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CHAPTER 1 

GENERAL INTRODUCTION 

For the last 75 years, the screw propeller has been the principal 

propulsion device applied to ships, whether small or large, slow 

or fast. From the beginning of this period, propeller designers 

have been confronted with the phenomenon of cavitation, the 

possible occurrence of which was first discussed by Euler in 1754 

[l-l]* Its discovery was through the effect it had on the 

performance of the propeller; it can cause the rotational 

propeller speed to increase out of all proportion to the applied 

torque. This phenomenon (subsequently termed the "racing" of screw 

propellers) was the subject of some memorable papers by Reynolds 

[1-3,1-4]. Ever since, cavitation on propellers has been the 

subject of study of many research workers. This is nearly always 

performed experimentally in so-called cavitation tunnels after 

the example of Parsons in 1895 [1-2], who first derived in this 

way an acceptable propeller configuration for his experimental 

steam turbine ship "Turbinia" which had to perform at speeds in 

excess of 30 knots. Parsons found that the occurrence of cavitation 

set a limit to the amount of developed thrust per unit blade area 

of the propeller. The first criterion of H i lb per sq. in. for 

this limit was given by Thornycroft and Barnaby [l-s]. Refined 

forms of this criterion such as the much-used Burrill chart [1-6 ] 

and Keller formula [l-7] are still used in propeller design today. 

Whereas use of such a criterion will avoid the extreme case of 

racing of the propeller or thrust breakdown, it has been found 

that more refined criteria are necessary to avoid other 

consequences of the occurrence of cavitation. 

One of these consequences is damage to the propeller in the fo*m 

of erosion and bent trailing edges. Parsons and Cook [1-8] in 

1918 deduced that the observed "pitting" of the blade surfaces 

was not a result of corrosion but a consequence of cavitation. 

A typical example of cavitation erosion is shown in Fig. 1. It 

has since been verified that a large energy is associated with 

cavitation bubble collapse which can lead to damage when occurring 

"Numbers in parentheses refer to the references listed on page 219. 
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FIG.1 EXAMPLES OF CAVITATION EROSION ON A PROPELLER BLADE. 

directly on the blade surface [l-9] . Intense and persistent 

erosion will sooner or later result in loss of material or even 

of the loss, of a complete propeller blade. Van Manen [l-io]showed 

that the associated forces, when locally acting in the 

neighbourhood of the trailing edge, can result in the bending of 

the trailing edge as shown in Fig. 2. 

FIG.2 BENT TRAILING EDGE OF PROPELLER BLADE DUE TO CAVITATION. 
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The trend in most ship designs towards higher ship speeds and 

larger displacements, i.e. towards higher shaft horsepowers, is 

responsible for the recent study of other detrimental effects of 

cavitation. These detrimental effects are the noise emitted by 

a cavitating propeller and the large amplification of 

propeller-excited hull pressure forces due to cavitation. Studies 

of this last mentioned effect have been performed by Van Manen 

[l-ll], Huse [1-12], Van Oossanen and Van der Kooy [l-13] and 

others. Figure 3, taken from Sabathê [1-14], gives an example of 

the variations in self-noise as a function of ship speed due to 

propellers, boundary layer and machinery at the sonar dome of 

a naval vessel. In this figure the relative importance of 

propeller cavitation noise with respect to boundary layer noise, 
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FIG. 4 EXAMPLE OF HULL PRESSURE SIGNAL WITH AND WITHOUT CAVITATION 
ON PROPELLER. 

as represented by the curves, should not be misinterpreted since 

the propeller is situated relatively far away from the sonar 

dome while the boundary layer noise is generated directly in 

the vicinity of the sonar dome. Figure 4, taken from Van Oossanen 

and Van der Kooy [l-13], gives an example of the increase in hull 

pressure forces due to cavitation. 

To avoid detrimental consequences of cavitation it is now, more 

than ever, necessary to study experimentally the behaviour of 

cavitation on propeller models in order to arrive at acceptable 

cavitation performance. A difficulty which occurs in these 

experiments is that in order to obtain an adequate simulation of 

full-scale cavitation behaviour, the wake of the ship in which 
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the propeller operates must be simulated. Furthermore, the tests 

to determine the effect of cavitation on propeller-induced hull 

pressure forces require the inclusion of the ship model in the 

test set-up. This state of affairs has made it desirable to 

design and build new cavitation facilities better suited for these 

tests. For example the Netherlands Ship Model Basin has built a 

large depressurized towing basin in which the air pressure of the 

entire facility can be lowered in accordance with the required 

scaling laws. Other experimental centres have built (or are in 

the process of building) large free-surface or closed water 

tunnels. An account of these developments, and some of the 

motivations for them, has been given by Van Oossanen [l-15]. 

The increasing difficulties in the design of propeller 

configurations now urgently requires a theoretical procedure to 

determine the extent and type of cavitation on propellers. 

Strictly, such a procedure only needs to be qualitatively correct 

so that for a particular case the effect of various parameters 

on the development and formation of cavitation can be assessed, 

leaving only one or two possible configurations for experimental 

verification. Moreover, such a theoretical procedure could 

constitute the starting point for calculations of the effect of 

cavitation on propeller-hull interaction phenomena. It is this 

reasoning which has led to more intensive endeavours to derive 

a suitable calculation method for the determination of the 

cavitation performance of marine propellers. Attempts to 

calculate the pressure distribution on propeller blades with the 

aim of arriving at an assessment of the cavitation properties, 

such as those of Lockwood-Taylor [1-I6], Burrill [1-17], Kafali 

[1-I8] and others, had a number of shortcomings particularly in 

connection with the actual calculation of cavitation from the 

approximate pressure distribution. Cavitation was nearly always 

calculated to occur in that region on the blades where the local 

value of the pressure is less than the value of the vapour pressure. 

The more recent approaches of Johnsson [1-19], Holden [1-20 J and 

Johnsson [l-2l], constitute an improvement in this regard. 

In this thesis, recently obtained results of fundamental cavitation 

studies on standard bodies are employed to overcome some of the 
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obstacles still present in the calculation of inception and extent 

of cavitation. The developed method is practical and straight 

forward, whereby the complete approach is suitable for engineering 

applications on an average-size electronic computer. In addition 

to the performance characteristics and the extent and type of 

cavitation, the effect of cavitation on thrust, torque and 

efficiency is considered. Due considerations are given to the 

effects of viscosity and non-uniform flow. The capabilities of 

the method are demonstrated by comparing theoretical and 

experimental results. 
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CHAPTER 2 

CALCULATION OF RADIAL AND CHORDWISE LOADING 

DISTRIBUTIONS ON PROPELLER BLADES IN NON-UNIFORM FLOW 

2.1. Preliminary Considerations 

From recent fundamental cavitation studies by Bailey [2-1 ] and 

Arakeri [2-2] it has become clear that cavitation inception can 

be calculated from specific characteristics of the boundary layer. 

It has also become clear that the change in the performance of 

lifting surfaces due to cavitation can be calculated from the 

associated change in the pressure distribution. This has been 

demonstrated by Van Oossanen [2-3]. To deal with both of these 

aspects, knowledge of the velocity or pressure distribution over 

the non-cavitating body is required. 

In the case of a screw propeller this means that use must be made 

of vortex theory in order to determine the relation between the 

distribution of load or lift on the blade and the associated 

induced velocities, the so-called downwash. The nature of the 

present problem of the broad-bladed marine propeller operating in 

the wake of a ship is such that unsteady lifting surface theory 

is called for. Yet, in its present stage of development, unsteady 

lifting surface theory is unsuitable for this purpose. To arrive 

at numerical solutions it is necessary to linearize the lifting 

surface equation. Reliable results are hereby only obtained for 

the lightly loaded propeller for which the shape of the free 

helical vortex sheets are assumed to be dependent on the undisturbed 

inflow velocities only. This can be seen from Fig. 5, taken from 

Kuiper [2-4], in which a comparison is made between experiments 

and lifting surface theory for the thrust and torque of a propeller 

of the Wageningen B-series. Most propellers operate at higher 

loadings, however, for which case the influence of the induced 

velocities on the pitch of the shed vortex sheets must be included. 

This is necessary because the directions of a free vortex line or 

sheet, when not acted on by forces, must assume the direction of 

the resultant flow at (or just behind) the bound vortices. To 

overcome this shortcoming of linearization, some lifting surface 

procedures for the steady case incorporate a lifting line model 
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of the moderately loaded propeller whereby the correct pitch of 

the free vortex sheets can be calculated. This was performed by 

Morgan, Silovic and Denny [2-5], among others. 

06 
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FIG. 5. COMPARISON BETWEEN EXPERIMENTS AND UNSTEADY LIFTING SURFACE 
THEORY FOR THE MEAN THRUST AND TORQUE OF B3-50 PROPLLER 
(P/D.1.0) 

In addition, present unsteady lifting surface theories do not 

include finite thickness effects of the blades whereby the 

required unsteady pressure distribution on both the back and 

the face of the blades can be determined. The numerical methods 

developed at the Stevens Institute of Technology, primarily by 

Tsakonas [2-6, 2-7, 2-8] and at the Netherlands Ship Model Basin 

by Verbrugh [2-9], Kuiper [2-10] and Van Gent [2-ll], both being 

representative of the most advanced numerical procedures 

available, at this time only incorporate blade camber. The 

amplitude and phase of the pressure difference between face and 

back of the blades is hereby attained, which is infinite at the 

leading edge. Finally, the requirement of a long central processor 

time on all but the largest electronic computers, is a further 

disadvantage of unsteady lifting surface theory. 



- 17 -

Besides steady and unsteady lifting surface theory, another 

three-dimensional theory is available in the form of a modified 

Hess and Smith approach [2-12 ]. In a private communication, 

Dr. Hess has pointed out that the available program in its present 

form could be used to calculate the desired flow by inputting all 

blades and their wakes. He argues, however, that this would be 

very time-consuming or inaccurate or both, and that a better 

approach consists in using the fact that in uniform flow (or in 

a quasi-steady approach for non-uniform flow) all the blades 

have the same flow fields, the rotational symmetry of which 

enables use of the symmetry planes of the present theory. The 

effects of symmetrically placed elements are then added to produce 

a combined matrix of influence coefficients whose order equals 

the number of surface elements on a single blade. The only 

difference from the available program is then that symmetrically 

placed elements are obtained by rotation instead of by reflection 

in a plane. Input of only one blade is then required together with 

its wake. It must be added, however, that the requirement of very 

large electronic computers to obtain numerical solutions is again 

a drawback. 

Finally, the three-dimensional theory devised by Hoiby [2-13] and 

used by Holden [2-14 ] and Johnsson and S?(ntvedt [2-15], based on 

earlier work by Küchemann and Weber for swept wings [2-16, 2-17], 

is not refined enough to give more accurate results than a 

corrected two-dimensional method. This is a consequence of the 

fact that the assumptions made regarding the distribution of 

spanwise and chordwise loading, approximately valid for swept wings, 

can lead to errors when applied to propeller blades. 

In a recent study by Johnsson [2-18], it is demonstrated that 

proper use of an adequate lifting line theory, applied in the 

quasi-steady sense, can give reliable results for the calculation 

of the thrust and torque variations experienced by a propeller in 

a wake for not too high values of the blade area ratio. Such 

comparisons have also been performed by Tsakonas and Jacobs [2-19] , 

Vedeler [2-20] and very recently by Tanibayashi [2-2l] with the 

same result. In most of these cases the used lifting line theory 

is rather crude and not refined enough to take into account some 
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important effects associated with the circumferential variations 

in the flow into the propeller. One of these is the effect of the 

varying incidence of the undisturbed flow along the blade section, 

which effectively changes the blade section camber, as discussed 

by Kruppa [2-22] and Johnson et al [2-23]. The validity of 

quasi-steady lifting line theory at high blade area ratios for 

calculating the variations in thrust and torque is considerably 

improved when this phenomenon is taken into account. These facts, 

together with the knowledge that lifting line procedures are 

extremely versatile, particularly in conjunction with the desire 

to incorporate viscous effects and the effects of changes in 

blade section geometry, point to the acceptability of using 

quasi-steady lifting line theory for the calculation of the 

circulation distribution along the lifting line and the angle of 

attack of the resultant inflow at various angular blade positions. 

The most rigorous and complete lifting line procedure for the 

moderately loaded propeller, is the induction factor method 

developed by Lerbs [2-24]. In its standard form it is adequate 

to deal with a radially varying wake and a non-optimum radial 

distribution of the load. For the application of this method in 

an inverse sense (i.e. to determine induced velocities and 

circulation distribution when the propeller geometry is given) 

in a circumferentially varying wake, a number of modifications must 

be considered. These are presented in the next section. 

The lack of a fast and practical procedure for the calculation 

of the three-dimensional pressure distribution on propeller blades 

necessitates the use of a two-dimensional approach. This can only 

lead to satisfactory results when the blade section geometry is 

effectively distorted and an effective angle of attack is used 

such that when the pressure difference between back and face 

of the blade section is integrated over the chord, the three-

dimensional value of the lift is obtained. The distortion of 

blade section geometry may in principle only consist of a decrease 

of camber to compensate for the effect of the curvature of the 

induced velocity along the chord and for the decrease in angle 

of zero lift. This approach is discussed in section 3 of this 

chapter. 
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2.2 Calculation of Radial Load Distribution 

2.2.1 Effect of Free Vortices 

In lifting line theory of the screw propeller, the blades are 

presented by vortex lines. The circulation r of these vortex or 

lifting lines are considered to vary with the radial coordinate r. 

This variation in r prescribes that a free vortex line is shed 

from the lifting line between the radial stations r and (r+dr), 

the circulation of which, by Stokes' theorem, is dr/dr. The 

direction of this free vortex line coincides with the direction 

of the resultant fluid motion behind the lifting line. The 

assembly of free vortex lines forms a vortex sheet with a general 

helical surface behind each propeller blade. 

The induced velocities caused by this system of trailing vortices 

must be combined with the undisturbed incoming flow to give the 

direction of the flow at the lifting line. A change in this flow 

direction modifies the lift or circulation of the lifting line 

leading to a change in the strength of the free vortex lines. This 

will in turn again influence the direction of the incoming flow. 

This inter-relationship between induced velocities and strength 

of bound and free vortices makes it necessary in propeller theory 

to introduce approximations. When the propeller is lightly loaded 

the influence of the induced velocities of the free vortex sheets 

on the incoming flow is neglected. In moderately loaded propeller 

theory this cannot be done and another simplification regarding 

the shape of the free vortex sheets or the induced velocities 

is necessary. Betz [2-25] found that when the circulation along 

the lifting line is such that the kinetic energy within the 

slipstream is a minimum, the free vortex sheets form true helical 

sheets with a constant pitch angle. He also found that in this 

case the resultant of the induced velocities at the propeller 

is normal to the direction of the vortex sheets. All so-called 

optimum theories for the moderately loaded propeller in uniform 

flow such as those of Goldstein [2-26], Lock [2-27], Kramer [2-28] 

and others, use these results for the form of the free-vortex 

sheets and the resultant direction of the induced velocities. 
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In the development of the induction factor method, Lerbs [2-24] 

only assumes that the free vortex sheets are made up of cylindrical 

vortex lines, each of constant pitch angle, thereby allowing for 

a radially varying non-uniform flow and a non-optimum circulation 

distribution. This method calculates the axial and tangential 

induced velocities independently and includes the effect of the 

propeller hub. The lifting lines are considered to be straight, i.e. 

with no skew or rake. For the calculation of the induced velocities, 

Lerbs uses the concept of the induction factor as introduced by 

Kawada [2-29, 2-3o]. The induction factor I represents the ratio 

of the velocity at a point r of the lifting line due to the helical 

vortex dr at r and a straight line vortex dr at r parallel to 
0 ^ 0 ^ 

the axis. The velocity induced by the straight line vortex is: 

dU = -r-^ 7- (2-1) 
s 4Ti(r-ru) 

where dU is perpendicular to the plane through the free vortex 

line and the point r on the lifting line. The velocity induced 

by the free helical vortex is then: 

- - dr dr„ 
dU = I 3 -r-, r . (2-2) 

dr„ 4ir r-r 
0 0 

and the velocity induced by all helical vortices is: 

R 
r _ dr dr„ 

U = / I :; -jr—, T (2-3) 

J dr„ 4TT(r-rJ 

in which r, = radius of propeller hub, 

R = radius of propeller, 

U = induced velocity at r by all helical vortices, 

and Ï = induction factor. 

On resolving the inflow and induced velocities into axial and 

tangential components as shown in Fig. 6, and on introducing the 

non-dimensional value of the radius x = r/R and the non-dimensional 

value of the circulation G = r/irDV̂ ,̂ where V equals the average 
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FIG. 6. SCHEME OF VELOCITIES AND FORCES ON PROPELLER BLADE SECTION. 

value of the axial inflow velocity over the propeller disc and 

D the propeller diameter, the velocity induced by all the free 

helical vortices at x is then given by the equations: 

dG dx 

A dx„ x-x„ 
0 0 

(2-4) 

and ^ = 's 
dG 

T dJT 

dx. 
(2-5) 

in which U A' U = axial and tangential induced velocity at x, 

I-, I- = axial and tangential induction factor at x, 

and dG 
dx 

dimensionless circulation of the free 

helical vortex at x„. 
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The induction factors I and I are dependent on x/x^, on the 

pitch angle 8_ of the free helical vortex line at x and on the 
I 0 

number of (symmetrically spaced) propeller blades Z. Wrench [2-3l] 

has derived formulas for these induction factors. The complete 

set of expressions is as follows: 

I, = (x/x -DTT— ' -TT A ' ' 0 (tanS, 

I„ = (1-x /x) z(l+A 
T 0 

> for x/x > 1 

I^ = cosSj 

I^ = sinBj 
S for x=x 

I, = (1-x/xJ 1^ A 0 (tan 
^ (1+B*) 

for x/x <1 

I = (x /x-1) ZB^ 
1 0 

in which A = f — r ~ -^TTT; g.ln —=-

[u-l 24Z ^ u-lj 

, „* , r u , 1 , 1 ' 
and B = f -y + 7̂X5- g.ln T| L1-u 24Z ^ 1-u 

-h -h 
where f = sin 6.|-.p 

M2-6) 

sin 6, 2 + 
tan^e, 

+ (3p-5).p 

u = exp ^'l"[<p^-^)'iïk-^^"'•^/^]"p^-II^ 

and p = 1+ 
(x/x„)' 

tan^B, 

Application of this theory in the inverse sense, i.e. to determine 

the induced velocities .and distribution of circulation along the 

lifting line when the geometric particulars of the propeller and 

the velocity field in which the propeller works are known, has 
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been attempted a number of times up to now. In each case it was 

reported that the developed method was "unstable" or that the 

iteration procedure did not converge. In this regard the attempts 

of Johnsson [2-32] and Hoiby [2-33] may be mentioned. The method 

developed here works very satisfactorily and the results, as 

demonstrated in chapter 5, are accurate. To apply this theory 

in the quasi-steady sense in a radially and circumferentially-

varying propeller inflow, it is necessary to define the angular 

blade position of the lifting line 6, as shown in Fig. 7 as an 

extra variable. The average inflow velocity V. then becomes a 

function of 6, and U., U„, G and B-^ become functions of x and 6. 

The induction factors I. and I„ are, strictly considered, also 

functions of 6 since the Wrench relations (equations 2-6) assume 

that the Z free-vortex sheets have the same radial distribution 

in the pitch angle B-,.. The consequence of neglecting this 

dependency on 6 in using these relations when the lifting line 

is positioned in a local region of low intake velocity, for 

example, is that the calculated values for the induced velocities 

would be too high, whereby the resulting value for the blade 

loading becomes too low. This is a result of the fact that in 

this case it is implicitly assumed that the other (Z-1) blades 

experience the same low intake velocities. The omission of the 

dependency of the induction factors on the angular position of 

the lifting line in a circumferentially varying velocity field 

is, however, inherent in the quasi-steady approach. Only an 

unsteady approach to the problem of the calculation of the 

induction factors can account for the effect of a variation in 

the pitch angle of the free vortex sheets with 6. 

The inaccuracy made in assuming that the pitch angle of the Z free 

helical vortex lines at x is equal to the B^-value at the lifting 

line being considered, is small. This is a consequence of the fact 

that in this way an allowance is made for the lift deficiency due 

to the circumferential variation in the inflow velocity, particu­

larly at higher values of the reduced frequency, which can only 

be calculated by unsteady theory or by incorporating a correction 

factor such as developed by Sears [2-34]. The reduced frequency 

is defined as k = uc/2V, where u equals the effective angular 
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velocity experienced by the propeller blade section, c the chord 

length and V the inflow velocity. The fact that when both effects 

are of equal magnitude, their combined effect on the circulation 

of the lifting line will be zero, is important to note. 

For the numerical solution of equations 2-4 and 2-5 in the inverse 

application, it should be observed that at a radial station x, 

in addition to the induced velocities U. and U_, the circulation 

G and the pitch angle By on which the induction factors are 

dependent, are unknown. For the solution of this problem the 

following iteration procedure must be used. 

The value of the angular position 6 of the propeller blade (as 

defined by its generator line) at which the calculations are 

to be performed, the geometry of the propeller, and the velocity 

field in which the propeller operates are assumed to be known. 

The lifting line is defined to pass through the quarter-chord 

positions of the blade sections as shown in Fig. 7. At the radial 

stations given by x = 0.2+O.lj where j = 0,1,2 3, the 

average value of the advance angle B(x,9), based on the average 

DIRECTION 
OF ROTATION 
AND POSITIVE y^ \R 
DIRECTION OF TANGENTIAL 
VELOCITY COMPONENT 
(VIEWED FROM DOWNSTREAM)' 

I-CONTOUR OF PROPELLER BLADE 

GENERATOR LINE 

LIFTING LINE THROUGH 
QUARTER-CHORD POINTS 
OF BLADE SECTIONS 

FIG. 7. SCHEME OF NOTATION OF USED POLAR COORDINATE SYSTEM 
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components of the velocity field between the leading and trailing 

edge and the rotational propeller speed, is determined. The 

variation of the advance angle over the chord is accounted for 

as described in section 3 of this chapter. This angle is 

calculated by means of the relation: 

i(x,e) = arctan 
VJx,( 

xirnD-V (x,e) 
(2-7) 

In addition, the average (effective) advance velocity along the 

lifting line can be determined by: 

V^(6) = 2 / xV^(x,e)dx (2-8) 

In equations 2-7 and 2-8, 

V (x,6),V (x,e) = average axial and tangential components 

of velocity field between the leading 

and trailing edge of the blade section 

at (x,9), 

n = number of propeller revolutions per second, 

and D = propeller diameter. 

A first value for the hydrodynamic pitch angle 6_(x,9) can then 

be determined by means of an emperical relation given by S^ntvedt 

[2-35], viz: 

Bj(x,9)=Y„ x,9)- Y„(x,e)-B(x,9) . 0.135+ 
0.053 
1.093-x (2-9) 

From Fig 8, i t i s seen t h a t : 

Yj(x,6)=arctan 
[P(x)] 
[XTTD J + Y N T < ' ' ' - ' ' O ( ^ ' 6 ) (2-10) 

in which P(x) = pitch of propeller blade section, 

angle, in radians, between chord 

blade section and pitch line at x, 

Y„_(x) = angle, in radians, between chord line of 
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and a (x,9) = three-dimensional angle of zero-lift in 
0 

radians in real flow relative to chord line 

of blade section. 

For the sake of calculating a first value of the pitch angle 

Bj(x,e) by means of equation 2-9, the two-dimensional value of 

the angle of zero-lift of the blade section can be used. The 

calculation of this two-dimensional angle of zero-lift, a (x,6), 
0 

is discussed in chapter 3. Alternative use can be made of an 

empirical relation given by Burrill [2-36], in lieu of equation 

2-9, viz: 

6j(x,9)=Y„(x,9)-[Y„(x,9)-B;,(x,9)].(0.52-0.2x) (2-11) 

With this first value for Q , providing a first value for the 

induction factors I and I , the circulation distribution G(x,9) 
A 1 

and the induced velocities U (x,9) and U_(x,9) are found by 
introducing, after Lerbs [2-24], the variables 4 and (t> for x 

"• -• 0 

and X such t h a t (t>=0 f o r x=x, and <ti=TT for x = l , a s f o l l o w s : 
0 h 

x=^(l+Xj^)-Ml-Xj^)cos4 

and X =^ (1+x, )-^(1-x, )cos(t> o n n o 

(2-12) 

Then the circulation G(x,9) can be expanded in a Fourier series 

such that G(x ,9)=0 and G(l,9)=0, viz: 

G((j>,9)=y G (e)sin(m4i) (2-13) 

m=l 

and also the induction factors can be expanded in an even Fourier 

series according to: 

I, (<(>.*„)= y I ((ti)cos(n<() ) 
A 0 ^_ n Ü 

n=0 

and Î (<t>,')>(,)=̂  I^(()))cos(n* J 

n-0 

(2-14) 
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A T 
The Fourier coefficients I ((t») and I (é) are assumed to be equal n n 

to zero for ni9 since 9 radial stations are considered. The 

values of these 9 coefficients are obtained by inverting the matrix 

formed by the coefficients in the resulting 9 linear equations. 

On substituting equation 2-13 in equations 2-4 and 2-5, it follows 

that: 

IT 

Û ((|i,9) 

\«e) i-x^ „=i 

1 f I {((> A^) cos (.m<i> ) 
> mG (9) / -^ d(J) 
^— m cos* -cosd 

u^(*,e) 

V^(9) 1-x. 

