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In the life-cycle cost analysis of a structure, the total cost of damage caused by external hazards like
earthquakes, wind storms and flood is an important but highly uncertain component. In the literature,
the expected damage cost is typically analyzed under the assumption of either the homogeneous
Poisson process or the renewal process in an infinite time horizon (i.e., asymptotic solution). The paper
reformulates the damage cost estimation problem as a compound renewal process and derives general
solutions for the mean and variance of total cost, with and without discounting, over the life cycle of
the structure. The paper highlights a fundamental property of the renewal process, referred to as renewal
decomposition, which is a key to solving a wide range of life cycle analysis problems. The proposed for-
mulation generalizes the results given in the literature, and it can be used to optimize the design and life
cycle performance of structures.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Background

The life-cycle cost analysis involves many elements, such as
cost of construction, operation, maintenance, decommissioning,
and many other activities, over a specified time horizon or service
life of the structure. In the reliability-based optimization, Rosen-
blueth and Mendoza [1] pointed out the three most important
components of the life cycle cost, namely, initial construction cost,
benefits derived from the system and losses due to failures. The
term damage cost is used in this paper to denoted the total losses
due to failures that incur due to loss of services, damage to con-
tents and cost of repairing and restoring the damaged structure.

In the life cycle analysis, one of the most uncertain elements is
the damage cost that might result due to exposure to external haz-
ards, such as earthquakes, wind storms and floods. Uncertainty in
the estimation of damage cost arises from intrinsic uncertainties
associated with the occurrence frequency and intensity of a given
type of hazard, as well as the structural response to the hazard.

In recent times, research interests in the life cycle analysis has
peaked, as it has become a focus of the performance-based design
as well as optimization of decisions related to maintenance plan-
ning and retrofitting of structures.

In structural engineering, the homogeneous Poisson process
(HPP) model for occurrences of a hazard has been traditionally
used to estimate the expected life cycle damage cost, such as in
the seismic risk analysis [2]. Although the HPP model greatly sim-
plifies the analytical formulation, this model is not likely to repre-
sent the stochastic nature of a wide ranging hazards and threats.
Therefore, the expected cost analysis performed under the HPP
assumption cannot be considered a generic analysis of the
problem.

The main aim of this paper is to provide a clear and comprehen-
sive exposition of key ideas of the theory of stochastic renewal pro-
cesses in a way to generalize the life-cycle analysis of the damage
cost. In particular, derivations of the expected value and the vari-
ance of the cost, with and without discounting, are presented in
a coherent manner. Explicit analytical results are derived for the
HPP and Erlang processes, which are especial cases of general
results presented in the paper. A practical example of seismic ret-
rofitting is presented. An ulterior motive of this study is to help
new generation of engineers understand the key concepts of
stochastic process models for life-cycle cost analysis.

Since the paper is primarily concerned with damage cost result-
ing from external hazards, the effect of internal degradation (e.g.,
corrosion and fatigue) on the life cycle cost is not considered here.
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The inspection and maintenance costs to prevent failures resulting
from internal degradation are also ignored. The topic of life cycle
cost analysis considering a stochastic degradation process and a
condition-based maintenance policy are already presented in sep-
arate studies by Cheng and Pandey [3] and Pandey et al. [4].

1.2. Literature

With the advent of probabilistic models for risk analysis in
1970s, there was a great deal of interest in using the total risk as
a basis for optimizing the structural design codes. Whitman and
Cornell [5] presented a comprehensive approach to evaluate the
total seismic risk associated with a design that is expected to face
multiple seismic events during its service life. The next compre-
hensive study on this topic was presented by Rosenblueth [6],
who introduced the stochastic renewal process for estimating the
expected present value of losses caused by infrequent hazards,
such as earthquakes, strong winds and tsunamis. In this study,
the expected discounted cost of structural failures and repairs
was derived using the method of the Laplace transform. The prob-
lem of optimum design of structures under dead, live and seismic
loads was considered in Rosenblueth [7]. The optimization
involved minimization of expected discounted value of costs and
losses over the life cycle of the structure. In earthquake engineer-
ing, calculation of lifetime seismic damage cost continued to be
an active area of research [2], though the stochastic analysis is
almost exclusively based on the homogeneous Poisson process
(HPP) model. Porter et al. [8] presented computation of the vari-
ance of discounted seismic risk under the assumption of HPP
model, perhaps the first time in the seismic literature. The deriva-
tion was based on the order statistics property of the Poisson pro-
cess, which cannot be extended to a renewal process model.

Takahashi et al. [9] pointed out that the occurrence of large
magnitude earthquakes, referred to as the ‘characteristic earth-
quake’ depends on the previous history of earthquake activity at
the source. Therefore, a non-Poisson, non-stationary stochastic
model must be used to describe their occurrences, whereas HPP
model is more suitable for smaller earthquakes occurring more
or less randomly. They adopted a renewal process model based
on the Brownian Passage Time distribution and approximately
evaluated the expected discounted cost of seismic damage. A
detailed evaluation of structural damage and cost given a seismic
event has also been an active area of research [10,11].

The interest in the renewal process model for life cycle cost
optimization was rekindled by Rackwitz [12], in which Rosen-
blueth’s model was extended to combine it with the Life Quality
Index framework proposed by Pandey et al. [13]. In a series of
papers, Rackwitz and his co-workers applied the renewal process
model to a more general class of problems in which the effect of
degradation and maintenance was also included in life cycle cost
analysis [14–16]. Most of this work was concerned with the evalu-
ation of expected discounted cost and losses. Goda and Hong [17]
applied the Monte Carlo simulation method to evaluate the mean,
standard deviation and probability distribution of the seismic life
cycle cost. An application of the utility theory to life cycle analysis
was presented by Cha and Ellingwood [18].

1.3. Limitations of existing literature

Although there is a fairly substantial body of the literature on
stochastic modeling of life cycle cost analysis, the following limita-
tions in the analytical formulation are noted:

� In the stochastic life cycle analysis, the homogeneous Poisson
process model is omnipresent [8,12,2]. The HPP model leads
to considerable analytical simplifications and avoids dealing
with intricacies of the theory of the renewal process.
The analysis is mostly limited to the expected cost and expected
discounted cost. The computation of the variance is largely no-
existent, with an exception of Porter et al. [8], who derived vari-
ance of the cost.

� Although the stochastic renewal process models were
employed hitherto, their success has been mostly limited to
the computation of expected cost in an asymptotic sense. In
fact, a clear formulation for the expected discounted cost in a
finite time horizon is not available.
The asymptotic analysis is based on the elementary renewal
theorem which says that the cost rate asymptotically converges
to a ratio of the expected cost in a single renewal cycle to the
expected cycle length. This asymptotically solution is so simple
to use that it completely bypasses a formal stochastic formula-
tion of the problem. For this reason, the literature is replete
with the use of the asymptotic solution, even in cases where
it is not consistent with a short and finite time planning hori-
zon, required for financial planning and capital budgeting [3].

