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A B ST R AC T

The Mara Wetland in Tanzania has an important role in regulating the quality, timing and magnitude
of the flow of water into Lake Victoria. In addition, the wetland provides natural resources for local
communities and habitat for variety of species. The planned dam construction upstream of the wetland
and projected changes in the local climate could affect the physical and ecological equilibrium of the
system. Baseline information on seasonal inundation dynamics is necessary to sustainably manage these
potential threats. The wetland is sparsely instrumented, which has hampered a thorough temporal and
spatial understanding of the local water balance. In addition, the highly vegetated nature of the wetland,
and relatively frequent cloud-coverage, motivates multi-source integration of remotely sensed data to
capture flood patterns at a high resolution.

In this study, the spatiotemporal inundation pattern of the Mara Wetland in Tanzania is reconstructed
using optical remote sensing data. The annual fluctuations in aerial wetland extent are analysed in parallel
to the fluctuations of local water balance components: downstream water level of Lake Victoria, upstream
discharge, direct precipitation and evaporation. The analyses aims to shed light on the underlying
mechanisms and hydrological processes that control the hydric status of the wetland. Comparing the
temporal changes in extent with surrounding physical processes provides insight on the responsiveness of
the wetland to specific water balance components.

The intra- and inter-annual trends in inundation of the Mara Wetland are reproduced for the years 2017,
2018, 2019. The Random Forests (RF) algorithm is trained bi-seasonally (using bands and derived water
and vegetation indices from Sentinel-2 data and a Digital Elevation Model (DEM) as input variables), and
used to classify the land-covers of the wetland region in a semi-automated way for a total of 73 Sentinel-2
scenes. The scenes are classified into 7 individual land-cover classes; 3 wetland classes (open water,
flooded vegetation, wet floodplain) and 4 dryland classes (dry floodplain, wet agriculture, dry agriculture,
bare land). The overall classification accuracy achieved (based on an independent validation set, not used
to train the classification algorithm) is 98.6 %. The spatiotemporal variability of the inundated area is used
in combination with available hydrological field-data to reproduce the local water balance.

The seasonal expansion and contraction of the wetland follows a consistent bi-modal regime, and the
results from the waterbalance affirm the importance of local precipitation in the seasonal expansion and
contraction of the wetland. The base-flow supplied by the Mara River, together with the backwater from
Lake Victoria appear to be at equilibrium at the extent of the permanent swamp during the dry season,
insinuating the importance of the riverflow during these low-rainfall months. The occasional yet extreme
flood events induced by high discharge rates are expected to play a specific ecological role in the wetland,
and should be accounted for during future dam operations upstream.
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I N T RO D U C T I O N

Wetlands are considered to be amongst the most important ecosystems on the planet. Ecosystem services
from wetlands include carbon storage, water purification, flood attenuation, natural resource provision
and biodiversity support (Millennium Ecosystem Assessment, 2005; Tockner and Stanford, 2002). Despite
their valuable services to the environment and us humans, wetlands are being threatened worldwide (Hu
et al., 2017). The loss and degradation of wetlands has caused rapid decline in freshwater biodiversity
(Dudgeon et al., 2006) and loss of their key provisional, regulatory and cultural services (Zedler & Kercher,
2005). Wetlands are often highly dynamic systems owing to the seasonal availability of water, and resultant
ecological response. These natural variations often drive the primary productivity of plants (Ward et al.,
2014), and govern the presence of terrestrial and aquatic species (Campbell et al., 2016). Variability in
water availability thereby controls the structure of the local food-web and overall biological diversity (Poff
et al., 1997).

Changes in wetland hydrology often correlate to human-driven changes such as dam construction,
deforestation or agricultural activities (Ilyas et al., 2019). Upstream changes in land use can lead to
alterations in river discharge and sediment transport, which may disrupt the physical and ecological
equilibrium of a wetland (Bregoli et al., 2019), and eventually lead to irreversible degradation (of Tanzania,
2017). An understanding of the spatiotemporal inundation patterns of wetlands and its driving forces is
therefore critical in informing policy for sound environmental management (Thomas et al., 2015).

Fortunately, the growing concern for the future of wetlands and the direct consequence of their
loss has lead to the establishment several environmental management programs and research groups.
Although the understanding of wetland hydrology has thereby improved, there are a number of common
challenges that have hampered a deeper understanding of wetland ecosystem functioning. The wide
variety of wetland types and complex dynamics between water, soils, vegetation and animals in these
these ecosystems often makes it difficult to understand the driving mechanisms (Ilyas et al., 2019). Field
measurements are often highly informative (Gallant, 2015), however, investigating wetland hydrology
using field measurements is often too time-consuming and expensive (Gallant, 2015; Zimba et al.,
2018; Halabisky et al., 2016). Additionally, field-data alone is often unable to capture the broad-scale
heterogeneity of wetland landscapes, and the ecological importance of the spatial patterns of inundation
often makes 2D hydrological modelling unsuitable. Remote sensing techniques have a high potential
to estimate hydrological processes, especially for wetlands with a scarce amount of field measurements
(Mohamed et al., 2004; Slagter et al., 2020).

1.1 research motive

The Mara floodplain wetland exhibits seasonal inundation patterns, which govern the presence of species,
and thereby control the functioning of the ecosystem. In addition, the seasonal inundation of the floodplain
is essential for several local livelihood activities such as crop cultivation and fisheries (Bogers, 2007).
Over the past 100 years the Mara Wetland has undergone significant morphological changes due to
various natural and anthropogenic factors, of which the extensive deforestation in Kenya has been a major
culprit (Bregoli et al., 2019). The future of the Mara Wetland ecosystem is now further under threat
due to projected urban developments and climate change. The planned dam construction upstream
of the wetland could systematically alter the natural fluctuations in river flow, and thereby also the
functioning of the ecosystem and accessibility of wetland resources for local communities. The additional
projected increase in average temperatures and increase in the amount and intensity of rainfall adds to
the vulnerability of the wetland. Furthermore, continuous population growth around the wetland will
increase water demand and thereby put pressure on the water resources essential for wetland ecosystem
functioning.
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The hydrodynamics of the wetland and the driving factors must be understood in order to attune dam
operations and local climate adaptation strategies to meet both ecological and social requirements.

1.2 problem statement and knowledge gaps

Past research on the Mara River Basin (MRB) has demonstrated the uncertainties that exist in the
understanding of the hydrological and ecological dynamics of the wetland system (Dessu and Melesse,
2012; Bregoli et al., 2019; Subalusky et al., 2019; Hulsman et al., 2018; Bogers, 2007). The Mara Wetland
is situated at the most downstream point of the Mara River, at the intersection between the river and
Lake Victoria (LV). Although the common understanding exists that the Mara River, LV, local rainfall and
groundwater play a role in governing the hydric status of the wetland, the relative contribution of each is
still unknown. The difficulty of conventional hydrological modelling of the wetland system is in part
due to the backwater effect from LV. The varying stage levels of the lake results in changing boundary
conditions and distorted discharge measurements at the outlet. Additionally, the wide spatial distribution
of water throughout the wetland means 2D hydrological modelling is an unsuitable method to capture
the full complexity of the system.

A number of studies on the MRB have used aerial photographs and Landsat imagery to estimate the
expansion of the wetland over the past 50-60 years (Bregoli et al., 2019; USAID, 2018; Mati et al., 2008;
Mayo et al., 2013; Mutie et al., 2006; Mayo et al., 2013). The reported values for wetland area are presented
as average yearly values, which does not capture the seasonal fluctuations in extent and the duration
of inundation, also referred to as a wetland’s ‘hydroperiod’ (Council, 1995). Field measurements of
the Mara wetland are insufficient to explain the hydrological processes of the wetland; therefore, the
hydrological dynamics of the Mara Wetland in Tanzania is analyzed using remote sensing techniques.
Satellite imagery provides the opportunity to visualise and understand the spatial and temporal dynamics
of the wetland system, including those parts that are otherwise inaccessible. A time-series of the aerial
extent of expansion and contraction can provide a basis analysing the driving force behind these patterns.
Coupling trends in inundation extent with stage field measurements been researched for the Inner Niger
Delta (Ogilvie et al., 2015), the Zambezi River Basin (Zimba et al., 2018) and for a coastal wetland systems
in Mexico (Wickel et al., 2020) and but has not been done for the Mara Wetland.

1.3 research objectives and scope

The purpose of this study is to investigate hydrological dynamics of the Mara Wetland by reconstructing
the spatial and temporal inundation patterns of the wetland using optical remote sensing data. The
seasonal fluctuations in aerial inundation extent are compared to the fluctuations of the (quantifiable)
water balance components: LV stage levels, upstream Mara River discharge, local precipitation and
evapotranspiration.

This research aims to shed light on the underlying mechanisms and hydrological processes that control
the hydric status of the wetland. Comparing the temporal changes in extent with the corresponding
changes in magnitude of the surrounding physical processes can provide insight on the contribution
of the specific water balance components to the inundation process. The outcome of the study aims to
support various stakeholders including decision-making parties, researchers and local authorities in the
development of water-resource related activities upstream of the wetland and formulation of climate
adaptation strategies for the wetland. Understanding the dynamics and processes of the water cycle in
wetlands is a vital part of managing this system in a sustainable manner.

The objective of this study is thereby two-fold. On the one hand it is aimed at contributing to the body
of knowledge on the water balance and dominant hydrological processes of the Mara Wetland. In the
interem, the secondary objective is to gain an insight on the potential of using optical remote sensing
techniques to reveal the physical dynamics and interactions of the hydrological components of a vegetated
wetland ecosystem. This gives rise to the following research questions:
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How does the spatial extent of the Mara Wetland change intra- and inter-annually?

and

How accurate can the land-covers in and around the Mara Wetland be mapped using Sentinel-2 (S2) imagery?

and

How does the intra- and inter-annual trends in wetland inundated area relate to the discharge upstream, stage levels
downstream and local precipitation?

and

What is the water-balance of the wetland on an average spatial, monthly temporal scale?

1.4 reader’s guide

The remainder of this report is as follows. After this introduction, the report contains a chapter describing
the relevant theoretical background and concepts deemed necessary to follow the research purpose and
methodology (Chapter 2). Following this, Chapter 3 provides an introduction of the study location (Mara
Wetland). The next chapter, Chapter 4 provides a description of the data used, the data source and how
the data is pre-processed to be used in the methodology. Following this, Chapter 5 contains a description
of the research methodology, subdivided in two main research phases (Phase-I, Section 5.2 and Phase-II,
Section 5.3). This chapter contains a number of flow-charts that present the full methodology in a concise
way. Subsequently, the results are presented in Chapter 6 and discussed in Chapter 7. Overall conclusions
and recommendations are given in Chapter 8.



2
T H E O R E T I C A L BAC KG RO U N D

This chapter contains the theoretical background information relevant for this study. A general introduction
of wetland ecosystems is provided in Section 2.1, and the definitions of the terms used to describe wetland
hydrology are given in Subsection 2.1.1 and Subsection 2.1.2. Furthermore, Section 2.2 provides a general
overview what remote sensing entails. Lastly, Subsection 2.4.1, Subsection 2.4.2 and Subsection 2.4.3
provide a short literature review on previous studies that are have similarly used satellite remote sensing
to map wetland hydrodynamics.

2.1 wetland concepts

The concept of what constitutes a wetland is rather ambiguous, but is broadly understood to be a habitat
that has the unique properties of both water and land, or as the transitional zones between aquatic and
terrestrial environments. Various definitions for the term ‘wetland’ exist in literature, many of which.
however, are contradictory. A concise, generic definition that defines the term ‘wetland’ has not yet been
agreed upon. Attempts to develop a global understanding have nonetheless been made. The Ramsar
Convention on Wetlands is the intergovernmental treaty for the protection of wetlands and its resources,
signed in 1971 in Ramsar, Iran and now joined by 171 nations as contracting parties. Article 1 of the
convention defines wetlands as “areas of marsh, fen, peatland or water, whether natural or artificial,
permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of
marine water the depth of which at low tide does not exceed six metres” (“Ramsar Convention”, 1971).
Since the definition itself ambiguous terms such as ‘marsh, fen, peatland’, a more generic definition is
used in this study:

“Areas of permanently, seasonally, intermittently, or tidally waterlogged to inundated soils, sediments, or land,
whether natural or artificial, fresh to saline” (C. A. Semeniuk & Semeniuk, 2004)

There are fivemain natural wetland types; marine, estuarine, lacustrine, riverine and palustrine. Finding
global agreement on a classification system to further subdivide these wetland types has proven to be a
challenge. Different definitions and classifiers are used, which are often not relevant for wetlands in other
climatic zones (C. A. Semeniuk & Semeniuk, 1995).

2.1.1 Boundary definition

Using this definition, the boundary that distinguishes wetland from upland is according to the extent
to which the soil is temporarily or permanently waterlogged. Identifying the precise location of the
boundary between wetland and upland is an important part of mapping wetlands for conservation or
management purposes. This boundary can in many cases be defined according to the hydrology of the
area, the hydric status of soils and the presence of aquatic vegetation. Difficulties in delineating wetlands
can arise when wetlands have multiple centers or if the wetland is increasingly covered by alien vegetation
(C. A. Semeniuk & Semeniuk, 2004).

Wetlands where the input, may it be rain, river discharge or groundwater, shows strong seasonal
variation, exhibit correspondingly migrating boundaries in waterlogged land. These wetlands often have
a central zone of permanent inundation and outer zones of waterlogged lands. For such inland wetland
areas, such as the Mara Wetland, the boundary of the wetland is defined by the maximum extent of the
area that is waterlogged. Figure 2.1a gives a schematisation of the how such a wetland is delineated.
Similarly, the floodplain around the river that feeds the wetland is delineated in a similar manner, shown
in Figure 2.1b.

5



6 theoretical background

(a) Inland wetland boundary
(b) Floodplain boundary

Figure 2.1: Wetland boundary according to area of inundation and extent of waterlogging (C. A. Semeniuk
& Semeniuk, 2004)

For simplicity in distinguishing between ‘dryland’ and ‘wetland’ areas, ‘dry’ and ‘wet’ in this study
actually refers to the degree of moisture. Dryland areas are thus characterised by the absence of the
moisture, and wetland areas that are either moist, waterlogged or flooded.

2.1.2 Hydro-period and hydro-pattern

Hydro-period is defined as “the period in which a soil area is waterlogged” (Merriam-Webster, n.d.).
In a study on the hydrology of prairie wetlands published in 2016, Hayashi points out the limitation
of this definition, as it does not bring across the importance of subsurface moisture dynamics, which
play an important role in the overall hydrology of the system (Hayashi et al., 2016). Wetland systems
should be seen as highly integrated hydrological units that are governed by both surface and groundwater
processes (Rains et al., 2016). Hydro-pattern is defined as “describing the variation of water levels over
time and space” (U.S.EPA, 2008). The term hydropattern thereby also encompasses the drivers of water
level variability; namely the changes in hydrologic inputs and outputs, as well other hydraulic controls
such as physical changes within the wetland. The hydropattern is thus the term adopted in this study to
describe the seasonal hydrology of the wetland.

