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A B S T R A C T

In an attempt to find alternatives for solving partial differential equations (PDEs)
with traditional numerical methods, a new field has emerged which incorporates
the residual of a PDE into the loss function of an Artificial Neural Network. This
method is called Physics-Informed Neural Network (PINN). In this thesis, we study
dense neural networks (DNNs), including codes developed in the context of this
bachelor project. We derive the backpropagation equations necessary for training
and use different configurations in a DNN to test its interpolating accuracy. We
distinguish between a-PINNs which use automatic differentiation to evaluate a PDE,
and n-PINNs which approximate differential operators in a PDE with numerical
differentiation. We compare both PINNs on the harmonic oscillator, the 1D heat
equation and the 1-soliton and 2-soliton solutions of the Korteweg-De Vries (KdV)
equation. Both PINNs could accurately converge to the solution, except to the 2-
soliton solution, where the a-PINN outperformed the n-PINN. Furthermore, we
tested a highly nonlinear problem of the KdV equation, which can be described by
a train of solitons. We observed that PINNs are inaccurate if insufficient training
samples are used for training. Adding training samples on the interior from a
numerical solution leads to a good qualitative agreement, though more effort is
required to find a better network configuration to obtain more accurate predictions.

Additionally, PINNs were used for inverse problems to derive an unknown co-
efficient in a PDE and proved to be highly accurate for noiseless data. When we
generated training samples with 10% noise from a uniform distribution, the PINN
results’ relative error stayed within a margin of under 2%. However, inverse PINNs
are much more inefficient compared to nonlinear least squares methods like the
Levenberg–Marquardt algorithm.

As of now, PINNs are still very early in development and stand no match against
traditional numerical methods to a known PDE. They may, however, provide a
useful alternative in the future as they are constantly being improved.

Python codes used in this thesis are publicly available via https://github.com/

vgpopa/BEP-thesis.
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1 I N T R O D U C T I O N

Machine learning has become a prevalent and essential method for building math-
ematical models. In an era with huge quantities of available data, computers are
superior to humans in evaluating relations between various data types and draw-
ing conclusions. Computer programs can be built to make decisions solely based
on data, without being explicitly programmed to do so. Their complexity and un-
certainty to guarantee convergence to a solution for a particular problem has led
these models to be seen as ”black boxes”. Machine learning algorithms are used in
a very wide variety of fields such as voice, speech and image recognition, person-
alised advertisements, regression analysis, and genomics (Alipanahi et al. [2015]),
to name a few. An example of a machine learning model is a Dense Neural Network,
which is inspired and modeled after a biological brain. These have proven to be
an excellent method for regression and classification problems. Furthermore, these
have been proven to be universal function approximators by Hornik et al. [1989],
implying that there exists a neural network which can approximate any continuous
function to any desirable accuracy. For example, there is a neural network which is
able to approximate the hidden relationship between a handwritten number and a
digit, to correctly classify unseen data.

Physics phenomena are usually described in terms of partial differential equa-
tions (PDEs), which can be solved analytically in rare cases only. A whole industry
of numerical algorithms has been developed in the last centuries and have proven
to be very successful. However, highly nonlinear and high dimensional PDEs are
problematic to set up and are very time-consuming to solve. An alternative method
was proposed by Raissi et al. [2019], in which neural networks use information
not only from data, but also from PDEs that are assumed to describe them. The
resulting method is known as Physics-Informed Neural Networks (PINNs). Since
then, a new field has emerged and neural networks have become an attractive and
popular method for solving PDEs. While neural networks are largely accessible
through popular libraries such as TensorFlow or PyTorch and are mostly already
pre-programmed, the goal of this thesis is to investigate the mathematics inside ”the
black box” of a neural network’s learning phase by deriving the main backpropaga-
tion equations. These equations are used in our implementation of a dense neural
network from scratch, without using already existing popular libraries for neural
networks. Furthermore, PINNs’ ability to interpolate and, most importantly, extrap-
olate solutions of mathematical models will be explored and investigated. We shall
investigate the damped harmonic oscillator, the heat equation and the Korteweg–De
Vries (KdV) equation as examples.

In chapter 2, the working of a dense neural network will be explained and a
derivation of the backpropagation equations for the learning phase will be given.
Next, the method of modifying neural networks to make them physics-informed
will be explored in chapter 3. Afterwards, various architectures of PINNs with
different settings will be investigated to research their ability to interpolate and
extrapolate solutions of the harmonic oscillator, the heat equation and the KdV
equation in chapter 4. Lastly, the performance of PINNs will be discussed in a
conclusion in chapter 5. This thesis has been written as part of the double bachelor’s
degree programme Applied Physics & Applied Mathematics at Delft University of
Technology.

All results of this research have been created in Python, and the Python codes are
accessible via https://github.com/vgpopa/BEP-thesis.
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2 T H E D E N S E N E U R A L N E T W O R K

In this chapter, neural networks with fully connected layers, which are called dense,
will be introduced. Different aspects which make up the configuration of a neu-
ral network will be discussed, and we shall discuss issues that may arise during
training a dense neural network. The backpropagation equations used in the train-
ing phase are derived, which are used for the simplest training algorithm: steepest
gradient descent. Neural networks can either be used in classification problems to
correctly assign an observation to a set of categories (called a class), or to approxi-
mate an unknown function in regression analysis. While these networks are largely
available in popular libraries, we aim to get a detailed insight into the workings of
neural networks by encoding them ourselves. After we have constructed and val-
idated our own neural network, we shall compare its outcomes and performance
with PINNs.

2.1 modelling a neuron
The very first idea of modelling a biological neuron was proposed by McCulloch
and Pitts [1943], which would initiate a long mission towards simulating the hu-
man brain with artificial intelligence. A biological neuron accepts one or multiple
electrical signals from other neurons, processes the information and depending on
the information received, can fire up, and transmit the information further to other
neurons. This process can be modelled as follows. The electric signals received are
perceived as inputs, which mathematically can be represented as real numbers. For
example, a picture for image recognition can be used as an input, by converting
each pixel to a float. In machine learning, it is unnecessary to know the details of
how biological neurons process their information, as long as our model keeps some
essentials. One of these is the activation function: a function which tells the neuron
whether to fire or not. Common activation functions will be discussed in Section 2.5.
The type of input, together with the activation function defines the artificial neuron,
which is the building block of any neural network. This neuron can be used for
training in the simplest neural network possible: a perceptron.

3



4 the dense neural network

2.2 a perceptron

A life cycle of a neural network has two modes of operation that are active in
successive stages. The first stage consists of training the network on training data
by also providing the network the correct outputs for some series of inputs. In the
second stage, the network tries to predict data from new inputs. The objective is to
create a network, in which the predicted outputs of the second stage are as close
as possible to the true outputs. The error between the predicted outputs and the
true outputs is evaluated with a loss function (often also called cost function), which
is discussed in Section 2.6. It will be clear that this loss function is to be minimized.

The working of a neural network is best understood when considering a neural
network of only one neuron: the perceptron. Each of the input values xi is multi-
plied by a weight (wi), the sum is taken over all inputs, and a real number is added,
the so-called bias term (b). The weights and bias are determined during the train-
ing phase. The resulting value is called the pre-activation (z), and lastly, applying
the activation function on z yields an activation (a). It turns out that the bias term is
an important parameter for the model, as it can allow a shift of the activation func-
tion, which is independent of the inputs, and can significantly improve the training
of the model. For a perceptron, a is the predicted output (ŷ). The workings of a
perceptron is summarised in Figure 2.1.

Figure 2.1: Illustration of a working perceptron.

The parameter space (Θ) of the model contains the weights and biases. Initially
all parameters of the model are randomized. Then, the operations are performed as
illustrated in Figure 2.1, which is also known as a forward propagation. The predicted
output is compared to the ”true” output, often called target or label (y), with the loss
function. The goal is to minimize the error from the loss function, which is done by
adapting the model parameters Θ. This is done with a learning algorithm, which
will be discussed in detail in Section 2.7. It requires calculating the gradient of the
loss function with respect to every model parameter. In Section 2.10 it will be illus-
trated how this is done. The amount of iterations performed in the training phase
is often called epochs. Whenever the model has been trained enough according to
some given criterion, the model enters the second stage and performs one forward
propagation to yield a predicted output. In practice, perceptrons are too simple
to be used for more complex problems. In fact, for classification problems, percep-
trons can only be used as linear binary classifiers, as shown by Freund and Schapire
[1999]. By using the linear activation function f (x) = x, a perceptron can be used
for linear regression. However, perceptrons are never used for linear regression as
the ordinary least squares estimators have proven to be the best linear unbiased
estimators by the Gauss-Markov Theorem (Theil [1971]). Instead, more neurons are
required to form multilayer perceptrons, as is the case in a dense neural network.
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2.3 dense neural network
In the literature, there are countless types of neural networks being developed, each
having a unique architecture and custom rules to solve specific types of problems.
Multiple neurons are placed in a layer, which can be used with multiple layers
to form a multilayer perceptron. In a dense neural network, each neuron in a layer
is connected with each neuron from the previous layer and the next layer. Each
connection contains a weight: a model parameter which can be seen as the influence
of a neuron from the previous layer. The bias is added at each neuron. This complex
system is illustrated in a directed graph in Figure 2.2, in which each neuron is
represented by a node.

Figure 2.2: Example of a 4-layer dense neural network architecture with 2 hidden layers.

There are three types of layers. The first type is the input layer, where the training
data used for learning are separated by their features, or physical quantities, by
neurons in the first layer. The amount of neurons used in the input layer depends
on the purpose of a neural network. In image recognition, for example, the network
is trained one picture at a time, where each pixel is represented by a different neuron
in the input layer. As a result, the input layer contains thousands of neurons. Since
the emphasis is put on predicting physical quantities, the amount of neurons in the
input layer will always match the number of physical quantities in one training sample, i.e.
the dimension of one training sample. For example, when a neural network is built to
predict the 3D time-dependent heat equation, four neurons would be used in the
first layer. The amount of training samples passed onto each input layer varies and
therefore one neuron can either contain a single real number or a vector. One could
let the network train with all samples from the training dataset simultaneously, or
one could split the training dataset into groups of training samples, so-called batches,
which are independently used for training. The different methods of training the
network in batches are discussed in Section 2.9.

By convention, the same activation function is applied to each neuron within the same
layer. It is very common to choose the same activation function for each layer, and
highly uncommon to use different functions within the same layer. Since the input
layer is only used to structure the training samples, no activation function is applied
and the input layer is often called the zeroth layer (l = 0).

The second type of layer is a hidden layer, which always lies between the input and
output layer. The hidden layers add extra depth to the complexity of the system
and allow the network to predict more advanced features. The process of adding
extra layers to make a network deeper to learn more complex problems, is called
deep learning. The layers are ’hidden’ because they are not directly coupled to the
outside world, as is the case with the in- and output layer.