1 ^ / Im (*/*.) COS (mij)) 
— 2_mGje) I -^ d*, 
h m=l cos* -cosd 

^ (2-15) 

The integrals in these expressions can be simplified as follows; 

A rî (<j),<))o)cos(m<j) J 
putting h ((ti)= / d(t>, 

cosii -cosd 

IT 

/ !„(*/<!) J cos (m(ti) 
and h ($)= / — — d* 

m / i i 0 

> (2-16) 

and substituting expressions 2-14, we obtain: 

, J, [ r cos(m+n)()>o / cos (m-n) <|), 
h ^(*)=>,^ i ; ( * ) / — - d * o W — ; ; 

_- y cos())|,-cos(t) / cos()) -cos<l 

and hj||((t))='5 Y. ^n'*' 

n=0 

cos (m+n)<)) 

cos* -cosd 
-d*„ + 

"cos (m-n) (|) 

costp -cosd 

•d()) 

d*, 

> (2-17) 

The integrals form so-called Glauert integrals. With the known 

principal value of these integrals, equations 2-17 can be written 

as: 



- 28 -

m oo 

ĥ ((())= .^ sin(m())) V" I (cj)) cos (n((i)+cos (miJ)) ^ I (((>) sin (mtji) 

n=0 n=m+l 

and h*"̂  ((*)=- " 
m ^ sind 

3in(m())) Y^ I (()))cos(n(())+cos(m<))) ^ I ((f) sin (me))) 

n=0 n=m+l 
(2-18) 

For if>=Q and IJ)=ÏÏ these functions become indefinite and must be 

determined by means of 1'Hospital's rule, viz: 

(1)=0 
ĥ ((i)) =nmy I^{^) + y niNc 

n=0 *=° n=m+l 

and 

h (<t>) = - T T c o s (irm) 
m . 

<|)=1T 

—̂ A —̂ A 
m ) I (({i) . cos(iTn)+ > nl ( i— n . i— n 

i})) • cos(Trn) 

n=0 n=m+l 
(2-19) 

T T 
and likewise for h (<})) and h (4) 

()) = 0 <1)=TI 

Substitution of equations 2-18 in the expressions for the induced 

velocities gives: 

" A ' * ' ^ > 1 ^ A 

1-x, ^— m m 
^ m=l 

V^(9) 

0^(4),9) 

""'̂  ^ r m - = T ^ ^ '"̂ m(ö)̂ m(*) 
m=l 

(2-20) 

In these equations, the values for U (<(),9), U ((t>,9) and G ((f) are 
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unknown so that it is necessary to have one more equation in 

these unknowns. Such a relation can be directly obtained from 

Fig. 6, viz: 

V^(9)+U,(X,9) 

tang,(X,9) = ^ ^ (2-21) 
XTrnD-V^(x,9)-U^(x,9) 

which can be written as: 

V^(9) U^(x,9) V^(9) U^(x,6) tan6j(x,e) 

tanBT(x,9)= 1 
9) 

(2-22) 

V^(x,9) V^(9) V^(x,9) V^(9) -̂  tanB(x,9) 

Substitutions of equations 2-20 gives; 

r ^ Z ">«m<S) k(*)^tanB,(*,e)h^(*)]^ 
V^(9) tanB3.(<t),9) 

9) tanB(it),6) 

(2-23) 

from which the values of G (9) at the 9 radial stations can be 
m 

directly determined, after which, by equations 2-20 the values of 
U (<J>,9) and U (((1,9) at the 9 values for <t> are determined. Here 

it is assumed that G (9)=0 for m=l and m>9. 
m 

The second value for 6.,(x,9) is obtained by means of an equation 

which incorporates the effects of blade section geometry. With 

the definition of the dimensionless circulation G(x,8) as: 

G(x,9) = ^'^'^^ ; (2-24) 
TTDV (9) 

in which r(x,9) = - ^ ^ (2-25) 

where r(x,9) = non-dimensional circulation, 

L(x,9) = lift force of blade section, 

V(x,9) = resultant velocity at blade 

section, 

and p = density of water; 
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and with L(x,9) = C^(x,9)^.pV (x,9)c(x), (2-26) 

in which c(x) = chord length of blade section, 

the relation for G(x,9) becomes: 

G(x,9) = 
C^(x,9)c(x)V(x,9) 

27rDV^(e) 
(2-27) 

From Fig. 6 it follows that the resultant velocity V(x,9) can be 

expressed in its components by means of; 

V(x,9) 
Vg(x,e)+U^(x,9) 

sinBj(x,e) 
(2-28) 

On substituting equation 2-28 in 2-27, the non-dimensional 

circulation can be written as: 

C, (x,9)c(x)[v^(x,9)/V. (9)+U-(x,9)/V. (9)] 
G(x,9) = — L-5̂  J (2-29) 

2TiDsin6j(x,9) 

DIRECTION OF RESULTANT_ 
INFLOW VELOCITY 

NEGATIVE INCIDENCE 
ANGLES 

POSITIVE INCIDENCE 
ANGLES 

DIRECTION OF TANGENTIAL 
INFLOW COMPONENT 

ZERO-LIFT ORIENTATION OF 
"BLADE SECTION 

LINE THROUGH CHORD OF 
BLADE SECTION 

FIG. 8 . DEFINITION OF ANGLES USED TO DERIVE THE RELATION BETWEEN 
GEOMETRIC ENTITIES. 

\ 
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The lift coefficient C (x,9) of the blade section is a function 
J-j 

of the hydrodynamic pitch angle 6 (x,9) since the angle of attack 

of the incoming flow relative to the chord line of the blade 

section can be written as (see Fig 8): 

oi(̂ (̂x,9) = Y„ (x,9 )+a||(x, 9)-Bj.(x,9) (2-30) 

where a (x,9) = angle of attack of flow relative to chord 

line of blade section, 

Y (x,9) = effective pitch of blade section as defined 

by equation 2-10, 

and a (x,9) = three-dimensional value of zero-lift angle 

in radians in real flow relative to chord 

line of blade section. 

With equation 2-30 an expression for the lift coefficient C.r(x,9) 

can be derived in which the dependence on B_(x,9) is explicitly 

given. This is necessary since equation 2-29 is to be used to 

determine a new value for 6_(x,9) with which the iteration 

process can be continued. The required expression for the lift 

coefficient can be obtained from the ratio of the two-dimensional 

lift-curve slope to the three-dimensional lift curve slope. A 

well-accepted value of this ratio is (dC /da )/K where dC./da 
L ^ C L ^ 

is the two-dimensional lift curve-slope of the blade section in 

real flow and K represents the appropriate value of the lifting 

surface correction factor for camber. 

It will be recalled that use of correction factors derived from 

lifting surface theory is necessary to account for finite blade 

width effects since in lifting line theory only three-dimensional 

spanwise effects are accounted for. The camber correction factor 

K accounts for the loss in lift due to the curvature of the 
c 

distribution of the induced velocity along the chord. In the same 

way the ideal angle-of-attack correction factor K accounts for 

the change in ideal angle-of-incidence from the two-dimensional 

value. The angle of attack correction factor for thickness K 

accounts for the main effect of blade thickness. Recently Morgan 

et al [2-5], Minsaas and Slattelid [2-37] and Gumming et al [2-38] 
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published accurate values for these correction factors in 

tabulated form as a function of the number of propeller blades Z, 

the expanded blade area ratio A„/A^, the induced advance coeffi-

cient X •|-=xtan6 J, the radial coordinate x and the skew angle 9 . 

To facilitate their frequent application in numerical procedures, 

polynomials have been developed based on these tabulated values 

with which, for a specific combination of the independent variables, 

the required value of the 3 lifting surface correction factors 

can be obtained. These are presented and discussed in the appendix. 

The three-dimensional lift curve coefficient of the blade section 

at (x,8) can therefore be written as: 

CL^'^'Ö) = ^ / ^ (2-31) L'"'"' da 

ej.{x,e) . , 

in which K is a function of the geometry of the propeller and 

6.,, and the two-dimensional lift-curve slope dĈ /̂dâ  is considered 

constant for a given blade section geometry and Reynolds number 

as is shown in chapter 3. 

In equation 2-31 the value of the three-dimensional zero-lift 

angle a (x,9) is needed to find the value of the integrand Y„(X,9) 

as defined in equation 2-10. This can be performed by means of 

the relation: 

a {x,9) = a^ (x,9)+a.(x,9)-a. (x,9) (2-32) 

in which a (x,9) = two-dimensional value of zero-lift angle, 
2 

a.(x,9) = three-dimensional value of ideal angle 

of incidence, 

and a. (x,9) = two-dimensional ideal angle of incidence, 
2 

The three-dimensional value of the ideal angle of incidence can 

be derived from the respective two-dimensional angle by means of: 

a^(x,9) = K^.a^ (x,9)+K^.BTF^ (2-33) 
2 
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in which K = lifting surface correction factor for ideal 
a 

angle of attack. 

K = angle of attack lifting surface correction 

factor for thickness, 

and BTF = blade thickness fraction based on maximiim 
X 

thickness of blade section at x. 

Polynomials for K and K are given in the appendix. The values 

for K on which the K -polynomials are based were obtained for 

a standard blade thickness fraction, based on a standard radial 

distribution of maximum thickness [2-5, 2-28]. To obtain the 

applicable angle of attack correction for thickness for other 

radial distributions of maximum thickness, it is necessary to 

substitute the thickness values of the actual propeller, viz: 

ft ] / D - 0 . 0 0 3 
BTF = UQaiiii^ +0 .003 (2-34) 

X 1-x 

in which ft 1 = maximum thickness of blade section at x. 
L maxj X 

With equations 2-31 to 2-34 it is possible to determine an average 

value of the lift-curve slope according to: 

dC C (x,9) 

d^'-'^' = Y (x,9)-B.(x,9) ' ' - ' ' ' 

Using this equation, equation 2-29 can now be written as: 

d C ^ / d a ( x , 9 ) [ Y ^ ( x , 9 ) - B j ( x , 9 ) ] . c (x) [v^ (x , 9 ) /V^(9 )+U^(x, 8 ) /V^(9 )] 

^ '^ '^*" ' 27DÏïïïiru7êr) 

^ (2-36) 

o r B j ( x , 8 ) = A - B s i n B j ( x , 9 ) (2-37) 

where A = Y ( X , 9 ) 
0 

and B 27rDG(x,9) d C ^ / d a ( x , 9 ) . c ( x ) [ v ^ ( x , 9 ) / V ^ ( 9 ) + U ^ ( x , 9 ) / V ^ ( x , 9 ) ] 
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Based on the first value of Bj according to equation 2-9 or 2-11, 

the value of the right-hand side of equation 2-37 can be determined 

and thereby a new value for B,. With this new value for 6, the 

complete procedure described by equations 2-12 to 2-37 can be 

repeated whereby a third value for B results. This is continued 

until the difference between successive values is less than, say, 

0.001 radians. This iteration procedure converges far more rapidly, 

however, if equation 2-37 is used as a reduction formula for the 

new By-value by repeatedly substituting the new By-value in the 

right-hand side of the equation until successive values differ 

by less than 0.001 radians, according to: 

Bj (x,8) = A-BsinBj (2-38) 
n n-1 

In which A and B are considered constant. 

The described iteration process is to be performed for the 9 

radial stations x=0.2(0.1)1.0 and for all angular positions of 

the lifting line. With the thus obtained final values for 

U,(x,9),U_(x,9),G(x,8),a (x,9),C_(x,9) andBT(x,8) the resultant 
A 1 Q LI 1 

velocity at (x,8) can be found from: 

V(x,8) =\/[v^(x,8)+U^'x,9)j +rxTrnD-V^(x,9)-U^(x,8)l (2-39) 

and the cavitation number a(x,9) from: 

P +xRgcose -P., 
a(x,9) = -2 — - (2-40) 

lipV^(x,9) 

in which P = effective atmospheric pressure, 
0 

P = vapour pressure at prevailing temperature, 

acceleration due to gravity, 

anguli 

line. 

and 9 = angular coordinate of radial stations on lifting 

Also the radial distribution of thrust and torque can be determined 

by means of: 
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dr 
dx 

and 

dQ 

(x,9)=^pc(x)V^(x,8) rc^(x,9)cosBj.(x,9)-Cp(x,8)sinBj.(x,e)1 

g(x,8)=J5PxRc(x )V (x,e) [Cj^(x,6)sinBj(x,9)+Cjj(x,9)cos6j(x,9)l 

(2-41)' 

It follows that the thrust and torque per blade as a function 

of angular blade position are: 

1 

T(9) =/ ^pc(x)V (x,9) rc^(x,9)cos6j.(x,9)-Cjj(x,9)sinBj(x,9)ldx 

1 

Q(9) = / ^pxRc(x)V^(x,e) rCj^(x,8)sinBj(x,e)+Cp(x,8)cosBj.(x,e)ldx 

Ŝl (2-42) 

The thrust eccentricity per blade is defined as: 
1 

(2-43) 

In equations 2-41 and 2-42, C (x,9) is the three-dimensional drag 

coefficient of the blade section, the determination of which is 

discussed in chapter 3. The total thrust and torque of the 

propeller is: 
2TT 

"^ = YH /T(e)d9 

0 

2Tr 

and Q = -j:;;- ƒ Q(8)d6 

(2-44) 

If in addition the average value of the undisturbed axial inflow 

velocity is determined by: 
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v^(9)de (2-45) 

then the thrust and torque coefficients, the advance ratio and the 

open-water efficiency can be determined by: 

K„ = T pn^D^ 

2rv5 

pn D 

nD 

and n 
2TTK„ 

(2-46) 

where K„ thrust coefficient, 

K = torque coefficient, 

J = advance ratio, 

and n = open-water efficiency. 

2.2.2 Effect of Bound Vortices 

When the lifting lines are symmetrically arranged and have the 

same radial circulation distribution, it can be shown that the 

vector sum of the induced velocities due to the vorticity of the 

bound vortex lines is zero. Irrespective of whether the lifting 

lines have skew and rake or not. When the bound vortex lines 

representing the blades of the propeller have different circulation 

distributions as in the case of a circumferential varying propeller 

inflow, this is no longer true. In this case a net velocity is 

induced at a point P on one of the lifting lines due to the 

vorticity of the other lifting lines. These induced velocities car 

be determined by directly applying the Biot-Savart law as follows. 
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FIG. 9. THE SCHEME OF NOTATION FOR DETERMINING THE INDUCED VELOCITY AT 
P DUE TO LIFTING LINE ELEMENT dl . 

Using the cartesian coordinate system (u,v,w) and the cylindrical 

coordinate system (u,r,9) as shown in Fig.9, the Biot-Savart law 

in vector notation for the induced velocity at a point P(u,v,w) is: 

dv = -^ 
4TT 

dl X s 
(2-47) 

in which the velocity vector dv is induced by a vortex element of 

strength r and of length dl of the lifting line at (u ,v ,w ) as 
0 0 0 

shown in Fig.9. The vector distance between the vortex element and 
- > • - > • - ) • - » • 

the point P is s. With the unit vectors i, j and k in the direction 

of the u, V and w axes, the unit vector tangential to the lifting 

line at the vortex element, on disregarding rake, becomes: 

dl 
-TT = o. i+cos(|). j+sin(i) .k (2-48) 

The vector s is given by s = (0,v-v ,w-w ) 

i.e.s. (0,rcos9-r cos9 ,rsin9-r sin9 ) 
0 0 0 0 

(2-49) 
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the length of s is: 

\t\ =\/(rcose-r cos8J + (rsin9-r„sin9 ) 
' ' V 0 0 0 0 

(2-50) 

the c ross -product of d l / d l and s i s given by: 

dt 
d l 

Xt 
r 
0 

0 

D 

COS(|) 

rcos8-

r cos9„ 
0 0 

k 

sin(j) 

rsin9-

r sin9 
0 0 

or d l 
d l •X̂  = rrsin(e-((i)+r^sin(<()-9 j ] 1 (2-51) 

which is perpendicular to the plane through dï and s, in the 

direction of advance of the propeller. 

The total velocity induced by the lifting line at P is obtained 

by integration along the lifting line according to: 

• tip 

AU^(r,9)=- ^ 

hub 

r(r^,9 J [rsin(9-(t))+r|jSin((()-9^)] dl 

[(rcosS-r cos9 ) +(rsin9-r sin8u) 1 2-1 3/2 
(2-52) 

and the total induced velocity at P(r,9) due to all the lifting 

lines becomes: 

1^. 

AU. 
1 2-1 rtip r(r^,ej[rsin(9-<t,)+r^sin(<t.-9j]dl 

(r,8)=- -J— 2_ / ~Z 2 2T3/2 
^r-l J [(rcos9-r cos9u) +(rsin9-r sin9||) 1 

hub (2-53) 

The consideration of skew or of a curved lifting line in these 

equations is inconsistent with the theory of the previous section, 

since the free helical vortex sheets were considered to be shed 

from straight radial lifting lines. For a straight lifting line 

it follows from Fig.9 that $=9 , and that dl becomes dr , by 
0 0 •' 

which equation 2-53 simplifies to: 
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, ^Z} r r(r .9 Jrsin(9-9 )dr 
AÖA(r,e)=-|^ Z / r 2 ' ^ 1 3 / 2 ' 2 - 5 4 ) 

u 1 V (rcose-r COS9 ) +(rsine-r sin8 ) \ ' 
k=l "L L 0 0 o o J 

h 
On using relation 2-24 and on introducing the variable x=r/R and 
X =r /R, equation 2-54 can be written as: 

0 0 

Z-1 ^ 
AU (x,e) , ^ r G(x ,8 )sin(9-e ) xdx 

" -\T T. ^ ° .°2 . . ° ° .213/2'^-^^) 2 i— T 2 21 
V.„ (9) , , / (xcose-x COS9J +(xsine-x sin9 ) A k=l -̂  L 0 0 u 0 J 

h 

in which, for any one blade position 9 and radial station x, at 

which the induced velocity is to be calculated, 9 is constant. 

The order of magnitude of this induced velocity is dependent on 

the order of magnitude of the variations in the value of the 

bound circulation G(x ,9 ) at the various angular blade positions. 

The induced velocities caused by the free vortex sheets are 

generally considerably larger, however. 

Proper consideration of the effect of these induced velocities 

on the pitch angle By can only be obtained when equation 2-55 is 

introduced into the iteration procedure described in the previous 

section. After the first step, a first value of the strength of 

the bound vortices is obtained with which the value of AU (x,9)/ 

V (9) can be determined, which value must then be added to the 

value of U (x,8)/V (9) in the respective equations (equations 

2-22, 2-36 and 2-39). 

2.3 Effect of Circumferentially-Varying Inflow 

When a propeller blade rotates through a circumferentially-varying 

inflow, the angle of incidence continuously varies along the blade 

section. At every angular blade position the effect of such a 

variation of the undisturbed flow can be considered analogous to 

that of a rectilinear flow over a propeller blade of which the cambe 

distribution at the various radial stations has been modified by 

an amount equal to the effective camber of the curved streamlines. 
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This is illustrated in Fig. 10 in which an attempt is made to 

show the equivalence of a curved flow over a flat plate and a 

rectilinear flow over a curved plate with a camber distribution 

equal to the curvature of the flow. The effect of the continuously 

changing effective camber of blade sections on the cavitation 

properties of propellers has been discussed by Van Manen [2-39] 

and Johnson et al [2-23]. A discussion of the effect on the lift 

of blade sections has been given by Kruppa [2-22]. Both of these 

effects are by no means small, and it is imperative when requiring 

accurate results to calculate the effective change in geometric 

camber at every blade position before proceeding to the calculation 

of geometry-dependent entities such as the pressure distribution 

and the lift and drag characteristics. Such a calculation 

procedure will now be discussed. 

FIG. 10. EQUIVALENCE OF CURVED FLOW ON FLAT PLATE AND RECTILINEAR FLOW 
ON CURVED PLATE WHEN CURVATURE DISTRIBUTIONS ARE EQUAL. 

For every angular blade position, the value of the advance angle 

6 along the chord can be determined by means of the relation: 

B, (x,9 ) = arctan 
xTTnD-V (x,9 ) 

(2-56) 

in which 9, arctan 
L (x)-c(x)k/N 

xR 
(2-57) 

where V (x,9 ),V (x,9 ) = axial and tangential inflow 
a K t K 

components at (x,9 ) , 

L (x) = distance of leading edge to 

generator line, 

N = number of chordwise points at which 

effective camber is to be calculated 

and k = 0,1,2 N. 
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The expression for the incidence of the undisturbed flow over the 

blade section relative to the orientation of the nose-tail line 

is then obtained from: 

a (x,9, )=arcta 
9v '̂  

_rP(x)l +aj^^(x)-Bk(x,9^) (2-58) 

The variation of this incidence angle, Aa , with respect to the 

average value between the leading and trailing edge (which value 

is used in the lifting line calculations discussed in the 

previous section) is found from: 

Aa„(x,9,)=a„ (x,9, )-a„(x,8) 
g K gj^ K. g 

(2-59) 

where a = arcta 
g 

" [liïF-]^«NT(-^-e(-'e) (2-60) 

in which B(x,9) follows from equation 2-7. The variation of the 

geometric incidence angle along the blade section is then in fact: 

Aa (x,9 ) 
^k ^ 

arctan 
v^(x,e,^) 

xirnD-V (x,e ) -arctan 
V^(x,9) 

XTinD-V (x,9) 

The tangent of Aa (x,9,) represents the gradient of the curved 
^k 

streamlines at (x,9,) . This can be written as: 

d(Af (x,9 )) 
^k '̂  

d9 
= tan •Aag^(x,9^)] (2-61) 

in which Af equals the change in geometric camber at (x,6 ) 
^k 

due to the curvature of the inflow streamlines. It then follows 

that the change in geometric c£imber can be determined from: 

tanrAa_ (x,8,)ld8 (2-62) Af (x,9^) = ,|-Aag^(x,8,^)j, 

Due to the fact that the variation of the incidence angle Aa 
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was calculated with respect to the average value over the chord, 

it follows that: 

tan Aa (x,8 ) d6=0 
^k '̂  

(2-63) 

The effective camber distribution of the blade sections can then 

be found from: 

fk<- ' \ ) = \ ' ^ ' ' k ) - ' \ ' ^ ' V > (2-64) 

in which f (x,9 ) = coordinates of effective camber 

distribution, 

and f (x,9 ) = coordinates of geometric camber 
^k 

distribution. 

To obtain a smooth distribution of effective camber, it is 

necessary to fair the distribution of Af (x,9, ) across the chord, 
^k A fairing procedure which works satisfactorily in this regard is 

a least squares method applied to the coefficients of a third 

degree polynomial, viz: 

Afg^(x,9j^) = A+B9^+C9^+D9^ (2-65) 

On identifying the angular coordinate 9 with the corresponding 

position on the chord of the blade section relative to the leading 

edge x ,for a specific angular blade position, it follows that: 
•̂ k 

2 3 
Af (x,x ) = A+Bx +Cx +Dx <3i c, c, c, c, 
^k k k k k 

(2-66) 

in which Af (x,x 

Accordingly: 

"k 

A = 0 

2 

and B = -Cc-Dc 

0 for X =0 and for x =c 
c c 

(2-67) 

Af (x,e ) 
^k ^ 

= Cx +Dx (2-68) 
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in which the values of C and D are determined by the least squares 

method. Such a procedure leads to: 

D = 
C,A,-C,A^ 

and C 

N-1 

B A -B A 
1 2 2 1 

C^-DB, 

where A = V x 

1=1 

N-1 

=B = y X 
2 1 Z_ 

1=1 

N-1 

K ' - ^ -
i=l 

2 
X -c 
=k 

2 2 
X -c 
=k 

2 2 
X -c 
=k 

X -c 

. =k J 

N-1 

= ^ A f 

i=l 

N-1 

= Z^f 
i=l 

. X 

^k =k 

(2-69) 

(2-70) 

2.4 Calculation of Chordwise Load (Pressure) Distribution. 

2.4.1 Description of Theoretical Procedure 

The calculation of the chordwise load or pressure distribution on 

propeller blades has been dealt with by several workers in various 

ways. The classical approach always assumes validity of the first 

inviscld approximation as defined by Twaites [2-40]. This approach 

presupposes that the body itself may be taken to constitute the 

boundary of the potential flow, which is a reasonable assumption 



- 44 -

in the absence of flow separation. This constitutes the case of 

so-called unmixed boundary conditions in which the velocity normal 

to the boundary is zero. 

When the flow separates (the imminent possibility of which is 

much greater than often presupposed by workers in the field of 

marine propulsion), or when cavitation is present on the body, the 

potential flow solution for the first inviscid approximation is 

bounded partly by the body and partly by some streamline 

representing the edge of the separated or cavitating region. Here 

the boundary conditions are mixed, necessitating a completely 

different analytical treatment. For example, the classical case 

of so-called Kirchoff flow arises when the velocity along this 

free streamline is considered constant. The required type of 

analytical approach for the case a cavity is situated on a 

two-dimensional body, has been given by Geurst [2-4l] and others. 

For the general three-dimensional case of a propeller blade, 

however, the analytical difficulties are severe and, for the 

time being, must be left out of consideration. This requires that 

for the determination of the pressure distribution on a blade 

section of a cavitating propeller, another procedure must be 

used. Such an (approximate) procedure is used and discussed in 

chapter 4. 