2.1.3 Ecosystem services

It has long been recognized that humans depend on the Earth’s natural resources for their well-being.
The term “ecosystem services”, has, however, only been introduced in 1970. The Millennium Ecosystem
Assessment (MA) was called for at the United Nations General Assembly in 2000 and aims to examine the
functioning of ecosystems, and specifically relating to the consequences of changing ecosystems on human
well-being. Herein the term “ecosystem services” is defined as “benefits people obtain from ecosystems”
(Millennium Ecosystem Assessment, 2005). Figure 2.2 shows an overview of the commonly encountered
ecosystem services and how these link to human well-being as understood by the MA.

The main ecosystem services provided by wetlands that have been recognized in literature are amongst
others; gas/climate/water regulation, erosion control, sediment retention, nutrient cycling, refugia, food
production and cultural/recreational values (Costanza et al., 1997).
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Figure 2.2: Linkages between ecosystem services and human well-being (Millennium Ecosystem Assess-
ment, 2005)

2.2 physical principles of remote sensing

Remotely sensed data is a highly valuable source of information of the features on Earth’s surface.
Different types of satellite sensors, both passive and active, record information at different portions of
the electromagnetic spectrum, the majority of which are invisible to the human eye. The sensors utilize
specific characteristics of the land and water covered areas to detect differences between the features of
Earth’s surface. The sensor thereby relies on the principle that the physical properties of these features
change the way in which the energy is reflected. The resultant satellite images are visualized by assigning
colors to the, otherwise invisible, sensor response.

2.2.1 Passive optical remote sensing

This section provides a rudimentary explanation of the working principles of passive optical remote
sensing. ‘Passive’ indicates the satellite is only a receiver and not also an emitter, contrary to ‘active’, which
means the instrument both emits and receives radiation. Optical remote sensors depend on radiation
from the sun. A fraction of the solar irradiance passes through the atmosphere and reaches the Earth’s
surface, where it is then absorbed, reflected or transmitted from target objects. The sensor detects radiation
from the target objects at different regions (bands) of the electromagnetic spectrum (see Figure 2.3). The
spectrum is organized according wavelength/frequency.

Figure 2.3: The Electromagnetic Spectrum (Physics, 2016)
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Spectral signature of land-cover types

Depending on the physical characteristics of the target object, the wavelength at which the incoming
radiation is reflected or absorbed differs. The precise percentage of radiation reflected or absorbed is
unique for all target materials and results in a characteristic spectral signature as shown in Figure 2.4.

Figure 2.4: Typical spectral signature of grassland pixels. Edited from (HSU, 2019)

This principle is the basis of optical remote sensing, and allows us to distinguish between different
types of land surfaces. The (spectral and spatial) resolution of a sensor determines which information is
given in a pixel and the level of detail of this information.

2.2.2 Multispectral imagery

Optical remote sensing uses the visible, near infrared and shortwave infrared regions of the electromagnetic
spectrum (Liew, 2001). Multispectral sensing is a specific type of optical remote sensing operating with
a multi-channel receiver. Other types of optical remote sensors are panchromatic (one broad band) or
hyperspectral (numerous very narrow bands). Each channel of the multispectral instrument is sensitive
to radiation within a range of wavelengths, known as bands. The exact width of the bands (range of
wavelengths) to which the sensors on the instrument are sensitive to differs depending on the properties
of the satellite instrument. Examples of multispectral satellites are Sentinel-2 (S2), Landsat Multispectral
Scanner and IKONOS.

2.2.3 Bands and indices

The response from different bands results in a multilayer image, whereby each layer can be analysed
independently. The response of the pixels at each band, or image layer, can be visualised alone or in
combination with other bands. Displaying a single band results in a panchromatic (gray-scaled) image. It
is often much more useful to create a composite (by stacking the different bands) and assigning colors to
each.

2.2.4 Spectral, spatial and temporal resolution

As mentioned before, the spectral and spatial resolution are important factors in determining the type and
quality of the information contained within a pixel. The spectral resolution is the width of the wavelength
intervals (bands), an instrument with a high spectral resolution has narrow bandwidths. The spatial
resolution is the size of the pixels in the satellite image, and determines at what level of detail the Earth’s
surface represented in the image.

The temporal resolution, also known as the revisit time, is the frequency at which a satellite covers
the same area. There is often a trade-off between spatial and temporal resolution, because high spatial
resolution sensors have a smaller field of view and thus take more time to cover the same area as a satellite
with a lower spatial resolution.
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2.3 image classification

It is often useful to classify a region according to the different land-cover types present. This can be done
by applying an image classification algorithm that uses the unique spectral features of land-cover types.
The classification procedure can be ‘supervised’ or ‘unsupervised’. A supervised classification algorithm
requires input in the form of user-defined ‘training areas’. The algorithm then classifies the remaining
image pixels according to the similarity of its spectral features to these training areas. The ‘unsupervised’
approach requires no user-input other than the number of groups it should generate, the image is then
automatically segmented according to similar pixels, forming ‘clusters’. An example of a map of the
the Mara Wetland produced using a supervised classification algorithm is provided in Section B.2 in
Appendix B.

There are advantages and disadvantages for both methods. The main disadvantage of supervised
classification is the user-input that is required, which can be time-consuming and there must be a certain
amount of prior knowledge of the area. For unsupervised the main disadvantage is that the grouping may
not be in line with the goal of the classification and there is no control over the classes. Common image
classification algorithms are Classification and Regression Trees (CART), Random Forests (RF), Support
Vector Machines (SVM) and Naïve Bayes (NB).

2.3.1 Random Forests (RF) algorithm

The complexity and heterogeneity of wetland regions calls for a classification method whereby multiple
land-cover characteristics can be taken into account simultaneously. The RF classification algorithm has
the capability to process high dimensional, multi-source datasets to form a combination of tree-predictors.
It is frequently used for image classification due to its general robustness to over-fitting and quick training
and prediction speed. The algorithm constructs several decision trees from a random subset of data
points and ensembles the outcome of all trees in the forest to make a prediction for each pixel. Due the
participation of a large number of decision trees, the RF is generally an accurate method for complex
classifications. The prediction model constructed using RF is, however, often difficult to interpret. The
RF algorithm is a more ‘black-box’ approach than other algorithms, as is constructs a number of trees
for every point and thus troubleshooting is not straightforward. Figure 2.5 shows a visualisation of the
sampling and classification process of the RF algorithm.

Figure 2.5: Example of Random Forests prediction model
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2.4 multitemporal remote sensing approaches for wetland mapping

There is a growing awareness of the inter-dependency of society and the spatial and temporal extent of
water bodies, which has lead to an increase of research in this area. The local services and regional climate
regulation capacity of wetlands in particular highlights the global importance of monitoring the status of
wetlands.

The use of remote sensing technologies for wetland research has been increasing rapidly over the past 50
years. Applications vary from change detection to monitoring carbon release to analyses of hydrological
process (Guo et al., 2017). The main challenges in global wetland delineation is their non-unified nature.
Wetlands vary greatly in physical characteristics, the only common factor being the presence of water.
Differences in vegetation, permanence and shape, makes consistent detection a challenging endeavor
(Gallant, 2015). The analogy of wetlands as a “moving target” that portray the hydro-biological cycle
rather than a single land-cover (Gallant, 2015), appropriately exemplifies the difficulty of remotely
monitoring wetlands. Former approaches in wetland monitoring via remote sensing include the use of
aerial photography, multispectral imagery, Radio Detection and Ranging (RADAR) and Light Detection
and Ranging (LiDAR). Several trade-offs must be made in choosing a suitable satellite data-set; such as
spatial and temporal resolution, the ability for sensor to detect specific wetland features and its sensitivity
to cloud-coverage.

2.4.1 Optical remote sensing of wetlands

The main limitations of using optical imagery for wetland monitoring are the influence of clouds,
and the inability for the sensors to detect water bodies underlying vegetation. However, the visible,
near/mid/shortwave-infrared bands of optical sensors are sensitive to moisture, and can thus effectively
separate wet and dry surfaces. The visible bands are also sensitive to chlorophyll content, and are
thus useful in distinguishing between different vegetation types and their status. Band ratios (in the
form of indices such as Normalized Difference Vegetation Index (NDVI) or Normalized Difference Water
Index (NDWI)) are particularly useful for areas where water and vegetation coexist (Ma et al., 2019). Several
researchers have used optical remote sensing data to characterize the hydrological dynamics of wetland
systems. The surface water dynamics of depressional wetlands in Douglas County, Washington (Halabisky
et al., 2016), temporary wetlands in Texas (Collins et al., 2014) and the vegetated Macquarie Marshes in
Australia (Thomas et al., 2015) have been reconstructed using a time series of Landsat satellite imagery.
Research purposes that can tolerate lower resolution (500 m versus < 50 m), often exploit images obtained
by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensory aboard the Terra satellite, due to
shorter revisit time and greater number of bands. For example, the flood dynamics of the Inner Niger Delta
over a time-span of 10 years has been reconstructed using MODIS imagery (Ogilvie et al., 2015). (Alonso
et al., 2020) and (Zimba et al., 2018) couple hydrological field data with MODIS imagery to reproduce
inundation extents of wetlands in the Palo Verde national park in Costa Rica and Zambesi River Basin,
respectively.

2.4.2 Microwave remote sensing of wetlands

Unlike optical imagery, Synthetic Aperture RADAR (SAR) is able to penetrate clouds and is thus often
exploited for areas with frequent cloud-cover. Depending the operating wavelength, polarization and
incidence angle of the SAR instrument, the resultant imagery shows varying degrees of penetration through
vegetation and sensitivity to moisture and structure of land-covers. The limitation of using SAR imagery for
wetland monitoring is the difficulty in analysing and interpreting images (Muro, 2019; Tsyganskaya et al.,
2018; Gallant, 2015). The interactions between ground environmental conditions and the incoming signal
are highly complex, and must often be supported by additional data sets to interpret change detection.
An understanding of the relationship between sensor characteristics; such as wavelength, polarisation,
geometric resolution, angle of incidence, and ground conditions, such as vegetation type and phenology,
soil moisture and water depth, is required to accurately describe the satellite imagery (Tsyganskaya et al.,
2018). The backscattering from wetland is a sum of many independent scattering features, which means
straightforward methods such as Persistent Scattering (PS) monitoring hydrological behavior of wetlands
(Mohammadimanesh et al., 2018). Monitoring seasonal change in wetland extent using multitemporal SAR
imagery has been done in a number of recent studies. The main methods by which wetland extent change
has been monitored are; visual interpretation, Interferometry SAR coherence methods and grey-level
threshold classification (White et al., 2015; Muro, 2019; Dabboor and Brisco, 2019).

The repeat-pass SAR interferometry technique is not common in the context of monitoring wetlands
because of the low coherence between images due to vegetation growth and changes in water level
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(Mohammadimanesh et al., 2018). Monthly flooded area classification over a period of 5 years using low
resolution SAR has been applied in the Sudd Wetland in South Sudan (Wilusz et al., 2017). Threshold
classification was used to distinguish between dry land, flooded vegetation and open water. The results
show a time-series of the monthly change in flood extent as well as a spatial representation of flood
frequencies. A weather independent water-cover detection method has been developed and applied to
the Alkaline Lakes region in Hungary (Gulácsi & Kovács, 2020).

2.4.3 Combined approaches

Synergistic use of optical and radar satellite imagery is common in the field of wetland mapping, as
this method frequently outperforms single data-set analyses (Muro, 2019). Combined approaches are
particularly useful for cases where optical imagery does not reach the desired temporal frequency due to
frequent cloud cover. Combining Sentinel-1 (SAR) and Sentinel-2 (optical) has shown to lead to higher
wetland classification accuracy than using only one of these (Slagter et al., 2020; Mahdianpari et al., 2019).
There are, however, classification examples whereby the use of Sentinel-2 bands and (Sentinel-2-derived)
indices reaches nearly the same accuracy as combination of Sentinel-1 and Sentinel-2 does (Muro, 2019).
For a study whereby ALOS L-band SAR is used in combination with Landsat imagery to characterise the
dynamics of water and vegetation in northern Australia, the (Landsat-derived) Normalized Difference
Infrared Index (NDII) index was particularly effective at distinguishing flooded and non-flooded vegetation
(Ward et al., 2014). In the context of wetland delineation, optical input variables have again shown to be of
greater importance in the classification process with respect the SAR input variables (Hird et al., 2017).
The relative importance of optical versus SAR input variables suggests the productivity of vegetation and
occurrence of water detected by optical sensors (by employing vegetation and water indices) may be more
indicative of wetland occurrence than moisture content of soil or surface structure are.



3
ST U DY A R E A

This chapter provides an introduction to the study area. Section 3.1 consists a general introduction of
the region and Section 3.2 provides more information on the local climate. Section 3.3 describes the
past and projected environmental changes of the wetland area. Section 3.4 and Section 3.5 respectively
provide details on the ecosystem vegetation and basin hydrology. Lastly, a brief description of the local
communities and their activities is provided in Section 3.6.

3.1 general information

The Mara (or Masirori) Wetland (1°31’45"S, 34°7’34"E) is located at the lower reaches of the The Mara
River Basin (MRB); a transboundary watershed (roughly 13,750 km2) shared between Kenya and Tanzania
(Mwangi et al., 2017). The Mara River (approximately 130 km) originates from the Mau forest complex in
the Kenyan rift valley at about 3000 m a.s.l., and flows southwest through the Maasai-Mara and Serengeti
National Reserves, after which it forms large wetland area before discharging into Lake Victoria (LV) at
Musoma Bay, Tanzania at 1120 m a.s.l. (Bregoli et al., 2019). Discharge is measured at Mara Mines (MM),
a gauging station located approximately 25 km upstream of the wetland. The wetland area is sloping
only very gently from MM to the outlet of LV. The shape and general flood pattern of the wetland can be
largely explained by the topographic features in the area. The narrow outlet to LV is bounded by steep
hills on either side. Continuing upstream, the northern edge of the wetland is sharply defined by the
Utimbaru fault (Kabete et al., 2012), whereas the southern edge is only gently sloping, which provides
room for seasonal flooding. The upstream, eastern parts of the wetland are only seasonally inundated and
consist of temporarily waterlogged marshes and herbaceous vegetation (Bregoli et al., 2019). The middle
and lower parts of the wetland consists of a vast area of perennially saturated papyrus swamps, of which
the canopies can reach up to 5 m in height (Bogers, 2007). Besides Cyperus papyrus, Typha domingensis
(cattail or Typha) and Phragmites australis (common reed) can also be found in within the wetland area
(Muraza et al., 2013). The papyrus is particularly dominant, covering virtually all of the water surface in
the wetland. The papyrus plant is clearly recognizable in satellite imagery due to its unique structure and
dense coverage.

Figure 3.1: Map of the location of Lake Victoria (blue) and Mara River Basin (green) and the outline of the
wetland region (red box)
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3.2 climate

The rainfall regime in the area is bimodal, with two distinct rainy seasons between March - June and
October - December. The ‘short’ rainy season (alluding to the duration of the precipitation events rather
than the duration of the season), between October and December marks the start of the hydrological year
and is driven by the southward movement of the Intertropical Convergence Zone (ITCZ), the ‘long’ rainy
season is the result of the ITCZ returning north. Inter-annual variability in the timing and length of the
wet and dry seasons is shown to be rather high due to the dependence of surface water temperature of the
Indian Ocean (Black, 2005).

