we can write:∣∣r′∣∣ ≈ z ′, and k ≈ kz . (1.34)
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z=0 z=z’

in propagation U    (r’) scat

object

zo

Figure 1.3: The propagation of the wavefield when the scattering object is present.

By applying Eq. (1.34) in the exponential terms in Eq. (1.33), we get:

Uscat(r′) ≈ k2

4π

e ikz ′

|r′|
∫

Uin(r⊥,0)e−i k
z′ r′⊥·r⊥dr⊥

∫ 0

−zo

(
n2

r (r)−1
)

d z

≈ k2

4π

e ikz ′

|r′| F⊥
[

Uin(r⊥,0)
∫ 0

−zo

(
n2

r (r)−1
)

d z

](
k

z ′ r′⊥

)
, (1.35)

which is the 2D Fourier transform of Uin(r⊥,0)
∫ 0
−zo

(
n2

r (r)−1
)

d z. The approximation
which has led us to Eq. (1.35) is also called the projection approximation or flat Ewald
sphere approximation [43]. The validity of the projection approximation has been stud-
ied in [12, 35]. Suppose the transverse resolution of the reconstructed object is ∆r along
the x and y axis, then it was found that the projection approximation is valid when the
thickness satisfies:

zo ≲
2 |∆r |2
λ

= 2λ

|λ/∆r |2 . (1.36)

The derivation of Eq. (1.36) is given in [12, 35]. Note that λ
(|λ/∆r |2)−1

is sometimes
called the depth-of-focus (DoF) [44, 45].

THE PROBLEM STATEMENT IN CDI
We have shown that, in the projection approximation and the Fraunhofer region, the
scattered wavefield Uscat(r′⊥, z ′) is the 2D Fourier transform of Uin(r⊥,0)

∫ 0
−zo

(
n2

r (r)−1
)

d z

with an energy scaling factor k2
(
4π

∣∣r′∣∣)−1. In most of the literature about CDI, it is com-
mon to assume that the scattering object is a thin slab, which means the exit wave im-
mediately behind the object can be written by:

Ψ(r⊥) = P (r⊥) ·O(r⊥), (1.37)

and hence the complex valued diffracted wavefield can be written by:

F⊥ [Ψ]

(
k

z ′ r′⊥

)
=

∫
Ψ(r⊥)e−i k

z′ r′⊥·r⊥dr⊥, (1.38)

All fields Ψ(r⊥), P (r⊥) and O(r⊥) are complex valued 2D functions in the plane z = 0. P
and O are the complex probe function and transmission function of the object, respec-
tively. It is seen in Eq. (1.35) that, in the first Born approximation, the 2D functions P
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and O correspond to:

P (1)(r⊥) = Uin(r⊥,0), O(1)(r⊥) = 1+
∫ 0

−zo

(
n2

r (r)−1
)

d z, (1.39)

with the energy scaling factor omitted. The subscription (1) in Eq. (1.39) means the
function is in the first Born approximation. However, this interpretation is not complete.
This is because we are assuming that F⊥ [Ψ] is the scattered field far away at r′ and that
the projection approximation is valid. Developing a more precise model of the scattered
wavefield, which also applies to an object that is not thin, is being researched by many
groups currently. Some of the recent progress will be briefly reviewed later in this chap-
ter.

Throughout this thesis, we will use the notation used in Eq. (1.37) and Eq. (1.38). The
main problem in CDI is the ’phase problem’, i.e. how to retrieve O(r⊥) or Ψ(r⊥) from the
intensity measurements of the far field diffraction, given by:

I (r′⊥, z ′) =
∣∣∣∣∫ Ψ(r⊥)e−i k

z′ r′⊥·r⊥dr⊥
∣∣∣∣2

. (1.40)

where Ψ is given by Eq. (1.37).

1.1.2. THE DISCRETE FOURIER TRANSFORM AND THE Z-TRANSFORM
In practice, I (r′⊥, z ′) is measured by a 2D detector with discrete pixels. Therefore, I is
sampled on a meshgrid of r′ at plane z = z ′. Since I is the absolute square of the 2D
Fourier transform of the exit wave Ψ(r⊥), it is reasonable to also approximate Ψ(r⊥) by
a 2D array. Let nr,⊥ and nk,⊥ be the indices of 2D rectangular and uniform meshgrids in
real space and reciprocal space, respectively:

nr,⊥ = [
nr,x ,nr,y

]T , nk,⊥ = [
nk,x ,nk,y

]T , (1.41)

and let ∆r⊥ and ∆k⊥ be translation factors of adjacent cells of the periodic 2D real and
reciprocal meshgrids:

∆r⊥ = [
∆x,∆y

]T , ∆k⊥ = [
∆kx ,∆ky

]T . (1.42)

The mesh points of the grids can be written as:

r⊥ = nr,⊥∆r⊥, k⊥ = nk,⊥∆k⊥. (1.43)

The 2D Fourier transform is approximated by the 2D discrete Fourier transform (DFT)
on these meshes, i.e.:

F⊥ (Ψ) (k⊥) =
Nx ,Ny∑

nr,⊥
Ψ(r⊥)e−i2πnr,x nk,x /Nx e−i2πnr,y nk,y /Ny , (1.44)

where Nx and Ny are the number of pixels of the 2D array along the x-axis and y-axis,
respectively. Note that the pixel spacing ∆r⊥ and ∆k⊥ are assumed to fulfill the Nyquist
sampling, i.e.: [

∆x,∆y
]T = 2π

[
(Nx∆kx )−1, (Ny∆ky )−1]T

. (1.45)
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In practice, the Fast Fourier Transform algorithm (FFT) is the most commonly used
choice for computing the DFT.

There exists a generalization of the DFT, namely the chirp Z-transform (CZT) [46–48].
In the CZT the pixel spacing ∆r⊥ and ∆k⊥ can be sampled arbitrarily, therefore the CZT
can be used to calculate spectrum in the reciprocal space on a finer mesh. To show an
example, we start by re-writing the 1D Fourier series along the x-axis in a more generic
form, using the symbol W . For 1D DFT along the x-axis, we have:

Fx (Ψ) (kx ) =
Nx∑
nr,x

Ψ(nr,x∆x) ·e−i2πnr,x nk,x /Nx =
Nx∑
nr,x

Ψ(nr,x∆x) ·W nr,x nk,x , (1.46)

where W nr,x = e−i2πnr,x /Nx is a complex valued sinusoidal waveform. To adjust the pixel
spacing in the reciprocal space is equivalent to evaluate this waveform on a finer mesh
along the x-axis. This can be done by replacing W by a power W s , yields:

CZTx (Ψ) (skx ) =
Nx∑
nr,x

Ψ · (W s)nr,x nk,x , (1.47)

It has been shown [46, 49] that one can compute the CZT by applying twice the FFT and
once the inverse FFT. Hence the computation time required for the CZT is around 3 times
more than the FFT. The CZT is a very popular choice when it is needed to compute the
Fourier transform on a finer mesh than the one implied by Nyquist’s criterion.

1.1.3. SAMPLING REQUIREMENT
Since now the exit wave Ψ and the intensity measurement I have been approximated by
discretized 2D arrays, the ’phase problem’ we need to address becomes to reconstruct
the array Ψ(r⊥) from the data given by:

I (r′⊥, z ′) =
∣∣∣∣∣Nx ,Ny∑

nr,⊥
Ψ(r⊥)e−i 2π

λz′ nr,x n′
r,x /Nx e−i 2π

λz′ nr,y n′
r,y /Ny

∣∣∣∣∣
2

. (1.48)

It is seen that, Ψ(r⊥) consists of 2 × Nx × Ny real independent variables because Ψ is
a complex valued wavefield. However, I is a 2D array consisting of Nx ×Ny real valued
numbers. Hence Eq. (1.48) contains Nx×Ny equations and 2×Nx×Ny unknowns, hence
is a under-determined system. In conventional CDI [5, 19], this under-sampling problem
is addressed by imposing a finite size boundary support to Ψ(r⊥), as shown in Fig. 1.4.
We can write the boundary support as:

Ψ(r⊥) =
{
Ψ(r⊥), r⊥ ∈ S,
0, r⊥ ∉ S.

(1.49)

where S denotes the pixels in the object plane in which Ψ is nonzero. Furthermore, an
over-sampling factor is defined by:

σS = Nx ×Ny

the number of pixels in S
. (1.50)
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r    ┴ S 

r    ┴ S 
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Ny

Figure 1.4: (a) Illustration of a rectangular boundary support. (b) Illustration of a circular boundary support.

To be able to solve the equation system in Eq. (1.48), it is reasonable to let σS = 2, be-
cause in this way the number of unknown and the number of measurements are the
same. This is the oversampling criteria proposed in [5]. It was shown [50] that one needs
a larger σS , e.g. σS ≈ 5, so that Ψ can be successfully reconstructed with noisy data.

Another relevant remark about the sampling criteria is that, since we are measuring
the absolute square of the Fourier transform of Ψ, we need to sample the intensity at
the Nyquist sampling interval of |F (Ψ)|2 (k⊥) in reciprocal space [51]. This sampling
interval is two times finer than the Nyquist sampling interval of F (Ψ) (k⊥). The reason
is that the inverse Fourier transform of |F (Ψ)|2 (k⊥) is the auto-correlation ofΨ(r⊥), and
the support of the auto-correlation ofΨ(r⊥) is two time larger than the support ofΨ(r⊥),
as shown in Fig. 1.5. To make the sampling interval in reciprocal space two times finer,

(a) (b)
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Figure 1.5: (a) An example of the discretized exit wave Ψ(r⊥) with a rectangular support. (b) The nature loga-
rithm of the auto-correlation of Ψ(r⊥), i.e. ln

[
F−1 (|F (Ψ)|2)]

.

it is reasonable to choose the size of the 2D grid in ordinary space twice as big (i.e. the
surface area is four times as big) as the support S. In this case we have σS = 4, which is a
more demanding oversampling criterion than the one given in [5].

In practice, the proper support can be realized by e.g. placing an aperture in front of
the object. The size and the shape of this support is assumed to be known and is used
during the reconstruction. It should be remarked that these over-sampling requirement
can be released by increasing the information of the data. For instance, it was claimed
[52] that one does not have to fulfill the above sampling requirement in ptychography,
however it is still an open question to what extend the sampling requirement can be re-
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laxed. Ptychography will be introduced and discussed in more detail later in this chapter.

1.1.4. COHERENCE REQUIREMENT
We have been assuming so far that the wavefield is fully coherent and hence perfectly
monochromatic. However, such a light source does not exist. Therefore, it is necessary
to find out the tolerances are on the degree of coherence for the light source so that our
model can be used.

SPATIAL COHERENCE REQUIREMENT

First we consider the case that the illumination to be quasi-monochromatic, which means
that its temporal spectrum only consists of one narrow peak and the effect of its band-
width is negligible. If we focus on the wavefield radiated from two separate points in the
object plane z = 0, denoted by Ψ1(r⊥,1) and Ψ2(r⊥,2), as shown in Fig. 1.6. The intensity

z=0 z=z’

(r’ )

Ψ (r   )    ┴,1

1,2

Ψ (r   )    ┴,22

I ┴

1

Figure 1.6: The propagation of the wavefield in free space.

of the diffracted wavefield in the detector plane is given by:

I1,2(r′⊥) = |F⊥ (Ψ1)|2 +|F⊥ (Ψ2)|2 +|F⊥ (Ψ1)| |F⊥ (Ψ2)|γ1,2(r⊥,1,r⊥,2), (1.51)

where γ1,2 is the complex degree of coherence and
∣∣γ1,2

∣∣ represents the degree of co-
herence between the two points r⊥,1 and r⊥,2. In Young’s interference experiment, the
value of

∣∣γ1,2
∣∣ equals the visibility of fringes that are produced when two pinholes at

r⊥,1 and r⊥,2 are illuminated with equal intensity [25]. It is seen that γ1,2 is a 4D func-

tion and has
(
Nx ×Ny

)2 variables. To simplify the model, it is common and convenient
to assume that the degree of coherence is translational invariant, i.e.

∣∣γ1,2
∣∣ (r⊥,1,r⊥,2) =∣∣γ1,2

∣∣ (|r⊥,1 − r⊥,2|). When
∣∣γ1,2

∣∣ = 1 the wavefield at the two points are fully coherent,
when

∣∣γ1,2
∣∣ = 0 the wavefield at the two points are incoherent. It was shown [53] that, if

the extent in the x and y direction of the object are Lx and Ly , the exit wavefield can be
considered as fully coherent when:∣∣γ1,2

∣∣(∣∣r⊥,1 − r⊥,2
∣∣) = 1, for

∣∣r⊥,1 − r⊥,2
∣∣≤ 2×|L⊥| , (1.52)

where |L⊥| =
√

|Lx |2 +
∣∣Ly

∣∣2. In other words, the transverse coherence width at the sam-
ple should be two time larger than the finite extent of the object support. This coher-
ence requirement agrees with the sampling requirement given in the previous section,
because the nonzero area of the domain of the auto-correlation of Ψ(r⊥), which needs
to be sampled at Nyquist frequency, is two time larger than the object support.
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TEMPORAL COHERENCE REQUIREMENT

Now we assume that an illumination consists of two distinct wavelengths λ and λ+
∆λ, and we assume that for each wavelength the wavefield is fully spatially coherent.
The measured intensity in the far field I is the incoherent sum over all monochromatic
diffraction patterns, because the measured averages over time of the interference be-
tween different wavelengths is canceled. It is seen in Eq. (1.40) that, the radiated wave-
field for different wavelength have different scattering angles, which means that the
diffraction pattern scales differently for different wavelengths. For our mono-chromatic
model, it is necessary that this different scaling of the diffraction pattern is negligible
compared to the spacing of the pixels of the detector. We consider the scaling differ-
ence of the diffraction patterns along the x-axis as an example. Suppose we have a fixed
meshgrid in object plane x. Then for different wavelengths λ and λ+∆λwe get different
grids x ′

λ
and x ′

λ+∆λ according to the Nyquist’s criterion. Suppose the size of the cells of
the grid x ′

λ
is ∆x ′

λ
, we require ∆λ to be so small that:

max
(
x ′
λ+∆λ

)−max
(
x ′
λ

) ≤ ∆x ′
λ,

(λ+∆λ)z ′

∆x
− λz ′

∆x
≤ λz ′

Nx∆x
,

∆λ ≤ λ

Nx
. (1.53)

1.2. PHASE RETRIEVAL METHODS

To solve the phase problem, many methods have been proposed since the 1970s. Mod-
ern phase retrieval methods in CDI heavily depend on the use of modern computer and
either are iterative computation algorithms or direct inversion algorithms. In this sec-
tion we discuss a few of many phase retrieval methods which appear frequently in the
recent research literature.

1.2.1. PHASE RETRIEVAL METHODS USING A SINGLE DIFFRACTION MEASURE-
MENT

GERCHBERG-SAXTON ALGORITHM

In conventional CDI, only one diffraction pattern is measured. The first successful phase
retrieval method in conventional CDI is the iterative algorithm proposed by Gerchberg
and Saxton in 1972 [2]. For this algorithm, it is required that both the intensity of the
diffraction pattern and the exit wave, denoted by I (k⊥) and |Ψo(r⊥)|2, respectively, are
known. These two intensities are used to perform a projection operation in the Fourier
plane and the object plane, respectively. Suppose that Ψn(r⊥) is the obtained exit wave
after the nth iteration. The projection operation in the Fourier plane, denoted by πF , is
defined by replacing the amplitude of the diffracted wavefield |F (Ψn) (k⊥)| by

√
I (k⊥).

While the projection operation in the object plane, denoted by πO , is defined by replac-
ing |Ψn(r⊥)| by the known amplitude |Ψo(r⊥)|. In summary, the Gerchberg-Saxton algo-
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rithm is given by:

Ψn+1(r⊥) = πOπF [Ψn(r⊥)] = |Ψo(r⊥)|
F−1

⊥

[√
I (k⊥)

|F⊥(Ψn )(k⊥)|2 F⊥ (Ψn) (k⊥)

]
∣∣∣∣F−1

⊥

[√
I (k⊥)

|F⊥(Ψn )(k⊥)|2 F⊥ (Ψn) (k⊥)

]∣∣∣∣ , (1.54a)

πF [Ψn(r⊥)] = F−1
⊥

[√
I (k⊥)

|F⊥ (Ψn) (k⊥)|2 F⊥ (Ψn) (k⊥)

]
, (1.54b)

πO [Ψn(r⊥)] = |Ψo(r⊥)| Ψn(r⊥)

|Ψn(r⊥)| , (1.54c)

where the subscript n is the iteration index. In fact, the known amplitude |Ψo(r⊥)| is a
very powerful a priori knowledge. Therefore the Gerchberg-Saxton algorithm is famous
for it fast convergent speed, i.e. the algorithm can provide the solution after only a few
iterations.

It should be remarked that there is an alternative way to understand the Gerchberg-
Saxton algorithm. Suppose the fieldΨ(r⊥) fulfills the requirement that the intensity of its
diffraction pattern and its exit wave are I (k⊥) and |Ψo(r⊥)|2, respectively. Then we have
the nonlinear equation of Ψ(r⊥):

Ψ(r⊥) = |Ψo(r⊥)|
F−1

⊥

[√
I (k⊥)

|F⊥(Ψ)(k⊥)|2 F⊥ (Ψ) (k⊥)

]
∣∣∣∣F−1

⊥

[√
I (k⊥)

|F⊥(Ψ)(k⊥)|2 F⊥ (Ψ) (k⊥)

]∣∣∣∣ , (1.55)

which can be solved by using iterative algorithms. If we apply the method of fixed-point
iteration to Eq. (1.55), we will arrive at the same formula as Eq. (1.54a).

THE ERROR-REDUCTION ALGORITHM

Although the Gerchberg-Saxton algorithm is a robust method, it requires one must know
the intensity of the wavefield in the sample plane. In 1978, Fienup developed the Error-
Reduction (ER) algorithm [3] in which use is made of knowledge of the support of the
object while the intensity of the object field is not needed. The ER algorithm can be
written as follows:

Ψn+1(r⊥) = πOπF [Ψn(r⊥)] =
 F−1

⊥

[√
I (k⊥)

|F⊥(Ψn )(k⊥)|2 F⊥ (Ψn) (k⊥)

]
, r⊥ ∈ S,

0, r⊥ ∉ S,
(1.56a)

πF [Ψn(r⊥)] = F−1
⊥

[√
I (k⊥)

|F⊥ (Ψn) (k⊥)|2 F⊥ (Ψn) (k⊥)

]
, (1.56b)

πO [Ψn(r⊥)] =
{
Ψn(r⊥), r⊥ ∈ S,
0, r⊥ ∉ S,

(1.56c)

where S is the finite size boundary support constraint in real space, as shown in Eq.
(1.49). Again we note that Eq. (1.56a) can be interpreted as a fix-point iteration algo-
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rithm which solves the nonlinear equation:

Ψ(r⊥) = 1S (r⊥)F−1
⊥

[√
I (k⊥)

|F⊥ (Ψ) (k⊥)|2 F⊥ (Ψ) (k⊥)

]
(r⊥), (1.57)

where 1S (r⊥) is a binary window function representing the object support:

1S (r⊥) =
{

1, r⊥ ∈ S,
0, r⊥ ∉ S.

(1.58)

It is seen that the ER algorithm does not require the intensity of the wavefield in the
sample plane, but only requires one to know the support of the object, i.e. the region
where the exit wave is nonzero. Compared to the Gerchberg-Saxton algorithm, this re-
laxed requirement is very convenient, because one can easily estimate the support S by
observing the auto-correlation of Ψ(r⊥). The auto-correlation can be computed pro-
vided that the diffraction measurement is over-sampled, as shown in Fig. 1.5. Further-
more, it was shown [19, 54] that the ER algorithm can be formulated as the minimization
of an error functional, which can solved using a gradient descent scheme. This prop-
erty guarantees that the error functional decreases after every iterations. However, if the
landscape of the error function has many local minima and if the starting point is far
from the actual solution, it can happen that the algorithm stagnates at one of the local
minimums.

THE HYBRID-INPUT-OUTPUT ALGORITHM AND THE DIFFERENCE-MAP ALGORITHM

In an attempt to solve the stagnation problem of the ER algorithm, the Hybrid-Input-
Output (HIO) algorithm was proposed in 1982 [19]. In this work, the HIO algorithm is
given by:

Ψn+1(r⊥) =
{
πF [Ψn(r⊥)] , r⊥ ∈ S,(
1−βπF

)
[Ψn(r⊥)] , r⊥ ∉ S,

(1.59a)

πF [Ψn(r⊥)] = F−1
⊥

[√
I (k⊥)

|F⊥ (Ψn) (k⊥)|2 F⊥ (Ψn) (k⊥)

]
, (1.59b)

where β is a coefficient which is normally chosen be 0.8. Many studies have shown
that [7, 9, 17, 55–57] the HIO algorithm is superior to the ER algorithm in the sense that
the HIO algorithm can escape from converging to local minima and can find the global
minima, provided that the diffraction intensity measurement is noise-free. However, for
noisy measurements, the HIO algorithm is sometimes unstable as well, therefore its con-
vergence is not guaranteed in practice. Based on these studies, it is now common to use
the HIO algorithm for the first few iterations, and then use the ER algorithm in the final
stages of the algorithm.

Although the HIO method was proposed in the 1980s, the reason why the method
often works has not been fully understood until 2003. It was shown by Elser [20, 58, 59]
that when the feedback coefficientβ is 1, the HIO algorithm is the same as the difference-
map (DM) method. The later algorithm is formulated in terms of finding the intersection
of two constraint sets [20]. The original formula of the DM method has three auxiliary
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parameters which need to be properly chosen. A common way of implementing the DM
algorithm is:

Ψn+1 = Ψn +πO [2πF (Ψn)−Ψn]−πF (Ψn) , (1.60a)

πF [Ψn(r⊥)] = F−1
⊥

[√
I (k⊥)

|F⊥ (Ψn) (k⊥)|2 F⊥ (Ψn) (k⊥)

]
, (1.60b)

πO [Ψn(r⊥)] =
{
Ψn(r⊥), r⊥ ∈ S,
0, r⊥ ∉ S,

(1.60c)

Following the idea of finding the intersection solution of two constraint sets, many other
phase retrieval approaches have been proposed [57], e.g. the hybrid projection–reflection
method [60], the relaxed averaged alternating reflections approach [21] and others.

THE SHRINK-WRAP APPROACH

It is seen that all phase retrieval algorithms require a priori knowledge about the do-
main of the object (except for the Gerchberg-Saxton algorithm where one must know
the wavefield intensity in the sample plane). In fact, the quality of the reconstruction
always relies on how accurately the support is known. To release this requirement, the
so-called ’shrink-wrap’ method was proposed [7]. The idea is to update the support iter-
atively by convolving the reconstructed image with an Gaussian filter and then finding a
new binary support constraint by applying a threshold. For example, in [7] the authors
convolve the estimated image of the object by a Gaussian kernel after every 20 iterations
when applying a phase retrieval algorithm. The full width at half maximum of the Gaus-
sian kernel is set to 3 pixels, and reduced by 1% every 20 iterations down to a minimum
of 1.5 pixels. The updated binary support is obtained by applying a threshold at 20% of
the maximum of the absolute of the convolved image. The shrink-wrap method is com-
monly used recently in conventional CDI setup [61] due to its ability of estimating the
support.

1.2.2. PTYCHOGRAPHY
The word ’ptychography’ is derived from the Greek word ’ptycho’, meaning ’fold’, and
from the word ’graphy’, meaning ’record’. Ptychography was first introduced by Hoppe
[30] as a method to retrieve the phase of the Bragg reflection pattern in crystallography
[62, 63]. Although the technique was not very popular before the 2000s, it was at the time
already been implemented before 2000 in scanning X-ray microscopy [64] and in scan-
ning electron microscopy [12]. During this period, methods to reconstruct the object
were mostly direct inversion algorithms, e.g. the Wigner Distribution De-convolution
method (WDD). Since 2007, the technique become much more popular and a lot of re-
search has been done. Some reasons for this are: (1) the recent development of coherent
high intensity X-ray sources, e.g. the third generation synchrotrons [9, 11, 35, 65] and
table-top high-harmonic generation lasers [66–71]; (2) the development of robust itera-
tive algorithms which are designed for processing ptychographic data, e.g. the Ptycho-
graphic Iterative Engine (PIE) [31–33] and the introduction of the DM method [36, 72],
etc. [22, 23, 73, 74]. Nowadays, ptychography usually means performing CDI with the
ptychographic data by using an iterative algorithm.
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The idea of ptychography is to create data redundancy in the CDI measurement by
recording many diffraction measurements by laterally shifting the object, as shown in
Fig. 1.7. The object is partially illuminated multiple times for a number of different

complex value
object

far field

coherent diffraction patternO (r)

I (r’)

coherent
illumination

intensity
measurement

P (r)

Figure 1.7: A simplified illustration of ptychography.

positions of the illuminating beam such that the entire object is covered and adjacent
illuminations partially overlap. This data redundancy due to the partial overlap of the
illuminations and the a priori information about the relative position of the illumina-
tion light beam and the object are the cause for the robustness of ptychography [75].
Compared with other phase retrieval methods, the advantages of ptychography are:

(1) Both the probe P (r⊥) and the object O(r⊥) can be retrieved simultaneously.

(2) DPtychography is more robust than phase retrieval methods that use only a single
measurement due to the data redundancy. In particular, the ’twin image’ problem,
which often occurs in conventional phase retrieval methods [55, 76], is eliminated in
ptychography.

(3) In ptychography the Field-of-View (FoV) of the reconstructed image of the object is
extended compared to the support of the object or the lateral extent of the illumina-
tion because ptychography is a scanning imaging technique.

(4) For single measurement phase retrieval, it is shown in Section 1.1.3 that the sampling
interval of I (r′⊥) in detector plane must be two times finer than the Nyquist sam-
pling interval of F (Ψ) (k⊥). Suppose now we have a measurement I ′(r′⊥) of which
the sampling interval is less than the required Nyquist sampling interval. Then by
Fourier transforming I ′ we will get the auto-correlation ofΨ(r⊥) but part of the auto-
correlation at its boundary is wrapped around and added to its opposite side. How-
ever, it was shown that in ptychography the sampling interval of each measurement
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can be less than the above Nyquist sampling interval. The related discussion is given
in [52].

(5) It has been shown that in ptychography one can perform CDI with spatially [77–79]
or temporally [80–82] partially coherent illumination. It should be remarked that
recent research has shown that it is also possible to perform CDI with partially co-
herent illumination using only a single diffraction measurement by applying more
advanced algorithms [83–85].

There are of course other ways to create data redundancy in the CDI measurement, e.g.
by placing a wavefront modulator between the object and the detector [86], by scan-
ning the wavelength [87], by using patterned illumination which is created by two beam
interference [88], etc. However, these methods are out of the scope of this thesis, there-
fore they are not4 discussed further. In the rest of this section we shortly outline the
most simple and popular iterative algorithms for ptychography, namely the PIE and the
DM method, and a non-iterative method, the WDD approach. More properties of pty-
chograpghy are discussed in Section 1.3.

PTYCHOGRAPHIC ITERATIVE ENGINE

The PIE algorithm [31, 32, 34, 89] is an iterative method which is designed to create an
image of both the probe function P (r⊥) and the object function O(r⊥) by processing the
ptychographic data-set. A probe is laterally translated to illuminate the object multiple
times. For the j th illumination, the exit wave immediately behind the object is:

Ψj (r⊥) = P (r⊥−R⊥, j ) ·O(r⊥) = P j (r⊥) ·O(r⊥), (1.61)

where R⊥, j specifies the j th relative position between the probe and the object. The
probe function has a finite size boundary support denoted by S:

P (r⊥) =
{

P (r⊥), r⊥ ∈ S,
0, r⊥ ∉ S.

(1.62)

For instance, if the probe is constrained by a circular boundary, we have:

P (r⊥) =
{

P (r⊥), |r⊥| ≤ r0,
0, |r⊥| > r0.

(1.63)

For a detector located at distance z ′ in the far field, the diffraction intensity pattern I j (r′⊥)
for the j th illumination is:

I j (r′⊥) =
∣∣∣∣Ï Ψj (r⊥)e−i 2π

λz′ r⊥·r′⊥dr⊥
∣∣∣∣2

= ∣∣F⊥
(
Ψj

)(
k′
⊥
)∣∣2 . (1.64)

where F⊥ is the Fourier transform operator, r′⊥ is the transverse position vector of a point
in the detector plane and k′

⊥ is the transverse vector of spatial frequency in reciprocal
space. The relation between r′⊥ and k′

⊥ is:

k′
⊥ = 2πr′⊥(λz ′)−1. (1.65)
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The PIE algorithm updates the probe P (r⊥) and the object O(r⊥) sequentially (or in a
random order) for every R⊥, j for all j . The update formula for j th illumination is:

πF
[
Ψj ,n(r⊥)

] = F−1
⊥

√√√√ I j (k′
⊥)∣∣F⊥

(
Ψj ,n

)
(k′

⊥)
∣∣2 F⊥

(
Ψj ,n

)
(k′

⊥)

 , (1.66a)

On+1(r⊥) = On(r⊥)+βO
P∗(r⊥−R⊥, j )

max
∣∣P (r⊥−R⊥, j )

∣∣2

(
πF

[
Ψj ,n(r⊥)

]−Ψj ,n(r⊥)
)

, (1.66b)

Pn+1(r⊥) = Pn(r⊥)+βP
O∗(r⊥+R⊥, j )

max
∣∣O(r⊥+R⊥, j )

∣∣2

(
πF

[
Ψj ,n(r⊥)

]−Ψj ,n(r⊥)
)

, (1.66c)

where the subscript n is again the iteration index. βO and βP are step-sizes of the update
formula and both step-sizes are normally chosen fixed and from 0.6 to 1.2 in many PIE
literature. Eq. (1.66c) is applied for every j sequentially to corporate the overlap.