The exact theory for the calculation of the two-dimensional 

pressure distribution in potential flow was developed by Theodorsen 

[2-42]. This theory is based on a conformal mapping procedure 

which transforms the two-dimensional profile into a circle 

(cylinder) around which the potential flow is known. Due to the 

cumbersome calculation of the implicit Poisson integral for the 

conjugate function, this procedure is now rarely used. The Algol 

statements given by Krakowiak, Bindel and Brard [2-43] for this 

theory incorporates the original "Theodorsen" determination of 

the conjugate function which must be very carefully computed. 

Often this procedure gives computed points with a fair amount of 

scatter. Very adequate approximate procedures have been devised 

which avoid this difficulty. One of these is Goldstein's third 

approximation to Theodorsen's theory [2-44]. This approximation 

assumes that when the profile in the z-plane is transformed by 

means of the transformation: 
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2 = ?+a^i;'\ (2-71) 

the resulting figure in the c-plane hardly differs from a circle. 

This pseudo-circle, which can be written as: 

C = ae 
(K<t))+i<J> (2-72) 

can then be transformed to a real circle in the 5i-plane, by 

means of: 

C, = ae "i^o+i ('('+£(<)')) (2-73) 

such that in the resulting equation for the velocity distribution, 

the powers of e.{(^) and products of E((j)) and li'C't') can be neglected. 

In addition, Goldstein assumes that the parametric coordinates 

of the profile ('P,'!'), which can be derived from equations 2-71 and 

2-72 to be: 

can be reduced to: 

2sin^9 = p+\ /p2+(y/a)2 

2sin i> = -p+\ /p^+(y/a) ^ 

2 2 
where p = 1-(x /2a) - (y/2a) 

c 

cosd) = l-2x / c c 

iK<t>) ly-

( 2 -74 ) 

( 2 -75 ) 

in which for sin(t>=0 (at the leading and t r a i l i n g edges) , the value 

of ij;((t)) i s determined from 

""1 = \ / 2 V c 

and 1̂^ = y 2 P^/c 

(2-76) 
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in which P-i / P̂. = radii of curvature of leading and trailing 

edges. 

In equations 2-74 and 2-75, (x ,y) are the coordinates of the 

profile, where 0<x <c. The conjugate function e((t>) of \|J((()) is now 

explicitly determined from Poisson's integral: 

2TT 

z{<t>) = 2 7 P / 4 ' ( t ) c o t l i ( * - t ) d t (2 -77) 

in which P indicates that the Cauchy principal value must be taken 

at the singularity t = <)) in the integration. The value of ij/ , 
0 

which together with e(())) determines the final transformation to 

the real circle, is determined from: 
2lT 

i>^ = 2^ I 'K<t>)d$ (2-78) 

The expression for the velocity distribution becomes: 

-'•[»f|] V 
U cos(a+B) .sin(())+e((]))-B) 

+sin(a+B) . cos ($+£ ((f)-6)+sin (a+6) (2-79) 

In potential flow the zero-lift angle of attack 6 is equal to 

-e(((>) when 0=71. The expression for the lift coefficient in 

potential flow is: 

C^ = 2Tre'''°sin(a+B) (2-80) 

from which it follows that the lift curve slope in potential flow 

is: 
dC 

da 
^ = e'^o.l+t/c (2-81) 
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Numerical evaluation of equation 2-77 can be accurately performed 

by means of a method given by Watson [2-4 5] in which the value of 

^(it>) is considered specified at 2N equally-spaced values of i(>, such 

that: 

N-1 

ii{4') =A + Y" (A cosr<ti+B sinrcf)+A-,cosN(l) 

r=l 

with which the Fourier conjugate e((ti) becomes: 

N-1 

£(.<i>) = y (A sinr<j)-B cosrtfi)+A sinNiji 

r=l 

Watson then deduced that: 

N-1 

(2-82) 

(2-83) 

p=l 

PTT 
2N m+p m-p 

and 
de 

N-1 

-irNl̂  - > TrrrCOSeC 

2 '̂ m /i_ 2N 
p=l 

PTT 

2N m+p m-p 
(2-84) 

+ i 

+0 if N is even 

*^m+N 
2N 

if N is odd 

When N=20 (for 40 points around the profile), the coefficients of 

the ip -terms in these equations are given in Table 1. 

It should be noted that in order to derive the ip-values at 40 

equally spaced i|j-values around the profile, an interpolation 

procedure must be used since the coordinates of the profile are 

usually given at specific percentages of the chord. In that case 

more accurate results are obtained if the given profile coordinates 

are first transformed to ii and (})-values, before the required 

ip-values at the 40 equally spaced (Ji-values, given by (fi =mTT/N, 

where m=0,l,2 2N-1, are determined by interpolation. Likewise 

it is recommended that the velocity distribution at the given 

profile stations, if required, is calculated directly from 

equation 2-79 rather than by interpolation from the values for the 
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velocity at the 40 equally spaced positions. This necessitates 

that the required £($) and de/d(}i-values for the positions at which 

the profile coordinates are given, are obtained by interpolation 

from the calculated values at the 40 equally spaced positions. 

Before continuing this discussion of how this method can be used 

to derive approximate three-dimensional pressure distributions for 

propeller blades, it is appropriate to demonstrate the accuracy 

of this calculation method. Table 2 gives the results of equation 

2-79 and the values from Abbott and Von Doenhoff [2-46] for the 

NACA 0012 section at zero incidence and the NACA 64-012 section 
1 

at 4 degrees incidence in potential flow. 

p 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

= <v 
0 

-0.6353102 

0 

-0.2082650 

0 

-0.1207107 

0 

-0.0815926 

0 

-0.0585425 

0 

-0.0427040 

0 

-0.0306400 

0 

-0.0207107 

0 

-0.0120039 

0 

-0.0039351 

0 

de 

10 

-4.061191 

0 

-0.458743 

0 

-0.170711 

0 

-0.091573 

0 

-0.059272 

0 

-0.043236 

0 

-0.034388 

0 

-0.029289 

0 

-0.026441 

0 

-0.025155 

0 

Table 1. Coefficients of ii for N=20 in equation 2-84 
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NACA 

X 
c 

i ° 
0.005 

0.0125 

0.025 

0.050 

0.075 

0.100 

0.150 

0.200 

0.250 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

p.900 

0.950 

1.000 

*These 

edge f 

0012 at zero 

incidence: 

Values 
from 

[2-46] 

v/U 

0 

0.800 

1.005 

1.114 

1.174 

1.184 

1.188 

1. 188 

1.183 

1.174 

1.162 

1.135 

1.108 

1.080 

1.053 

1.022 

0.978 

0.952 

0 

values 

or Wh iel 

Values 
from 

equation 
2-79 

v/U 

0 

0.811 

0.994 

1.113 

1.164 

1.178 

1.185 

1.183 

1.176 

1.166 

1.155 

1.130 

1.105 

1.079 

1.053 

1.024 

0.982 

0.940 

0 

are unequ 

1 p^=0 

NACA 64 -012 at 4 degrees incidence 

X 
c 

0 

0.005 

0.0125 

0.025 

0.050 

0.075 

0.100 

0.150 

0.200 

0.250 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

0.950 

1.000 

al to ze 

Values from 
[2-46] 

back 
v/U 

1.136 

1.660 

1.617 

1.513 

1.524 

1.381 

1.354 

1.324 

1.306 

1.290 

1.280 

1.266 

1.211 

1.151 

1.086 

1.020 

0.956 

0.921 

0.880* 

ro due 

face 
v/U 

1.136 

0.072 

0.403 

0.613 

0.770 

0.847 

0.894 

0.954 

0.992 

1.022 

1.044 

1.076 

1.061 

1.035 

1.000 

0.960 

0.914 

0.895 

0.880* 

-o the Cl 

Values from 
equation 2-79 

back 
v/U 

1.168 

1.687 

1.605 

1.492 

1.412 

1.372 

1.347 

1.318 

1.299 

1.287 

1.277 

1.258 

1.206 

1.148 

1.086 

1.019 

0.951 

0.915 

0.974* 

face 
v/U 

1.168 

0.082 

0.424 

0.616 

0.771 

0.846 

0.893 

0.953 

0.990 

1.020 

1.041 

1.070 

1.058 

1.032 

0.998 

0.957 

0.911 

0.889 

0.974* 

isped trailing 

Table 2. Comparison of velocity distributions calculated by 

means of Goldsteins 3rd approximation and the values 

given by Abbott and Von Doenhoff [2-46]. 
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2.4.2 Application to Propeller Blades 

For the ultimate purpose of calculating cavitation on propeller 

blades, the pressure distribution must be calculated in considerable 

detail, particularly in the region of maximum velocity. In 

non-uniform flow a blade section seldom ever works at its design 

(ideal) angle of attack. This implies that in most cases the 

minimum pressure is found to occur near the leading edge. It is 

advisable, therefore, to calculate the velocity distribution in 

some 25 to 30 points on both the back and the face of a blade 

section, of which some 6 or so points should be situated in the 

first 2% of the chord length. Good experience will be obtained 

with the array: 0, 0.125, 0.25, 0.5, 0.75, 1.25, 1.75, 2.5, 5, 

7.5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 

85, 90, 95, 97.5 and 100 percent of the chord. 

A standard procedure involving these points will often require 

the calculation of extra camber and thickness ordinates by inter­

polation. For standard-type camber lines and use of an adequate 

interpolation procedure, this should cause no problem. For extra 

thickness distribution ordinates, however, a straightforward 

interpolation procedure cannot be used due to the large variation 

in curvature of most thickness forms in the region of the leading 

edge. The calculation of extra thickness ordinates can be 

achieved by means of the ratio of the ordinates of the given 

thickness distribution to the ordinates of an elliptic thickness 

distribution. Here the maximum thickness of the elliptical 

thickness distribution must be chosen equal to the maximum 

thickness of the given thickness form. Then the thickness ratio 

has values equal to unity at the leading and trailing edge and 

also at X /c=0.5 if the position of maximum thickness of the 

given thickness form is situated halfway along the chord. For all 

standard-types of thickness forms, the resulting values for this 

thickness ratio constitute a smooth curve from leading to 

trailing edge. The analytical expression for this ratio is: 

^R = i'g/i'e' (2-85) 
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where y = 2 sin arccos(l-2x /c), (2-86) 

in which t = ratio of given to elliptical thickness ordinates, 

y = ordinate of given thickness distribution, 

y = ordinate of elliptical thickness distribution, 

t = maximum thickness of blade section, 

coordinate al 

and c = chord length. 

X = coordinate along chord, 

Extra values of y can now be obtained by determining the value 

of the thickness ratio t^ at the required position along the 

chord x' by interpolation, from which: 

= t ̂.fsin [ arccos(1-2 x^/O] (2-87) 

GIVEN THICKNESS DISTRIBUTION 
SPECIFIED BY ORDINATES yg. 

AXIS ALONG CHORD 
OF THICKNESS FORM. 

FIG. 11. SKETCH TO DEFINE USED GEOMETRIC CONCEPTS AT LEADING EDGE 
FOR CALCULATION OF ADDITIONAL ORDINATES OF THICKNESS FORM. 
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A difficulty is incurred at the leading edge when the given 

thickness form changes over into the circle passing through the 

leading edge with a radius equal to the radius of curvature of 

the leading edge. For points situated between the leading edge 

and X , as defined in Fig. 11, the ordinates of the given 

thickness distribution are equal to the ordinates of this circle. 

The value of the thickness ratio in this region is: 

p^-(x^-p^)2 (2-88) 

^R ^ 
ysin [arccos (l-2x /c)l 

<x L ^ J X 
c c 

p 
in which p, = radius of curvature of leading edge. 

To determine the value of x , i.e. the location of the point P 

(see Fig, 11), use can be ma§e of the fact that at P the tangents 

to the circle through the leading edge and the given thickness 

form are identical. 

When the coordinates of the prescribed thickness form and camber 

line of the various blade sections are thus determined, the camber 

line is adjusted for the curvature of the undisturbed flow across 

the chord as discussed in section 2.3. Then the resulting blade 

section geometry may be considered to represent the effective 

two-dimensional geometry which is to be used for the calculation 

of the two-dimensional lift-curve slope, zero-lift angle of attack 

and ideal angle of incidence, as described in section 3.3. 

To derive the effective three-dimensional blade section geometry 

for use in the calculation procedure for the pressure distribution 

as described in the previous section, the camber must be further 

corrected for the curvature of the induced flow across the blade 

and the difference between the two-dimensional and the three-

dimensional zero-lift angle of attack. The required camber 

distribution can be obtained by multiplying each camber ordinate 

by the ratio of the actual three-dimensional lift coefficient, 

without the influence of viscosity, to the two-dimensional lift 

coefficient in potential flow, both at zero incidence (relative 

to the orientation of the nose-tail line of the blade section),viz: 
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f (x,( 
X ' 
c 

f (x,e)-Af (x,e) 
x_ ^x 

01 (x,e) 
° (2-89) 

6.K (x,e) 
c 

where f (x,e) = effective camber coordinate at x along the 
""c '̂  

chord for the blade section at x at the 
angular blade position given by 9, 

f (x,e) = geometric camber at x , 
^x '^ 

Q 

Af (x,e) = change in geometric camber at x due to 
^x ^ 

c curvature of undisturbed streamlines, 

a (x,e) = three-dimensional zero-lift angle of 

incidence given by equation 2-32, 

B = zero-lift angle of incidence following from 

conformal transformation procedure (used in 

equation 2-80) or equation 3-24, 

and K (x,9) = propeller lifting surface correction for 

camber. 

The blade section geometry thus determined constitutes the 

effective geometry for the three-dimensional velocity distribution 

calculation. The effective angle of attack for this calculation 

can be derived from the assumption that the potential flow 

approximation for the three-dimensional case must result in a 

value of the lift coefficient equal to the value resulting from 

propeller theory (section 2.2.1) but without viscous losses, 

viz: 

ĉ  (x,e) = ĉ  (x,e)+Ac^ (x,e) (2-90) 
LI LI II 

where: 

ACj^(x,0) 
2Tre sinra(x,e)-aj| (x,e)]-2TTK (X,9 ) [a (x,e )-a (x,9)] 

K^(x,9) 

C^(x,9)[l+^(x)-Kg(x,e)] 
or AC (x,9)=— ^— ^ (2-91) 

K^(x,9) 

where K (x,e) = three-dimensional lift-curve slope factor 

discussed in section 3.3.1. 
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It follows that in potential flow: 

4-
Ĉ  (x,9)+AC^ (x ,9 ) = 2Tre " s inTa ^ , ( x , e ) - a ( x , e ) l (2-92) 

L ii L e t t o j 

where a ,^(x ,9) = e f f ec t i ve angle of a t t ack for p r e s s u r e 

d i s t r i b u t i o n c a l c u l a t i o n . 

Solving for a .p^(x,9) g ives : 

o £-(x,9) = a r c s in 
Cj^ (x ,9 )+AC j^ (x ,9 ) 

2TTe 
+a ( x , e ) (2-93) 
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CHAPTER 3 

ASSESSMENT OF VISCOSITY EFFECTS ON PROPELLER-BLADE SECTION 

CHARACTERISTICS AND LOADING DISTRIBUTIONS 

3.1 Introductory Remarks 

The use of accurate values for the lift and drag of propeller 

blade sections in the theory of the previous chapter is essential. 

The error in the values of the hydrodynamic pitch angle and the 

radial load distribution is directly proportional to the errors 

in the used lift and drag data of the profiles of which the 

propeller blades are composed. 

At present, no universal procedure for the calculation of two-

dimensional lift and drag data is available. With the assumption 

of potential flow the calculation of the lift of a given profile 

is a simple matter and can be performed exactly as shown by 

Theodorsen in 1931 [3-l]. Yet the influence of viscosity, 

generally resulting in a decrease in lift (sometimes of the order 

of 30 percent or more) necessitates the application of corrections 

which are deduced from systematic force measurements in wind or 

water tunnels. A large compilation of results of such measurements 

is available in the form of books by Riegels [3-2] and by Abbott 

and Von Doenhoff [3-3]. Two-dimensional calculation procedures 

for the drag are also available in the absence of flow separation. 

Here, however, the differences with experimental values can 

sometimes be appreciable. This state of affairs does not mean 

that attempts at finding general relations between profile 

geometry and lift and drag data have not been performed in the 

past. Endeavours in this regard have been undertaken by Burrill 

[3-4], Hill [3-5] and recently by Van Oossanen [3-6]. The obtained 

results, however, should be considered valid only for the profiles 

from which these relations were derived and should not be applied 

in a general design or calculation procedure. For example, the 

lift correction factors derived by Burrill and used by O'Brien 

[3-7], S^ntvedt [3-8], Glover [3-9] and many others, predict a 

lift decrease with increase of blade section thickness 

approximately according to the formula: 
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Kg = 0.947-9.76(t/c)^, (3-1) 

in which K is the lift-curve slope correction factor with which s 
the theoretical flat-plate value of 2ir is to be multiplied to 

obtain the actual two-dimensional lift-curve slope. Here t/c is 

the ratio of maximum thickness to chord length. This is only a 

reasonable assumption for super-critical values of the Reynolds 

number for profiles with the position of maximum thickness at 

about 30 percent of the chord. With this formula, erroneous 

results are obtained, for example, for the NACA 63, 64, 65 and 

66-series thickness distributions. The same holds for Burrill's 

relation for the effect of viscosity on the theoretical angle of 

zero-lift. This relation can be approximately represented by 

means of the formula: 

K = 0.972-0.169(t/c)-2.78(t/c)^+21.0(f /c)(t/c)^ 
0 

•(f^/c)^ I 0.320 + 278(t/c)^ | - (f„/c)^ j - -V 28.7(t/c)^-335((t/c)^l 

(3-2) 

in which K is the factor with which the theoretical two-dimensional 

value is to be multiplied to obtain the experimental two-dimensional 

value, f/c is the ratio of maximum camber to chord length and 

f /c is the ratio of the position of maximum camber to chord length. 

This relation fails to discern between the different effects of 

viscosity, for example, on profiles with the NACA a=0.8 and a=1.0 

camber lines. The effect of viscosity on profiles of small 

thickness having the first-mentioned camber line can be expressed 

in terms of a value of K larger than unity, while in the latter 

case this factor is about°0.75. Equation 3-2 gives the same 

value in both cases. 

It is necessary, therefore, either to persist in using appropriate 

experimental lift and drag data from available literature, or to 

use a different approach to the problem of finding general 

relations between profile form and the lift and drag 

characteristics, an approach necessarily involving knowledge 
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of boundary layer characteristics on the profile. The first-

mentioned possibility compels the use of standard aerofoil 

sections in propeller design. In the present study this is a 

drawback, since it is necessary to effectively distort blade 

section camber to account for the curvature of the undisturbed 

incoming flow over a blade section by which non-standard camber 

lines are obtained (see chapter 2). Furthermore, most of the 

available aerofoil data is limited to a minimum thickness of 

6 percent of the chord length, while the thickness of propeller 

blade sections near the tip are often appreciably thinner. It 

was, therefore, considered necessary to find an improved method 

by which appropriate lift and drag data of propeller blade 

sections can be ascertained. This is the subject of section 3 and 

4 of this chapter. The described method for the effect of 

viscosity on lift-curve slope and angle of zero-lift (section 3) 

incorporates boundary-layer theory which is first presented in 

section 2. 

An improvement of the first inviscid approximation to the 

chordwise pressure distribution for the unmixed boundary case 

(no flow separation and no cavitation) is obtained if the boundary 

of the inviscid region is taken to be at a distance from the 

surface equal to the displacement thickness of the boundary layer. 

The new boundary then extends to infinity downstream to take into 

account the thickness of the wake. The value of the displacement 

thickness is given by the first boundary-layer approximation. 

With this new boundary, a revised velocity distribution can be 

calculated with which the boundary-layer calculation can be 

repeated. In this way an iteration procedure is started, the 

result of which is termed the second inviscid approximation. 

This procedure allows the calculation of the effect of Reynolds 

number on the pressure distribution which is the cause of an 

important scale effect on propeller cavitation properties. The 

analytical solution, however, requires a great deal of work, the 

results of which for a propeller blade are dubious due to possible 

errors in the result of the first inviscid approximation. This is 

why the second inviscid approximation has not yet been attempted. 

Here also, such a fundamental method for the effect of viscosity 

on the pressure distribution will not be employed. Instead a 
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relatively simple viscosity correction is used, which is described 

in section 5 of this chapter. 

3.2 Two-Dimensional Boundary Layer Calculations 

3.2.1 The Laminar Boundary Layer and Laminar Separation 

For the calculation of the laminar boundary layer characteristics 

use was made of the approximate method of Twaites [s-io]. This 

method only requires knowledge of the pressure distribution along 

the two-dimensional body at the edge of the boundary layer. 

The momentum thickness is obtained from the equation: 

2 
V 
X 
s (3-3) 

where 6 = momentum thickness at x , 
s 

V = velocity at x just outside the boundary layer, 

X = arc length along the surface of the body from 

beginning of boundary layer, 

and V = kinematic viscosity. 

This equation is an average result of a number of exact solutions. 

With this relation for the momentum thickness, a parameter m can 

be calculated according to: 

dv 
X 

m =- - ^ 9 /v (3-4) 
s 

The displacement thickness of the boundary layer and the skin 

friction can be determined from this parameter by means of given 

numerical values connecting the value of m with the form parameter 

H(m) and the function 1(m) for the calculation of the skin friction. 

The form parameter is defined as: 

H(m) =6*/9 (3-5) 

where 6 is the displacement thickness of the boundary layer. 

The wall shear stress T is determined from: 
w 
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- ^ - = ^ ^ ^ (3-6) 
P^x^ ^x Ö 

s s 

The relation between m, H(m) and 1(m), as modified by Curl and 

Skan [3-11] is given in Table 3. Separation of the laminar 

boundary layer occurs when m=0.09 or when l(m)=0 

ra 

- 0 . 2 5 0 

- 0 . 2 0 0 

- 0 . 1 4 0 

- 0 . 1 2 0 

- 0 . 1 0 0 

- 0 . 0 8 0 

- 0 . 0 6 4 

- 0 . 0 4 8 

- 0 . 0 3 2 

- 0 . 0 1 6 

0 . 0 0 0 

0 . 0 1 6 

0 . 0 3 2 

Km) 

0 . 5 0 0 

0 . 4 6 3 

0 . 4 0 4 

0 . 3 8 2 

0 . 3 5 9 

0 . 3 3 3 

0 . 3 1 3 

0 . 2 9 1 

0 . 2 6 8 

0 . 2 4 4 

0 . 2 2 0 

0 . 1 9 5 

0 . 1 6 8 

H(m) 

2 . 0 0 

2 . 0 7 

2 . 1 8 

2 . 2 3 

2 . 2 8 

2 . 3 4 

2 . 3 9 

2 . 4 4 

2 . 4 9 

2 . 5 5 

2 . 6 1 

2 . 6 7 

2 . 7 5 

m 

0 . 0 4 0 

0 . 0 4 8 

0 . 0 5 6 

0 . 0 6 0 

0 . 0 6 4 

0 . 0 6 8 

0 . 0 7 2 

0 . 0 7 6 

0 . 0 8 0 

0 . 0 8 4 

0 . 0 8 6 

0 . 0 8 8 

0 . 0 9 0 

Km) 

0 . 1 5 3 

0 . 1 3 8 

0 . 1 2 2 

0 . 1 1 3 

0 . 1 0 4 

0 . 0 9 5 

0 . 0 8 5 

0 . 0 7 2 

0 . 0 5 6 

0 . 0 3 8 

0 . 0 2 7 

0 . 0 1 5 

0 . 0 0 0 

H(m) 

2 . 8 1 

2 . 8 7 

2 . 9 4 

2 . 9 9 

3 . 0 4 

3 . 0 9 

3 . 1 6 

3 . 2 4 

3 . 3 5 

3 . 4 7 

3 . 5 4 

3 . 6 2 

3 . 7 0 

Table 3.Functions for the calculation of 6 and T 
w 

from the parameter m. 
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3.2.2 Estimation of Laminar-Turbulent Transition 

The method adopted for the approximate calculation of the point of 

transition is that of Michel [3-12] as modified by Smith [3-13]. 

This method is simple, and comparisons with experimental results 

have shown it to be reasonably reliable for pressure profiles with 

a peaked minimum. For flat pressure profiles the method is less 

accurate. 