The rainfall amount decreases with altitude from east to west, the upper reaches of the river on the
Kenyan side receive an average yearly rainfall of 1000 - 1750 mm whereas the lower reaches, including the
Mara wetland, receives only 300 - 850 mm (USAID, 2018). Local average temperature ranges between 13
and 30 ◦C. June/July are usually the coolest months and September/October the warmest.

3.3 drivers of change and future threats

The Mara Wetlands in Tanzania have undergone rapid changes in the past years, attributed to land use
change upstream as well as a number of other possible anthropogenic stressors (Bregoli et al., 2019). The
ecological conditions of the MRB have been shown to have been relatively stable over time scales of 1000 to
2000 years before present (Subalusky et al., 2019). The high level and reliable nature of the rainfall patterns,
and the fertile soils has attracted communities and encouraged farming practices. The rapid hydrological
and ecological changes in the basin, especially since the 1960’s, are attributed to anthropogenic factors
(Subalusky et al., 2019; Houlahan and Findlay, 2004; Bregoli et al., 2019; Mwangi et al., 2017; of Tanzania,
2017). There has been a reduction in vegetation cover in the upper catchments due to clearing of forests and
conversion of Savannah grasslands into agricultural areas. Forest loss in the MRB has been investigated by
Mwangi et al., which reports a loss rate of 36 km2/year between 2003 and 2014. The loss of rooted trees has
impacted the water and sediment transport downstream. In addition, high population growth rates in the
aforementioned districts (estimated 28% between 2002 and 2012) has lead to large-scale land conversion
(natural vegetation to cropland and pasture) and has put pressure on natural resources from the wetland
(USAID, 2019). Projected changes in the regional climate include an increase in temperature, changes in
variability and frequency of rainfall events and longer duration of drought events. These changes, coupled
with high levels of poverty and a heavy reliance on rainfed agriculture, make the communities around the
wetlands particularly vulnerable to climate change.

3.4 vegetation and ecosystem functioning

Precipitation that falls within theMRB runs off into streams, which combine to formMara River. Pollutants
from agricultural, mining and other industrial practices in the basin dissolve in or are adsorbed by the
water and sediment moving downstream to the wetland area. The primary pollutants in the Mara River
include organic nitrogen and nitrates, of which almost 30 % is removed by the wetland after a retention
time of only about 36 hours (Mayo et al., 2013). Aside from entrapment of pollutants by the sediment in
the wetland, much of the incoming nitrogen is removed by plant uptake and can be traced back in the
biomass of several species. Both the sediment and vegetation thereby play an important role in protecting
LV from the pollutant loads from economic activities. In addition to pollutant uptake, the wetland has
been estimated to trap 90% of the in-flowing suspended sediment (Bregoli et al., 2018).

3.5 hydrology of the mara wetland

General trends on the decadal hydrological changes are relatively well understood. In these studies the
river-wetland-lake system is generally understood as follows. The Mara River flows from the Mau forest
through the Serengeti, then west-ward through croplands before entering the Mara Wetland, after which
the flow turns Southward and finally continues West before discharging into LV. The extreme expansion
of the wetland in recent years has motivated research on land-cover changes and resulting hydrological
and sedimentological changes occurring in the MRB (Bregoli et al., 2019; Mutie et al., 2006; Mwangi et al.,
2017, Hulsman et al., 2018; Dutton et al., 2018; Mayo et al., 2013; Defersha et al., 2012, Kiragu et al., 2011).
Table A.1 in Appendix A provides an overview of areas estimates as calculated in previous studies. Past
research concurs on the influence the deforestation upstream has had on the runoff and sediment transport
of the river. Visible effects from the loss of forest include an increase in suspended sediment levels in the
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river due to the lack of tree roots to anchor the soil, accelerated bank erosion (Kiragu et al., 2011) , and
clogging of river channel causing avulsions and leading to wider distribution of water-flow (Bregoli et al.,
2019).

The complete water balance of the wetland is to date not well understood, especially the seasonal
dynamics of the system and the relative influence of the LV, the Mara River and local precipitation on the
expansion process. Precipitation patterns govern the seasonal stage level fluctuations of LV, and usually
show an annual peak between May and July and are lowest between August and December. The wetland
is connected to the eastern edge of LV and thus wetland inundation patterns could potentially be driven
(in part) by lake level fluctuations. The degree to which backwater from the lake influences the inundation
patterns of the wetland seasonally is not yet understood. In addition, lateral and/or groundwater inflow
to the wetland region, and the evaporative fluxes from the wetland have not been quantified to date.
Without seasonal analyses, the relative influence of Mara River discharge, local rainfall and stage levels of
LV cannot be evaluated.

3.6 population and contemporary livelihood

There are a number of (largely rural) communities living along the lower reaches of the Mara River, and in
particular around the wetland area. The wetland area covers part of four districts; the Tarime and Rorya
districts in the the North-East and North-West, respectively, and the Butiama and Musoma Urban district
in the South-East and South-West, respectively. Within these districts there are several villages situated
along the wetland edge because of the ecosystem services the wetland provides. The main economic and
life-sustaining activities are livestock keeping, smallholder farming (mainly foodcrops such as maize and
sorghum) (Mati et al., 2008), and mat making from papyrus plants (Kema, 2010). Every household from
those interviewed in the study by Kema in 2010, were involved with crop cultivation activities within the
wetland area. This is likely due to the favorable, wet conditions of these soils. The wetland floodplain is
sometimes made accessible for crop cultivation and livestock grazing through burning activities (Bogers,
2007; USAID, 2018). Livestock is similarly dependent on the fertile wetland areas for the natural green
vegetation for grazing.



4
DATA AC Q U I S I T I O N A N D P R E - P RO C E S S I NG

In this chapter the processing tools, datasets and data pre-processing steps are described. Section 4.2
provides information on the remote sensing datasets used in the research. This includes an account of
the pre-processing steps performed on the Sentinel-2 (S2) data. Information on the hydro-meteorological
datasets (river discharge, lake water levels, precipitation and evapotranspiration) is provided in Section 4.3.

4.1 google earth engine (gee) processing platform

Google Earth Engine (GEE) is freely-accessible, interactive, cloud-based processing platform for performing
geo-spatial analyses. Using GEE as a processing platform avoids the need to store images locally, and
allows for greater computing power (Gorelick et al., 2017). The GEEweb-based code editor uses a JavaScript
API for accessing and processing data. The GEE data catalog includes a large variety of publicly available
geo-spatial datasets.

4.2 remote sensing data

The S2 satellite imagery is freely available and acquired via the GEE data catalog and processed in the GEE
code editor.

4.2.1 Sentinel-2 (S2)

The S2 data products are acquired by the MultiSpectral Instrument (MSI) aboard the Sentinel-2A and
Sentinel-2B satellites, launched in June 2015 andMarch 2017, respectively. TheMSImeasures at 13 separate
spectral bands, ranging from from visible (Blue, Green, Red) to Short Wave InfraRed (SWIR) (wavelengths
range from 493 nm to 1374 nm). The spatial resolution depends on the spectral band, an overview of
the spectral resolutions is provided in 4.2.1. The S2 data product used for this study is the Level-1C Top
of Atmosphere (TOA) reflectance, available in the GEE catalog. The atmospherically corrected Level-2A
Bottom of Atmosphere (BOA) reflectance dataset in the GEE catalog is only available from the beginning o
2019 to present for scenes covering the study area. Since the research does not rely on highly detailed,
plot-scale reflectance values, additional atmospheric correction is deemed unnecessary. The satellite
images are used rather to detect clearly contrasting land-covers, which show contrast regardless of the
blueish, foggy appearance due to atmospheric scattering. Unlike SAR data, optical satellite images are
affected by cloud cover and thus additional masking steps are required to obtain a suitable set of images.
The additional pre-processing steps performed in GEE are outlined below.

Chlorophyll-containing vegetation absorbs in the red and Near InfraRed (NIR) bands and reflects in the
green band. Pure water has high absorbance in the visible, NIR and SWIR regions of the spectrum (Ma
et al., 2019). The SWIR bands are sensitive to moisture content in soils and vegetation and are therefore
useful in distinguishing wet and dry soils, and healthy and water-stressed vegetation. The additional
penetration capacity of SWIR bands through organic matter makes these bands particularly useful in
identifying flooded areas with vegetation cover (Lefebvre et al., 2019). B1, B2, B9 and B10 are sensitive to
atmospheric conditions and may thus add noise to surface signals.

Pre-processing Sentinel-2 Data

The S2 images are filtered to location and time-period, the Level-1C image collection is filtered to contain
only images covering the wetland and within the date range 01-01-2017 to 01-07-2020. The resulting image
collection includes two overlapping MGRS (Military Grid Reference System) tiles; ‘36MXD’ and ‘36MWD’.
An additional filter is applied to include only the ‘36MXD’ tile because this tile fully contains the site

15
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Table 4.1: Sentinel-2 MSI satellite sensor spectral bands

Spectral band Band nr. Wavelength (µm) Resolution (m)

Coastal aerosol B1 0.433 - 0.453 60
Blue (B) B2 0.458 - 0.523 10
Green (G) B3 0.543 - 0.578 10
Red (R) B4 0.650 - 0.680 10
Red Edge 1 (RE1) B5 0.698 - 0.713 20
Red Edge 2 (RE2) B6 0.733 - 0.748 20
Red Edge 3 (RE3) B7 0.773 - 0.793 20
Near Infrared (NIR) B8 0.785 - 0.900 10
Narrow Near Infrared (NIR) B8A 0.855 - 0.875 20
Water Vapor B9 0.935 - 0.955 60
Shortwave Infrared Cirrus (SWIR Cirrus) B10 1.365 - 1.385 60
Shortwave Infrared (SWIR1) B11 1.565 - 1.655 20
Shortwave Infrared (SWIR2) B12 2.100 - 2.280 20

boundaries, the portion of the tile ‘36MWD’ covering the wetland is already contained in the ‘36MXD’
tile. See Figure 4.1 for an illustration. The image collection is filtered by applying a maximum cloud
coverage of 20 percent, which leaves a total of 112 scenes. The final maximum cloud cover percentage is
chosen iteratively based on the number of remaining images to achieve sufficient temporal resolution
(roughly 2/month). A cloud mask function is applied to remaining dense (opaque) and cirrus clouds.
The Level-1C cloud detection algorithm is based on reflectance thresholds applied to the the visible (B1
and B2) and SWIR (B10, B11 and B12) bands (Coluzzi et al., 2018). The algorithm is applied to create the
’QA60’ bit band, which is used to apply a cloud masking function. An additional filter is applied based on
the percentage of masked pixels within the bounded region around the wetland. Scenes in which more
than 5 percent of pixels are masked are removed, leaving a total of 87 scenes. An example of two cloudy
images is shown in Figure 4.2, of which image (a) is removed and image (b) is not.

Figure 4.1: Illustration of a false color composites and the outline of the two the Sentinel-2 satellite image
tiles 36MWD (blue) and 36MXD (yellow) and wetland delineation as set by (Bregoli et al., 2019)
(black)

Vegetation and water indices

The indices chosen are based on the assumption that the wetland will be distinguishable from upland
areas by either the wetness of the ground, or by the state/type of vegetation present. A profuse amount
of indices have been used for wetland mapping, the majority of which are used with the aim to detect
open water and are sensitive to wetness only. Considering a large portion of the Mara Wetland is
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(a) Example of a scene (01-06-2017) with a cloudy
pixel percentage of 11.54 (for the entire scene) and
a masked pixel percentage of 21.44 (for the set
bounds, shown by black line

(b) Example of a scene (16-06-2019) with a cloudy
pixel percentage of 15.49 (for the entire scene)
and a masked pixel percentage of 1.68 (for the set
bounds, shown by black line)

Figure 4.2: Cloud mask coverage

covered in dense vegetation, additional vegetation indices are included that are sensitive to greenness in
addition to wetness. The water indices used are NDWI (Normalized Difference Water Index) and MNDWI
(Modified Normalized Difference Water Index). The MNDWI is calculated in addition to the original NDWI
because the use of NDWI alone tends to confuse wet areas with urban (Ludwig et al. 2019, Singh et al.
2015). The MNDWI has also been successful in detecting water features mixed with vegetation, deeper
water, as well as areas with shallow surface ponding (Ogilvie et al., 2015). The vegetation indices used
are NDVI (Normalized Difference Vegetation Index), Normalized Difference Moisture Index (NDMI) and
NDII (Normalized Difference Infrared Index). The equation and corresponding S2 band combinations
considered for this study are presented in Table 4.2. The indices are limited to the normalized difference
type, because indices of different scales are given unequal weight unless these are normalized (Ludwig
et al., 2019). Section B.1 in Appendix B provide composite maps showing the index response of the
wetland in the wet and dry season.

Table 4.2: Spectral indices used as input variables for the Random Forests classifier

Index General Formula S2 Band Formula Source

Normalized Difference
Water Index (NDWI)

(G − NIR)
(G + NIR)

(B3 − B8)
(B3 + B8)

(McFeeters, 1996)

Modified Normalized Difference
Water Index (MNDWI)

(G − SWIR1)
(G + SWIR1)

(B3 − B11)
(B3 + B11)

(Xu, 2006)

Normalized Difference
Vegetation Index (NDVI)

(NIR − R)
(NIR + R)

(B8 − B4)
(B8 + B4)

(Rouse et al., 1974)

Normalized Difference
Moisture Index (NDMI)

(NIR − SWIR1)
(NIR + SWIR1)

(B8 − B11)
(B8 + B11)

(Gao, 1996)
(Wilson & Sader, 2002)

Normalized Difference
Infrared Index (NDII)

(VNIR − SWIR1)
(VNIR + SWIR1)

(B8A − B11)
(B8A + B11)

(Hardisky et al., 1983)
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4.2.2 Topographical data

The occurrence of wetlands depends strongly on the topographical characteristics of the landscape (Li
et al., 2014). Topography is a measurable property and can thus be used as additional input variable to
mask upland areas and improve classification accuracy. A Digital Elevation Model (DEM) of the wetland
area is given in Figure 4.3.

Figure 4.3: Digital Elevation Model (DEM) of wetland area

4.2.3 Orthophotography

The wetland was visited for field work in October - November 2017 by F. Bregoli Bregoli et al., 2019.
Most part of the wetland is inaccessible due to the presence of dense aquatic vegetation, therefore the
ground-truth data is in the form of high-resolution photographs acquired by an Unmanned Aerial
Vehicle (UAV). The drone footage is used to recognize and validate land-cover classes in the training data
sampling process. The photographs were acquired by F. Bregoli (Bregoli et al., 2019). The images were in
the form of ortho-photographs that were projected to the Coordinate Reference System (CRS) EPSG:32736
- WGS 84. Figure 4.4 shows an example of a drone image along the edge of the wetland overlaying a
Google Satellite image at two different times. The brown patch on the right image is the result of burning
activities.