Among all ptychographic algorithms, the PIE algorithm is one of the most popular
methods which is often used in recent research. It was shown [33] that the PIE algorithm
can be regarded as a cost function minimization method where the cost function E j for
j th illumination is given by:

E j =
N det

x ,N det
y∑

k′
⊥

[√
I j (k′

⊥)− ∣∣F⊥
(
Ψj

)
(k′

⊥)
∣∣]2

, (1.67)

where N det
x and N det

y are the number of pixels of the detector in the x and y directions,
respectively. Furthermore, it was found that the PIE algorithm can be derived from the
Maximum Likelihood estimation when the measurements have Gaussian noise [72, 90].
These facts most likely explain why the PIE approach is robust and stable. We present a
detailed derivation of a global cost function minimization algorithm of ptychography in
Section 1.3.

DIFFERENCE-MAP ALGORITHM

Another commonly used iterative algorithm in ptychography is the DM algorithm [35,
36, 77]. The original formula of the DM approach has been proposed in 2003 [20, 58, 59].
The the algorithm constructs the intersection of two constraint sets. The DM approach
was applied to ptychography in 2009 [36], where the constraint set in object plane is
defined by:

πO
[
Ψj ,n(r⊥)

] = Pn(r⊥−R⊥, j ) ·On(r⊥), (1.68a)

for every j . Note that Eq. (1.68a) incorporates the a priori knowledge, i.e. the probe
position R⊥, j and the finite support of the probe. The constraint set in reciprocal plane
is defined by:

πF
[
Ψj ,n(r⊥)

] = F−1
⊥

√√√√ I j (k′
⊥)∣∣F⊥

(
Ψj ,n

)
(k′

⊥)
∣∣2 F⊥

(
Ψj ,n

)
(k′

⊥)

 , (1.68b)
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for every j . The update formula is given by:

Ψj ,n+1 = Ψj ,n +πF
[
2πO

(
Ψj ,n

)−Ψj ,n
]−πO

(
Ψj ,n

)
, (1.68c)

On+1(r⊥) =
∑

j P∗
n (r⊥−R⊥, j ) ·Ψj ,n+1(r⊥)∑

j

∣∣Pn(r⊥−R⊥, j )
∣∣2 , (1.68d)

Pn+1(r⊥) =
∑

j O∗
n(r⊥+R⊥, j ) ·Ψj ,n+1(r⊥+R⊥, j )∑

j

∣∣On(r⊥+R⊥, j )
∣∣2 , (1.68e)

where Eq. (1.68c) is derived from the original DM algorithm [35, 36]. Eq. (1.68d) and Eq.
(1.68e) can be derived by applying the fix-point iteration algorithm to following nonlin-
ear equations:

O(r⊥) =
∑

j P∗(r⊥−R⊥, j ) ·Ψj (r⊥)∑
j

∣∣P (r⊥−R⊥, j )
∣∣2 , (1.69a)

P (r⊥) =
∑

j O∗(r⊥+R⊥, j ) ·Ψj (r⊥+R⊥, j )∑
j

∣∣O(r⊥+R⊥, j )
∣∣2 . (1.69b)

Eq. (1.69a) and Eq. (1.69b) are the closed form solutions obtained by minimizing the
cost function given by [36]:

E = ∑
j

∑
r⊥

∣∣P (r⊥−R⊥, j )O(r⊥)−Ψj (r⊥)
∣∣2 , (1.70)

w.r.t O(r⊥) and P (r⊥), respectively. It was shown [57] that the DM algorithm can avoid
stagnation in a local minima. A schematic description about this geometric interpreta-
tion, which explains why the DM algorithm can avoid stagnation, can be found in Fig. 3
of the review [57] written by Marchesini in 2007. However, for the same reason, the DM
approach does not guarantee convergence especially when the measurement is noisy or
there are other systematic errors in the setup. Since in this thesis we only use the steepest
descent method, we will not discuss in more detail about the DM method.

WIGNER DISTRIBUTION DE-CONVOLUTION METHOD

Although the iterative algorithms of ptychography are quite successful, there is still plenty
of room for improvement. For instance, a common problem of the iterative computation
methods is that the numerical calculation time cost can be very long (e.g. hours). This
time depends on many aspects, e.g. the initial guess, the criterion to stop the algorithm,
the computation power of the computer, etc. There exists a direct inversion algorithm
which is designed to process ptychographic data, namely the Wigner distribution de-
convolution (WDD) method [12, 64, 91]. In this section we give a brief overview of this
method.

We start by taking the inverse Fourier transform of I j which is given in Eq. (1.64):

F−1
⊥

(
I j

)
(r⊥) =

∫
Ψ∗

j (r̃⊥)Ψj (r⊥+ r̃⊥)d r̃⊥

=
∫

P∗(r̃⊥−R⊥, j )O∗(r̃⊥)P (r⊥+ r̃⊥−R⊥, j )O(r⊥+ r̃⊥)d r̃⊥, (1.71)
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where r̃⊥ are integration variables. Now we take the Fourier transform of Eq. (1.71) w.r.t.
R⊥, j :

H(r⊥,K⊥) = ∑
j

F−1
⊥

(
I j

)
(r⊥)e−iK⊥·R⊥, j

=
∫

O∗(r̃⊥)O(r⊥+ r̃⊥)e−iK⊥·r̃⊥d r̃⊥

[∑
j

P∗(R̃⊥, j )P (r⊥+ R̃⊥, j )e iK⊥·R̃⊥, j

]
≈WO(r⊥,K⊥)WP (r⊥,−K⊥), (1.72)

where we use the substitutions:

R̃⊥, j = r̃⊥−R⊥, j , (1.73a)

WP (r⊥,−K⊥) =
∫

P∗(R̃⊥)P (r⊥+ R̃⊥)e iK⊥·R̃⊥dR̃⊥

≈ ∑
j

P∗(R̃⊥, j )P (r⊥+ R̃⊥, j )e iK⊥·R̃⊥, j , (1.73b)

WO(r⊥,K⊥) =
∫

O∗(r̃⊥)O(r⊥+ r̃⊥)e−iK⊥·r̃⊥d r̃⊥, (1.73c)

and K⊥ and R⊥ are transverse position vector and transverse wave vector. WP and WO

have the form of a Wigner distribution function. We can see that, when the measure-
ment is noise free and when P (r⊥−R⊥, j ) is known, it is not difficult to obtain WO(r⊥,K⊥)
through applying a division algorithm. To extract the object function, one can start by
Fourier transforming WO(r⊥,K⊥) w.r.t. r⊥:

F⊥ (WO) (k⊥,K⊥) =F⊥ (O) (k⊥) ·F⊥ (O)∗ (k⊥+K⊥), (1.74)

It is seen that the Fourier transform of the object can be obtained by [64]:

F⊥ (O) (K⊥) =
[

F⊥ (WO) (0,K⊥)√
F⊥ (WO) (0,0)

]∗
, (1.75)

where we ignored the multiplicative phasor of F⊥ (O) (0). In Eq. (1.75), one may be en-
countered with the divided-by-zero problem. To avoid this problem we can apply Wiener
filter as shown in [91]. Note that the reconstructed object is discretized on the grid K⊥,
which is the reciprocal grid of R⊥, j . Therefore, one must scan the probe over a grid of
positions separated by the desired resolution, such that the function F⊥ (O) (K⊥) is sam-
pled with a sufficiently broad and fine mesh. Hence, the required measurements consti-
tute a very large and strongly redundant 4D data-set. On the other hand, we can see in
Eq. (1.74) that WO(r⊥,K⊥) consists of information about F⊥ (O) that is not restricted by
the grids K⊥. To extract more information of F⊥ (O), one can use the so-called ’step-out’
method [12] in addition to Eq. (1.75). The ’step-out’ method is given by:

F⊥ (O) (k⊥+K⊥) =
[
F⊥ (WO) (k⊥,K⊥)

F⊥ (O) (K⊥)

]∗
. (1.76)

However, even with this large data-set, it is still an open question whether the WDD
method is as robust as the iterative algorithms for noisy environment and whether the
WDD method performs well when the probe is unknown.
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1.2.3. TRANSPORT OF INTENSITY EQUATION METHOD
The transport-of-intensity equation(TIE) method [4, 92] is a propagation based method
where one aims to retrieve the phase of the wavefield from the change of the squared
modulus of the wavefield in different planes. Let us start with the free space propagation
formula as given by Eq. (1.13). Suppose that the paraxial approximation is valid, we then
write:

Uf(r) ≈ Vf(r)e ikz = Af(r)e iφf(r)e ikz , (1.77)

where Af and φf are real valued and Vf(r) is a slowly varying function of z such that:∣∣∣∣∂2Vf(r)

∂z2

∣∣∣∣ ≪ ∣∣∣∣ik ∂Vf(r)

∂z

∣∣∣∣ . (1.78)

By substituting Eq. (1.77) into Eq. (1.13) and using Eq. (1.78), we obtain Vf the paraxial
wave equation:

∇2
⊥Vf(r)+2ik

∂Vf(r)

∂z
= 0, (1.79)

where ∇⊥ and ∇2
⊥ are the operators defined by:

∇⊥ =
[
∂

∂x
,
∂

∂y

]T

, ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 . (1.80)

By separating the real part and the imaginary part of Eq. (1.79), we arrive at two equa-
tions:

∇2
⊥Af

Af
− (∇⊥φf

)2 −2k
∂φf

∂z
= 0, (the real part), (1.81a)

∇⊥Af ·∇⊥φf + Af
∂φf

∂z
+2k

∂Af

∂z
= 0, (the imaginary part). (1.81b)

Let Eq. (1.81b) be multiplied by A∗
f , we have:

∇⊥ · (|Af|2∇⊥φf
)+k

∂ |Af|2
∂z

= 0. (1.82)

Eq. (1.82) is called the ’transport-of-intensity equation’ (TIE) because it involves the
derivative of the intensity of the wavefield |Af|2 along the z direction. The TIE relates
the phase of the wavefield to the variation of the intensity along the propagation direc-
tion. To retrieve φf(r) in the plane z = zo , it was suggested [93] that one can solve Eq.
(1.82) by using numerical solvers for Poisson’s equation. In practice, the gradient of the
intensity |Af|2 along the z direction is obtained by taking multiple measurements and
each measurement is taken at a different z plane which is sufficiently close to zo plane.
Therefore the accuracy of knowing the z-positions of the planes of the detector is an
important factor on which the quality of the reconstruction depends..

As it is a non-iterative method which enables solving the phase problem directly,
the TIE method is a promising alternative to the iterative phase retrieval methods and
therefore gets a lot of attention. [9, 93–98]. However, we will not discuss the method
further in detail since the main topic of this thesis is ptychography.
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1.2.4. FOURIER TRANSFORM HOLOGRAPHY
Another important CDI method is Fourier Transform Holography (FTH) [99] which is
found suitable for X-ray imaging applications [100–105]. In conventional FTH one uses
a laser beam to illuminates the object and a pinhole which is in the same z-plane as the
object but separated from it in the transverse direction. Hence in the far field we measure
the interference pattern of the diffracted object field and the field of the pinhole. Sup-
pose that the pinhole is at position r⊥,p and the size of the pinhole is sufficiently small,
then the intensity of the interference pattern in the far field is given by:

I (k′
⊥) = ∣∣F⊥

[
O(r⊥)+δD (r⊥,p)

]∣∣2 (k′
⊥)

= 1+|F⊥ (O)|2 (k′
⊥)+2ℜ

[
F (O)∗ (k′

⊥)e−ik′
⊥·r⊥,p

]
. (1.83)

By computing the inverse Fourier transform of Eq. (1.83) we get:

F⊥ (I )−1 (r⊥) = δD (0)+O(r⊥)⋆O(r⊥)+O(r⊥− r⊥,p)+O∗(−r⊥+ r⊥,p), (1.84)

where ⋆ denotes the auto-correlation, i.e. convolution with a complex conjugation, and
∗ denotes complex conjugation. We can see that the third term in Eq. (1.84) is a shifted
version of the actual object function O(r⊥) and the fourth term is the twin image. There-
fore, when the pinhole is sufficiently far away from the object and when the object has
a finite extent, the different terms in Eq. (1.84) are separated in space and hence we can
obtain the complex valued transmission of the object by simply computing the Fourier
transform of the measurement.

1.3. MORE PROPERTIES OF PTYCHOGRAPHY
A brief introduction of ptychography has already been given in Secion 1.2.2. In this sec-
tion we discuss some more properties of ptychography. In Section 1.3.1 we derive a pty-
chographic algorithm by applying the steepest descent method to a global cost function.
Then we explain the extended FoV of ptychography and ambiguities in ptychography in
Section 1.3.2 and Section 1.3.3, respectively. Finally, in Section 1.3.4. we mention some
recent developments of ptychography.

1.3.1. GRADIENT DESCENT OPTIMIZATION
In this section we show in detail the derivation of a ptychograpy algorithm which is based
on the steepest descent method. The results of this derivation will be used in several
of the subsequent chapters in this thesis. As shown in Section 1.2.2, we use a laterally
shifted probe to illuminate the thin-slab object multiple times. For the j th illumination,
the exit wave immediately behind the object is:

Ψj (r⊥) = P (r⊥−R⊥, j ) ·O(r⊥) = P j (r⊥) ·O(r⊥), (1.85)

where R⊥, j is the j th relative position of the probe and the object. The probe function is
assumed to has a finite support S:

P (r⊥) =
{

P (r⊥), r⊥ ∈ S,
0, r⊥ ∉ S,

(1.86)
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and the probe function for r⊥ ∈ S is assumed unknown. For a detector located at distance
z ′ in the far field, the diffraction intensity pattern I (r′) for the j th illumination is:

I j (r′⊥) =
∣∣∣∣Ï Ψj (r⊥)e−i 2π

λz′ r⊥·r′⊥dr⊥
∣∣∣∣2

= ∣∣F⊥
(
Ψj

)(
k′
⊥
)∣∣2 , (1.87)

where k′
⊥ = 2πr′⊥/λz ′.

The aim in ptychography is to estimate the complex object function which fits the
given a priori knowledge by minimizing a cost function E which is the difference be-
tween simulated and measured far field intensities. For real-space ptychography, the
a priori knowledge consists of the finite support S and the set of relative positions R j .
The cost function E is defined as the l2-distance between the modulus of the far field
diffraction pattern

∣∣F⊥
(
Ψj

)
(k′

⊥)
∣∣ and the square root of the measured intensity I m

j (k′
⊥):

E = ∑
j

E j = ∑
j

N det
x ,N det

y∑
k′
⊥

∣∣∣√I m
j (k′

⊥)− ∣∣F⊥
(
Ψj

)
(k′

⊥)
∣∣∣∣∣2

, (1.88)

where k′
⊥ is meshed on a grid is discritized defined according to the distance z ′ and the

pixel size of the detector and N det
x and N det

y are the number of pixels of the detector along
the x-axis and the y-axis, respectively.

First, we compute the retrieval formula for the object function O(r⊥) while assume
that the probe function and probe positions are known. We calculate the functional
derivative of E j with respect to O at every point r in the direction of perturbation δO
and denote this derivative as δE j (P,O,δO). The perturbation δO is on a discretized grid
r⊥ given by:

δO(r⊥) = ∑
nr,y

∑
nr,x

δO(r⊥)δ(r⊥−nr,⊥∆r⊥), (1.89)

where ∆r⊥ is the translation vector to translate one cell to its immediate neighbor, as
given in Eq. (1.42). The derivative of E is:

δE (P,O,δO) = 2
∑

j

∑
k′
⊥


√

I m
j (k′

⊥)∣∣F⊥
(
Ψj

)
(k′

⊥)
∣∣ −1

ℜ[
F⊥

(
P j O

)
(k′

⊥) ·F⊥
(
P jδO

)
(k′

⊥)∗
]

= 2ℜ

∑
j

∑
k′
⊥


√

I m
j (k′

⊥)∣∣F⊥
(
Ψj

)
(k′

⊥)
∣∣ −1

 ·F⊥
(
P j O

)
(k′

⊥) ·F⊥
(
P jδO

)
(k′

⊥)∗


= 2ℜ

∑
j

∑
r⊥

F−1
⊥




√
I m

j (k′
⊥)∣∣F⊥

(
Ψj

)
(k′

⊥)
∣∣ −1

F⊥
(
P j O

)
(k′

⊥)

P j (r⊥)∗ ·δO(r⊥)∗


= 2ℜ

[∑
j

∑
r⊥
∆Ψj (r⊥) ·P j (r⊥)∗ ·δO(r⊥)∗

]
, (1.90)
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where the Parseval’s theorem for DFT was used and∆Ψj (r) is an auxiliary function given
by:

∆Ψj (r) = F−1
⊥




√
I m

j (k′
⊥)∣∣F⊥

(
Ψj

)
(k′

⊥)
∣∣ −1

 ·F⊥
(
Ψj

)
(k′

⊥)

 (r⊥), (1.91)

and ℜ is the real part of a complex number. To determine the steepest descent direction,
we consider the following problem:

minimize
δO

δE (δO)

subject to ∥δO∥2 = constant,
(1.92)

where ∥δO∥2 is given by:

∥δO∥2 = ∑
r⊥
δO(r⊥) ·δO∗(r⊥). (1.93)

To solve this problem, we construct a Lagrange function:

L(δO) = δE (δO)−λL ∥δO∥2 , (1.94)

whereλL is a real Lagrange multiplier. Now, we differentiate L by perturbing the function
δO with an arbitrary auxiliary function δÕ. According to the Lagrange multiplier rule, for
the optimal solution of the problem in (1.92), we have:

ℜ
[∑

j

∑
r⊥
∆Ψj (r⊥) ·P∗

j (r⊥) ·δÕ∗(r⊥)

]
= −ℜ

[
λL

∑
r⊥
δO(r⊥) ·δÕ∗(r⊥)

]
. (1.95)

Note that (1.95) is for all δÕ(r⊥). If we assign δÕ(r⊥) to be pure real-valued, then we
have: ∑

r⊥
ℜ

[∑
j
∆Ψj (r⊥) ·P∗

j (r⊥)

]
·δÕ(r⊥) = −λL

∑
r⊥

ℜ [δO(r⊥)] ·δÕ(r⊥). (1.96)

One solution for this equation is:

ℜ
[∑

j
∆Ψj (r⊥) ·P∗

j (r⊥)

]
= −λLℜ [δO(r⊥)] . (1.97)

On the other hand, if we assign δÕ(r⊥) to be pure imaginary-valued, then we have:

∑
r⊥

ℑ
[∑

j
∆Ψj (r⊥) ·P∗

j (r⊥)

]
· [i ·δÕ(r⊥)

] = −λL
∑
r⊥

ℑ [δO(r⊥)] · [i ·δÕ(r⊥)
]

, (1.98)

which leads to:

ℑ
[∑

j
∆Ψj (r⊥) ·P∗

j (r⊥)

]
= −λLℑ [δO(r⊥)] , (1.99)
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where ℑ takes the imaginary part of a complex number. Combining (1.97) and (1.99)
gives us: ∑

j
∆Ψj (r⊥) ·P∗

j (r⊥) = −λLδO(r⊥). (1.100)

Hence, the steepest descent direction of E at O(r⊥) is proportional to the function∆Ψj (r⊥)·
P∗

j (r⊥) at every point r⊥ for all j . The iteration formula for the object function is then

given by:

On+1(r⊥) = On(r⊥)−βO
∑

j
P∗

n (r⊥−R⊥, j ) ·∆Ψj ,n(r⊥), (1.101)

where βO is the step-size which is normally chosen be 0.8 ∼ 1.
In a similar fashion, we can derive the iteration formula for updating the probe func-

tion using the steepest decent direction. We find:

Pn+1(r⊥) = Pn(r⊥)−βP
∑

j
O∗

n(r⊥+R⊥, j ) ·∆Ψj ,n(r⊥+R⊥, j ), (1.102)

where βP is a constant step-size which takes the same value as βO .

1.3.2. THE EXTENDED FIELD-OF-VIEW OF PTYCHOGRAPHY

The ptychographic measurement I j (k′
⊥) is commonly recorded by a 2D detector, e.g. a

charge-coupled device (CCD). Therefore k′
⊥ is a discretized grid and is meshed according

to the distance z ′ and the size of pixel of the detector. The retrieved object function is
also on a discretized grid r⊥. r⊥ and k′

⊥ are related by:[
∆x,∆y

]T = 2π
[

(N det
x ∆k ′

x )−1, (N det
y ∆k ′

y )−1
]T

, (1.103)

where ∆x and ∆y are the sizes of a single grid cell along the x-axis and y-axis, respec-
tively, and ∆k ′

x and ∆k ′
y are the spacing of a grid cell in kx and ky , respectively. The

field-of-view (FoV) given by single measurement of the ptychographic data-set is there-
fore:

FoV =
[

N det
x ∆x, N det

y ∆y
]T

, (1.104)

Because ptychography is a scanning imaging technique, the total number of illuminated
grid cells of the object, denoted by Nx and Ny , is larger than the number of pixels of the
detector. Hence we have Nx > N det

x and Ny > N det
y . The total field-of-view (FoV) in the

object plane is:

extented FoV = [
Nx∆x, Ny∆y

]T , (1.105)

In line with this extended FoV, we have the effective spacing of the grid cell in reciprocal
space: [

∆kx ,∆ky
]T =

[
(Nx )−1N det

x ∆k ′
x , (Ny )−1N det

y ∆k ′
y

]T
. (1.106)

Therefore, this effective sampling of the reciprocal of the object is finer than the dis-
cretized grid k′

⊥ which is meshed according to the distance z ′ and the size of pixel of the
detector.
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1.3.3. AMBIGUITIES

Compared to traditional single-measurement phase retrieval methods, ptychography
solves some problems that occur with other phase retrieval methods that can disrupt
the reconstruction. In ptytography it is still possible that the computed solution is not
correct.

GLOBAL PHASE SHIFT

Due to the fact that in ptychography only diffracted intensities are detected, we have for
all j :

I j (k′
⊥) = ∣∣F⊥

(
Ψj

)
(k′

⊥)
∣∣2

= ∣∣exp(i f )F⊥
(
Ψj

)
(k′

⊥)
∣∣2 = ∣∣F⊥

[
Ψj exp(i f )

]
(k′

⊥)
∣∣2

=
∣∣∣F⊥

(
Ψ′

j

)
(k′

⊥)
∣∣∣2

, (1.107)

where f is an arbitrary constant, and Ψ′
j (r⊥) = Ψj (r⊥)exp(i f ) is an alternative ptycho-

graphic measurement.

RASTER GRID PATHOLOGY

The raster grid pathology is a periodical defect which can occur in ptychography recon-
struction, when the relative positions R⊥, j between the probe and the object are on a
regular grid. To be explicit, we start with the expression of the exit wave in Eq. (1.85):

Ψj (r⊥) = P (r⊥−R⊥, j ) ·O(r)

= P (r⊥−R⊥, j ) ·C (r⊥) ·O(r⊥) · 1

C (r⊥)

= P ′(r⊥−R⊥, j ) ·O′(r⊥), (1.108)

with 
P ′(r⊥−R⊥, j ) = P (r⊥−R⊥, j ) ·C (r⊥),

O′(r⊥) = O(r⊥) · 1

C (r⊥)
.

(1.109)

Suppose now that R⊥, j are on a equidistant grid and that C (r⊥) is periodic on this grid,
which means that C (r⊥) satisfies for all j :

C (x, y) = C (x − X j

mx
, y − Y j

my
), (1.110)

where mx and my are arbitrary integers and R⊥, j = [
X j ,Y j

]T , then Eq. (1.108) is true
for all position j . Therefore P ′(r⊥) and O′(r⊥) can be an alternative probe and object
reconstruction for the same ptychographic measurement.
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1.3.4. RECENT DEVELOPMENTS OF PTYCHOGRAPHY

In this section we briefly consider some recent developments of ptychography. Since the
topics covered in this section are mostly outside the scope of the following chapters of
this thesis, we only outline the topics according to the recent published literature and
will not include detailed mathematical formulas. We only select a few topics which have
attracted a lot of attention and we do not claim to be complete.

PARTIAL COHERENT PTYCHOGRAPHY

As in other CDI techniques, it is usually assumed in ptychography that the illumination
is fully coherent and monochromatic. More precisely, the coherence of the wavefield
should fulfill the requirements given in Section 1.1.4. However, these requirements are
often not fulfilled in many important applications of ptychography. For example, in the
X-ray regime, where ptychography has been widely used, light sources are either spa-
tially partially coherent (e.g. synchrotron radiation [78, 83, 106–110]) or temporally par-
tially coherent (e.g. tabletop high-harmonic generation laser [66, 68, 80, 85, 111, 112]). To
mitigate the unwanted effect due to partial coherence, and also to improve the through-
put of the imaging system, novel algorithms have been introduced in ptychography dur-
ing the last decade. It was proposed in 2013 [77] that one can perform partial coher-
ent ptychography by using the mode decomposition method [113–115]. For a quasi-
monochromatic and spatially partial coherent illumination, the mode-decomposition
method decomposes the wavefield in the illumination into modes which can be treated
as fully coherent wavefields but mutually incoherent. The mode decomposition method
was first applied to spatially coherent illumination [77, 116] and later to light sources
with multiple wavelengths [112, 117].

For quasi-monochromatic and spatially partial coherent illumination, one can rep-
resent the field in illumination by mutual coherent function denoted by J (r⊥,1,r⊥,2). The
mutual coherent function describes the coherence between two points r⊥,1 and r⊥,2 in
the object plane and is a 4D array in principle. For the sake of simplicity, J is usually ap-
proximated by a 2D array because it is assumed to be a function of the difference of two
position vectors [78, 108, 110]: J = J (r⊥,1 − r⊥,2). Under this approximation, one can de-
scribe the measured partial coherent diffraction pattern by a fully coherent diffraction
pattern convoluted with the Fourier transform of the mutual coherent function in the
object plane [25, 113]. It was shown [74, 81, 110, 118, 119] that one can retrieve both the
object field and J (r⊥,1 −r⊥,2) from ptychographic data by applying blind de-convolution
algorithms or cost function minimization algorithms. However, this convolution model
can only describe the partial transverse coherence of the wavefield, i.e. the case of quasi-
monochromatic spatially partial coherent light. This is because for temporally partial co-
herent light the propagation equation is wavelength dependent, and hence the blurring
of the speckles in the far field depends on wavelength and is not transversely invariant.
Therefore, many alternative phase retrieval methods for boardband illumination have
been proposed [68, 85, 120] during the last decade to overcome this problem..

3D PTYCHOGRAPHY

To obtain a 3D image of an object from the measured diffraction pattern is one of the
most important current topics of CDI and is still in the frontier of current research. In
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many applications of CDI, e.g. X-ray microscopy [61] and transmission electron mi-
croscopy [63], the samples which need to be reconstructed do not fulfill the ’weak scat-
tering thin object’ approximation of Eq. (1.35) and Eq. (1.36). Once this approximation is
lifted, we can see in Eq. (1.27) and Eq. (1.28) that it is possible to extract at least some 3D
information about the sample from the diffraction pattern either with or without the first
Born approximation. Suppose now that the first Born approximation is valid [25, 121],
then we can see in Eq. (1.32) that the 3D distribution of the scattered wavefield is ap-
proximately mapped to a part of the refractive index contrast distribution in reciprocal
space. However, apart from the issue of sampling, one should obtain the complex valued
scattering amplitude for sufficiently many k in 3D reciprocal space so that it is possible
to reconstruct the 3D refractive index contrast distribution by a back Fourier transform.
From the Fourier slice theorem [25, 122, 123] we know that, if we have obtained the exit
wavefield immediately behind the object which is an integral over the thickness of the
object, then the 2D transverse Fourier transform of this exit wavefield is approximately
equal to a slice through the origin of the 3D Fourier transform of the object. This the-
orem is the fundamental for tomography. Hence, the primary issues in 3D CDI are: (1)
One needs to measure the scattered wavefield for many different incident angles around
a common rotational axis, as shown in Fig. 1 of [123], and to stack these measurements
into the spatial spectrum of the object in reciprocal space by using tomographic algo-
rithms [123–125]. (2) For each rotational angle, one have to measure the complex valued
amplitude of the scattered wavefield, which could be obtained through applying phase
retrieval methods. It has been shown numerically and experimentally [126–128] that it is
possible to achieve 3D reconstruction by combining conventional phase retrieval meth-
ods with tomography with limited resolution. After ptychography was developed, many
attempts have been done to retrieve 3D information of the sample with high resolution
by combining tomography and ptychography [10, 129–138].

However, it should be remarked that the tomographic methods mentioned above are
mostly based on the first Born approximation or other weak scattering approximations,
e.g. the multiplicative approximation as given in Eq. (1.37). Such approximations are
often not valid in practice. An attempt to bypass the weak scattering approximation is
the introduction of the multi-slice approach [63, 139, 140]. In the multi-slice method,
an object which cannot be described by the multiplicative approximation is numerically
modeled by a sequence of slices, and the slices are sufficiently thin so that each indi-
vidually satisfies the multiplicative approximation. Between every two adjacent slices
the propagation of the wavefield is approximated by free-space propagation, which usu-
ally is computed through the angular spectrum propagator [141]. The multi-slice ap-
proach was introduced to ptychography in 2012 [140] and it was shown [44, 142, 143]
that, due to the information redundancy of the ptychographic data-set, one can retrieve
the slices in ptychography for a properly chosen number of slices, and therefore one can
obtain 3D information about the object without rotating the object during the measure-
ment. It was conceptually shown [144, 145] that, by introducing the multi-slice approach
to tomography, one can reduce the required number of rotation angles in tomography
but still achieve adequate angular sampling in reciprocal space. It has been proposed
[135, 146, 147] recently that it is beneficial to combine ptychography, tomography and
the multi-slice approach in 3D CDI.
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DE-NOISING PTYCHOGRAPHY

In practice, one has to consider in ptychography that various levels of noise in the mea-
surements will cause inaccuracies in the reconstructions [72, 90, 148]. The common
sources of noise in ptychography are [149]: the saturation effect of the detector, the ther-
mal fluctuation of the light source, the photon counting noise, the dark current and dead
pixels of the detector, etc. To prevent the effect caused by saturation of the detector, dark-
field and near-field ptychography have been introduced [150, 151]. Moreover, it has been
shown that adaptive step size strategies are able to improve the performance of ptychog-
raphy in the presence of noise [89, 152]. It has also been demonstrated that one can in-
crease the signal-to-noise ratio (SNR) by engineering the wavefront of the illumination
[153, 154], which can be analytically explained by studying the spatial-frequency spec-
trum of the probe [91]. In general, the most powerful and robust de-noising methods are
based on the maximum likelihood principle [72, 90, 149, 155–158]. The likelihood func-
tion used in the maximum likelihood method depends on the noise model. Common
choices for the noise model in ptychography are Poisson noise, Gaussian noise and the
mixed Poisson-Gaussian model. It has been demonstrated [72, 90, 159, 160] that, by us-
ing the variance stabilization transform given by Bartlett [161] and Anscombe [162], one
can approximate the maximum likelihood method of Poisson noise by the minimization
of the cost function given in Eq. (1.88). Therefore both the approach of maximum like-
lihood and the cost function minimization algorithm are suitable for ptychography with
noisy data [72, 90].