The third type is the output layer, which contains values predicted by the network.
Like with the input layer, choosing the amount of neurons is dependent on the
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form of the output. For regression, the amount of output neurons should match the
dimension of the target. In classification, when the model has to predict between k
classes, k output neurons are used, each representing a class.

The choice of the amount of layers to use is a trade-off between computation time
and the learning power. Although adding extra layers introduces extra parameters
which need to be optimized, the minimum amount of network parameters per layer
required to approximate a target function with equal accuracy, decays exponentially
and less training data is needed overall (Aggarwal [2018]). Except for an increase in
computation time, arbitrarily increasing the depth of the network may lead to other
problems such as overfitting, in which more training data is needed for learning, see
Section 2.8. Though increasing depth is not always a necessity, as there exist other
types of neural networks with more complex architectures which yield very similar
results, but go beyond the scope of this thesis. Ultimately, there is no universal
answer as to which architecture is the best for a given problem, and this question is
still being widely researched.

2.4 forward propagation equations
Once the architecture of a dense neural network and the activation functions used
in each layer are known, the forward propagation equations fully describe the net-
work’s prediction. Suppose we have a sample xi, with i features and thus i neurons
in the input layer. Let wl

jk be the weight of the edge from neuron k in layer l − 1 to

neuron j in layer l. Denote bl
j as the bias of neuron j in layer l, with preactivation

zl
j and activation al

j. Suppose f (l) is the activation function applied in layer l which
contains nl neurons. Figure 2.3 provides an illustration of the notation used in a
neural network.

Figure 2.3: Illustration of the notation in a dense neural network.

Because the network is fully connected, the activation in layer l can be related to
the activations in layer l − 1

a1
j = f (1)

(
n0

∑
k=1

w1
jkxk + b1

j

)
, (2.1)for l = 1:

and

al
j = f (l)

(
nl−1

∑
k=1

wl
jkal−1

k + bl
j

)
. (2.2)for l > 1:

Note that in the last layer l = L, one immediately obtains the predictions as ŷj = aL
j .
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While Equations 2.1 and 2.2 fully describe the network’s forward propagation, it
is more useful to rewrite them into matrix form where all training samples are used.
Suppose there are N samples such that the input data are represented by a n0 x N
matrix X, where n0 is the amount of input neurons. Each row in X represents sam-
ples of the same physical quantity. It is important to keep two important features
into mind when rewriting the equations into matrix form. First, each element of a
row of X is multiplied by the same weight. Second, the same bias is added to each
sample in the row (∗). The preactivation matrix Zl and activation matrix Al are
both nl x N matrices, containing the respective preactivations and activations for
each neuron in layer l. The weight matrix Wl and bias vector bl only depend on the
architecture of the network. They have dimensions nl x nl−1 and nl x 1 respectively.
We use a notation in which applying f (l)(·) to a matrix is the same as applying the
function to each element of the matrix. The matrix forms of Equations 2.1 and 2.2
can then be formulated

A1 = f (1)(W1X + b1J1,N), (2.3)for l = 1:

and

Al = f (l)(WlAl−1 + blJ1,N), (2.4)for l > 1:

where J1,N is the 1 x N matrix of ones, needed to obey (∗), see above. Equations 2.3
and 2.4 fully describe the forward propagation process, omitting an abundance of
indices. If only one training sample is considered at a time, then X, A, Z are column
vectors x, a, z and Equations 2.3 and 2.4 are still valid. Furthermore, most common
libraries have a very fast framework for matrix manipulations and vectorizations,
which would make the implementation of the forward propagation very efficient.

2.5 activation functions
The choice of which activation function to choose for a neural network design ul-
timately dictates the learning efficiency and most importantly, the prediction out-
come. The choice also depends on the range of the targets. For unbounded re-
gression problems, an unbounded activation function is needed in the last layer.
For binary classification problems, the outcome of the activation function should
always be in [0,1], where the outcome represents the probability of a binary class.
Which activation function to choose to yield the best results is debatable and de-
pendent on the neural architecture and on the metric space, and will often come
down to trial and error. There are many types of functions which can serve as a
universal function approximator (UFA). Hornik et al. [1989] have shown that any
continuous nonconstant function over a bounded set as an activation function is an
arbitrarily accurate approximation to any target function. Furthermore, he shows
any non-decreasing squashing function can serve as a UFA, where a squashing
function f (x) has the property that limx→−∞ f (x) = 0 and limx→∞ f (x) = 1. How-
ever, the big assumption was that there are ”sufficiently enough” hidden units, and
Hornik et al. provide no guarantee for applications to work whenever there is
”inadequate learning” and a ”lack of deterministic relationship between input and
target”. Needless to say, the requirements of activation functions can be more re-
laxed. Hornik [1991] has shown that a bounded nonconstant function can serve as
a UFA. Furthermore, Hornik showed that there exists unbounded functions which
can be used as a UFA, such as the exponential function. For gradient based learn-
ing, an activation function needs to be differentiable almost everywhere. There are
three activation functions which are most commonly used in machine learning. The
sigmoid function is defined as (1 + e−x)−1, and was very common for classification
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problems in the 1990s as it has a range of [0,1]. However, one big drawback of the
sigmoid function is how it saturates for very high and low values of the domain,
making it only sensitive to values around zero. This complicates gradient-based
learning, where it becomes too difficult due to saturation to distinguish between
different values. Another common activation function is the hyperbolic tangent
function, which is closely related to the sigmoid function. Though, the hyperbolic
tangent function generally performs better than the sigmoid function, and is very
popular for regression (Bengio [2016]). One of the most popular activation function
in classification is the Rectified Linear Unit (ReLU), defined as max(0,x). It is the
simplest non-linear function, which allows for much faster training compared to
the previous functions and yields better results in classification (Nair and Hinton
[2010]), (Glorot et al. [2011]). Notice, however, that the derivative does not exist in
0, which is why the derivative is often set to 1 there. There are more difficulties
than meets the eye that may arise during learning, which is related to the choice of
the activation function. The differences between these three functions become more
apparent in Section 2.8.

2.6 loss function
The choice of which loss function to use is critical when designing a neural network.
It evaluates the relative error between prediction ŷ and label y, and maps deviations
for all components of the output into one number. The loss function is directly used
for training algorithms to update all model parameters and thus directly affects the
efficiency of the learning phase. The loss must clearly represent the purpose of the
model and choosing the ’wrong’ loss function may even result into low correct pre-
diction levels Reed and Marks [1999]. For regression problems, the most common
loss function is the mean squared error. Many variations exist, such as the sum of
squares or the L2 norm. For the remainder of this thesis, unless stated otherwise,
we use the loss function

Li(Θ) =
1
2
||y(i) − ŷ(i)(Θ)||22 (2.5)

to train a dense neural network, where Θ is the model parameter space. The sub-
script i and superscript (i) emphasizes that the loss function is calculated per sample.
For classification problems, using cross entropy loss function has been shown by
Simard et al. [2003] to yield higher prediction success rates with faster training on
average compared to the traditional mean squared error or the sum of squares. The
cross entropy loss function for scalar y and ŷ is defined as

L(Θ) = −
N

∑
i=1

y(i) log ŷ(i)(Θ) + (1 − y(i)) log(1 − ŷ(i)(Θ)).

As it turns out, the cross entropy loss function is derived from Bayesian statistics, in
which the loss function is simply the maximum log likelihood of N i.i.d. samples
from the Bernoulli distribution, which is equivalent to minimizing the negative
log. When considering multiclass classification problems with K classes, the loss
function is

L(Θ) = −
N

∑
i=1

K

∑
k=1

y(i)k log ŷ(i)k (Θ) + (1 − y(i)k ) log(1 − ŷ(i)k (Θ)).

It becomes clear why the loss function from above is so popular in machine learn-
ing when considering both scenarios, when the true label (y) equals either 1 or 0.
Assume the true label equals 1, but the network ends with a low ŷ. Then, the sec-
ond term disappears and the first term blows up, because limŷ→0 log(ŷ) = -∞. Vice
versa, the same holds. This property of the loss function is why it is so attractive to
use in machine learning: large mistakes made by the model are heavily punished.
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2.7 learning algorithms
To minimize the loss function, an optimization algorithm is needed. Optimizing
deep models differs in essence but is mathematically equivalent to traditional opti-
mization problems, where the goal is to directly minimize or maximize some func-
tion. In machine learning, optimization algorithms are used to minimize the loss
function with respect to a training dataset, in the hopes of improving the overall
performance of the network on unseen data. In other words, achieving a low train-
ing loss is no guarantee for a network to also obtain a small prediction loss. Due
to the high dimensionality of the parameter space, it is almost impossible to find
the global minimum. Fortunately, Choromanska et al. [2014] shows that most local
minima are relatively close to the global minimum, and searching for this global
minimum may even lead to overfitting (see Section 2.8).

The most popular optimization algorithms used in machine learning are exten-
sions of the steepest gradient descent algorithm, which was first used by Cauchy
et al. [1847]. The idea of gradient descent is simple in 1D and can be extended
the same way in higher dimensions. Consider a differentiable 1D function f (x),
where the slope is known. It is easily verifiable analytically or illustratively that for
any differentiable function, taking a step of size ϵ in the opposite direction of the
slope for the next iteration step will guarantee a lower output for small enough ϵ
and smooth f : f (x − ϵ sign( f ′(x)) ≤ f (x). The multivariate case works similarly.
Therefore all model parameters can be updated as:

Wl
n+1 = Wl

n − ϵ∇WL(Θ), (2.6)

where ∇WL(Θ) is the Jacobian matrix with respect to all model parameters in layer
l. Note that to calculate the Jacobian, Hessian or use a Taylor expansion, W is al-
ways first converted from a matrix to a vector. The stepsize ϵ is often called the
learning rate, and is held fixed during steepest gradient descent. Although perform-
ing gradient descent as described in Equation 2.6 will always yield lower loss over
time, the algorithm is still too simple. In fact, whenever the gradient is the zero
matrix, one could also end up at a saddle point instead of a local minimum. Fur-
thermore, a fixed learning rate over the whole learning process is very undesirable.
Choosing ϵ too big could lead to divergence, while a very small ϵ leads to very slow
convergence. Therefore it is very common in more advanced algorithms to make
the learning rate adaptive, in which ϵ changes during each iteration step. For exam-
ple, the learning rate could be set to decay exponentially over time, taking smaller
steps when near a local minimum. Another problem is that the gradient descent
method is very sensitive to the initialisation of the model parameters, which may
lead to a convergence of an undesirable high local minimum.