Figure 4.4: Example of an ortho-photograph acquired on 02-11-2017 overlaying two satellite image scenes
from 28-12-2018 (left) and 02-04-2019 (right)

4.3 hydro-meteorological data

In this section the available hydro-meteorological datasets used in this study are introduced. Note that
potential groundwater sources are not treated in this study. Although the wetland is believed to received
some lateral inflow via groundwater (Bregoli et al., 2019), the lack of data hereof has limited the ability to
quantify these flows. Nonetheless, these flows are taken into account in the final discussion.
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4.3.1 Discharge

The discharge data is obtained from the Lake Victoria Basin Water Board (LVBWB) and is obtained from
the gauge nearby the Mara Mine (MM) (see Figure 4.6) There are a few data-gaps (of max. 14 days), and no
data from January 2020 due to the apparatus being washed away by an large flood event. Figure 4.5 shows
the time-series of discharge data available from the start of 2017 up to the end of 2019.

Figure 4.5: Discharge at Mara Mine for 2017-2020

Figure 4.6: Location of Mara Mine gauging station

4.3.2 Lake Victoria (LV) stage levels

The LV stage level data is obtained from the LVBWB. Figure 4.7 shows the measured stage levels for LV for
the years 2017 to 2020. The lake level is measured in Mwanza (on the Southern coast of LV). There is a
stage level instrument at Kirumi bridge (the outlet from the wetland to LV), but the data from here is
incomplete. However, Figure 4.8 demonstrates that the lake level data used in this study corresponds to
the levels measured at Kirumi Bridge.

Figure 4.7: LV stage levels for the years 2017, 2018, 2019
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Figure 4.8: Correlation chart showing the water levels measured at Kirumi Bridge against those measured
in Mwanza. Data from the water level at Kirumi Bridge is provided by F. Bregoli (Bregoli et al.,
2019)

4.3.3 Precipitation

A timeseries chart of monthly accumulated precipitation derived from the TRMM (Tropical Rainfall
Measuring Mission), PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information Using
Artificial Neural Networks-Climate Data Record), (CHIRPS) (Climate Hazards Group InfraRed Precipitation
with Station Data), GPM-IMERG (Global Precipitation Measurement - Integrated Multi-satellitE), GSMaP
(Global Satellite Mapping of Precipitation) and ERA5 (ECMWF Reanalysis) datasets for the years 2017, 2018,
2019, 2020 is given in Figure 4.9. Due to the lack of consistent information on the quality of the datasets for
Eastern Africa, the median of all datasets is used for the analyses and the range is used as the uncertainty.
Table A.2 in Appendix A provides an overview of the specifications of the precipitation datasets.

Figure 4.9: Regional meanmonthly accumulated precipitation estimate from TRMM, PERSIANN-CDR, CHIRPS,
GPM, GSMaP and ERA5 for the years 2017, 2018, 2019

4.3.4 Evapotranspiration (ET)

The MODIS sensor aboard the Terra satellite is a passive instrument, recording information of earth’s
surface over 36 spectral bands with a resolution between 0.25 - 1 km. The global 8-day MODIS (MOD16A2)
Evapotranspiration (ET), 0.5 km resolution product is used for this study and was accessed via the GEE
data catalog. The ET is a term describing the combined process of evaporation (from the ground surface)
and transpiration (from vegetation), to account for the upward vertical water fluxes from vegetated and
non-vegetated land-surfaces. The ET values are provided in 0.1 kg/m2/8-days. The average daily ET is
derived from the total ET over 8-days and accumulated over each month.
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M E T H O D O LO GY

This chapter provides and overview of the complete research structure, explains how the data and
processing tools were used for to classify the images, assess the accuracy of the classifier, and carry out
the water-balance analyses. Figure 5.1 below shows a schematisation of the entire research process, the
break-down of Phase-I and Phase-II is given in Section 5.2 and Section 5.3, respectively. An explanation
of how the the land-cover classes are analysed, sampled and classified and how the accuracy of the
classification is assessed is given in Section 5.2. Section 5.3 outlines how the results from Phase-I are
combined with the hydro-meteorological datasets for the final discussion. Details on the input data and
pre-processing steps can be found in Chapter 4.

5.1 overall research structure

Figure 5.1: Flow chart of the overall research structure

5.2 phase-i : multitemporal image classification

This section covers the steps carried out in GEE to map the spatial and temporal dynamics of the land-cover
classes in and around the Mara Wetland using remote sensing data. This phase is subdivided in three
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parts. Part-1, outlined in Subsection 5.2.1, consists of the preliminary land-cover analyses and explanation
of how the classification scheme is set up. Part-2 is described in Subsection 5.2.2 and provides details on
how the training data is collected, how the topographic threshold is applied and how the classification is
carried out to classify all of the images in the image collection. Part-3 consists of post-classification steps
and the accuracy assessment, which are described in Subsection 5.2.3 and Subsection 5.2.4.

5.2.1 Land-cover analysis

This section describes Part-I of the classification procedure. This includes an explanation of how the
land-cover classes are identified, sampled and analysed. How this translates to the design of the final
classification scheme is explained at the end of the section.

Figure 5.2: Flow chart of the steps carried out for the land-cover class analysis

Land-cover classes identified in literature

The selection of a suitable classification procedure and classifiers to distinguish between the land-
cover classes of the region requires an understanding of which land-covers are present. Regrettably,
this information cannot be obtained through field visits. Therefore, preliminary literature research is
conducted and expert knowledge is obtained to gather information on the dominant species identified
in previous studies. Land-cover classes around the wetland include agriculture, Savannah, forests, few
urban areas, and bare ground. Table 5.2.1 gives an overview of classes recognized in literature (Mutie
et al., 2006; USAID, 2018; Dessu and Melesse, 2012; Mati et al., 2008).

Table 5.1: Land-cover classes (from literature)

Land cover Characteristics

Wetland
Open water Open water without plant cover
Cyperus papyrus Dense, fast-growing, rooted/free-floating

aquatic species
Phragmites australis Invasive, perennial, aquatic grass species
Typha domingensis Emergent aquatic macrophyte

Upland
Agriculture Dryland cropland and pasture
Bare-land Dry grass or no vegetation
Urban Settlements, houses
Forest Broadleaf forest, terrestrial vegetation
Savannah Mixed wood-land grass-land ecosystem
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Bi-seasonal image date selection

Natural land-cover classes can change significantly over the year due to phenological events. Wetlands
are highly dynamic and complex ecosystems due to the variability of source water, which influences
the growth, decay and distribution of plants in and around the wetland (Dutton et al., 2018). Therefore,
the wetland classes are analysed bi-seasonally (samples are taken for both the wet and dry season), in
order to capture possible changes in greenness or wetness and thus changes in spectral reflectance within
the same class. The wet and dry state images are taken from the year 2017 because of the availability of
training data for that year. The reference image dates used are given in Table 5.2. The ’dry season’ and
a ’wet-season’ images are chosen on the basis of capture date and cloud-coverage. The image must be
acquired in cloud-free conditions and the ’dry season’ image must have been captured around the same
date as the UAV dataset (early November 2017). The resulting ’dry-season’ image is from 3rd of November,
acquired at the end of the dry period, just before the onset of rain (which marks the start of the climatic
year). The ’wet season’ images are from the 11th of June 2017, near the end of the rain-season.

Table 5.2: Image dates used for land-cover analysis

Season Date

Wet 11-06-2017
Dry 03-11-2017

Land-cover class sampling

Drone (UAV) footage (see Figure 4.4), a historical time-series of Google satellite images and expert
knowledge of the region are used as a reference for the sampling process. The land-cover classes sampled
for the classification procedure are not precisely as listed those in . The ‘urban’ class is disregarded because
this class is rare, and in the form of scattered homes and small roads, and thus spectrally indistinguishable.
Furthermore, it was not possible to sample the flooded vegetation classes according to the species type,
and is thus generally sampled as ’flooded vegetation’. However, the class is subdivided into two individual
classes (FV1 and FV2) according to the different spectral reflectance revealed by the NDVI map. The ‘forest’
areas are not included in the classification because the upland areas where this class occurs are masked
(see Figure 5.7).

Moreover, several additional classes are added in light of the classification goal; to distinguish between
the ‘wet’ wetland and the ‘dry’ upland areas. The presence of water is variable in both space and time,
thus several of the wetland and upland classes exist in both ‘dry’ and ‘wet’ states. The presence of moisture
has an influence on the spectral characteristics of the land-cover class. Therefore, the land-covers are
considered as different classes depending on the state of inundation. The resulting land-cover classes are
listed in Table 5.3. Figure 5.3 shows satellite images of four of the land-cover classes in the dry and wet
season. The samples are manually placed and labelled by drawing polygons in GEE and labeling these
according to the land-class they represent. Lastly, dark brown patches, which appear in various shapes
and sizes in the wetland, are the result of uncontrolled burning activities to create fertile pasture or to
open-up land for cattle grazing (USAID, 2018). This class is sampled for the spectral signature plots (see
Figure 5.4 and Figure 5.5), but not for the classification procedure because of the sporadic occurrence.
Section B.3 in Appendix B contains examples of the spectral response of land-cover classes in time.

Spectral signatures

The outcome of the delineation process relies on a difference in spectral response for the different band-
s/indices from S2 satellite image between the land cover classes. The band and index reflectance/sensitivity
is analysed for various land-cover features for the wet and dry season, to identify suitable indices and
combinations to best delineate the inundation of the wetland. Figure 5.4 shows spectral signature of the
land-cover classes for the month June and November. Figure 5.5 show the index reflectance of land-cover
classes for the month November and June. The median values of the band and index reflectance of the
land-cover class samples can be found in Appendix A (Table C.2 and Table C.1). A detailed description of
the spectral characteristics of the land-cover classes is provided in Table 5.3.

The eastern edge of the wetland is where the fluctuations in flooded area are most clearly visible when
viewing a historical time-series of satellite images. The edge not only shifts position, but the land-cover of
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(a) Bare (b) Flooded vegetation

(c) Agriculture (wet/dry season) (d) Floodplain (wet/dry season)

Figure 5.3: Google satellite images of land-classes used as a reference for collecting training data. The top
and bottom half of figures (c) and (d) are the labeled class in wet and dry season, respectively

Figure 5.4: Spectral signature of land-cover classes sampled in June (left) and November (right)

the wetland at this moving edge is also continually undergoing change. The variation in water level due
to seasonal patterns, and the simultaneous variation in water availability to soil and vegetation in this area
induces the growth and decay of species.

The MNDWI, NDWI and NDVI show much higher sensitivity to open water features in both June and
November than the NDII and NDMI, which show the same response for the open water and papyrus classes.
The difference in response between papyrus and upland vegetation is quite clear for the NDII, NDVI and
NDMI in November. These same two classes are, however, not easily distinguishable in June. Appendix A
shows visualizations of the wetland area based on each of the indices. The MNDWI, NDWI and NDVI shows
contrast between wetland vegetation and open water. The NDMI and NDII show similar response for the
entire wetland area (open water and vegetated), but show more contrast between papyrus swamp and
upland areas.
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Table 5.3: Land cover classes based on Google Satellite and UAV Imagery

Land
cover

Description Spectral characteristics

Wetland
Open
water
(OW)

Waterwith little to no vegetation coverage and
varying in depth. Includes wide river reaches,
deep water at the outlet to Lake Victoria and
shallow seasonally inundated floodplain

Very low reflectance over the visible (≤
0.7µm, B1-B3), NIR (B4-B8A), and SWIR (B11-
B12) regions. High reflectance for NDWI,
MNDWI and NDMI indices. Negative values
for NDVI.

Flooded
vegetation
(FV)

Pixels containing inundated areas mostly
covered in emergent vegetation, including
dense papyrus swamp, water-logged agricul-
tural land surrounding the main wetland and
water-logged riparian vegetation.

Low reflectance in the visible range and for
SWIR1/SWIR2 (due to penetration through or-
ganic matter and absorption by water) (Lefeb-
vre et al., 2019). High NDII and NDMI due to
sensitivity to the moisture levels in vegetation.
High values for NDVI (above 0.6, indicates the
highest possible density of green leaves).

Wet
season
floodplain
(WF)

Sparsely vegetated, water-logged floodplain
areas.

Low reflectance for SWIR1/SWIR2 and slightly
lower NDVI than flooded vegetation due to
lower reflectance in the NIR region caused by
lower density of green leaves. High NDII and
NDMI due to sensitivity to the moisture levels
in vegetation, but slightly lower than flooded
vegetation class. High NDVI, due to presence
of green vegetation, but again slightly lower
than flooded vegetation class.

Upland
Dry
season
floodplain
(DF)

Dry floodplain areas with little to no vegeta-
tion coverage

High reflectance over the visible and SWIR
regions due to absence of moisture and reflec-
tion by ground surfaces. Lower reflectance in
the NIR region relative to vegetation classes
due to the lack of chlorophyll. Lowest re-
flectance for theNDII,NDMI,NDVI andMNDWI
indices due to lack of moisture and lack of
green vegetation.

Dry
season
agricul-
ture (DA)

Fallow land with little or no green vegetation Very high reflectance over the visible and
SWIR regions due to absence of water. Lower
reflectance in the NIR region relative to green
vegetation classes. Very low reflectance for
the NDII, NDMI, NDVI and MNDWI indices.

Wet
season
agricul-
ture (WA)

Cultivated land (crops or forestry) or pasture
covered in green vegetation, where vegetation
type is variable.

Slightly higher reflectance in SWIR1/SWIR2
than inundated vegetation classes due to ab-
sence of water. Lower reflectance (than inun-
dated vegetation classes) forNDII,NDMI,NDVI
and MNDWI due to lower moisture levels.

Bare (BA) Dry upland areas with no vegetation, patches
of terrestrial vegetation or few shrubs

Similar to dry season agriculture; very high
reflectance over the visible and SWIR regions
due to absence of water. Lower reflectance
in the NIR region relative to dry season agri-
culture due to greater absence of vegetation.
Very low reflectance for the NDII, NDMI, NDVI
and MNDWI indices.
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Figure 5.5: Spectral (index) response for land-cover classes sampled in June (left) and November (right)

5.2.2 Random Forests classification

This section describes Part-2 of the classification procedure. This includes an explanation of how the
training data is collected, the masking of upland areas from using a DEM and a description of the Random
Forests classification model. Figure 5.6 shows the flowchart of Part-2, including hierarchy of land-cover
classes in the region.

Figure 5.6: Flow chart of the steps carried out to collect training data and classify image collection

Training data sampling strategy

The orthophotographs available cover only a minor portion of the wetland area. Therefore, a historical
time-series of Google Satellite images available using Google Earth Pro is used as an additional reference
dataset to label the sampled land-cover classes. In order to produce an unbiased training dataset, the
sampling strategy must ensure the proportions of the sample size for each of the land-cover classes are
roughly representative of the actual land-cover proportions within the classification area (Millard &
Richardson, 2015). Table 5.4 shows the estimated land-cover classes within the classification region and
the corresponding final proportions of the samples taken for each of the land-cover classes. Note the map
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proportions are rough estimates obtained through visual assessment, and will vary for each of the images.
The times at which each of the training data samples are take are given in Table 5.5.