POSITION CORRECTED PTYCHOGRAPHY

Apart from the influence of noise, the accuracy of the a priori knowledge about the
probe’s scanning grid is another important factor which influences the quality of the
reconstruction in ptychography. To improve the reconstruction, it was first proposed in
2012 [163] that one can apply the annealing approach to find the probe’s positions which
fit better to the measurements. In 2013, it was proposed [164] that, for each assumed po-
sition of the probe, we can correct that position by observing the cross-correlation be-
tween the estimated object in the current iteration and the one in the previous iteration.
More recently, various of probe position correction algorithms have been proposed [165–
167]. It was shown that, when the a priori knowledge about the position of the probe is
inaccurate, one can indeed eliminate defects in the reconstructed image by correcting
these positions.

FOURIER PTYCHOGRAPHY

Fourier ptychographic microscopy was proposed in 2013 [18, 168]. It can be regarded
as an extension of ptychography [169]. The technique overcomes the resolution limit of
conventional microscopy by enlarging the effective spatial frequency cut-off in the pupil
plane. This is done by applying several broad illuminations similar to plane waves of the
sample. The detector is in the plane conjugate to the sample plane, and each measure-
ment corresponds to an individual incident angle of the illumination. With each tilted
illumination e ik⊥, j ·r⊥ , the diffraction pattern of the sample in the plane of the exit pupil of
the lens, denoted by O(k⊥), is shifted to O(k⊥−k⊥, j ) over the aperture used for imaging.
Consecutive illumination tilts generate partially overlapping diffraction patterns within
the aperture. With all the Fourier ptychographic measurements, the spatial spectrum
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of the sample can be synthesized by using ptychographic algorithms while interchang-
ing the real space and reciprocal space coordinates compared to normal ptychography
[73, 157, 170].
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44 2. PTYCHOGRAPHY WITH MULTIPLE WAVELENGTH ILLUMINATION

2.1. INTRODUCTION
In principle, a highly coherent illumination is always demanded while performing ptych-
ography [2, 3]. However, in the X-ray regime, where ptychography has been widely used,
light sources are either spatially partially coherent (e.g. synchrotron radiation [4, 5])
or temporally partially coherent (e.g. tabletop high-harmonic generation laser [6, 7]).
To mitigate the unwanted effect due to the partial coherence, and also to improve the
throughput of the imaging system, more novel algorithms have been introduced into
ptychography during the last decade, among which the most popular approaches are
the blind deconvolution method [8] and the modes decomposition method [9]. Both of
these approaches were initially utilized for performing ptychography with spatially par-
tially coherent illumination. The mode decomposition method was later used to per-
form ptychography with spatially coherent but temporally broadband illumination. The
polychromatic ptychography was named ptychographic information multiplexing (PIM)
met-hod [10], in which the object is illuminated by a spatially fully coherent light beam,
which spectrum however consists of several wavelengths. The exit wave immediately
behind the object is decomposed into mutually incoherent modes, each mode corre-
sponding to one wavelength. Then these modes are reconstructed simultaneously by
minimizing the distance between the estimated diffraction intensity and the measure-
ment, which is the incoherent sum of the intensities of the separate wavelengths.

In this chapter, we propose an alternative polychromatic ptychography scheme where
the modes in the PIM method are all expressed in the transmission and the thickness
function of the sample. We consider both the case that the probe for the different wave-
lengths is assumed known, and the case of simultaneous reconstruction of unknown
probe and the object. Our method is described and derived in Section 2.2. After in-
troducing the error functions in Section 2.2.3, our simulation settings and results are
presented in Subsection 2.3, followed by a quantitative study on the error functions and
a comparison with the PIM method in the same subsection. The simulation includes
probe reconstruction is demonstrated in Subsection 2.3.7. We conclude the chapter with
a summary and outlook in Section 2.4.

2.2. METHOD

2.2.1. PLANE-WAVE ILLUMINATION

We start by considering a polychromatic ptychography configuration as depicted in Fig.
2.1. A part of the object is illuminated by a spatially coherent plane-wave, which has dis-
tinct peaks in its temporal spectrum Λ(λ). The object is moved to a number of positions
while a set of ptychographic data is collected in the far field. For one position of the ob-
ject and for one wavelength λ, we denote the exit wave immediately behind the object
by Ψ(r⊥,λ) and the measured intensity of the diffracted field by I m(r′⊥). Here r⊥ and r′⊥
are 2-D coordinates in the object-plane and the detector-plane, respectively.

In our proposed scheme, instead of decomposing the exit wave into mutually inco-
herent modes and calculating their diffraction intensities, we consider the relation be-
tween these modes. In the plane-wave illumination configuration, the exit waveΨ(r⊥,λ)
is given by the object’s complex transmission function multiplied by a planar wave with
wavelengthλ. For the case where the illumination contains several separate wavelengths
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Figure 2.1: Polychromatic ptychography configuration with plane-wave illumination.

λ1 < λ2 < ·· · < λk < ·· · < λN in its temporal spectrum Λ(λ). The exit wave Ψ(r⊥,λ) for
wavelength λk and probe position R⊥, j is (apart from a phase constant, see in Section
1.3.3):

Ψj (r⊥,λk ) = P (r⊥−R⊥, j ) · A(r⊥) ·exp

[
i
λ1

λk
φ(r⊥)

]
, (2.1)

where R⊥, j represents the j th relative position between the probe and the object. A(r⊥)
is the object’s transmission function and φ(r⊥) stands for 2π times the ratio of the object
thickness function and wavelength λ1. Note that both A(r⊥) and φ(r⊥) are real valued
and that A(r⊥) is positive. P (r⊥) stands for the illumination (or probe) function, which
in this subsection is treated as a planar wavefield multiplied by an circular aperture with
radius r0:

P (r⊥) =
{

P (r⊥), |r⊥| ≤ r0,
0, |r⊥| > r0.

(2.2)

Note that in Eq. (2.1) we assume that the object has no dispersion. For dispersive mate-
rials, the exponential term in Eq. (2.1) should be modified by introducing the ratio of the
refractive indices at wavelengths λ1 and λk , and the absorption should be represented
by the imaginary part of the refractive indices.

The goal in our polychromatic ptychography scheme, for the case that the probe P
is known , is to retrieve A(r⊥) and φ(r⊥) simultaneously. To do that, we minimize the
following cost function:

E = ∑
j

E j = ∑
j

∑
r′⊥

[√
I m

j (r′⊥)−
√

I j (r′⊥)
]2

, (2.3)

where I m
j (r′⊥) is the measured intensity when the probe is at position R⊥, j and I j (r′⊥) is

the estimated polychromatic far field diffraction intensity which is an incoherent sum
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over all calculated monochromatic diffraction patterns [11]:

I j (r′⊥) = 1D (r′⊥) ·∑
k

∣∣∣∣F⊥
[
Ψj (r⊥,λk )

](
r′⊥
λk z ′

)∣∣∣∣2

, (2.4)

where 1D (r′⊥) is a binary window function representing the region of the detector:

1D (r′⊥) =
{

1,
∣∣x ′∣∣≤ x ′

D ,
∣∣y ′∣∣≤ y ′

D ,
0,

∣∣x ′∣∣> x ′
D ,

∣∣y ′∣∣> y ′
D ,

(2.5)

and F⊥ denoting the Fourier transform, which is used to propagate the exit wave to the
far field over the large distance z ′.

The reconstruction of A(r⊥) and φ(r⊥) is done by applying the steepest decent pro-
cedure to the cost function E (A,φ). In Supplement section 2.5.1 detailed derivations are
given of the following formulas for updating A(r⊥) and φ(r⊥):

An+1(r⊥) = An(r⊥)+βA
∑

j

∑
k
ℜ

{[
P j (r⊥)

]∗ ·exp

[
−i
λ1

λk
φn(r⊥)

]
·∆Ψj ,n(r⊥,λk )

}
, (2.6a)

φn+1(r⊥) =φn(r⊥)+

βφ
∑

j

∑
k
ℜ

{[
P j (r⊥)

]∗ ·−i
λ1

λk
· An(r⊥) ·exp

[
−i
λ1

λk
φn(r⊥)

]
·∆Ψj ,n(r⊥,λk )

}
,

(2.6b)

where ℜ denotes the real part of a complex number, ∗ is complex conjugation, βA and
βφ are constant step sizes taken along the direction of gradient descent of the cost func-
tion, the index n stands for the iteration number, and ∆Ψ(r⊥,λk ) is defined by:

∆Ψj ,n(r⊥,λk ) = F−1
⊥

1D (r′⊥) ·


√

I m
j (r′⊥)√

I j ,n(r′⊥)+γ
−1

 ·F⊥
[
Ψj ,n(r⊥,λk )

](
r′⊥
λk z ′

) (r⊥,λk ),

(2.7)
where γ > 0 is a regularization parameter which prevents division by zero. Its value
should be chosen comparable to the noise level so that an accurate reconstruction can
be guaranteed. The Eq. (2.6) are implemented sequentially for all lateral positions as one
complete iteration. Note that A(r⊥) andφ(r⊥) are only updated where P j (r⊥) is nonzero.
Here we stress that the expression for ∆Ψ(r⊥,λk ) can also be identified as the gradient
descent direction of the cost function with respect to each mode in the PIM method.

For successfully retrieving A(r⊥) andφ(r⊥), the complete ptychographic dataset must
be used. To do that, we sequentially implement Eq. (2.6) on every lateral position of the
object as a complete reconstruction procedure within one iteration. In the meantime,
we also introduce a positive-value correction to the amplitude reconstruction A(r⊥) at
the end of each iteration, so that a positive amplitude is obtained and hence the phase
is well defined. A framework of our proposed model is summarized in Algorithm 1.

2.2.2. WITH PROBE RECONSTRUCTION
In the previous subsection we restricted ourselves to the case where the illumination (or
probe) is a localized plane-wave. One can imagine that if in practice this condition is vio-
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Algorithm 1 polychromatic ptychography algorithm with plane-wave illumination

iteration number n = 1
∆A = a small positive number (e.g. 10−3)
repeat

for each probe position R⊥, j do
for each λk do

forward propagate the wavefield;
end for
use Eq. (2.4) to calculate I (r′⊥);
for each λk do

use Eq .(2.7) to apply intensity constraint on the total diffraction field;
backward propagate the wavefields for every λk ;

end for
use Eq. (2.6) to update A(r⊥) and φ(r⊥);
if An(r⊥) < 0 then

An(r⊥) =∆A ;
end if

end for
n = n +1;

until algorithm converges

lated, directly applying the algorithm will end up with stagnation or an inaccurate recon-
struction. Therefore to achieve a better of the reconstruction’s quality, simultaneously
retrieving the probe function and the object’s transmission and thickness functions is
necessary in such cases. As shown in Fig. 2.1, in our model the object is illuminated
by a wavefield which contains multiple wavelength components. If these components
have different intensity and wavefront profiles, then we have to model this polychro-
matic probe function as an incoherent superposition of different modes and using the
PIM formula to reconstruct these modes would be the most reasonable choice. Here we
only consider a simple situation where every mode shares the same intensity and wave-
front profile. In that case the exit wave field Ψ(r⊥,λ) can be written as in Eq. (2.1). How-
ever, now P (r⊥) is a complex-valued probe function which represents the illumination
wave field of all wavelengths. To incorporate the reconstruction of this probe function,
Eq. (2.6) is modified as :

An+1(r⊥) = An(r⊥)+βA
∑
k
ℜ

{[
P j ,n(r⊥)

]∗ ·exp

[
−i
λ1

λk
φn(r⊥)

]
·∆Ψj ,n(r⊥,λk )

}
, (2.8a)

φn+1(r⊥) = φn(r⊥)+βφ
∑
k
ℜ

{[
P j ,n(r⊥)

]∗ ·−i
λ1

λk
· An(r⊥) ·exp

[
−i
λ1

λk
φn(r⊥)

]
·∆Ψj ,n(r⊥,λk )

}
,

(2.8b)

Pn+1(r⊥) = Pn(r⊥)+βP
∑
k

An(r⊥+R⊥, j ) ·exp

[
−i
λ1

λk
φn(r⊥+R⊥, j )

]
·∆Ψj ,n(r⊥+R⊥, j ,λk ),

(2.8c)
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where ∆Ψ(r⊥,λk ) is again given by Eq. (2.7). Note that Eq. (2.8) are designed for the
simple situation mentioned above, and should be implemented sequentially for all the
lateral positions as one complete iteration. In Section 2.3, numerical experiments are
performed to test our algorithm.

2.2.3. DEFINITION OF ERROR FUNCTIONS
To monitor our numerical experiment, we define an error function given by:

EF (n) =

∑
j

∑
r′⊥

∣∣∣√I m
j (r′⊥)−

√
I j ,n(r′⊥)

∣∣∣2

∑
j

∑
r′⊥

∣∣∣I m
j (r′⊥)

∣∣∣ , (2.9)

as before, the subscript j is an index that labels the object’s lateral position and the sub-
script n is the current iteration number. We refer to EF as the normalized error in Fourier
space (NEF), which is commonly used in practical experiments due to the availability of
I m and I . Due to the close relation between the NEF and the cost function as defined in
Eq. (2.3), it is more suitable to assess the convergence of our algorithm by monitoring
the evolution of the NEF than the NER. To estimate the quality of the results, we also
define a normalized error ER in real space (NER), defined by:

ER (n) =

∑
r⊥

∣∣O(r⊥)− gOn(r⊥)
∣∣2

∑
r⊥

|O(r⊥)|2 , (2.10)

where O(r⊥) = A(r⊥) · exp
[
iφ(r⊥)

]
is the actual object function which is defined as the

exit wave at wavelength λ1. On(r⊥) and g are given by:
On(r⊥) = An(r⊥) ·exp

[
iφn(r⊥)

]
,

g =

∑
r⊥

O(r⊥)O∗
n(r⊥)∑

r⊥
|On(r⊥)|2 .

(2.11)

Hence On(r⊥) is the reconstructed object, i.e. the reconstructed exit wave for wavelength
λ1, after n iterations. The parameter γ is a multiplication constant that makes the NER
invariant with respect to phase offset [12]. The NER can be regarded as a direct measure
of the quality of the reconstructions. This suggests that in numerical experiments, the
NER is more suitable to monitor the error, however in real experiments only NEF can be
used.

2.3. SIMULATION AND DISCUSSION

2.3.1. PLANE-WAVE ILLUMINATION
To examine our Algorithm 1, the results of numerical experiments are reported in this
section. A detailed introduction and demonstration of our simulation is presented in the
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Table 2.1: The maximum measurable spatial frequency for 30nm, 40nm and 50nm wavelength, with a detector
which contains a 320×320 array of 15µm pixels. The propagation distance is assumed to be 1cm. The diameter
of the circular aperture which lies inside the probe function is 10µm. Hence the Fresnel number is 1/3 for 30nm
wavelength.

Wavelength (nm) 30 40 50
Detector size (mm) 4.8 4.8 4.8

Maximum spatial frequency (c y/µm) 8.0 6.0 4.8

first part of this section, then in the following subsection we analysis the performance of
the algorithm by studying the error functions. In the final part of the section a compari-
son study between Algorithm 1 and the PIM method is reported.

2.3.2. PARAMETER SETTINGS OF THE SIMULATION
We first construct a complex-valued object with as amplitude map the ’Mona Lisa’ paint-
ing and as phase map the ’camera man’ picture. The amplitude map contains non-zero
values ranging in [0.1,1] to avoid phase uncertainty, and the phase map varies between
[0,π] to prevent phase wrapping effect. A planar wavefield which contains a certain
number of wavelength components, and which was transmitted by a circular aperture,
is used as the probe function. For each wavelength component, the exit wavefield is
modeled as in Eq. (2.1) and then is propagated to the far field where their intensities are
added up. The measured total intensity is the polychromatic ptychographic data set in
accordance with Eq. (2.4). Note that for every wavelength λk other than the shortest one
λ1, the propagated wavefield is zoomed in with a rate = λk /λ1. The far field diffraction
patterns scale with the reciprocal wavelength. Since the discrete mesh in the far field re-
gion should correspond to the pixels of the detector, we use the chip z-transform [13, 14]
instead of the FFT to enable the desired flexibility of the mesh. The discretised regions
of the diffraction patterns are limited to spatial frequencies that are below the maximum
spatial limit defined by the Nyquist sampling for the shortest wavelength λ1. To give
an example, we assume in the configuration of Fig. 2.1 that there is a detector with a
320×320 array of 15µm pixels, at a propagation distance of z ′ = 1cm behind the object.
Accordingly, the maximum spatial frequency that can be measured by this detector for
the wavelengths 30nm, 40nm and 50nm are listed in Table.2.1.

The probe function that we use is a matrix with 320×320 pixels, which is in line with
the number of pixels of the detector. The probe has circular support with diameter of
160 pixels, which is equivalent to a diameter size of 10µm. The Fresnel number is 1/3 for
30nm wavelength, and is smaller than 1/3 for larger wavelengths. Therefore the detector
is in the Fraunhofer region. The circular support is used as a priori knowledge in the
reconstruction. In addition, the a priori knowledge is used that the object is moved over
an equidistant 4x4 grid with 80% overlap between adjacent illuminated areas. Suppose
the diameter of the circular support is L, and the distance between adjacent illumination
positions is denoted by d ∈ [0,L]. The overlap ratio is defined by:

overlap ratio = 1− d

L
, (2.12)

which is usually be assigned from 60% to 85% to achieve optimal performance of the
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reconstruction algorithm [15]. A detailed demonstration regarding how the overlap ratio
influences the reconstruction quality can be found in Supplement section 2.5.5. This
scanning procedure of the probe gives us an object array with 480×480 pixels in total. For
the pixels of the discretized object region which are not illuminated, the value of A(r⊥)
are set to be zero during the iteration. The width of this region of zeros is roughly 80
pixels. In practice, the object’s moving grid could be obtained from a translation stage’s
reading, which can be refined using some proposed algorithms [16, 17]. On the other
hand, the a priori knowledge about the probe’s support size can be estimated by Fourier
transforming the diffraction intensity, and then can be registered with real-world spatial
scale according to the propagation distance and camera’s parameters.

It is worth noting that, by taking more wavelengths into account, the computational
cost of the algorithm is generally more expensive than the case of monochromatic illu-
mination. This can be understood by inspecting the framework of Algorithm 1 and Eq.
(2.7). To complete a single iteration in Algorithm 1, one needs to perform forward and
backward propagation of the wavefield for every wavelengths and for every probe posi-
tions, which involve multiple FFTs. If the propagation is calculated for each λk sequen-
tially, the required computation time will increase almost linearly with respect to the
number of wavelengths. To shorten the calculation duration, one can modify the code
based on accelerated gradient-based algorithms (e.g. nonlinear optimization methods
[18, 19] and momentum-based methods [20]) or take an advantage of modern compu-
tational devices (e.g. GPU-based parallel computing [21–23]). In our numerical exper-
iments, 1000 iterations were applied for each single simulation to ensure the conver-
gence. To make the algorithm converge faster, Nesterov momentum-based algorithm
[20] was implemented between 50th and 500th iteration. The momentum is added to
the reconstruction formula in the manner as suggested in [24]. Our simulation is run-
ning on a NVIDIA GeForce GTX 1060 GPU. For easy integration with the device, our code
is written in Python using the scikit-cuda package for calculating 2D-FFT and pycuda
package for performing other operations.

Because in this part of our simulation the probe includes polychromatic plane-waves,
we first investigate how the number of wavelengths in the probe’s temporal spectrum in-
fluence the quality of the reconstruction. The probe’s spectrum was generated as follows:
(i) when the illumination is a monochromatic plane-wave, the wavelength is 30nm. (ii)
for the polychromatic situation, we start with generating two spectral components at
30nm and 50nm. To include more spectral component (when N > 2), we add the addi-
tional frequencies between 30nm and 50nm, while the distances in frequency between
adjacent frequencies are identical. A schematic demonstration regarding how we gener-
ate the temporal spectrum can be found at the left of Fig. 2.2. When the measurements
are noise free, we let all the wavelengths have the same intensity in the probe spectrum
as shown in Fig. 2.2. Whereas for the noisy situation, we built the probe spectrum such
that all the wavelengths share the same number of photons. A more detailed description
about the noisy case can be found in the next subsection.

2.3.3. ADDING NOISE TO THE MEASUREMENTS

To investigate the influence of noise, we added Poisson noise to every diffraction inten-
sity measurements. Considering that one of the tasks in the numerical experiment is to
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Figure 2.2: Simulation results for validating Algorithm 1. The illumination includes polychromatic plane-
waves. (a1)-(a8) are the simulation results when the illumination is monochromatic, reconstructed by em-
ploying the PIE algorithm. (b1)-(b8), (c1)-(c8) and (d1)-(d8) show the reconstructions with implementing
Algorithm 1, for the case where 2, 5 and 20 spectral components are included in the probe’s spectrum, re-
spectively. A schematic demonstration regarding how we generate the temporal spectrum can be found on the
left hand column. Note that the distances in frequency between adjacent frequencies are identical, and all the
wavelengths share the same number of photons.
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investigate how the algorithm performs with different number of wavelengths when the
noise is kept at a certain amount, it is important to build a criterion of the noise level
which is insensitive to the number of wavelength in the probe’s spectrum. In the simula-
tion we pay attention to the total photon number counting over the measured diffraction
intensity which is denoted by PNm:

PNm = ∑
j ,k

λk

hc

∑
r′⊥

1D (r′⊥) ·
∣∣∣∣F⊥

[
Ψj (r⊥,λk )

](
r′⊥
λk z ′

)∣∣∣∣2

(2.13)

where h is the Planck constant. and we use it as a reference to define the Poisson noise
level. In accordance with the Poisson noise model, the signal-to-noise ratio (SNR) equals
to

p
PNm. Hence when the PNm remains at the same value, each measurement will also

stays at the same noise level for different number of wavelengths. Here it is notable that
a single photon includes hc/λk of energy for each wavelength λk , therefore each wave-
length has different intensities with the same photon number. However, though a simple
calculation we can find that the total energy of the diffraction intensity is the same for a
fixed PNm. The calculation is presented in Supplement section 2.5.2.

2.3.4. RECONSTRUCTION RESULTS
In Fig. 2.2, we present our simulation results for the cases where 1, 2, 5 and 20 spec-
tral components are included in the probe’s spectrum, respectively. The results in Fig.
2.2(a1)-2.2(a8) are obtained with the PIE algorithm, while Fig. 2.2(b1)-2.2(b8), 2.2(c1)-
2.2(c8) and 2.2(d1)-2.2(d8) are the reconstructions by implementing our proposed Al-
gorithm 1. We use a constant amplitude map A0(r⊥) = 0.5 and a constant phase map
φ0(r⊥) = 1 as an initial guess for the object function, which is proven to be sufficient
for our proposed algorithm to successfully alleviate the ambiguities described in Sec-
tion 1.3.3. Reconstruction results with different PNm value are also depicted in Fig. 2.2.
By roughly examining these pictures, one can conclude that the reconstructions are vi-
sually acceptable when the PNm equals 107 and 106, whereas the reconstructions are
corrupted by noise when the PNm is decreased to 105. By carefully comparing the phase
reconstructions (the ’camera man’ pictures), it is also noticeable that stronger defects
occur when the probe contains 20 spectral components. For a better understanding on
this defect, in the following subsection a more quantitative analysis is given by inspect-
ing the evolution of the error functions.

2.3.5. EVOLUTION OF THE ERROR FUNCTION
To better understand the simulation results, it is necessary to examine the evolution of
the error functions that are described in Subsection 2.3. A series of NERs and NEFs,
which were computed from the simulation results described in Subsection 2.3.2 and Fig.
2.2, are drawn in Fig. 2.3(a) and 2.3(b) respectively. All the NERs and the NEFs were
computed for the case that the probe contains 1-20 components in its spectrum, and
the PNm varies from 105 to 107. If we only pay attention to a single PNm value, it is
seen that although the NEFs stay at almost the same value, the NER increases with the
number of wavelengths almost linearly, which agrees with what we already observed in
Fig .2.2(c1)-2.2(c8).
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(a) (b)

Figure 2.3: The final values of the NER and the NEF after our simulation converged. In (a) we show the calcu-
lated NERs with 1-20 spectral components in the probe’s spectrum, and with the PNm varies from 105 to 107.
The NEFs for the same settings are depicted in (b). Note that the signal-to-noise ratio is so large that the noise
has negligible influence when the PNm equals 107, therefore in this plot the blue dots and red ones are almost
overlap.

For seeking the reason behind this phenomenon, additional simulation have been
performed. The difference between the new and previously discussed simulations is that
we ignore the wavelength dependence in propagating the wavefields (see Eq. (2.4)). Fig
.2.4 gives a schematic description of the two different ways of computing the polychro-
matic diffraction intensity pattern. In line with what has been discussed in Subsection
2.3.2, it is assumed that the shortest wavelength’s (λ1) contribution to the diffraction in-
tensity always fulfills the Nyquist sampling criterion. Hence in Fig. 2.4 we use a red
frame to represent the Nyquist frequency with respect to λ1, which is equivalent to the
boundary of an imaginary detector 1D (r′⊥). Fig. 2.4(a) illustrates the calculation process
in Eq. (2.4), which includes the wavelength-dependency of the wavefield propagation.
In the new numerical experiment the wavefield propagation is without the wavelength-
dependency, as shown in Fig. 2.4(b).

In correspondence with the wavefield propagation model shown in Fig. 2.4(b), the
simulated NERs and NEFs, gathered after our algorithm converged, are illustrated in
Fig. 2.5(a) and 2.5(b) respectively. By comparing Fig. 2.3 and Fig. 2.5, it is obvious that
the wavelength-dependent error in the reconstruction disappears once the wavelength-
dependency in the propagation model is removed. Hence, one can conclude that the
way we measure and compute the polychomatic diffraction wavefield is the cause for
the increase in NER in Fig. 2.5(a). This is because when the binary function 1D (r′⊥) in
Eq. (2.4) corresponds to a window size which fits the Nyquist sampling criterion for the
short wavelength λ1, the same maximum spatial frequency from larger wavelengths are
not completely measurable (see in Table.2.1). As illustrated in Fig. 2.5(a), for wavelengths
larger than λ1, part of the diffraction wavefield (outside the red frame) is cut off by the
boundary of the detector. Hence the recorded data is incomplete which leads to the in-
crease of the NER. It follows that the theoretical resolution of the reconstruction cannot
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Figure 2.4: Graphical description of the two different ways of computing the polychromatic diffraction in-
tensity pattern in our simulation. (a) illustrates the calculation process in Eq. (2.4), which includes the
wavelength-dependency of the wavefield propagation. (b) describes the wavefield propagation model which is
without the wavelength-dependency. The red frame represents the boundary of an imaginary detector 1D (r′⊥).
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be estimated only by the size of the detector and the sampling rule of the shortest wave-
length. This is important if one performs polychromatic ptychography without using
wavelength-scanning or spectroscopic detection to separately detect the diffracted in-
tensities of the individual wavelengths. In other words, although in principle performing
ptychography with a polychromatic light source can gives higher SNR and shorter acqui-
sition time, the reconstruction quality is not necessarily better than the monochromatic
ptychography result. A similar effect was also reported in [10].

(a) (b)

Figure 2.5: The numerical experiment results corresponding to the situation where the wavefield propagation
is wavelength-independent, as in Fig. 2.4(b). In these plots same choices have been made for the number of
wavelengths and noise as in Fig. 2.3.

2.3.6. COMPARISON WITH PIM METHOD

In order to study the different performance between our proposed algorithm and the
PIM method, we present some numerical simulations in this subsection. All parame-
ter values are chosen the same as in Subsection 2.3.2, i.e. the simulation for the case of
plane wave illumination. In Fig. 2.6 we illustrate the final reconstructed NERs and NEFs
for simulated noise-free measurements. The NERs of our proposed algorithm were cal-
culated as described in Section 2.2.3. While the NERs of the PIM method were calculated
also from Eq. (2.10), in which the reconstructed object O(r⊥)n is given by the exit wave
in PIM corresponding to λ1.