In order to make the gradient descent method more accurate, one could also take
into account the curvature of the loss function, or also known as the Hessian. The
information from the Hessian allows us to calculate the optimal step size to use in
Equation 2.6. To see how to update ϵ, we perform a second-order Taylor expansion
around Wl

n:

L(Wl
n+1) = L(Wl

n)+ (Wl
n+1 −Wl

n)
⊤∇WL+

1
2
(Wl

n+1 −Wl
n)

⊤H(L)(Wl
n+1 −Wl

n)

+ R2(Wl
n+1 − Wl

n), (2.7)

where R2 is the remainder term. Substituting Equation 2.6 into 2.7 yields:

L(Wl
n+1) = L(Wl

n)− ϵ(∇WL)⊤∇WL+
1
2

ϵ2(∇WL)⊤H(L)∇WL+R2(Wl
n+1 −Wl

n).
(2.8)

When neglecting the remainder term, L(Wl
n+1) is minimized by taking

ϵ∗ = (∇WL)⊤∇WL((∇WL)⊤H(L)∇WL)−1. (2.9)
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Another method to make the algorithm more precise is to use a second-order ap-
proximation according to Newton’s method, unlike in Equation 2.6. This can be
done by minimizing L(Wl

n+1) in Equation 2.7, taking the gradient with respect to
Wl

n+1, setting it to zero and solving for Wl
n+1, to obtain:

Wl
n+1 = Wl

n − H−1(L(Wl
n))(∇WL(Wl

n)). (2.10)

Optimization algorithms using only the gradient like gradient descent, are called
first-order optimization algorithms. Additionally, optimization algorithms that also
incorporate the Hessian like Newton’s method, are called second-order optimization
algorithms. Such a second-order method like in Equation 2.10 requires an exact
Hessian matrix, which may be computationally too expensive to calculate exactly,
let alone its inverse. Hence in modern optimization algorithms, such as the Broy-
den–Fletcher–Goldfarb–Shanno algorithm (BFGS) that uses a Quasi-Newton ap-
proximation, an approximation of the Hessian matrix is calculated at each iteration
step with a secant method (Dennis and Schnabel [1983]), and an update according
to 2.10 is made for some learning rate. Because an approximation of the Hessian is
used, an exact learning rate can no longer be obtained. In BFGS, the learning rate
is found via a line search and with the Wolfe conditions, to ensure the gradient con-
verges to zero (Wolfe [1969]). Another very popular optimization algorithm used
in machine learning is called Adam (adaptive moment estimation), which is a first-
order algorithm that computes an adaptive learning rate for each model parameter.
Unlike BFGS, no Hessian matrix is used in Adam and the algorithm is explained
in detail by Kingma and Ba [2014]. Both have proven to be successful, but there is
no evidence to suggest one is preferred over the other as the performance strongly
varies from problem to problem. In fact, Wolpert and Macready [1997] have shown
that ”for both static and time dependent optimization problems the average perfor-
mance of any pair of algorithms across all possible problems is exactly identical”,
which is known as the ”no free lunch” theorem.

2.8 common issues during training
During training of a dense neural network, unprecedented issues may arise, de-
pending on the problem and on the configuration used. In this section, the most
common issues are discussed that can arise during training using steepest gradi-
ent descent. To illustrate how effortlessly these issues are replicable on the easiest
regression problems, all architectures have identically initialised model parameters
and are set to test the same simple regression problem: predict values on a parabola.

2.8.1 Exploding gradients

Increasing the depth and thus the complexity of a dense network may lead to var-
ious practical problems. A consequence of adding depths is adding nonlinearity,
resulting in regions with exploding gradients in the parameter space of the loss
function, which are also known as cliffs. As a result, when updating the model
parameters in an iteration step, the exploding gradient results in a very large iter-
ation step, and drastically changes the model parameters. Hence the loss function
explodes, making the model unstable and making previous progress futile. Explod-
ing gradients during training may even occur when using only two hidden layers,
as shown in Figure 2.4.
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Figure 2.4: Illustration of exploding gradients during training for regressing a parabola with
4 neurons in the first hidden layer and 4 neurons in the second hidden layer.
Learning rate is set to 0.001 and the hyperbolic tangent is used as activation func-
tion. L represents the mean squared error and 500 equidistant training samples
were used.

Instead of removing excessive hidden layers, to prevent exploding gradients one
could also use a simple technique called gradient clipping. Gradient descent only
tells the direction corresponding to the steepest descent, without taking into account
the curvature. To prevent making drastic changes, one could clip the norm of the
gradient, which would prevent exploding update step sizes (Pascanu et al. [2013]).

2.8.2 Vanishing gradients

As opposed to the exploding gradient problem, another issue may be that gradi-
ents vanish during training. As a result, the parameter update is negligible and
the model is set to reach saturation, where no learning takes place. To see how
this is possible, notice that the model parameters are updated via backpropagation,
where the gradient in layer l can be related to the gradient in layer l + 1 via a back-
propagation error. The cause of vanishing gradients is in fact the derivative of the
activation function, see Section 2.10. The derivative of the sigmoid function attains
a maximum of 0.25 and goes to 0 as x → ∞ or x → −∞. Hence in the last layer, if
the gradient update is small, the gradient update in previous layers drops exponen-
tially. As a consequence, the first layers will receive very little update. Because the
derivative of the hyperbolic tangent is higher for values near the origin compared
to the sigmoid function and attains a maximum of 1, the hyperbolic tangent is less
sensitive to vanishing gradients than the sigmoid function. This can be graphically
illustrated by comparing the derivative of the sigmoid function ( f ′1) and hyperbolic
tangent ( f ′2).
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Figure 2.5: Plot of the derivative of the sigmoid function ( f ′1) and hyperbolic tangent ( f ′2).

An illustration of the vanishing gradient problem and comparison between the
sigmoid function and hyperbolic tangent is shown in Figure 2.6.

(a) (b)

(c) (d)

Figure 2.6: Illustration of the vanishing gradient problem during training for regressing a
parabola with 3 neurons in the first hidden layer and 3 neurons in the second
hidden layer. The learning rate is set to 0.001 and the sigmoid function is used
as activation function (a) with training MSE (b) and the hyperbolic tangent in (c)
with training MSE (d). 500 equidistant training samples were used.

An alternative option is to use the ReLU function, the derivative of which is
the step function and is therefore more resistant against the vanishing gradient
problem. Though the ReLU function is prone to a more serious problem, known
as dead neurons, where an analogy can be drawn as having brain damage. If
for some reason the preactivation is negative, the derivative of the ReLU is zero
and no update will be performed. Hence the neuron is seen as dead, because it
cannot learn. There exist other methods to resolve vanishing gradients, such as
using an adaptive learning rate, different weight initialization schemes or batch
normalization (Aggarwal [2018]), but these will not be elaborated further in this
thesis.
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2.8.3 Overfitting

Overfitting is a phenomenon where fitting a deep model on a training dataset does
not guarantee good performance on unknown data, even if the loss function con-
verges to zero during the learning phase. Therefore, there is a clear distinction
between the performance on the training and prediction dataset. This problem al-
ways occurs when the number of training points is less than the amount of model
parameters. In this case, it will always be possible to find infinitely many solutions
for the model parameters that yield zero loss for the training data. No matter how
complex or deep a model is, the model is said to generalize poorly on unseen data
and contain a high prediction variance. An example is illustrated in Figure 2.7,
where only 5 training points have been used for learning.

Figure 2.7: Illustration of overfitting a parabola with only 5 training samples. The neural
network used a constant learning rate of 0.001, with 50000 epochs, had a [1,8,4,1]
neuron structure and used the hyperbolic tangent activation function in the two
hidden layers.

Even though after 50000 iterations a mean squared training error of 9.0 · 10
−28

was obtained, the prediction of the model ŷ clearly does not resemble a parabola.
Aggarwal [2018] recommends a general rule of thumb to use at least twice as many
training samples as there are model parameters.

2.8.4 Stuck in high local minimum

In steepest gradient descent, the algorithm is very sensitive to the initialisation of
the model parameters. The initial parameters will ultimately determine to which
local minimum the algorithm will converge towards. In the worst case scenario, one
could immediately get trapped inside a very high local minimum or saddle point,
with no way out. An example is shown in Figure 2.8, where the only difference
between the two dense networks is the weight initialisation.
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(a) (b)

Figure 2.8: Illustration of two identical dense networks with different weight initialisations.
Both networks use a [1,4,4,1] neuron structure, a learning rate of 0.001, the hyper-
bolic tangent activation function and 500 training samples. After 10000 epochs,
network (a) obtained a 7.6 · 10

−3 prediction MSE and network (b) obtained a 3.1
· 10

−4 prediction MSE.

In fact, in a high multidimensional space like the parameter space of a dense net-
work, Dauphin et al. [2014] shows via statistical physics and random matrix theory
that saddle points are much more common than local minimum. The intuition be-
hind the reasoning lies in the Hessian, where a local minimum only occurs when
the Hessian is positive-definite, which becomes highly unlikely as the parameter
space grows. To bypass this problem, Dauphin et al. proposed as an optimization
algorithm a saddle-free Newton method that outperforms Quasi-Newton methods.

Furthermore, the initialisation of the model parameters has extensively been stud-
ied and Glorot and Bengio [2010] has proposed a very successful initialisation
scheme, which would later become an industry standard and be known as Xavier
initialisation. In particular, they proposed a method for drawing model parameters
from a probabilistic distribution in such a way as to keep the model parameters’
and activations’ variance in each layer equal. While Glorot and Bengio have used a
uniform distribution, He et al. [2015] proposed a normal distribution which theoret-
ically yields the same goal as Glorot and Bengio. As a result, deep models were less
prone to exploding or vanishing gradients, quicker convergence was reached and
overall more accurate results were obtained compared to no or other initialisation
schemes.

2.8.5 Depth of the network

The more complex a problem is, the more neurons are needed in a dense network
to yield good results. One has the choice between making a network more wide,
or adding more neurons in extra layers to make the network deeper. As discussed
earlier, deeper networks require fewer neurons per layer as using more activation
functions makes the model more nonlinear and thus more powerful. Though deeper
networks come with certain limitations, such as very long computation times. In
practice, very deep networks are more prone to the vanishing gradient problem.
Also, even when using an equal amount of neurons, using more layers makes the
parameter space more nonlinear, which increases the likelihood of exploding gra-
dients. To show an example, we have trained two identical dense neural networks
on the same training set with 5000 epochs. The first network used one hidden layer
with 10 neurons, and the second network used a [3,3,2,2] hidden layer structure.
We compare their performance by comparing their predictions with the true labels
via the mean squared error. Even though the same amount of neurons were used,
network 1 ended with a 1.5 · 10

−3 MSE, and the second network with a 1.2 · 10
−2

MSE.
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2.9 batches
The batch size is the number of training samples used in the training phase to per-
form one iteration on all model parameters. In particular, there are three options to
train a model: stochastic gradient descent, minibatch or full batch. The choice boils
down to a tradeoff between accuracy of the gradient versus computation time.