Table 5.4: Map and training data proportions

Land-cover class Map proportion estimate (%) Training data proportion (%)

Open water 4 3
Flooded vegetation 62 61
Agriculture 14 24
Bare 11 7
Floodplain 9 8

Table 5.5: Land-cover class sampling date

Land-cover class Wet season image (06/2017) Dry season image (11/2017)

Open water (OW) X X

Flooded vegetation 1 (FV1) X X

Flooded vegetation 2 (FV2) X X

Bare (BA) X X

Floodplain wet (FW) X

Floodplain dry (FD) X

Agriculture wet (AW) X

Agriculture dry (AD) X

The training data is split into two parts: 70% is used to train the algorithm and 30% is used as an
independent validation dataset that is used in the accuracy assessment explained in Subsection 5.2.4. The
input variables used for training the algorithm are; B4, B5, B6, B7, B8, B8A, B11, B12, NDVI, MNDWI, NDWI,
NDII, NDMI and a digital elevation model. Details on the chosen input variables can be found in Table 4.2.1
and Table 4.2, for the bands and indices, respectively.

Application of topographic threshold

Topography is often a major control of the distribution of water in a landscape (Grabs et al., 2009). A
Digital Elevation Model (DEM) is therefore used in addition to the spectral differences between land-cover
features to distinguish wetland and non-wetland areas. The DEM is added as a band to each of the images
in the image collection and is used to set a threshold that masks the upland areas (beyond the maximum
extent of the wetland). By visual inspection, the upland areas are masked by setting a maximum threshold
of 1185 m. Figure 5.7 shows the boundary of the unmasked area (black), which is used in the classification
procedure.

Figure 5.7: Contour map of the wetland area. The black region contains the wetland and the remaining
part of the image is masked as upland areas.
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5.2.3 Post-processing of classified imagery

This section describes Part-3 of the classification procedure (see Figure 5.9 for the steps). These steps are
carried out after performing the first classification of the 87 S2 scenes that remained after filtering to date,
tile, and maximum cloud cover percentage.

Figure 5.8: Post-classification steps and accuracy assessment

Anomaly removal

The total area classified for each of the land cover classes is calculated for each image and combined in a
stacked area chart to visualise the seasonal land-cover area changes. A number of scenes show a sudden
peak in a certain land-cover class. These images were revisited to check for potential cirrus cloud coverage
that was not removed by the mask at during the pre-processing steps. The images that did reveal the
presence of undetected clouds were manually removed from the image collection.

Regional segmentation of flooded vegetation class

The area is segmented study the occurrence of the ‘flooded vegetation’ according to the region of occurrence.
The central part of the Mara Wetland forms an extensive, densely vegetated swamp. However, flooded
vegetation also occurs beyond the main swamp and in the upstream reaches of the Mara River. A polygon
that delineates the main swamp is added in order to distinguish between the class occurring within or
beyond the main swamp. This is done in favor of a more detailed analysis of potential source waters.

Figure 5.9: Main papyrus swamp delineation
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5.2.4 Evaluation of area estimates

The two images from which the training data is sampled are evaluated by performing a conventional
accuracy assessment (based on confusion matrices formed with the split training dataset to ensure an
unbiased model evaluation). Ideally, the remaining area estimates (besides the estimates derived for
the two training images) would be evaluated in the same manner. The lack of field observations or
high resolution imagery acquired at the same time rules out the possibility to make a validation dataset.
Therefore, the sequence of remaining images are evaluated according to area estimates from previous
literature and the magnitude and timing of antecedent water fluxes.

Accuracy assessment

The sampled data is split into two; 70% is used for training and the remaining 30% of the sampled pixels
that are not used to train the RF classifier are set aside for testing the performance of the classifier. A
separate accuracy assessment is carried out for the training (re-substitution) and testing (validation) data.
The accuracy is assessment is in performed in the GEE environment by computing a 2D confusion matrix
for each of the datasets. The calculated metrics are the Overall Accuracy (OA), User’s Accuracy (UA),
Producer’s Accuracy (PA) and Kappa coefficient. Figure 5.10 provides an illustration of the formulas used
to calculate the accuracy metrics, where A, B, C, D resemble the land-cover classes. For example, NAB is
the number of pixels classified as class B but are actually class A. ∑An and ∑Ap are the sum of the pixels
actually in class A and the sum of pixels classified as class A, respectively.
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Predicted

A B C D PA

A NAA NAB NAC NAD
NAA

∑Ap

B NBA NBB NBC NBD
NAA

∑Bp

C NCA NCB NCC NCD
NAA

∑Cp

D NDA NDB NDC NDD
NAA

∑Dp

UA
NAA

∑An

NBB

∑Bn

NCC

∑Cn

NDD

∑Dn
-

N = total number of points
n = actual number of points of class
p = number of points classified as class

Figure 5.10: Confusion matrix
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OA = NAA + NBB + NCC + NDD
N

K1 =
∑Ap ∑An + ∑Bp ∑Bn + ∑Cp ∑Cn + ∑Dp ∑Dn

N2

Kappa = OA − K1
1 − K1

Antecedent water fluxes

The lack of extensive ground-truth data limits the ability to validate the classification results over the
whole study period. An alternative evaluation method to nonetheless evaluate to the area estimates
resulting from the classification procedure is discussed below.

The seasonal inundation patterns are assumed to be (at least in part) resulting from the fluctuations
of (a combination) of local precipitation, upstream discharge and water levels of Lake Victoria (LV). The
magnitude of peak area estimates are thus expected to show a positive correlation with the antecedent
magnitudes of the aforementioned components. This hypothesis is tested by comparing the peak
inundation areas with the accumulation of precipitation and discharge, and the change in the water level
of LV over the three months preceding the peak date. The result of one or more of these comparisons are
expected to show a positive correlation, and if so, will add confidence to the area estimates obtained from
the classification procedure.

The discharge is acquired from the Mara Mine (MM) gauging station (see Figure 4.6). The discharge
volume is accumulated over the 3 months preceding the peak inundation date, the precise months are
not fixed due to the inter-annual variability of the peak inundation. The (satellite-based) precipitation
datasets used are PERSIANN-CDR and CHIRPS, both products provide daily rainfall estimates in mm. The
average of the two datasets is compared with the peak inundation area and the range between these used
to estimate the uncertainty. The spatial average precipitation is taken over the wetland area (with a buffer
of approximately 2 km to account for infiltration and runoff around the main wetland. Only the local
rainfall average is calculated with the assumption that the precipitation over LV is represented by the water
level and the precipitation over the upstream areas of Mara Basin is similarly included in the discharge at
MM. The increase in lake level is calculated as the difference between the lake level at the moment of peak
inundation and that of 3 months prior.

5.3 phase-ii : hydrometeorological analyses

In Phase-II of the research, the time-series of the inundated area computed in Phase-I is correlated with
the magnitudes of surrounding water balance components (discharge upstream and lake water level
downstream). Furthermore, Subsection 5.3.2 describes the method employed to compute the monthly
water balance.

5.3.1 Stage- and discharge-surface area correlations

The acquisition dates of the classified scenes are extracted from the classification time-series. The hydro-
meteorological measurements from these dates are plotted against the total inundated area (open water,
flooded vegetation, wet floodplain). A travel time of 2 days (from the discharge gauge to the wetland) is
taken into account for the discharge correlations (Bregoli et al., 2019).
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5.3.2 Waterbalance calculation

Assuming the following conceptual framework for the wetland water-balance:

∆S/∆t = Si + APin + Qin + Lin − AEout − Qout − Lout

Where:

Si = initial wetland storage
A = wetland area
Pin = net precipitation
Qin = surface water inflow (Mara River)
Qout = surface water outflow
Eout = net evaporation
Lin = lateral inflow (groundwater)
Lout = lateral outflow (groundwater)

The water balance is computed in the form of a time-series due to the absence of bathymetry data
required to compute the initial storage (Si). Furthermore, water balance is computed on a monthly
basis, considering the average frequency of area estimates is 1-2 per month. The water balance of the
wetland estimated by accumulating the monthly (known) inflows (discharge and precipitation) and
outflows (evapotranspiration). An average inundation area is assumed for each given month, and linearly
interpolated for the months with no area estimates. The lateral inflow and outflow is not quantified in this
study because of the lack of groundwater data. Based on speculative assumptions from previous studies,
the groundwater may function as water storage and/or baseflow for the wetland (Bregoli et al., 2019).

The regional average evapotranspiration (ET) is derived over the years 2017, 2018 and 2019 (see
Subsection 4.3.4 for a description of the data used). The regions used are shown in Figure 5.11. A time-
series of the average ET over the main swamp can be derived because of its permanence (a once-defined
region can be used to extract data over the study-period). Due to the dynamic nature of the remaining
classes, the average ET could not be derived in the same way. Thus, the total average ET is assumed as the
average between the ET from the main swamp (dark green) and the total wetland area (light green). The
range of the two represents is used as the uncertainty. The ET is converted to volumetric units using the
inundated area estimates and are accumulated over each month. The discharge volume is derived from
the discharge rate and accumulated over each month. The components are combined in a graphical form
to illustrate the net monthly water availability (additional to the unknown initial storage). The lateral
(groundwater) inflow and outflow are neglected in the computation, but considered as potential drivers in
the discussion. The total uncertainty range is computed as the summation of the uncertainty from the
precipitation and the evaporation.

Figure 5.11: The delineation of the total wetland area (dark green) and permanent swamp (light green)
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Figure 5.12: Time-series showing monthly accumulated evapotranspiration for the whole wetland area
(dark green), the flooded vegetation swamp (light green) and the average of these (red)
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R E S U LT S

This chapter presents the main results related to the research questions. The results from the Phase-I
classification procedure are provided in Section 6.1. The results from the evaluation of the area estimate
are given in Subsection 6.1.4 and Subsection 6.1.5. The Phase-II hydro-meteorological analysis results are
given in Section 6.2. The results are discussed in the following chapter (Chapter 7).

6.1 phase-i : multitemporal wetland classification results

Herein the results are provided for the Phase-I classification procedure outlined in Section 5.2.

6.1.1 Time-series of land-cover class area estimates

Figure 6.1 shows the areas of the land-cover classes within the study region. Linear change is assumed in
between observations solely to support visual interpretation. Only scene-derived area estimates are used
in the quantitative analyses. The small dips in total area for a few images is due to the application of a
cloud-mask. The bottom four classes in the chart (Flooded vegetation (swamp), Openwater, Wet floodplain,
Flooded vegetation) are considered inundated wetland area, the remaining classes are considered dryland.
The maximum total inundated wetland area (sum of flooded vegetation, open water and wet floodplain)
is 707 km2 and minimum of 294 km2. The statistics of the wetland land-cover classes (open water, flooded
vegetation, wet floodplain) are provided in Table 6.1. See Table C.3 in Appendix B for a complete list of
area estimates.

Figure 6.1: Time-series stacked area plot of the land-cover classes resulting from the classificationprocedure

Figure 6.2: Link to a video showing the spatiotemporal dynamics of the land-covers of the Mara Wetland
for all 73 classified scenes. Access by clicking or scanning the QR code.

6.1.2 Classification of sampled images

Figure 6.3 shows the classification result of the sample image for June (11/06/2017). Figure 6.4 shows the
classification result of the sample image for November (03/11/2017).

33
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Table 6.1: Wetland class area statistics

Land-cover class Minimum Maximum Mean + Sd

Open water (OW) 3.71 226.34 38.67 ± 44.34
Flooded vegetation (FV) 248.06 512.38 357.71 ± 68.48
Wet floodplain (WF) 18.04 109.73 60.70 ± 20.74

Figure 6.3: Classified map for June training image (11-06-2020)

Figure 6.4: Classified map for November training image (03-11-2020)
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6.1.3 Land-cover class occurrence frequency

Figure 6.5 shows the frequency of pixels classified as the open water over the study period. The scale runs
from 0 to 100 % of the time, the map shows pixels with a low frequency of inundation as transparent red
and those with 100 % frequency of inundation as opaque blue.

Figure 6.5: Open water covered area frequency map for 2017-2020

Figure 6.6 and Figure 6.7 show the frequency of pixels classified as flooded vegetation andwet floodplain,
respectively. The opacity of green indicates the percentage occurrence, transparent for zero occurrence
and green for pixels permanently classified as the respective class.

Figure 6.6: Flooded vegetation covered area frequency map for 2017-2020

Figure 6.7: Wet floodplain frequency map for 2017-2020

6.1.4 Accuracy assessment

The overall training (re-substitution) accuracy is 99.9% for the classification of all land-covers (see Figure 6.8
for the confusion matrix and Table 6.2 for accuracy statistics). The overall accuracy derived from an
independent validation set is 98.6% (see Figure 6.9 for the error matrix and Table 6.3 for accuracy statistics).
Note the Flooded vegetation 1 and Flooded vegetation 2 classes are combined, as these belong to a single
class. The ’bare’ and ’agriculture dry’ classes are similarly combined.
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Training accuracy

A
ct

ua
l

Predicted

OW FV1 FV2 BA AW WF AD DF PA

OW 12037 0 0 0 0 0 0 0 100.0

FV1 0 71134 933 0 0 0 0 0 100.0

FV2 0 667 122125 0 1 10 0 0 99.99

BA 0 0 0 35966 52 0 153 0 99.86

AW 0 0 0 88 20377 1 13 7 99.47

WF 0 2 51 0 0 8536 0 1 99.37

AD 0 0 0 1481 18 0 21796 5 99.90

FD 0 0 0 0 3 0 12 15481 99.90

UA 100.0 100.0 99.96 99.77 99.64 99.87 99.89 99.92 -

Figure 6.8: Confusion matrix representing re-substitution accuracy (training accuracy). OW = Open water,
FV1 = Flooded vegetation 1, FV2 = Flooded vegetation 2, BA = Bare, AW = Agriculture wet,
WF = Wet floodplain , AD = Agriculture dry, DF = Dry floodplain, PA = Producer’s accuracy,
UA = User’s accuracy

Table 6.2: Overall accuracy and Kappa coefficient for training data

Combined classes* Individually sampled classes

Total classified 310950 310950
Total correctly classified 310686 307452
Overall accuracy (%) 99.9 98.9
Kappa 1.00 0.99

* FV1 = FV2 and BA = AD
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Testing accuracy
A

ct
ua

l

Predicted

OW FV1 FV2 BA AW WF AD DF PA

OW 4945 0 2 0 0 0 0 0 99.96

FV1 0 25692 5069 0 0 8 0 0 99.97

FV2 0 3498 48982 0 16 155 0 0 99.68

BA 0 0 0 14168 340 0 1037 0 97.81

AW 0 0 21 450 8179 6 85 7 93.50

WF 0 28 467 0 3 3147 0 5 86.22

AD 0 0 0 1961 90 0 7867 61 98.49

DF 0 3 1 0 12 8 46 6609 98.95

UA 100.00 99.89 99.10 97.29 94.66 94.68 98.55 98.91 -

Figure 6.9: Confusion matrix for classification of independent validation data (testing accuracy). OW
= Open water, FV1 = Flooded vegetation 1, FV2 = Flooded vegetation 2, B = Bare, AW =
Agriculture wet, WF = Wet floodplain, AD = Agriculture dry, DF = Dry floodplain, PA =
Producer’s accuracy, UA = User’s accuracy

Table 6.3: Overall accuracy and Kappa coefficient for validation data

Combined classes* Individually sampled classes

Total classified 132968 132968
Total correctly classified 131154 119589
Overall accuracy (%) 98.6 89.9
Kappa 0.98 0.87

* FV1 = FV2 and BA = AD

6.1.5 Prior area estimates

As shown in Table A.1, the wetland area estimates for the years 2017 and 2018 range from 388 to 517 km2.
Due to the significant changes the wetland has undergone for the past 100 years (especially in recent
decades) (Bregoli et al., 2019), the other estimates (before 2017) are not considered representative of the
wetland as it is for the study period (2017-2020). The peak area in this study is 707 km2, a large part of this
area is only temporarily wet due to the flood event occurring at acquisition time. Since the floodplain is
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only covered in open water for a short period, a more representative figure for the maximum wetland area
are the peak areas in the occasion there is no flooding beyond the main papyrus swamp. The peak area in
those conditions are 555, 511, 543 and 537 km2. The minimum wetland area is in the order of 300 km2,
with a minimum of 295 km2.