From Fig. 2.6 it can be concluded that although both Algorithm 1 and the PIM
method converged to a very low value of NEF, the reconstructed object functions have
different qualities. When the probe function contains polychromatic plane waves with
more than roughly 10 wavelengths, the PIM method suffers more from the limited detec-
tor size issue described in Fig. 2.4. As shown in Fig. 2.7, when the probe has 20 spectral
components, all the reconstructed modes in the PIM method are disrupted. Hence in
this case it is more suitable to employ Algorithm 1.
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(a) (b)

Figure 2.6: A comparison simulation result between Algorithm 1 and the PIM method, with noise-free mea-
surements. The NEF values in the right figure are identical for the two methods.

mode 1

PIM method

mode 20

Algorithm 1

Figure 2.7: The reconstructed object functions for the situation where the probe has 20 spectral components.
Noise-free measurements are used in this simulation and the propagation model follows the scheme in Eq.
(2.4).
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2.3.7. WITH PROBE RECONSTRUCTION

We also compare the simulation outcomes for different situations when the probe func-
tion is unknown. As has been mentioned in Subsection 2.2.2, we consider a relatively
simple case where for every wavelength the complex probe function is the same. To
inspect the performance of our proposed iterative scheme of Eq. (2.8), we use a com-
plex initial probe function and show the noise-free reconstruction result in Fig. 2.8(a1)-
2.8(a6). The probe’s temporal spectrum is assumed to contain 3 components with iden-
tically long wavelength intervals between them, as illustrated at the left of Fig. 2.8. It can
be confirmed that the update formula given in Eq. (2.8) is able to retrieve the object and
the probe function, even when the probe has a very complicated profile. However, due
to the fact that in this simulation we set the relative position between the probe and the
object R⊥, j to be a regular position grid in two orthogonal directions, raster grid pathol-
ogy appears in both the reconstruction of the object and the probe. This kind of defect
is more visually obvious when the initial probe function is a polychromatic plane-wave
(the reconstruction result for this case is in Fig. 2.8(b1)-2.8(b4)). To eliminate the raster
grid defect, ideas for optimizing the scanning trajectory were proposed in [25–27], which
however are beyond the scope of this chapter.

object’s
amplitude

λ

spectrum Λ (   )λ

30nm 50nm

(a)

1 2 3 4

1 2 3 4

object’s
phase

probe’s
phase

probe’s
amplitude

(b)

5 6

Figure 2.8: Simulation results with probe reconstruction following the scheme in Eq. (2.8). On the left the
probe’s temporal spectrum is shown. In (a1)-(a4) are the reconstructed probe function when the initial probe
has a complex profile. The difference between the original complex profile probe and the reconstructed probe
are illustrated in (a5)-(a6). (b1)-(b4) are the results with a polychromatic plane-wave initial probe function.
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2.4. CONCLUSION AND OUTLOOK

In this chapter we have introduced a polychromatic ptychographic algorithm, which can
be regarded as an alternative to the PIM approach. It is based on the idea that the mutu-
ally incoherent modes in the multiple wavelength scheme can be related by representing
the object by real transmission and thickness functions. The algorithm is derived from
the steepest descent method and is numerically validated. We first discussed polychro-
matic plane wave illumination which is assumed to be known and afterwards included
the case of the reconstruction of an unknown probe. The results show that Algorithm 1
performs nicely for a known probe, and that a reasonable level of noise can be handled
by the algorithm. For a sufficiently thin object, the ptychography reconstruction given
by the polychromatic approach has a higher NER than the case of monochromatic illu-
mination. This is due to the fact that for longer wavelengths higher spatial frequencies
are not capture by the detector because stronger diffraction effects. Hence, although in
principle performing ptychography with a polychromatic light source can give higher
SNR and shorter acquisition time, the reconstruction quality is not necessarily better
than the monochromatic ptychography results. Compared to the PIM method, Algo-
rithm 1 is less sensitive to the missing data issue. However, defects are observed when a
very complex unknown probe function is introduced and must be reconstructed as well.
With varying parameter settings (i.e. noise and the number of spectral components in
the probe), different behaviors are observed and discussed in this chapter. As next steps
for improvement, pathologies cause by the raster scanning grid of the probe function
should be eliminated and the performance of the algorithm should be validated using
experimental data.

2.5. SUPPLEMENT

2.5.1. POLYCHROMATIC PTYCHOGRAPHY ALGORITHM

In this section we propose a ptychography algorithm for multiple-wavelength illumina-
tion with mutually incoherent wavelengths and using measured total diffracted intensi-
ties (i.e. the intensities are not spectrally separated). As mentioned in the main text, for
an non-dispersive thin object we can express the exit wave for wavelength λk as:

Ψj (r⊥,λk ) = P (r⊥−R⊥, j ) · A(r⊥) ·exp

[
i
λ1

λk
φ(r⊥)

]
(2.14)

where R⊥, j represents the j th relative position between the probe and the object. A(r⊥)
is the object’s local transmission function and φ(r⊥) stands for 2π times the ratio of the
object thickness function and wavelength λ1. Note that both A(r⊥) and φ(r⊥) are real
valued and that A(r⊥) is positive. As in Supplement section 2.5.1, the steepest descent
method can provide to us with updating formulas for A(r⊥), φ(r⊥) and P (r⊥). Due to
the fact that the exit wave in not monochromatic, we need to re-define the estimated
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diffraction intensity I (r′⊥) as an incoherent sum of every monochromatic component:

I j (r′⊥) = 1D (r′⊥) ·∑
λk

∣∣∣∣Ï Ψj (r⊥,λk )exp

(
−i

2π

λk z
r⊥ · r′⊥

)
dr⊥

∣∣∣∣2

= 1D (r′⊥) ·∑
λk

∣∣∣∣F⊥
[
Ψj (r⊥,λk )

](
r′⊥
λk z

)∣∣∣∣2

, (2.15)

where 1D (r′⊥) is a binary window function which represents the area of the detector.
To start with, we compute the functional derivative of E j , which was defined in Eq.

(2.3), with respect to A(r⊥), φ(r⊥) and P (r⊥) at every point r⊥. To do that, we calculate
the functional derivative of E j with respect to A, φ and P at every point r⊥. The local
perturbation of the value of O on a discretized grid r⊥ is defined by:

δA(r⊥) = ∑
nr,y

∑
nr,x

exp

[
i
λ1

λk
φ(r⊥)

]
δ(r⊥−nr,⊥∆r⊥), (2.16a)

δφ(r⊥) = ∑
nr,y

∑
nr,x

i
λ1

λk
A(r⊥)exp

[
i
λ1

λk
φ(r⊥)

]
δ(r⊥−nr,⊥∆r⊥), (2.16b)

δP (r⊥) = ∑
nr,y

∑
nr,x

P (r⊥)δ(r⊥−nr,⊥∆r⊥), (2.16c)

where nr,⊥ is the index of the 2D discretized cells on the meshgrid as defined in Eq. (1.41).
∆r⊥ the size of every cells of the 2D meshgrid along the x and y direction, as given in Eq.
(1.42).

δE j (P, A,φ)(δA) = 2
∑
λk

Ï
ℜ

{
∆Ψj (r⊥,λk ) ·P∗

j (r⊥) ·exp

[
−i
λ1

λk
φ(r⊥)

]}
·δA(r⊥)dr⊥,

(2.17a)

δE j (P, A,φ)(δφ)

= 2
∑
λk

Ï
ℜ

{
−i
λ1

λk
·∆Ψj (r⊥,λk ) ·P∗

j (r⊥) · A(r⊥) ·exp

[
−i
λ1

λk
φ(r⊥)

]}
·δφ(r⊥)dr⊥,

(2.17b)

δE j (P, A,φ)(δP )

= ∑
λk

ℜ
{Ï

∆Ψj (r⊥,λk ) ·P∗
j (r⊥) · A(r⊥) ·exp

[
−i
λ1

λk
φ(r⊥)

]
·δP∗(r⊥)dr⊥

}
, (2.17c)

where we use the fact that both A(r⊥), φ(r⊥) are real-valued by definition. Once again
the auxiliary function is given by:

∆Ψj ,n(r⊥,λk ) = F−1
⊥

1D (r′⊥) ·


√

I m
j (r′⊥)√

I j ,n(r′⊥)
−1

 ·F⊥
[
Ψj ,n(r⊥,λk )

](
r′⊥
λk z

) (r⊥,λk ).

(2.18)
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Similar to the derivation in Eq. (1.88) - (1.101), we arrive at the following formulas to
update the estimates for A(r⊥), φ(r⊥) and P (r⊥) for each position j :

An+1(r⊥) = An(r⊥)+βA
∑
k
ℜ

{[
P j ,n(r⊥)

]∗ ·exp

[
−i
λ1

λk
φn(r⊥)

]
·∆Ψn(r⊥,λk )

}
, (2.19a)

φn+1(r⊥) =φn(r⊥)+

βφ
∑
k
ℜ

{
−i
λ1

λk
· [P j ,n(r⊥)

]∗ · An(r⊥) ·exp

[
−i
λ1

λk
φn(r⊥)

]
·∆Ψj ,n(r⊥,λk )

}
,

(2.19b)

Pn+1(r⊥) =Pn(r⊥)+βP
∑
k

An(r⊥+R⊥, j ) ·exp

[
−i
λ1

λk
φn(r⊥+R⊥, j )

]
·∆Ψj ,n(r⊥+R⊥, j ,λk ),

(2.19c)

where βA , βφ and βP are constant step-sizes and n is the iteration number.

2.5.2. THE RELATIONSHIP BETWEEN THE PHOTON NUMBER AND THE TOTAL

ENERGY
In this section we aim to prove that the total energy of the measurements is a constant
for a fixed total photon number. In line with Section 2.3.1, we denote N as the number
of wavelength and PNm as the total photon number in the diffracted wavefield. Because
every wavelengths are presumed to have the same number of photons, the total energy
eN of the measurement is given by:

eN = PNm

N

N∑
k=1

hνk , (2.20)

where h is the Planck constant and νk is the kth frequency. Considering that all the fre-
quencies lie in the range [ν1,νN ], and have equal distance in frequency between adjacent
ones, Eq. (2.20) can be rewritten as:

eN = PNm

N
h

[
ν1 +νN +

N−2∑
m=1

mν1 + (N −m −1)νN

N −1

]
, (2.21)

where m is an auxiliary integer. The third term on the right side of Eq. (2.21) stands for
the total energy from ν2 to νN−1. By computing the sum in Eq. (2.21), the total energy eN

can be expressed as:

eN = PNm

2
h (ν1 +νN ) . (2.22)

Hence for a fixed PNm, ν1 and νN , the total energy eN of the polychromatic diffracted
wavefield is a constant.

2.5.3. ADDITIONAL SIMULATIONS ABOUT THE EFFECT OF INCOMPLETE MEA-
SUREMENTS

In Subsection 2.3.3, we demonstrated that the quality of the reconstruction could de-
grades in the polychromatic ptychography scheme because a detector of limited size
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cannot capture strongly diffracted far field intensities at longer wavelengths. To demon-
strate this, we described two simulations Subsection 2.3.3, namely: (1) with an incom-
plete ptychographic data-set; (2) with a complete measured data-set, which was ob-
tained by ignoring the wavelength-dependency in the wavefield propagation model, as
illustrated in Fig. 2.4. The simulation results are shown in Fig .2.5.

(a)

(b)

+

+ ... +

+ ... =

=

λ1 λ2 I(r’)

0

0

00

λ1 λN I(r’)

Figure 2.9: Graphical description of the two different ways of computing the polychromatic diffraction in-
tensity pattern. The red frame represents the boundary of an imaginary detector 1D (r′⊥). (a) illustrates the
situation where the detector can records incomplete data. (b) describes the situation where the detector is
able to measure the maximum spatial frequency component for the largest wavelength λN , hence also for the
wavelengths shorter than λN each monochromatic diffraction intensities are zero-padded in accordance with
Eq. (2.4).

In this section, an alternative simulation is provided to further argue the cause of the
inaccuracies of the reconstructions. As illustrated in Fig. 2.9(b), instead of ignoring the
wavelength-dependency in the wavefield propagation model, we expand the boundary
of the detector such that the maximum spatial frequency for the largest wavelength λN

can be collected. We emphasize that in this simulation all monochromatic diffracted
wavefields have the same maximum spatial frequency, which equals to the largest wave-
length λN . This is because the discretized object has the same pixel size and illuminated
area for every wavelength. For the wavelengths shorter than λN , the relevant parts of the
diffraction patterns of all wavelengths fall inside the area of the detector, and the pixel
size is assumed to be sufficiently small that for the smallest wavelength (and hence for all
wavelengths), the intensity patterns are sufficiently well sampled. As a comparison, we
again inspect the reconstruction with the incomplete measurement. The reconstructed
error functions for these two numerical experiments are plotted in Fig. 2.10.
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(a) (b)

Figure 2.10: A comparison between simulation results of the two sampling situations shown in Fig. 2.9(a)
and 2.9(b), with noise-free measurements. The orange dots are related to the propagation model which is
illustrated in Fig. 2.9(a), while the blue dots corresponds to the sampling scheme which is shown in Fig. 2.9(b).

Because limited size of the detector only influences the quality of reconstruction for
the propagation model as shown in Fig. 2.9(a), we call the model of Fig. 2.9(a) model
as the case ’with window function’ and similarly we call the model in Fig. 2.9(b) as the
case ’without window function’, which explains the legend in Fig. 2.10. From Fig. 2.10(b)
we see that all the NEFs have reached zero-value, which indicates that the algorithm
has converged to the solutions with the same NEF for all the situations. However in Fig.
2.10(a) the NERs of the solutions obtained with window function are higher than without
the window function. Therefore one can conclude that the limited size of the detector is
the cause of the degradation of the results.

2.5.4. EVOLUTION OF ERROR FUNCTIONS

In this section we give an example of the evolution of the error functions, which aims
to show the convergence of the algorithm. Each curve in Fig. 2.11(a) and 2.11(b) is re-
lated to one situation in Fig. 2.2. Although we have not decided a terminate criterion in
our numerical experiment, it is clear that employing the algorithm for 1000 iterations is
sufficient for reaching the minima in our simulation.

2.5.5. INFLUENCE OF THE OVERLAP RATIO

Considering ptychography is a scanning diffraction imaging technique, it is reasonable
that the overlap ratio defined in Eq. (4.2.5) plays an important role in the quality of the
reconstructed image. In [15] the authors studied how the overlap ratio influences the
performance of PIE through simulation and experiment for the first time. The result
indicates that, with monochromatic and fully spatial coherent illumination, one can get
hold of satisfactory reconstructions by employing 60%-85% of overlap ratio. It was also
mentioned in the literature that 30% of overlap could be sufficient if fast overview scans
are demanded. On the other hand, a theoretical explanation regarding how overlapped
ptychographic scans facilitate the convergence of the algorithm was proposed in [28].
However, to the best of our knowledge, no optimal overlap ratio from theoretical point
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(a
)
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(b
)

Figure 2.11: The evolution of NEF and NER in our simulation described in Subsection 3.1.1. Each curve in (a)
and (b) is related to one situation in Fig. 2.3.
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of view has been proposed yet.
In this section we conduct a simulation to demonstrate how the overlap ratio influ-

ences the performance of our proposed polychromatic ptychography method. In this
numerical experiment, we presume the diffraction intensity measurements are noise
free. The rest of the parameter settings for the simulation are duplicated from the Sub-
section 2.3.2. To observe how the overlap ratio affects the quality of the reconstruction,
we adjust the overlap ratio from 0% to 100% with an interval of 10%. Once again in
each simulation 1000 iterations were applied to ensure convergence. As an example of
the reconstruction results, in Fig. 2.12(a) we show the reconstructed object when the
probe only contains 5 wavelengths, and when the overlap ratio equals 0%, 80% and 99%,
respectively. The NERs for a series of wavelengths overlap ratios can be found in Fig.
2.12(b). From Fig. 2.12(b), it can be concluded that the overlap ratio should be selected
from 60% to 90% for achieving optimal performance of the algorithm, which is in good
agreement with the monochromatic situation given in [15]. In line with this conclusion,
we choose to employ 80% overlap ratio for the numerical studies in the main context.

object’s
amplitude

(a)

object’s
phase

(b)

λ

spectrum Λ (   )λ

30nm 50nm

overlap
ratio

0

0.8

0.99

Figure 2.12: Simulation results about how the overlap ratio affects the performance of polychromatic ptychog-
raphy. In this plot the diffraction intensity measurements are noise free. (a) shows the reconstructed object
when the probe only contains 5 wavelengths, and when the overlap ratio equals 0%, 80% and 99%, respectively.
In (b) we demonstrate the NERs for a series of wavelengths and for overlap ratios ranging from 0% to 99%.
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3. CRAMÉR RAO LOWER BOUND AND MAXIMUM LIKELIHOOD ESTIMATION IN

PTYCHOGRAPHY WITH POISSON NOISE

3.1. INTRODUCTION
In this chapter our work contains two parts. In the first part we investigate the Cramér
Rao Lower Bound (CRLB) for the variance of any unbiased estimator in ptychography
[2–4]. To the best of our knowledge, this is the first investigation of the CRLB in ptychog-
raphy. We study the lower bound for Poisson distributed photon counting noise, which is
the most dominant source of noise which occurs even under the best experimental con-
ditions [5, 6]. In Section 3.2, we briefly discuss ptychography, Poisson photon counting
noise and the maximum likelihood method. We compute the Fisher information matrix
of ptychography with Poisson noise and introduce the CRLB. In Section 3.3, the CRLB is
numerically computed and the influence of illumination and of the object is discussed
in detail. To validate the obtained CRLB, Monte Carlo analysis is implemented in Section
3.4.

For the second part of this chapter, the performance of the maximum likelihood
method and the approach of amplitude-based cost function minimization are also com-
pared using Monte Carlo simulations. Details of the implementation of the algorithms
can be found in the Supplement section 3.7. We investigate the statistical property of
the algorithms for various photon counts in Section 3.4. The chapter is concluded with
a summary and outlook in section 3.6.

3.2. THEORY

3.2.1. PTYCHOGRAPHY, POISSON NOISE, AND MAXIMUM LIKELIHOOD METHOD

In this chapter we come back to the case where the effect of partial coherence is negligi-
ble, and we aim to study the influence of Poisson noise. Therefore, according to the thin
object model as given in Eq. (1.37), the exit wave Ψ(r⊥) for an illumination with a probe
function P (r⊥) which is centered on position R⊥, j is given by

Ψj (r⊥) = P (r⊥−R⊥, j ) ·O(r⊥)

= P j (r⊥) ·O(r⊥), (3.1)

Apart from the influence of the illumination, we also wish to investigate the influence
of the transmission function and the thickness function of the object. Hence the object
O(r⊥) is decomposed into two real valued functions A(r⊥) and φ(r⊥):

O(r⊥) = A(r⊥) ·e iφ(r⊥), (3.2)

where A is the object’s local transmission function and φ stands for the phase of the exit
wave immediately behind the object. Once again, the probe function is assumed to have
a finite support with, for instance, circular boundary:

P (r⊥) =
{

P (r⊥), |r⊥| ≤ r0,
0, |r⊥| > r0.

(3.3)

For a detector located at distance z ′ in the far field, the diffraction intensity pattern
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I (r′⊥) for the j th illumination is [7]:

I j (r′⊥) =
∣∣∣∣F⊥

(
Ψj

)( r′⊥
λz

)∣∣∣∣2

=
∣∣∣∣∣∑r⊥ Ψj (r⊥) ·exp

(
−i

2π

λz
r⊥ · r′⊥

)∣∣∣∣∣
2

, (3.4)

where F⊥ is the discrete Fourier transform operator.

The task of ptychography is to find an object function which takes account of the a
priori knowledge, while a cost function E is minimized. In our case the a priori knowl-
edge is the exact information of the probe function and the set of relative positions R⊥, j .
The cost function E is defined as the l2-distance between the modulus of the far field
diffraction pattern

∣∣F⊥
(
Ψj

)
(k⊥)

∣∣ and the squared root of the measured intensity I m
j (k⊥):

E =∑
j

∑
k⊥

[√
I m

j (k⊥)− ∣∣F⊥
(
Ψj

)
(k⊥)

∣∣]2
, (3.5)

where k⊥ = r′⊥ (λz)−1 ≈ nk⊥∆k⊥ is the spatial spectrum coordinate as given in Eq. (1.43).

From I m
j , one can estimate the number of detected photons:

n j (k⊥) =
I m

j (k⊥)

ħω , whereω= 2πc

λ
, (3.6)

where ħ is the Planck constant. Among a variety of noise models, we consider Poisson
noise. The probability distribution of detecting n j (k⊥) photons by the detector at every
k⊥ for all measurements ( j = 1,2, · · · ) are given by:

PP =∏
j

∏
k⊥

N j (k⊥)n j (k⊥)

N j (k⊥)!
e−N j (k⊥), (3.7)

where the cumulative product is over both the 2-D coordinate k⊥ and the probe position
R⊥, j . The negative log-likelihood functional is defined by:

LP =− lnPP

=−∑
j

∑
k⊥

[
n j ln N j −N j − lnn j !

]
. (3.8)

The average number of photons N j (k⊥) depends on the object function O(r⊥) through
Eq. (3.4) and Eq. (3.6). To find the object function for which the negative log-likelihood
functional is maximum, the derivative of LP with respect to O is set equal to zero. Hence,
for any small perturbation δO of the object function it should hold:

LP (δO) = 0. (3.9)
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where the local perturbation of the value of O on a discretized grid r⊥ ≈ nr⊥,⊥∆r⊥ is
written as:

δO(r⊥) = ∑
nr⊥ ,⊥

δO(nr⊥,⊥)δ(r⊥−nr⊥,⊥∆r⊥)

= ∑
nr⊥ ,⊥

[
δA(nr⊥,⊥)

iA(nr⊥,⊥)δφ(nr⊥,⊥)

]
e iφ(nr⊥ ,⊥)δ(r⊥−nr⊥,⊥∆r⊥), (3.10)

where ∆r⊥ is the size of every cells of the 2D meshgrids as given in Eq. (1.43). By substi-
tuting Eq. (3.10) into Eq. (3.9) we have:

δLP (δO) =−∑
j

∑
k⊥

(
n j (k⊥)

N j (k⊥)
−1

)
δN j (δO(r⊥))

=− 1

ħω
∑

j

∑
k⊥

(
n j (k⊥)

N j (k⊥)
−1

)
δI j (δOr⊥)

=− 2

ħω
∑

j

∑
k⊥

(
n j (k⊥)

N j (k⊥)
−1

)
ℜ[

F⊥
(
P j O

)
(k⊥)F⊥

(
P jδO(r⊥)

)∗ (k⊥)
]

=− 2

ħω
∑

j

∑
r⊥

ℜ
{
F−1

⊥

[(
n j

N j
−1

)
F⊥

(
P j O

)]
(r⊥)P∗

j (r⊥)δO∗(r⊥)

}
. (3.11)

In Eq. (3.11), the generalized Parseval’s theorem was used. ℜ denotes the real part
and F−1

⊥ the inverse Fourier transform. The solution of Eq. (3.11) can be found by the
method of steepest descent [8–10]:

An+1(r⊥) = An(r⊥)+βA
∑

j
ℜ

{
P∗

j e−iφn F−1
⊥

[(
n j

N j
−1

)
F⊥

(
P j On

)]}
(r⊥), (3.12a)

φn+1(r⊥) =φn(r⊥)+βφ
∑

j
ℑ

{
P∗

j Ane−iφn F−1
⊥

[(
n j

N j
−1

)
F⊥

(
P j On

)]}
(r⊥), (3.12b)

where n is the iteration number, and βA and βφ are the step-sizes, which are nor-
mally chosen to be a constant, i.e. they are independent on the iteration number. ℑ
denotes the imaginary part. Alternatively, projection based method or conjugate gradi-
ent method can be applied to achieve maximum likelihood [6].

3.2.2. THE CRLB AND THE FISHER MATRIX
In estimation theory, the CRLB gives a lower bound on the variance of any unbiased
estimator for the parameter which must be estimated. The estimators that can reach the
lower bound are called the minimum variance unbiased estimators. Minimum variance
unbiased estimators are often not available [2, 11].

We recall the definition of the CRLB, using the notation as in [2]. Suppose we wish to
retrieve a real valued vector parameter Θ= [θ1,θ2, · · · ]T from a set of measurements X =
[X1, X2, · · · ]T . There are infinite number of possible outcomes X1,X2, · · · ,Xs , · · · occurring
with probabilities P1,P2, · · · ,P s , · · · , respectively. To determine the lower bound on the
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variance of estimator Θ̂, one computes the Fisher information matrix IF , given by:

IF (Θ) =−E

[
∂2 lnP (Xs ;Θ)

∂Θ2

]
, (3.13)

where P (Xs ;Θ) = P s is the conditional probability distribution function and E is the
expectation operator. The element of IF (Θ) is given by:

IF (Θ)lm =−∑
s

∂2 lnP (Xs ;Θ)

∂θl∂θm
P (Xs ;Θ), (3.14)

where l = 1,2, · · · and m = 1,2, · · · are indices of elements. The CRLB is then given by the
diagonal elements of the inverse of matrix IF , i.e.

Var
(
θ̂l

) ≥ [
I−1

F (Θ)
]

l l , (3.15)

where Var
(
θ̂l

)
stands for the variance of estimator θ̂l for the unknown parameter θl .

It is important to note that the estimator based on the maximum likelihood principle
θ̂MLE asymptotically becomes unbiased and achieves the CRLB for large data sets [2],
that is:

Θ̂MLE
a∼ N

{
Θ,diag

[
I−1

F (Θ)
]}

, (3.16)

where N stands for the normal distribution and diag takes the diagonal elements of a
matrix.

3.2.3. THE FISHER MATRIX WITH POISSON NOISE IN PTYCHOGRAPHY
To find the Fisher information matrix, we start by computing the second order derivative
of the likelihood functional LP with respect to O(r⊥):

δ2LP (δO,δÕ) = 1

(ħω)2

∑
j

∑
k⊥

n j

N 2
j

[
δI j (δO)

][
δI j (δÕ)

]− 1

ħω
∑

j

∑
k⊥

(
n j

N j
−1

)
δ2I j (δO,δÕ),

(3.17)

where δÕ is the local perturbation of the value of O on a discretized grid as well:

δÕ = ∑
nr⊥ ,⊥

[
δÃ(nr⊥,⊥)

iÃ(nr⊥,⊥)δφ̃(nr⊥,⊥)

]
e iφ̃(nr⊥ ,⊥)δ(r⊥−nr⊥,⊥∆r⊥). (3.18)

By taking the expectation of Eq. (3.17), we get:

E
(
δ2LP

)
(δO,δÕ) = 1

(ħω)2

∑
j

∑
k⊥

E

{
n j

N 2
j

[
δI j (δO)

][
δI j (δÕ)

]}

− 1

ħω
∑

j

∑
k⊥

E

[(
n j

N j
−1

)
δ2I j (δO,δÕ)

]
, (3.19)
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in which we swap the expectation and summation because the measurements n j (k⊥)
are independent photon measurements for all pixels k⊥. Using the properties of the
Poisson distribution [4]: ∑

n j

N
n j

j

n j !
e−N j = 1, (3.20a)

∑
n j

n j

N
n j

j

n j !
e−N j = N j , (3.20b)

and using Eq. (3.11), we find:

E
(
δ2LP

)
(δO,δÕ) = 1

(ħω)2

∑
j

∑
k⊥

1

n j (k⊥)
δI j (δO)δI j (δÕ)

= 2

ħω
∑

j

∑
k⊥

ℜ
[[

F⊥
(
Ψj

)
(k⊥)

]2

I j (k⊥)
F⊥

(
P jδO

)∗
F⊥

(
P jδÕ

)∗]

+ 2

ħω
∑

j

∑
k⊥

ℜ[
F⊥

(
P jδO

)
F⊥

(
P jδÕ

)∗]
. (3.21)

in which we use the following relation:

ℜ(z1)ℜ(z2) = 1

2

[ℜ(z1z2)+ℜ(z1z∗
2 )

]
, (3.22)

where z1, z2 are arbitrary complex numbers.
From Eq. (3.10), Eq. (3.18) and Eq. (3.21) we can derive the discretized Fisher infor-

mation matrix with respect to the transmission and the thickness function of the object:

IF,lm =
[

(IF )A A,l m (IF )Aφ,lm

(IF )φA,l m (IF )φφ,lm

]
= 2

ħω
∑

j

[ ℜ[
f j (r⊥,l ,r⊥,m)

] ℑ[
A(r⊥,m) f j (r⊥,l ,r⊥,m)

]
ℑ[

A(r⊥,l ) f j (r⊥,l ,r⊥,m)
] −ℜ[

A(r⊥,l )A(r⊥,m) f j (r⊥,l ,r⊥,m)
]]

+ 2

ħω
∑

j

[∣∣P j (r⊥,l )
∣∣2
δlm 0

0 A2(r⊥,l )
∣∣P j (r⊥,l )

∣∣2
δlm

]
, (3.23)

where the auxiliary function f is given by:

f j (r⊥,l ,r⊥,m) =F−1
⊥

[
F⊥

(
Ψj

)
F⊥

(
Ψj

)∗
]

(r⊥,l + r⊥,m) ·P∗
j (r⊥,l )P∗

j (r⊥,m)e−i[φ(r⊥,l )+φ(r⊥,m )]. (3.24)

where we used Eq. (3.4) and the Kronecker’s symbol δlm . l = 1,2, · · · and m = 1,2, · · · are
indices of elements.

In Eq. (3.23) we see that the first term is symmetric and the second one is diagonal.
The analytical expression for the CRLB, which is obtained from the inverse of the Fisher
matrix, cannot be easily derived, but this inverse can be computed numerically. Detailed
examples are presented in the next section.
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Table 3.1: Four cases that are considered in the computation of the CRLB

Case-1
Both the transmission and thickness function of the object are uniform.
The probe has structured wavefront but uniform illumination power in the
circular support.

Case-2
Both the transmission and thickness function of the object are uniform.
The probe has structured wavefront and structured illumination power in
the circular support.

Case-3
The object has non-uniform transmission but uniform thickness function.
The probe is a plane-wave with circular support.

Case-4
The object has uniform transmission but non-uniform thickness function.
The probe is a plane-wave with circular support.

3.3. DIRECT CALCULATION OF THE CRLB
As shown in Eq. (3.15), the CRLB is given by the diagonal elements of the inverse of ma-
trix IF , which can be obtained by numerical computations. In this section, we present
the results of some computed CRLB. To investigate how the illumination (i.e. the probe
function P ) and the object O influence the CRLB, we study four cases separately, as de-
scribed in Table 3.1. Note that only Poisson noise is applied throughout our simulations.
Other noise models (e.g. Gaussian noise or Poisson-Gaussian noise [12]) should be in-
cluded when these are dominant. All of the calculation results given in this section are
compared to the Monte Carlo experiment result that are presented in the next section.

For all cases shown in Table 3.1, the probe moves over the object by a 2× 2 regular
grid. In line with the conventional ptychography configuration, the overlap ratio be-
tween adjacent illuminated areas is 70%. The overlap ratio in each dimension is defined
as follows. Suppose the diameter of the circular support is L, and the distance between
corresponding points in adjacent illumination positions is d , where 0 < d < L. The over-
lap ratio is the same as defined in Eq. (4.2.5):

overlap ratio = 1− d

L
(3.25)

which is usually chosen between 60% and 85% to achieve optimal performance of the
reconstruction algorithm [13]. The overlap ratio and the actual probe function are re-
garded as a prior knowledge and employed in the reconstruction algorithm.