One popular method to train a network is with stochastic gradient descent (SGD).
In that approach, only one sample at a time is used to calculate the gradients to
update all model parameters. Consequently, the loss function uses only one sam-
ple, such as the one defined for regression in Equation 2.5. Then, another sample
is randomly chosen to update all model parameters, until all samples have been
used. In that case, the algorithm starts over until a satisfactory minimum is reached.
In each iteration step, the ”true” gradient, which needs the whole training dataset
to compute, is approximated by the gradient of only one sample. This method is
prone to a very large variance during learning. Hence the update process is most
of the time ”noisy”. Because neural networks are very sensitive to the initialisation
of the weights, while using a correct gradient descent step may lead to ending up
in a local minimum far higher than the global minimum, the high volatility of SGD
may be seen as a biased random walk that jumps between local minima and may
prevent from getting trapped in a undesirable high local minimum. Since only one
gradient is calculated at a time, it is computationally much faster to calculate the
gradient and update the model parameters. In fact, if the sample size is too large,
often it is even impossible due to memory limitations to calculate the true gradi-
ent. Furthermore, as shown by Saad [1999], under lenient assumptions, SGD will
converge almost surely to a local minimum. However, whenever possible, it will al-
ways be computationally better to use the full batch, because modern CPUs can use
vectorization libraries, which drastically reduces the computation time compared
to iterating over each sample individually. On the other side of the spectrum lies
full batch, in which all training samples are used to calculate the true gradient and
perform one update to the model parameters. If N is the amount of samples in the
training dataset, then the total loss is simply the sum of squares error:

L =
N

∑
i=1

Li =
1
2

N

∑
i=1

||y(i) − ŷ(i)||22. (2.11)

Unless stated otherwise, full batch descent will always be used, with the loss function defined
in Equation 2.11. Whenever it is infeasible to calculate the gradient over the entire
batch, a subset of the batch, or minibatch can be used for training as a middle of
the road option. This option uses K samples for training, with 1 < K < N. As this
method balances out efficiency and accuracy, it is the most common method used
in machine learning with overall better performance on a variety of applications,
as pointed out by Masters and Luschi [2018]. However, at the end of the day, each
option comes with its own up- and downsides, which very much depend on other
configurations of the network such as the loss function, Woodworth et al. [2020].
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2.10 backpropagation equations
In presenting the backpropagation equations used for deep learning, two proofs
will be presented. In the first proof, the equations are proven in scalar form and
then shown to be correct in matrix form with linear algebra. Because the essence
of the proof is to use the chain rule of partial differentiation, it is easiest to calcu-
late the gradients of the loss function in the last layer, and then work the gradients
out backwards through the network. Due to the chain rule, the gradients in the
early layers will always contain common terms already used in the calculation of
the gradient in later layers. Storing the common terms as local variables and pass-
ing them backwards is computationally more efficient, and considerably simplifies
the expression for the gradients in early notations. Hence, in literature, it is very
common to define an intermediate variable

δl
j ≡

∂L
∂zl

j
, (2.12)

or in matrix-form

δl ≡ ∂L
∂Zl . (2.13)

Because δl
j is computed at each neuron, and then passed on backwards in the

backpropagation equations, the intermediate variable is often called the error of
neuron j in layer l. In what follows, let ⊙ denote the Hadamard product, which is
the element-wise multiplication of matrices. Furthermore, we define the indicator
function as

1{n=m} =

{
1 if n = m,
0 if n ̸= m

for some n, m ∈ N.
The four central backpropagation equations are presented on the next page, and

will be proved chronologically.
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The Four Backpropagation Equations

δL =
∂L

∂AL ⊙ f ′(L)
(

ZL
)

(2.14)

δl =
(

Wl+1⊤δl+1
)
⊙ f ′(l)

(
Zl
)

(2.15)

∂L
∂Wl = δlAl−1⊤ (2.16)

∂L
∂bl = δlJN,1 (2.17)

Proof
Fix one sample xi (N = 1), with i ∈ {1, . . . , n0}. First, the equations are obtained
for one training sample, and will then be rewritten to apply gradient descent for
a batch of N samples. For simplicity, since only one training sample is evaluated
at a time, matrices with dimensions dependent on N will be denoted with small
letters as they will become column vectors: a, z, likewise the input and output.
Furthermore, a subscript m is added to column vectors to underline the fact that
the result follows for the mth training sample. For example, δl

m denotes the column
error vector in layer l of the mth training sample. Since the notation will become
cumbersome, table 0.1 provides an overview of the definitions of all symbols. By
definition, recall

δL
j =

∂L
∂zL

j
.

However, because L depends on aL
j , the activations of each neuron in the last layer,

by the chain rule one obtains

δL
j =

nL

∑
k=1

∂L
∂aL

k

∂aL
k

∂zL
j

.

Because
al

j = f (l)
(

zl
j

)
,

all terms will vanish for k ̸= j, which simplifies to

δL
j =

∂L
∂aL

j

∂aL
j

∂zL
j
=

∂L
∂aL

j
f ′(L)

(
zL

j

)
.

Since the left and right hand side have matching components, one can immediately
rewrite the expression above in vector form:

δL
m =

∂L
∂aL

m
⊙ f ′(L)

(
zL

m

)
. (2.18)

In Equation 2.15, δl is related towards δl+1. This can be done with the help of the
chain rule:

δl
j =

∂L
∂zl

j
=

nl+1

∑
k=1

∂L
∂zl+1

k

∂zl+1
k

∂zl
j

=
nl+1

∑
k=1

δl+1
k

∂zl+1
k

∂zl
j

.

To calculate the last term, recall from Equation 2.2

zl+1
k =

nl

∑
j=1

wl+1
kj al

j + bl+1
k =

nl

∑
j=1

wl+1
kj f (l)

(
zl

j

)
+ bl+1

k .
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The last term is simply

∂zl+1
k

∂zl
j

= wl+1
kj f ′(l)

(
zl

j

)
.

Plugging this term back from the earlier expression, one obtains

δl
j =

nl+1

∑
k=1

δl+1
k wl+1

kj f ′(l)
(

zl
j

)
.

To rewrite the expression from above in matrix form, observe
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To show Equation 2.16, again the chain rule is used:

∂L
wl

kj
=

nl

∑
m=1

∂L
∂zl

m

∂zl
m

∂wl
kj

=
nl

∑
m=1

δl
m

∂zl
m

∂wl
kj

.

Because

zl
k =

nl−1

∑
j=1

wl
kja

l−1
j + bl

k

and

∂zl
m

∂wl
kj

= al−1
j 1{m=k},

one immediately obtains
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In matrix form, this reads
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The last equation to show is the gradient of the loss with respect to the bias term,
i.e. Equation 2.17. Fortunately, this is yet again the chain rule:
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∑
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∂L
∂zl

k

∂zl
k

∂bl
j
,

where
∂zl

k

∂bl
j
= 1{k=j}.

Plugging the term above back into the expression immediately gives the result:
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Because all components already match, the multivariable representation immedi-
ately follows

∂Lm

∂bl = δl
m. (2.21)

In fact, Equations 2.18, 2.19, 2.20 and 2.21 are the backpropagation equations of
Stochastic Gradient Descent. While the derivation for the case N = 1 comes down
to using the chain rule, for arbitrary N for minibatch training or full batch train-
ing, the equations can be generalized with elementary linear algebra. Observe that
Equations 2.14 and 2.15 simply describe the method for calculating all error vectors
for each sample, which comes down to applying Equations 2.18 and 2.19 compo-
nentwise. To see how, focus how each column in every matrix corresponds to a
specific sample.
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To show the corrections of Equations 2.20 and 2.21, the assumption in 2.11 is used,
where the total loss can be expressed as a sum of the loss of each sample. Further-
more, the linearity of the gradient operator is used.
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3 P H Y S I C S - I N F O R M E D N E U R A L
N E T W O R K S

In dense neural networks, the model parameters are updated solely based on train-
ing samples by minimizing a loss function such as the mean squared error. Without
training samples, a dense neural network cannot be trained. These training samples
are obtained from numerical simulations or experimental measurements, which are
always limited to a bounded range. Data driven models cannot be expected to per-
form well outside the vicinity of experimental data. Intuitively, if the data can be
generated from a PDE, it can be useful to include the PDE during optimization. In
an attempt to generalize dense neural networks, Raissi et al. [2019] proposed to add
the residual of the PDE to the loss function together with the initial and bound-
ary conditions. As a result, a model is heavily penalized for making physically
infeasible predictions. Such a model is called a ’Physics-Informed Neural Network’
(PINN). Let an arbitrary PDE be described as

N (u(x, t)) = 0, x ∈ Ω, t ∈ [0, T]

B(x, t) = f (t), on ∂Ω

I(x, t0) = g(x), t0 ∈ [0, T]

(3.1)

where N is a (non)linear combination of (non)linear differential operators acting on
u, which is a scalar function of d + 1 variables and Ω ⊆ Rd is the spatial domain.
Furthermore, B and I denote some arbitrary boundary conditions (BCs) and initial
conditions (ICs), respectively. A PINN can be set up to solve an arbitrary PDE
as described by Equation 3.1 as follows. If (x, t) ∈ Rd+1, then d + 1 neurons are
chosen in the input layer and for scalar u we take one output neuron. Suppose
there are N training samples available. Furthermore, we choose a set of points (x, t)
for the model to evaluate, including values at the initial time, and some points on
∂Ω. These predetermined points are called collocation points, and we emphasize the
fact that the exact solution in the collocation points is unknown. The loss function
can now be defined as:

L =
1
N

N

∑
i=1

(ui − ûi)
2 +

1
NC

NC

∑
i=1

N (û(xi, ti))
2

+
1

NB

NB

∑
i=1

(B̂(xi, ti)− f (ti))
2 +

1
NI

NI

∑
i=1

(Î(xi, ti)− g(xi))
2,

(3.2)

where NB is the amount of the collocation points on the boundary, NI the amount
of initial points and NC the remaining points on the interior. The first term is the
mean squared error, as is normally used in a dense neural network. The second
term contains the residual of the PDE and the final two terms are the loss of the
prediction at the boundary (B̂) and initial conditions (Î), respectively. We will not
elaborate further upon if the loss in Equation 3.2 is guaranteed to converge towards
zero, but rather perform empirical tests. For an optimization algorithm to update
the model parameters, at least the gradient of the loss function in Equation 3.2 is
required. The gradient of the first term can be analytically determined via the back-
propagation equations, see Section 2.10. For the remaining terms, the differential
operator needs to be applied on each predicted û and then the gradient with respect
to the model parameters needs to be taken. This becomes infeasible to derive by
hand and is very cumbersome to do for every different PDE. There are two different
methods in which the nonlinear differential operators from PDEs can be evaluated,
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and we therefore distinguish between two different kinds of PINNs. In particular, a-
PINNs rely on the fact that the output of a neural network is a function of its input,
which can analytically be calculated via automatic differentiation (AD). Baydin et al.
[2018] provides an excellent overview on how automatic differentiation works, and
we will not comment on the workings thereof but rather directly use AD from Py-
Torch. Rather than analytically calculating the differential operators from the PDE
of the outputs, one can also approximate these terms with numerical differentiation
using, for example, central differences. PINNs using numeric differentiation for
differential operators from the PDE and analytically calculated gradients with re-
spect to model parameters are called n-PINNs. Although these two types of PINNs
are very similar to each other, they may provide very different outcomes, as has
been shown by Chiu et al. [2022]. Both PINNs will be implemented and their per-
formance will be compared when tested upon a harmonic oscillator, the 1D heat
equation and the KdV equation. In particular, the solution of the PDEs will be
approximated using models on the opposite spectrum: data-driven dense neural
networks relying only on limited measurements and PDE-driven neural networks,
like a-PINNs and n-PINNs, which only contain training samples on the boundary
or on some given initial condition. To show how powerful PINNs are in solving
PDEs, as little training samples as possible will be used on the interior and hence
the first term in Equation 3.2 will not be used for training. To draw fair comparisons
between the two different PINNs, both models will be identically initialised.