� The evaluation of variance of the life cycle cost and its dis-
counted value in a stochastic renewal model has not been dis-
cussed at all in the life cycle analysis literature.
A main reason for lack of generalities in renewal process based
models is the method of the Laplace Transform that was used by
most researchers to solve the problem [12,6]. Although this
method allows to write a compact expression for the Laplace
transform of the expected costs, its inverse in not easy to find
for a general distribution of the inter-occurrence time. There-
fore, this approach is mostly limited to a few special cases like
the exponential distribution (i.e., HPP model) and the Erlang
distribution.

1.4. Objectives and organization

The central objective of this paper is to present a clear and com-
prehensive formulation to compute expected value and variance of
the damage cost, with and without discounting, that may incur
over the life cycle of a structure due to exposure to external haz-
ards like earthquake, wind, snow and flood. To achieve this objec-
tive, a general formulation based on the theory of stochastic
renewal process is presented, which overcomes the limitations of
the existing literature as stated in Section 1.3. The mean and vari-
ance of discounted cost can now be computed in a finite time hori-
zon for a general renewal process.

The information about the mean and variance of life cycle cost
can be used to improve decision making regarding the design alter-
natives and options of retrofitting of a structure within a ‘‘mean–
variance” based utility framework. For example, a utility function
given as the sum of mean and some multiple of standard deviation
of cost can be maximized as a part of the decision making process.

In this paper, analytical results are also derived for a especial
case of the Erlang renewal process. An interesting finding of the
paper is that there is large variability associated with the estimate
of the damage cost, as marked by a large coefficient of variation
(COV � 1). It means that an exclusive reliance on the expected cost
in optimization would not yield desired result in practice due to
potentially large variability in the actual outcome.

The paper is organized as follows. Section 2 presents the basic
terminology and concepts of the stochastic renewal process model.
The renewal decomposition, a fundamental concept used exten-
sively in this paper, is clearly described. The lack of understanding
of this key concept led many researches to adopt the Laplace Trans-
form approach. Section 3 derives the expected cost and variance of
the damage cost, and this formulation is extended to discounted
cost analysis in Section 4. Analytical results for HPP and the Erlang
renewal process are derived in Section 5. A practical example
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related to seismic retrofitting of a wooden house is presented in
Section 6. The last Section 7 summarizes key findings of this study.
Additional analytical derivations are presented in Appendix A.
2. Stochastic renewal process: basic concepts

In the context of the life cycle analysis, a stochastic renewal
process can be used to describe repeated occurrences of an event
at random times. In Fig. 1, an event is shown to recur at times
S1; S2; . . . ; Sn, which is randomly distributed in an interval ð0; t�.
The recurring event can be an external hazard or a renewal of
the structure or any other event depending on the problem. In this
Section, key mathematical concepts related to the renewal process
are described in a self-contained manner.

2.1. Point process and counting process

Mathematically, a (simple) point process is a random and
strictly increasing sequence of real numbers, S0 ¼ 0 < S1 <

S2 < � � �, on the set of positive real numbers Rþ without a finite
limit point, i.e., as i ! 1; lim Si ! 1. The origin of the process is
denoted as S0 ¼ 0. The cumulative distribution function of Si is
denoted as FSi ðxÞ ¼ P Si 6 x½ �. A point process can be equivalently
represented by a sequence of random inter-arrival times,
T1; T2; . . ., with Tn ¼ Sn � Sn�1. The arrival time, Si, can thus be
written as a partial sum of inter-occurrence times, i.e.,
Si ¼ T1 þ T2 � � � þ Ti.

The number of events in the time interval ð0; t�, denoted as NðtÞ,
is formally defined as

NðtÞ ¼ maxfi; Si 6 tg; ðt P 0Þ: ð1Þ
The process fNðtÞ; t P 0g is referred to as the counting process

associated with the partial sums Si; i P 1. Since the events
fNðtÞ ¼ ig and fSi 6 t < Siþ1g are equal, the marginal probability
distribution of NðtÞ can be written as

P NðtÞ ¼ i½ � ¼ P Si 6 t < Siþ1½ � ¼ FSi ðtÞ � FSiþ1
ðtÞ; i ¼ 0;1; . . . ð2Þ

To derive this probability term, the following relations are used:

P Si 6 t½ � ¼ P Si 6 t; Siþ1 6 t½ � þ P Si 6 t; Siþ1 > t½ �
() P Si 6 t < Siþ1½ � ¼ P Si 6 t½ � � P Siþ1 6 t½ � ¼ FSi ðtÞ � FSiþ1

ðtÞ
Note that P Si 6 t; Siþ1 6 t½ � ¼ P Siþ1 6 t½ �, since the first event,

ðSi 6 tÞ, is a subset of the second event, ðSiþ1 6 tÞ. Furthermore,
FS0 ðtÞ ¼ P S0 6 t½ � ¼ 1 for any t � 0, since S0 ¼ 0. As
i ! 1; lim Si ! 1, such that FSi ðtÞ ! 0 for any finite value of
t � 0. With these conditions, it can be shown using Eq. (2) thatP1

i¼1P NðtÞ ¼ i½ � ¼ 1.
A joint distribution for 0 < t1 < t2 < � � � < tk, and

0 6 n1 6 n2 6 � � � 6 nk, can be written as

P Nðt1Þ ¼ n1;Nðt2Þ ¼ n2; . . . ;NðtkÞ ¼ nk½ �
¼ P Sn1 6 t1 < Sn1þ1; . . . ; Snk 6 tk < Snkþ1

� �
In summary, the finite-dimensional distributions of the count-

ing process NðtÞ is completely determined by the joint distribu-
tions of the random vectors ðS1; . . . ; SkÞ; k P 1.
Fig. 1. A schematic of the renewal process.
Proposition 2.1. If the two sequences, 0 < S1 < S2 < � � � and

0 < ~S1 < ~S2 < � � �, have an identical distribution, i.e.,

ðS1; . . . ; SkÞ¼d ð ~S1; . . . ; ~SkÞ; for all k P 1;

then the associated counting processes, NðtÞ and eNðtÞ, also have the
same distribution.
2.2. Renewal processes

A point process is called an ordinary renewal process if the
inter-occurrence times T1; T2; . . ., form a sequence of non-
negative, independent and identically distributed (iid) random
variables with a distribution FTðtÞ. The word ‘‘renewal” implies that
the process is reset after each occurrence of the event of interest.
The homogeneous Poisson process is a well known example of a
renewal process in which T follows an exponential distribution.

For a renewal process, the probability distribution of Si is an

i-fold convolution FðiÞ
T ðtÞ defined as

FSi ðtÞ ¼ P T1 þ T2 � � � þ Ti 6 t½ � ¼ FðiÞ
T ðtÞ; ð3Þ

which can be evaluated in a sequential manner as

FðiÞ
T ðtÞ ¼

Z t

0
Fði�1Þ
T ðt � yÞdFTðyÞ; ði � 2Þ ð4Þ

Note that Fð1Þ
T ðtÞ ¼ FTðtÞ and dFTðtÞ ¼ f TðtÞdt when the probabil-

ity density of T exists. The convolution, FðiÞ
T ðtÞ, is not easy to evalu-

ate in a general setting because of numerical difficulties associated
with the computation of higher order convolution integrals.