The characteristic parameters for the numerical computations are shown in Table
3.2. The object is discretised and zero padded by a 70×70 square grid with grid spacing
1µm. The total illuminated area is roughly 40×40µm2. The circular probe has radius of
30µm and is discretised by a square grid of 60×60 grid points with grid spacing of 1µm.
The wavelength is 30 nm. The far field intensities are measured with a detector at prop-
agation distance of 5cm behind the object. The detector consists of an array of 60×60
pixels with a pixel size of 50µm. Hence the maximum spatial frequency (without factor
2π) that is measured is 1µm−1 and the frequency are sampled with distance (30)−1µm−1.

To compute the CRLB, we first construct the Fisher information matrix IF using Eq.
(3.23). Although the number of degrees of freedom used to describe the object is small,
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Table 3.2: The characteristic parameters for the simulations

probe
grid size

grid
spacing

wavelength
scanning

grid
overlap

ratio
radius of

circular support
60×60 1µm 30nm 2×2 70% 30µm

object
grid size

grid
spacing detector

pixel
number

pixel size
propagation

distance
70×70 1µm 60×60 50µm 5cm

namely 70×70×2 elements, where the factor 2 is due to the fact that the object function is
complex, the discretised Fisher matrix already includes 9800×9800 elements. The CRLB
is obtained by numerically computing the inverse of IF . Since IF,i j is an symmetric ma-
trix with real entries, one can apply the eigenvalue decomposition to find the inverse of
the Fisher matrix. We select the eigenvalues of IF that are bigger than a default tolerance,
then use these eigenvalues and the corresponding eigenvectors to compute the inverse
of IF . This calculation is done by utilizing the ’pinv’ routine in MATLAB. The diagonal
elements of the inverse matrix I−1

F consists of an array of 70×70×2 elements, of which
the first 70×70 elements correspond to the CRLB of A(r⊥) and the last 70×70 elements
contain the CRLB of φ(r⊥) .

We define the illumination power by means of the total photon number (PN) count-
ing over the cross section of the probe, given by:

PN =
∑

r⊥ |P (r⊥)|2
ħω . (3.26)

An important property of the CRLB is that it is proportional to the reciprocal of the il-
lumination power. This property follows from the fact that Eq. (3.23) and Eq. (3.24) are
proportional to the input power or the square of the probe P j . The observation that the
CRLB scales with the reciprocal of the illuminating power is confirmed by the computa-
tions discussed below.

In the remainder of this section we show the computed CRLB for high illumination
power, i.e. PN = 109, and for low illumination power, i.e. PN = 103, as examples. The
influence of the object and the probe on the CRLB will be discussed separately.

3.3.1. THE INFLUENCE OF THE ILLUMINATION ON THE CRLB
In order to investigate the influence of the illumination on the CRLB, we start by studying
Case-1 and Case-2 described in Table 3.1. For these cases, the actual object, the actual
illumination and the computed CRLB are shown in Fig. 3.1 and Fig. 3.2. We let the
object have uniform transmission and thickness function for the time being. For Case-1,
the probe function P has uniform power throughout its circular support and zero value
outside its support, but the phase of the probe has variation in the form of two characters
’P’ as shown in Fig. 1a4. On the other hand, the illumination in Case-2 has the shape of
the character ’P’ and truncated by the circular support as shown in Fig. 3.2a3, and its
phase has the same features consisting of two characters ’P’ as in Case-1 (see Fig. 2a3
and Fig. 2a4). Considering that a perfectly collimated beam is difficult to obtain, we
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have chosen the wavefront of the illumination to be non-uniform for both Case-1 and
Case-2.

A(r) ϕ(r)

(a1)
(a2)

CRLB of A(r) CRLB of ϕ(r)
PN=10

(b1) (b2)

(a3) (a4) (a5)

|P(r)|
max[|P(r)|] phase[P(r)]

|P(r-R  )|

max[              ]
m∑

m
2

|P(r-R  )|m∑
m

2
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(c2)

CRLB of ϕ(r)
PN=10 3

Figure 3.1: The CRLB computed from the Fisher matrix for Case-1. (a1) and (a2) are the object’s actual trans-
mission A(r⊥) and actual phase function φ(r⊥), respectively. (a3) and (a4) show the actual amplitude and
phase of the probe function, respectively. (a5) shows the normalized sum of the intensities of the illumina-
tions. (b1) and (b2) show the CRLB of A(r⊥) and φ(r⊥), respectively, for the case of PN = 109. (c1) and (c2) are
the CRLB for the case of PN = 103.

It is seen in Fig. 3.1 that the CRLB of the object resembles the normalized sum of the
intensities of the illuminations shown in Fig. 3.1a5. In particular, the part of the object
which is illuminated 4 times reaches a variance approximately 4 times smaller than the
part which is illuminated only once, and this conclusion holds for both the object’s local
transmission A(r⊥) and phase function φ(r⊥). Interestingly, when the dose distribution
of the illumination is more complicated as given in Fig. 3.2a3 and Fig. 3.2a4, the CRLB
shown in Fig. 3.2b and Fig. 3.2c again resemble the overall illumination pattern shown
in Fig. 3.2a5. In other words, the more illumination power we apply to the object, the
lower the minimum variance of the obtained reconstruction. One can notice that the
maximum of the CRLB in Fig. 3.2c and Fig. 3.2d is in the yellow corner and is larger than
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the CRLB in Fig. 3.1. This is because for Case-2 the illuminating power is concentrated in
the ’P’ character, as shown in Fig. 3.2(a3). Around the yellow corner there are parts of the
object where the computed CRLB is zero. These parts of the object are not illuminated.
For the areas where IF is zero, the computed CRLB is also put equal to zero because we
ignore these singular values of IF . In reality the CRLB there is infinite.
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Figure 3.2: The calculated CRLB for Case-2. (a1) - (a5) are the actual object, probe and the normalized sum of
the intensities of the illuminations, respectively. (b1) and (b2) are the CRLB of A(r⊥) and φ(r⊥), respectively,
for PN = 109. (c1) and (c2) are the CRLB for the case of PN = 103.

Moreover, we can see in Fig. 3.1 and Fig. 3.2 that the CRLB is linearly proportional
to the inverse of PN (i.e. the illumination power). This calculation result is in agreement
with Eq. (3.23) because the probe function P (r⊥) can be written as the factor

p
PN times

the normalized P (r⊥). On the other hand, the computed CRLB of both A(r⊥) and φ(r⊥)
do not show any influence due to the spatial variation of the phase of the probe. There-
fore, we conclude that it is the illumination intensity pattern, i.e. the dose distribution,
which strongly determines the CRLB in ptychography for Poisson noise.
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3.3.2. THE INFLUENCE OF THE OBJECT ON THE CRLB
The Fisher matrix in Eq. (3.23) is in fact a function of the object, and hence so is the
CRLB. To find the influence of A(r⊥) and φ(r⊥) on the CRLB, we focus on Case-3 and
Case-4 from now on. To reduce the influence of the illumination to a minimum, we let
the probe function be a plane-wave with circular support. The influence of the object’s
transmission and phase function is investigated separately. In Case-3 we let the function
A(r⊥) have the shape of the character ’A’ whileφ(r⊥) is kept uniform, as shown in Fig. 3.3.
The minimum value of A(r⊥) is 0.1. For Case-4, the function A(r⊥) is uniform whereas
the phase function φ(r⊥) has the shape of the character ’T’ as shown in Fig. 3.4.
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Figure 3.3: The CRLB for Case-3. (a1) - (a5) are the actual object, probe and the normalized sum of the intensi-
ties of the illuminations, respectively. (b1) and (b2) are the CRLB of A(r⊥) andφ(r⊥), respectively, for PN = 109.
(c1) and (c2) are the CRLB when PN = 103.

The computed CRLB of the object for Case-3 and Case-4 is illustrated in Fig. 3.3b,
Fig. 3.3c, Fig. 3.4b and Fig. 3.4c, respectively. It is clear that our conclusion in Section
3.1 still holds, i.e. the CRLB is very similar to the pattern of the sum of the intensities
of the illuminations. On the other hand, we can see also that the object’s local trans-
mission A is predominant in determining the CRLB of φ, as shown in Fig. 3.3(b2) and
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Fig. 3.3(c2). This result agrees with Eq. (3.23), because the function A appears in the
terms of IF which relates to φ. However, the influence of φ on the CRLB is much less
than A. Therefore, we conclude that the second term in Eq. (3.23) is dominant. In
other words, when the estimator of ptychography is unbiased, the variance of the ob-
ject’s transmission A(r⊥) is strongly determined by the illumination power and dose dis-
tribution, whereas the variance of the object’s phase φ(r⊥) is influenced by both of the
transmission A(r⊥), the illumination power and the dose distribution.
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Figure 3.4: The CRLB for Case-4. (a1) - (a5) are the actual object, probe and the normalized sum of the in-
tensities of the illuminations, respectively. (b1) and (b2) are the CRLB of A(r⊥) and φ(r⊥), respectively, when
PN = 109. (c1) and (c2) are the CRLB for PN = 103.

In the next section, the CRLB shown in Fig. 3.1 - Fig. 3.4 are used as references for
Monte Carlo experiments.

3.4. MONTE CARLO ANALYSIS
To validate our calculation of the CRLB, Monte Carlo computations have been performed.
For consistency, we discretise the probe and the object in the same way as described in
Table 3.2. The wavelength, object, probe, far field measurements and grid sizes are as
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described in Table 3.2 also. The Fresnel number of the system is 0.15. Hence for this
configuration the detector is in the Fraunhofer region.

The ptychographic data with various level of noise is generated as follows. For every
ptychography simulation and for every probe position, we first assign the probe function
with corresponding photon numbers in accordance with the PN that is chosen. Then,
the noise-free diffracted wavefield in the far field is calculated, and the Poisson random
number generator in MATLAB is applied to generate the noisy data.

To verify the asymptotic property of the maximum likelihood method of Eq. (3.16),
we developed and implemented Algorithm 2 as described in the Supplement section
3.6. To mitigate ambiguity problems of ptychography [8], e.g. the global phase shift,
the conjugate reconstruction and the raster grid pathology, it is assumed that the probe
used in the Monte Carlo experiment is known. To shorten the computation time and
to improve the convergence, the conjugate gradient method [6, 14] is implemented in
Algorithm 2.

For comparison, the performance of another popular method, namely the amplitude-
based cost function minimization approach [15], was investigated in the Monte Carlo
experiment also. This is implemented in Algorithm 3. The idea of this algorithm is to
retrieve the object by minimizing the cost function defined in Eq. (3.5). We remark that
one can alternatively derive Algorithm 3 from the maximum likelihood method by using
the variance stabilization transform [5, 6, 12, 16, 17]. Algorithm 3 is also described in the
Supplement section 3.7.

To investigate the performance of the above mentioned algorithms, the variance and
the squared bias of the estimator are evaluated in our Monte Carlo analysis. Explicitly,
the variance of an estimator Ô(r⊥) is defined by [2]:

Var
[
Ô(r⊥)

] = E
{[

Ô(r⊥)−〈
Ô(r⊥)

〉]2
}

, (3.27)

where 〈
Ô(r⊥)

〉 = E
[
Ô(r⊥)

]
, (3.28)

and the squared bias of the estimator is given by:

Bias2 [
Ô(r⊥)

] = ∣∣〈Ô(r⊥)
〉−Oo(r⊥)

∣∣2
, (3.29)

where Oo is the actual object function.
In order to compute the expectation accurately, 2000 individual ptychographic data

sets have been generated for all for cases mentioned in Table 3.1 and for different value
of PN. These data-sets have been post-processed by Algorithm 2 and Algorithm 3, re-
spectively, and the results are discussed next.

3.4.1. THE STATISTIC PROPERTIES OF THE MAXIMUM LIKELIHOOD METHOD

AND THE AMPLITUDE-BASED COST MINIMIZATION METHOD, AND THE

INFLUENCE OF THE ILLUMINATION
We begin with the case of uniform object function and structured illumination, i.e. Case-
1 and Case-2. For these cases the actual object and probe function are as in Fig. 3.1a and
Fig. 3.2a.
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When the illumination have a uniform dose distribution but a structured wavefront,
the variance and bias of both Algorithm 2 and Algorithm 3 are shown in Fig. 3.5. In line
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Figure 3.5: The result of Monte Carlo experiment for Case-1. (a1) and (a2) are the variance and bias squared of
the object’s transmission A when PN = 109, respectively, obtained with Algorithm 2. (a3) and (a4) are the vari-
ance and bias squared of the object’s thickness φ, respectively. (b1)-(b4) show the variance and bias squared
when PN = 103, respectively, obtained with Algorithm 2. (c1)-(c4) and (d1)-(d4) show the results obtained with
Algorithm 2 when PN = 109 and PN = 103, respectively.

with the CRLB given in 3.1b, we see that both algorithms that asymptotically achieve
the CRLB when PN = 109. The squared bias of the two algorithms are 100 times smaller
than the variance, hence both Algorithm 2 and Algorithm 3 are asymptotically unbiased
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when the photon number is high. Meanwhile, by inspecting Fig. 3.5a and Fig. 3.5c,
one can infer that the variance of both algorithms are related to the local illuminating
power as mentioned in Section 3.2, i.e. the parts of the object that are illuminated 4
times have a variance that is 4 times smaller than the parts that are illuminated only
once. A very similar conclusion can be made for Case-2, i.e. when the illumination’s
local dose distribution is not uniform. As shown in Fig. 3.6a and Fig. 3.6c, the variance
of both algorithms agree with the CRLB given in Fig. 3.2b and is inversely proportional
to the local illumination power given in Fig. 3.2a5.
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Figure 3.6: The Monte Carlo experiment result for Case-2.
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When the photon number is low, i.e. PN = 103, Algorithm 2 and Algorithm 3 behave
differently with the current data-set. In particular, we see in Fig. 3.5 and Fig. 3.6 that
Algorithm 2 in fact reaches smaller bias than Algorithm 3 when the photon number is
low. This suggests that the approach based on the maximum likelihood principle can
provide less bias than the amplitude-based cost function minimization method. Mean-
while, the variance of the estimator Algorithm 3 tends to be smaller than Algorithm
2. This can be explained from the fact that minimizing the amplitude-based cost func-
tion minimization can approximately be regarded as a variance stabilizing de-noising
algorithm [5, 6, 12, 16]. On the other hand, the two algorithms share certain properties.
For low photon count, both Algorithm 2 and Algorithm 3 have lower variance than the
CRLB, which indicates they cannot converge to unbiased estimators and cannot reach
the CRLB with the current Monte Carlo data-set. More discussion about the case of low
photon count is given in Section 3.5.1.

In Fig. 3.5 and Fig. 3.6 we see that the wavefront profile of the probe only appears
in the bias of the reconstruction when the photon count is low. The local illumination
power determines the bias for Case-3 and Case-4 for PN = 103 as well. For higher photon
number, e.g. PN = 109, there is no trace of the illumination in the bias for Case-3 and only
negligible trace of illumination’s local power for Case-4. Therefore, we conclude that the
illumination’s wavefront profile only influence the statistic property of the algorithms
when the photon count is low, whereas the illumination’s local power always influences
the variance.

3.4.2. THE INFLUENCE OF THE OBJECT ON THE VARIANCE AND BIAS

Next we consider Case-3 where the object has a spatially varying amplitude but the phase
is uniform and Case-4, where the amplitude is uniform but the phase has variation. In
both cases the probe is a plane wave truncated by a circular aperture. We use the object
and probe as in Fig. 3.3a and Fig. 3.4a. The Monte Carlo results obtained with Algorithm
2 and Algorithm 3 for Case-3 are shown in Fig. 3.7 and for Case 4 in Fig. 3.8.

When PN = 109, the variance shown in Fig. 3.7 and Fig. 3.8 agree with the computed
CRLB in Fig. 3.3 and Fig. 3.4. To be explicit, the variance of the phase of the object
φ(r⊥) is determined by both the object’s transmission A(r⊥) and the power of the illumi-
nation. The part of the object with lower local transmission will have high variance in
reconstruction of the phase. On the other hand, the variance of A(r⊥) is influenced by
the sum of the intensities of the illuminations only. These conclusions are true for both
algorithms. Meanwhile, we see that the object itself does not influence the bias of the
reconstruction when the photon count is high, which means that both algorithms are
unbiased for high photon count.

When the photon number is low, i.e. PN = 103, the profile of the variance deviates
from the computed CRLB which is given in Section 3.2. This statement is true for both
Algorithm 2 and Algorithm 3, and is particularly obvious for φ(r⊥) as shown in Fig. 3.7
and Fig. 3.8. We can see that there is trace of the actual A(r⊥) in Fig. 3.7b2 and in Fig.
3.7d2, and trace of the actual φ(r⊥) in 3.8b2 and in Fig. 3.8d2, respectively. This trace
indicate that, with the current data-set, both algorithms cannot converge to the CRLB
for low photon counts.

Interestingly, although the object’s transmission A(r⊥) predominately determines
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Figure 3.7: The Monte Carlo experiment result for Case-3.
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Figure 3.8: The Monte Carlo experiment result for Case-4.
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the variance of the object’s phase function φ(r⊥), there is no effect of A on the bias of
φ for any value of PN. In the mean time, we see that φ do not influence the bias of A
for any value of PN, as shown in Fig. 3.7 and Fig. 3.8. Together with Fig. 3.5 and Fig.
3.6 in the previous section, we conclude that the profile of the illumination and the ob-
ject have more influence on the variance of the solutions obtained with Algorithm 2 and
Algorithm 3, more strongly than on the amount of bias.

3.4.3. THE CRLB, VARIANCE AND BIAS-VARIANCE-RATIO IN PTYCHOGRA-
PHY

It is seen in Fig. 3.5 - Fig. 3.8 that the ratio of the bias and the variance, as obtained with
both algorithms, tend to increase when the photon count is lower. To further investi-
gate this trend and the property of the two algorithms, we define the bias-variance-ratio
(BVR) of the estimator Ô by:

BVR
(
Ô

) = ∑
r⊥ Bias2

[
Ô(r⊥)

]∑
r⊥ Var

[
Ô(r⊥)

] . (3.30)

In Fig. 3.9 we show the BVR of Algorithm 2 and Algorithm 3 for various photon
counts and for Case-1 to Case-4. The overall CRLB and variance of A(r⊥) and φ(r⊥) ob-
tained from both algorithms are also shown. We see that the overall variance of both al-
gorithms are the same as the computed CRLB asymptotically when the photon number
is high. For lower photon counts, the variance become lower than the CRLB, meanwhile
the BVR of both algorithms increase. For our current configuration, this threshold is at
PN = 106. When PN < 106, the variance of Algorithm 2 is higher than Algorithm 3 for all
Case-1 to Case-4. On the other hand, the BVR of Algorithm 2 is higher than Algorithm
3, which indicates that the Algorithm 2 generally has lower bias than Algorithm 3.

3.5. DISCUSSION

3.5.1. DISCUSSION ABOUT IMPROVING THE SUFFICIENCY OF THE PTYCHO-
GRAPHIC DATA-SET.

It is seen in the Monte Carlo results that, for low photon counts, the variance with both
Algorithm 2 and Algorithm 3 are lower than the computed CRLB. This observation in-
dicates that, with the current data-set, the two estimators are unbiased for high photon
count but cannot converge to the CRLB when the photon count is low.

One may argue that the variances shown in Fig. 3.9 are lower than the CRLB when
PN< 106 because the current data-set is insufficient [2]. In particular, if sufficient amount
of data is given, the maximum likelihood estimator should be asymptotically unbiased
and achieves the CRLB if sufficient amount of data is given, as shown in Eq. (3.16). In-
deed, we see in the simulation that Eq. (3.16) holds when PN> 106, which indicates that
the current data-set is already sufficient when PN> 106. However, for low photon counts,
the current data-set is insufficient for the maximum likelihood estimator to converge to
the CRLB.

To explain this fact, we first investigate the signal-to-noise ratio (SNR) of each j th
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Figure 3.9: The CRLB, variance and bias-variance-ratio of two algorithms for various of values of PN. The value
of BVR(φ) in (c4) is much smaller than BVR(A) in (c3), which agree with the Monte Carlo result shown in Fig.
3.7b and Fig. 3.7d.
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ptychographyic measurement with Poisson noise:

SNRP, j (k⊥) =
√

n j (k⊥). (3.31)

For typical far-field diffraction patterns the intensities are not uniform. Hence, the SNR
should be a function of k⊥ and the value of SNR should vary per pixel on the detector.
Nevertheless, we can still see that the SNR will in general decrease when the number of
photons detected is decreased. Therefore, for Poisson noise, one can extract less and less
information about the actual signal when the photon counts is decreasing.

Moreover, we note that the measurement n j (k⊥) is discrete and contains natural
numbers only, which is associated with the particle nature of light leading to a quan-
tization error at the detector. This discreteness has more disruptive effect on the mea-
surement for the case of low photon counts than the case of high photon counts. Taking
an extreme example, suppose only one photon is detected, this photon will most likely
appear at k⊥ = 0. Therefore, almost all of the spatial information about the object is
lost in the measurement, and hence it is more difficult for estimators to converge to the
CRLB.

If we want to increase the size of data-set while keeping the current characteristic
simulation parameters, one way is to take multiple measurements for each j th probe’s
position. Suppose for each probe’s position we take T measurements, denoted by: n j ,t (k⊥),
where t = 1,2, · · · ,T . A straightforward way to process the data is simply to compute the
mean of the measurements:

n(T )
j (k⊥) =

∑
t n j ,t (k⊥)

T
. (3.32)

It has been shown that, when T is large enough, Eq. (3.32) is a sufficient statistic for
Poisson distribution. That is, n(T )

j carries all the information as in the data-set: n j ,t ,

t = 1,2, · · · ,T . In Fig. 3.10 the Monte Carlo result with data-set n j ,t (k⊥) is shown. To
give an example, we study Case-1 for low photon counts, i.e. PN=103. We note that,
by summing over all T measurements, the total photon number PN(T ) counting in the
probe is now given by:

PN(T ) =
∑

r⊥ |P (r⊥)|2
ħω ∗T = PN∗T, (3.33)

and the CRLB is proportional to the reciprocal of PN(T ) according to Eq. (3.23).
Fig. 3.10a shows the computed CRLB and the variance of reconstruction for vari-

ous of number of measurements T . We see that, for both two algorithms, the variances
approach the CRLB as the number of measurements is increasing. In particular, the vari-
ance of Algorithm 2 have reached the CRLB when T is up to 200. Meanwhile, it is seen
in Fig. 3.10b that the bias of Algorithm 2 is considerably small compared to the variance
when T > 200. Therefore, we confirm that, for low photon counts, Algorithm 2 can be
asymptotically unbiased and converge to the CRLB by increasing the number of mea-
surements. We see in Fig. 3.10 that this conclusion is true for Algorithm 3 also. However,
the speed of this convergence for Algorithm 3 is slower than for Algorithm 2.
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Figure 3.10: The CRLB, variance and bias-variance-ratio of two algorithms for various of number of measure-
ments T . This plot is for Case-1 and for PN= 103.

On the other hand, the method proposed in this subsection can be regarded as a way
to increase the total photon flux for each probe’s positions. This method can be imple-
mented by taking multiple acquisitions (with number T ) for each probe’s position. In
this way, one can illuminate the sample with relatively high photon flux, while avoiding
the influence of the limited dynamic range of the detector. Whether there are other ap-
proaches to improve the sufficiency of the ptychography data-set is above the scope of
this chapter, but the subject will be studied in the future.

3.5.2. COMPARISON WITH THE WIGNER DISTRIBUTION DE-CONVOLUTION

METHOD AND DISCUSSION ON THE MINIMIZATION OF THE CRLB
Till now we have investigated the statistic property of the iterative ptychographic algo-
rithms. The Wigner distribution de-convolution (WDD) method [18–21] on the other
hand, is an non-iterative ptychographic method and provides an approximate closed-
form solution to ptychography. The framework of the WDD method have been intro-
duced in Section 1.2.2, from Eq. (1.71) to Eq. (1.75), and is discussed further in the fol-
lowing. We can regard the ptychographic measurement be a 4D data-set with indices k⊥
and R⊥, j . By taking the Fourier transform of this 4D data-set w.r.t. R⊥, j and the inverse
Fourier transform w.r.t. k⊥, we arrive at a 4D array which is denoted by H [18]:

H(r⊥,K⊥) ≈ WO(r⊥,K⊥) ·WP (r⊥,−K⊥), (3.34)

where WO and WP are the Wigner distribution of the object O(r⊥) and the probe P (r⊥):

WO(r⊥,K⊥) = ∑
r̃⊥

O∗(r̃⊥)O(r⊥+ r̃⊥)exp(−iK⊥ · r̃⊥) , (3.35)

where r̃⊥ is an auxiliary coordinate in object plane. K⊥ is a 2D coordinate in reciprocal
space. Suppose K⊥ and R⊥, j are meshed in rectangular grids and have the spacing:

K⊥ = [mx∆Kx ,my∆Ky ]T , (3.36a)

R⊥, j = [mx∆Rx ,my∆Ry ]T , (3.36b)
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where mx = 1, · · · , Mx and my = 1, · · · , My are the indices of probe position along the x
and y direction. The relation of K⊥ and R⊥, j is:

[∆Kx ,∆Ky ]T = 2π[(Mx∆Rx )−1, (My∆Ry )−1]T . (3.37)

Once H(r⊥,K⊥) has been computed and if we have the knowledge about P (r⊥), we can
obtain WO(r⊥,K⊥) through an element-wise division. When the measurement is noisy
or the array WP contains zero value, this division is replaced by applying Wiener filter.
To reconstruct the object O from WO(r⊥,K⊥), many strategies have been proposed [18–
20]. Note that the resolution obtained through the WDD method equals to the spacing
of the scanning step of the probe. Therefore, in order to achieve the same resolution and
the same field-of-view as obtained from the iterative ptychographic methods, one needs
to take finer scanning steps and to record more diffraction measurements in the WDD
scheme. However, the line of thinking of the WDD method may provide an alternative
insight of the mechanism of ptychography.

For the WDD scheme, it has been proposed [20] that a probe with a strong curved
wavefront or a probe created by a diffuser is preferred in practice. This is because such
probes are more evenly distributed over the function WP (r⊥,K⊥), hence it is less likely
to divide H(r⊥,K⊥) by zero in Eq. (3.34). For the iterative ptychographic methods, it
has been shown experimentally that using such probes can give a more promising re-
construction than using plane wave illumination with a finite support [21, 22]. Indeed,
comparing to plane wave illumination, such probes ease up the effect of the limited dy-
namic range of the detector and meanwhile change the distribution of SNR over the de-
tector plane. However, to the best of our knowledge, it is still inconclusive in theory
that whether such probes lead to a more noise-robust scheme in ptychography. This is
because: (1) For iterative ptychographic methods, one does not compute the division
as given in Eq. (3.34), but instead one updates the reconstruction of the object by ap-
plying optimization algorithms, e.g. gradient descent method or alternative projection
method. Although regularization techniques are used in iterative ptychographic meth-
ods as shown in Supplement section 3.7, the regularization do not directly relates to the
spatial-frequency spectrum of the probe. (2) For iterative ptychographic methods, the
grid size of the probe’s position is determined by the overlap ratio as given in Eq. (4.2.5).
It has been reported that the preferred overlap ratio is 60%− 80% [13] so that one can
obtain optimal reconstruction in ptychography. Hence, the grid size of the probe’s posi-
tion is smaller than the grid size of the discretized object function. For instance, we have
shown in Table. 3.2 that we can reconstruct a 70×70 array object with a 2×2 grid of R⊥, j .
Hence, K⊥ is merely meshed on a 2×2 grid according to Eq. (3.37). If we wish to apply the
WDD analysis to this case, it is reasonable to design a probe which maximizes WP (r⊥,K⊥)
rather than use a probe which has a evenly distributed spatial-frequency spectrum.

Although the computed CRLB and the Monte Carlo results presented in this chapter
show that the CRLB is predominantly determined by the local illuminating power and
the object’s local transmission, we note that the wavefront of the probe may influence
the reconstruction. Referring to the first term on the right hand side of Eq. (3.23), we see
that the Fisher matrix is a function of the actual object and the complex valued probe.
Therefore, for a certain object, it is possible to engineer the probe so that the CRLB is
minimized. This minimization process can be done numerically because the CRLB is
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obtained by computing the inverse of the Fisher matrix. It is likely that for different shape
of object we will arrive at different design of the probe. This optimization of the CRLB
is out of the scope of this chapter but is certainly an interesting subject which deserves
further research.

3.6. CONCLUSION
In the first part of this chapter we have studied the influence of Poisson noise on pty-
chography by analyzing the CRLB. The CRLB was theoretically derived and numerically
computed from the Fisher matrix for 4 different cases. It was found that if the estimator is
unbiased, the minimum variance in the presence of Poisson noise is mostly determined
by both the illumination’s local dose distribution and the object’s local transmission. The
calculations of the CRLB indicate that the minimum variance is inversely proportional
to the number of photons in the illumination beam. The computations of the CRLB us-
ing the Fisher matrix were validated with Monte Carlo analysis. It was confirmed that
the local illumination power has a strong effect on the variance of the reconstruction
of both object’s transmission and phase function. Meanwhile the object’s actual local
transmission strongly influences the reconstruction of the object’s phase.

In the second part of this work, the statistical properties of the maximum likelihood
method and the amplitude-based cost function minimization algorithm are studied.
Both algorithms were applied in the Monte Carlo simulations, using a conjugate gradient
based implementation. It was shown that both approaches are asymptotically unbiased
with variances that are slightly larger than the CRLB when the photon counts are high.
For the case of lower photon number, the Monte Carlo analysis showed that both meth-
ods require more measurement to converge to the CRLB. While increasing the number
of data, it was shown that the maximum likelihood method converges to the CRLB faster
than the amplitude-based cost function minimization algorithm.