6.1.6 Antecedent water fluxes

Figure 6.10: Relationships between the peak inundated area (2/year for the years 2017, 2018, 2019) and
change in local water fluxes over the 3 months preceding the peak date. (a) cumulative
precipitation (average between CHIRPS and PERSIANN-CDR and error indicates range between
the data-sets), (b) cumulative discharge amount and (c) difference in Lake Victoria water level
between the peak-flooding date and that of 3 months prior

6.2 phase-ii : hydro-meteorological analyses results

This section contains the correlation charts between the aerial extent of inundated area obtained in Phase-I
and the available, local hydrological field-data (water levels of Lake Victoria (LV) as the downstream
component and the discharge upstream for the same date as the area estimate). The average monthly
inundated area is also calculated for each month available, and these are correlated with the average
monthly precipitation over the entire the Mara Basin. Total inundated area is the sum of the open water,
flooded vegetation 1 and 2 and wet floodplain classes.

Figure 6.11 shows the inundated area values against the water level in LV. Additional correlation charts
for stage-area are provided in Appendix D. Figure 6.12 shows the total inundated area values against the
discharge in m3/s upstream the wetland at the Mara Mine gauging station (see Figure 4.6). In Figure 6.13
the discharge against the open water area estimates. The monthly water balance of the wetland is given in
Figure 6.14.

Figure 6.11: Correlation chart showing Lake Victoria water levels against inundated area
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Figure 6.12: Discharge (2 days before date of area estimate) and estimated inundated area

Figure 6.13: Discharge (2 days before date of area estimate) and estimated open water area
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Figure 6.14: Monthly water balance of the wetland based on the net precipitation, discharge, and evapora-
tive fluxes accumulated over one month. The uncertainty range is computed as the sum of the
uncertainty from the precipitation and evaporation estimates. The vertical lines correspond
to the dates of peak inundated area, estimated from the classification procedure. The red line
is the water availability based on the assumption the outflow from the wetland into LV is 30%
of the inflow from the Mara River (based on the estimation made by Bregoli et al., 2019).
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D I S C U S S I O N

In this chapter the results presented in the previous chapter are examined, and the methodological
approach to obtain the results is re-evaluated by considering the underlying assumptions and limitations.
Section 7.1 discusses the classification procedure and the accuracy of the area estimates. In Section 7.2 the
results from the hydro-meteorological analyses are examined. The last section (Section 7.3) explores the
potential additional sources of error.

7.1 classification (phase-i)

In this section the methods and results of the classification procedure (Phase-I) are discussed. In
Subsection 7.1.1 the classification approach is reviewed, and the limitations of the chosen satellite, the
classifier, the training process are raised. Subsection 7.1.2 contains a discussion of the accuracy obtained
in the classification procedure.

7.1.1 Classification procedure

The optical sensors aboard the Sentinel-2 (S2) satellite are unable to penetrate cloud-cover nor detect
water underneath the thick layer of aquatic vegetation, unlike L-band SAR, which can penetrate through
both clouds and dense vegetation (White et al., 2015). The densely vegetated nature of the wetland
contributed to the challenges in deriving an appropriate method to, regardless of the dense aquatic
vegetation, distinguish between wetland and dryland areas. In this study the spectral characteristics
of flooded vegetation are used to distinguish between wetland and dryland areas. The classification of
flooded vegetation functions as a proxy for the presence of water. Using a threshold method to define
flooded vegetation was not possible due to differing intra-class phenological phases of vegetation. The
complexity of the land-covers calls for a method whereby the multiple characteristics can be taken into
account simultaneously. The RF classification algorithm has been chosen because of its capability to process
high dimensional, multi-source datasets to form a combination of tree-predictors. The RF algorithm is
trained using 14 input variables; 5 indices, 8 bands and a DEM. The classifier is trained bi-seasonally,
thereby accounting for the different phenological phase of vegetation, to effectively distinguish between
vegetation classes independent of season. The classification procedure is semi-automated (a single training
dataset is used to classify all scenes). The classification accuracy achieved (see Subsection 6.1.4) confirms
the suitability and capability of using these methods to map vegetated wetland regions.

The intricacy of the interactions between water availability and vegetation in wetlands continues to be a
significant challenge in meaningfully characterising and mapping wetland areas (Thomas et al., 2015).
The forces controlling the water levels in wetlands, and thereby also the presence and diversity of species
are both autogenic (internally driven, such as plant transpiration and plant water uptake) and allogenic
(externally-driven, such as precipitation and temperature) (Koning, 2005). The moisture-vegetation
feedbacks result in a heterogeneous, fast-changing landscape with indistinct classes and complex gradients
(Adam et al., 2014). The classification process by definition involves generalization, and information loss
when classifying graded landscapes is therefore inevitable. Pixels may contain multiple, spectrally distinct
features which can lead to ambiguous classes and high confusion rate.

For this study the classes are chosen with the aim to distinguish wetland and dryland areas. The ‘wet
floodplain’ class is chosen in recognition of a transitional zone between the main swamp and dryland.
This class is likely to exhibit a significant amount of variability due to the fine-scale, heterogeneous/mixed
complexion of water and vegetation in the landscape. Thus, although this land-cover has shown to be
sufficiently spectrally unique for it to be successfully distinguished from other classes, there may still be
significant differences in physical characteristics amongst classified pixels. The intra-class differences on
the precise degree of waterlogging or precise vegetation type and vigor is not conveyed in the results,
which limits the ability for a more detailed interpretation. The supervised classification approach executed
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in this study requires manual selection of training data and thus contains a certain level of subjectivity.
The necessary user input means this method is not founded entirely on the inherit differences within the
landscape. There may be certain features in the landscape that have very distinct characteristics but belong
to the same land-cover class in the results of this study. Image segmentation, fuzzy and object-based
classification are examples of alternative, less bias-prone approaches to determining land-cover classes
and selecting training data (Dronova et al., 2011). In addition, the results should be interpreted keeping in
mind the aforementioned limitations of categorising graded landscapes, and that there will always be
intra-class variability.

7.1.2 Classification accuracy

The results from the the accuracy assessment (see Subsection 6.1.4) demonstrate the consistency and
effectiveness of the classifier in mapping the land-cover classes. The assessment carried out is, however,
limited in its ability to validate the classification of all 73 scenes. The temporal proximity of the study
period and inaccessibility of the wetland both contribute to the lack of coincident ground reference data
necessary for a more rigorous accuracy metric. In addition, high-resolution, historical satellite imagery
was found to be scarce and inconsistent with the acquisition dates of the S2 scenes. In the ideal case,
misclassifications would be quantified with the use of field surveys conducted at several moments during
the study period, coincident with the acquisition date of the S2 scenes. Without such validation datasets,
the area estimates are further evaluated with an alternative method using the data available and reasoned
judgement.

The seasonal expansion and contraction of the wetland clearly follows a bi-modal regime (see Figure 7.1).
The timing of the peaks and troughs in aerial extent show exact correspondence to the lake level fluctuations
and follow from plausible magnitudes of antecedent precipitation. These factors provide additional
confidence in the classification in its ability to capture the extreme wet and dry states of the wetland, and
thus the timing of the peaks in the area time-series. The accuracy of the magnitude of the aerial inundation
extent is, however, more challenging to assess. The aerial extent of the inundation is not necessarily
proportional to its volumetric equivalent, due to the irregular (and largely unknown) bathymetry of
the wetland. Thus, an increase in area may not correspond to a proportional increase in water volume.
Regardless of the bathymetry, the hypothesis remains that a larger peak in area is associated with a greater
amount of water availability (detectable by a higher lake level, greater accumulated amount of antecedent
discharge and/or local precipitation). Figure 6.10 shows a positive trend in at least one or more of the
aforementioned waterbalance components, which again affirms the reliability of the classification results.

7.2 hydrological analyses (phase-ii)

In this section the methods and results of the hydrological analyses (Phase-II) are discussed. In
Subsection 7.2.1 the overall approach of Phase-II is revisited, this includes a discussion of the underlying
assumptions and their potential impact on the results. The overall limitations of the research methods are
also explored. In Subsection 7.2.2 hydrological significance of the results from Phase-II of the research are
discussed. The results from the the monthly water balance are explored in Subsection 7.2.3. Additional
sources of error are discussed at the end of the chapter, in Section 7.3.

7.2.1 Approach, assumptions and limitations

The approach taken for the hydrological analysis of the system is an alternative to constructing a regular
hydrological model. In the hypothetical case the Mara River would discharge directly into Lake Victoria
(LV), a regular hydrological model (that accounts for varying lower boundary conditions) would suffice.
Due to the complex geometry and irregular bathymetry of the wetland, a hydrological model of the Mara
River must assume the beginning of the wetland as the downstream boundary. Without knowledge on
the backwater curve from LV, the boundary conditions of the model cannot be estimated, and must be
assumed to be uninfluenced by fluctuating water levels or must be (Stoop, 2017).

Instead of a model, the hydrology of the wetland is investigated by analysing the relationship between
the spatiotemporal behavior of inundation and the local waterbalance components. Figure 7.1 shows the
waterbalance components (lake level, discharge, precipitation, evapotranspiration) in parallel with the
time-series of area estimates. In the approach taken for this study, the aerial extent of the inundated area
is used as a proxy for the amount of water present in the wetland. This method inherently assumes a
proportional relationship to area and water volume, which is not always the case due to the bathymetry
of the wetland. The components that are quantified in this study are the upstream and downstream
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Figure 7.1: Time-series chart of wetland area and waterbalance components. The grey lines correspond to
the inundated area peaks.

boundary conditions (Mara River discharge and LV water level) and the additional inflows and outflows
(local precipitation and evaporation). Lateral groundwater inflow may well have an influence on the
hydrology of the system, but could not be included due to the lack of data hereof. Similarly, the initial
storage of the wetland is not quantified due to the absence of a bathymetry model. Lack of data on wetland
water storage volume has also limited the waterbalance analyses to a monthly flux, rather than a depiction
of the total water availability which includes the initial storage.

The temporal resolution of the area estimates are ascribed to the revisit frequency of the S2 satellite
and the degree of cloud-coverage at the acquisition time. Rather than a continuous, daily time-series,
which is usually the resolution of a hydrological model, the results provide a bi-monthly snapshot of
the wetland. The classified pixels do not reveal by which process the land-covers appear. For example,
flooded vegetation may appear due to the growth of vegetation from inundated areas, or it may appear
due to the inundation of the already vegetated areas. These processes occur at very different time-scales.
If the scenes had been captured at a higher frequency, the distinction between ‘fast’ and ‘slow’ processes
could reveal more about the hydrological dynamics. A ‘fast’ process is, for example, the inundation of the
wetland from an incoming flood. A ‘slow’ process is, for example, the growth of vegetation on the wet
floodplain.

The influence of the discharge is analysed by assuming a travel time of 2 days from the gauge to the
wetland. This assumption can only reveal how discharge contributes to the ‘fast’ processes. However, a
persistent, but subtle increase in discharge may have long-term effects on the growth of wetland vegetation
and this process would not be captured in these analyses. The waterbalance is calculated on a monthly
basis which may, at least partly, attenuate the effects of processes occurring at different time-scales.
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7.2.2 Wetland dynamics

Intra- and inter-annual inundation pattern

The aerial extent of wetland classes show high seasonal variability (see Figure 6.1). The seasonal flood
pattern strongly follows the expected bi-modal (peaks occur twice yearly) regime. The timing of the peaks
are, however, variable between years. The inter-annual variability is not of consequence for this study,
since the hydrology is analysed by considering the waterbalance components (over the same period) in
parallel. The area of the main flooded vegetation swamp remains relatively constant with a mean of 256
km2 and standard deviation of 15.7 km2. When excluding the peak flood events, the area of open water
(no vegetation coverage) is on average about 13 km2 with a standard deviation of 4.7 km2. The spatial
distribution of the fluctuations in wetland area are visualized in the animation provided in Figure 6.2. In
the animation, as well as in the wetland occurrence frequency map (see Figure 6.6), one can see the wetland
is comprised in part of a distinctive permanent swamp. The seasonal increase in wetland area beyond
the permanent swamp occurs mostly upstream, eastern edge of the wetland, due to the topographical
constraints near the outlet to LV. The seasonal emergence of wetland classes occurs partly as an extension
of the main swamp. However, there are instances where the inundation springs up in areas that are
seemingly isolated from the rest of the wetland. Rainfall is likely to play a role in inundating these specific
areas, however, this could also be an indication of groundwater recharge fluxes.

Lake Victoria stage - inundated area correlations

The peak areas are indicated with vertical lines in each chart. The time-series of the water level of LV
(Figure 4.7) show analogous fluctuations to the area estimates. The timing of the peak and troughs in the
inundation extent and those of the water level of LV downstream are markedly concurrent, conveying the
impression the level of the lake controls the seasonal fluctuations of the wetland. The magnitude of the
extremes in area and lake level are, however, not clearly corresponding. For example, the first two peaks
in area (05/2017 and 12/2017) and the 4th and 5th (12/2018 and 06/2019) are approximately the same
(~580 km2). However, the lake level during the 4th and 5th peak is clearly higher than the first two. The
antecedent rainfall and discharge for the 4th and 5th peak are not clearly lower than the first two. Thus, in
the case the lake has influence beyond the main swamp, this is expected to show with higher 4th and 5th
peaks. When plotting the magnitudes of inundation with lake level (see Figure 6.12 for the correlation
chart), the relationship shows to be positive and linear. A possible explanation for the correlation is the
influence of precipitation. The water of LV is estimated to source between 76% (Vanderkelen et al., 2018)
and 85% (Obiero et al., 2012) from direct precipitation over the lake. The precipitation over the lake is
subject to the same bi-modal rainfall regime as the that over the wetland (Vanderkelen et al., 2018). The
bi-modal pattern of the stage levels of the lake are thus unsurprising, and are thereby not automatically
linked to the inundation of the wetland. The flow of the Mara River is subcritical (Stoop, 2017), thus the
backwater of the lake is likely to have at least some influence on the water availability of the wetland.
Additional examination of the spatial distribution of the inundation is required to determine whether
the congruence is indirect (due to both the wetland and the lake being influenced by the same rainfall
regime) or direct (due to the backwater effect). The spatial pattern of the wetland (for a time-lapse video
see Figure 6.2) reveals the seasonal expansion of vegetated wetland areas occurs mostly in the upstream
reaches rather than as an extension of the main swamp on the LV side. This challenges the hypothesis
that the coherence between inundation area and LV water levels are causal, since that would require the
backwater from LV to reach over 40 km upstream.