The method consists of determining a critical value of the Reynolds 

number based on the momentum thickness. Michel found that 

experimental transition data could be correlated well by means of 

a plot of the transition Reynolds number based on momentum thickness 

Rn , versus the conventional Reynolds number based on the distance 
°tr 

X along the body, R^ . Smith later showed that this correlation 

can be explained by boundary-layer stability theory and that Michel's 

line is in fact the locus of a specific amplification of a Tollmien-

Schlichting disturbance in the boundary layer. Smith's version of 

Michel's criterion is: 

Rfl = 1.174 R "•''̂  (3-7) 
fcr tr 

whete ^e "" "̂  •̂ '̂ ^ (3-8) 
c 

and R^ = Xg.U/v (3-9) 

in which U is the free-stream velocity. The validity of this 
5 7 criterion is for a value of R^ between 3x10 and 2x10 , but mav 

^tr 
be used for reasonably reliable estimations of the point of 

C Q 

transition for a value of R^ between 10 and 10 . 
^tr 

3.2.3 The Turbulent Boundary Layer and Turbulent Separation 

A simple and accurate method for the calculation of turbulent 

boundary layers has been developed by Nash and Macdonald [3-14] 

for the case that the pressure is steadily increasing along the 

body from the origin of the turbulent boundary layer. This method 

can be applied to most standard types of profiles at moderate 
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incidence angles since the pressure-decreasing part of the leading-

edge suction peak is often laminar. The treatment of boundary 

layers for which the pressure-gradient is steadily increasing is 

relatively simple because the shape of the main velocity profile 

is principally a function of the local pressure gradient and only 

the thickness of the layer significantly reflects the influence 

of upstream history. In this case, turbulent boundary layers are 

characterized by a particular constant value of the pressure-

gradient parameter I! and a corresponding constant value of the 

shape factor G along the body. The pressure-gradient parameter 

n is defined as: 

n = ^ . ^ (3-10) 
T dx 
w s 

where 6 = displacement thickness of turbulent boundary layer, 

T = wall shear stress, 
w 

and -r'-— = pressure gradient at edge of boundary layer. 
s 

The shape factor G in incompressible flow is defined as: 

=\/x/\;t-/«] (3-11) 

where v = velocity at edge of boundary layer 
s 

and H = 6*/9 (3-12) 

in which 9 = momentum thickness of turbulent boundary layer. 

It is shown by Nash [3-15] that for all turbulent boundary layers 

of this type, a good empirical fit to the unique function G(n), 

as determined from experiments, is: 

G = 6.1 \/ n + 1.81 ' -1.7 (3-13) 

which relation constitutes a locus of all such boundary layers. 

The growth of a turbulent boundary layer in two dimensions can be 

obtained by integrating the momentum-integral equation: 
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3—(Pv 6 dx X s s 
T^(i+n) (3-14) 

or 
dB 
dx •(H+2)e/v .dv /dx +T /Pv ' X X ' s w' X S S s 

(3-15) 

The skin-friction law used, developed by Nash [3-16], for 

incompressible flow is: 

'w 
"2~ 

pv 

2.4711 ln(v .9/v) +475+1.5G + - ^ ^ 16.87 
^s G +200 

n-2 
(3-16) 

If only the momentum thickness is required, Nash and Macdonald 

give as an approximation to the equations above the following 

relation: 

d6 
dx 

2.4711 ln(v .6/v)+4.75 30/v .dv /dx 
X X s 
s s 

+120(9/v .dv /dx ) -25000(9/v .dv /dx ) (3-17) 
X X s X X s 
s s s s 

The actual calculations are performed assuming continuity of 

momentum thickness at the point of transition as long as Vx 6/^ 

is greater than 320. If this is not the case then 9 is increased 

to make Vjj 9/v=320. An iteration is then performed at the transition 

point, involving 9, II, G, T and H. The first value of G is assumed 

to be 6.5. With these values of 9 and G, the values of T , H and 
w 

n can be determined with which a second value of G can be calculated 

from equation 3-13. On convergence, the value of d6/dx is 
calculated according to equation 3-15. 

At the following points this procedure can be repeated when it is 

assumed that a first value of 9 can be obtained from: 
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1 

de 
dx 
s 

Ax (3-18) 
s 

i-1 

An adequate, first value of G can be the final value at the 

previous position on the profile. The iteration procedure must 

now involve d 9/dx and the value for the momentum thickness s 
according to: 

1 Ax 
) . + 
1-1 

d9_ de 
dx dx 
s . , s . 
1-1 1 

T^ (3-19) 

This procedure necessarily requires that points at which these 

calculations are to be performed, are situated close together. 

If the value of II during the iterations becomes smaller than 

-1.5, the value of n is put equal to -1.5. 

This solution procedure assumes precise local equilibrium 

corresponding to an exact correlation between the C^n trajectory 

and the equilibrium locus as given by equation 3-13. The derivative 

de/dx is roughly a linear function of -(9/vjj ) <iv„ , and over a 
s s s 

limited range of Reynolds numbers the effect of variations of 
v„ 9/v is approximately independent of the pressure gradient. 
s 

Turbulent separation is predicted when T /PV^ becomes less than 

0.0001. 

Table 4 gives the results of laminar and turbulent boundary 

layer calculations for the NACA 64 -012 profile at zero incidence 
5 1 

at a Reynolds number of 7x10 . The profile is assumed to be 

1 meter in length. Transition (and the origin of the turbulent 

boundary layer) was calculated to occur at x /c=0.4808 and 

laminar separation at x /c=0.51. Turbulent separation was calcu­

lated to occur at x /c=0.947. 

3.3 Effect of Viscosity on Lift-Curve Slope and Angle of Zero-Lift 

3.3.1 Lift-Curve Slope 

Experimental values of the sectional lift-curve slope, dC /da2,and 

angle of zero-lift, ao , of a large number of aerofoils have been 
2 
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Turbulent Boundary Layer Characteristics 
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Table 4.Results of laminar and turbulent boundary layer calculation for NACA 64i-012 proflie 
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tabulated by Riegels [3-2]. For these aerofoils, boundary layer 

calculations were performed as described in the previous section 

for angles of incidence corresponding to the theoretical ideal 

angle in potential flow a. ,01. +4° and a. +8°. The required 
^2 ^2 ^2 
P P P 

velocity distributions on suction and pressure sides were 

calculated by the method outlined in section 2.4.1. The only 

allowance for viscosity on the velocity distributions was that 

the velocity at the trailing edge was set equal to 0.75 of the 

free-stream velocity. The Reynolds number values of the boundary 

layer calculations for each aerofoil were the same as the values 

for which the dC./da and a» -values are given. Coordinates of 
LI 2 2 

the aerofoils were obtained from Abbott and Von Doenhoff [3-3]. 

In all cases the origin of the laminar boundary layer was taken 

to be at X /c=0, at which the local velocity was specified to 

be zero. The origin of the turbulent boundary layer was taken to 

be at the point of transition as calculated according to section 

3.2. If transition was calculated to occur downstream of the 

position of laminar separation, which was often the case 

(particularly on the pressure side at Reynolds numbers below 10 ), 

the calculation of the turbulent boundary layer was not attempted 

since accurate information regarding re-attachment of the 

separated boundary layer and the length of separation bubbles 

is still lacking. In some cases transition was calculated to 

occur a small distance upstream of the position of laminar 

separation particularly when the pressure distribution was 

relatively flat. An example is the case of the NACA 64]-012 

aerofoil at zero incidence, the results of which are presented in 

Table 4. When this occurred laminar separation was nevertheless 

suspected since it is known that the used transition criterium 

gives an early prediction of transition in such cases (a general 

discussion of this transition criterium is given by Hall and 

Gibbings [3-17]). A good correlation was obtained between the 

experimental lift-curve slope and the sum of aerofoil thickness 

and displacement thickness at the position of turbulent separation 

in the cases in which laminar separation does not occur. As shown 

in Fig. 12, this thickness, denoted as t , may be thought of as 

being an effective wake thickness of the aerofoil, viz: 
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t = y +6* +y +6* (3-20) 
s -'s s -'s s 

s s p p 

in which t = effective wake thickness, s 

y ,y = coordinates of suction and pressure 

^ side at the position of turbulent 

and S ,6 
s s 
s p 

separation, 

displacement thickness of turbulent 

boundary layer on suction and pressure 

side at the position of turbulent 

separation. 

DISPLACEMENT THICKNESS OF 
F B O U N D A R Y LAYER 

POSITION OF SEPARATION OF 
TURBULENT BOUNDARY LAYER 

FIG. 12. SKETCH TO DEFINE VARIABLES FOR CORRELATION OF EXPERIMENTAL 
LIFT - CURVE SLOPE AND BOUNDARY LAYER CHARACTERISTICS 

Fig. 13 gives the r e s u l t s for 28 a e r o f o i l s a t var ious Reynolds 

number and incidence va lues . The c o r r e l a t i o n i s s u r p r i s i n g l y good 

when cons ider ing the poss ib le inaccurac ies in the boundary layer 
« 

calculations and the fact that the value of dC. /da given by 
L 2 

Riegels is an average over an unspecified incidence range. The 

drawn curve through the spots in this figure represents the best 

fit. An analytical form of this curve is: 
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dC 

d 

C I 1 
- - = 7 . 4 6 2 - \ / l 3 5 . 2 t / c - 2 . 8 9 9 
ct „ » s 

(3-21) 

With t h i s r e l a t i o n , t h e l i f t - c u r v e s l o p e f a c t o r K , as used by 

B u r r i l l [ 3 - 4 ] , becomes: 

v= 1 . 1 8 8 - \ / 3 . 4 2 5 t / c - 0 . 0 7 3 ( 3 - 2 2 ) 
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FIG. 13. CORRELATION BETWEEN EXPERIMENTAL LIFT - CURVE SLOPE AND SUM 
OF PROFILE AND DISPLACEMENT THICKNESS AT POSITION OF TURBULENT 
SEPARATION. 
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Some aerofoils have an appreciable variation in lift-curve slope 

with angle of attack. "Round back" or ogival sections, for example, 

are known to have this property. The explanation of this feature 

in the light of the results presented in Fig. 13, lies in the fact 

that these aerofoils tend to exhibit a forward movement of the 

location of turbulent separation with increasing (moderate) 

incidence of the flow. Hereby the value of t becomes larger, 

particularly due to the larger values of the aerofoil thickness 

at the point of separation. Whereas this property of a forward 

movement of the location of turbulent separation is quite general 

of all aerofoils, it was found that foils which have a relatively 

large slope in the region between x /c=0.9 and the trailing edge, 

(i.e. a relatively large value of dy/dx ) display this property 

more extremely. In the design of lifting surfaces it is therefore 

important to adopt thickness distributions which not only have 

thin trailing edges but also small values for dy/dx in the region 

downstream of x /c=0.9. 

To apply equation 3-21 or 3-22 to propeller-blade sections, it is 

recommended to calculate t at three (moderate) angles of incidence 

to determine whether the lift-curve slope appreciably varies with 

incidence. If so, it is advisable to adopt a formula of the type: 

— - = A(l-Ba) (3-23) 
da2 

in which A and B are constants which can be determined from the 

calculated values for dC-/da2 as a function of t /c. 
L S 

The effect of roughness on dC./da? can be assessed by the procedure 
LI 

outlined above by specifying that transition from laminar to 

turbulent flow occurs at the leading edge. Some calculations in 

this regard have shown that the momentum thickness at the location 

of turbulent boundary layer separation is larger and that this 

location moves forward. When roughness is introduced these 

characteristics lead to an appreciably larger effective wake 

thickness t . Here also, good agreement with experimental values 

was obtained on using equation 3-21 to calculate dC./da2 from the 
LI 

determined value of t /c. 
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3.3.2 Angle of Zero-lift 

General rules for the effect of viscosity on the two-dimensional 

angle of zero-lift, ao / have been very difficult to ascertain in 
2 

the past. It is known that in comparison to the theoretical value 
in potential flow, ao , viscosity can lead to lower and higher 

'P 
values. A good example, already quoted, is the ratio of measured 

to theoretical zero-lift angle of about 0.75 for thin profiles 

having a NACA a=1.0 camber line and about 1.04 for thin profiles 

incorporating a NACA a=0.8 camber line. This case is illustrative 

of, probably, the only general rule which is discernable, viz, 

that the ratio ao /ao increases with increasing ideal angle 
' ^P 

of incidence, which angle is a measure of the asymmetry of the 

camber distribution. The NACA a=l.0 camber line, which is 

symmetrical about the mid-chord position, has a zero-angle of 

ideal incidence while the NACA a=0.8 camber line, giving rise 

to a higher loading on the first half of the chord, has an ideal 

angle of incidence of 1.4° when the ideal lift coefficient equals 

1.0. The NACA 230-series wing sections, with relatively high 

angles of ideal incidence, have a ratio of ao /ao of about 1.08. 
a ^p 

The calculation of the angle of zero-lift and of the ideal angle 

of incidence of camber lines can be performed by means of two-

dimensional thin wing theory. The resulting expressions for these 

quantities, according to Abbott and Von Doenhoff [3-2], are: 

1 

/

x dx 
^ f ^ ( f ) ^ (3-24) 

X /c=0 

1 

/

x dx 

^ f 3 ' f > ^ (3-25) 

x^/c=0 

in which f,( 
1 c 

''c, _ 1 (3-26) 

TT[I-(X^/C)]^(X^/C) [I-(X^/C)]' 
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X l-(2x /c) 
and f3(—) = F ^ .. 3̂ 3 (3-27) 

c 2TTr(x̂ /c) [l-(x̂ /c)]l 

The functions f and f̂  become infinite at both leading and 

trailing edges. Difficulties in this regard are avoided when the 

following formulas for evaluation of equations 3-24 and 3-25 

are used,viz: 

^ \ = " E ^ '^ir'x (3-28) 
P ^ '̂i 

k Z '^is-'x (3-29) 
"-P = t "̂  -i 

The coefficients in these last equations, k. and k. , for 

specific values of x /c, are given in Table 5. 

The described tendency in the value of ao /ao with increasing 

ideal angle of incidence points to the importance of having little 

or no camber near the trailing edge. A possible explanation for 

this trend is that turbulent boundary layer separation can then 

occur at almost equal positions on suction and pressure side 

of the foil, thereby leading to approximately equal wake thicknesses 

on suction and pressure sides at the trailing edge. It is clear 

that when the wake on the suction side at the trailing edge is 

importantly thicker than on the pressure side, and the effective 

trailing edge were taken to be at the midpoint of the wake, an 

effective reduction in camber and thus in zero-lift angle would 

result. Accordingly, an attempt was made to correlate the ratio of 

experimental to theoretical zero-lift angle with the ratio of 

effective wake thickness on the suction side to the effective 

wake thickness on the pressure side. The pressure distributions 

were calculated as before, but now only for the ideal angle of 

incidence. The results, for the cases that laminar separation 

does not occur, are given in Fig. 14. 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

coefficients for a^ 
2 
P 

x^/c 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

^ . 

5.040 

3.380 

3.010 

2.870 

2.920 

2.840 

2.810 

3.090 

3.320 

3.640 

4.070 

4.640 

5.440 

6.650 

8.590 

11.40 

17.05 

35.40 

186.2 

coefficients for a. 
'^P 

x^/c 

0.0125 

0.0250 

0.0500 

0.0750 

1.1000 

0.1500 

0.2000 

0.2500 

0.3000 

0.4000 

0.6000 

0.7000 

0.7500 

0.8000 

0.8500 

0.9000 

0.9500 

0.9750 

"^13 

188.58 

53.017 

38.925 

20.821 

12.283 

16.313 

4.9750 

6.5330 

3.3100 

3.6130 

-3.6130 

-3.3190 

-6.5330 

-5.2830 

-13.763 

-26.529 

-41.642 

-130.50 

Table 5. Coefficients k. and k. in equations 3-28 and 
1 1 1 3 

3-29 for evaluation of angle of zero-lift and 
ideal angle of incidence in potential flow. 
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FIG. 14. CORRELATION BETWEEN RATIO OF EXPERIMENTAL TO THEORETICAL 
ANGLE OF ZERO-LIFT AND RATIO OF WAKE THICKNESS OF SUCTION 
TO PRESSURE SIDE 

It is clear that the results are significant, even though the 

scatter is somewhat larger than in the correlation of the 

lift-curve slope. It is probable that this is due to the fact 

that the demand on the accuracy of the boundary-layer 

calculations are higher when differentiating between the values 

for the two sides. Analytical expressions for the curves which 

fits the shown points best are: 



- 74 -

«o / °o = 6-5 
' ^P 

'(^s < ' / ( ^ s ^*s ' 
S S p p 

which i s v a l i d f o r y +<5 <v +& 
•'s s -'s s 

s s p p 

and a /a = 1 . 2 - 0 . 2 [(73 +6* ) / (y + 
L s s p 

6* ) 
s 

P 

which is valid for y +6 >y -i-6 
s s -̂  s s 
s s p p 

(3-30) 

Here also it was found that the case of roughness can be dealt 

with by specifying that transition from laminar to turbulent 

boundary layer occurs at the leading edge. 

3.4 Calculation of the Drag Coefficient 

In the vortex theory of the screw propeller, an accurate calculation 

of the drag coefficient C_̂  is less essential than that of the lift 

coefficient C^. This is because the calculation of inflow angles, 
LI 

induced velocities and radial circulation distribution is dependent 

on the value of the lift coefficient and not on the drag 

coefficient. The drag characteristics of the blade sections are 

only required for the calculation of the thrust and torque 

characteristics (see equations 2-41 and 2-42) . To obtain reliable 

values over a sizeable range of advance ratio's, reasonably 

accurate values of the drag coefficient are nevertheless required. 

This has been demonstrated by Johnsson [3-18] and Cummings [3-19], 

who have calculated the variation in the thrust and torque 

coefficients caused by a variation in the drag coefficient. 

The calculation of the two-dimensional drag coefficient from 

basic boundary layer considerations at a given Reynolds number 

and angle of attack is still a difficult matter. Steady 

progress is being made for non-separated flows. It has become clear 
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that a reliable calculation of the point of transition from 

laminar to turbulent flow, and of the momentum thickness near the 

trailing edge, is indispensable. The recent method proposed by 

Cebeci and Smith [3-20] is representative for the state of the 

art of this topic. 

In the case of a propeller blade an additional difficulty is 

incurred. This is the assessment of three-dimensional effects, of 

which only the part associated with so-called cascade effects is 

determinable. This situation necessitates, and warrants, a less 

fundamental approach to the problem. 

In deriving the polynomial representation of the open-water 

characteristics of the Wageningen B-series propellers, Oosterveld 

and Van Oossanen [3-21, 3-22] used the "equivalent profile" method 

developed by Lerbs [3-23]. This method consists of replacing the 

propeller by one of its blade sections - the so-called equivalent 

profile or blade section - of which the lift and drag properties 

can be directly obtained from the thrust and torque coefficients 

of the propeller. Lerbs shows that the equivalent profile is the 

blade section at x=0.75. With this method the thrust and torque 

characteristics at various values of the advance ratio J can be 

corrected for Reynolds number effects from the known properties 

of this profile. Such was carried out for all the open-water 

results of the 120 model propellers constituting the Wageningen 

B-series to obtain consistent values of the thrust and torque for 

the derivation of the published K and K polynomials. By means 

of this process more than 4000 values for the drag and lift 

coefficients were derived, each for a specific combination of 

blade number, expanded blade area ratio, pitch-diameter ratio and 

angle of attack. 

A study of these drag coefficient values revealed an important 

increase in the minimum C -value below a specific value of the 

blade area-blade number ratio. For a pitch-diameter ratio of 1.0 

this is shown in Fig.15. Each point in this figure represents a 

specific propeller of the B-series. More precisely, this increase 

was found to occur when: 
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EQUIVALENT PROFILE OF WAGENINGEN B-SERIES PROPELLERS. 

^ E ^ / 2 . 7 5 + 1 . 9 3 4 P ( x ) / D 
Z ^ 1 7 . 7 8 5 + 1 3 . 5 1 5 P ( x ) / D 

( 3 - 3 1 ) 

in which A /A equals the value of the expanded blade area ratio, 
E U 

and P(x)/D the pitch-diameter ratio at x. The minumum value of the 
drag coefficient was (accordingly) formulated to be: 

2C, l+2(^)-h60(|) c c +C^ 
(3-32) 

where C. = 0.075 

[.. 434291n( Rjj(x)-2)] 
(3-33) 
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(0.15)^-(V%) 1.375+0.967(^') 

(0.15)^-(V%) 5.928+4.505(5^' ) (3-34) 

and R^(x) V.c(x) 
V 

(3-35) 

in which (—) c thickness-chord length ratio at x, 

V = resultant velocity at x, 

and c(x) = chord length. 

In equation 3-32, Cp, =0 when the blade area-blade number ratio is 
3 

less than 0.15. The two-dimensional part of this formula was taken 

from Hoerner [3-24] . The drag coefficient at other angles of 

attack was obtained from the knowledge that the minimum drag 

coefficient generally occurs at the ideal angle of incidence, so 

that: 

dCj 

da da+c, (3-36) 

The derivative of the drag coefficient with respect to the angle 

of attack was determined, and expressed as a polynomial by means 

of the multiple regression analysis procedure developed by 

Effroymson [3-25]. This polynomial can be written as: 

&.s'Z^/imTr'' (3-37) 

where the values of k., a,, b., c. and d. are given in Table 6. 
1 1 1 1 1 ^ 

The subscript BS points to the fact that this polynomial is only 

valid for Wageningen B-series propellers for x=0.75. A typical 

result of the C and C - calculations for the Wageningen B-series 
LI L) 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Valid 

1 (but n 

Coefficient 

k. 
1 

-8.515xl0"' 

1.886x10 

-3.398x10"' 

2.167x10"' 

-1.536x10 

1.685x10"' 

-2.573x10"' 

2.354x10"' 

1.247x10"' 

-1.743x10"' 

-5.944x10"' 

1.585x10"' 

-1.045x10"' 

8.391x10"^ 

8.777x10° 

-1.531xl0" 

-1.141x10° 

6.981xl0~' 

5.631x10° 

1.643x10"^ 

2.814x10"' 

-2.170xl0~' 

1.271x10 

-2.127x10° 

-2.568xlo' 

1.562x10^ 
0 

9.580x10 
-1.620xl0' 

7.852x10° 

-3.249x10"' 

Power of 

Z 

a. 
1 

0 

0 

1 

0 

0 

1 

1 

1 

2 

2 

2 

2 

2 

2 

0 

1 

1 

0 

0 

2 

2 

2 

0 

1 

1 

1 

2 

2 

2 

2 

for: 3<Z<7; 0.35<A„/A_<1.05; — — — b u— 
ot greater than the value fo 

Power of 

^E/'^O 

b. 
1 

0 

1 

1 

0 

2 

0 

0 

2 

0 

0 

2 

2 

2 

2 

0 

0 

1 

0 

2 

0 

1 

1 

0 

0 

2 

2 

0 

0 

0 

0 

Power of 

P(x)/D 

^i 

2 

1 

1 

3 

1 

3 

6 

1 

0 

1 

1 

2 

3 

6 

0 

1 

0 

3 

1 

6 

0 

6 

1 

3 

0 

1 

1 

2 

3 

6 

0.5<P(x)/D<1.4 and -( 

r J=0 where a is in 

Power of ] 

a 

\ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

D.04<a<0.2 

radians) | 

Table 6 Coefficients and powers of polynomial for dĈ /̂da as 

derived from Wageningen B-series propellers for x=0.75. 
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FIG. 16. POLAR CURVES OF EQUIVALENT PROFILES OF 5 - BLADED B-SERIES 

PROPELLERS FOR P/D =1.0 AT A REYNOLDS NUMBER OF 2 x lo'^ 

p r o p e l l e r s i s shown i n F i g . 16. The p o l a r c u r v e s ( C - C - c u r v e s ) 
L D 

of the 5-bladed B-series propellers for P/D=1.0 at a Reynolds 
7 

number of 2x10 are given. 

To derive the value of the drag coefficient of the blade sections 

of miscellaneous propellers, use can be made of the B-series 

propeller results when differences in blade section geometry and 

in effective aspect ratio are accounted for. 

On assuming that the expression for the minimum drag coefficient 

given by equation 3-32 is appropriate for all blade sections of 
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every propeller, the required corrections to the expressions for 

the B-series can be obtained from the fact that at non-ideal 

values of the lift coefficient, the increase in drag mainly 

results from the induced drag which varies approximately as the 

square of the lift coefficient. To take into account the influence 

of effective aspect ratio in this calculation (which for x=0.2 

of a miscellaneous propeller, for example, differs from the 

effective aspect ratio at x=0.75 of the respective B-series 

propeller), it is required to compare the difference between 

the value of the lift coefficient C and the ideal value of the 
L 

lift coefficient C of the blade section being considered and 
ij, 

the respective value for the equivalent profile of the B-series 

propeller with the same main parameters. In this way it is 

possible to determine an effective increment in angle of attack 

Aa, which must be added to the ideal angle of the respective 

B-series propeller to obtain an effective angle of incidence 

at which the induced drag is representative for the case at hand. 

The ideal angle of attack of the blade section at x=0.75 of 

B-series propellers can be found by setting equation 3-37 equal to 

zero and solving for a. At this angle, which may be denoted as 

a, , the lift-curve slope of the B-series propeller can be 
^BS 

determined from the polynomial for the lift coefficient of the 

B-series. This polynomial, obtained in the same manner as the 

polynomial for the derivative of the drag coefficient with respect 

to angle of incidence (expression 3-37), can be written as: 

, f. g. h. 
e./A„\ 1/„, ,\ 1 1 

c. ̂  = y 1- iS (^) ^ 
Bo . U 

1 
where the values of l.,e.,f.,g. and h. are given in Table 7. 

1 1 1 1 1 
The required increment in angle of attack,Aa, then follows from: 

dC, 
^" = (^L"^L.)/ - ^ (a. ) 

^^ ^BS 
(3-39) 

BS 
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in which C = lift coefficient of blade section in question, 
L 

CT = lift coefficient at ideal incidence of blade 
^i 

and 

, ., section in question, 

J—(a . ) 
-̂ ^ ^BS . 

= lift-curve slope at ideal incidence of equivalent 

BS B-series propeller from equation 3-38. 