Our result can help to understand the defects that occur in the ptychograghy recon-
struction from noisy data. Our conclusions suggest that more illumination power should
be given to the part of object which is of most interest, although this may be difficult to
realize in a practical ptychography experiment. As next steps of research, the perfor-
mance of other ptychographic de-noising algorithm [23–27] deserve further investiga-
tion. Investigating the CRLB and the statistic properties of the two algorithms for Gaus-
sian noise and the mixed Poisson-Gaussian noise is also an interesting topic for further
research.

3.7. SUPPLEMENT
The detail of Algorithm 2 is described in the pseudo-code. Unlike Eq. (3.12), the update
step sizeβ is not a constant anymore in Algorithm 2. Instead, an optimalβ for every iter-
ation n is obtained in the manner described in [28]: (1) Based on the computed kth local
gradient, calculate the value of the likelihood function LP for at least three different val-
ues of β, e.g. [0.01,0.5,1]. (2) Approximate LP by a quadratic function of β. To do this we
apply the ’polyfit’ routine in MATLAB. (3) Choose the value for β for which the quadratic
function is minimum. The parameter βn is chosen such that the update direction of the
object function is conjugate between two subsequent iterations, for which many propos-
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Algorithm 2 Maximum likelihood method with Poisson noise

1: itermax = 103, δL = 10−20, γ= 10−5, A1 = Ao, φ1 =φo, n = 1.
2: repeat
3: compute the steepest descent gradient of A and φ using Eq. (3.12):

g A,n =∑
j −ℜ

{
P∗

j e−iφn F−1
⊥

[(
n j

N j +γ −1
)
F⊥

(
P j On

)]}
,

gφ,n =∑
j −ℑ

{
P∗

j Ane−iφn F−1
⊥

[(
n j

N j +γ −1
)
F⊥

(
P j On

)]}
.

4: if n = 1 then
5: ∆A,n = g A,n , ∆φ,n = gφ,n .
6: else
7: use the formula of Polak–Ribière:

βPR
A,n = 〈(g A,n−g A,n−1)|g A,n〉

∥g A,n−1∥2
2

,

βPR
φ,n = 〈(gφ,n−gφ,n−1)|gφ,n〉

∥gφ,n−1∥2
2

,

8: βA,n = max
(
βPR

A,n ,0
)
, βφ,n = max

(
βPR
φ,n ,0

)
,

9: compute the conjugate direction:
∆A,n = g A,n +βA,n∆A,n−1,
∆φ,n = gφ,n +βφ,n∆φ,n−1.

10: end if.
11: optimize the update step size:

βA,n = argmin
βA

LP
(

An +βA∆A,n
)
,

βφ,n = argmin
βφ

LP
(
φn +βφ∆φ,n

)
.

12: update the object function:
An+1 = An +βA,n∆A,n , φn+1 =φn +βφ,n∆φ,n .

13: if n = 11 then
14: γ= 10−20,
15: end if.
16: n = n +1.
17: until n = itermax or

∣∣LP,n −LP,n−1
∣∣≤ δL .
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als exist [29]. Based on the formula of Polak–Ribière [30], we choose βn = max
(
βPR

n ,0
)
,

where βPR
n is given by:

βPR
n = 〈(gn − gk−1

) |gn〉∥∥gk−1
∥∥2

2

, (3.38)

where gn is the gradient of LP with respect to O(r⊥) in the kth iteration. When the
calculated βPR

n have negative value, βn resets the search direction from the conjugate
gradient back to the local decent gradient direction, i.e. ∆n = gn .

Algorithm 3 Amplitude-based cost function minimization approach

1: itermax = 103, δE = 10−20, γ= 10−3, A1 = Ao, φ1 =φo, n = 1,
2: repeat
3: compute the steepest descent gradient of A and φ:

g A,n =∑
j −ℜ

{
P∗

j e−iφn F−1
⊥

[( p
n jp

N j +γ
−1

)
F⊥

(
P j On

)]}
,

gφ,n =∑
j −ℑ

{
P∗

j Ane−iφn F−1
⊥

[( p
n jp

N j +γ
−1

)
F⊥

(
P j On

)]}
.

4: follow 4th-10th steps of Algorithm 2.
5: optimize the update step size:

βA,n = argmin
βA

E
(

An +βA∆A,n
)
,

βφ,n = argmin
βφ

E
(
φn +βφ∆φ,n

)
.

6: follow 12th-16th steps of Algorithm 2.
7: until n = itermax or |En −En−1| ≤ δE .

In order to prevent that the algorithm terminates in a local minimum, the initial
guess of the object is selected to be the actual object Ao(r⊥) and φo(r). The denomi-
nator n j in Eq. (3.12) is a function of k⊥, and may be close to zero for some k⊥. Hence
the maximum likelihood method can be unstable. To avoid the instability, a regulariza-
tion parameter γ is introduced in Algorithm 2, of which the value can be determined in
practice depending on the noise level. Throughout this chapter, we let γ be 10−5 (note
that n j is non-negative integer) for the first 10 iterations, then reset γ to 10−20 after the
10th iteration. Algorithm 2 terminates when the change of the likelihood function be-
tween two subsequent iterations is smaller than a threshold δL , or when the number of
iteration reaches a maximum itermax.

For comparison, the performance of another popular method, namely the amplitude-
based cost function minimization approach [15], is investigated in the Monte Carlo ex-
periment. The approach is described in Algorithm 3, in which the search of the optimal
step sizeβn and the method of conjugate gradient are added too. Similar to Algorithm 2,
Algorithm 3 stops when the change of the cost function between two subsequent itera-
tions is smaller than a thresholdδE , or when the number of iteration reaches a maximum
itermax.

Finally, we note that the characteristic parameters shown in the first step of Algo-
rithm 2 and Algorithm 3, i.e. itermax, γ, δL and δE are chosen through a ’trial and error’



REFERENCES

3

95

process. For each Monte Carlo simulation, we start with a relative large regularization
factor, i.e. γ= 10−5. After the algorithms have converged, we decrease the value of γ for
final refinement. The error tolerance δL and δE are visually determined such that the al-
gorithms are indeed converged. Throughout the simulation, we observed that the most
influential factor which may devastate the simulation result is the choice of the initial
guess of the object. How to obtain a initial guess which is closed to the actual object is
an important issue in practice but is out of the scope of this chapter.
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4.1. INTRODUCTION
According to Section 1.1.3, the ptychographic measurement I j (k′

⊥) is commonly recorded
by a 2D detector, e.g. a charge-coupled device (CCD). Therefore k′

⊥ is a discretized grid
and is meshed according to the distance z and the size of pixel of the detector. The re-
trieved object function, denoted by Ô, is also on a discretized grid r⊥. r⊥ and k′

⊥ have
the relation: [

∆x,∆y
]T = 2π

[
(N det

x ∆k ′
x )−1, (N det

y ∆k ′
y )−1

]T
, (4.1)

where ∆x and ∆y are the spacing of a single grid cell in x-axis and y-axis, respectively,
and ∆k ′

x and ∆k ′
y are the spacing of a grid cell in kx and ky , respectively. Note that the

total field-of-view (FoV) in the object plane is:

FoV = [
Nx∆x, Nx∆y

]T , (4.2)

where Nx > N det
x and Ny > N det

y due to that ptychography is a scanning imaging tech-
nique which provides an extended FoV. In line with this extended FoV, we have the effec-
tive spacing of the grid cell in the reciprocal space:[

∆kx ,∆ky
]T =

[
(Nx )−1N det

x ∆k ′
x , (Ny )−1N det

y ∆k ′
y

]T
. (4.3)

We can see that, when the influence of noise is negligible, the relation given in Eq.
(4.1) imposes a resolution limit to the reconstruction in ptychography. To overcome
this limit, several ’superresolution’ methods have been proposed [2–4]. One of the ideas
lying behind these methods is to impose additional a priori knowledge about the ob-
ject, e.g. analytic continuation of the Fourier transform of bounded support [5–7] or
sparsity [3, 4], to the algorithm. In this paper we show a parameter retrieval algorithm
which incorporates additional a priori knowledge about the object into ptychography.
We present this algorithm by numerically demonstrating two applications:

(1) Parameter retrieval of sub-wavelength particles using Fourier ptychography with dark
field measurements only. For this example the configuration is in line with the ’Rapid-
Nano’ particle scanner developed by TNO [8, 9]. The particle scanner is supposed to
detect nano-particles on an EUV reticle. Since only dark field images are recorded
in the scanner, the part of the spatial spectrum of the object in the neighborhood
of |k⊥| = 0 is lost. The missing data can in principle be filled in by analytic contin-
uation using the fact that the object has bounded support, however, this method is
unstable with noisy measurement and leads in practice to incorrect reconstructions
[7, 10]. However. as shown in Section 4.2, the proposed parameter retrieval algo-
rithm is able to extract information of sub-wavelength particles from the incomplete
data.

(2) Parameter retrieval of rectangular objects using real-space ptychography. This ex-
ample comes from practical applications in semiconductor industry where we often
want to measure the transmission, the width and the position of the rectangules on
flat substrates [11, 12]. We demonstrate the proposed parameter retrieval method
for this application in Section 4.3.
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To study the influence of Poisson noise on the proposed parameter retrieval scheme,
we compute the Cramér Rao Lower Bound (CRLB) and perform Monte Carlo analysis for
both two applications in the second part of this paper. We derive the general form of
the Fisher information matrix in Section 4.4. For application 1, the calulated CRLB and
Monte Carlo result are shown in Section 4.5. For application 2, the discussion about the
correlation of the parameters of the rectangular structure can be found in Section 4.6.

4.2. APPLICATION 1: PARAMETER RETRIEVAL OF SUB-WAVELENGTH

PARTICLES USING FOURIER PTYCHOGRAPHY WITH DARK FIELD

MEASUREMENT

4.2.1. DESCRIPTION OF THE ’RAPIDNANO 3’ PARTICLE SCANNER
The ’RapidNano 3’ particle scanner [8, 9] is designed to detect small dielectric particles
on a flat substrate. The particles are made of polystyrene latex (PSL) beads and the typ-
ical diameter of the particle is ∼ 50nm. The scanner has detection limit of 42 nm PSL
particles, i.e. the capture rate is 95% at this size. Note that the particles on the substrate
can be any material and PSL is only the calibration standard. The particles are sparsely
distributed on the sample mostly. The substrate is reflective, made of silicon, and its
lateral size can be up to 6x6 inch, i.e. the size of an EUV mask. The illumination is a
532nm, p-polarized, fully coherent plane wave laser beam. The incident angle of the il-
lumination is 60 degree, with 9 regularly distributed azimuth incident directions around
360 degree. The numerical aperture(NA) of the objective lens is 0.4, therefore the mea-
surement is a dark field image of the sample as is illustrated in Fig. 4.1.

4.2.2. SINGLE DIPOLE RADIATION
Considering that the diameter of the detected particles is around 10 times smaller than
the illumination wavelength, we begin by using the dipole radiation formula to model
the wavefield scattered by the particles. Suppose that there are N dipoles in the plane

z = 0, and the i th oscillating dipole is located at position ri =
[
r⊥,i ,0

]T , i = 1,2, · · · , N ,
and is excited by an incident plane wave Ein, j :

Ein, j = Aine ik j ·rêp (k j ) = Aine ik⊥, j ·r⊥ êp (k j ), (4.4)

where A2
in is proportional to the illumination power and êp (k j ) denotes the polarization

direction.
For the i th dipole with position r⊥,i , we denote the dipole moment by:

pi , j = αi Ein, j = αi Aine ik⊥, j ·r⊥,i êp (k j ), (4.5)

where ϵ0 is the permittivity of free space and αi is the polarisability of the particle. For a

dielectric sphere with diameter d , the dipole moment psphere
i , j in the quasi-static approx-

imation is given by:

psphere
i , j =

(
ϵr −2

ϵr +1

)
d 3

i Ein, j , (4.6)
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where ϵr = n2
PSL is the relative permittivity of the dielectric. nPSL is the refractive index

of the small particles. Since the real part of nPSL is ∼ 106 times larger than the imaginary
part, i.e. than the absorption index, we assume the αi is real valued for the rest of this
paper. We see that αi is proportional to the volume of the dielectric particle.

The electric field radiating from the i th dipole due to the j th illumination is given by
[13, 14]:

Escat,i , j =
↔
G (r,ri )pi , j , (4.7)

where
↔
G (r,ri ) is the dyadic Green’s function:

↔
G (r,ri ) = k2

4πϵ0

(↔
I + 1

k2 ∇∇
)

e ik|r−ri |

|r− ri |
, (4.8)

where
↔
I is the 3×3 identity matrix. Considering that the detector of the particle scanner

is insensitive to the polarization state and that the NA of the objective lens is 0.4, we
ignore the effect of the polarization of the wavefield for simplicity. Hence we arrive at a
scalar scattered amplitude given by:

Escat,i , j = Aink2αi e ik⊥, j ·r⊥,i G (r,ri ) , (4.9)

where

G (r,ri ) = k2

4πϵ0

e ik|r−ri |

|r− ri |
. (4.10)

4.2.3. DARK FIELD MEASUREMENT FROM THE PARTICLE SCANNER
By Fourier transforming Eq. (4.9) with respect to r⊥, we have:

F
(
Escat,i , j

)
(k⊥, z) = Aink2 e ikz |z|

8iπϵ0kz
αi e−ir⊥,i ·

(
k⊥−k⊥, j

)
. (4.11)

F
(
Escat,i , j

)
can be regarded as the 2D spatial spectrum of the scattered wavefield in the

plane z. The wavefield passes through the imaging system and forms an image in the
image plane. The imaging system acts as a low-pass filter as given in [15]. The detector
measures the low-pass filtered image of the sample, i.e. the field in the plane z → 0. We
therefore let e ikz |z| ≈ 1 for this moment. The low-passed wavefield at the exit pupil is
given by:

F
(
Escat,i , j

)
exit (k⊥) = 1kNA(k⊥)

Aink2

8iπϵ0kz
αi e−ir⊥,i ·

(
k⊥−k⊥, j

)
, (4.12)

where 1kNA(k⊥) represents the numerical aperture of the objective lens:

1kNA(k⊥) =
{

1, |k⊥| ≤ kNA,
0, |k⊥| > kNA.

(4.13)
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By summing over all the dipoles, we find the total field in the exit pupil, which is
denoted by Ψj :

Ψj (k⊥) = ∑
i

F
(
Escat,i , j

)
exit (k⊥)

= 1kNA(k⊥)
Aink2

8iπϵ0kz

∑
i
αi e−ir⊥,i ·

(
k⊥−k⊥, j

)
= Q(k⊥) ·O(k⊥−k⊥, j ), (4.14)

where

Q(k⊥, z) = 1kNA(k⊥)
Aink2

8iπϵ0kz
, (4.15)

and O(k⊥) is the Fourier transform of the object defined by

O(k⊥) = ∑
i
αi e−ik⊥·r⊥,i . (4.16)

Note that the object function is assumed to be independent of the angle of incidence, i.e.
the only effect of the tilted illumination is the shift of the Fourier transform of the object
function over the pupil plane. Finally, by inverse Fourier transformingΨj and taking the
squared modulus, we arrive at the expression for the measured intensity in the detector
plane:

I j (r′⊥) = ∣∣F−1 (
Ψj

)∣∣2
(r′⊥)

= ∣∣F−1 [
Q(k⊥+k⊥, j ) ·O(k⊥)

]∣∣2
(r′⊥), (4.17)

where r′⊥ is the 2D regular grid.

(a) (b)

ky

kx

ky

kx

(k  )┴O (k  )┴O
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Ωk  ┴∈

Figure 4.1: Graphical illustration of O(k⊥). (a) The blue disk is defined by 1kNA(k⊥) and indicates information
about O included in the single measurement I j (r′⊥). (b) The retrievable part of O from all given dark field
measurements.

For the configuration of the particle scanner,
∣∣k⊥, j

∣∣ is fixed and equal to k sin(π3 ).
This incident angle have been chosen in [8, 16], where the simulations show that ra-
tio between the scattering amplitude of the particles and the background substrate is
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maximized. In this paper we keep the value of
∣∣k⊥, j

∣∣ be k sin(π3 ), but the value can be
varied which is regarded as a potential subject in the future. The NA of the objective lens
is ∼ 0.4. Therefore, the intensity measurements do not contain any information about
O(k⊥ = 0) and its surrounding region, as shown in Fig. 4.1. The blue shaded area in
Fig. 4.1(a) illustrates the information about O(k⊥) included in the single measurement
I j (r′⊥), while the blue shaded area in Fig. 4.1(b) represents the retrievable information
from all measurements. We denote this retrievable part of O by 1ΩO(k⊥):

1Ω(k⊥) =
{

1, k⊥ ∈Ω,
0, k⊥ ∉Ω,

(4.18)

whereΩ is the blue shaded region in Fig. 4.1(b).

4.2.4. RETRIEVING THE PARAMETERS OF THE PARTICLES

To retrieveαi and the position r⊥,i of the dipoles, we first reconstruct the complex valued
function 1ΩO(k⊥) in the pupil plane from the set of intensity measurements I j (r′⊥). This
can be done by applying a ptychographic algorithm. For noisy measurements, one may
use the Maximum Likelihood estimator (MLE) if one can find a dominant noise model
[17, 18]. For the case of Poisson noise, we can apply gradient descent methods [19, 20] to
minimize the likelihood function LP given by Eq. (3.8) in the Supplement. We use the
MLE ptychographic algorithm which is given in [21] in the simulation and use 1ΩÔ(k⊥)
to denote the reconstruction obtained by the ptychographic method.

Once 1ΩÔ(k⊥) is obtained, we apply the method of least square to estimate αi and
r⊥,i of all dipoles. The number of freedom in this problem is N×3, where N is the number
of dipoles within the field-of-view (FoV). Note that ifαi is complex valued, the degrees of
freedom should be N ×4. When N is in the order of 100 ∼ 101, we have much less degrees
of freedom than in the traditional Fourier ptychography problem.

Our proposed parameter retrieval algorithm is shown in the following.

(1) Use the MLE ptychographic algorithm to retrieve the complex valued wavefield 1ΩO(k⊥)
in the pupil plane.

(2) From all the dark field intensity measurements, find the lower and upper bound of
αi and r⊥,i for i = 1,2, · · · , N . These bounds are denoted by: αl

i , αu
i , rl

⊥,i and ru
⊥,i .

(3) Solve the following problem:

arg min
αi ,r⊥,i

∥∥∥∥∥1ΩÔ(k⊥)−∑
i
αi e−ik⊥·r⊥,i

∥∥∥∥∥
2

k⊥∈Ω
,

subject to αl
i ≤αi ≤αu

i , i = 1,2, · · · , N ,

rl
⊥,i ⪯ r⊥,i ⪯ ru

⊥,i , i = 1,2, · · · , N , (4.19)

where ⪯ denotes vector inequality: rl
⊥ ⪯ ru

⊥ means x l ≤ xu and y l ≤ yu .
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Table 4.1: Configuration settings in the simulation

illumination imaging system
wavelength incident angle NA magnification

500nm 60 degree 0.4 20

detector grid spacing in object plane
pixel size pixel number FoV ∆x and ∆y

5µm 200×200 50µm 133.3nm

4.2.5. SIMULATION

To validate the proposed parameter retrieval algorithm, a preliminary simulation is re-
ported in this section. The configuration is drawn in Fig. 4.2 and the parameter settings
of the setup is described in Table 4.1. Since the NA of the imaging system is smaller than∣∣k⊥, j

∣∣, the measurements at the detector plane are always dark field images. We assume
that the detector is insensitive to the polarization state of the wavefield.

imaging
system detector

illumination

sample

0 0 0
kx

ky
x

y
x

y
’

’

Figure 4.2: Illustration of the setup of application 1. The incident angle of the illumination is 60 degree, with
multiple azimuth incident directions around 360 degree.

The simulated sample consists of two dipoles. The actual scattering strength αi and
the position r⊥,i of the dipoles are listed in Table 4.2. Based on these given parameters,
we first construct the actual complex valued function 1ΩO(k⊥) according to Eq. (4.15).
The dark field intensity measurements are noise-free and computed in accordance with
Eq. (4.17). In line with the 1st step of the proposed method given in Section 4.2.4, the
reconstructed object function, denoted by 1ΩÔ(k⊥), is obtained by applying the Fourier
ptychography method. We assume that the function Q(k⊥+k⊥, j ) is known and we ignore
the polarization state. In the simulation we notice that only 9 incident plane waves can-
not provide sufficient data redundancy. The percentage of sufficient data redundancy
have been reported in ptychography literature when the illumination is bounded by cir-
cular support [22]. Suppose the diameter of the circular support is L, and the distance
between adjacent illumination positions is denoted by d ∈ [0,L]. The overlap ratio is
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defined by: 1− d
L , which is usually be assigned from 60% to 85% to achieve optimal per-

formance [22, 23]. In this simulation we use 36 plane waves, instead of 9, with regularly
distributed azimuth incident directions around 360 degrees, which means the overlap
ratio is 81.13%. The actual function O and the reconstructed one are shown in Fig. 4.3(a)
and Fig. 4.3(b), respectively. Fig. 4.3(c) illustrates the illuminated area in the reciprocal
space, i.e.

∑
j 1kNA(k⊥+k⊥, j ), for 9 and 36 dark field measurements, respectively.
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Figure 4.3: (a) The amplitude and phase of the actual complex function 1ΩO(k⊥). (b) The amplitude and
phase of 1ΩO(k⊥) which is reconstructed from the Fourier ptychographic algorithm. (c) Illustration of the
illuminated area in the reciprocal space, i.e.

∑
j 1kNA(k⊥+k⊥, j ), for 9 and 36 dark field measurements, respec-

tively
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Figure 4.4: (a) The incoherent sum of all 36 dark field measurements, i.e.
∑

j I j (r′⊥). (b) The amplitude of scat-

tering wavefield at plane z → 0, i.e.
∣∣F−1(1ΩÔ)

∣∣2
(r⊥), which is reconstructed with the Fourier ptychography

method. The inserted graphs correspond to the dipole i = 1.

In Fig. 4.4(a) we show the incoherent sum of all 36 simulated noise-free intensity
measurements, i.e.

∑
j I j (r′⊥), and in Fig. 4.4(b) we present the squared amplitude of the

scattered field from the sample at plane z → 0, i.e.
∣∣F−1(1ΩÔ)

∣∣2
(r⊥). For application 1

the spacing of grid r′⊥ and r′⊥ fulfills:[
∆x,∆y

]T =
[

(Nx )−1N det
x ∆x ′, (Ny )−1N det

y ∆y ′
]T

, (4.20)
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which can be derived from Eq. (4.3) by interchanging the real space and reciprocal space
coordinates. The inserted graphs in Fig. 4.4 correspond to dipole i = 1. Note that every
dark field measurement is a 200×200 array with a 250nm pixel size, which is due to the
detector has 200×200 pixels with 5µm pixel size and the magnification of the imaging
system is 20, as given in Table. 4.1. The reconstructed scattered field shown in Fig. 4.4(b)
only contains information of k⊥ ∈Ω. The side-lobe which appears in the neighborhood
of the particles in Fig. 4.4(b) is due to the fact that the reconstruction is convolved by
F−1(1Ω)(r⊥). Without knowing the wavefield at k⊥ = 0 and its surrounding region or
without considering any prior information about the sample, the reconstructed scatter-
ing field cannot provide a unique physical solution.

Once 1ΩÔ(k⊥) is obtained, we retrieve αi and r⊥,i by minimizing the least square
function given in Eq. (4.19). This is done by using the ’fmincon’ solver in MATLAB. To
facilitate the solver to find the global minimum, a proper starting search point and a
set of bounds for αi and r⊥,i are needed. From Fig. 4.4 we see that one can deduce a
guess about the scattering strength and the position of the dipoles from the dark field
measurements. Based on the guess we can obtain the starting point and the bounds.
The accuracy of the guess of the position is limited by the pixel size of the detector. In
the simulation we deduce the initial guess as follows. We first choose in Fig. 4.4(b) one
pixel cell which approximately have minimal and equal distances from the centers of the
images of two dipoles. In Fig. 4.4(b) the indices of this pixel cell in the x and y directions
are [195,186]T . Then we set the top left corner of this pixel cell as origin. The initial
guess of position of the dipoles are obtained by roughly measuring the distance between
the origin and the center of the image of the dipoles in Fig. 4.4(b). To determine the
bounds of the position, we first choose two 5×5 pixel arrays which center at the brightest
pixel cells of the image of two dipoles, respectively. We choose to use the 5× 5 arrays
because the sum of the absolute square of the value of each corresponding 5×5 pixels is
approximately equal to 90% of the total scattering intensity of each dipole. The bounds
of the positions are determined by the outer boundary of the two 5×5 pixel arrays in the x
and y , respectively. The starting search point of the position of each particle is randomly
assigned inside the corresponding outer boundaries, respectively. The initial guess of
the scattering strength of each dipole, on the other hand, is determined by summing
the absolute square of the value over the corresponding 5×5 pixel arrays of each dipole,
respectively. The lower bounds of the scattering strength of the dipoles are set to be 0
and the upper bound are left undetermined, i.e. positive infinity. The starting point of
all parameters are shown in Table. 4.2. The retrieved parameters are listed in the most
right column of the same table.

4.3. APPLICATION 2: PARAMETER RETRIEVAL OF A RECTANGU-
LAR OBJECT USING REAL-SPACE PTYCHOGRAPHY

4.3.1. SINGLE OBJECT EMBEDDED IN CONSTANT SURROUNDING

Now we consider a real-space ptychography setup as shown in Fig. 4.5. The object can
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Table 4.2: Retrieved parameters of two dipoles in the noise free simulation

actual value initial guess retrieved value

α1/(λ3) 1.000×10−3 0.925×10−3 1.000×10−3

x1 −8.333µm −8.349µm −8.333µm
y1 0.000µm 0.113µm 0.000µm

α2/(λ3) 0.512×10−3 0.429×10−3 0.512×10−3

x2 8.356µm 8.327µm 8.356µm
y2 0.088µm −0.029µm 0.088µm

object

far field

coherent diffraction pattern
O (r  ) I    (r’ )j 

P (r  )T

T T

Figure 4.5: The configuration of application 2.
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be written in the following form:

O(r⊥)(A1,φ1, a1,b1,r⊥,1) = 1+ (A1e iφ1 −1)Πa1,b1 (r⊥− r⊥,1)

= 1+C1Πa1,b1,r⊥,1 , (4.21)

where C1 = A1e iφ1 − 1 is a complex valued coefficient. and Πa1,b1 (r⊥ − r⊥,1) is the 2D
rectangular function defined by parameters:

Πa1,b1 (r⊥− r⊥,1) = Πa1 (x −x1)Πb1 (y − y1) =
{

0, |x −x1| > a1
2 or |y − y1| > b1

2 ,

1, |x −x1| < a1
2 and |y − y1| < b1

2 .

(4.22)

We aim to retrieve the parameters:

Θ = [
A1,φ1, a1,b1,r⊥,1

]T , where: A1 ∈ (0,1], a1 > 0, b1 > 0. (4.23)

The diffracted wavefield in the far field for the j th illumination is:

F
(
Ψj

)(
k′
⊥
) =F

(
P j

)(
k′
⊥
)+F

(
P j

)(
k′
⊥
)⊗[

C1a1b1sinc

(
a1kx

2

)
sinc

(
b1ky

2

)
e ik′

⊥·r⊥,1

]
,

(4.24)

where ⊗ denotes convolution. Note in Eq. (4.22) we leave the values of the function
at x = x1 ± a1

2 and y = y1 ± b1
2 be undefined because these values cannot be retrieved

under the projection approximation given by Eq. (1.37). We can see in Eq. (4.24) that the
diffracted wavefield is not a function w.r.t. the value of O(r⊥) at position x = x1 ± a1

2 and

y = y1 ± b1
2 . The validity of the projection approximation have been discussed in [24, 25]

and we assume in the paper that this approximation is valid.

4.3.2. RETRIEVING THE PARAMETER OF THE RECTANGLE
We can see in Eq. (4.24) that, when we have exact knowledge of the probe, the diffraction
pattern is a function of the parameters of the rectangle. This fact offers us the chance
to retrieve the parameters given in Eq. (4.23) from the measurements I j (k′

⊥) for all j . In
this section we propose and validate a feasible method to retrieve the parameters from a
ptychographic measurement.

The first step of the proposed method is to reconstruct the object function in real
space, denoted by: Ô(r⊥), from I j (k′

⊥) for all j . This can be done by applying the PIE
[26, 27] algorithm or other ptychography algorithms [28–31]. The discretization of r⊥
and k′

⊥ follows Eq. (4.1). Note that Ô(r⊥) can be obtained even if the probe function is
unknown, which is due to the data redundancy of the ptychographic measurement.

Once the minimum of the likelihood function is found, we can compute the Fourier
transform of the reconstructed object, denoted by F (Ô)(k⊥). The spacing of grid r⊥ and
k⊥ is given in Eq. (4.3). The parameter of the rectangle can be retrieved by minimizing a
cost function G defined by:

G =
∥∥∥∥F

(
Ô −1

)−C1a1b1sinc

(
a1kx

2

)
sinc

(
b1ky

2

)
e ik⊥·r⊥,1

∥∥∥∥2

, (4.25)
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Table 4.3: The characteristic parameters of the configuration in the simulation

probe
grid size

grid
spacing

wavelength
scanning

grid
overlap

ratio
radius of

circular support
60×60 30nm 30nm 5×5 75% 0.45µm

object
grid size

grid
spacing detector

pixel
number

pixel size
propagation

distance
90×90 30nm 60×60 50µm 1.88cm

where ∥·∥2 denotes the l2 norm. To give an example about the relation between G and
the rectangle parameters, we show in Fig. 4.7 the value of G as a function of a1 and x1.
The configuration parameter of Fig. 4.7 will be given later in Section 4.4.2. It is seen that
G is convex in the neighborhood of the actual a1 and x1, which offers us the chance to
retrieve the parameter by minimizing G . In order to find the minimum of G , it will be
beneficial to start the algorithm from a point close to the actual value. This starting point
can be determined from Ô(r).

In summary, our proposed method includes the following steps:

(1) Use the MLE algorithm to retrieve the complex valued wavefield Ô(r⊥).