2.3. Renewal function

The renewal function,KðtÞ, is defined as the expected number of
renewals in a time interval ð0; t�.

A binary indicator function is introduced which makes it easier
to write concise mathematical statements. The indicator function
tests a logical condition in the following way:

1A ¼ 1 only if A is true
0 otherwise:

�
ð5Þ

From basic probability theory, the expected value of an
indicator function is equal to the probability of occurrence of the
condition being tested, i.e., E 1fAg

� � ¼ P A½ �.
To derive the renewal function, the number of renewals is

written in terms of an indicator function as,

NðtÞ ¼
X1
i¼1

1fSi6tg: ð6Þ

such its expected value can be evaluated as

E NðtÞ½ � ¼ KðtÞ ¼ E
X1
i¼1

1fSi6tg

" #
¼
X1
i¼1

P Si 6 t½ � ¼
X1
i¼1

FðiÞ
T ðtÞ: ð7Þ

This expression is not useful in computation, as it involves an
infinite series of convolutions. To circumvent this difficulty, an
integral equation for the renewal function is derived in the
following manner.

Rearranging Eq. (7) and substituting from Eq. (4) leads to

KðtÞ ¼ Fð1Þ
T ðtÞ þ

X1
i¼2

FðiÞ
T ðtÞ ¼ FTðtÞ þ

X1
i¼1

Fðiþ1Þ
T ðtÞ

¼ FTðtÞ þ
X1
i¼1

Z t

0
FðiÞ
T ðt � yÞdFTðyÞ:



Fig. 2. An illustration of the renewal decomposition argument.
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Interchanging the sum and integral and using Eq. (7) leads to

X1
i¼1

Z t

0
FðiÞ
T ðt � yÞdFTðyÞ ¼

Z t

0

X1
i¼1

FðiÞ
T ðt � yÞ

 !
dFTðyÞ

¼
Z t

0
Kðt � yÞdFTðyÞ;

The final result is the following integral equation for the
renewal function:

KðtÞ ¼ FTðtÞ þ
Z t

0
Kðt � yÞdFTðyÞ: ð8Þ

The renewal rate is defined as the expected number of renewals
per unit time given by the time derivative ([19]):

kðtÞ ¼ dKðtÞ
dt

ð9Þ

If the random variable has probability density function, f TðtÞ,
then the following integral equation can be written for the renewal
rate:

kðtÞ ¼ f TðtÞ þ
Z t

0
kðt � yÞ f TðyÞdy ð10Þ
2.3.1. Solution of the renewal equation
A classical approach to solve the renewal integral equation is

based the Laplace transform method, which is briefly described
here without any mathematical formalities. The Laplace transform
(LT) of a function, such as the probability density, f TðtÞ, is defined
as

f �TðsÞ ¼
Z 1

0
e�st f TðtÞdt

The LT of the cumulative distribution function is given as
F�
TðsÞ ¼

R1
0 e�st FTðtÞdt ¼ f �TðsÞ=s. Using a basic result that the LT of

a convolution of two functions is the product of their LTs, the
renewal Eq. (8) can be solved by taking LT of both sides as

K�ðsÞ ¼ F�
TðsÞ þK�ðsÞ f �TðsÞ;

which leads to the final solution:

K�ðsÞ ¼ f �TðsÞ
sð1� f �TðsÞÞ

ð11Þ

Thus, given the LT of the PDF of the inter-occurrence time, f �TðsÞ,
the LT of the renewal function can be easily obtained. However, the
inversion of K�ðsÞ to obtain the renewal function, KðtÞ, in the
original time domain requires more complex numerical methods
and algorithms.

It has been found that a direct numerical solution of the
renewal integral equation method by a trapezoidal integral rule
is fairly simple, practical and accurate method [20]. In this paper,
a modified numerical algorithm of Tijms [19] is used to solve the
integral equation.

2.4. Concept of the renewal decomposition

Although the renewal equation can be derived from elementary
concepts of probability theory, an underlying important concept is
the regenerating property of the renewal process. Because this
property is not well understood in clear mathematical terms, the
engineering applications have been mostly limited to the evalua-
tion of expected value in fairly simple settings. The concept of
the regenerative property, also referred to as the renewal decom-
position, allows to solve more involved problems.
The renewal decomposition refers to a basic property of the
renewal process that after every renewal a (probabilistic) replica
of the original process starts again. In a practical engineering con-
text, this property is easy to understand. For example, after a fail-
ure of a machine, when it is replaced by an identical new machine,
the process of machine operation restarts afresh. Similarly, after a
seismic event, the repair of a structure to restore its condition to
the original (new) state is another example of renewal process.
The probabilistic implications of this intuitive property can be for-
malized as follows.

Fig. 2(a) shows a renewal process in an interval ð0; t� with the
number of renewals NðtÞ. Suppose this process is observed after
the first event that occurred at time S1 ¼ T1, as shown in Fig. 2
(b). Thus, the shifted renewal process, observed in the time inter-
val, ðS1; S1 þ t�, is associated with the sequence of inter-arrival

times, T2; T3; . . ., or alternatively denoted as fT1 ;fT2 ; . . . witheTi ¼ Tiþ1. The corresponding partial sum is denoted as eSi , such thateSi ¼ Siþ1 � T1.
The number of renewals in the shifted process is given as

eNðtÞ ¼
X1
i¼1

1
feSi6tg

: ð12Þ

Proposition 2.2. The renewal decomposition property means that

1. The counting process NðtÞ has the same distribution as eNðtÞ.
2. The shifted process is independent of the time of shift, i.e., eNðtÞ and

T1 are independent.

2.4.1. Application to the derivation of renewal equation
Recall the definition of the number of renewals in the original

process

NðtÞ ¼
X1
i¼1

1fSi6tg ¼ 1fS16tg þ
X1
i¼1

1fSiþ16tg:

Since eSi ¼ Siþ1 � T1, the sum in the righthand side can also be
written asX1
i¼1

1fSiþ16tg ¼
X1
i¼1

1
fT1þeSi6tg

¼
X1
i¼1

1
feSi6t�T1g

¼ eNðt � T1Þ;

Thus, the final decomposition of the original process is obtained
as

NðtÞ ¼ 1fT16tg þ eNðt � T1Þ: ð13Þ
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To derive the renewal function, take the expectation of both
sides of Eq. (13)

E NðtÞ½ � ¼ E 1fT16tg
� �þ E eNðt � T1Þ

h i
Note that eNðt � T1Þ ¼ 0 for t < T1. From the independence of T1

and eNðtÞ (see Proposition 2.2-2)

E eNðt � T1Þ
h i

¼
Z t

0
E eNðt � xÞ
h i

dFTðxÞ:

Since NðtÞ and eNðtÞ have identical distribution (see Proposition
2.2-1), the following equality holds:

E eNðt � xÞ
h i

¼ E Nðt � xÞ½ � ¼ Kðt � xÞ

Substituting these two results into Eq. (8) leads to the renewal
integral equation:

KðtÞ ¼ FTðtÞ þ
Z t

0
Kðt � xÞdFTðxÞ: ð14Þ

The renewal function can be easily computed using an algo-
rithm given by Tijms [19], which is based on the trapezoidal inte-
gration method.