The values of C,. and Ĉ  of the blade section for which the C is 
LI Lj , u 

to be calculated follows from the calculations described in 

sections 2.2.1 and 3.3. 

The method described above is primarily for the effects of 

differences in blade section thickness and effective aspect 

ratio. A final correction is required for the difference in blade 

section camber. This is necessary since the limits of integration 

given in equation 3-36 assume an ideal angle of incidence equal 

to that of the B-series at x=0.75. It follows that the correction 

for camber consists of a shift of the obtained dC /da curve such 

that the minimum value of C (the value for which dC /da=0) is 

situated at the ideal angle of incidence of the blade section 

in question. The final value of the drag coefficient then follows 

from: 

a. +Aa 

'f dC, 
^D = / d̂ '̂ ^̂ '̂ D . (3"4°' 

ƒ m m 
a-; 
^BS 

To recapitulate, the calculation of the drag coefficient at any 

radial station of an arbitrary propeller with main parameters 

within the wide range of B-series propellers is performed by first 

evaluating C from equation 3-32, then the appropriate value 
min 

for Aa from relation 3-39, and finally by integration the C -value 

from equation 3-40. This procedure necessitates previously 

calculated values of the lift coefficient and the ideal angle of 

incidence of the blade section in question together with the 

ideal angle of incidence and the lift-curve slope at the ideal 

angle of incidence for the respective B-series propeller at 
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i 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

Coefficient 

h 
2.862xl0" 

5.072x10 
1 

1.447x10 
0 

-7.0015x10 
-1.1132x10 

0 

-3.1261x10 
3.568x10 

1.078x10"' 

-1.042x10 

-1.087x10 

-3.566x10 
0 

-7.2492x10 
1.751x10"' 

9.141xl0" 

4.089x10 

-7.155x10 
1 

6.011x10 

6.2696x10 
1 

1.218x10 
1 

2.419x10 
-1.313x10"' 

-1.695x10 

1.980x10 

-5.797x10"' 

-7.709x10 

-1.292x10"' 

1.256xl0"' 

7.702x10"' 

-3.759x10"' 

-2.126xl0"' 

2.168x10"' 

1.506xl0"' 

Power of 

Z 

^ 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

Power of 

^E/^O 

f. 
1 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

1 

1 

1 

2 

2 

2 

2 

2 

0 

1 

2 

2 

2 

2 

2 

0 

0 

0 

0 

0 

0 

1 

Power of 

P(x)/D 

^i 

0 

0 

1 

2 

0 

0 

1 

0 

0 

1 

2 

3 

6 

0 

0 

0 

1 

6 

0 

1 

0 

1 

1 

2 

2 

0 

0 

0 

1 

2 

3 

0 

Power of 

a 

^ 

0 

1 

2 

2 

0 

1 

2 

0 

2 

1 

3 

2 

1 

0 

2 

3 

2 

3 

3 

3 

0 

2 

3 

1 

3 

0 

1 

2 

0 

1 

0 

0 
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32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

1.506x10 

-1.256x10 

-1.002x10 

6.773x10"' 

-3.563x10 

-1.589x10 

6.105x10"' 

1.196x10"' 

1.529x10"' 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

0 

0 

0 

1 

2 

6 

1 

1 

3 

Valid for: 3<Z<7; 0.35<Ag/AQ<l.05; 0.5<P(x)/D<1.4 and 

(but not greater than the a-value for J=0, where a is 

0 

1 

3 

2 

0 

0 

0 

1 

1 

-0.04<a<0.2 

in radians) 

Table 7. Coefficients and powers of polynomial for C for the 
L 

Wageningen B-series propellers for x=0.75. 

x=0.75. These last values are found from the polynomials given 

in Tables 5 and 7. The numerical values of dC /da, required for 

the integration in equation 3-40, are also derived from Table 6. 

All angles of attack are with respect to the chord line of the 

blade sections. 

3.5 Effect of Viscosity on Chordwise Pressure Distribution 

A simple viscosity allowance on the velocity distribution can 

be derived by assuming, after Pinkerton [3-26], that in the 

theory outlined in section 2.4.1. 

C^ = 2TTe °sin(a+6 ) (3-41) 
L a 

where C = experimental value of lift coefficient, 

and 6 = corrected value of the zero-lift angle of attack 
a 

to give experimental lift coefficient 

Solving for 6 gives: 

B = arcsin (Ĉ /2Tie ) (3-42) 
Ot XJ 
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ejj(<t>) = e(<|>)+-|(l-cos((>) (3-43) 

where AB is the increment of e required to give zero velocity at 

<t>=T^, v i z : 

AB = B|̂ -6 

The new value for de/d<t) then becomes: 

'̂ â de AB . . 
TT' = J X + "^ Sin()) d(J) d(l) 2 

(3-44) 

(3-45) 

The relation for the velocity distribution is then: 

V ^ ^ '^^dj^T"^^"^' 

" n 2 — ' 
y ^ ( ( J ) ) + s i n <1> 

cos(a+B ) s in (t)+e((())+-^(l-cos(ti)-S I 

+sin(a+6 ) cos [ifi+e (iji)+-^( l-coS()))-B +sin(a+6 ) (3-46) 

In section 2.4.2, where this theory is applied to propeller 

blades, the effect of viscosity on the velocity distribution 

in the three-dimensional case can be determined by means of: 

6 (x,e)= arcsin(C (x,6)/27re )-a^^;^(x,e) 
"gff ^ err 

ABgff(x,9) 
and E (e)= c^ff(B)+ ^ 

'̂ eff ^^^ 2 
(1-COS9) 

(3-47) 

(3-48) 

where AB ,̂  = 6 (x,6)-B(x,9 
^ ef f 

e.tt 

(3-49) 

corrected value of effective three-dimensional 

zero-lift angle of attack, 

and a^^j = effective angle of attack for three-dimensional 

pressure distribution calculation (from 

equation 2-93) 
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which values are now used in equation 3-46 in lieu of the values 

for the two-dimensional case. The pressure distribution is obtained 

from the velocity distribution by means of the Bernoulli relation, 

viz: 2 

Cp^ (x,9) = l-[v^ (x,9)/V(x,9)] (3-50) 
c c 

pressure coefficient at x , 

resultant velocity at the blade section given 

by equation 2-39. 

where Co 
c 

and V 
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CHAPTER 4 

CALCULATION OF CAVITATION PERFORMANCE OF PROPELLERS 

4.1 General Remarks on Types of Cavitation Occurring on 

Propeller Blades. 

There are two methods by which vapour- and gas filled bubbles 

become visible in a fluid and grow: when the fluid is heated under 

constant pressure and when the pressure in the fluid is reduced 

at constant temperature. The formation of such bubbles is called 

boiling when caused by temperature increase and cavitation when 

caused by the reduction of pressure. 

It is possible to define two physically different types of 

cavitation. Firstly, cavity can form and grow by vaporization of 

the fluid. This type of cavitation is called vaporous cavitation 

and occurs when the dynamic pressure change is such that the local 

pressure somewhere in the fluid falls below the prevailing vapour 

pressure. Secondly, a cavity or bubble in a fluid can occur and 

grow due to diffusion of dissolved gases into the bubble or 

simply by expansion of the gas content in the liquid when the 

pressure decreases. This type of cavitation is called gaseous 

cavitation. The inception pressure of the gaseous cavitation form 

is often higher than the critical inception pressure of the 

vaporous cavitation form. Normally, however, the time between the 

formation and collapse of a vaporous cavity is too short to allow 

gas diffusion into the cavity. This is the reason that hydrodynamic 

cavitation processes are mainly of the vaporous type. 

When a cavitation bubble moves into an area of higher pressure the 

bubble will collapse. Vapour-filled cavities collapse violently 

and cavities with a high gas content collapse relatively slowly 

and calmly. The violent collapse of a vapour-filled cavity is in 

fact an implosion and is caused by the sudden condensation of the 

vapour. The slower and more continuous process of a gas going into 

solution causes the slower rate of collapse of a gas-filled cavity. 
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FIG.17 STABLE SHEET CAVITATION, 

The mechanism of cavitation inception has held a large number of 

research workers occupied a very long time, and even now there is 

no universal agreement. The problem is that, even though cavitation 

experiments prove that inception occurs in the proximity of the 

vapour pressure, appreciable deviations keep eventuating - even 

for the same fluid. In addition, it has been shown that liquids 

can withstand very high tensions, i.e. negative pressures. Various 

hypotheses have been formulated on the mechanism of cavitation 

inception. Each tries to take into account the mentioned dicrepancies. 

It seems that this behaviour of a fluid can only be explained by 

assuming the existence of weak spots in the liquid. It is nowadays 

considered probable that the amounts of undissolved gas and 

uncondensed vapour act as weak spots. Due to the fact that not 

only water but nearly all liquids can be made to cavitate, 

demonstrating the existence of weak spots or "holes" (as they 

are sometimes called), it is very likely that in particular 

undissolved gases act as such. 
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FIG.18 BUBBLE CAVITATION. 

It has been pointed out that, if undissolved gases or uncondensed 

vapour are to be permanently present in the fluid, some 

stabilization process, preventing these small bubbles from 

dissolving or rising to the surface (if a free surface is present), 

must exist. Various hypotheses have been devised to account for 

such a stabilization process. In general, it may be said that all 

hypotheses show that undissolved gas can exist, either in the 

free stream, called stream nuclei, or in the form of pockets in 

microscopic cracks in solid boundaries, called wall or surface 

nuclei, or in both. In this way plausible theories have been put 

forward to show how a nucleus or weak spot can exist and cause 

cavitation. The most accepted theory is one put forward by Harvey 

et al [4-1]. He showed that the surface tension of the fluid can 

effectively decrease the pressure in the liquid surrounding a 

gas and vapour-filled nucleus in a crack or crevice of a solid 

boundary. 
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FIG.19 CLOUD CAVITATION BEHIND SHEET CAVITY. 

Knapp etal [4-2] classify hydrodynamic cavitation, in general, 

into the following categories: 

- travelling cavitation, 

- fixed cavitation, 

- vortex cavitation, and 

- vibratory cavitation. 

The travelling cavitation type occurs in the free stream and 

consists of individual bubbles moving with the flow. Fixed 

cavitation occurs on boundaries of immersed bodies. It is fixed 

in the sense that cavitation is attached to the body, as such 

being inherent to the body and not to the flow. A vortex occurs 

in a high shear flow. To balance centrifugal forces the pressure 

in the flow near the vortex must decrease continuously as the 

vortex is approached. These low pressures cause cavitation. 

Vibratory cavitation is caused by pressure pulsations in the 

• 
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FIG.20 UNATTACHED TIP VORTEX CAVITATION. 

liquid. Usually these pressure pulsations are due to a submerged 

object vibrating normal to its face, thus producing pressure 

waves. Cavitation is caused when these pressure variations are 

large enough to cause the pressure in the liquid to reach, and 

fall below, the vapour pressure. 

Cavitation forms on marine propellers are mainly of the fixed and 

vortex type. These types can be subdivided either according to 

the position on the propeller where the cavitation occurs, or 

according to the physical nature of the cavitation. Classifying 

propeller cavitation according to the latter method, it is 

possible to specify the following types: 

- sheet cavitation, 

- bubble cavitation, 

- cloud G/ivitation, 

- tip vortex cavitation, and 

- hub vortex cavitation. 

* 
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FIG.21 ATTACHED (DEVELOPED) TIP VORTEX CAVITATION. 

Sheet cavitation first occurs at the leading edge of propeller 

blades on the suction side when the blade sections work under 

positive angles of attack, and on the pressure side when the blade 

sections work under negative angles of attack. This is due to the 

fact that these non-shock-free angles of attack cause large 

pressure gradients in this region. This cavitation form may 

develop to cover the complete suction side of a blade, spreading 

inward from the leading edge in the form of a sheet, in which 

case it will often have a very stable character as shown in 

Fig. 17. When working in a wake, however, this cavitation type 

often has a very unstable character. 

Bubble cavitation first occurs at the midchord or at the position 

of maximum thickness of the blade sections, at shock-free entry 

of the flow. As such it occurs in non-separated flows. This 

cavitation type appears as large individual bubbles, growing and 

contracting rapidly; see Fig.18. 
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FIG.22 HUB AND TIP VORTEX CAVITATION. 

Cloud cavitation often occurs behind strongly developed sheet 

cavities and, in general, in moderately separated flows in which 

many small vortices form kernels for many small cavities. Cloud 

cavitation appears as a mist or a "cloud" of very small bubbles 

as shown in Fig.19. 

The vortex type of cavitation occurs at the tip and hub of the 

propeller. The flow around the end of the blades from the pressure 

to the suction side causes an unstable vortex which is shed from 

the tip and the hub into the flow in the same way as an aerofoil 

of finite aspect ratio generates a vortex at each end. The 

pressure is least in the centre of the vortex, and it is this 

vortex core which cavitates. Tip vortex cavitation usually starts 

somewhat behind the tip of propeller blades due to the fact that 

the maximum strength of the vortex occurs at that point where the 

flow around the blade tip is complete. In this early stage, the 

cavitation is therefore unattached to the tip as shown in Fig.20. 
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When the vortex becomes stronger, or the liquid pressure is 

reduced, the cavitating tip vortex becomes attached as shown 

in Fig. 21. 

The hub vortex is formed by the combined vortices from the blades 

at the blade root, which by themselves are usually too weak to 

cavitate. With a converging hub fairwater form this hub vortex can, 

however, become very strong and cavitate readily. The resulting 

vortex cavitation is very stable and appears as a thick "rope" 

with strands corresponding to the number of blades as shown in 

Fig.22. 

4.2 Method for Assessing Cavitation Inception. 

An important step forward in the study of cavitation inception 

and related scale effects was made when it was found that the 

onset of cavitation can occur in the region of laminar boundary 

layer separation. The recent study performed by Arakeri [4-3] has 

shown that the value of the pressure coefficient at the 

location of laminar separation is closely correlated with the 

magnitude of the cavitation index at the onset of cavitation. 

Prior to this work, Alexander [4-4] and Bailey [4-5] had suggested 

that such a correlation existed. Besides the correlation with 

laminar boundary separation, Arakeri also found experimental 

evidence that the intense disturbances at the site of turbulent 

reattachment or of laminar-turbulent transition on bodies not 

possessing laminar separation can also be responsible for cavitation 

inception. He obtained excellent agreement between the negative 

value of the pressure coefficient at the calculated position of 

transition and the desinent cavitation number for a two-inch 1.5 

calibre ogive determined by Parkin and Hall [4-6]. He suggests, 

however, that further verification of this result is required 

since the calculation of laminar-turbulent transition is only 

approximate. Because it is important to have an explanation for 

viscous scale effects on bodies which do not exhibit laminar 

separation (most bodies at high Reynolds numbers), it was deemed 

essential to obtain certainty regarding whether or not the onset 
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of cavitation occurs at, or near, the point of transition. The 

necessary study in this regard requires a comparison of the results 

of experimental studies on cavitation inception with the charac­

teristics of the boundary layer. 

A source of inaccuracies in boundary layer calculations is avoided 

when experimentally obtained pressure distributions are used. The 

only profile of which both cavitation inception characteristics 

and the pressure distributions have been measured is the NACA 4412 

aerofoil. On this profile Pinkerton [4-7] performed pressure 

distribution measurements and Daily [4-8] and Kermeen [4-9]carried 

out cavitation experiments. The Reynolds number of the tests in 
6 6 

the cavitation tunnel ranged between 0.55x10 to 1.5x10 while the 

tests performed by Pinkerton in the wind tunnel were at a Reynolds 

number of about 3x10 . Bailey [4-5 ] rightly warns about the 

difficulty of making comparisons between the cavitation behaviour 

and the pressure distribution from these tests. Not only is there 

a difference in Reynolds number but also the turbulence level of 

the water tunnel probably differed from that in the wind tunnel. 

The results from these tests , however, will certainly suffice for 

the purpose of investigating the possible existence of a 

relationship between cavitation inception and laminar-turbulent 

transition. 

Calculations were performed to determine the value of the Reynolds 

number based on momentum thickness and local velocity and the 

Reynolds number based on free-stream velocity at the position on 

the foil at which the negative value of the pressure coefficient 

equals the value of the cavitation index for the inception 

condition. The results are presented in Table 8 and Fig.23. 

Included also are some values for the NACA 66 -012 aerofoil for 
1 

which the information on cavitation inception was taken from 

Kermeen [4-10] and the pertinent pressure distributions, valid 

for potential flow, from Bailey [4-5] . Contrary to what was 

supposed by Alexander [4-4] and Bailey, the boundary layer 

calculation did not exhibit laminar separation in the region of 

cavitation inception at the Reynolds numbers of the cavitation 
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e x p e r i m e n t s . A l l c a v i t a t i o n i n c e p t i o n p o i n t s , a s s e t o u t i n F i g . 2 3 

l i e e s s e n t i a l l y on one c u r v e . The n a t u r e of t h i s c u r v e i s ve ry 
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552 

7.95xlo" 

6.28xlo" 

6.25xlo" 

5.96x10'' 

5.42xlo" 

6.27xlo" 

3.95xlo" 

7.47xlo" 

4.57xlo" 

6.74x10^ 

6.71x10^ 

Table 8 Results of analysis of inception data given by Kermeen [4-9, 4-10] for the NACA 4412 

and NACA 66 -012 profiles. 
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agrees quite well with the obtained points. In this regard it is 

important to note that the relation derived by Cebeci et al is an 

approximation incorporating Smith's relation only for Reynolds 

numbers (based on x ) above 7x10 . For Reynolds number below 7x10 s 

Smith's relation was altered to obtain an improved correlation 

with experimentally obtained transition data. 

To obtain a diagram better suited for correlation with transition 

loci, a logarithmic plot of the transformed cavitation inception 

data was made. The result is shown in Fig. 24. The experimental 

data used by Smith [4-ll] for high Reynolds numbers are included. 

It is seen that the formula derived by Cebeci et al [4-12] fits 

the combined data very well. It is suggested, therefore, that 

the formula: 

R. = 1.174(l-t-22400/R )R°'"^ (4-1) 
9. ' X X 
tr c^ c^ 

tr tr 

could well be used to determine the location of cavitation inception 

The range of applicability of this locus is: 

lxl0^<R <6xl0^ (4-2) 
X 
=tr 

For values of the x -Reynolds number below 1x10 this relation 

does not hold. To obtain a formula for this region, a straight 

line can be drawn through the data of Fig.24 in the x -Reynolds 
5 ^ 

number range below 7x10 . The equation of this line and its range 
of validity is: 

R, = 4.048R°-36S 
9 . X . 
Cl Cl 

(4-3) 

lxlo"<R 7x10^ 
X 
Cl 

in which R„ = Reynolds number based on local velocity and 
c i 

momentum thickness at position of cavitation 
inception, 
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R = Reynolds number based on distance along 
ci 

surface from leading edge and free-stream 
velocity at position of cavitation inception. 

From these results it may be postulated that in the case of 

attached boundary layers cavitation inception occurs in the 

transition region of the boundary layer. This confirms Arakeri's 

preliminary findings. The physical explanation of this phenomenon 

may be sought in the fact that in the region of transition from 

laminar to turbulent flow, strong pressure fluctuations occur 

which are very similar to the strong pressure fluctuations which 

occur in the region of reattachment of the separated free shear 

layer. 

It stands to reason that a more complete analysis of additional 

cavitation inception data on different bodies could well result 

in a more accurate formula, particularly when effects of pressure 

gradient and turbulence are taken into account. 

The mechanism of cavitation inception described thus far applicas 

to sheet and bubble cavitation only. Inception in a zone of 

adverse pressure gradients such as occurs near the leading edge 

at non-ideal angles of attack, will lead to sheet cavitation 

on lowering the cavitation index. In this case the residence time 

of the macroscopic bubbles at inception is very small. Inception 

in a zone of favourable (moderate) pressure gradients leads to 

bubble cavitation when the cavitation index is lowered. Here the 

residence time of the bubbles at inception is appreciably larger. 

A procedure for determining whether sheet or bubble cavitation 

occurs is given in section 4.3. 

Estimation of the occurrence of cloud cavitation has been 

considered by Johnsson and S^ntvedt [4-13]. They assume that cloud 

cavitation eventuates in the separated zone behind a sheet cavity. 

The shape of the sheet cavity is estimated which is added to the 

blade section shape to obtain an effective shape around which 

the pressure distribution and the boundary layer characteristics 

are calculated. Cloud cavitation is then said to occur at the 

location of turbulent separation. This is a reasonable approach 
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'since it agrees with experimental observations of the occurrence 

of cloud cavitation described by Van Manen [4-14]. The weakness 

of this approach, however, lies in the calculation of the shape 

of the cavity which can only be assessed approximately. This 

calculation procedure can be improved when the pressure distribution 

for the cavitating condition can be determined with acceptable 

accuracy. This topic is considered in section 4.4 in connection 

with the calculation of propeller performance for cavitating 

conditions. 

The analytical assessment of the occurrence of vortex cavitation 

will not be attempted here. An accurate understanding of the 

mechanism of vortices behind lifting surfaces is still lacking. 

A "rough and ready" calculation procedure is given by Johnsson 

and S0ntvedt [4-13]. 

Apart from viscous scale effects on cavitation inception, mention 

should also be made of scale effects due to roughness and air or 

gas content of the fluid. It is known that both roughness and a 

large air content give rise to cavitation inception at higher 

values of the cavitation index. In a recent paper by Brown [4-15] 

it is shown that air content effects are appreciable. Further 

study of this topic is required, particularly in regard to the 

relationship between total air content and bubble size and their 

effect on cavitation inception. Some very interesting findings in 

this context are given by Keller [4-I6] .Effects of roughness on 

cavitation inception have been assessed by Holl [4-17]. 

4.3 Calculation of Type and Extent of Cavitation. 

Dfferences occur in the cavitation index at the onset of cavitation 

(incipient cavitation) and at the disappearance of cavitation 

(desinent cavitation). This phenomenon is called cavitation 

hysteresis. In the calculation of the extent of cavitation, it is 

necessary to take this phenomenon into account insofar that it 

is required to deal with the differences in time delay for the 

onset of cavitation and the disappearance of cavitation. 



- 104 -

Although the phenomenon of time delay and hysteresis is not 

completely understood, it is clear that time is required for the 

growth of a nucleus to a visible cavity and for its decline. 

The duration of growth and decline is dependent on the effective 

liquid tension and the population and characteristics of gas 

or air nuclei entrained in the liquid. If it were assumed that 

the requirements for the growth of a nucleus to a macroscopic 

cavity are equal to those for the decline of the cavity, there 

would essentially be no hysteresis. If the requirements and 

characteristics for the onset of cavitation are known it would 

be possible to predict when and where the cavity will collapse. 

In assessing the extent of cavitation, the effect of time delay 

on both the onset and disappearance of cavitation can be roughly 

determined if the pressure distribution of the non-cavitating 

body is known and a scaling relation for cavitation from nuclei 

on smooth surfaces can be found. Such a relation is Knapp's 

dynamic similarity parameter [4-18] for spherical cavities, which-

was deduced from Rayleigh's equation for bubble growth or collapse 

[4-19], viz: 

R = kt \/AP/P' (4-4) 

in which R = maximum radius of bubble, 

k = a constant, 

t = time of growth to R, 

p = effective liquid tension causing growth or 

decline of the cavity, 

and p = density of fluid. 

Consider the flow past an immersed body having a pressure 

distribution with a peaked minimum for the non-cavitating condition 

as shown in Fig. 25. The cavitation index at inception is a.. On 

reducing the cavitation index to some value o, the cavity will 

grow to some finite length 1 , and terminate at some position 

given by x /c. Then the effective liquid tension responsible for 
c 3 

the growth of the cavity of length 1 can be v;ritten as: 
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POSITION OF CAVITATION INCEPTION 

PRESSURE DISTRIBUTION 
OF NON-CAVITATING BODY 

FIG. 25 SKETCH TO DEFINE VARIABLES USED IN THE RELATION FOR CALCULATION 
OF EXTENT OF CAVITATION. 