(2) Find the lower and upper bound of Θ from Ô(r⊥). Θ is the parameter vector defined
by Eq. (4.23). These bounds are denoted by: Θl andΘu .

(3) Solve the following problem:

argmin
Θ

G , subjectto Θl ≤Θ≤Θu . (4.26)

4.3.3. SIMULATION
To validate our proposed method, a preliminary simulation is shown. We consider the
setup as shown in Fig. 4.5. Details of the configuration are shown in Table. 4.3. The
Fresnel number of this configuration is 0.0014. According to Eq. (4.24), we first generate
the complex valued wavefield in Fourier space F

(
Ψj

)(
k′
⊥
)

based on the given probe and
object. The Fourier transform of the object function F (O) (k⊥) is illustrated in Fig. 4.6(a).
The object consists of one rectangle with sizes listed in Table. 4.4. Fig. 4.6(b) shows
the normalized amplitude and the phase of the probe. In this simulation we assume
the probe is known and the ptychographic measurement is noise-free. In Fig. 4.6(c)
we illustrate the Fourier transform of the reconstructed object function F (Ô)(k⊥). The
inverse Fourier transform of F (Ô)(k⊥) is shown in Fig. 4.6(d).

After obtaining F (Ô)(k), we can retrieve the parameters of the rectangle by solving
the optimization problem in Eq. (4.26). In Fig. 4.7 we demonstrate the evaluation of the
cost function G with respect to a1 and x1, which are the width and position of the rect-
angular in the x-direction. The orange arrows in both plots points to the actual values of
a1 and x1. We see in Fig. 4.7 that it is possible to accurately retrieve the values of a1 and
x1 by minimizing G . To compute the solution of the problem in Eq. (4.26), we again im-
plemented the ’fmincon’ solver in MATLAB. Furthermore, Fig. 4.7 shows that the value
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of G is approximately a quadratic function w.r.t. a1 and a linear function w.r.t. x1 in the
neighborhood of the actual values, which is explained in Section 4.7.2 in Supplement.
The actual value of the parameters, the starting point and the retrieved results are pre-
sented in Table. 4.4. We can see that the proposed method can successfully retrieve the
parameters of the rectangle.
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phase[P(r  )]
abs[P(r  )]

max{abs[P(r  )]}

abs[Ô(r  )] phase[Ô(r  )]

(b)

(c) (d)

ln[ |    (Ô)(k  )| ]

ln[ |    (O)(k  )| ]Τ

Τ

Τ

Τ Τ

Τ Τ

20 40 60 80

20

40

60

80 -5

0

5

20 40 60 80

20

40

60

80 -5

0

5

Figure 4.6: (a) The simulated object in Fourier space. The object has one rectangle which is embedded in
a constant surrounding. (b) The normalized amplitude and the phase of the probe, which is known in the
simulation. (c) The retrieved object function in Fourier space from ptychographic measurement. (d) The
inverse Fourier transform of F (Ô)(k⊥).
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Figure 4.7: The evaluation of E with respect to a1 and x1. The value of E is normalized to its maximum in both
plots. The orange arrow points to the actual value of a1 and x1 in this simulation.
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Table 4.4: Retrieved parameters of one rectangle

a1/λ b1/λ x1/λ y1/λ A1 φ1

actual value 11.46 25.99 5.71 1.42 0.70 3.14
initial guess 11.00 28.00 4.00 3.00 0.73 3.17

retrieved value 11.46 25.99 5.71 1.42 0.70 3.14

4.4. THE CRLB ANALYSIS OF APPLICATION 1
4.4.1. THE FISHER INFORMATION MATRIX FOR RETRIEVAL OF THE DIPOLE

Now we calculate the Fisher matrix for the i th dipole. According to Eq. (4.19), the pa-
rameters we aim to estimate are:

Θ = [θ1,θ2, · · · ,θN ]T = [
α1, x1, y1,α2, x2, y2, · · · ,αN , xN , yN

]T . (4.27)

We consider that we aim to retrieve the parameters of the i th dipole while assuming that
the parameters of all other dipoles are known. To find the Fisher matrix, we need to cal-
culate the derivative of I j with respect to the parameters of dipole i . The derivatives of I j

are given in Section 4.7.1 the Supplement. The number of elements of I j are determined
by the amount of dipoles. For the case of two dipoles in application 1, we have the 6×6
Fisher matrix with elements:

I dip
F =


I dip

F,α1α1
I dip

F,α1r⊥,1
I dip

F,α1α2
I dip

F,α1r⊥,2

I dip
F,r⊥,1α1

I dip
F,r⊥,1r⊥,1

I dip
F,r⊥,1α2

I dip
F,r⊥,1r⊥,2

I dip
F,α2α1

I dip
F,α2r⊥,1

I dip
F,α2α2

I dip
F,α2r⊥,2

I dip
F,r⊥,2α1

I dip
F,r⊥,2r⊥,1

I dip
F,r⊥,2α2

I dip
F,r⊥,2r⊥,2

 , (4.28)

where I dip
F,r⊥,i r⊥,i

, I dip
F,r⊥,iα⊥,i

and I dip
F,α⊥,i r⊥,i

are 2×2, 2×1 and 1×2 sub-matrices, respectively.

The diagonal elements of I dip
F are:

I dip
F,αiαi

= 2

ħω
∑

r′⊥, j

[∣∣F−1
(
Ψj ,i

)
(r′⊥)

∣∣2

α2
i

+ℜ
(
F−1

(
Ψj

)∗ (r′⊥)
[
F−1

(
Ψj ,i

)
(r′⊥)

]2

α2
i F

−1
(
Ψj

)
(r′⊥)

)]
, (4.29)

I dip
F,r⊥,i r⊥,i

= 2

ħω
∑

r′⊥, j

∣∣∣∇r′⊥
F−1 (

Ψj ,i
)

(r′⊥)
∣∣∣2 +ℜ

F−1
(
Ψj

)∗ (r′⊥)
[
∇r′⊥

F−1
(
Ψj ,i

)
(r′⊥)

]2

F−1
(
Ψj

)
(r′⊥)


 ,

(4.30)

which are given by Eq. (4.49) and Eq. (4.50) in the Supplement.
It is of interest to first study the diagonal terms in IF . For instance, suppose that we

have exact knowledge about the illumination power, the first dipole’s position and the

second dipole’s strength and position, then (I dip
F,α1α1

)−1 is the CRLB ofα1 for any unbiased

estimator. When only one dipole exists in the sample, the diagonal terms in I dip
F can be
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rewritten as:

I dip
F,α1α1

= 4

ħω
∑

r′⊥, j

∣∣∣F−1
[
Q(k⊥+k⊥, j )e−ik⊥·r⊥,1

]∣∣∣2
, (4.31)

I dip
F,r⊥,1r⊥,1

= 4

ħω
∣∣∣C dip

1

∣∣∣2 ∑
r′⊥, j

[
J2

(
kNA

∣∣r′⊥− r⊥,1
∣∣)2∣∣r′⊥− r⊥,1

∣∣2

]
, (4.32)

where C dip
1 is the complex valued constant:

C dip
1 = α1 Aink4NA2

8iπϵ0kz
. (4.33)

In Eq. (4.32) we used the following relation [32]:

d

d x

(
J1(x)

x

)
= −J2(x)

x
, (4.34)

where J1 and J2 are the Bessel function of the first kind of order 1 and 2, respectively.
We can see in Eq. (4.31) that the CRLB of αi is inversely proportional to the total

illumination power A2
in. Therefore, it is needed to enhance the illumination power to

determine the value of αi for smaller particles. However,when the illumination power is
enhanced too much, one may reach a saturation point due to the limited dynamic range
of the detector. By taking dark field images of the sample, as shown in Fig. 4.3, one can

avoid this limit. Furthermore, we observe that I dip
F,r⊥,1r⊥,1

does not only depend on the

values of A and α1, but also on the NA. Therefore, to decrease the CRLB of r⊥,1, one can
increase the illumination power or one can enlarge NA, or enhance both. It is interesting

that I dip
F,r⊥,1r⊥,1

is not a function of k⊥, j , which indicate that adjusting the illumination’s

incident angle can lead to any change of the CRLB of r⊥,1 for the case of a single particle.
When more than one particle is on the planar surface, we have to calculate the Fisher

information by Eq. (4.28). We see from these equations that there is a correlation be-
tween the particles. Suppose there are two particles, then the CRLB of one of the parti-
cles is a function of the parameters of the other particle, as follows from Eq. (4.29) and
Eq. (4.30) where the second terms consist of the complete field Ψj instead of only the
partial field Ψj ,i . A more detailed study of the cross-correlation is presented in the next
section.

4.4.2. THE CRLB OF THE DIPOLE
We study the CRLB of the dipole strength and the position of the dipole along the x-axis.
We follow the configuration as described in Fig. (4.3) and Table. 4.1. We first investi-
gate the variance and the squared bias of parameters, α1 and x1, of the dipole i = 1. To
find the variance and bias for various noise levels, we define the illumination power by
counting the time-averaged number of photons scattered by the dipole i = 1, which is
given by:

PNdip =

∥∥∥F−1
(

Aink2

8iπϵ0kz
αi e−ir⊥,i ·k⊥

)∥∥∥2

i=1

ħω . (4.35)
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Table 4.5: The variance and squared bias of α1 and x1 of the dipole of i = 1 for different photon counts PNdip,
obtained from Monte Carlo result.

PNdip 104 106 108

Var
[
αi=1/(λ3)

]
3.14×10−12 2.54×10−14 2.62×10−16

Bias
[
αi=1/(λ3)

]2
3.22×10−10 1.03×10−13 1.26×10−17

Var(xi=1/λ) 4.54×10−6 4.28×10−8 4.23×10−10

Bias(xi=1/λ)2 4.32×10−7 4.03×10−11 1.89×10−13

The variance and bias are obtained from Monte Carlo simulations. We generated 1000
Fourier ptychographic dark field data-sets for PNdip = 104,106,108. The parameters are
reconstructed from the data-sets by applying the parameter retrieval algorithm described
in Section 4.2.4. The variance and squared bias for PNdip = 104,106,108, are shown in Ta-
ble. 4.5.

When PNdip = 104, we see that the variance of x1 obtained from the retrieval method
is 10 times larger than the squared bias. This variance-bias-ratio becomes higher when
PNdip is increased. This observation means that the retrieval method of x1 is asymptoti-
cally unbiased when PNdip > 104. These variances are illustrated in Fig. 4.8, together with
the computed CRLB. It is shown that the variance of the retrieval of x1 is indeed bounded
by the CRLB when PNdip > 104. The value of the bound is inversely proportional to the
value of PNdip.

However, Table. 4.5 also shows that the variance of α1 obtained from the algorithm
is much smaller than the squared bias when PNdip < 106, and indeed the retrieval algo-
rithm of α1 is not unbiased as long as PNdip < 108 for the current setup. Therefore, the
variance of the retrieved αi may not be bounded by the CRLB when PNdip < 108. On
the other hand, we can see in Eq. (4.9) that the accuracy of the reconstruction of αi is
not only influenced by the Poisson noise, but also by the fluctuation of the illumination
power A2

in. That is, the uncertainty about the exact value of A will lead to uncertainty of
the retrieval of α1. Therefore, it is more difficult to determine α1 than the position with
the current scheme.

(a) (b)

Va
r(x

   
/λ)

1

log   (PN    )dip
10

Va
r(x

   
/λ)

1

Figure 4.8: (a) The computed CRLB and variance of the position of the first dipole, i.e. x1, for various PNdip.
(b) The computed CRLB and variance of x1 for various values of the polarisability of the second dipole, i.e. α2,
for the case of PNdip = 108. The blue line of both plots are the computed CRLB and the red crosses show the
variance obtained from the Monte Carlo experiment.
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4.4.3. THE CORRELATION BETWEEN TWO DIPOLES

As has been noted in Section 4.5.1, when there are two particles on the surface, vary-
ing the parameters of one particle can lead to a change of the CRLB of another parti-
cle. To verify this correlation between the particles, we calculated the CRLB of x1 with
various values of α2. The value of PNdip is chosen to be 108 because the retrieval algo-
rithm is asymptotically unbiased for this noise level, as has been shown in Section 4.5.2.
The computed CRLB is validated by using Monte Carlo simulations, as illustrated in Fig.
4.8(b).

It is seen in Fig. 4.8(b) that one can lower the CRLB of x1 obtained from the algo-
rithm by enhancing the scattering power of the dipole i = 2. This observation can be
understood by studying the property of the Poisson distribution. The signal-to-noise

ratio (SNR) of Poisson noise is equal to
√

n(r′⊥), where n(r′⊥) is the number of photons

detected by the pixel at r′⊥. When the scattering power of particle i = 1 is fixed, n(r′⊥)
is increased by enhancing the scattering power of the other particle, and therefore the
signal-to-noise ratio of the system is increased. One may argue that this conclusion is
inconsistent with the case where incoherent illumination is used. Let us imagine that we
apply incoherent illumination to the setup in Fig. 4.2, then the radiation of each dipole
is independent to the other and hence the image recorded by the detector is given by:

I incoh
j (r′⊥) = ∑

i

∣∣F−1 [
αi Q(k⊥+k⊥, j )

]∣∣2
(r′⊥− r′⊥,i ) = ∑

i
I incoh

j ,i (r′⊥). (4.36)

When there are two dipoles, Eq. (4.36) shows that the signal of dipole i = 1 is I incoh
j ,1 (r′⊥)

whereas the variance of the signal is determined by
∑

i I incoh
j ,i (r′⊥) at the neighborhood

of position r⊥,1. Therefore, for the case of incoherent illumination, the SNR of dipole
i = 1 should be decreased by enhancing the scattering power of the dipole i = 2 because
the variance is proportional to

∑
i I incoh

j ,i (r′⊥) for Poisson noise. However, we emphasize

that Eq. (4.36) is not the case of application 1. By comparing Eq. (4.17) to Eq. (4.36),
we see that the measurement in application 1 contains the interference pattern of the
point spread function of the dipoles. Hence, the conclusion for incoherent illumination
is not applicable in application 1 and the SNR should be determined by the computed
CRLB and the Monte Carlo simulations. Note that second order scattering is neglected
in the current model, i.e. we ignore the scattered wavefield from the first particle which
is excited by the second one because the particles are sparsely distributed on the sample.

4.5. THE CRLB ANALYSIS OF APPLICATION 2

4.5.1. FISHER INFORMATION MATRIX FOR SINGLE RECTANGULAR OBJECT

For application 2, the parameter vector we want to retrieve is:

Θ = [θ1,θ2, · · · ]T = [
A1,φ1, a1,b1,r⊥,1

]T , (4.37)
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To find the Fisher information matrix, we start from the expectation of the second order
perturbation of LP :

E
(
δ2LP

)
(Θ)(δΘ,δΘ̃) = 2

ħω
∑

k′
⊥, j

ℜ[
F

[
P jδO(Θ)(δΘ)

]
F

[
P jδO(Θ)(δΘ̃)

]∗]
+ 2

ħω
∑

k′
⊥, j

ℜ
[

F
(
Ψj

)
F

(
Ψj

)∗ F
[
P jδO(Θ)(δΘ)

]∗
F

[
P jδO(Θ)(δΘ̃)

]∗]
.

(4.38)

which is derived from Eq. (3.21) in Chapter 3. The function O is defined in Eq. (4.21). δO
is the derivative of O w.r.t. Θ. δΘ and δΘ̃ are small perturbations of the parameters of
the rectangle. The explicit expression of δO, δΘ and δΘ̃ are given in Section 4.7.2 of the
Supplement.

By using Eq. (4.38), Eq. (4.54) and Eq. (4.54) in the Supplement, we obtain the diago-
nal elements of the Fisher matrix:

I rect
F,A1 A1

= 2

ħω
∑
r, j

∣∣P jΠa1,b1,r1

∣∣2 + 2

ħω
∑
r, j

ℜ
[
F−1

(
F

(
Ψj

)
F

(
Ψj

)∗
)

e−2iφ1
[(

P jΠa1,b1,r1

)∗]2

]
.

(4.39)

I rect
F,φ1φ1

= A2
1IF,A1 A1 . (4.40)

I rect
F,a1a1

= 1

2ħω
∑
y, j

∣∣C1Πb1,y1

∣∣2
[∣∣P j

∣∣2 (x1 + a1

2
, y)+ ∣∣P j

∣∣2 (x1 − a1

2
, y)

]
+ 1

2ħω
∑
y, j

ℜ
[(

C∗
1Πb1,y1

)2
F−1

(
F

(
Ψj

)
F

(
Ψj

)∗
)

(2x1 +a1, y)
(
P∗

j

)2
(x1 + a1

2
, y)

]

+ 1

2ħω
∑
y, j

ℜ
[(

C∗
1Πb1,y1

)2
F−1

(
F

(
Ψj

)
F

(
Ψj

)∗
)

(2x1 −a1, y)
(
P∗

j

)2
(x1 − a1

2
, y)

]

+ 1

ħω
∑
y, j

ℜ
[(

C∗
1Πb1,y1

)2
F−1

(
F

(
Ψj

)
F

(
Ψj

)∗
)

(2x1, y)P∗
j (x1 + a1

2
, y)P∗

j (x1 − a1

2
, y)

]
.

(4.41)

I rect
F,b1b1

can be obtained by taking the above equation and interchanging x with y and a1
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with b1.

I rect
F,x1x1

= 2

ħω
∑
y, j

∣∣C1Πb1,y1

∣∣2
[∣∣P j

∣∣2 (x1 + a1

2
, y)+ ∣∣P j

∣∣2 (x1 − a1

2
, y)

]
+ 2

ħω
∑
y, j

ℜ
[(

C∗
1Πb1,y1

)2
F−1

(
F

(
Ψj

)
F

(
Ψj

)∗
)

(2x1 +a1, y)
(
P∗

j

)2
(x1 + a1

2
, y)

]

+ 2

ħω
∑
y, j

ℜ
[(

C∗
1Πb1,y1

)2
F−1

(
F

(
Ψj

)
F

(
Ψj

)∗
)

(2x1 −a1, y)
(
P∗

j

)2
(x1 − a1

2
, y)

]

− 4

ħω
∑
y, j

ℜ
[(

C∗
1Πb1,y1

)2
F−1

(
F

(
Ψj

)
F

(
Ψj

)∗
)

(2x1, y)P∗
j (x1 + a1

2
, y)P∗

j (x1 − a1

2
, y)

]
.

(4.42)

I rect
F,y1 y1

can be obtained by taking the above equation and interchanging x with y and a1

with b1.
We again focus on the diagonal elements of the Fisher matrix. Referring to the first

term on the right-hand side of Eq. (4.39) and Eq. (4.40), we can immediately see that
the CRLB of A1 and φ1 is partially determined by the illumination power. Similarly, in
Eq. (4.41) and Eq. (4.42) we see that the CRLB of a1 and x1 is partially determined by the
illumination power at x1 ± a1

2 , which is the edge of the rectangle. We can also notice in
Eq. (4.40) that the CRLB of φ1 is inversely proportional to A2

1. This observation means
that one can retrieve φ1 more accurately by increasing the transmission of the rectangle,
assuming that the estimator is unbiased.

It is interesting that I rect
F,a1a1

and I rect
F,x1x1

are functions of Πb1,y1 . This fact means that
enlarging the width of the rectangle in the y-direction will decrease the CRLB of a1 and
x1, which are parameters along the x-axis. This correlation between b1 and the CRLB of
a1 and x1 is demonstrated in the next subsection. The computed CRLB is validated by
Monte Carlo simulations.

4.5.2. THE CRLB OF THE WIDTH AND THE POSITION OF THE RECTANGLE
Now we consider the configuration of Section 4.3. As described in Section 4.5.2, we need
to provide a measure of the noise level in terms of photon counting. For application 2,
we define the illumination power by means of the total photon number counting over
the cross section of the probe:

PNrect =
N det

x ,N det
y∑

r⊥

∥P (r⊥)∥2

ħω , (4.43)

where the probe P (r⊥) is shown in Fig. 4.6(b).
Here we study the influence of the width of the rectangle in the y-direction on the

variance of retrieved width and position along the x-axis. The computed CRLB of a1 and
x1 are shown in Fig. 4.9, for various values of b1. The value of PNrect is chosen to be 108.
To validate the computation of the CRLB, the result of Monte Carlo Monte simulations is
shown in Fig. 4.9 also. To obtain the variance, 1000 ptychographic data-sets are created
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Table 4.6: The variance and squared bias of a1 and x1 of the rectangle, obtained from the Monte Carlo simula-
tion for PNrect = 108.

b1/λ 1 5 15

Var(a1/λ) 3.576×10−7 1.455×10−7 9.017×10−8

Bias(a1/λ)2 7.825×10−10 4.254×10−10 8.386×10−11

Var(x1/λ) 9.057×10−8 2.527×10−8 1.824×10−8

Bias(x1/λ)2 6.423×10−12 6.879×10−11 4.947×10−11

in the Monte Carlo analysis. The data-sets are post-processed by using the parameter
retrieval algorithm given in Section 4.3.2. The exact value of the variance and the squared
bias of the parameters for the case of b1/λ= 1,5,15, are listed in Table. 4.6.
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Figure 4.9: The CRLB and variance of a1, x1, b1 and y1 of the rectangle, for various of b1. The PNrect of this
figure is 108. The blue line is the computed CRLB and the red crosses show the variance obtained from the
Monte Carlo simulations.

We see in Fig. 4.9(a) and Fig. 4.9(b) that when PNrect = 108 the CRLB of a1/λ and
x1/λ are in the order of 10−6, which indicates that the resolution of the current param-
eter retrieval scheme is not limited by the grid discretization in real space. The Monte
Carlo result confirm this conclusion. Moreover, the squared bias of a1/λ and x1/λ is
around 103 times smaller that the variance, which means the that algorithm is asymp-
totically unbiased when PNrect = 108, and hence the variance obtained by the algorithm
should be bounded by the CRLB. The CRLB of both a1/λ and x1/λ decrease when the
value of b1 is increased. This result agrees with Eq. (4.41) and Eq. (4.42). The CRLB of
a1/λ and x1/λ in Fig. 4.9 decreases rapidly when b1/λ< 5. The reason is that the sensi-
tivity of the retrieval of the parameters is determined by the number of photons which
encodes the information about the parameters. That is, there are more photons which
contain information about a1 and x1 when b1 is larger. On the other hand, we can see
that the CRLB of b1/λ and y1/λ do not vary much when the value of b1/λ is sufficiently
small. When b1/λ> 40, the CRLB of b1/λ and y1/λ start to increase as the value of b1/λ
is enlarged. This is because the boundary of the rectangle parallel to the y-axis falls out-
side of the illuminated area, which is an undesirable situation since b1/λ and y1/λ need
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also to be retrieved. To be explicit, the size of the illuminated area is determined by the

non-zero area of
∑

j

∣∣P (r⊥−R⊥, j )
∣∣2. In the simulation, the size of the illuminated area

in the y direction is roughly 60λ. Meanwhile, the beam profile of the illumination, i.e.
|P (r⊥)|2, is simulated by the Gaussian function as shown in Fig. 4.6(b). The full-width at
half-maximum (FWHM) of the probe is around 15λ. These characteristic parameters of
the probe agree with Fig. 4.9(c) and Fig. 4.9(d) that the CRLB of b1/λ and y1/λ start to
increase as b1/λ > 40. Overall, the computed CRLB as shown in Fig. 4.9 indicates that,
the optimal chosen range of values of b1/λ is (5,40) for the current configuration.

4.6. CONCLUSION

In summary, a parameter retrieval method is demonstrated in this paper. The idea of the
method is to incorporate available a priori information about the object in the general
ptychography framework. Two applications of the method are studied. In application 1
we explore how the parameters of small particles can be retrieved from Fourier ptycho-
graphic dark field measurements. The simulation result shows that, when the diameters
of the particles are sufficiently small, e.g. ∼ 0.1λ, so that the scattered wavefields can be
modeled as radiation of dipoles, the parameters of the particles can be uniquely deter-
mined from dark field measurement only. In application 2 the retrieval of the parameters
of a rectangular object embedded in constant surrounding was studied.

The influence of Poisson noise on the parameter retrieval method is discussed in the
second part of the paper. The CRLB of the parameters are theoretically derived and nu-
merically computed from the Fisher information matrix for both applications. Monte
Carlo analysis is used to validate the computed CRLB. The CRLB, variance and bias of
the retrieved parameters in application 1 were determined for various photon counts.
It was found that the uncertainty of the parameter retrieval is inversely proportional to
the photon counts, and potentially is not limited by the sizes of individual cells of the
discretized meshgrid in object space. The correlation between at least two particles is
evaluated from the calculation of the CRLB. We proved that the CRLB of the position of
one particle is influenced by the scattering power of the other particle. This conclusion
is confirmed by the Monte Carlo result. The correlation of parameters in application 2
is also inferred from the computed CRLB. The influence of the width of the rectangle in
the y-direction on the CRLB of the parameters along the x-axis is investigated by an-
alyzing the CRLB and the Monte Carlo result. For the same number of photons in the
illuminating probe, the uncertainty of the parameters along the x-axis can be reduced
by enlarging the width in the y-direction.

Following this study, there are many related subjects which deserve further research.
For Application 1, we only test the proposed method with PSL beads. In practice, the PSL
beads are used as the calibration standard with which we can determine the lower de-
tection limit of the ’RapidNano’ particle scanner. Generally speaking, the scanner should
be able to detect particles of any material. Therefore, to apply the proposed method to
other particles is an interesting subject for the next step. Note that the refraction index
of the particle is possibly unknown or/and is not the same for different particle on the
substrate. For this case, the model used in the paper is unable to retrieve the volume of
the particle. To incorporate the proposed method to this case, a more complex model is
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needed and the subject is out of the scope of the paper. Another issue in Application 1
relates to the fact that we have not considered the secondary scattering effect between
adjacent dipoles. This is because that in practice the particles are sparsely distributed
on the substrate for the most of time. When two dipoles are very close to each other, the
present scattering model cannot accurately describe the scattered field, and hence mul-
tiple scattering has to be considered. The multiple scattering is one of the major topics
which deserve further research.

For Application 2, one of the subjects for the next step is to investigate influence
of unknown background transmission. When the background transmission is homoge-
neous but unknown, it is clear that the background transmission can be retrieved from
the reconstructed object that obtained from the MLE ptychographic algorithm. Whereas
when there is small unknown perturbation in the background transmission, the effect of
the perturbation may also be studied via CRLB analysis or Monte Carlo simulation. This
analysis could be conducted when we have more knowledge about how/why can we
model the perturbation of background. As far as we know, this subject is still an open
question and deserves further research.

4.7. SUPPLEMENT

4.7.1. THE DERIVATIVE OF I j WITH RESPECT TO THE PARAMETERS OF DIPOLE

i IN APPLICATION 1
Now we calculate the Fisher matrix for the i th dipole. According to Eq. (4.19) in this
chapter, the parameters we aim to estimate are:

Θ = [θ1,θ2, · · · ,θN ]T = [
α1, x1, y1,α2, x2, y2, · · · ,αN , xN , yN

]T . (4.44)

The perturbation of I j with respect to the parameters of dipole i are given by:

δI j (δθi ) =
[

2α−1
i ℜ[

F−1
(
Ψj

)∗
F−1

(
Ψj ,i

)]
δαi

−2ℜ
[
F−1

(
Ψj

)∗∇r′⊥
F−1

(
Ψj ,i

)]
δr⊥,i

]
, (4.45)

where ∗ denotes complex conjugation. The i th partial field Ψj ,i is given by:

Ψj ,i (k⊥) = Q(k⊥+k⊥, j )αi e−ir⊥,i ·k⊥ . (4.46)

which is the contribution of the i th dipole to the total field for the j th illumination, ac-
cording to Eq. (4.14) in this chapter.

In Eq. (4.45) we used:

F−1 [−ik⊥ ·Ψ(r′⊥)
] = −∇r′⊥

F−1 (Ψ) (r′⊥). (4.47)

The elements of the Fisher matrix can be computed by substituting Eq. (4.45) into Eq.
(3.21). The number of elements of I j are determined by the amount of dipoles. For the
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case of two dipoles in application 1, we have the 6×6 Fisher matrix with elements:

I dip
F =


I dip

F,α1α1
I dip

F,α1r⊥,1
I dip

F,α1α2
I dip

F,α1r⊥,2

I dip
F,r⊥,1α1

I dip
F,r⊥,1r⊥,1

I dip
F,r⊥,1α2

I dip
F,r⊥,1r⊥,2

I dip
F,α2α1

I dip
F,α2r⊥,1

I dip
F,α2α2

I dip
F,α2r⊥,2

I dip
F,r⊥,2α1

I dip
F,r⊥,2r⊥,1

I dip
F,r⊥,2α2

I dip
F,r⊥,2r⊥,2

 , (4.48)

where I dip
F,r⊥,i r⊥,i

, I dip
F,r⊥,iα⊥,i

and I dip
F,α⊥,i r⊥,i

are 2×2, 2×1 and 1×2 sub-matrices, respectively.

The diagonal elements of I dip
F are:

I dip
F,αiαi

= 2

ħω
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[∣∣F−1
(
Ψj ,i

)
(r′⊥)

∣∣2
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)
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(
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, (4.49)

I dip
F,r⊥,i r⊥,i

= 2

ħω
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r′⊥, j
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 ,

(4.50)

where we used the following relation:

ℜ(z1)ℜ(z2) = 1

2

[ℜ(z1z2)+ℜ(z1z∗
2 )

]
, (4.51)

for any complex number z1 and z2.