It is possible that after training, some terms in 3.2 are much larger than the rest,
for example a network may be physically correct on the interior but not obey the
boundary conditions. To force the model to still yield satisfactory results, it is
very common to vary the weights of the different loss terms. If the model cannot
optimize the boundary conditions, then the weight of the corresponding loss term is
increased, to emphasize its importance and force the model to adjust its parameters
differently to obey the boundary conditions. This technique has been studied by
van der Meer et al. [2020], where optimal weights have been derived. In addition,
this paper proves that the loss function as defined in Equation 3.2 is mathematically
justified.



4 E X P E R I M E N TA L R E S U LT S

4.1 harmonic oscillator
A well known problem in classical physics is the damped harmonic oscillator. It is a
simple mass-spring system, which can be fully described by the following ordinary
differential equation (ODE):

m
d2u
dt2 + µ

du
dt

+ ku = 0

u(0) = x0

du
dt

(0) = v0,

(4.1)

where m is the oscillator’s mass, µ is the coefficient of friction and k is the spring
constant. Based on the coefficients m, µ and k, the oscillator can be in three regimes:
overdamped, underdamped and critically damped. We will only consider the un-
derdamped case, which only holds if δ < ω0, with the parameters defined in Equa-
tion 4.2. The analytical solution is given by

u(t) = Acos(ωt + ϕ)e−δt,

where: w =
√

w2
0 − δ2

w0 =

√
k
m

and δ =
µ

2m
.

(4.2)

We take m = 2, µ = 0.5 and k = 2 for all simulations. The amplitude A and phase
angle ϕ are determined by the initial conditions. For simplicity, we take x0 = 1 and
v0 = 0 such that the motion is given by

u(t) = cos(ωt)e−δt.

The performance of the dense neural network, a-PINN and n-PINN will be com-
pared with the same given initial conditions. In particular, their ability to interpo-
late and extrapolate will be assessed using different tests.

4.1.1 Performance of Dense Network

To test a dense network’s ability to interpolate and extrapolate, we assume there are
500 equidistant training samples in the domain [0,15] and we let the model predict
3000 equidistant points lying on [0,30]. For training, the network uses the loss as
defined in Equation 2.11, so no physics information is provided. We evaluate the
training and prediction error with the mean squared error (MSE) and use 2 hidden
layers with 8 neurons in each layer. The tangent hyperbolic function is used as
activation function using BFGS with 1000 epochs, with results shown in Figure 4.1.
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(a) (b)

Figure 4.1: Illustration of (a) dense network on a damped harmonic oscillator with MSE loss
(b). A [1,8,8,1] neuron structure was used with the tangent hyperbolic function
as activation function using BFGS for 1000 iterations.

The dense network managed to achieve a mean squared error of 2.5e-7 on the
training samples and a mean squared error of 2.4e-2 on the to be predicted values.
As seen in Figure 4.1a, the model is perfectly capable of interpolating the solution
on the training domain but, as expected, fails to extrapolate the solution correctly.
As the stagnation of the log loss indicates, no matter how much the model is trained,
it cannot improve its extrapolation performance.

When designing a neural network, there are many factors which play a role in
its performance, such as its depth, width, or amount of training samples to name
a few. Some modifications will be explored and their effect on the performance of
the network will be analysed. Although at the end of the day it comes down to trial
and error when designing a dense network, we can identify some key factors which
substantially improve the performance.

One of the most crucial aspects of training is the optimization algorithm used to
update the model parameters. Although a few popular ones were mentioned in
Section 2.7, there are many which can be used, ranging from (quasi-)Newton meth-
ods to conjugate gradients and methods which do not even need a Jacobian such
as Powell’s method (Powell [1964]). A few optimization algorithms with identical
weight initialisation were used and the results are shown in Figure 4.2.

(a) (b)

Figure 4.2: Illustration of different optimization algorithms’ prediction (a) on the same oscil-
lator problem with loss (b) during training.

Out of all optimization algorithms tested, either BFGS or L-BFGS-B seemed to
achieve the fastest convergence. Surprisingly, even Powell which does not use the Ja-
cobian beats many algorithms, though its much higher computation time (≥ 1000x!)
makes it worthless to use, provided the gradients are available. Furthermore, some
cases with very poor extrapolation can be identified in the remaining tables and in
Figure 4.2a, where one may even encounter extreme outliers such as Powell’s
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prediction. For the remainder of experiments with a dense network, only BFGS will
be used with 1000 epochs.

Another factor which plays a major role in obtaining accurate results is the archi-
tecture choice. In particular, one may expect for an increasingly wider network to
yield better results. However, this is not always true as shown in Table 4.1.

Neurons / hidden layer MSE (train) MSE (prediction)

2 9.2e-3 5.6e-3

4 1.4e-6 2.2e-1

6 7.8e-7 6.9e-2

8 2.5e-7 2.4e-2

10 1.1e-6 8.0e-2

12 1.6e-7 5.2e-2

24 2.6e-7 1.9e-2

Table 4.1: A dense network with 2 hidden layers with altering but equal neurons per layer.
Same training and to be predicted data is used as in the oscillator problem. Net-
work is trained for 1000 epochs, and the resulting mean squared error (MSE) is
displayed for both separate training and prediction datasets.

Even though using more neurons per hidden layer results in more nonlinear and
thus more powerful networks which are capable of learning more complex prob-
lems, they may not necessarily give more accurate results. For example, the network
with 10 neurons per layer performed substantially worse compared to the model us-
ing 8 or 6 neurons on the training samples. Also, the model with the highest amount
of neurons with the highest-dimensional search space was not able to achieve the
lowest loss on the training samples during training. Furthermore, increasing the
amount of neurons does not improve a dense network’s extrapolating capabilities
as the lowest prediction MSE was achieved by the network with the least amount
of neurons.

Instead of improving a network’s learning capabilities by increasing the network’s
width, one may also consider making the network deeper. Especially the depth
allows a network to learn progressively more advanced problems, though making
it more prone to vanishing gradients. The question remains whether increasing a
network’s depth on simple problems such as the oscillator can yield more accurate
results.

Layers MSE (train) MSE (prediction)

1 1.3e-7 2.1e-3

2 1.1e-6 8.0e-2

3 1.2e-7 2.0e-2

4 8.6e-5 1.1e-1

Table 4.2: A dense network with different amount of hidden layers with 10 neurons per
hidden layer. Network is trained for 1000 epochs with BFGS, and the resulting
mean squared error (MSE) is displayed for the training dataset and prediction
dataset.

It turns out, using deeper models on simple regression problems such as an os-
cillator barely improved the loss on the training samples and even could make it
worse. The model with 4 hidden layers was heavily outperformed by the 1 hidden
layer model.

Finally, the most straightforward answer for a model to predict more accurately
is to let the model train on bigger training datasets. As more training samples
are available, the loss is evaluated in a more dense domain, which decreases the
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likelihood of overfitting and makes the model more generalized. The results after
changing the amount of training samples are shown in Table 4.3.

Training samples MSE (train) MSE (prediction)

100 1.7e-6 1.1e-1

200 7.4e-7 3.6e-2

500 1.1e-6 8.0e-2

1000 1.5e-6 2.4e-2

2000 5.6e-7 3.8e-2

5000 2.1e-8 1.2e-2

10000 1.6e-8 1.0e-2

Table 4.3: A dense [1,10,10,1] network after 1000 epochs with BFGS using different amount
of training samples. The resulting mean squared error (MSE) is displayed for the
training dataset and prediction dataset.

A clear improvement of the loss after training is visible with increasing training
samples, with a surprising jump at 200 training samples.

4.1.2 Performance of PINN

Instead of relying solely on measurements on a bounded domain, PINNs will sim-
ply evaluate the PDE at a set of collocation points and try to correctly enforce the
underlying physics by minimizing the PDE loss. Suppose that only the initial con-
dition is known of an oscillator, and 100 collocation points are used in the domain
[0,30]. While a-PINNs rely on automatic differentiation, n-PINNs will approximate
the partial derivative terms using central finite difference of second-order with step
size ϵ = 1e-2. To greatly decrease the computation time during learning, Adam
is used as optimization algorithm with an adaptive learning rate to reach faster
convergence. The only type of adaptive learning rate that will be enforced is the
so-called multistep learning rate, which decreases by a given factor after a threshold
iteration step has been reached. Both PINNs use two hidden layers with 50 neurons
in each layer with 50000 epochs. We first assume no training samples are available
and thus exclude the first term in the PINN’s loss as defined in Equation 3.2. All
PINN experiments were performed with PyTorch using an NVIDIA Quadro P1000

graphics card.

(a)
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(b) (c)

Figure 4.3: Prediction (û) of a-PINN and n-PINN on the oscillator (a) with 10 training sam-
ples on [0,15] with respective PDE loss during training (b) and (c).

After training, the mean squared error was evaluated between the prediction (û)
of the PINN and the analytic solution at 3000 equidistant points on [0,30]. The a-
PINN and n-PINN reached a respective MSE of 1.0e-3 and 1.1e-3. Although both
PINNs managed to capture the physics behaviour well, the dense neural network
used for interpolation was able to yield more accurate results while containing less
neurons per layer. A very easy method to drastically improve their performance
is by combining PINNs with dense network’s data driven approach and add a few
training samples. When both PINNs were provided with as few as 10 equidistant
training samples on [0,15], the MSE of the a-PINN and n-PINN reached respectively
8.6e-6 and 4.0e-6, with the prediction displayed in Figure 4.3a. Remarkably, the n-
PINN managed to outperform the a-PINN, even though it approximates derivatives
with numerical methods. Their differences become more apparent when tested
upon a more complex problem such as the KdV equation.