Mara River discharge - inundated area correlations

The noteworthy correspondence between the area and the lake levels is not exhibited by the discharge
hydrograph. The discharge rate is relatively consistent for most of the study period (with an average of
approximately 11 m3/s, excluding the peak flood events in March - June 2018 and November - December
2019). When converted to monthly accumulated discharge (see Figure 6.14), the seasonal pattern is
more evident, but nonetheless not as distinct as that of the lake and of the precipitation. The correlation
chart between inundated area and discharge upstream (Figure 6.12) shows an exponential relationship.
However, the discharge for the area estimates below approximately 450 km2 remains relatively constant.
Figure 6.13 shows the correlation between the area estimate for open water and discharge upstream. For
the majority of the data points (61/73) the open water area is below 20 km2. The remainder of the points,
however, follow a nearly perfect exponential trend. The wetland itself forms a depression in the landscape
with a permanent swamp in the center. The landscape beyond the main swamp is approximately 0.035%
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moving upstream (Bregoli et al., 2019). The flooding of a sloped landscape could justify the exponential
increase in inundated area with greater discharge amounts. With a greater amount of discharge, the
inundation will extend to the shallower reaches and thus spread over a larger area.

Local precipitation - inundated area trends

The localmonthly accumulated precipitation time-series (Figure 6.14) follows the expected bi-modal regime,
with peak months occurring twice yearly, in April/May and November/December. The relationship with
precipitation and inundated wetland area is analysed on a monthly scale. Although the precipitation is
available at a higher temporal resolution, the area estimates are only available, on average, twice monthly.
The precipitation occurring precisely on the acquisition date of the area estimates could be misleading, as
it does not account for the accumulated antecedent precipitation. The monthly water balance shows a
consistent trend of high precipitation accumulation for three months preceding the peak wetland area.
The influence of precipitation is further discussed below in Subsection 7.2.3.

7.2.3 Waterbalance

The monthly waterbalance (see Figure 6.14) visualises the quantifiable, monthly accumulated in and
outflows of the wetland. Note the lateral groundwater inflow, overland flow, and backwater from LV
are not included in the net water availability. The net outflow from the wetland into LV could not be
determined because the gauge situated at the outlet of the wetland (Kirumi Bridge) is under the influence
of the backwater effect. The outflow is estimated based on the discharge measurements from a field-study
conducted in 2018 (Bregoli et al., 2019). The precipitation, discharge and evaporation are assumed to play
a significant role in governing the waterbalance of the wetland. The timeseries of net water availability
shows a clearly seasonal cycle, with a net positive water availability during the wet season and a net
zero, or negative water availability in the dry season. This trend is mirrored in the occurrence of peak
dates, which follow directly after three months of high net water availability. For only 7/36 months of
the study period the accumulated discharge is greater than the accumulated precipitation, indicating
local precipitation plays a significant part in the seasonal inundation pattern of the wetland. The Nyando
Wetland, located approximately 160 km North-East of the Mara Wetland, similarly receives water from
runoff, river discharge, direct precipitation, lake backwater flow and groundwater recharge. Isotope
analyses have shown the major water source is direct precipitation (Obiero et al., 2012), suggesting the
results from the calculated waterbalance in this study are plausible.

The seasonal contraction of the wetland demonstrated in the timeseries of area estimates (see Figure 6.1)
suggests there should be seasonal net water shortage. The net monthly water availability as calculated in
this study does not consistently reach below zero for the dry seasons. The positive water availability in the
dry season can be justified when accounting for the constant outflow of wetland into LV. An estimate 30%
of the discharge from the Mara River is conveyed through the main channel and reaches the outlet, the
remaining 70% spreads over the floodplain (Bregoli et al., 2019). Assuming a constant outflow of 30%
of the discharge at Mara Mine, the monthly waterbalance reaches below zero consistently, twice yearly
during the dry season. The consistently high water availability year-round could also be the result of
errors in the evapotranspiration and precipitation estimates, which is discussed in Section 7.3.

The magnitude of the total inundated area and the magnitude of the preceding precipitation amount
do not show a clear relation (for example, the first peak is higher than the second, but does not
show significantly higher water availability during the preceding months). There are several possible
explanations for this. Firstly, this be the result of uncertainties in the evapotranspiration and precipitation
datasets (as discussed below). Moreover, the magnitude in the area is not proportional to volume of water
present due to bathymetric effects, and thus a high volumetric precipitation input should not necessarily
be followed by a high inundated area. Lastly, the total ‘inundated area’ includes both open water and
flooded vegetation classes, the complexity of the dynamics of the growth and decay of vegetation means
the water availability and wetland area will unlikely exhibit a simple, linear relationship.

7.3 additional sources of error

This study builds on the past research on the Mara Wetland, and the results show a broad consistency
with previous area estimates. Furthermore, the patterns exhibited by the aerial fluctuations in wetland
area are plausible when examined in correspondence with the surrounding water balance components.
The prevailing uncertainties in the area estimates are discussed in Subsection 7.1.2. Additional uncertainty
is introduced in Phase-II of the research from the evapotranspiration (ET) and precipitation datasets.
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The lack of field-measurements has lead to an overall scarcity of ground-truth data, and has limited the
possibilities to validate/calibrate the remotely sensed data. The potential uncertainties are thus important
to address, especially in the water balance estimates which involves large-scale averaging. A discussion
on the uncertainty of the ET and precipitation are provided in Subsection 7.3.1 and Subsection 7.3.2 below.

7.3.1 Uncertainty of evapotranspiration data

In light of a lack of multi-temporal field estimates of evaporation/transpiration in the Mara Wetland
region, this study uses remotely sensed ET data. The ET dataset has a spatial resolution of 500 m and is
an estimate of the sum of the evaporation and transpiration. The wetland is a complex, heterogeneous
landscape of different vegetation species with varying phenology and density, in addition, the spatial
distribution of water levels adds even more heterogeneity to the region. All of the aforementioned physical
characteristics of the land-covers influence the magnitude of the evaporation/transpiration. Despite this,
average ET between that of the main swamp and the wetland as a whole is used in this study. The average
is taken because the changing spatial distribution of the wetland classes (wet floodplain, open water)
made it impossible to obtain a multi-temporal ET dataset in a similar manner as was done for the main
swamp (which is partly permanent). The averaging process inherently introduces error to the ET estimates.
The ET results can be evaluated based on the magnitude of the flux that is expected for the particular
climatic conditions. The Mara River originates in Kenya and the upstream reaches of the river go through
an equatorial climate. The wetland itself, located further to the west, has a “Tropical Savannah” climate
(based on the Köppen climate classification (Chen & Chen, 2013)). High evaporation rates are expected
for this climate, and for some months during the dry season (usually around January - March and July -
October) the evaporation could even be greater than the precipitation. In the results the evaporation is
only greater than precipitation for a few exceptions, which may suggest the ET is underestimated. The
permanent swamp and open water features have a greater evaporation than the remainder of the wetland
area, but this does not come through due to the spatial averaging process. This is likely the reason for the
low ET rates during the dry season.

7.3.2 Uncertainty of precipitation data

As shown in Figure 4.9, there are significant differences between the precipitation datasets. Without
reliable field estimates of precipitation, it was not possible to select which of the datasets is most accurate.
Therefore, the median of all datasets was used for in this study. This approach inherently contains error
and has likely reduced the intensity of the peaks, and may thereby have misrepresented the magnitude of
the seasonal rainfall variability. In addition to the uncertainty in the per pixel accuracy of the precipitation,
the spatial averaging of the precipitation also contributed to the overall uncertainty of the waterbalance
estimates. The spatial average of precipitation is used and multiplied by a constant area (bounded by
a margin around the maximum wetland extent), regardless of the inundation area at the time. The
precipitation has a heterogeneous spatial distribution that is not represented due to averaging process,
and this may again have limited the ability of the final precipitation timeseries to reveal peaks. In addition,
as mentioned in the previous section (Subsection 7.3.1), the monthly precipitation is nearly always greater
than the evapotranspiration, which is likely due to an underestimate of the evapotranspiration but could
also be caused by an overestimate of the precipitation. The precipitation is calculated as the monthly
accumulated amount over a constant area (margin around the maximum inundated area), which is greater
than the area used to calculated the monthly accumulated evapotranspiration (which is the average
inundated area for that particular month). The precipitation amount is not calculated using the average
inundated area to account for the rainfall that falls just outside of the wetland, but nonetheless contributes
to the water available to the wetland via runoff or subsurface flow. The larger area chosen may have lead
to an over estimate of the precipitation, at least in relation to the ET.
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8.1 general conclusions

In this study the seasonal inundation pattern of the Mara Wetland is reproduced for the years 2017, 2018,
2019 using Sentinel-2 (S2) multispectral satellite imagery. The classification is carried out using S2 bands,
derived water/vegetation indices and a DEM as input variables for the Random Forests (RF) classification
algorithm. A total of 73 scenes are classified into 7 individual land-cover classes; 3 wetland classes (open
water, flooded vegetation, wet floodplain) and 4 dryland classes (dry floodplain, wet agriculture, dry
agriculture, bare land). The overall classification accuracy achieved (based on an independent validation
set, which is not used to train the classifier itself) is 98.6 %. The classified scenes show the seasonal
variations (timing, extent, spatial pattern) of the different land-covers in and around the wetland, and
together form a multi-temporal, landscape scale reconstruction of the local flood regime. The aerial
inundation extents are used alongside hydrometeorological datasets to investigate the waterbalance and
identify which processes govern the seasonal increase in water availability.

The results reveal that the Mara Wetland exhibits a strong bi-modal inundation pattern, analogous
to the local precipitation regime. The marked concurrence between peak inundation and peak Lake
Victoria (LV) water level indicates the area estimates are coherent and able to correctly capture the timing
of seasonal land-cover changes. The inundation area estimates are correlated with the local water balance
components (discharge upstream and lake level downstream) in the aim of gaining an understanding of
the hydrological drivers behind the seasonal variation in water availability. The wetland flooded area and
the lake level show a positive linear relationship, whereas the area and discharge correlate exponentially.
The spatial pattern of flooding suggests the correlation between LV and inundation is due to indirect
effects from precipitation over the lake, rather than direct backwater effects.

Peak discharge correlates particularly well with the inundated area in the event of a flood extending
beyond the main swamp. The discharge timeseries, however, shows no clear link to the seasonal increase
in wetland area in the event that water does not extend beyond the main swamp. The results are further
exploited to compute themonthly waterbalance of the wetland, by including the accumulated precipitation
and evapotranspiration fluxes. The monthly water balance shows a consistent trend of high net water
availability for three months preceding the peak wetland area. Considering the absence of a consistent,
seasonal variability in discharge and the improbable case the LV backwater extends beyond the main
swamp, it is concluded that the local precipitation is the main driver of the bi-modal inundation pattern
of the wetland. Nonetheless, during the dry season the constant base-flow that enters the wetland via
the Mara River together with the backwater from Lake Victoria are at equilibrium at the extent of the
main permanent swamp. This highlights the importance of the river during the low-rainfall months.
Additionally, the occasional extreme flood events caused by high discharge of Mara River are also believed
to be of ecological necessity, but this is outside of the scope of this study and should be further investigated
in future research.

This study has illustrated the effectiveness of using the Random Forests classification algorithm to
(semi-automatically) reproduce the variability of the land-cover classes of the Mara Wetland over a period
of 3 years. The results reveal the seasonal dynamics of the wetland which has been largely unresolved to
date. This knowledge can be used to optimise sustainable water resource management within the Mara
River Basin and protect the hydrological and ecological equilibrium of the wetland. Especially considering
the planned dam construction and projected climate change, knowledge on the natural variability of the
wetland is crucial to informing future dam operations and climate adaptation strategies.

47



48 conclusion

8.2 implications and recommendations for the mara wetland

This research suggests the local precipitation plays an important role in the seasonal expansion of the Mara
Wetland. The wetland’s dependence on precipitation and the projected local climatic changes stresses
the importance of quantifying the implications under various scenarios. The base-flow supplied by the
Mara River together with the backflow from Lake Victoria appear to be at equilibrium at the extent of the
permanent swamp during the dry season. Thus, although the lake and the river are unlikely to drive the
bi-modal seasonal expansion beyond the main swamp, the flow of the river during low rainfall months
is expected to keep the main swamp inundated. The relative importance of the dry-season riverflow for
maintaining the hydric status of the wetland is of concern, considering the high water demand from
river sources at this time for irrigation, dam operations and other local livelihood activities. Further
research should be conducted on the exact magnitude of the discharge during base flow conditions. This
information can be used to inform the water allocation strategies for the region. Aside from the baseflow,
the extreme flooding of the outer reaches of the wetland by the river is expected to play an important role
in maintaining overall ecological equilibrium. Further research on the ecological importance of large flood
events is necessary to determine whether, and to what degree these events must be remain in spite of
altered flow due to the installation of a dam upstream. Lastly, although this research does not quantify
the groundwater fluxes, the component of groundwater should not be disregarded in future research.

8.3 potential applications of the methodology

Generally, there is a greater amount of data available for streamflow of rivers than there is of wetland
hydrology (Halabisky et al., 2016). The vastness, inaccessibility and complexity of these landscapes makes
it challenging, if not impossible, to analyse the hydrology using the only field-based measurements. The
rapid development in the availability and quality of remote sensing data has contributed considerably to
improving the scientific understanding of wetland ecosystems (Guo et al., 2017). This research exemplifies
the advantages of utilizing remote sensing data for hydrological analyses. The remote sensing methods
employed in this study, and in particular the land-cover classification procedure, is broadly applicable for
investigating the multi-temporal behavior of wetland systems. TheRF algorithm is often trained based on
the same image to which it is applied. In this study, the RF algorithm is trained bi-seasonally (based on two
images) and applied to classify multiple (73) images spanning a time-range of three years. The successful
multi-temporal application of the classification tool advocates the use of this method for research that aims
to analyse the dynamics of a wetland region where there is a scarcity of multi-temporal ground-truth data.

Furthermore, this study tackles the challenges introduced by the presence of aquatic vegetation. Optical
remote sensing does not have the same penetrative capacity through vegetation as most microwave
satellites do. This shortcoming has limited the efficacy of using optical remote sensing to analyse the
hydrology of densely vegetated wetland regions. This research overcomes the challenge of vegetation by
employing methods that draws on the characteristics of aquatic vegetation rather than attempting to evade
its presence. This opens up opportunities for the use of optical remote sensing in other wetland areas
similarly characterised by a dense coverage of aquatic species.