4.7.2. THE DERIVATIVE OF O WITH RESPECT TO THE PARAMETERS OF THE

RECTANGLE IN APPLICATION 2
For Application 2, the parameter vector we want to retrieve is:

Θ = [θ1,θ2, · · · ]T = [
A1,φ1, a1,b1,r⊥,1

]T , (4.52)

To find the Fisher information matrix, we start from the expectation of the second order
perturbation of LP as shown in Eq. (3.21). It is seen that we needs to compute the
derivative of O w.r.t. Θ, which is denoted by δO(Θ)(δΘ) and δO(Θ)(δΘ̃). δΘ and δΘ̃ are
small perturbations of the parameters of the rectangular object:

δΘ = [δA1,δφ1,δa1,δb1,δx1,δy1]T , δΘ̃ = [δÃ1,δφ̃1,δã1,δb̃1,δx̃1,δỹ1]T . (4.53)

δO is given by:

δO(Θ)(δΘ) =



e iφ1Πa1,b1,r1δA1

iA1e iφ1Πa1,b1,r1δφ1

C1Πb1 (y − y1) 1
2

[
δD (x −x1 − a1

2 )+δD (x −x1 + a1
2 )

]
δa1

C1Πa1 (x −x1) 1
2

[
δD (y − y1 − b1

2 )+δD (y − y1 + b1
2 )

]
δb1

C1Πb1 (y − y1)
[
δD (x −x1 − a1

2 )−δD (x −x1 + a1
2 )

]
δx1

C1Πa1 (x −x1)
[
δD (y − y1 − b1

2 )−δD (y − y1 + b1
2 )

]
δy1


, (4.54)
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where δD is Dirac delta function:

δD (t ) =
{ ∞, t = 0,

0, t ̸= 0,

∫ ∞

−∞
f (x)δD (t − t ′)d t = f (t ′). (4.55)

By using Eq. (4.38), Eq. (4.54) and Eq. (4.55), we obtain the elements of the Fisher matrix.
The diagonal elements of the Fisher matrix are shown in Section 4.6.1.

4.7.3. DISCUSSION ABOUT FIG. 4.7
It is seen in Fig. 4.7 that the value of the cost function G is approximately a quadratic
function w.r.t. a1 and a linear function w.r.t. x1 in the neighborhood of the actual values.
This trend is explained in this section. Suppose now the measurements are noise-free.
We start with Eq. (4.26) in this chapter and rewrite G by:

G = ∑
k⊥

∣∣∣∣F (
Ô −1

)
(k⊥)−h1(ky )a1sinc

(
a1kx

2

)
e ikx x1

∣∣∣∣2

, (4.56a)

F
(
Ô −1

)
(k⊥) = h(o)

1 (ky )a(o)
1 sinc

(
a(o)

1 kx

2

)
e ikx x(o)

1 , (4.56b)

where a(o)
1 and x(o)

1 are the actual values of a1 and x1, respectively. h1(ky ) is the auxiliary
function give by:

h1(C1,b1,ky ) = C1b1sinc

(
b1ky

2

)
e iky y1 , (4.57)

and h(o)
1 is the actual value of h1. Note that h1 and h(o)

1 are not of interest for now be-
cause we are currently paying attention to a1 and x1. Suppose we assume the value of∣∣∣a1 −a(o)

1

∣∣∣ and
∣∣∣x1 −x(o)

1

∣∣∣ are sufficiently small, we can expand Eq. (4.56a), yields:

G ≈ ∑
k⊥

|B |2 +∑
k⊥

|D|2 −∑
k⊥

2ℜ
[

B∗ ·D · ikx

(
x1 −x(o)

1

)]
, (4.58)

where B and D are given by:

B = h(o)
1 a(o)

1 sinc

(
a(o)

1 kx

2

)
, (4.59)

D = 2h1

kx

[
sin

(
a(o)

1 kx

2

)
+ kx

2
cos

(
a(o)

1 kx

2

)(
a1 −a(o)

1

)]
. (4.60)

It can be seen in Eq. (4.58) and Eq. (4.60) that G is approximately a quadratic function

w.r.t. a1 and a linear function w.r.t. x1 when the value of
∣∣∣a1 −a(o)

1

∣∣∣ and
∣∣∣x1 −x(o)

1

∣∣∣ are

sufficiently small.
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4.7.4. DISCUSSION ABOUT THE DIAGONAL AND OFF-DIAGONAL TERMS OF

THE FISHER INFORMATION MATRIX IN APPLICATION 2
In this section we compare the value of the diagonal and off-diagonal terms of the Fisher
information matrix. We start by the expectation of the second order perturbation of LP

as given by Eq. (4.38):

E
(
δ2LP

)
(Θ)(δΘ,δΘ̃) = 2

ħω
∑

k′
⊥, j

ℜ[
F

[
P jδO(Θ)(δΘ)

]
F

[
P jδO(Θ)(δΘ̃)

]∗]
+ 2

ħω
∑

k′
⊥, j

ℜ
[

F
(
Ψj

)
F

(
Ψj

)∗ F
[
P jδO(Θ)(δΘ)

]∗
F

[
P jδO(Θ)(δΘ̃)

]∗]
,

(4.61)

Suppose the perturbation δO has the following form:

δO(Θ)(δΘ) = f (r⊥)δD (x −xl ), δO(Θ)(δΘ̃) = f (r⊥)δD (x −xm), (4.62)

where l = 1,2, · · · , and m = 1,2, · · · . δD is Dirac delta function. We can write:

F
[
P jδO(Θ)(δΘ)

]
(k′

⊥) = P j (xl ,k ′
y ) f (xl ,k ′

y )e−ik ′
x xl , (4.63)

F
[
P jδO(Θ)(δΘ̃)

]
(k′

⊥) = P j (xm ,k ′
y ) f (xm ,k ′

y )e−ik ′
x xl . (4.64)

For simplicity, we define real valued auxiliary functions u, v (1), v (2), w by:

u j (xl , xm ,k ′
y )e

iv (1)
j (xl ,xm ,k ′

y ) = P j (xl ,k ′
y ) f (xl ,k ′

y ) ·
[

P j (xm ,k ′
y ) f (xm ,k ′

y )
]∗

, (4.65)

u j (xl , xm ,k ′
y )e

iv (2)
j (xl ,xm ,k ′

y ) =
[

P j (xl ,k ′
y ) f (xl ,k ′

y ) ·P j (xm ,k ′
y ) f (xm ,k ′

y )
]∗

, (4.66)

e iw j (k ′
x ,k ′

y ) = F
(
Ψj

)[
F

(
Ψj

)∗]−1
. (4.67)

Then Eq. (4.61) can be re-written as:

E
(
δ2LP

) = 2

ħω
∑

k ′
y , j

u2
j (xl , xm ,k ′

y )
[

g (1)
j (xl , xm ,k ′

y )+ g (2)
j (xl , xm ,k ′

y )
]

, (4.68)

where g (1)
j and g (2)

j are auxiliary functions given by:

g (1)
j (xl , xm ,k ′

y ) = ∑
k ′

x

cos
[

(xl −xm)k ′
x + v (1)

j (xl , xm ,k ′
y )

]
, (4.69)

g (2)
j (xl , xm ,k ′

y ) = ∑
k ′

x

cos
[
−(xl +xm)k ′

x +w j (k ′
x ,k ′

y )+ v (2)
j (xl , xm ,k ′

y )
]

. (4.70)

Note that r⊥ and k′
⊥ have the relation as shown in Eq.(6) in this chapter.

We note that, when l = m, g (1)
j and g (2)

j are the diagonal elements of the Fisher matrix.

When l ̸= m, g (1)
j and g (2)

j corresponds to the off-diagonal elements of the Fisher matrix.
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First we focus on g (1)
j which relates to the first term on the right hand side of Eq. (4.61).

g (1)
j (xl , xm ,k ′

y ) can be re-written as:

g (1)
j (xl , xm ,k ′

y ) =
N det

x cos[v (1)
j (xl , xm ,k ′

y )], l = m,

sin[π(∆x)−1(xl −xm)]

sin[π(N det∆x)−1(xl −xm)]
cos

[
v (1)

j (xl , xm ,k ′
y )+ π(N det−1)

N det∆x
(xl −xm)

]
, l ̸= m.

(4.71)

To compare the value of g (1)
j for l = m and l ̸= m, we compute the ratio g (1)

j ,l ̸=m/g (1)
j ,l=m for

various value of v (1)
j . The results are shown in Fig. 4.10.
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Figure 4.10: The ratio g (1)
j ,l ̸=m

/g (1)
j ,l=m

w.r.t.
∣∣xl −xm

∣∣ for various value of v (1)
j . Here ∆x is the size of individual

cells of the discretized meshgrid r⊥ along the x-axis.

When |xl −xm | (∆x)−1 is an integer, the perturbation in Eq. (4.62) can be used to
calculate the descent gradient in conventional ptychography. This is because the vari-
ables in conventional ptychography are the values at the center of every individual grid
cells of r⊥. We see in Fig. 4.10 that the ratio g (1)

j ,l ̸=m/g (1)
j ,l=m is extremely small when

|xl −xm | (∆x)−1 is integer, meaning that the off-diagonal elements of the Fisher matrix
is extremely small compared to the diagonal elements. Therefore, there is no correlation
between the variables in conventional ptychography.

When |xl −xm | (∆x)−1 is a non-negative real number, the perturbation in Eq. (4.62)
can be used to calculate the descent gradient in the proposed parameter retrieval scheme.
We see in Fig. 4.10 that absolute value of the ratio g (1)

j ,l ̸=m/g (1)
j ,l=m decreases drastically

when |xl −xm | (∆x)−1 is increasing, which means that the off-diagonal elements of the
Fisher matrix is extremely small comparing to the diagonal elements for large |xl −xm | (∆x)−1.
In our simulation for application 2, in which the characteristic parameters are shown in
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Table. 3 in this chapter, the off-diagonal elements are negligible compared to the diag-
onal elements when |xl −xm | (∆x)−1 > 10. On the other hand, Fig. 4.10 indicates that
g (1)

j ,l ̸=m cannot be neglected when |xl −xm | (∆x)−1 is small. In particular, g (1)
j ,l ̸=m is even

larger than g (1)
j ,l=m when |xl −xm | (∆x)−1 < 1. Hence the off-diagonal elements of the

Fisher matrix become dominant when xl and xm are in the same grid cell.
The value of g (2)

j is more difficult to be analyzed because the auxiliary function w j (k ′
x ,k ′

y )

is a function of k ′
x . Since w j (k ′

x ,k ′
y ) is two times the phase of the diffracted wavefield in

the far field, it is more difficult to find an analytic expression for w j (k ′
x ,k ′

y ).
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5.1. CONCLUSION
In this thesis we have discussed different subjects in ptychography. In short, this thesis
consists of three contributions:

(1) In Chapter 2 we have proposed a polychromatic ptychographic algorithm. With
varying parameter settings (i.e. noise and the number of spectral components in the
probe), different behaviors of the proposed method were observed and discussed in
this chapter. The comparison between the proposed method and the PIM approach
has been discussed also.

(2) In Chapter 3 we have studied the influence of Poisson noise on ptychography by
analyzing the CRLB. The CRLB was derived and numerically computed for both top-
hat plane wave and structured illumination. The computed results were validated
with Monte Carlo analysis. Furthermore, the statistical properties of the maximum
likelihood estimation and the cost function minimization algorithm were studied in
this chapter.

(3) In Chapter 4 we have demonstrated a parameter retrieval method in ptychography
by implementing the method for two applications. In application 1 we explored
how to retrieve the parameters of small particles from Fourier ptychographic dark
field measurements. In application 2 we studied the retrieval of the parameters of a
rectangular shaped object embedded in a homogeneous background. The influence
of Poisson noise on the parameter retrieval method was discussed by analyzing the
CRLB.

There are some research subjects which have not been presented in this thesis and which
deserve further attention. These subjects are listed in the next section.

5.2. OUTLOOK

5.2.1. MINIMIZATION OF THE CRLB IN PTYCHOGRAPHY

In Chapter 4 we have discussed the parameter retrieval method in ptychography, and it
was shown that the CRLB of the retrieved parameters depend on the probe. Therefore,
when the illuminating photon count is constant, it should be possible to minimize the
CRLB of parameter that is to be retrieved by engineering the probe. In this section we
attempt to find the minimum of the CRLB by shaping the wavefront of the illumination.

In this section we try to continue the work of application 2 in Chapter 4, and consider
again the setup as shown in Fig. 4.5. The probe function P (r⊥) is in the object plane. We
have already assumed that the probe has a finite support with a circular boundary. Inside
the circular boundary, the amplitude of the probe is assumed to be uniform. Hence the
probe can be written as:

P (r⊥) =
{

exp
[
iφ(r⊥)

]
, |r⊥| ≤ r0,

0, |r⊥| > r0,
(5.1)

and we assume that the wavefront of the probe can be decomposed into Zernike poly-
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nomials:

φ(r⊥) =
NZ∑

q=1
ρq Zq (

r⊥
r0

), (5.2)

where Zq is the Zernike polynomials of qth order and ρq is its coefficient. Note that only
the first NZ Zernike polynomials are considered, hence NZ is also the number of degrees
of freedom of the optimization problem.

In Chapter 4, the Fisher information matrix was calculated analytically. The CRLB
of the parameters of the rectangule can be computed numerically by inversion of the
Fisher matrix. The computed CRLBs are denoted by:

CRLB(θi ) = [
CRLB(a1),CRLB(b1),CRLB(x1),CRLB(y1)

]T . (5.3)

First we try to find the minimum of the CRLB of one of the parameters, e.g. CRLB(a1).
To minimize the CRLB, one can apply optimization techniques, e.g. gradient descent
method, to CRLB(θi ) w.r.t. the Zernike coefficients ρq for all q . Therefore the problem
we want to address is:

argmin
ρq

CRLB(θi ), for q = 1, · · · , NZ . (5.4)

The problem given in Eq. (5.4) is solved by using the ’fminunc’ solver in MATLAB. It is
likely that the landscape of CRLB(θi ) w.r.t. the Zernike coefficients ρq is not convex, i.e.
there could be many local minimas. A semi-global minima could be found by starting
the algorithm with many different initial choices. For now we let the probe function be
such that ρq = 0 for all q . Hence the local minima we find may be expected to be a probe
with a smooth wavefront.

Now we try to minimize CRLB(a1). We define the illumination power by means of
the total photon number counting in the cross section of the probe:

PNrect =
N det

x ,N det
y∑

r⊥

|P (r⊥)|2
ħω , (5.5)

In the following we choose PNrect = 106. The obtained NZ = 20 are shown in Table. 5.1
and Table. 5.2, respectively. The corresponding amplitude and phase of the probe are
shown in Fig. 5.1 and Fig. 5.2. For NZ = 5 the computed minimum value of CRLB(a1)
is 3.29× 10−7, while for NZ = 20 it is 3.11× 10−7. Therefore, we conclude that a larger
value of NZ will lead to a lower CRLB. We remark that these results correspond to the
current simulation settings, i.e. the actual object, the initial probe and the characteristic
parameters as shown in Table. 4.4. Adjusting any of these settings can lead to a different
result.

We can see in the simulation that the proposed method can indeed leads to a mini-
mization of the CRLB. Since the CRLB is the lower bound on the variance of any unbiased
estimator, the minimization of the CRLB in principle leads to a more noise insensitive
system. To minimize the CRLB, we need to select a couple of parameters as the variables.
In practice, this selection could be constrained by the system. For example, suppose we
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abs[P(r  )]
max{abs[P(r  )]}

T

T phase[P(r  )]T

Figure 5.1: The optimized probe which consists 5 Zernike polynomials in its phasor, i.e. NZ = 5.

Table 5.1: The optimized Zernike coefficients when NZ = 5.

Zernike order index q 1 2 3 4 5

initial value ρq 0 0 0 0 0
optimal value ρq 9.7418 1.8836 -15.1287 -9.1700 -3.0251

phase[P(r  )]
abs[P(r  )]

max{abs[P(r  )]}

T
T

T
Figure 5.2: The optimized probe which consists 20 Zernike polynomials in its phasor, i.e. NZ = 20.

Table 5.2: The optimized Zernike coefficients when NZ = 20.

Zernike order index q 1 2 3 4 5

initial value ρq 0 0 0 0 0
optimal value ρq 2.5966 0.2292 -3.8777 -4.5659 0.0016

Zernike order index q 6 7 8 9 10

initial value ρq 0 0 0 0 0
optimal value ρq 1.0909 0.0199 -4.3500 -2.4350 0.3744

Zernike order index q 11 12 13 14 15

initial value ρq 0 0 0 0 0
optimal value ρq -5.0278 0.2344 3.8402 -0.0355 -2.0779

Zernike order index q 16 17 18 19 20

initial value ρq 0 0 0 0 0
optimal value ρq -0.4372 0.0562 0.6778 -0.0866 -2.7368



5.2. OUTLOOK

5

133

wish to implement application 2 in Chapter 4 with X-ray sources. It is not easy to manip-
ulate the amplitude and the wavefront of the probe in the object plane and the probe is
usually de-focused. Therefore, one may try to minimize the CRLB by manipulating the
probe at far away before the object. On the other hand, we emphasize that the CRLB is a
function of the actual object. Therefore, it is not easy to find a system where the CRLB is
minimized for all kinds of objects.

5.2.2. PTYCHOGRAPHY WITH SPATIALLY PARTIAL COHERENT ILLUMINATION
As said in the first part of Section 1.3.4, it is necessary to develop a ptychographic algo-
rithm for partial coherent illumination because many X-ray light sources are either spa-
tially partially coherent (e.g. synchrotron radiation [1, 2]) or temporally partial coherent
(e.g. tabletop high-harmonic generation laser [3, 4]). To increase the spatial coherence
of the light beam in practice, a pinhole is usually placed in the illumination path be-
tween the light source and the object. This approach is undesirable because it leads to
a decrease of the throughput and hence decreases the SNR. For quasi-monochromatic
and spatially partial coherent wavefield, it has been shown that one can use the mode
decomposition method [5–7], the de-convolution methods [8–12], etc. Here we demon-
strate a spatially partial coherent ptychographic method which is based on the gradient
descent scheme. Simulation result shows that, by using the proposed method, both the
object and the mutual coherence function of the illumination can be retrieved simulta-
neously.

Let us consider a system as shown in Fig. 5.3. A quasi-monochromatic and spatially
partial coherent light beam illuminates an object with a complex transmission function
O(r⊥). We assume that the illumination has a finite support with a circular boundary and
that it has a uniform distributed intensity over the object plane. The mutual coherence
function of the illumination beam is denoted by J . J is a 4D array in principle. Here for
the sake of simplicity we assume that J is transverse invariant: J = J (∆r⊥), where ∆r⊥
denotes distance between two position vectors in the object plane. Note that J is in this
way reduced to a 2D array.

The goal is to retrieve O(r⊥) and J (∆r⊥) from ptychographic measurements I j (k′
⊥),

which for probe position j is given by [13]:

I j (k′
⊥) =

Ï [(
1◦, j ·O

)
⋆

(
1◦, j ·O

)∗]
(∆r⊥) · J (∆r⊥)e−i 2π

λz′ ∆r⊥·r′⊥d∆r⊥

= ∣∣F (
1◦, j ·O

)∣∣2 (k′
⊥)⊗F (J ) (k′

⊥), (5.6)

where k′
⊥ = 2πr′⊥(λz ′)−1 according to Eq. (1.65), ∗denotes complex conjugate, and⋆ and

⊗ denote correlation and convolution, respectively. 1◦, j is the binary window function
determined by the circular support of the probe, which is defined by:

1◦, j (r⊥) =
{

1,
∣∣r⊥−R⊥, j

∣∣≤ r0,
0,

∣∣r⊥−R⊥, j
∣∣> r0.

(5.7)

Note that, according to the van Cittert–Zernike theorem [13, 14], the mutual coherent
function J (∆r⊥) is equal to the Fourier transform of the intensity of the extended spatially
incoherent source if the distance from the source to the object is much greater than the
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far field
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Figure 5.3: Schematic illustration of spatially partial coherent ptychography.

size of the object. Therefore, F (J ) is always a function with non-negative real value, and
hence I j as given in Eq. (5.6) is always an array with non-negative values, as should be.

To retrieve O(r⊥) and J (∆r⊥), we minimize the cost function defined by:

E =∑
j

∑
k′
⊥

[√
I m

j (k′
⊥)−

√
I j (k′

⊥)
]2

, (5.8)

where I m
j (r′⊥) is the measured intensity when the probe is at position R⊥, j and I j (r′⊥) is

the estimated diffraction intensity. The minimization is done by applying the gradient
descent method. Using a similar calculation as in Section 1.3.1, we can derive the update
formula for O(r⊥):

On+1(r⊥) = On(r⊥)−βO
∑

j
F−1




√
I m

j (k′
⊥)√

I j ,n(k′
⊥)

−1

⊗F (Jn) (−k′
⊥)

 (r⊥)⊗ (
1 j ·On

)
(r⊥),

(5.9)

where n is the index of the iteration and βO denotes the step size coefficient which is
chosen to be constant. As for the retrieval of the mutual coherence function, we choose
to apply the gradient descent method w.r.t. the Fourier transform of J , and we obtain:

F (Jn+1) (k′
⊥) = F (Jn) (k′

⊥)−βJ
∑

j




√
I m

j (k′
⊥)√

I j ,n(k′
⊥)

−1

⊗F−1 [(
1 j ·O

)
⋆

(
1 j ·O

)∗]
(k′

⊥)

 ,

(5.10)

where βJ is a step size coefficient as well.
It is interesting that the proposed partial coherent ptychographic method has up-

date formulas which are very similar to the method given in [11]. On the one hand,
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both methods deal with the spatially partial coherence effect in ptychography by simul-
taneously retrieving the object’s transmission function and the intensity of the extended
incoherent source in the detector plane, i.e. F (J ). On the other hand, in both methods
the gradient descent approach to formulate their iterative retrieval algorithms is used.
However, the two methods are not identical because the cost function that is minimized
is different for the two methods. For the fully coherent case, it has been shown that the
cost function given in Eq. (5.8) is more preferred when the measurement is noisy [15].
However, to the best of our knowledge, it is still an open question which cost function
is more favorable. Therefore, it maybe worth to compare the performance of the two
methods in the more general case of partial coherent illumination and it is desirable to
further study this topic.

5.2.3. EXTRACTING 3D INFORMATION IN PTYCHOGRAPHY WITH POLYCHRO-
MATIC ILLUMINATION

In Chapter 2 we have developed a polychromatic ptychography algorithm which is based
on the projection approximation given in Eq. (1.37) and Eq. (2.1). However, if we discard
the projection approximation and instead use the first Born approximation, we show
in the following derivation that the polychromatic diffraction pattern in fact encodes a
certain amount of 3D information about the object.

Suppose that the incident wavefield have many wavelenths and is fully coherent for
each wavelength. Let Uin(r,λk ) be the incident scalar wavefield of kth wavelength and
assume that all incident wavefields are plane waves:

Uin(r,λk ) = Λ(λk )e ikin,k ·r, (5.11)

where kin,k is the wave number of the incident wavefield of kth wavelength and
∣∣kin,k

∣∣=
2π (λk )−1 whereλk is the kth wavelength in free space. Λ(λk ) denotes the temporal spec-
trum of the incident wavefield. According to Eq. (1.31) and Eq. (1.32), the scattered
wavefield of the kth wavelength at position r′ is given by:

Uscat(r′,λk ) ≈ k2
k

4π

exp
(
i 2π
λk

∣∣r′∣∣)
|r′| ·Λ(λk )F

[(
n2

r (r)−1
)](

kk
r′

|r′| +kin,k

)

= k2
k

4π

exp
(
i 2π
λk

∣∣r′∣∣)
|r′| ·Λ(λk )F [Vr(r)]

(
kk

r′

|r′| +kin,k

)
, (5.12)

where F is the 3D Fourier transform and Vr(r) = n2
r (r)−1 denotes the contrast of refrac-

tive index of the object to the free space. We assume that material dispersion can be
neglected. kk = 2π(λk )−1 is the wavenumber of the kth wavelength in free space. The
measurements consist of the sum of the intensities of the scattered wavefields of the
different wavelengths in a plane z ′:

I (r′⊥, z ′) = 1D (r′⊥) ·∑
k

∣∣Uscat(r′⊥, z ′,λk )
∣∣2 , (5.13)

where 1D (r′⊥) is the binary window function representing the region of the detector as
given in Eq. (2.5), z ′ is the distance between the detector and the object and r′⊥ is the 2D
coordinate in the detector plane.
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Eq. (5.13) shows that, the scattered wavefield of different wavelengths contain differ-
ent information about the object. This is schematically shown in Fig. 5.4. As example,
we illustrate the scattering of three wavelengths in Fig. 5.4(b) and Fig. 5.4(c). Fig. 5.4(b)
is plotted in real space and Fig. 5.4(c) in reciprocal space. The relation of the wavenum-
ber of three wavelength components in the wavefield, i.e. k1, k2 and k3, is also shown in
Fig. 5.4(b) and Fig. 5.4(c). The wavefield of each wavelength can be mapped onto the
corresponding Ewald sphere. The radius of each Ewald sphere equals to the wavenum-
ber. Fig. 5.4(c) indicates the opportunity of extracting 3D information of the object from
the polychromatic diffraction pattern, which is an interesting subject for future research.
The validity of the idea relates to the validity of the first Born approximation of course,
and also depends on how much of reciprocal space can be covered by the Ewald spheres.
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Figure 5.4: Schematic illustration of the scattering model to the far field, with plane wave illumination along
the z axis. The y axis is ignored in this plot. (a) The set of plane wave vectors that occur in the scattered
(reflected) far field when the sample is illuminated by a plane wave with wave vector kin,k along the z-axis. (b)
A schematic example on polychromatic scattering from the scatterer Vr to the far field detector. The distance
of the scatterer and the detector is z′. The wavefield contains 3 wavelength components, i.e. k1, k2 and k3. The
relation of the wavenumber of these components is also shown in this subplot. (c) Cross-section in the kx and
kz plane of the set of plane wave vectors that occur in the reflected far field when the sample is illuminated by
perpendicular incident plane wave for three different wavelengths. that occur in the reflected far field.
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BVR - the bias-variance ratio.87
CDI - Coherent Diffraction Imaging. ix
CZT - chirp Z-transform. 9
CRLB - the Cramér Rao Lower Bound.70
DoF - depth of focus. 8
DFT - discrete Fourier transform. 9
DM - the difference-map algorithm. 15
ER - the Error-Reduction algorithm. 14
EUV - extreme ultraviolet.ix
FFT - discrete fast Fourier transform. 10
FoV - field-of-view. 17
FTH - the Fourier transform holography method .23
HIO - the Hybrid-Input-Output algorithm. 15
MLE - the maximum likelihood estimator.73
NEF - the normalized error in Fourier space.48
NER - the normalized error in real space.48
NA - numerical aperture.101
PIE - the Ptychographic Iterative Engine algorithm. 16
PIM - the ptychographic information multiplexing method.44
PN - the total photon number counting over the cross section of the probe.76
PNm - the total photon number counting over the measured diffraction intensity.52
PSL - polystyrene latex.101
SNR - signal-to-noise ratio.30
SNRP - the signal-to-noise ratio of Poisson noise.89
TIE - the transport of intensity equation method .22
Var - the variance of an estimator.73
w.r.t. - "with respect to". 5
WDD - the Wigner Distribution De-convolution method. 16
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B - magnetic field. 3
c - the speed of light in vacuum. 4
D - displacement field. 3
diag - the diagonal elements of a matrix.73
E - electrical field. 3
E - expectation.73
EF - the normalized error in Fourier space.48
ER - the normalized error in real space.48
Escat - scalar scattered amplitude.102
E - cost function.24
E j - the cost function for j th illumination in ptychography.19
êp - polarization direction.101
F - 3D Fourier transform. 7
F⊥ - 2D Fourier transform. 5
F−1

⊥ - 2D inverse Fourier transform. 5
G - scalar Green’s function. 6
H - magnetizing field. 3
h - the Planck constant.52
ħ - the Planck constant.71
I - intensity measurement. 2
I m - the measured intensity.24
IF - the Fisher information matrix.73
j - the index of relative position between the probe and the object in ptychography.18
J - mutual coherent function.28
J1 - Bessel function of the first kind of order 1.113
J2 - Bessel function of the first kind of order 2.113
k - 3D Cartesian coordinates in reciprocal space. 5
k⊥ - 2D Cartesian coordinates of spatial frequency. 5
k - wave number. 4

141



B

142 B. DENOTATIONS

k′
⊥ - 2D coordinates of spatial frequency derived from r′⊥ in the detector plane. 18

L - Lagrange function.25
L⊥ - the finite extent of the object. 12
LP - the negative log-likelihood functional of Poisson noise model.71
nr - refractive index. 4
n j - the number of detected photons for each detector pixel and for j th illumination.71
N j - the expectation value of n j .71
nr,⊥ - index of 2D rectangular meshgrid in real space. 9
nk,⊥ - index of 2D rectangular meshgrid in reciprocal space. 9
N det

x - the number of pixels of the detector in the x-axis.19
N det

y - the number of pixels of the detector in the y-axis.19
N - the normal distribution.73
O - object. 2
P - probe. 2
p - dipole moment.101
PP - the probability distribution of Poisson noise model.71
r - 3D Cartesian coordinates in real space. 3
r⊥ - 2D Cartesian coordinates in the object plane. 3
r′⊥ - 2D Cartesian coordinates in the detector plane. 18
R⊥, j - the j th relative position between the probe and the object in ptychography.18
S - finite size boundary support. 10
U - solution of the scalar Helmholtz equation. 4
W - Wigner distribution function.21
β - feedback parameter of iterative phase retrieval algorithms. 15
γ - regularization parameter.46
γ1,2 - the complex degree of coherence. 12
δD - Dirac’s delta function. 6
∆k⊥ - the size of single cell of the 2D meshgrid in reciprocal space. 9
∆r⊥ - the size of single cell of the 2D meshgrid in real space. 9
ϵ - permittivity. 4
Θ - vector of parameters.72
Θ̂ - the estimator ofΘ.73
λ - wavelength. 4
λL - Lagrange multiplier.25
Λ - temporal spectrum of the illumination.44
µ - permeability. 4
πO - the projection in real space. 13
πF - the projection in Fourier space. 13
σS - over-sampling factor. 11
Ψ - exit wave immediately behind the object. 8
ω - temporal frequency. 2
ℜ - the real part of a complex number.25
ℑ - the imaginary part of a complex number.26
1D - the binary window function representing the region of the detector.46
1Ω - binary window function in reciprocal space.104
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⋆ - auto-correlation.23
∗ - complex conjugation.23
⊗ - convolution.109
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