One final observation to remark is the evolution of the loss during training. The
PDE loss during training although decreases overall, the descent is by no means
monotonous and is diverging in the same manner as noise signals. Although the
a-PINN reached the lowest PDE residual loss (2.8e-7 as opposed to 5.7e-6), the
n-PINN obtained the most accurate result, pinpointing the fact that a lower PDE
residual loss may not result in a more accurate prediction. The exploding loss turns
out to be such a major issue, that during simulations taking a step in the optimiza-
tion algorithm may result in a dramatic increase of the loss function. Even after tens
of thousands more iterations, the loss was not able to return to the previous loss
value. To prevent this unreliable behaviour, all experiments from now on will have
gradient clipping enforced (see Section 2.8.1) to prevent massively diverging losses.
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4.2 1d heat equation
Consider a homogeneous problem where the heat conduction for a finite 1D rod
with constant thermal coefficient and no heat source can be described by the follow-
ing PDE, subject to the following BC and IC:

∂u
∂t

= k
∂2u
∂x2

u(0, t) = u(L, t) = 0

u(x, 0) = sin(πx/L) + sin(3πx/L).

(4.3)

Using separation of variables, the solution to Equation 4.3 is

u(x, t) = sin(πx/L)e−kt(π/L)2
+ sin(3πx/L)e−kt(3π/L)2

. (4.4)

We let both PINNs train long enough to obtain accurate results, using the Adam
optimizer with 10000 epochs. The domain is taken over x ∈ [0,10] and t ∈ [0,5],
with k = 1. Equidistant collocation points are chosen on a 101 x 101 discretized grid
and both PINNs use an adaptive learning rate with 4 hidden layers and 50 neurons
in each layer. Then, both PINNs used a 501 x 501 discretized grid to predict the
solution, with the results illustrated in Figure 4.4.

(a) (b)

(c) (d)

(e) (f)



4.2 1d heat equation 29

(g) (h)

Figure 4.4: Illustration of prediction to the solution to the given heat equation by the a-PINN
(a) and n-PINN (b). The respective absolute error and training loss is shown by
the a-PINN (c,e) and n-PINN (d,f). Predicted outcomes at various time frames is
illustrated (g,h) with no difference visible between the outcome of both PINNs.

After training both PINNs, the a-PINN finished with a 1.2e-6 MSE in 5 minutes
and the n-PINN finished with a 9.6e-7 MSE in 4 minutes. In this specific example,
the n-PINN had a slightly more accurate prediction than the a-PINN, while also
finishing faster. However, both managed to converge to the correct solution with
excellent accuracy. One method to compare both models’ accuracy is to alter the
amount of collocation points, which are used to evaluate the PDE during training.
We initialised both models identically and compared their MSE after training for
various amounts of collocation points, which is shown in Table 4.4.

a-PINN n-PINN

Grid size MSE

11 x 11 2.3e-1 2.8e-1

21 x 21 2.0e-1 2.2e-1

51 x 51 2.2e-6 2.3e-6

101 x 101 1.2e-6 9.6e-7

201 x 201 9.6e-7 9.1e-7

Table 4.4: Mean Squared Error (MSE) between the prediction and true values using the a-
PINN and n-PINN for the heat equation. Amount of collocation points used dur-
ing training is altered by changing the grid size.

The differences between both models are very small, and statistically insignifi-
cant to draw any major conclusion. Hence we repeat the simulations on a 51 x 51

grid with ten different weight initialisations. The a-PINN reached an average 1.1e-5
MSE and the n-PINN reached an average 3.5e-6 MSE. In this scenario, we conclude
that the n-PINN reaches more accurate predictions than the a-PINN. Note, however,
when too few collocation points are used, the PINNs are prone to very large errors,
especially if the points are not dense near the highly nonlinear part of the solu-
tion. Although both PINNs could end up with entirely different results on different
grid sizes of collocation points, we will rather focus on their accuracy on different
applications.
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4.3 korteweg–de vries equation
The KdV equation is a model, which describes shallow water waves on a surface. It
is given by

α
∂u
∂t

+ βu
∂u
∂x

+ γ
∂3u
∂x3 = 0, (4.5)

where the standard form is obtained for α = 1 , β = 6, γ = 1. There are many types
of solutions based on the initial condition. The solution we will be approximating
is the so-called solitary wave solution, given by Anco and Willoughby [2022], in
which the 1-soliton solution can be described as

u(x, t) =
c
2

sech2
(√

c
2

(x − ct − x0)

)
(4.6)

with wave velocity c and some displacement x0. The 2-soliton solution can be
described as

u(x, t)=
2(c1 − c2)(c1 cosh2(

√
c2ξ2/2) + c2 sinh2(

√
c1ξ1/2))

((
√

c1−
√

c2) cosh((
√

c1ξ1+
√

c2ξ2)/2)+(
√

c1+
√

c2) cosh(
√

c1ξ1−
√

c2ξ2)/2)2

(4.7)

where c1 > c2 are the wave speeds and the transformation ξ1 = x − c1t − x1 and
ξ2 = x − c2t − x2 have been made with initial displacements x1 and x2.

4.3.1 1-soliton solution

For the 1-soliton solution we chose c = 2, x0 = -1 and domain x ∈ [-3,3] and t ∈
[0,2]. The equidistant collocation points were chosen on a 201 x 201 discretized
grid, and the boundary and initial conditions were enforced by Equation 4.6. The
Adam optimizer was used with a multistep learning rate for 10000 epochs where
the PINNs contain two hidden layers with 50 neurons in each layer. No training
samples were provided. After training, the PINNs were used to predict the solution
on a 501 x 501 grid, with results illustrated in Figure 4.5.

(a) (b)
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(c) (d)

(e) (f)

(g)

Figure 4.5: Illustration of prediction of the 1-soliton solution of the KdV equation by the a-
PINN (a) and n-PINN (b). The respective absolute error is displayed in (c) and (d)
with respective loss during training in (e) and (f). An illustration of the prediction
of both the a-PINN and n-PINN of the soliton at t = 0.5 is shown in (g).

After training, the a-PINN reached a 2.0e-7 MSE and the n-PINN reached a 1.2e-
6 MSE. Both PINNs were able to correctly predict the 1-soliton solution, with the
a-PINN reaching more accurate results than the n-PINN, though needing more
computation time to finish (16 min versus 10 min). Again, we compare their perfor-
mance by altering the grid size, and comparing the resulting loss, which is shown
in Table 4.5.
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a-PINN n-PINN

Grid size LBC LIC LI L LBC LIC LI L
5 x 5 2.3e-7 8.3e-10 1.9e-7 4.3e-7 9.4e-6 9.9e-7 2.7e-3 2.7e-3

11 x 11 4.7e-7 7.3e-8 2.3e-6 2.8e-6 2.3e-6 6.0e-6 4.8e-3 4.8e-3

21 x 21 3.8e-7 8.7e-8 2.6e-6 3.1e-6 1.5e-6 5.4e-7 2.8e-3 2.8e-3

51 x 51 3.7e-7 1.0e-7 2.7e-6 3.2e-6 2.5e-6 2.4e-7 4.1e-3 4.1e-3

101 x 101 3.5e-7 1.1e-7 2.9e-6 3.3e-6 1.9e-6 2.9e-7 4.0e-3 4.0e-3

201 x 201 3.3e-7 1.0e-7 2.7e-6 3.1e-6 2.1e-6 2.7e-7 3.5e-3 3.5e-3

Table 4.5: Final training loss of boundary condition (LBC), initial condition (LIC) and interior
(LI) with L = LBC + LIC + LI on different grid size by the a-PINN and n-PINN
for the KdV equation.

Noticeably, the n-PINN is outclassed by the a-PINN in all the different loss terms
used during training, being primarily limited by the loss evaluated on the interior.
In theory, this problem could be resolved by either using higher-order central differ-
ences or smaller step size ϵ in evaluating the finite differences. However, both meth-
ods failed to work during testing, where a smaller ϵ caused a very high numerical
instability in the third-order partial derivative and exploded. Using a higher-order
accuracy of central differences also failed to lower the loss in the interior, and only
affected the n-PINN negatively as the model needed to evaluate more points to eval-
uate the same partial derivative term, which could lead to even higher computation
times than the a-PINN. Though as earlier seen, the PINNs’ accuracy is best judged
by their mean squared error between their predictions and true values, which is
displayed in Table 4.6.

a-PINN n-PINN

Grid size MSE

5 x 5 3.4e-3 3.1e-3

11 x 11 7.6e-7 2.0e-6

21 x 21 2.9e-7 1.9e-6

51 x 51 2.1e-7 1.4e-6

101 x 101 2.1e-7 1.8e-6

201 x 201 2.0e-7 1.2e-6

Table 4.6: Mean Squared Error (MSE) for the prediction dataset for different grid size using
the a-PINN and n-PINN for the KdV equation.

On all the different grid sizes, the a-PINN managed to largely outperform the
n-PINN, with the only exception in the smallest grid. Notice in this case how the
MSE is significantly smaller for smaller grid sizes compared to simulations with the
heat equation. This goes to show that the amount and placement of the collocation
points does significantly affect the prediction for different cases. Furthermore, both
PINNs’ performances seem to depend on the problem they face, as neither of the
two has consistently given more accurate predictions over the other on all simu-
lations performed until now. Although there are different ways to compare their
performance such as varying the exact locations of the collocation points in the grid,
or adding training samples, we will restrict ourselves here to the tests described.
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4.3.2 2-soliton solution

To challenge the two PINNs even more, we used them to predict the 2-soliton solu-
tion to the KdV equation. To make the problem as difficult as possible, the solitons
have different wave speeds such that the solitons first merge and then split when
colliding. For this problem, we took c1 = 6, c2 = 2, x1 = -2 and x2 = 6 with domain
x ∈ [0,20] and t ∈ [0,5]. The PINNs evaluated the loss in a 201 x 201 grid and
used 8 hidden layers with 50 neurons in each layer. First, the PINNs were given an
easier case and the IC is given at t = 2, exactly when the solitons merge. Afterwards,
the IC is given at t = 0, to ensure the nonlinearity during the merge is completely
unknown to the PINN. The results are shown in Figure 4.6 after 10000 epochs using
the Adam optimizer with the initial condition given at t = 2.

(a) (b)

(c) (d)
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(e) (f)

Figure 4.6: Illustration of prediction of the 2-soliton solution of the KdV equation by the a-
PINN (a) and n-PINN (b) with given IC at t = 2. The respective absolute error is
displayed in (c) and (d) with respective loss during training in (e) and (f).