This study reproduces the wetland in space and time, which, aside from hydrological analysis, can be
useful for a number of other applications. For example, the spatial distribution of the wetland classes,
and the dynamics thereof, could support ecological investigations on the presence, mixing and response
of vegetation communities. Furthermore, the spatial pattern of wetlands could also be useful input for
the development of climate adaptation strategies to protect species or local communities that rely on its
ecosystem services.
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a.1 previous wetland area estimates

Table A.1: Reported wetland area estimates from various studies

Data used Wetland area (km2) Source

Landsat MSS 1973: 286 (Mati et al., 2008)
(Mutie et al., 2006)

Landsat TM/ETM 1984: 604
2000: 1394

(Mati et al., 2008)
(Mutie et al., 2006)

GLOWS 2007: 204.46 (Mayo et al., 2013)

Ministry of Natural Re-
sources and Tourism

2018: 390
2018: 517
(flooded)

(USAID, 2018)

German map
(Reimer, 1911)

1911: 113
1963: 270
1973: 288

(Bregoli et al., 2019)

Landsat 4 1984: 213 (Bregoli et al., 2019)
Landsat 7 2002: 344 (Bregoli et al., 2019)
Google Earth 2017: 388 (Bregoli et al., 2019)

a.2 specifications of precipitation datasets
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Table A.2: Precipitation datasets specifications
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b.1 index composite maps

Figure B.1 and Figure B.2 show the calculated NDMI response for the wetland in June and November 2017.
The NDMI shows sensitivity to moisture, but does not show clear distinction between open water and
vegetated wetland.

Figure B.1: NDMI visualisation for 11-06-2017, adjusted with a new minimum and maximum

Figure B.2: NDMI visualisation for 03-11-2017, adjusted with a new minimum and maximum

Figure B.3 and Figure B.4 show the NDVI response for the wetland in June and November 2017. The
NDVI map clearly shows that the wetland is more easily distinguishable in the dry season (November).
Unlike the NDMI, the NDVI is sensitive to open water (which can be see at the outlet to Lake Victoria on
the west). In June, the upland vegetation, around the wetland, does not show much difference from the
wetland itself.

Figure B.5 and Figure B.6 show the calculated MNDWI response for the wetland in June and November
2017. The MNDWI shows sensitivity to moisture, and clearly shows contrast between open water and
vegetated wetland. In both June and November the upland areas and areas around the wetland show low
values of MNDWI.

Figure B.7 and Figure B.8 show the calculated NDII response for the wetland in June and November
2017. The NDII shows sensitivity to vegetation, the dry upland areas can clearly been seen in red, especially
in November. The NDII shows no contrast between open water and wetland area.
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Figure B.3: NDVI composite for 11-06-2017 from S2 image collection

Figure B.4: NDVI composite for 03-11-2017 from S2 image collection

Figure B.5: MNDWI composite for 11-06-2017 from S2 image collection

Figure B.6: MNDWI composite for 03-11-2017 from S2 image collection
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Figure B.7: NDII composite for 11-06-2017 from S2 image collection

Figure B.8: NDII composite for 03-11-2017 from S2 image collection

b.2 unsupervised classification

An unsupervised K-means clustering classification is performed with 6 classes for both the wet and dry
season images. The images are sampled from all bands and calculated indices except B1, B2, B9 an B10,
because these bands are sensitive to atmospheric properties and might thus add noise to the data. The
results for the classification for the June and November images are shown in Figure B.9 and Figure B.10,
respectively. The same colors of the classes do not necessarily represent the same classes for both images.
The results from the unsupervised classification clearly shows the wetland area is distinguishable from
the upland areas, and that the wetland area decreases from June to November. The open water at the
western edge of the wetland is a separate class in both images. The dense Papyrus swamp is classified as
two separate classes in June (dark and light green) and as only one in November (dark green). The upland
areas contains various classes which are not directly recognizable without further analysis.



60 appendix b

Figure B.9: Unsupervised K-means clustering classification for 06/2017

Figure B.10: Unsupervised K-means clustering classification for 11/2017

b.3 multi-temporal spectral response

Since the wetland must be delineated over the entire image collection, a time-series analysis of the spectral
response of the land-classes is carried out to visualise the spectral changes in the sampled classes undergo.
This is a useful step in determining what bands/indices the training data should be sampled, to be relevant
for the entire series, rather than only the image from which the samples are taken.

The NDWI, MNDWI and NDVI indices exhibited the greatest difference in response between classes.
An example of a time-series spectral response for the sampled classes is provided in Figure B.11 and
Figure B.12.

The spectral response of the open water class shows the least overlap with other classes for the duration
of the time-series. That implies the open water class can likely be distinguished from other classes with
the most certainty.

The peaks for the ’Floodplain’ class in April 2018 and December 2019 are likely due to the flooding of
some pixels within the sample (samples are take in close to the fluctuating edge of the wetland), and thus
shows reflectance values similar to open water. The ’Bare’ class does not show as much variation and is
thus likely not wetting or greening so much much from one image to the next. The ’Agriculture’ class
shows clear seasonal patterns due to farming practices, and show a very similar reflectance as ’Bare’ in the
dry season (August, September, October, November, depending on the year) due to the lack of vegetation
and moisture at this time of the year. After the open water class, the next most separable classes are those
belonging to either ’vegetated’ or ’bare’. The bands that are particularly useful in separating bare from
vegetated are the VNIR, NIR, SWIR 1 and SWIR 2 bands (B8A, B8, B11 and B12). The individual bands
B11 and B12 show contrast between vegetation and bare ground, and the normalized difference between
the B11 and B8/B8A (NDMI and NDII) show similar sensitivity to vegetation.
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Figure B.11: MNDWI training data timeseries

Figure B.12: NDVI training data timeseries
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c.1 spectral response of training dataset

C.1.1 Wet season training data

Table C.1: Median band and index response for training data samples obtained in the wet season

Band/Index OW FV1 FV2 AW BA WF

AVE_DSM: 1134.7 1145.0 1146.5 1193.0 1240.5 1148.0

B1: 0.107 0.110 0.109 0.118 0.128 0.111

B10: 0.002 0.002 0.002 0.002 0.002 0.002

B11: 0.017 0.162 0.151 0.241 0.308 0.178

B12: 0.012 0.075 0.064 0.138 0.200 0.081

B2: 0.078 0.086 0.085 0.097 0.109 0.090

B3: 0.058 0.086 0.086 0.099 0.112 0.092

B4: 0.042 0.059 0.053 0.082 0.109 0.061

B5: 0.040 0.094 0.090 0.122 0.144 0.108

B6: 0.039 0.224 0.257 0.247 0.237 0.257

B7: 0.040 0.278 0.329 0.294 0.276 0.312

B8: 0.034 0.270 0.317 0.282 0.265 0.302

B8A: 0.036 0.319 0.368 0.327 0.308 0.345

B9: 0.011 0.070 0.078 0.072 0.072 0.073

MNDWI: 0.529 −0.308 −0.271 −0.415 −0.470 −0.317

NDII: 0.346 0.315 0.420 0.143 −0.002 0.326

NDMI: 0.330 0.241 0.354 0.072 −0.072 0.268

NDVI: −0.080 0.638 0.709 0.545 0.428 0.662

NDWI: 0.240 −0.519 −0.568 −0.472 −0.413 −0.526

C.1.2 Dry season training data
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Table C.2: Median band and index response for training data samples obtained in the dry season

Band/Index OW FV1 FV2 AD BA FW

AVE_DSM: 1134.7 1145.0 1146.5 1188.3 1240.1 1149.0

B1: 0.106 0.099 0.098 0.128 0.128 0.126

B10: 0.001 0.001 0.001 0.002 0.001 0.002

B11: 0.020 0.165 0.152 0.360 0.358 0.368

B12: 0.015 0.077 0.067 0.269 0.255 0.251

B2: 0.081 0.078 0.077 0.113 0.114 0.112

B3: 0.061 0.079 0.079 0.118 0.121 0.113

B4: 0.047 0.055 0.051 0.129 0.130 0.127

B5: 0.044 0.085 0.082 0.150 0.156 0.148

B6: 0.036 0.198 0.218 0.210 0.227 0.202

B7: 0.037 0.251 0.280 0.247 0.267 0.237

B8: 0.032 0.247 0.274 0.241 0.259 0.235

B8A: 0.030 0.290 0.318 0.280 0.300 0.278

B9: 0.007 0.053 0.057 0.055 0.060 0.054

MNDWI: 0.496 −0.350 −0.318 −0.509 −0.503 −0.528

NDII: 0.213 0.270 0.354 −0.131 −0.096 −0.143

NDMI: 0.221 0.196 0.287 −0.205 −0.166 −0.225

NDVI: −0.189 0.635 0.685 0.291 0.326 0.287

NDWI: 0.310 −0.514 −0.549 −0.342 −0.365 −0.350

c.2 land-cover class area estimates

Table C.3: Land-cover classification area estimates (in km2) for all 73 Sentinel-2 scenes

Date OW FV (main) FV WF DF WA DA BA

3/13/17 13.359 230.161 39.182 53.881 144.657 153.296 205.851 22.544

4/2/17 13.628 248.400 53.016 86.769 87.056 200.033 147.931 26.097

4/12/17 9.925 248.218 44.077 68.048 108.910 200.237 158.156 25.359

5/22/17 14.851 285.974 190.360 63.600 26.723 250.799 21.143 9.481

6/11/17 11.871 272.982 132.025 106.587 30.275 282.393 20.233 6.564

6/21/17 9.987 267.347 106.565 95.511 58.182 269.696 49.011 6.632

7/1/17 9.751 261.490 86.623 81.029 88.054 255.506 73.765 6.713

7/21/17 10.861 251.507 48.809 46.958 159.668 162.913 179.008 3.207

8/20/17 11.038 240.755 19.774 26.977 194.930 100.747 264.901 3.808

9/19/17 15.621 246.402 22.608 29.942 171.495 122.803 243.256 10.805

10/4/17 9.740 247.185 13.723 24.289 167.277 53.624 337.520 9.573

11/3/17 11.093 252.114 21.708 18.042 171.481 65.195 304.162 18.582

11/13/17 13.332 261.864 49.068 40.024 153.694 192.661 134.935 16.478

11/28/17 21.584 261.519 62.979 69.500 95.816 270.825 65.805 14.903

12/13/17 17.475 270.940 112.714 109.729 31.762 289.299 25.140 5.873

1/22/18 71.666 260.534 103.535 73.636 65.969 213.420 70.554 2.945

2/11/18 8.999 255.441 54.757 67.376 130.222 160.947 183.851 1.337

2/16/18 9.127 247.016 37.499 51.847 155.591 138.790 218.758 4.302
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3/23/18 134.394 247.098 104.896 39.535 51.223 181.983 98.250 5.551

5/12/18 104.572 278.687 183.595 40.724 25.577 200.394 26.969 2.413

5/27/18 110.562 275.580 208.853 52.956 12.583 190.979 10.394 1.024

6/1/18 70.381 287.343 207.693 47.855 20.376 191.454 18.046 2.684

6/11/18 57.730 281.230 154.542 45.983 50.563 213.702 54.910 4.270

6/16/18 42.339 277.224 139.615 51.888 58.331 230.971 56.427 6.135

7/1/18 25.778 275.524 139.628 65.243 61.394 218.879 73.131 3.354

7/6/18 20.715 269.311 96.211 72.609 80.273 234.164 82.570 7.079

7/26/18 13.632 254.820 67.874 63.455 116.778 201.488 140.095 4.788

7/31/18 15.285 264.429 69.411 55.690 127.687 149.868 175.230 5.331

8/15/18 11.671 253.869 40.894 51.723 148.847 139.401 208.304 8.221

9/14/18 11.802 251.449 32.972 61.925 126.953 174.977 182.784 20.068

9/19/18 11.639 251.658 35.361 59.765 131.814 148.853 216.735 7.105

10/4/18 10.293 251.214 44.702 69.220 130.197 175.042 172.660 9.356

12/3/18 10.287 251.195 71.793 96.042 75.499 262.688 78.455 13.849

12/28/18 16.492 276.556 149.277 100.915 22.069 258.476 32.821 6.325

1/2/19 11.938 274.727 133.152 107.929 28.887 262.862 35.450 7.986

2/6/19 3.705 271.457 95.883 59.773 93.374 245.909 89.699 3.130

2/26/19 11.974 231.934 62.821 77.661 129.130 200.127 146.390 2.893

3/8/19 11.935 236.280 92.023 87.524 124.041 209.553 95.742 4.883

3/18/19 9.857 233.789 61.769 76.185 137.415 202.128 137.111 4.676

3/23/19 8.110 222.655 31.217 60.048 167.556 188.136 175.236 9.974

4/7/19 6.576 222.927 29.448 64.848 159.073 201.822 169.045 9.192

4/12/19 9.757 220.059 28.000 51.198 171.774 193.105 166.313 13.491

5/7/19 12.575 247.355 91.195 49.882 120.004 194.000 124.826 12.573

6/6/19 13.002 277.231 148.543 98.488 32.485 263.767 24.079 5.336

6/16/19 12.214 273.003 138.864 100.665 30.111 277.704 22.410 5.374

7/1/19 27.538 272.047 118.144 82.397 58.208 254.955 44.864 4.777

7/21/19 9.706 260.709 94.308 73.852 90.307 243.633 84.561 5.855

7/26/19 12.634 253.533 83.921 74.394 111.467 170.604 154.288 2.090

8/5/19 11.344 257.620 50.274 35.877 158.673 117.042 226.744 5.356

8/10/19 10.181 253.479 50.716 55.754 145.942 128.885 214.207 3.767

9/4/19 24.256 256.570 56.142 48.326 151.104 128.803 196.398 1.332

9/19/19 10.784 251.870 33.587 42.113 143.564 103.526 261.158 16.329

9/29/19 10.212 249.800 34.914 43.085 157.656 123.106 236.359 7.799

10/4/19 14.118 253.633 37.951 30.979 137.157 101.549 265.804 21.741

12/18/19 125.485 272.992 163.083 49.124 15.221 201.469 28.723 4.954

1/2/20 109.037 268.241 169.685 47.383 21.829 201.589 41.504 3.662

1/17/20 87.103 269.591 177.652 47.484 20.405 228.913 28.034 3.748

2/11/20 95.755 262.151 143.511 46.807 35.660 211.845 62.838 4.362

2/16/20 75.769 275.205 155.854 60.368 23.257 234.068 34.459 3.950

3/7/20 100.971 259.205 166.416 56.036 21.466 236.300 17.854 1.990

3/22/20 72.437 262.189 151.422 62.653 23.663 243.128 42.221 5.217

4/26/20 226.345 210.387 134.810 39.050 14.218 195.322 14.035 1.591

5/6/20 176.606 258.140 239.812 32.706 2.962 148.845 1.262 0.635

5/11/20 110.070 269.162 243.219 43.098 10.087 176.034 9.735 1.369

5/26/20 69.582 261.151 155.424 67.262 30.385 250.193 25.727 3.207
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5/31/20 59.275 256.871 157.571 62.476 44.340 241.074 38.299 3.024

6/5/20 48.709 257.646 146.963 67.547 50.750 245.757 41.708 3.851

6/20/20 61.497 251.020 139.899 54.545 62.536 217.994 71.110 3.787

6/25/20 51.941 255.767 127.570 67.962 65.632 212.844 77.797 3.115

7/10/20 41.607 243.519 124.636 51.904 100.115 173.120 124.079 3.951

7/20/20 38.873 240.781 111.438 62.731 97.739 161.198 148.309 1.862

7/25/20 39.330 250.547 124.990 40.830 90.887 162.789 150.905 2.652
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A P P E N D I X D

Figure D.1: Correlation chart showing Lake Victoria water levels against open water area

Figure D.2: Correlation chart showing LakeVictoriawater levels against openwater andflooded vegetation
area
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