The renewal decomposition idea has been successfully applied
to solve a more complex problem of the unavailability analysis of
nuclear safety systems [21].

In many elementary textbooks the derivation of the renewal Eq.
(8) is explained as ‘‘conditioning on the time first renewal”. Despite
its intuitive appeal, this approach does not go far enough to formu-
late a solution of complex problems. We believe that the concept of
renewal decomposition, Eq. (13), is mathematically rigorous, and
technically correct argument that is applicable to a larger class of
problems, as shown in this paper.

Proposition 2.3. Consider an integral equation of the form

zðtÞ ¼ /ðtÞ þ
Z t

0
zðt � xÞdFTðxÞ;

where FT is a cumulative distribution function, FTð0Þ ¼ 0, and /ðtÞ is a
known, bounded function. The solution of this integral equation can be
written in terms of the renewal function KðtÞ associated with T as [19]

zðtÞ ¼ /ðtÞ þ
Z t

0
/ðt � xÞdKðxÞ:
2.5. Marked and compound renewal processes

In addition to the inter-occurrence time (T), the severity (or
intensity) of a hazard tends to be highly uncertain, and it can also
be modelled by another random variable, X. Thus, a recurring haz-
ard can be modelled as a sequence of random vectors
ðTi;XiÞ; i ¼ 1;2; . . ., which are assumed to be independent and iden-
tically distributed. This sequence is called amarked point process, as
shown in Fig. 3. It must be emphasized that the joint distribution of
Fig. 3. An example of a marked renewal process.
ðTi;XiÞ is independent of that of ðTj;XjÞ; i – j, but a dependence
between Ti and Xi is permitted.

The compound process refers to the cumulative effect of a
marked renewal process. For example, if each occurrence of a haz-
ard results in the structural damage cost of C $, a random variable,
then the total (or cumulative) cost in an interval ð0; tÞ is given as a
random sum:

KðtÞ ¼
XNðtÞ
i¼1

Ci ð15Þ

The total cost, KðtÞ, is mathematically referred to as a com-
pound renewal process. The mean and variance of the compound
process are useful in the life cycle cost analysis, as shown later in
the paper.

3. Damage cost analysis (DCA)

3.1. Basic concepts

Suppose single occurrence of a hazard results in the damage
cost of C $, which is modelled as a random variable to account for
uncertainties arising from random intensity of hazard and other
design features. The damage cost per event (C) has a mean lC

and standard deviation rC . As mentioned in Section 2.5, the total
cost, KðtÞ, is a compound renewal process defined by an iid
sequence of random vectors, ðT1;C1Þ; ðT2;C2Þ; . . . ; ðT;CÞ, with non-
negative random variables T and C. The joint distribution of
ðTi;CiÞ is independent of that of ðTj;CjÞ for any i– j. However, the
renewal cycle cost, Ci, and the duration, Ti, can be dependent.
Therefore, the total cost KðtÞ over the time interval ð0; t� is given as

KðtÞ ¼
XNðtÞ
i¼1

Ci ¼
X1
i¼1

Ci1fSi6tg; ð16Þ

where NðtÞ is the counting process associated with the iid sequence,
T1; T2; . . .. It is interesting to point out that the renewal function,
KðtÞ, associated with this process is a key input to the evaluation
of moments of KðtÞ, with and without discounting, as shown in
the remainder of the paper.

Here, integral equations for the first two moments of the dam-
age cost are derived in a general setting where the cost C and the
inter-occurrence time T are dependent random variables, with a
joint distribution, FC;Tðc; tÞ. A especial case of C being independent
of T is tackled in Appendix A.

3.2. Expected cost

The derivation of the expected damage cost relies on the idea of
renewal decomposition, as explained in Fig. 2 and Section 2.4.

Let KðtÞ be an original compound renewal process (see Fig. 3) as

defined by Eq. (16). Let eK ðtÞ be the shifted process in the time
interval ðS1; S1 þ t�, which starts after the first event occurring at

time S1 ¼ T1. So, eK ðtÞ can be interpreted as the cost over ð0; t� asso-
ciated with the shifted iid sequence ðT2;C2Þ; ðT3;C3Þ; . . ., which is
given as

eK ðtÞ ¼X1
i¼1

eCi1feSi6tg
¼
X1
i¼1

Ciþ11fT2þ���þTiþ16tg ð17Þ

Proposition 3.1. The renewal decomposition of a compound process
implies that

1. The original process K ¼ fKðtÞ; t P 0g and the shifted processeK ¼ feK ðtÞ; t P 0g are identically distributed, and
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2. The shifted compound process eK ðtÞ is independent of the random
vector ðT1;C1Þ.

Using these properties, a decomposition formula for the damage
cost can be derived by splitting the sum in Eq. (16) at the time of
first renewal, S1 ¼ T1. Thus,

KðtÞ ¼C11fS16tg þ
X1

i¼1
Ciþ11fSiþ16tg

¼C11fS16tg þ
X1

i¼1
Ciþ11fT1þðT2þ���þTiþ1Þ6tg

¼C11fS16tg þ
X1

i¼1
Ciþ11fðT2þ���þTiþ1Þ6t�T1g

It follows from Eq. (17) that

KðtÞ ¼ C11fS16tg þ eK ðt � T1Þ; ð18Þ

where eK ðt � T1Þ ¼ 0 for t < T1. Taking the expectation of both sides
of Eq. (18) leads to

E KðtÞ½ � ¼ E C11fT16tg
� �þ E eK ðt � T1Þ

h i
:

from Proposition 3.1,

E eK ðt � T1Þ
h i

¼
Z t

0
E eK ðt � yÞ
h i

dFTðyÞ ¼
Z t

0
E Kðt � yÞ½ �dFTðyÞ:

Defining the function

/ðtÞ ¼ E C1fT6tg
� �

; ð19Þ
which is an increasing function and bounded by E C½ �, which is a
finite value of the mean of C. Thus, E KðtÞ½ � satisfies the following
renewal integral equation

E KðtÞ½ � ¼ /ðtÞ þ
Z t

0
E Kðt � yÞ½ �dFTðyÞ: ð20Þ

It follows from Proposition 2.3 on page 11 that the above inte-
gral equation has a unique solution:

E KðtÞ½ � ¼ /ðtÞ þ
Z t

0
/ðt � yÞdKðyÞ: ð21Þ

where KðtÞ is the renewal function associated with the inter-
occurrence time T. This solution is fairly general and it allows to
consider a dependence between C and T.