X /c 
c, 

(̂ P), 

x^^/c 

/c) (4-5) 

The associated growth time can be written as; 

X /c 
c 

^G = = 

2 1 
; 7—, d(x /c) 

V (x /c) c' 
X c 
c 

X /c 
c 

(4-6) 
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Likewise, the effective liquid tension working to decline the 

cavity is: 

(Ap)jj = / Ta+C (x^/c)l.jPU^d(x^/c) (4-7) 

and the associated decline time by: 

X /c 
c 

(x^ /c-x^ /c) 

^D = = / v' (X /c) '̂ '"c/"> '"-S) 
' X c 

X /c 

In equation 4-5 to 4-8: 

U = free-stream velocity, 

X = position on chord line of profile or blade 

section from leading edge, 

V = local velocity at x /c, 
X -̂  c 
c 

and c = chord length of profile or blade section 

With these equations, it is possible to determine the ratio of 

the value of Knapp's similarity parameter for decline and for 

growth of the cavity, if the cavity length and the pressure 

distribution of the non-cavitating body are known. Defining 

this ratio as K, we write: 

/(Ap) / . /(Ap) 

^ d V - ^ / ^ G V - ^ '"-̂ ' 

which can be written as: 
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^c /^ i c ^ ^ 
3 (X /C-X /c) 

f °3 ^1 ,^i I I |a+C„(x„/c)l d(x„/c) 
r [a+Cp(x^/c)] 

d(x_/c) / / r ' p^ c ' ^ ' r ^ c 
/ ^x '^^0/°' 

X /c \/x /c 

c V '̂  
K = • ,' (4-10) 

X /c ' • ' 

} ' (x^ /c-x^ /o 
/ v^ (x^/c) '^^V"'\ / / -f%(>^c/°)] '^'-c/^' 

x^^/c ^ 

It follows that if the position of x̂ , /c (specifying the cavity 

length) were not known then this could be determined if the 

value of K were known. In the general case, the value of K 

will depend on the type of pressure distribution, the value of 

the ratio a/a., the free-stream velocity, the size of the body, 

and the characteristics of the air or gas nuclei. An attempt to 

find such a general relation for K was undertaken by calculating 

K for the results of the cavitation measurements on the NACA 4412 

profile already referred to [4-8, 4-9]. The results are shown in 

Fig. 26. In this figure the value of K is set out as a function of 

a/a. for the pressure distributions on the suction side at angles 

of attack of -H6°, +12°, +8\ +4\ +2" and 0", and for the pressure 

side at -2° and -4°. The effect of air content is not included 

since the NACA 4412 tests were performed at a constant value of 

the air content ratio. The cavity lengths, necessary to specify 

the value of xc /c in each case, were obtained by interpolation 

from Fig.20 of Reference 4-9. It follows from Fig.26 that when 

cavitation inception occurs near the midchord position (for angles 

of attack of -i-4 , -i-2 and 0 ) , the value of K for a prescribed 

a/a.-ratio is essentially the same. All other points are for sheet 

cavitation occurring near the leading edge. Here a large increase 

in K occurs just after inception (which occurs for a=a.) , 

indicating that a much larger value of t \/ Ap/p' is required for 

decline of the cavity than for the growth thereof. At about a/a.= 

0.2 5 and lower, the value of K seems to become independent of the 

type of pressure distribution. In this region the various curves 

converge to essentially one relationship for K as a function of 
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FIG 26 RATIO OF VALUE OF KNAPP'S SIMILARITY PARAMETER FOR DECLINE TO 
VALUE FOR GROWTH AS DETERMINED FROM NACA 4412 MEASUREMENTS. 

o/o., which goes to infinity when a/a. approaches zero. This 

situation probably arises because of the extreme cavity lengths 

at such low cavitation numbers (super cavitation). It should be 

noted that for the calculation of K when the cavity length exceeds 

the chord length, the value of C (x /c) in equation 4-10 is put 

equal to zero. 
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To have some measure for the large variation in K at constant 

a/0., particularly for the occurrence of sheet cavitation near 

the leading edge, a correlation was sought between K and a 

characteristic property of the pressure distribution and other 

parameters which influence K such as the position of cavitation 

inception. It was found that the momentum thickness of the boundary 

layer at the inception location afforded such a correlation. This 

is quite realistic since the value of the momentum thickness at 

a specific position on the body significantly reflects the upstream 

pressure history and absolute value of the velocity. 

The final correlation, as obtained from the NACA 4412 profile is 

shown in Fig.27. To facilitate the determination of an analytical 

function for K, the logarithm to the base 10 is shown as a function 

of the ratio a/a. and as a function of log (8. /c) where 6. is 1 ^ inc inc 

the momentum thickness of the laminar boundary layer at the 

cavitation inception location and c the chord length. The drawn 

curves represent the formula: 

logK = 1.852+23.85o/a.-93.90(a/a.)^+68.77(a/a.)3^0-0450 
^ 1 ' 1 ' 1 o/o^ 

+log -0.4110+9.951(a/a.)-33.75(a/a.)^+24.29(a/a.)^ 

(4-11) 

which was obtained by means of a multiple regression procedure. 

For calculation purposes it is suggested that for 9. /c greater 

than approximately 0.0003 bubble cavitation occurs, and for 

smaller values sheet cavitation. At a specific value of 0. /c and 
inc 

a/a. the length of the cavity can be assessed from equation 4-10 

when K is determined by means of equation 4-11. To solve equation 

4-10 an iteration procedure is required to determine x™ /c. The 
3 

beginning of the cavity is assumed to be situated at the point of 

inception as calculated -by the method outlined in section 4.2. 
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Scale effect on the extent of cavitation exists if at the location 

of cavitation inception the value of 9. /c varies between full-
' inc 

scale and model scale. This is particularly the case for values 

of 0. /c smaller than about 0.0003, since then the value of K 
inc 

appreciably varies with 9. /c. Since this range of 9. /c-values ^^ •' inc' ^ inc 

seems to be associated with sheet cavitation on either the suction 

or pressure side, it may be concluded that a scale effect in the 

extent of sheet cavitation is very likely to occur. This does not 

mean that there is no scale effect on the extent of bubble 

cavitation. Differences in the calculation of a., from the 
1 

inception considerations of the previous section, will also result 

in a scale effect in the extent of cavitation. 
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4.4 Effect of Cavitation on Propeller Performance. 

The effect of cavitation on propeller performance can be determined 

if the change in the value of the lift and drag coefficients, 

after the onset of cavitation, can be assessed. This change in 

the lift and drag forces on a profile is caused by the change in 

the flow over the lifting surface whereby the pressure distribution 

is modified. An example is given in Figs. 28 and 29 in which measure 

pressure distributions at various angles of attack and for different 

values of the cavitation index are given. The hydrofoils on which 

these measurements were made are of the Walchner type [4-20] (not 

to be confused with the ogival type on which Walchner performed 

measurements), with a thickness-chord length ratio of 0.03 and 

0.06 and a camber-chord length ratio of 0.03 and 0.015 respectively. 

The Reynolds number of these pressure distribution measurements 
6 6 

ranged from 2x10 to 6x10 . The tests were performed in the large 

cavitation tunnel of the Netherlands Ship Model Basin. Previous 

measurements of this type were reported on by Balhan [4-2l]. 

Results of these later measurements were given by Van Oossanen 

[4-22, 4-23]. From Figs. 28 and 29 it can be seen that cavitation 

reduces the pressure peak at the leading edge, spreading it out 

over the chord length. In most cases this change in the pressure 

distribution results in a decrease of the lift on the profile, 

sometimes after an initial increase. The effect on the drag of 

the profile is quite analogous, but lags somewhat behind. As such, 

the effectiveness, or the lift-drag ratio of profiles or propeller 

blade sections decreases with increasing cavitation, sometimes 

after an initial increase. This is shown in Figs. 30 and 31, in 

which the lift coefficient, the drag coefficient and the C /C -
D L 

values for the 2 Walchner profiles as a function of cavitation 

number and angle of attack are shown. The coordinates of these 

two profiles are given in Tables 9 and 10. 

An example of how cavitation can influence the thrust, torque 

and efficiency of a propeller is given in Fig. 32, taken from 

Van Lammeren et al [4-24], which is valid for the Wageningen B5-75 

propeller in uniform flow. 
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X - c o o r d i n a t e s i n % o f c 

0 . 0 0 0 l e a d i n g e d g e 

0 . 6 2 5 

1 . 2 5 0 

2 . 2 5 0 

2 . 5 0 0 

3 . 7 5 0 

5 . 0 0 0 • 

7 . 5 0 0 

8 . 7 5 0 

1 0 . 0 0 0 

1 2 . 5 0 0 

1 5 . 0 0 0 

2 0 . 0 0 0 

2 2 . 5 0 0 

2 5 . 0 0 0 

2 5 . 5 0 0 

3 0 . 0 0 0 

3 5 . 0 0 0 

3 7 . 5 0 0 

4 0 . 0 0 0 

4 2 . 5 0 0 

4 5 . 0 0 0 

5 0 . 0 0 0 

5 5 . 0 0 0 

5 7 . 5 0 0 

6 0 . 0 0 0 

6 2 . 5 0 0 

6 5 . 0 0 0 

7 0 . 0 0 0 

7 4 . 5 0 0 

7 5 . 0 0 0 

7 7 . 5 0 0 

8 0 . 0 0 0 

8 5 . 0 0 0 

y - c o o r d i n a t e o f 

u p p e r s i d e i n mm 

0 . 0 0 0 

1 . 2 3 5 

1 . 9 1 4 

2 . 8 1 4 

2 . 9 9 7 

3 . 9 3 7 

4 . 8 0 0 

6 . 3 8 0 

7 . 1 2 3 

7 . 8 3 4 

9 . 1 8 2 

1 0 . 3 7 2 

1 2 . 4 5 9 

1 3 . 3 7 7 

1 4 . 2 0 4 

1 4 . 3 6 4 

1 5 . 6 0 5 

1 6 . 6 8 3 

1 7 . 0 9 3 

1 7 . 4 2 9 

1 7 . 6 8 5 

1 7 . 8 6 5 

1 8 . 0 0 0 

1 7 . 8 2 6 

1 7 . 6 1 7 

1 7 . 3 1 7 

1 6 . 9 3 1 

1 6 . 4 5 6 

1 5 . 2 2 1 

1 3 . 8 4 4 

1 3 . 6 5 7 

1 2 . 7 4 7 

1 1 . 7 4 5 

9 . 4 6 0 

y - c o o r d i n a t e o f 

l o w e r s i d e i n mm 

0 . 0 0 0 

- 0 . 6 3 7 

- 0 . 7 2 6 

- 0 . 6 9 7 

- 0 . 6 8 7 

- 0 . 4 6 3 

- 0 . 2 2 8 

0 . 2 9 7 

0 . 5 5 9 

0 . 7 9 0 

1 . 3 3 9 

1 . 8 8 8 

2 . 9 2 0 

3 . 3 8 1 

3 . 8 1 0 

3 . 8 9 4 

4 . 5 6 5 

5 . 1 6 3 

5 . 4 1 0 

5 . 6 1 4 

5 . 7 7 5 

5 . 8 9 5 

6 . 0 0 0 

5 . 9 3 4 

5 . 8 4 4 

5 . 7 2 5 

5 . 5 7 4 

5 . 3 9 0 

4 . 9 4 9 

4 . 4 2 4 

4 . 3 5 9 

4 . 0 1 1 

3 . 6 3 3 

2 . 8 0 0 
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87.500 

90.000 

91.250 

92.500 

95.000 

96.250 

97.500 

97.750 

98.750 

99.375 

100.000 trailing edge 

8. 180 

6.814 

6.091 

5.350 

3.798 

2.974 

2.129 

1.954 

1.248 

0.724 

0.000 

2.341 

1.846 

1.591 

1.326 

0.774 

0.500 

0.218 

0.124 

-0.060 

-0.116 

0.000 

Table 9.Coordinates of Walchner profile of which cavitation 

results are given in Figs.28 and 30. Length of profile 

is 400 mm . Radius of curvature of leading and trailing 

edges equals 0.35 mm. 
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X -coordinate in % of c 
c 

0 leading edge 

0.625 

1.250 

2.250 

2.500 

3.750 

5.000 

7.500 

8.750 

10.000 

12.500 

15.000 

20.000 

22.500 

25.000 

25.500 

30.000 

35.000 

37.500 

40.000 

42.500 

45.000 

50.000 

55.000 

57.500 

60.000 

62.500 

65.000 

70.000 

74.500 

75.000 

77.500 

80.000 

85.000 

y-coordinate of 

upper side in mm 

0.000 

2.021 

2.937 

4.000 

4.423 

5.268 

6.169 

7.749 

8.481 

9.169 

10.369 

11.545 

13.380 

14.182 

14.896 

15.920 

16.081 

16.980 

17.308 

17.575 

17.775 

17.910 

18.000 

17.832 

17.638 

17.352 

16.983 

16.527 

15.313 

13.959 

13.798 

12.922 

11.953 

9.721 

y-coordinate of 

lower side in mm 

0.000 

-1.723 

-2.343 

-2.951 

-3.062 

-3.533 

-3.887 

-4.417 

-4.647 

-4.847 

-5.217 

-5.423 

-5.698 

-5.810 

-5.893 

-5.901 

-5.999 

-6.060 

-6.058 

-6.055 

-6.045 

-6.030 

-6.000 

-5.952 

-5.908 

-5.832 

-5.731 

-5.606 

-5.231 

-4.841 

-4.797 

-4.550 

-4.271 

-3.599 1 
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87.000 

90.000 

91.250 

92.500 

95.000 

96.250 

97.500 

97.750 

98.750 

99.375 

100.000 trailing edge 

8.465 

7.129 

6.417 

5.690 

4.165 

3.342 

2.452 

2.274 

1.420 

0.789 

0.000 

-3.213 

-2.807 

-2.583 

-2.357 

-1.883 

-1.607 

-1.280 

-1.186 

-0.827 

-0.508 

0.000 

Table 10.Coordinates of Walchner profile of which cavitation 

results are given in Figs.29 and 31. Length of 

profile is 400 mm. Radius of curvature of leading 

and trailing edges equals 0.35 mm. 
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FIG 32 EXAMPLE OF DECREASE IN THRUST, TORQUE AND EFFICIENCY OF 
PROPELLER DUE TO CAVITATION. 

The analytical determination of the change in lift and drag 

properties due to cavitation has been considered extensively in 

the literature. For super-cavitation a number of satisfactorily 

accurate formulas are available for the lift and drag coefficients 

as functions of the cavitation index and relative properties of 

the cavity shape. A summary of these are given by Knapp et al 

[4-27]. For sub-cavitating cases, in which the cavity lengths 

are of the order of the chord length or less, only a few results 

are available. Geurst [4-25], and Hanaoka [4-26] among others, 

have applied a linearized approach and obtained results which 

could be used in specific cases. Gutsche [4-27, 4-28], also in an 

attempt to derive the propeller performance in cavitating 

conditions, gives a set of formulas which work reasonably well 

if the propeller blades are composed of ogival blade sections 
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(Gutsche uses Walchner's results [4-29] for deriving cavity 

lengths). None of these formulas account for the increase in lift 

and drag which can occur for cavity lengths less than the chord 

length. The graphs given by Van Oossanen [4-23] for the change in 

lift, drag and moment properties due to cavitation do account 

for this phenomenon. These, however, should only be considered 

valid for the profile types studied. 

To derive a satisfactory method for the change in lift and drag, 

some reference will have to be given to the change in the pressure 

distribution of the non-cavitating body when cavitation occurs. 

From the results presented in Figs. 28 and 29 it can be seen that 

the distance along which the pressure distribution of the 

cavitating body is affected by cavitation is about twice the 

length of the cavity. The flat part of the pressure distribution 

corresponds to the position of the actual cavity. The pressure 

distribution on the cavitating body becomes equal to that of the 

non-cavitating body, downstream of the cavity, after bridging a 

region possessing a relatively steep pressure gradient. The 

length of this region is approximately equal to the length of the 

cavity. This is illustrated in Fig. 33. This fact leads to the 

possibility of determining the lift coefficient (or change in 

lift coefficient) by integrating the pressure distribution 

constructed in this way. This can only be carried out when the 

cavity length is smaller than half a chord length, since then 

the pressure distribution on the other side of the profile is 

unaffected. The required knowledge of the cavity length to 

determine if this is the case can be assessed by means of the 

equations of the previous section. 

When the cavity extends onto the downstream half of the profile 

or blade section, there is a loss in lift caused by the change 

in pressure distribution on the non-cavitating side. As soon as 

lift loss occurs good use can be made of a formula given by 

Radar [4-30], to determine the change in lift due to cavitation, 

viz: 
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FIG. 33 CONSTRUCTION OF APPROXIMATE PRESSURE DISTRIBUTION ON CAVITATING 
BODY WHEN CAVITY LENGTH IS LESS THAN HALF THE CHORD LENGTH. 

c r i t 
(4-12) 

in which C = lift coefficient for any cavitation number, 
Li 

lift coefficient for o=0, 

lift coefficient for non-c 

or for beginning of lift loss, 

C = lift coefficient for non-cavitating condition 
L 

and o .. = cavitation number for beginning of lift loss. crit ^ ^ 

A well-accepted value for the lift coefficient for zero cavitation 

number is: 

^ TTtt 

Lo 2 (4-13) 

where a = angle of attack in radians. 
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=0.577 

FIG. 34 CORRELATION OF NACA 4412 DATA AND RADAR S FORMULA FOR EFFECT 
OF CAVITATION ON LIFT COEFFICIENT. 

To use e q u a t i o n 4 - 1 2 , t h e v a l u e of a . , and C, must be 
crit L 

determined at the beginning of lift loss. This may happen as soon 

as cavitation begins, or when the cavity develops beyond the 

midchord position. The trend in the value of the lift coefficient 

with the onset of cavitation can be determined by integration of 

the changed pressure distribution as constructed in Fig. 33. 

Substitution of equation 4-13 in 4-12 gives: 

2C, 2C, 
crit 

(4-14) 

A comparison of the lift measurements on the cavitating NACA 4412 

hydrofoil and this equation is shown in Fig. 34. 
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^Dmax 
^Doo 
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FIG.Sn PLOT OF RATIO OF MAXIMUM DRAG COEFFICIENT (WHEN CAVITATION 
LENGTH EQUALS CHORD LENGTH) TO VALUE IN NON-CAVITATING FLOW 
AS A FUNCTION OF ANGLE OF INCIDENCE. 

The increase in lift after the onset of cavitation may or may not 

occur. The tendency is that it will occur when the non-cavitating 

body has a very high and narrow pressure peak near the leading 

edge. The reason for this is that the eventuating sheet cavitation, 

just after inception, almost immediately has an appreciable length 

due to the large value of the factor K, as described in the 

previous section. The increase in drag after the onset of 

cavitation, however, always appears. To assess its value in 

cavitating flows, good use can be made of the fact that the maximum 

increase in C always occurs when the trailing edge of the cavity 

coincides with the trailing edge of the profile or propeller blade 

section. Fig. 35 shows the ratio of this maximum value of the 

drag coefficient to the value of the drag coefficient in 

non-cavitating flow as a function of the angle of attack for the 

NACA 4412, NACA 66.-012 and Walchner 7 profiles measured by 

Kermeen [4-9, 4-10]. It is seen that at approximately the ideal 
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angle of attack the value of this ratio is equal to about 2. This 

ratio increases to about 4 at angles of incidence equal to about 

a.+6°, beyond which a decrease occurs. If it is assumed that this 

trend is typical of all profiles used in propeller design, 

we write: 

2 -H 
(a-a^)' (ci-â ) 

64F~ 
(4-15) 

which is approximately valid for: 

-8''<a-a.<-f8"' 
— 1 — 

If it is, furthermore, assumed that the change in C occurs as 

does the change in C , we write, analogeously to Radar's formula 
LI 

for the change in lift: 

JL 2_ 
2 Aa (4-16) 

in which C = drag coefficient at any cavitation number, 

C = drag coefficient of non-cavitating profile 
OO 

when the trailing edge of the cavity is 

situated upstream of the profile trailing 
edge, and equal to C when the trailing 

and C, 

edge of the cavity is situated downstream 

of the profile trailing edge, 

drag coefficient equal to C for 

determining C when the trailing edge of 

the cavity is situated upstream of the 

profile trailing edge, and equal to the 

value for a=0 when the trailing edge of 

the cavity is situated downstream of the 

profile trailing edge. 
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FIG.36 COMPARISON OF PREDICTED AND MEASURED DRAG COEFFICIENT OF 
CAVITATING NACA 4412 PROFILE FOR TWO ANGLES OF ATTACK. 

The value of C a t a=0 i s considered to be: 

•iïa2 ( 4 - 1 7 ) 

where a is in radians.Hence, when the trailing edge of the cavity 

is situated upstream of the profile trailing edge: 

0 . .-o TT . crit . 
2*0 .^-o' crit 1 

(4-18) 

and when the trailing edge of the cavity is situated downstream 

of the profile trailing edge: 

2C.. 
1 -

(4-19) 
2C, 2 a 

crit 
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In equations 4-18 and 4-19, C follows from equation 4-15, 
max 

a .^ equals the value of the cavitation index for beginning of 
crit ^ 

drag loss (which starts when the trailing edge of the cavity 

coincides with the trailing edge of the profile), and 0. is 

equal to the value of the cavitation index for cavitation 

inception. Fig. 36 gives a comparison of the drag coefficient 

measured on the NACA 4412 hydrofoil and the results of equations 

4-18 and 4-19. 

The calculation of propeller thrust, torque and efficiency, when 

cavitation occurs, is analogous to the calculation procedure for 

the non-cavitating case. Use is made of equations 2-41 to 2-46 

with the understanding that now the procedure described above is 

used for the determination of the lift and drag coefficients. 
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CHAPTER 5 

RESULTS OF CALCULATIONS AND CORRELATION WITH EXPERIMENT 

5.1 Open-Water Propeller Performance: Differences Between Model 

and Full Scale. 

To assess the accuracy of the propeller theory developed in 

chapter 2, a number of performance calculations were made in 

uniform flow (open-water). These calculations were carried out 

for propellers of the Wageningen B-series to estimate the 

accuracy of the theory for various blade numbers and blade areas, 

and for the high skew propeller series developed at the Naval 

Ship Research and Development Center to assess the accuracy of 

predicting the influence of skew. Figures 37 to 41 present the 

results for the B-series propellers and Fig. 42 presents the 

results for the high skew propellers. 

Table 11 gives the overall geometric properties of the original 

Wageningen B-series. The required coordinates of the profiles 

were calculated by means of formulas, analogous to the formulas 

given by Van Gent and Van Oossanen [5-2], viz: 

Yc = V (t -t^ ) 
•'f ace 1 max t.e. 

y, , = (V -i-V ) (t -t^ )-i-t̂  
•"back 1 2 max t.e. t.e. 

>for P< 0 (5-1) 

and y^ = V (t -t, 
•̂  face I max I.e., 

y, , = (V +V ) (t -t, )+t, 
•'back 1 2 inax I.e. I.e. 

^for P>0 (5-2) 

From Fig. 43 it follows that: 

Yf, „» yw,„i, = vertical ordinate of a point on a blade race uacK 

section on the face and on the back with 

respect to the pitch line, 
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1.0 

CALCULATED 
• ^D ;1 .2 = CROSS-FAIRED RESULTS OF EXPERIMENTS 
A P/D=0.6 ACCORDING TO REFERENCE [5 - l ] 

FIG. 37 RESULTS OF CALCULATION AND EXPERIMENTS FOR B-SERIES PROPELLERS 
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CALCULATED 
• P/D: 1.2 CROSS-FAIRED RESULTS OF EXPERIMENTS 
A P/D = 0.6 ACCORDING TO REFERENCE [5 - l ] 

FIG.38 RESULTS OF CALCULATION AND EXPERIMENTS FOR B-SERIES PROPELLERS 
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CALCULATED 
• P/D = 1.2 CROSS-FAIRED RESULTS OF EXPERIMENTS 
A P / D : 0 . 6 ACCORDING TO REFERENCE [5- l ] 

FIG. 39 RESULTS OF CALCULATION AND EXPERIMENTS FOR B-SERIES PROPELLERS 
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CALCULATED 
• P/D: 1.2 ^ = CROSS-FAIRED RESULTS OF EXPERIMENTS 
A P/D:0.6 ACCORDING TO REFERENCE [S-l ] 

FIG.40 RESULTS OF CALCULATION AND EXPERIMENTS FOR B-SERIES PROPELLERS 
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CALCULATED 
• P/D: 1.2 ^ ^ ^ CROSS-FAIRED RESULTS OF EXPERIMENTS 
A P/D: 0 6 ACCORDING TO REFERENCE [S- l ] 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
J 

FIG.41 RESULTS OF CALCULATION AND EXPERIMENTS FOR B-SERIES PROPELLERS 

^t.e. 

and 

t = maximum thickness of blade section , max 
t, = extrapolated blade section thickness at I.e. 

the trailing and leading edges, 

J , V = tabulated functions dependent on r/R and P, 
1 2 

P = non-dimensional coordinate along pitch line 

from position of maximum thickness to 

leading edge (where P=l), and from position 

of maximum thickness to trailing edge 

(where P = -1). 

Values of V and V2 are given in Tables 12 and 13. The values of 
1 

t and t. are usually chosen in accordance with rules laid i.e. t.e. 

down by classification societies or in accordance with manufacturing 

requirements. In conjunction with the geometry of this propeller 

series, it is remarked that at the Netherlands Ship Model Basin, 

now modified B-series propellers are used and designed, which 

have a slightly wider blade contour near the blade tip. These 
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Dimensions of four-, five-, six- and seven bladed B-screw series. 

r/R 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

^r Z 

1.662 

1.882 

2.050 

2. 152 

2.187 

2. 144 

1.970 

1.582 

0.000 

a /c r' r 

0.617 

0.613 

0.601 

0.586 

0.561 

0.524 

0.463 

0.351 

0.000 

^/=r 

0.350 

0.350 

0.351 

0.355 

0.389 

0.443 

0.479 

0.500 

0.000 

s/D=A^-B^Z 

A r 

0.0526 

0.0464 

0.0402 

0.0340 

0.0278 

0.0216 

0.0154 

0.0092 

0.0030 

B 
r 

0.0040 

0.0035 

0.0030 

0.0025 

0.0020 

0.0015 

0.0010 

0.0005 

0.000 

Dimensions of three bladed B-screw series. 

r/R 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

'̂ r. Z 

° ^E/^0 

1.633 

1.832 

2.000 

2. 120 

2. 186 

2. 168 

2. 127 

1.657 

0.000 

a^/c^ 

0.616 

0.611 

0.599 

0.583 

0.558 

0.526 

0.481 

0.400 

0.000 

\/-r 

0.350 

0.350 

0.350 

0.355 

0.389 

0.442 

0.478 

0.500 

0.000 

s^/D=A^-B^Z 

A r 

0.0526 

0.0464 

0.0402 

0.0340 

0.0278 

0.0216 

0.0154 

0.0092 

0.0030 

B 
r 

0.0040 

0.0035 

0.0030 

0.0025 

0.0020 

0.0015 

0.0010 

0.0005 

0.0000 

A , B^=constants in equation for S /D 

a =distance between leading edge and generator line at r 

b =distance between leading edge and location of maximum thickness 

c =chord length of blade section at radius r 

s^=maximum blade section thickness at radius r. 