At the end, the a-PINN reached a 6.6e-4 MSE and the n-PINN reached a 1.2e-2
MSE, making the a-PINN a substantially better candidate. Although the n-PINN
managed to some extent predict two solitons, it had trouble into finetuning the
slower soliton. Increasing the amount of epochs, width or depth of the network
did not resolve this issue and failed to reach the same order of accuracy as the a-
PINN did. In fact, as seen in Figure 4.6e, after 10000 epochs the loss still does not
stagnate as opposed to the n-PINN, and the a-PINN may even reach higher-order
of accuracy when trained longer. Choosing a smaller step size ϵ in the numerical
approximation of the derivative terms led to very high unstability when calculating
the third-order derivative. Furthermore, using central differences of fourth-order
accuracy made no visible improvement during training, other than increasing the
computation time. To further illustrate the large gap in accuracy between the two
PINNs, Figure 4.7 illustrates the predicted solitons, which are evaluated at t = 1,
t = 2 and t = 3.

(a) (b)

(c) (d)
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(e) (f)

Figure 4.7: Illustration of the predicted solitons at various times by the a-PINN (a,c,e) and
n-PINN (b,d,f).

Additionally, PINNs seem to be very sensitive to the given IC and BC if no train-
ing samples are present, which may result in erroneous convergence. If the initial
condition were to be enforced at t = 0, both PINNs attempted to approximate a
different solution to the KdV equation: two non-interfering solitons, as illustrated
in Figure 4.8.

(a) (b)

Figure 4.8: Result after training with an a-PINN with initial condition enforced at t = 0,
instead at t = 2 is illustrated in (a) with real solution in (b).

Even using a large weight for the interior loss term made no difference. In fact,
the outcome is a consequence of not adding any form of training samples for the
model to train upon. Even if the PINN fulfills the initial and boundary conditions, a
unique convergence is not guaranteed. To still see whether the a-PINN manages to
converge to the correct unique solution with given IC at t = 0, a small modification
is made in the initial displacement. We now choose x1 = -2 instead of x1 = 2, such
that both solitons are visible at t = 0 to the PINN.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Illustration of the predicted solitons by the a-PINN (a) with absolute error (b).
The total loss during training is shown in (c). The real solution and prediction at
various times by the a-PINN are shown in (d,e,f).

To reach a high prediction accuracy, 35000 epochs were used, which resulted in a
computation time of almost 6 hours on the used GPU with a final 7.5e-6 MSE. The
evolution of the MSE is summarised in Table 4.7.
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Epochs MSE

10000 1.4e-3

15000 1.0e-4

20000 2.6e-5

25000 1.3e-5

30000 9.2e-6

35000 7.5e-6

Table 4.7: Evolution of the prediction MSE during training of an a-PINN on the 2-soliton
solution to the KdV equation with given IC at t = 0.

From Figure 4.9 we make two important observations. Firstly, the a-PINN yielded
very accurate results when trained sufficiently, and could be fine-tuned better when
trained longer. Also, the a-PINN managed to capture the nonlinearity of two soli-
tons merging very well. Secondly, we observe how drastically the a-PINN’s pre-
diction has changed when used on an equally sized but slightly shifted grid (see
Figure 4.8b and Figure 4.9a). A huge improvement is made whenever both solitons
are initially seen at t = 0 as opposed to split across two borders of the grid, even
when using as many as just under 40000 collocation points.

4.3.3 Train of solitons

Up until now, PINNs have shown accurate results when trained sufficiently. One
may ask themselves how PINNs fare against numerical methods. Hence we intro-
duce a highly nonlinear problem to the KdV equation, given as

∂u
∂t

+ u
∂u
∂x

+ δ2 ∂3u
∂x3 = 0

u(x, 0) = cos(πx).
(4.8)

The proposed problem was introduced and studied by Zabusky and Kruskal [1965],
in which the solution is a train of solitons interacting with one another. To cause
many solitons to interact in a small grid, we let δ2 = 1e-3. Equation 4.8 can be
solved numerically with a spectral method, see Appendix A.1 for details. The highly
nonlinear solution was numerically computed in less than seven seconds, and is
illustrated in Figure 4.10 with x ∈ [-2,2] and t ∈ [0,4].

Figure 4.10: Illustration of the numerical solution of Equation 4.8.

We start by first considering the domain x ∈ [-1,1] and t ∈ [0,1] to omit the
train of solitons interfering with one other, and provide training samples at t = 0
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and at the final time t = 1. Again, 40000 equidistant collocation points are chosen
to evaluate the PDE, and we let the a-PINN train long enough with an adaptive
learning rate. In the first simulation, we used no training samples on the interior,
and in the second simulation we randomly generated 500 training samples on the
interior using the spectral method. Nine hidden layers were used, each containing
50 neurons and the hyperbolic tangent is used as activation function. The results of
the first simulation are shown on the left, and the results of the second simulation
are shown on the right of Figure 4.11.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

(i) (j)

Figure 4.11: Illustration of the predicted train of solitons for x ∈ [-1,1] and t ∈ [0,1] by the a-
PINN with no training samples on the interior (a), with absolute error (c), total
training loss (e), and prediction at various times (g,i). The simulation with 500

training samples on the interior is shown in (b,d,f,h,j) respectively.

We compare the a-PINN’s performance by comparing the prediction with val-
ues generated with the spectral method. After 50000 epochs, the a-PINN with no
training samples on the interior reached a 2.3e-2 MSE, and the a-PINN with train-
ing samples on the interior reached a 6.9e-3 MSE. After approximately 9 hours of
training, we observe from Figure 4.11e and 4.11f that further training would lead
to very little progress, especially for the case where no training samples were used
on the interior. Note that faster solitons are qualitatively well captured in both
simulations. Adding training samples on the interior did help the performance, as
the slower solitons are at least visible, which is not the case in the first simulation.
Although it may be possible to reach more accurate results with an a-PINN with
training samples on the interior, we will omit further training as it could take days
to reach accurate results.



40 experimental results

We repeated both simulations, but now considered the domain x ∈ [-2,2] and
t ∈ [0,2]. This leads to trains of solitons interfering with each other. We used an
identical setup, but used an additional 500 training samples for the second simula-
tion, totalling up to 1000 training samples on the interior.

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 4.12: Illustration of the predicted interfering trains of solitons for x ∈ [-2,2] and t
∈ [0,2] by the a-PINN with no training samples on the interior (a), with abso-
lute error (c), total training loss (e), and prediction at various times (g,i). The
simulation with 1000 training samples on the interior is shown in (b,d,f,h,j) re-
spectively.

From Figure 4.12a and 4.12d we observe that only providing training samples at
the initial and final time yields very poor results. Furthermore, the training loss in
Figure 4.12e stagnates, which again indicates it is very likely further training will
not improve the performance. After 50000 epochs, the first simulation yielded a 4.6e-
1 MSE, and the second simulation yielded a 2.7e-2 MSE. This example illustrates
that although PINNs seem to be very promising in solving PDEs, substantially
more effort is required to find a better network configuration to accurately predict
complex solutions to highly nonlinear PDE problems.

For example, one problem that basic PINNs may face is how the model at each
iteration step tries to optimize on the whole space time domain, which may be too
difficult. Multiple models have been developed to improve PINNs, such as a back-
ward compatible PINN (bc-PINN) proposed by Mattey and Ghosh [2022], which
solves a PDE sequentially over multiple time segments. The bc-PINN is designed
to satisfy previous time segments by penalizing the model on the previous time seg-
ments over the already obtained prediction over the previously trained grid. Alter-
natively, Wang et al. [2021b] showed that PINNs with a spatio-temporal multi-scale
Fourier feature architecture are superior to regular PINNs for solutions with a high-
frequency behaviour. For future research, it may be worthwhile to investigate if
more advanced versions of the regular PINN can solve trains of interfering solitons
from the KdV equation accurately. In training an a-PINN to predict trains of soli-
tons, training samples were used on the interior. In particular, on the domain x ∈
[-1,1] and t ∈ [0,1] we generated 500 training samples and on x ∈ [-2,2] and t ∈ [0,2]
we generated 1000 training samples. In this scenario, instead of using PINNs, one
could also use the same training samples to train a dense neural network. Hence
we use both domains and an identical setup to compare a DNN with an a-PINN.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.13: Illustration of prediction by a DNN with 500 training samples on the domain x
∈ [-1,1] and t ∈ [0,1] (a) and a DNN with 1000 training samples on the domain
x ∈ [-2,2] and t ∈ [0,2] (b). Their respective absolute error and prediction at
various times, is shown in (c,e,g) and (d,f,h).
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Noticeably, although the PINN enforced the PDE as extra information compared
to the DNN, it did not reach more accurate predictions on both grids. On the
smaller grid, the a-PINN reached a 6.9e-3 MSE compared to the DNN that reached
a 5.1e-3 MSE. On the larger grid, the a-PINN reached a 2.7e-2 MSE and the DNN
reached a 5.1e-2 MSE. Additionally, both DNNs finished in under 10 minutes, which
is substantially faster than a-PINNs’ computation time of approximately 9 hours. If
enough training samples are available and a small training computation time is pre-
ferred, one may be better off using a DNN. Although DNNs will fail to extrapolate.
As of now, given a fixed PDE with fixed ICs and BCs, regular PINNs cannot outper-
form numerical methods in accuracy, which have been developed for the last couple
of decades, especially since both require a PDE. However, even if a given problem
can be solved numerically, there are scenarios in which PINNs may be more helpful.
For example, given a PDE, PINNs can be designed to incorporate different types
of inputs, such as different scalars in the PDE, a different geometry of the grid, or
different BCs or ICs. And although training such a PINN could take exceptionally
long, one forward pass through the network will almost always be faster than using
classical numerical methods, which always require a different simulation for any
change to the PDE problem. For example, this could be very useful in evaluating
financial products, which derive their value from the Black–Scholes equation, and
real-time data is required to constantly re-adjust a portfolio as fast as possible. Such
PINNs are in very early development, and some real-time control applications have
been studied by Antonelo et al. [2021] for example.

All in all, the a-PINN and n-PINN employing central differences have shown an
overall good performance for the applications they have been tested on, though the
a-PINN has shown to be the most consistent.

4.4 using pinns for inverse problems

Up until now, PINNs have used the PDE in the loss function as a form of regu-
larization to correctly predict the underlying solutions. To show the great utility
and flexibility of PINNs, we will illustrate how PINNs can be used for inverse
problem. Given enough training samples, can a PINN correctly identify the PDE
which yielded the given solution? Interestingly, models have been used by for exam-
ple Wang et al. [2021a] and Lu et al. [2019], where Physics-Informed Deep Operator
Networks were used to correctly predict nonlinear operators of a PDE. Alternatively,
Rudy et al. [2017] proposed a sparse regression method to efficiently select nonlin-
ear and partial derivative terms to correctly identify popular PDEs using (noisy)
data, including the KdV equation. We will not explore the theoretical background
behind them but rather illustrate PINNs’ accuracy in predicting an unknown coeffi-
cient in a PDE. This is done by using the unknown coefficient as a model parameter
directly in the loss function, which is updated after each iteration step similarly to
how model weights and biases are updated. Given (noisy) data, it may be of great
interest to determine fundamental physical constants which are not directly mea-
surable, such as the friction constant of the harmonic oscillator or Reynolds number
in the Navier-Stokes equations. Another useful application is testing to what extent
certain partial derivative terms contribute to the measurements and test whether
higher order terms are negligible. This might be of great interest when a forward
PINN is set up, but the PDE is not fully known.