As before, the Laplace transform (LT) method can be used in
principle to solve the integral equation of the expected cost. The
LT of the expected cost can be directly written as

K�ðsÞ ¼ /�ðsÞ þ /�ðsÞk�ðsÞ ¼ /�ðsÞ
ð1� f �TðsÞÞ

ð22Þ

This solution involves LTs of /ðtÞand f TðtÞ and its inversion is
not easy except, in some elementary cases. Therefore, this
approach is not discussed any further in the paper.

3.3. Asymptotic solution

The stochastic process of the life cycle cost, KðtÞ, has a remark-
able asymptotic property. The total cost per unit time or cost rate,
KðtÞ=t, as well as the expected cost per unit time has an asymptotic
limit given as

k1 ¼ lim
t! 1

KðtÞ
t

¼ lim
t! 1

E KðtÞ½ �
t

¼ E C½ �
E T½ � ð23Þ

For a detailed mathematical exposition of this topic, the readers
are referred to Gallager [22].

In simple terms, the asymptotic limit of the expected cost per
unit time is a ratio of the expected cost and length of a single
renewal cycle. Using this result, the expected cost in a time interval
ð0; t� can be approximately estimated as E KðtÞ½ � � k1 t.
It is also clear that by adopting the asymptotic result, a formal
stochastic analysis of the total cost estimation problem can be
completely avoided.

3.4. Second moment of the damage cost

To evaluate the variance of the damage cost, the second
moment (or mean square) of the cost is needed, for which the
starting point is the basic definition of mean square applied to
the decomposition formula given by Eq. (18):

E K2ðtÞ
h i

¼ E C11fS16tg þ eK ðt � T1Þ
� �2� �

ð24Þ

Defining a function wðtÞ as

wðtÞ ¼ E C21fT6tg
h i

þ 2E C eK ðt � TÞ1fT6tg
h i

; ð25Þ

the function E K2ðtÞ
h i

satisfies a renewal equation:

E K2ðtÞ
h i

¼wðtÞ þ E eK 2ðt � T1ÞÞ
h i

¼wðtÞ þ
Z t

0
E K2ðt � yÞ
h i

dFTðyÞ

The final solution for the mean-square of life cycle damage cost
is

E K2ðtÞ
h i

¼ wðtÞ þ
Z t

0
wðt � yÞdKðyÞ ð26Þ
4. Discounted cost analysis

The expected value of the discounted damage cost KDðtÞ can
also be elegantly derived using the renewal decomposition
described in Proposition 3.1.

The cost Ci incurring at time Si is discounted back to present
time, S0 ¼ 0, as Cie�qSi , where q > 0 is the discount rate. Thus,the
total discounted cost can be written as

KDðtÞ ¼
X1
i¼1

Cie�qSi1fSi6tg; ðq > 0Þ: ð27Þ

4.1. Expected discounted cost

The discounted cost over the time interval ðS1; S1 þ t� is given byX1
i¼1

Ciþ1e�qSiþ11fSiþ16S1þtg ¼ e�qS1 eKDðtÞ;

where

eKDðtÞ ¼
X1
i¼1

Ciþ1e�qðT2þ���þTiþ1Þ1fT2þ���þTiþ16tg:

Clearly, eKDðtÞ is the discounted cost associated with the shifted
sequence ðT2;C2Þ; ðT3;C3Þ; . . .. The renewal decomposition property
implies that the processes KD ¼ fKDðtÞ; t P 0g andeKD ¼ feKDðtÞ; t P 0g are identically distributed and the first cycle

ðT1;C1Þ and the process eKD are independent.
To derive the renewal equation, the above sum (27), as before, is

split into a first renewal cycle, T1 < t, and the rest of the sum as

KDðtÞ ¼ C1e�qT11fT16tg þ e�qT1 eKDðt � T1Þ: ð28Þ
Define the function

/DðtÞ ¼ E Ce�qT1fT6tg
h i

: ð29Þ

and taking the expectation of Eq. (28) and further simplifications
lead to the following integral equation:
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E KDðtÞ½ � ¼ /DðtÞ þ
Z t

0
e�qsE KDðt � yÞ½ �dFTðsÞ ð30Þ

To reduce the above renewal equation to a standard format,
both sides are multiplied with eqt . Denoting K 0

DðtÞ ¼ eqtE KDðtÞ½ �
leads to

K 0
DðtÞ ¼ /DðtÞeqt þ

Z t

0
K 0

Dðt � sÞdFTðsÞ

As before, the solution of the above integral equation is as
follows:

K 0
DðtÞ ¼ /DðtÞeqt þ

Z t

0
/Dðt � sÞeqðt�sÞdKðsÞ

It can be reverted to original notations as

E KDðtÞ½ � ¼ /DðtÞ þ
Z t

0
/Dðt � sÞe�qsdKðsÞ; ðq > 0Þ ð31Þ
Table 1
Moments of the damage cost when C is independent of T

Case Moment Expression Eq, No.

With discounting Mean E KDðtÞ½ � ¼ lC

R t
0 e

�qx dKðxÞ (A.3)

Mean
square

E K2
DðtÞ

h i
¼ l2C

R t
0 e

�2qxdKðxÞþ (A.7)

2lC

R t
0 e

�2qxE KDðt � xÞ½ �dKðxÞ
No discounting Mean E KðtÞ½ � ¼ lCKðtÞ (A.8)
- Mean

square
E K2ðtÞ
h i

¼ l2CKðtÞ þ 2ðlCÞ2

	 R t0 Kðt � xÞdKðxÞ

(A.9)
4.1.1. Asymptotic solution
The derivation of the asymptotic limit of the expected dis-

counted cost as t ! 1 begins with Eq. (27), which can be rewritten
as

k1D ¼ lim
t!1

E KDðtÞ½ � ¼ E
X1
i¼1

Cie�qSi
" #

¼
X1
i¼1

E Cie�qT1 � � � e�qTi
� �

The last step uses the fact that Si ¼ T1 þ T2 þ � � � Ti. Since
T1; . . . ; Ti are iid, the above equation can be simplified as

k1D ¼
X1

i¼1
E Ce�qT
h i

E e�qT
� �	 
i�1 ¼ E Ce�qT

h iX1
i¼0

E e�qT
� �	 
i

Substituting the standard formula for the sum of the geometric
series in above equation leads to the final result:

k1D ¼
E Ce�qT
h i

1� E e�qT½ � ð32Þ

For a more comprehensive asymptotic analysis of moments of
discounted cost, the readers are referred to van der Weide et al.
[23]. The asymptotic discounted cost was commonly used in ear-
lier studies, such as Rosenblueth [6] and Joannni and Rackwitz
[14].