Table 11. Dimensions of Wageningen B-propeller series 



- 138 -

POSITION OF GENERATOR LINE 

POSITION OF MAXIMUM 
/THICKNESS 

p = -1 
LE = LEADING EDGE 
TE = TRAILING EDGE 
MT = LOCATION OF MAXIMUM THICKNESS 
Dl = LOCATION OF DIRECTRIX 

FIG. 43 DEFINITION OF GEOMETRIC BLADE SECTION PARAMETERS OF 
WAGENINGEN B AND BB SERIES PROPELLERS. 

propellers are denoted as "BB" propellers. For the sake of 

completeness. Table 14 is included which gives the modified 

particulars of this series. The performance characteristics of 

these BB-series propellers may be considered identical with the 

original B-series propellers. The geometry of the high skew 

propellers were taken from Morgan et al [5-3] and Gumming 

et al [5-4]. 

From the results presented in Figs. 37 to 42, it may be concluded 

that the performance in uniform flow is predicted within experimental 

accuracy for moderate loadings. At low advance ratios (heavy 

loadings) the tendency to predict somewhat lower thrusts can be 

discerned. The experimental curves were taken from Oosterveld 

and Van Oossanen [5-1] for the B-series propellers and from 

Gumming et al [5-4] for the high skew series. The Reynolds number 

of the calculations was chosen to be 2x10 which is an equivalent 

Reynolds number of the model tests on which the curves representing 

the measurements were based. In this regard it is noted that from 

the analysis performed by Oosterveld and Van Oossanen [5-l], it 

is clear that all open-water tests with model propellers suffer 
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.0100 
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.1950 
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.0006 
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.0008 

.0090 
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.0520 

.0615 
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-.2 

0 
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.0033 

.0084 

.0172 

.0365 

+ .4 

0 

0 

0 

.0033 

.0148 

.0224 

.0304 

.0384 

0 

0 

0 

0 

0 
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0 

0 
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+ .2 
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0 
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.0027 
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Table 12. Values of V for use in equations 5-1 and 5-2. 
1 
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.9519 

.9446 

.9360 

0 

r/RV 

.9-1.0 

.85 

.8 

.7 

.6 

.5 

.4 

.3 

.25 

.2 

.15 

+ 1.0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

+ .95 

.0975 

. 1000 

. 1050 

.1240 

.1485 

.1750 

.1935 

.1890 

.1758 

.1560 

.1300 

+ .9 

.1900 

.1950 

.2028 

.2337 

.2720 

.3056 

.3235 

.3197 

.3042 

.2840 

.2600 

+ .85 

.2775 

.2830 

.2925 

.3300 

.3775 

.4135 

.4335 

.4265 

.4108 

.3905 

.3665 

+ .8 

.3600 

.3660 

.3765 

.4140 

.4620 

.5039 

.5220 

.5130 

.4982 

.4777 

.4520 

+ .7 

.51 

.5160 

.5265 

.5615 

.6060 

.6430 

.6590 

.6505 

.6359 

.6190 

.5995 

+ .6 

.6400 

.6455 

.6545 

.6840 

.7200 

.7478 

.7593 

.7520 

.7415 

.7277 

.7105 

+ .5 

.75 

.7550 

.7635 

.7850 

.8090 

.8275 

.8345 

.8315 

.8259 

.8170 

.8055 

+ .4 

.8400 

.8450 

.8520 

.8660 

.8790 

.8880 

.8933 

.8920 

.8899 

.8875 

.8825 

+ .2 

.9600 

.9615 

.9635 

.9675 

.9690 

.9710 

.9725 

.9750 

.9751 

.9750 

.9760 

0 

Table 13. Values of V for use in equations 5-1 and 5-2. 



r/R 

0.200 

0.300 

0.400 

0.500 

0.600 

0.7OO 

0.800 

0.850 

0.900 

0.950 

0.975 

'̂r Z 

° '\/^o 
1.600 

1.832 

2.023 

2. 163 

2.243 

2.247 

2.132 

2.005 

1.798 

1.434 

1.122 

^r/=r 

0.581 

0.584 

0.580 

0.570 

0.552 

0.524 

0.480 

0.448 

0.402 

0.318 

0.227 

b^/c^ 

0.350 

0.350 

0.351 

0.355 

0.389 

0.443 

0.486 

0.498 

0.500 

0.500 

0.500 

a = distance between leading edge and 

generator line at r 

b = distance between leading edge and 

location of maximum thickness at r 

c = chord length at r 

Table 14. Modified particulars of BB-series propellers 
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RE. NO. = 2x10® (EFFECTIVE) ; MEASURED 
RE. NO. = 2x10®;ACCORDING TO OOSTERVELD AND 

VAN OOSSANEN [ 5 - 5 ] 
• RE. NO.» 2x10®;CALCULATED BY PRESENT THEORY. 

°0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

FIG. 44 COMPARISON OF "MEASURED" AND CALCULATED THRUST, TORQUE AND 
EFFICIENCY OF B5-75 PROPELLER WITH P/D =1.2 FOR A REYNOLDS 
NUMBER OF 2x10? 

in some degree from laminar flow over the blades (especially at 

the inner blade sections). The associated reduction in drag of 

the propeller blades can be accounted for by considering that 

the tests were performed at an effective Reynolds number of 2x10 

(when the Reynolds number is based on chord length at r/R = 0.75, 

as defined in reference[5-l] . 

To obtain some indications of full-scale open-water performance, 

the characteristics of the B5-75 propeller was also calculated at 
Q 

a Reynolds number of 2x10 .The results are shown in Fig. 44. The 

curves representing the "measured" values were taken from 

polynomials for Reynolds number scale effects on B-series 

propellers given by Oosterveld and Van Oossanen [5-5]. It is seen 
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that whereas the torque is satisfactorily predicted, the predicted 

thrust is somewhat higher. Since the polynomials for scale effect 

on thrust and torque were developed from an equivalent profile 

theory (discussed in section 3.5) which does not explicitly 

consider the influence of viscosity on lift, it is probable that 

the K^-value at higher Reynolds numbers is better assessed by the 

present approach. 

5.2 Type and Extent of Cavitation: Differences Between Model 

and Full Scale. 

The type and extent of cavitation on propellers were calculated 

for three cases. For each of these, appropriate model test data 

was available. For one case, also the corresponding full-scale 

cavitation behaviour was known. With this information it is 

possible to obtain an indication of the accuracy of the calculated 

differences in type and extent of cavitation for both model and 

full scale. One of these three cases concerns a propeller of a 

single screw vessel and the remaining two involve the propellers 

of high speed twin-screw ships. 

The calculations first carried out were for a medium size, single 

screw cargo-vessel. The cavitation properties of this propeller 

were obtained by performing tests in the cavitation tunnel. The 

results of the three-dimensional wake survey, performed with a 

5-hole pitot-tube, of the simulated wakefield in the cavitation 

tunnel, is given in Table 15. This wakefield was also used for 

the calculations. The propeller has 4 blades, an expanded blade 

area ratio of 0.6, and a diameter of 4.85 meter. It was designed 

to absorb 9600 metric horsepower at 155.5 revolutions per minute 

when the ship speed is 15.8 knots. The effective static pressure 
2 

at the propeller shaft is 18000 kgf/m . Particulars of the radial 

distribution of pitch, maximum camber and maximum thickness are 

given in Table 16. The blade design is of the composite type, 

incorporating sections with the position of maximum thickness at 

0.3 of the chord length from the leading edge near the hub and 

Walchner-type sections near the tip. Particulars of this 
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angle 
in 

degrees 

0* 

5 

10 

15 

20 

30 

40 

60 

80 

100 

120 

140 

150 

160 

165 

170 

175 

180 

r/R =0.89 

V /v 

0.840 

0.843 

0.982 

0.959 

0.971 

0.982 

0.951 

0.952 

0.949 

0.942 

0.878 

0.745 

0.467 

0.173 

0.107 

0.073 

0.061 

0.093 

v,./v 

0.000 

-0.046 

-0.004 

0.033 

0.044 

0.056 

0.077 

0.128 

0.165 

0.198 

0.224 

0.180 

0.131 

0.075 

0.050 

0.029 

0.011 

0.000 

v /v 

-0.124 

-0.142 

-0.143 

-0.148 

-0.138 

-0.131 

-0.125 

-0.110 

-0.077 

-0.021 

0.039 

0.032 

0.016 

-0.008 

-0.030 

-0.030 

-0.021 

-0.018 

r/R =0.98 

V /v 
a 
1.049 

0.980 

0.961 

0.970 

0.974 

0.958 

0.960 

0.936 

0.937 

0.927 

0.894 

0.690 

0.465 

0.156 

0.106 

0.091 

0.068 

0.062 

V^/V 

0.000 

-0.023 

0.005 

0.028 

0.044 

0.063 

0.068 

0.109 

0.151 

0.187 

0.226 

0.174 

0.137 

0.075 

0.049 

0.028 

0.009 

0.000 

V /V 

-0.103 

-0.093 

-0.148 

-0.130 

-0.135 

-0.135 

-0.123 

-0.102 

-0.068 

-0.024 

0.038 

0.040 

0.015 

-0.034 

-0.034 

-0.044 

-0.029 

-0.014 

r/R = 1.07 

V /V 
dl 

1.003 

0.992 

0.985 

1.012 

0.994 

0.970 

0.951 

0.950 

0.942 

0.928 

0.922 

0.757 

0.521 

0.412 

0.355 

0.282 

0.223 

0.201 

V^/V 

0.000 

-0.010 

-0.005 

0.021 

0.038 

0.047 

0.074 

0.112 

0. 152 

0.191 

0.222 

0.194 

0.166 

0.101 

0.061 

0.033 

0.012 

0.000 

V /V 

-0.132 

-0.134 

-0.119 

-0.119 

-0.119 

-0.121 

-0.124 

-0.106 

-0.075 

-0.034 

0.025 

0.059 

0.032 

-0.029 

-0.021 

-0.059 

-0.031 

-0.068 

Angles are given with respect to the vertical downward blade position. 

Table 15. Results of wake survey of simulated wakefield in cavitation tunnel (used 

in cavitation calculations, the results of which are given in Fig.45). 



x=r/R 

0.200 

0.250 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.850 

0.900 

0.950 

0.975 

maximum 

thickness 

in meter 

0.247 

0.230 

0.212 

0.177 

0.144 

0.117 

0.092 

0.067 

0.055 

0.042 

0.030 

0.023 

maximum 

camber 

in meter 

0.055 

0.052 

0.049 

0.044 

0.039 

0.035 

0.031 

0.029 

0.028 

0.025 

0.021 

0.016 

pitch 

in 

meter 

3.500 

3.557 

3.613 

3.714 

3.802 

3.869 

3.912 

3.929 

3.925 

3.919 

3.905 

3.895 

distance of leading 

edge to generator 

line in meter 

0.650 

0.673 

0.693 

0.722 

0.741 

0.740 

0.701 

0.605 

0.521 

0.400 

0.223 

0.072 

distance of trailing 

edge to generator 

line in meter 

0.532 

0.571 

0.607 

0.681 

0.756 

0.831 

0.906 

0.965 

0.970 

0.940 

0.853 

0.763 

Table 16. Geometric particulars of blades of propeller of which calculated and observed 

cavitation properties are shown in Fig.45. 
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FIG.45 OBSERVED AND CALCULATED CAVITATION ON SUCTION SIDE OF 
MODEL PROPELLER (1:22) EQUIVALENT SHIP SPEED: 15.8 KNOTS, 
Kĵ O.ISS AND Gn:2.181. 

type of propeller-blade design are given in the appendix of 

reference [5-2]. The radial distribution of the distance of the 

leading edge to the generator line and of the trailing edge to 

the generator line are also given in Table 16. The ratio of hub 

diameter to propeller diameter is 0.18. 

The results of the cavitation calculations are given in Fig. 45. 

Also shown are details of the observed cavitation behaviour in 

the cavitation tunnel. As can be seen, a good correlation between 

the calculated and observed cavitation characteristics are 

obtained. The calculations were carried out for the model propeller 

in the cavitation tunnel (the scale ratio was 1:22). The dominating 

type of cavitation on this propeller is sheet cavitation. In the 

top position, the blades show more cavitation on the back due to 

the low intake velocities in this region. 

The second case for which calculations were performed was for the 

port propeller of a fast twin-screw ship. The cavitation 
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Table 17. Results of wake survey of simulated wakefield 

cavitation tunnel (used in calculations of Fig. 46) 



x=r/R 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

0.95 

1.00 

maximum 

thickness 

in meter 

0. 198 

0.132 

0.099 

0.074 

0.055 

0.040 

0.026 

0.019 

0.012 

maximum 

camber 

in meter 

0.000 

0.024 

0.029 

0.029 

0.028 

0.024 

0.018 

0.014 

0.000 

pitch 

in 

meter 

5.250 

5.254 

5.246 

5.204 

5.111 

4.960 

4.750 

4.628 

4.490 

distance of leading 

edge to generator 

line in meter 

0.400 

0.596 

0.757 

0.853 

0.851 

0.722 

0.452 

0.256 

0.000 

distance of trailing 

edge to generator 

line in meter 

0.575 

0.766 

0.949 

1.067 

1.112 

1.082 

0.931 

0.755 

0.000 

Table 18. Geometric particulars of blades of propeller of which calculated and observed 

cavitation properties are shown in Fig.46. 
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behaviour of this propeller was also determined from observations 

in the cavitation tunnel. Particulars of the simulated wake 

pattern at the location of the propeller in the tunnel are given 

in Table 17. Here, as before, the wake pattern was simulated by 

building into the tunnel the relevant portion of the afterbody 

of the vessel. The propellers were designed to absorb 14750 metric 

horsepower at 206 revolutions per minute at a ship speed of 28 

knots. They have 4 blades, an expanded blade area of 0.64, a 

diameter of 4.2 meter and turn inboard. The effective static 
2 

pressure at the propeller shafts is 13750 kgf/m . The blade 

sections have parabolic camber lines and quasi-elliptic thickness 

distributions, coordinates of which can be found in reference 

[5-7]. Further particulars of the geometry of the blades are 

given in Table 18. The ratio of hub diameter to propeller diameter 

is 0.33. 

The results of the cavitation calculations for this case, 

together with the observed cavitation patterns are given in 

Fig. 46. Two operational conditions of the propellers are 

considered, viz: at 20 knots ship speed and at 28 knots ship 

speed. The calculations are for model sizes and speeds (the scale 

ratio of the model propeller was 1:16). Here also the main 

cavitation type occurring is sheet cavitation. However, at the 

higher ship speed some bubble cavitation was observed and 

calculated near the propeller hub. Here also a good correlation 

between calculation and experiment is obtained. 

The final case for which cavitation calculations were made, again 

involved the port propeller of a fast twin-screw vessel. Here 

also the cavitation observations were performed in the cavitation 

tunnel. Particulars of the simulated wake pattern are given in 

Table 19. These propellers have 5-blades, an expanded blade area 

ratio of 0.8 and a diameter of 3.65 meter. Each propeller was 

designed to absorb 15500 metric horsepower at 230 revolutions 

per minute at a ship speed of 30 knots. These propellers turn 

outboard. The effective static pressure at the propeller shaft 
2 

is 14050 kgf/m . Details of the blade design are given in Table 20. 

The ratio of hub diameter to propeller diameter is 0.185. 
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1S0° 210° 

120 

o' 30 S€) 
OBSERVED IN CAVITATION TUNNEL 

EQUIVALENT SHIP SPEED 20 KNOTS 
K j =0.116, Gn:2 .84 

180 
210 

EQUIVALENT SHIP SPEED 28 KNOTS 
Kj:0.139, Cf, =1,27. 

FIG.46 OBSERVED AND CALCULATED CAVITATION ON SUCTION SIDE OF 
MODEL PROPELLER (1:16). 



- 153 -

The observed and calculated cavitation patterns for this case are 

given in Fig. 47. The equivalent ship speed to which these 

calculations and observed cavitation phenomena pertain is 24 knots. 

The calculations were performed for model size and speed (the 

scale ratio was 1:19). Again the correlation is satisfactory. 

The corresponding full scale results are shown in Fig. 48. This 

case is particularly interesting since on the full scale propeller, 

sheet cavitation on the face of the blades was observed at the 

angular blade position shown. The calculation also shows the 

occurrence of sheet cavitation on the face in the same angular 

blade position. This was somewhat surprising since the wake 

particulars of the model ship were used. This demonstrates that 

a large scale effect in sheet cavitation is possible. Since on 

the model scale no sheet cavitation on the face was predicted or 

observed, it may be concluded that the explanation of this scale 

effect may be sought in the cavitation inception mechanism and 

not in the mechanism for the extent of cavitation. As described 

in section 4.2, when the cavitation number is equal to the 

magnitude of the pressure coefficient in the region of laminar 

separation or of laminar-turbulent transition, cavitation 

inception will occur. A small shift of this region, in the 

neighbourhood of a pressure peak, can result in a relatively 

large variation in the corresponding value of the pressure 

coefficient. It follows,therefore, that a relatively large scale 

effect on the inception value of the cavitation index will occur 

when the location of laminar-turbulent transition shifts. 

5.3 Effect of Cavitation on Propeller Performance. 

The results of section 4.4 were used for the calculation of the 

effect of cavitation on the thrust, torque and efficiency of the 

Wageningen B5-75 propeller with a pitch-diameter ratio of 1.2 in 

uniform flow. The cavitation number based on the speed of 

advance for which these calculations were made, was 0.94. The 

experimentally determined characteristics were taken from 

Van Lammeren et al [5-6]. The results are shown in Fig. 49. 

It is seen that a reasonable correlation is obtained. 
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Table 19. Results of wake survey of simulated wakefield in 

cavitation tunnel (used in cavitation calculations, the results 

of which are shown in Figs. 47 and 48) 



x=r/R 

0.20 

0. 30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

0.95 

1.00 

maximum 

thickness 

in meter 

0.145 

0.120 

0.098 

0.078 

0.062 

0.048 

0.035 

0.023 

0.018 

0.013 

maximum 

camber 

in meter 

0.014 

0.018 

0.023 

0.027 

0.030 

0.029 

0.025 

0.020 

0.015 

0.000 

pitch 

in 

meter 

5.414 

5.533 

5.621 

5.666 

5.645 

5.561 

5.433 

5.262 

5.171 

5.074 

distance of leading 

edge to generator 

line in meter 

0.436 

0.529 

0.603 

0.657 

0.694 

0.701 

0.656 

0.515 

0.381 

0.000 

distance of trailing 

edge to generator 

line in meter 

0.287 

0.438 

0.561 

0.648 

0.694 

0.703 

0.656 

0.520 

0.387 

0.000 

Table 20. Geometric particulars of blades of propeller of which calculated and observed 

cavitation properties are shown in Fig.47 and 48. 
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OBSERVED IN CAVITATION TUNNEL 

CALCULATED BY PRESENT THEORY 

FIG. 47 OBSERVED AND CALCULATED CAVITATION ON MODEL PROPELLER (1 19) 
EQUIVALENT SHIP SPEED =24 KNOTS, K j i O I S AND 0o:2.013. 

138 156 180 

OBSERVED ON FULL-SCALE 

^ 

CALCULATED BY PRESENT THEORY 

SHEET CAVITATION 
ON PRESURE SIDE 

FIG. 48 OBSERVED AND CALCULATED CAVITATION ON FULL-SCALE PROPELLER 
SHIP SPEED =24 KNOTS, K-r:0.18 AND Co = 2.013. 
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1.0 

0.8 

0.6 

KT 

10 KQ 

^ 0 

0.4 

0.2 

TAKEN FROM VAN LAMMEREN ET AL [5-6] 
• CALCULATED BY PRESENT THEORY 

FIG.49 COMPARISON OF MEASURED AND CALCULATED THRUST, TORQUE AND 
EFFICIENCY OF WAGENINGEN B5-75 PROPELLER WITH P /D :1 .2 FOR 
A CAVITATION NUMBER (BASED ON VELOCITY OF ADVANCE) EQUAL 
TO 0.95. 
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CHAPTER 6 

FINAL REMARKS AND CONCLUSIONS 

The presented and discussed results in chapter 5 have demonstrated 

the validity of the theory outlined in chapter 2, 3 and 4. The 

described procedures for assessing effects of non-uniform flow 

and viscosity on propeller characteristics work satisfactorily. 

The developed methods for determining the onset and extent of 

cavitation function particularly well. 

On turning to each part of the developed theoretical approach, 

it is possible to discern some major features and conclusions 

on which the overall result of the presented method is dependent. 

These can be reviewed as follows. 

- The inverse of the Lerbs induction factor method for the 

moderately loaded propeller can form the successful starting-

point of an approach for the calculation of the performance 

and cavitation characteristics of propellers. 

- Adequate convergence of the Lerbs induction factor method 

applied in the inverse sense (hitherto unobtained), can be 

reached by introducing an extra iteration for the hydro-

dynamic pitch angle. 

- The main effects of non-uniform flow on the performance and 

cavitation characteristics of propellers can be adequately 

described by using a quasi-steady approach. At every blade 

position the average of the undisturbed inflow velocities over 

the blade section can be used to determine the advance angle, 

and the variation of the undisturbed inflow velocities over 

the blade section can be used to effectively distort the 

blade section camber. 

- In a non-uniform flow the effect of bound vortices on the 

induced velocities should be included in a lifting line 

approach. 
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- The approximate calculation of the pressure distribution 

on propeller blades can be accomplished by using a 

two-dimensional approach when an effective angle of attack 

is used and the blade section camber is reduced to account 

for the smaller value of the three-dimensional angle of 

zero-lift. 

- For the correct prediction of off-design propeller performance, 

it is necessary to account for viscous effects on the lift 

and drag properties of propeller blade sections. 

- The prediction of viscous effects on the lift coefficient 

can only be adequately performed by incorporating boundary 

layer characteristics. 

- The experimental value of the lift-curve slope of all 

profiles at all values of the Reynolds number can be 

satisfactorily correlated with the sum of profile and 

displacement thickness at the position of turbulent 

boundary layer separation in the absence of laminar boundary 

layer separation. 

- The ratio of experimental to theoretical zero-lift angle 

of attack is dependent on the relative wake thickness 

óf suction and pressure side of a profile. 

- The effective wake thickness of a profile can be expressed 

as the sum of profile and displacement thickness at the 

position of turbulent boundary layer separation in the 

absence of laminar boundary layer separation. 

- A calculation procedure for the drag coefficient of propeller 

blade sections can be derived from the results of an 

"equivalent profile" analysis of experimental characteristics 

of the Wageningen B-series propellers. 

- The large scatter in cavitation inception data on smooth 

bodies, for constant characteristics and population of 

cavitation nuclei, can be mainly ascribed due to boundary 

layer effects. 

- Inception of vaporous cavitation always occurs in the 
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laminar-turbulent transition region of the boundary layer. 

- For a Reynolds number (based on free-stream velocity and 

the distance of the point of inception from the leading 

edge) above 1x10 the approximate laminar-turbulent 

transition formula of Cebeci et al can be used to predict 

the value of the cavitation inception index at the location 

of cavitation inception. 

- A criterium for the estimation of the extent of cavitation 

can be derived by means of a known value for growth and 

for decline of Knapp's dynamic similarity parameter for 

spherical cavities. 

- The value of the momentum thickness of the laminar boundary 

layer divided by a length dimension of the body, at the 

location of cavitation inception, can be used'to determine 

whether sheet or bubble cavitation will occur. 

- From a study of measured pressure distributions on cavitating 

profiles it is possible to derive criteria for the approximate 

construction of the pressure distribution on cavitating 

bodies, when the cavity length is restricted to the first 

half of the body. 

- An adequate calculation of the change in lift and drag due 

to cavitation can be obtained by use of radar's formula when 

the extent of cavitation at which the loss in lift and drag 

begins, is known. 

The numerical method based on the present theory can be used with 

success in conjunction with propeller design studies in cases 

in which it is important to minimize the occurrence of cavitation 

on the propeller. The relative importance of many propeller 

parameters with regard to cavitation can be easily assessed. 

Som.e preliminary calculations for model and full-scale propellers 

have shown that the numerical program can be used to estimate 

viscous scale effects. A more complete assessment of scale effects 

can be obtained if the effects of roughness and characteristics 

of cavitation nuclei can be accounted for. 
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APPENDIX 

POLYNOMIAL REPRESENTATION OF PROPELLER LIFTING 

SURFACE CORRECTION FACTORS 

The success of using lifting line theory for the design and 

performance analysis of broad-bladed screw propellers, depends to 

a large degree on the accuracy of the supplementary method used 

to predict three-dimensional chordwise effects. Lifting line 

theory is only satisfactory for dealing with three-dimensional 

effects in the direction of the span. In most cases use is made 

of correction factors derived from lifting surface theory. 