In particular, empirical tests are performed to predict the friction constant µ from
equation 4.1 and β from the KdV equation 4.5. The problem can be parameterized
as follows:

N (u, λ) = 0, x ∈ Ω, t ∈ [0, T]

L =
1
N

N

∑
i=1

(ui − ûi)
2 +

1
N

N

∑
i=1

N (û(xi, ti), λ)2,
(4.9)
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where λ is the unknown constant to be approximated. Notice that the collocation
points are identical to the given training samples and no initial or boundary infor-
mation is used.

The PINNs used identical configurations as in the original problems, where 1000

training samples on the whole domain were used for the oscillator, and a 100 x
100 grid was used from the 2-soliton solution of the KdV equation. The notable
differences were the loss function, and a different adaptive multistep learning rate
in the Adam optimizer was used to yield faster convergence. The algorithm started
with the initial guesses β0 = 1 and µ0 = 0.01 with respective true values of 6 and 0.5.
The results with noiseless data is shown in Table 4.8. Only the a-PINN was used to
solve inverse problems.

Parameter Prediction True value Relative error

µ 0.50007 0.5 0.015 %

β 6.002 6 0.035%

Table 4.8: Estimation of the unknown coefficient µ in the oscillator and β in the KdV equa-
tion, using noiseless training samples.

Although the initial guesses were very far off the true values, the PINN man-
aged to estimate both unknown coefficients with extraordinary precision, with both
relative errors far below 0.1%.

In practice, measurements are always prone to a certain level of noise. To see
how accurate the unknown coefficient is estimated and the model is able to predict
the correct solution, noisy data is generated by a uniform distribution. The time
evolution of λ during training and the PINN’s output after training with training
samples with as much as 10% noise is shown in Figure 4.14.

(a) (b)
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(c)

(d)

Figure 4.14: Illustration of µ (a) and β (b) during training at each iteration step with true
value indicated by a dashed horizontal line. Model was given training samples
with 10% noise, and predicted the oscillator (c) and the 2-soliton solution of the
KdV equation (d).

Even with a high amount of noise, the model was able to correctly and simul-
taneously predict both solutions and a correct estimation of λ in both cases. This
example greatly highlights the precision and flexibility when PINN models are data
driven by training samples. The massive overshoot in Figure 4.14a and 4.14b is a
result of setting the learning rate too high, but manages to correct itself and for long
enough epochs the model is converging to the true value. The final estimated value
of λ for various noise levels is shown in Table 4.9.

Noise µ Relative error µ β Relative error β

1% 0.4997 0.059% 6.002 0.027%

2% 0.502 0.32% 6.003 0.050%

5% 0.496 0.72% 6.01 0.17%

10% 0.508 1.66% 6.04 0.62%

Table 4.9: Estimation of the unknown coefficient µ in the oscillator and β in the KdV equation
with different noise levels. Noise percentages represent maximum deviations from
true value of observations and were drawn with a uniform distribution.

Even with as much noise as 10% in the training samples, the model manages to
accurately predict both µ and β, with respective relative errors 1.7% and 0.6%. Dur-
ing multiple simulations, we observed that predictions using training samples with
the highest level of noise had the biggest standard deviation. Hence to be more
precise, one would need many simulations to make a more meaningful estimate of
λ, for example by using the central limit theorem and constructing a confidence in-
terval. However, this may be very time consuming to do depending on the problem,
as a simulation to obtain one β took as long as 40 min on the GPU used.

Suppose that from the PDE an analytic solution can be derived with an unknown
coefficient. Then if there are training samples available, one can also find the co-
efficient with a non-linear least squares method, such as the Levenberg-Marquardt
algorithm, which is described by Levenberg [1944]. We use Levenberg’s algorithm
on the same noiseless training samples, and on the samples with identical noise on
the oscillator to predict µ. The results are summarised in Table 4.10.
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Noise µ s.d. Relative error

0% 0.5 0 0%

1% 0.50002 0.0001 0.0037%

2% 0.50004 0.0003 0.0076%

5% 0.50009 0.0007 0.019%

10% 0.5002 0.001 0.038%

Table 4.10: Estimation of the unknown coefficient µ and standard deviation (s.d.) of the oscil-
lator with different noise levels using the Levenberg-Marquardt algorithm. Noise
percentages represent maximum deviations from true value of observations and
were drawn with a uniform distribution.

For all noise levels, least squares estimation provides much more accurate results
than inverse PINNs, while being computationally much more efficient. To put into
perspective, after 7 minutes the inverse PINN reached a relative error of 1.7% with
10% noise, while the Levenberg-Marquardt algorithm finished with a 0.04 % relative
error in under 3 ms.



5 C O N C L U S I O N

The goal of this research is twofold. The first part provides a framework of the work-
ings of a dense neural network by recollecting various literature studies to develop
a theoretical background behind the simplest but complex type of neural network.
We encoded a dense neural network ourselves in Python without machine learning
libraries, and used that code to study the effect of changing its configuration on its
performance. In particular, we have used the solution to the equation of motion of a
damped harmonic oscillator at different points in space and time to predict its time
evolution. Given enough training samples, a dense neural network is excellent in
interpolation, but fails to extrapolate.

In an attempt to develop a model to accurately predict the solution of PDEs over
the whole domain with as little training samples as possible, Raissi et al. [2019]
came up with a Physics-Informed Neural Network (PINN). In the second part, we
used a PINN to solve the same oscillator, the 1D heat equation and the 1-soliton
and 2-soliton solution of the KdV equation. In particular, in our study we differenti-
ated between two types of PINNs, namely the a-PINN and n-PINN, and compared
their performance. Given a set of points on a discretized grid, PINNs use a form
of regularization in the loss function to enforce that the prediction adheres to the
underlying physics from PDEs, though without a guarantee that PINNs converge
to the unique solution. When trained, both PINNs managed to approximate the
solution to the oscillator, heat equation and 1-soliton with great accuracy. After
different configurations, only when the PINNs were prompted with the 2-soliton
solution, there was a large gap visible in their performance. The a-PINN managed
to approximate the 2-soliton solution very well, while the n-PINN only managed
to capture the overall physics behaviour, which showed no sign of improving per-
formance when trying different network settings such as longer training. Another
important difference between the a-PINN and n-PINN was their computation time.
Furthermore, it became evident that PINNs’ convergence to a solution is highly sen-
sitive to the initial and boundary condition provided, provided there are no training
samples to use on the interior. Additionally, PINNs are inaccurate when they are
faced with a highly nonlinear problem such as a train of solitons. For such complex
problems, training samples on the interior are required to come close to a qualita-
tive approximation. All in all, the a-PINN has proven to be more reliable than the
n-PINN and a fruitful tool in solving complex PDEs, with a promising potential
future alternative, but no replacement, of the use of popular numerical methods for
solving PDEs.

As a final note, PINNs were used to solve inverse problems, where the correct
solution was provided and an unknown coefficient in the PDE was approximated.
Even when using heavily noisy data (10%), PINNs were able to accurately predict
the correct coefficient with a relative error of less than 2%. Simultaneously, the
PINN managed to interpolate the solution accurately, showing the great versatility
of combining PINNs with training samples, despite being trained upon noisy data.
However, there is a much better alternative when predicting an unknown coefficient
in PDEs when the analytic solution is known, such as the Levenberg-Marquardt
algorithm, which has shown to be far more computationally efficient than inverse
PINNs.

47
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There are still many important elements that are worth to investigate for further
research. In particular, despite the high complexity of dense networks, it may be
worthwhile to develop a stronger theoretical background as it is common in the
field of machine learning, to select and test models by trial and error. Although
an attempt was made to dissect the mysterious black box, many questions remain
unanswered such as:

• Why is an n-PINN able to effortlessly solve the 1-soliton solution, but fails
to accurately describe the 2-soliton solution, even when both solutions come
from the same PDE?

• Given a PDE with initial and boundary conditions, what requirement must be
fulfilled such that PINNs will guarantee to converge to the unique solution?

• Why are data driven PINNs so succesfull with noisy data?

• Given a predetermined problem, does there exist an underlying criterion
which would prove a particular configuration to be most successful, such
as but not limited to the depth, width, activation function, loss function or
weight initialisation scheme?

• Given a PDE, does there exist an amount and, in particular, a pattern of collo-
cation points which would yield the most optimal results?

• Given a PDE, what is the minimum amount of training samples needed on
either the interior, boundary or on some predetermined initial time, for an
optimal PINN to yield desirable results?

• Does there exist a method to preemptively capture the uncertainty in the pre-
diction, given a certain configuration of a PINN?

Although many questions are left unanswered, PINNs have shown to be a use-
ful tool alongside numerical methods in solving PDEs. Although regular PINNs
are as of now still inferior to numerical methods, which have had decades to de-
velop, multiple extensions are being developed to improve PINNs. Nevertheless,
it is conspicuous how Raissi et al.’s promising work brings a very bright future in
combining machine learning with classical computational physics to come one step
closer to potential breakthroughs in science and technology.
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A A P P E N D I X

a.1 solving kdv equation with a spectral method
Define the Fourier and inverse Fourier transformation as

F(w) =
∫ ∞

−∞
f (t)e−iwtdt

f (t) =
1

2π

∫ ∞

−∞
F(w)eiwtdw.

We can rewrite the KdV Equation 4.8 as

∂u
∂t

+
∂

∂x

(
1
2

u2
)
+ δ2 ∂3u

∂x3 = 0. (A.1)

To apply the spatial Fourier operator Fx(·) to Equation A.1, we use linearity and
the following properties:

Fx

(
∂u
∂t

)
=

∂

∂t
(Fx(u))

and

Fx

(
∂nu
∂xn

)
= (iw)nFx(u),

which can be derived using integration by parts. Applying Fx(·) to Equation A.1
yields

∂

∂t
(Fx(u)) +

1
2

iwFx(u2)− iw3δ2Fx(u) = 0. (A.2)

After multiplying by e−iw3δ2t, we may rewrite Equation A.2 as

∂

∂t

(
Fx(u)e−iw3δ2t

)
= −1

2
iwFx(u2)e−iw3δ2t. (A.3)

After discretizing the problem on a finite grid and using Fast Fourier Transforma-
tion, we can solve Equation A.3 using the fourth-order Runge-Kutta method with
stepsize h = 1e-3.
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