4.2. Second moment of the discounted cost

The renewal equation for the second moment of the discounted
cost is derived by squaring both sides of Eq. (28)taking the expec-
tation, which leads to

E K2
DðtÞ

h i
¼ wDðtÞ þ

Z t

0
e�2qsE K2

Dðt � sÞ
h i

dFTðsÞ

where

wDðtÞ ¼ E C2
1 þ 2C1

eKDðt � T1Þ
� �

e�2qT11fT16tg
h i

: ð33Þ

Note that this derivation also uses the renewal decomposition
properties as in previous cases. For sake of brevity, intermediate
steps are not shown here, and the final result is presented:

E K2
DðtÞ

h i
¼ wDðtÞ þ

Z t

0
e�2qswDðt � sÞdKðsÞ: ð34Þ

The solutions presented in Sections 3 and 4 show that the pro-
posed approach based on the renewal decomposition is quite ver-
satile method for deriving the moments of a compound renewal
process.
5. Special cases: analytical results

5.1. C independent of T

In many instances, the damage cost per event (C) can be inde-
pendent of the occurrence time between events (T). This assump-
tion is commonly used in the seismic risks analysis. In this case,
the evaluation of moments of the damage cost can be greatly sim-
plified, as shown by derivations given in Appendix A. The reason
for simplification is that the solution approach does not involve
an integral equation. Rather, formulas are directly derived using
the basic definition of a random sum, The final analytical solutions
are presented in Table 1. To calculate all the solutions given in
Table 1, only a single integral equation for the renewal function,
KðtÞ, needs to be solved.

5.2. Homogeneous poisson process (HPP)

The HPP is the simplest and most widely used renewal process
in which the time between events is an exponentially distributed
random variable with the distribution FTðxÞ ¼ 1� e�kx and the
mean, lT ¼ 1=k. The distribution of NðtÞ is explicitly given by the
Poisson probability mass function,

P NðtÞ ¼ k½ � ¼ ðktÞke�kt

k!
; k ¼ 0;1;2; . . . ð35Þ

The renewal function of HPP is a linear function of time

KðtÞ ¼ kt; ð36Þ
and the renewal rate, k, is a constant. When C and T are assumed
to be independent, the expected cost can be easily obtained from
Eq. (A.8) as (also given in Table (1)):

E KðtÞ½ � ¼ lCkt ð37Þ

The second moment of the cost can be obtained from
Eq. (A.9)

E K2ðtÞ
h i

¼ l2Ckt þ ðlCktÞ2; ð38Þ

which leads to the variance of cost as

r2
KðtÞ ¼ l2Ckt: ð39Þ

The expected discounted cost can be obtained from Eq. (A.3)
as

E KDðtÞ½ � ¼ lC

Z t

0
e�qxkdx ¼ lCk

q
ð1� e�qtÞ: ð40Þ

This standard formula is most commonly used in seismic risk
analysis [2,8].

The second moment of the discounted cost can be obtained
from Eq. (A.5) as



Fig. 4. Probability density functions of the exponential and the Erlang distributions.
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E K2
DðtÞ

h i
¼ l2C

Z t

0
e�2qxkdxþ 2ðlCÞ2

Z t

0
e�2qx

Z t�x

0
e�qykdy

� �
kdx

ð41Þ
The algebraic simplification of the above equation leads to the

following result:

E K2
DðtÞ

h i
¼ l2Cð

k
2q

ð1� e�2qtÞÞ þ 2ðlCÞ2
k2

2q2 ð1� e�qtÞ2
 !

since the second term is the square of the mean discounted cost
(see Eq. (40), the variance of the discounted cost can be written as

r2
KDðtÞ ¼

l2Ck
2q

ð1� e�2qtÞ ð42Þ

This is result is the same as that reported by Porter et al. [8].
Analytical results for HPP model are summarized in Table 2.

5.3. Renewal process – Erlang(2) distribution

In this Section, analytical results are derived for a renewal
process in which the inter-occurrence time, T, follows the Erlang
distribution with the shape parameter 2. The PDF and CDF of this
distribution are given as

f TðtÞ ¼ k2 t e�kt; FTðtÞ ¼ 1� ð1þ k tÞe�kt ð43Þ
The mean and standard deviation of this distribution are 2=k

and
ffiffiffi
2

p
=k, respectively. The renewal function of the Erlang-2

renewal process was presented in Tijms [19] as

KTðtÞ ¼ 1
2

k t � 1
4
ð1� e�2ktÞ ð44Þ

Using the above renewal function, the expected damage cost
can be easily calculated from Eq. (A.8). To evaluate the mean-
square of the life cycle cost using Eq. (A.9), the following result is
needed:Z t

0
Kðt � xÞdKðxÞ ¼ k2t2

8
þ 3
16

ð1� e�2ktÞ � k t
8
ð2þ e�2ktÞ

The expected value of discounted cost can be derived from
Eq. (A.3) as

1
lC

E KDðtÞ½ � ¼
Z t

0
e�qx dKðxÞ

¼ k
2q

ð1� e�qtÞ � k
2ð2kþ qÞ ð1� e�ð2kþqÞ tÞ

To evaluate the mean square of the discounted cost, the follow-
ing key integral is derived as

1
c1

Z t

0
e�2qxE KDðt � xÞ½ �dKðxÞ ¼ k

qðkþ qÞ �
2
q
e�qt þ ð2kþ qÞ

qð2k� qÞ e
�2qt

� 2
ð2k� qÞ e

�ð2kþqÞt

þ 1
ðkþ qÞ e

�2ðkþqÞt
Table 2
Moments of the damage cost in the HPP model.

Case Quantity Expression

With discounting Mean ðlCk=qÞð1� e�qtÞ
Variance ðl2C kÞ=ð2qÞÞð1� e�2qtÞ

No discounting Mean lCkt
Variance l2Ckt
Note that the constant c1 is defined as

c1 ¼ lCk
3

4qð2kþ qÞ
These analytical results are quite useful in verifying the numer-

ical solution of the above problem through the use of the renewal
function.

5.4. Numerical example

Analytical results derived in this Section are quite useful to
illustrate the variation of mean and variance of the life-cycle dam-
age cost. In both HPP and Erlang(2) models, the mean inter-
occurrence time has an identical value of 25 years with PDFs
shown in Fig. 4. The cost of damage per event has mean of
lC = 100 thousand$ and COV of 0.1. The discount rate is taken as
q ¼ 0:05 per year. The planning horizon is varied from 5 to
60 years, and in each case the mean and standard deviation of
the life cycle damage cost were calculated. Results for HPP model
shown in Fig. 5 present an interesting observation that the stan-
dard deviation of damage cost exceeds far more than the mean cost
in a short time horizon (< 20 years). It means that any optimiza-
tion based on the expected cost would be rendered meaningless
Fig. 5. Discounted damage cost: results for the HPP model.



Fig. 6. Discounted damage cost: results for the Erlang process model. Fig. 7. Probability density the BPT distribution of earthquake occurrence interval.
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by such a large volatility in the damage cost. Even in a 60 year time
horizon, COV of the damage cost (=0.83) is quite high. The reason
for this observation is that the standard deviation of cost is a
function of the mean square of C (or 2nd moment, l2C), as shown
by Eq. (42). Asymptotic values of the mean and standard deviation
of the damage cost are calculated as 80 and 63.56 thousand$,
respectively.

Results for the mean and standard deviation of the discounted
damage cost, KDðtÞ, in Erlang(2) model, as shown in Fig. 6, are qual-
itatively the same as those for the HPP case. Large volatility marked
by large standard deviation is also present in this case. In quantita-
tive terms, both mean and standard deviation are smaller than
those calculated for HPP case. The COV of cost in a 60 year time
horizon is 0.73, which is slightly smaller than that for HPP case.
Asymptotic values of the mean and standard deviation of the dam-
age cost are calculated as 60.95 and 41.86 thousand$, respectively.
Fig. 8. The rate of earthquake occurrences: BPT distribution.
6. Practical example: seismic risk analysis

6.1. Retrofitting of a wooden house

This example is inspired by the life cycle cost analysis of retro-
fitting of a two-storey wooden house by a base isolation system
[24]. The house was located in Japan in a region vulnerable to high
intensity earthquakes. Initial construction cost of the house was
estimated as $300,000 and the value of contents in the house as
$160,000. The seismic resistance of the house can be strengthened
by installing a base isolation at a cost of $26,000. The question is
about the cost effectiveness of the base isolation system in com-
parison to the risk of seismic damage that the house faces in
absence of the base isolation system.

The seismic hazard at the site is posed by a characteristic earth-
quake of magnitude 7.5. The inter-occurrence time is assumed to
follow the Brownian Passage Time (BPT) distribution with a mean
of l ¼ 37:1 years, a COV of a ¼ 0:5 [24]. The probability density of
BPT distribution is given as (see Fig. 7):

f TðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2pa2t3

r
exp �ðt � lÞ2

2lta2

" #
ð45Þ

An elaborate simulation based method was developed to esti-
mate the cost of damage caused by a characteristic earthquake
Takahashi et al. [9]. The simulation model considered uncertainties
in the fault rupture, wave propagation, surface soil amplification
and the dynamic response of building. The damage cost was esti-
mated as a function of the nonlinear response of the building to
simulated ground motions. Based on 100 simulations of the seis-
mic response, the expected cost of damage to the house per earth-
quake event was estimated as lC ¼ $75;000. COV of the damage
cost is assumed in this paper as 0.1, since the original study did
not give any specific value. By installing a base isolation system,
simulations showed that the expected damage cost can be signifi-
cantly reduced to $5,000. The COV of C is still assumed to be
unchanged from 0.1.

The key objective of the life cycle analysis is to examine if it is
worth installing the base isolation system for a 50 year service life
of the house. Takahashi et al. [9] proposed the expected discounted
cost as a basis for decision making. However, their analysis was
considerably simplified by assuming that only one seismic event
could occur in the service life of the structure. This assumption nul-
lifies the need for a renewal process model, and the problem can be
analyzed as a ‘‘first failure” problem.

The present analysis begins with the computation of the
renewal function associated with the BPT distribution for the
inter-occurrence time of characteristic earthquakes. The expected
occurrence (or renewal) rate of occurrence of earthquakes is shown
in Fig. 8. This was computed using the renewal Eq. (8). Moments of



Table 3
Life-cycle damage cost estimates for a wood frame house.

Case Without discounting With Discounting
Mean ($) SD ($) Mean ($) SD ($)

Renewal process-BPT model
Without base isolation 72,974 46,304 16,804 13,559
With base isolation 4865 3086 1120 904
Expected cost reduction 68,109 – 15,684
Expected net benefit +42,109 – �10,316

HPP Model
Without base isolation 101,078 87,502 37,112 39,000
With base isolation 6738 5833 2474 2600
Expected cost reduction 94,340 – 34,638
Expected net benefit +68,340 – +8638
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the life cycle damage cost were calculated using the formulas given
in Table 1.

Numerical results for life cycle damage cost, with and without
discounting, are presented in Table 3. First consider the non-
discounted cost of seismic damage over a 50 year period. The
expected cost without the base isolation is calculated as $72,974
with a standard deviation of $46,304. With the base isolation sys-
tem, the expected cost damage cost is reduced to $4865 with a
standard deviation of $3,086. The expected reduction in damage
cost is thus $68,109. The net benefit, after deducting the cost of
base isolation system of $26,000, turns out to be $42,109. Based
on expected cost analysis, it is beneficial to instal the base isolation
system in the house. It is however important to recognize that
large variability associated with the damage cost may preclude
the realization of the projected benefit.

Based on an annual interest rate of 5%, the expected discounted
cost was calculated as $16,804 when the house has no base isola-
tion system. With base isolation, the expected cost reduced to
$1120. Since the installation cost of $26,000 exceeds the benefit,
i.e., a reduction in the damage cost ($ 15,684), the base isolation
is not a cost-effective solution.

If the damage cost were calculated assuming that earthquake
occurrences follow the homogeneous Poisson process model, the
results turn out to be significantly different from those obtained
using BPT renewal process model (see Table 3).. The expected cost
of damage and the net benefit of base isolation are estimated as
$101,100 and $+68,300, respectively. Using the discount rate of
5%, the expected cost and the net benefit turn out to be $37,100
and +$8,600. Thus, the HPP model leads to a conclusion that the
proposed base isolation is a beneficial solution.
7. Conclusions

In the life cycle cost analysis, the total cost of damage caused by
external hazards over the life cycle of a structure is a fairly uncer-
tain element due to random nature of the time of occurrence and
intensity of hazards. In structural engineering, the homogeneous
Poisson process is widely used to model an external hazard, such
as earthquakes. Under this model, simple analytical expressions
for the mean and variance of damage cost can be derived. However,
these results are not useful in cases where the inter-occurrence
time deviates from the exponential distribution.

The paper presents a systematic development of a more general
stochastic process model of the damage cost analysis in which
occurrences of a hazard and its cost consequences are conceptually
modelled as a marked renewal process. In this approach, the life
cycle damage cost turns out to be a compound stochastic renewal
process. Based on this model, the paper derives formulas for the
mean and variance of discounted and non-discounted cost in a
specified service life of a structure or any other system.
The proposed solutions bring the following new elements in the
life cycle cost analysis::

� In the engineering literature, the expected discounted cost is
typically calculated using an asymptotic solution, i.e., when
the service life approaches infinity. This is unrealistic in cases
where the financial planning is done for a finite service life of
the structure. This paper presents all the solutions for finite ser-
vice life which can also be extended to obtain the asymptotic
solutions.

� The variance of the discounted cost in a renewal process model
is presented in the paper, which is not available in the
literature.

� In cases where the damage cost per event (C) depends on the
inter-occurrence time (T), themean andmean-squares of the life
cycle damage cost can be computed only through renewal-type
integral equations. These integral equations are derived in the
paper, which are also unavailable in the current literature. Note
that a dependence between C and T is introduced when a pre-
ventive maintenance policy is introduced in the analysis.

� The proposed solution approach based on a concept of the
renewal decomposition is more versatile than the Laplace trans-
form approach, which is traditionally used to write the solution
of an integral equation in spite of the fact that inversion of the
Laplace transform in a general setting is impractical.

The examples presented in the paper highlight the importance
of considering the standard deviation of life cycle cost in the deci-
sion making, because its value tends to be of the same order of
magnitude as the mean. Therefore, a decision solely based on
expected cost is likely to be unrealistic in practical cases. This
result motivates the application of more advanced concepts of
decision theory.
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Appendix A. Analytical derivations: C independent of T

In this Section, formulas for the mean and mean-squares of the
life cycle damage cost, KðtÞ, are derived when the damage cost per
event, C, is independent of the inter-occurrence time, T.

The Appendix first derives the first two moments of the dis-
counted cost. From these results, formulas for the moments of
non-discounted cost are obtained as a special case with unit dis-
count function.
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A.1. Discounted cost

A.1.1. Expected cost
The life cycle damage cost, as given by Eq. (27), is rewritten in

terms of a more general discounting function hðSiÞ as

KDðtÞ ¼
X1
i¼1

Ci hðSiÞ1fSi6tg ðA:1Þ

Note that in case of exponential discounting, hðSiÞ ¼ e�qSi , q > 0.
Since C and T are independent, the expected cost can be directly
written as

E KDðtÞ½ � ¼ E Ci½ �
X1
i¼1

E hðSiÞ1fSi6tg
� � ¼ lC

X1
i¼1

Z t

0
hðxÞdFSi ðxÞ ðA:2Þ

The following partial integrationZ t

0
hðxÞdFSi ðxÞ ¼ hðtÞFSi ðtÞ �

Z t

0
FSi ðxÞdhðxÞ;

leads toX1
i¼1

Z t

0
hðxÞdFSi ðxÞ ¼ hðtÞKðtÞ �

Z t

0
KðxÞdhðxÞ ¼

Z t

0
hðxÞdKðxÞ;

This is result is obtained by interchanging the sum with the
integration and using the definition of KðtÞ, as given by Eq. (7).
Thus, the final result is obtained as

E KDðtÞ½ � ¼ lC

Z t

0
hðxÞdKðxÞ ðA:3Þ

It is interesting to note that even for a general discount function
the expected discounted cost has a fairly simple analytical form.

A.1.2. Second moment of the discounted cost
To obtain the second moment of the discounted cost, both sides

of Eq. (A.1) are squared and written as

K2
DðtÞ ¼

X1
i¼1

CihðSiÞ1fSi6tg

 !2

¼
X1
i¼1

C2
i h

2ðSiÞ1fSi6tg þ 2
X1
i¼1

X1
j¼iþ1

CiCjhðSiÞ1fSi6tghðSjÞ1fSj6tg

ðA:4Þ
Following the steps given in the previous Section, the expected

value of the first term in the righthand side of (A.4) can be evalu-
ated in a straightforward manner as

E
X1
i¼1

C2
i h

2ðSiÞ1fSi6tg

" #
¼ E C2

h i
E
X1
i¼1

h2ðSiÞ1fSi6tg

" #

¼ l2C

Z t

0
h2ðxÞdKðxÞ

The expectation of the second term requires additional efforts
as shown by the following steps. For j > i

E CiCjhðSiÞ1fSi6tghðSjÞ1fSj6tg
h i
¼ l2

CE hðSiÞ1fSi6tghðSi þ Tiþ1 þ � � � þ TjÞ1fSiþTiþ1þ���þTj6tg
h i

¼ l2
C

Z t

0
hðxÞE hðxþ Tiþ1 þ � � � þ TjÞ1fxþTiþ1þ���þTj6tg

h i
dFSi ðxÞ;

Since Tiþ1 þ � � � þ Tj
d
¼Sj�i, it follows that for x < t

E hðxþ Tiþ1 þ � � � þ TjÞ1fxþTiþ1þ���þTj6tg
h i

¼
Z t�x

0
hðxþ yÞdFSj�i

ðyÞ;

so
E
X1
i¼1

X1
j¼iþ1

CiCjhðSiÞ1fSi6tghðSjÞ1fSj6tg

" #

¼ l2
C

X1
i¼1

X1
j¼iþ1

Z t

0
hðxÞ

Z t�x

0
hðxþ yÞdFSj�i

ðyÞdFSi ðxÞ:

SinceX1
j¼iþ1

Z t�x

0
hðxþ yÞdFSj�i

ðyÞ ¼
X1
k¼1

Z t�x

0
hðxþ yÞdFSk ðyÞ

¼
Z t�x

0
hðxþ yÞdKðyÞ;

it follows thatX1
i¼1

X1
j¼iþ1

Z x

0
hðxÞ

Z t�x

0
hðxþ yÞdFSj�i

ðyÞdFSi ðxÞ

¼
X1
i¼1

Z x

0
hðxÞ

Z t�x

0
hðxþ yÞdKðyÞ

� �
dFSi ðxÞ

¼
Z t

0
hðxÞ

Z t�x

0
hðxþ yÞdKðyÞ

� �
dKðxÞ:

Summing up, the final result is obtained as

E KDðtÞ2
h i

¼l2C

Z t

0
h2ðxÞdKðxÞþ2l2

C

Z t

0
hðxÞ

Z t�x

0
hðxþyÞdKðyÞ

� �
dKðxÞ:

ðA:5Þ
In case of the exponential discounting function, the above for-

mula can be simplified to

E K2
DðtÞ

h i
¼l2C

Z t

0
e�2qxdKðxÞþ2ðlCÞ2

Z t

0
e�2qx

Z t�x

0
e�qydKðyÞ

� �
dKðxÞ:

ðA:6Þ
Using Eq. (A.3), the above expression can be rewritten in terms

of the expected cost as

E K2
DðtÞ

h i
¼ l2C

Z t

0
e�2qxdKðxÞ þ 2lC

Z t

0
e�2qxE KDðt � xÞ½ �dKðxÞ

ðA:7Þ
A.2. Non-discounted cost

Formulas for non-discounted cost can be obtained from the for-
mulas for discounted cost by simply setting hðxÞ ¼ 1. Thus, the
expected cost can be directly obtained from Eq. (A.3) as

E KðtÞ½ � ¼ lCKðtÞ: ðA:8Þ
Eq. (A.8) is a standard result for the mean of a compound

renewal process ([22]). The result for the second moment of the
cost can be directly written using Eq. (A.5) as

E K2ðtÞ
h i

¼l2CKðtÞ þ 2ðlCÞ2
Z t

0
dKðxÞ

Z t�x

0
dKðyÞ

¼l2CKðtÞ þ 2ðlCÞ2
Z t

0
Kðt � xÞdKðxÞ ðA:9Þ
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