Recently, very comprehensive values were published by Morgan 

et al [ A - I ] , Minsaas and Slattelid [ A - 2 ] and Gumming et al [ A - 3 ] 

based on the program developed by Cheng [ A - 4 ] for loading effects 

and on the program developed by Kerwin and Leopold [ A - 5 ] for 

thickness effects. From a study by Cox [ A - 6 ] of current propeller 

design methods in use at various research institutes, shipyards 

and propeller manufacturing companies, it can be concluded that 

these correction factors are used nearly universally. In comparison 

to the factors derived by others, these values cover a much larger 

variation in propeller geometry. The number of blades which are 

considered are 3, 4, 5 and 6. The covered expanded blade area ratio 

values are 0.35, 0.55, 0.75, 0.95 and 1.15. The examined values 

of the induced advance ratio are 0.4/TT, 0.8/-rT, 1.2/-it, 1.6/-ir and 

2.0/Tr. The skew angle, considered as an independent variable for 

the first time, has values at the tip of the blades of 0 , 7 , 

14°, 21°, 180°/Z and 360°/Z. The radial stations for which these 

values are given are 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. 

Important three-dimensional chordwise effects accounted for by 

these correction factors are the effects on camber and on the 

ideal angle of incidence due to loading and due to thickness. 

Other three-dimensional chordwise effects have been found to 

be comparatively small. The camber correction for loading is 

defined as the ratio of the maximum camber ordinate required to 

give a specific lift coefficient in three-dimensional flow to 
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the maximum two-dimensional camber ordinate that will give 

the same lift coefficient in two-dimensional flow. This factor 

is nearly always greater than unity due to the curvature 

of the induced flow along the blade section which effectively 

decreases the geometric camber. The ideal angle-of-attack 

correction factor for loading is defined as the ratio of the three-

dimensional ideal angle of attack to the two-dimensional value 

for a lift coefficient equal to unity, times the actual value of 

the lift coefficient. The value for this factor is again always 

greater than unity except in the tip region for highly skewed 

propellers. This points to the fact that for a prescribed lift 

coefficient, the three-dimensional ideal angle of incidence is 

larger than the respective two-dimensional value. The angle-of-attack 

correction factor for thickness is defined as the ratio of the 

three-dimensional angle of attack induced by blade thickness to 

the blade thickness fraction. The values for this factor are 

mostly positive indicating that the effect of thickness requires 

an additional positive incidence angle to obtain a specified value 

of the lift coefficient. The propellers for which the lifting 

surface calculations were made have a hub diameter of 0.2 of the 

propeller diameter and a NACA 66 (mod.) thickness distribution and 

a NACA a=0.8 camber distribution at all radii. The spanwise 

thickness of these propellers is given by: 

t (X) 
-21^^ = (BTF-0.003) . (l-x)-l-0.003 (A-1) 

where t is the maximum thickness ordinate at x, and BTF the max 

blade-thickness fraction. The blade outline is given by the 

formula: 

c/D = 4 ^ ^ (A-2) 
^ ^O 

where k(x) = 1.6338, 1.8082, 1.9648, 2.0967, 2.1926, 2.232, 

2.1719, 1.8931, 1.5362 and 0 for x=0.2,0.3 1.0 

respectively. 
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The application of these correction factors to propellers with 

other, not to extremely differing, chordwise distributions of 

camber and thickness, other blade contours and other radial load 

distributions, is considered admissible. 

A polynomial representation of these correction factors in a 

numerical program offers many advantages. One of these is the 

avoidance of a cumbersome interpolation procedure for the frequent 

case that the correction factors are required at intermediate 

values of the 5 independent variables. For the values calculated 

by Morgan et al [ A - I ] and Minsaas and Slattelid [ A - 2 ] , polynomials 

were derived by means of the multiple regression method given 

by Effroymson [ A - 7 ] . These polynomials can be written as: 

U , 
S. t./A 1 1 V. 

(A-3) 

The coefficient c. and the powers s., t., u. and v. are given in 
1 "̂  1 1 1 1 

Tables 21 to 47 for x = 0.2, 0.3, 0.4 1.0. These 27 

polynomials are valid for the following range of variables: 

3 1 Z 1 7 

5-\/l.05177-(x-0.2)^ 0 < tane <1.02556-

0.35 1 A^/AQ 1 1.15 

0.4/Tr <_ A . 12/77 

(A-4) 

The local skew angle 9 , shown in Fig.50, is defined as the angle 

between the radial line passing through the effective skew line of 

the propeller blade at the radius considered and the radial line 

tangent to this skew line at the radius where the skew is least 

(i.e. at the radius where the angular polar coordinate - in the 

direction of rotation - is greatest). Even though no values are 

published for Z=7, it was found that all curves, when set out as 

a function of the number of blades, show regular tendencies which 

allow the extrapolation from Z=6 to Z=7. A comparison of the 

values derived from the polynomials with other data for Z=7 
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confirmed this supposition. The polynomials for x = 0.2 and 1.0 

were obtained by extrapolation and should only be used for 

fairing radial-varying entities near the hub and the tip. 

Figures 51 to 64 give a comparison of the values calculated by 

means of these polynomials with the original tabulated values. 

The polynomials discussed thus far are for a moderate skew only, 

viz: 0° at x=0.2, about 0.3° at x=0.3, 1.2° at x=0.4, 2.6° at 

x=0.5, 4.7° at x=0.6, 7.5° at x=0.7, 11,2° at x=0.8, 16° at x=0.9 

and 21 at x=l. For high skews,use can be made of the data 

published by Gumming et al [ A - 3 ] . These values, however, are only 

given for the one value of the expanded blade area ratio of 0.75 

and only for two values of the induced advance ratio 0.8/TT and 1.2/Tr. 

Using the same method, polynomials were derived for these values. 

These can be written as: 

^ a ^i / i (A-5) 
K^ , K , K^ = > ex. -̂Z ^°s ' 
c ' a t ^— 1 X 

where B^ is the skew angle at x in radians. One set of polynomials 
°x 

is given for A„/A^=0.75 and X.=0.8/TT and one set for A /A-,= 0.75 
E, O i h, U 

and A,=1.2/TT. These are given in Tables 48 to 53. 

Approximate values of these correction factors at other blade 

areas and induced advance ratios can be determined from these 

polynomials by determining the total differential: 

K = K 
.A, 

Z„' 
X X 0 „ 0 

(axifc) ^^/^o-dfr) ''^ '̂ -̂ ^ 
E' O' ^ i 

0 0 

where: (A„/A) = 0.75, 
£1 u 0 
(A . ) = 0. 8/TT or 1.2/TT, 

1 0 
and Z = 4,5 or 6. 

0 
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Here the derivatives of K need to be determined with respect to 

the blade area ratio, the induced advance ratio and the number of 

blades. Approximate expressions for these derivatives can be 

obtained by differentiating the moderate skew polynomials 

(equation A-3). 

Figure 65 demonstrates the accuracy of these high skev; polynomials. 

The comparison with the original published values is shown. 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Coefficient 

^i 

8.74739x10"' 

1.76066x10 

-1.62981x10"' 

8.95728x10"' 

2.05419x10 
0 

3.76827x10 

-2.90623x10 
-7.94741x10 

-3.31422x10 

Power of Z 

^i 

0 

0 

2 

2 

Power of 

tang 

=x 

^i 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Power of 

^E/'^O 

u. 
1 

0 

1 

1 

2 

2 

2 

2 

2 

2 

Power of 

A. 
1 

V . 
1 

0 

3 

0 

0 

1 

2 

3 

0 

1 

Table 21.Coefficients and powers of K -polynomial for x=0.2 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Coefficient 

C. 
1 

-2.89350x10 

1.71122x10 
0 

-8.22327x10 

1.90837x10 

-3.00176x10 
0 

1.67447x10 
-5.37643x10 

1.09281x10 

1.13887x10 

-1.63820x10 

4.59060x10"' 

-1.07026x10 

Power of Z 

^ 

0 

0 

0 

0 

0 

1 

1 

1 

1 

2 

2 

2 

Power of 

tan e 
= x 

t. 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Power of 

^E/^O 

u . 
1 

0 

1 

1 

1 

2 

0 

1 

1 

2 

0 

1 

2 

Power of 

A. 
1 

^i 

0 

0 

1 

2 

1 

0 

0 

1 

1 

0 

0 

1 
1 

Table 22. Coefficients and powers of K -polynomial for x=0.2 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Coefficient 

C. 
1 

1 
-1.78853x10 

-1.01333x10 

-6.88780x10 

2.86681x10 

-2.38539x10 

2.38679x10 
0 

-9.18820x10 
6.34538x10 

2.98870x10 

-1.26860x10 

4.29288x10 

-5.26416x10 

-7.86711x10"^ 

6.78057x10 

-3.03908x10 

-2.19229x10 

2.87881x10 

Power of Z 

^ 

0 

0 

2 

2 

2 

2 

2 

Power of 

tan e 
X 

t. 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Power of 

^E/^0 

u. 
1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

2 

2 

2 

0 

1 

2 

2 

2 

Power of 

A. 
1 

^i 

0 

3 

0 

1 

2 

0 

1 

2 

3 

0 

1 

3 

3 

0 

0 

2 

3 

Table 23.Coefficients and powers of K -polynomial for x=0.2 

I 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

Coefficient 

C. 
1 

9.11810x10"' 
0 

1.93712x10 

1.85792x10 
0 

-5.22595x10 

3.86139x10 

-3.68361x10"' 

5.43644x10"' 

-3.42316x10"^ 

6.38566x10"'' 
2 

4.35558x10 
2 

1.40849x10 
-2.26761x10 

3 

-4.25085x10 

2.65433x10 

7.36106x10 
5 

8.68561x10 

-1.23440x10 

6.54931x10 

4.87154x10 

2.16454x10 

-1.40637x10 

-4.14518x10 

7.65664x10 

-2.65005x10 

-5.77500x10 

4.85252x10' 

Power of Z 

^ 

0 

0 

0 

0 

0 

1 

2 

2 

2 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

Power of 

tan e 
X 

t. 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

1 

1 

1 

2 

2 

2 

1 

1 

1 

1 

2 

2 

1 

1 

2 

2 

Power of 

^E/^0 

"i 

0 

1 

2 

2 

2 

1 

0 

0 

1 

0 

1 

2 

2 

0 

2 

2 

0 

0 

1 

2 

0 

2 

0 

2 

1 

2 

Power of 

A. 
1 

V . 
1 

0 

0 

0 

1 

2 

0 

0 

2 

1 

0 

0 

0 

3 

1 

0 

3 

0 

1 

0 

3 

2 

3 

0 

3 

0 

3 

Table 25.Coeff ic ients and powers of K -polynomial for x=0.3 



- 172 -

i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

'28 

29 

Coefficient 

^i 

4.96670x10" 
0 

-2.19523x10 

7.53685x10"' 

-9.85501x10"' 
0 

3.95207x10 

-2.97105x10 

-2.92359x10 

-1.77704x10 
1 

-3.29894x10" 

1.07918x10 

-3.11179x10"' 

6.49957x10"' 

-2.95439x10 
Q 

3.56386x10 

9.31772x10"' 
0 

-2.07700x10 

1.54139x10 
3 

5.87904x10 

-9.10425x10"' 

1.07601x10 

-1.09997x10"' 

8.09697x10"^ 

-6.05111x10"^ 

-9.06378x10"' 

6.53703x10"^ 
0 

2.36752x10 

-5.99557x10 

-3.44358x10 

-3.06082x10 

Power of Z 

s . 
1 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Power of 

tan e 
^x 

t. 
1 

0 

0 

0 

0 

0 

0 

1 

2 

0 

0 

0 

0 

0 

0 

0 

0 

1 

2 

2 

2 

0 

0 

0 

0 

0 

1 

2 

2 

1 

Power of 

^E/^0 

u . 
1 

0 

0 

1 

2 

2 

2 

1 

2 

0 

0 

0 

1 

1 

1 

2 

2 

2 

1 

1 

2 

0 

1 

2 

2 

2 

0 

1 

2 

1 

Power of 

>> • 
1 

1 1 

0 

3 

0 

0 

2 

3 

0 

0 

0 

1 

2 

0 

1 

3 

1 

3 

0 

0 

1 

1 

3 

0 

0 

1 

2 

1 

1 

0 

0 

Table 26 .Coefficients and powers of K -polynomial for x=0.3 



- 173 -

i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Coefficient 

C. 
1 

0 

1.18394x10 
Q 

-1.01634x10 
0 

3.53423x10 

8.78312x10"' 
1 

-3.29213x10 
1 

2.98927x10 
3 

1.85720x10 

4.59108x10 
3 

-4.80612x10 

-7.81509x10 

-2.78747xl0" 

-4.17348x10"' 

4.00174x10"' 

-2.93279x10"' 

-4.67973x10"' 

4.77160x10 
1 

-3.66287x10 

7.39813x10 

-1.20415x10 
3 

2.49808x10 

1.25382x10"^ 

-5.48070x10"^ 

9.69427x10"^ 

-3.61895x10"^ 

2.99654x10"' 

-2.98000x10"' 

-1.73371x10"' 

2.96699x10"' 

-4.51589x10"' 

-2.01416x10"' 

-1.96830x10 

-1.83197x10 

Power of Z 

^i 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Power of 

tan 9 
^x 

^i 

0 

0 

0 

0 

1 

1 

2 

2 

2 

2 

0 

0 

0 

0 

0 

1 

1 

1 

2 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

2 

Power of 

^E/^0 

'^i 

0 

0 

1 

2 

1 

1 

1 

2 

2 

2 

1 

1 

2 

2 

2 

1 

1 

2 

2 

2 

0 

0 

0 

1 

1 

1 

2 

2 

2 

0 

2 

1 

Power of 

\ 

V. 
1 

0 

3 

2 

1 

0 

1 

1 

0 

1 

2 

0 

2 

0 

1 

2 

0 

3 

3 

0 

2 

0 

1 

3 

0 

1 

2 

1 

2 

3 

1 

3 

2 

i 
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33 

34 

35 

1 

8.09448x10 

1.60593x10 

1.00900x10 

2 

2 

2 

2 

2 

1 

0 

2 

1 

0 

2 

3 

Table 27 .Coefficients and powers of K -polynomial for x=0.4 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Coefficient 

^i 
0 

1.42326x10 

9.93240x10"' 
0 

1.69788x10 
0 

-2.20353x10 

7.22549xlo' 
2 

1.28506x10 

-7.07529x10 

1.18022x10 

-1.94985x10"' 

-3.42182x10"' 

4.17149x10"' 
1 

-1.77888x10 

1.15400x10 

-5.26076x10 
3 

-3.35487x10 

3.85190x10 

2.40312x10"' 

5.12306x10" 

3.57173x10"' 

9.07878x10"' 

2.35274x10 

-7.44835x10 
2 

-2.47954x10 
9.58773x10 

11 

2.70421x10 

Power of Z 

s . 
1 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

0 

2 

2 

2 

Power of 

tane 
^x 

^ 

0 

0 

0 

0 

1 

1 

1 

2 

0 

0 

0 

1 

1 

2 

2 

2 

0 

0 

0 

1 

1 

2 

2 

2 

1 

Power of 

^E/^0 

" i 

0 

1 

2 

2 

0 

1 

2 

0 

0 

1 

1 

2 

2 

1 

1 

2 

0 

0 

1 

2 

2 

0 

0 

1 

1 

Power of 

\ 

V. 
1 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

1 

1 

3 

0 

3 

0 

0 

3 

3 

0 

3 

0 

3 

3 

2 

Table 28.Coefficients and powers of K -polynomial for x=0.4 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

C o e f f i c i e n t 

^ i 

8 . 8 9 9 7 3 x 1 0 " ' 

- 1 . 1 0 6 8 9 x l 0 ~ ' 

8 . 1 3 3 7 1 x 1 0 

- 2 . 3 9 6 7 7 x 1 0 

- 1 . 5 9 6 9 9 x 1 0 
3 

6 . 2 4 7 2 9 x 1 0 
3 

- 4 . 7 1 3 2 7 x 1 0 

- 1 . 7 7 1 9 1 x 1 0 " ' 

7 . 5 4 8 4 1 x 1 0 " 

- 1 . 0 0 6 4 3 x 1 0 

2 . 8 7 1 9 8 x 1 0 " ' 

3 . 2 5 1 6 6 x 1 0 " ' 
0 

- 1 . 1 3 3 9 9 x 1 0 
0 

1 . 0 9 3 4 6 x 1 0 

- 9 . 5 3 7 3 7 x 1 0 
1 . 3 5 4 0 7 x 1 0 

3 

3 . 5 6 6 4 3 x 1 0 

2 . 8 3 4 4 6 x 1 0 " ' 

- 1 . 2 3 0 6 6 x 1 0 " 

1 . 5 1 2 6 8 x l 0 ~ ' 

- 3 . 4 5 0 9 7 x 1 0 

... ._. 

Power o f Z 

s . 
1 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

P o w e r o f 

t a n e 
^x 

^ i 

0 

0 

2 

2 

2 

2 

2 

0 

0 

0 

0 

0 

0 

0 

1 

1 

2 

0 

0 

0 

2 

Power o f 

\/% 

" i 

0 

1 

0 

1 

2 

2 

2 

0 

0 

0 

0 

2 

2 

1 

P o w e r of 

\ 

V . 
1 

0 

0 

3 

1 

0 

1 

2 

0 

1 

2 

3 

0 

1 

2 

2 

3 

0 

0 

0 

3 

0 

Table 29.Coefficients and powers of K -polynomial for x=0.4 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Coefficient 

^i 
0 

1.39766x10 

-9.75342x10" 
0 

3.99593x10 

-1.56771x10 
0 

5.29452x10 
0 

-9.14154x10 

3.77834x10 

2.17865x10 

4.05793x10 

6.50533x10 
3 

-3.96633x10 

-3.64281xl0~' 

2.89802x10"' 

-4.20753x10"' 

-9.49219x10" 

4.13566x10"' 

-4.83935x10" 

-1.19324x10 
Q 

1.43645x10 
2 

-1.10581x10 

-2.13400x10 

1.20197x10 

1.26615x10"^ 

-3.64070x10"' 

1.65124x10"' 

1.14217x10" 

-2.30953x10"' 

1.30607x10" 

-2.84697x10 

1.64554x10 

-9.94599x10 

5.38213x10 

Power of Z 

^i 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Power of 

tane 
=x 

^i 

0 

0 

0 

0 

0 

1 

1 

1 

2 

2 

2 

0 

0 

0 

0 

0 

0 

0 

1 

2 

2 

2 

0 

0 

0 

0 

0 

0 

1 

2 

2 

2 

Power of 

^E/^0 

'̂ i 

0 

0 

1 

1 

2 

1 

1 

2 

1 

2 

2 

0 

0 

1 

1 

2 

2 

2 

1 

1 

2 

2 

0 

0 

0 

1 

2 

2 

2 

2 

2 

2 

Power of 

A 
1 

V. 
1 

0 

1 

1 

3 

3 

0 

3 

2 

0 

0 

2 

0 

2 

0 

2 

0 

1 

3 

0 

3 

0 

2 

0 

1 

3 

1 

0 

3 

3 

0 

2 

3 

Table 30.Coefficients and powers of K -polynomial for x=0.5 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

Coefficient 

^i 

1.18796x10 
0 

2.77035x10 

1.64842x10 

8.01762x10"' 

2.76945x10 

4.86743x10 

-3.80382x10 

1.76834x10 

-2.08273x10 

-7.51441x10"'' 

1.39785x10"' 

-3.36033x10"' 

-2.32585x10"' 

-9.98356x10"' 
0 

-3.11649x10 

5.99613x10 

1.77605x10 
2 

3.50182x10 
3 

-1.43481x10 
3 

1.71742x10 

1.03624x10"' 

1.07037x10"' 

-2.47859x10 

-9.74822xl0~' 

-1.24621x10 

3.52732x10"' 

1.00956x10 

Power of Z 

s . 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

Power of 

tan e 
X 

^i 

0 

0 

0 

0 

1 

1 

1 

2 

2 

0 

0 

0 

0 

0 

1 

1 

1 

2 

2 

2 

0 

0 

Power of 

'̂ Ê '̂ O 

"i 

0 

1 

2 

2 

0 

1 

2 

1 

2 

0 

0 

0 

1 

2 

0 

1 

2 

0 

1 

2 

0 

2 

0 

2 

2 

1 

1 

Power of 

^i 

V. 
1 

0 

1 

0 

3 

0 

1 

1 

0 

2 

0 

1 

2 

0 

1 

0 

1 

2 

3 

3 

3 

0 

1 

3 

1 

3 

0 

3 

Table 31.Coefficients and powers of K -polynomial for x=0.5 
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i 

1 

2 

3 

4 

ïi 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Coefficient 

^i 
_2 

5.13190x10 

5.72406x10"' 

-7.85738x10"' 

-1.96120xl0~' 

-5.26024x10 

-2.07049x10 

-7.05954x10"' 

2.58128x10"' 

-9.14025x10"' 

1.50529x10 

-8.12677x10"' 

2.26890x10 
0 

-1.19824x10 

2.46777x10 
-2.00759x10"' 

-4.01033x10"' 

1.97880x10"' 

-3.73815x10"' 

2.22945x10"' 

-6.38862x10"' 

6.25384x10"' 

-2.22995x10" 

-6.94019x10" 

Power of Z 

^i 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Power of 

tan e 
s 
X 

t. 
1 

0 

0 

0 

0 

1 

2 

0 

0 

0 

0 

0 

1 

1 

2 

0 

0 

0 

0 

0 

0 

0 

1 

2 

Power of 

^E/*O 

u. 
1 

0 

1 

1 

2 

2 

2 

1 

2 

2 

2 

2 

2 

2 

2 

0 

. 

2 

2 

2 

Power of 

1 

^i 

0 

1 

3 

0 

0 

0 

0 

0 

1 

2 

3 

0 

2 

1 

0 

0 

1 

2 

3 

1 

2 

0 

0 

Table 32.Coefficients and powers of K -polynomial for x=0.5 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Coefficient 

^i 
0 

1.12317x10 

-5.39068x10"' 

8.67821x10 

1.55686x10 

3.19469x10"' 

2.69341x10 
0 

-4.80363x10 
7.99860x10 

-9,22357x10 

-4,44005x10 

7,97250x10"' 

-2.12053x10 

3.00384x10"^ 

1.07912x10 

-2.15709x10 

1.79629x10"' 

9.82096x10" 

1 

Power of Z 

= i 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

2 

2 

2 

2 

2 

Power of 

tan 9 
s 
X 

t. 
1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

2 

Power of 

^E/^0 

" i 

0 

0 

1 

1 

2 

2 

2 

2 

2 

1 

2 

2 

1 

1 

2 

2 

1 

Power of 

A. 
1 

V. 
1 

0 

3 

0 

2 

0 

1 

2 

3 

3 

0 

1 

3 

0 

1 

1 

3 

1 

Table 33 .Coefficients and powers of K -polynomial for x=0.6 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Coefficient 

^i 
0 

2.55233x10 

-6.09552x10 

3.23416x10 
0 

9.54750x10 

1.87190x10 

9.97576x10 

-5.58234x10 

-2.17616x10 

8.21871x10 

6.31802x10 

-1.35821x10 

-6.44559x10"' 

2.68087x10 
0 

-1.04657x10 
-3.03476x10 

-9.97800x10"' 

-3.02846x10" 

-1.18227x10 

1.70184x10"' 
2 

3.15108x10 
7.76604x10"' 

-2.71830x10"' 

1.03732x10"' 

6.38933x10"' 

4.27747x10"' 

-9.34772x10"' 

7.73809x10"' 

-6.63840x10 

-3.36131x10 

2.37964x10 

Power of Z 

^ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Power of 

tan e 
^x 

t. 
1 

0 

0 

0 

0 

1 

2 

2 

0 

0 

0 

0 

0 

0 

1 

1 

2 

0 

0 

0 

0 

0 

0 

0 

1 

2 

1 

Power of 

^E/*O 

u . 
1 

0 

0 

0 

1 

0 

1 

1 

2 

2 

0 

2 

0 

0 

0 

1 

1 

2 

0 

2 

2 

0 

0 

0 

1 

1 

2 

2 

2 

0 

1 

Power of 

^i 

V . 
1 

0 

1 

3 

1 

1 

0 

3 

1 

3 

0 

3 

0 

1 

2 

1 

3 

0 

1 

3 

3 

0 

1 

3 

0 

1 

1 

3 

3 

1 

2 

Table 34. Coefficients and powers of K -polynomial for x=0.6 
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i 

1 

2 

3 

4 

5 

e 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Coefficient 

^i 

1.74390x10" 

-2.13885x10"' 

-9.84378x10"' 
0 

-3.47821x10 
-7.55138x10"' 

-2.33967x10"' 

2.55268x10"' 

-1.27981x10"' 
0 

1.04848x10 

-1.05163x10 
2.03059x10"' 

-8.98430x10"' 

8.49644x10" 

3.40908x10 

3.25330x10" 

-6.94331x10"' 

4.68188x10'' 

-3.43812x10"' 

Power of Z 

^ 

0 

0 

0 

0 

2 

2 

2 

2 

Power of 

tan 9 
s 
X 

^ 

0 

0 

1 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

1 

Power of 

^E/*O 

u. 
1 

0 

1 

0 

2 

0 

0 

0 

1 

1 

1 

2 

2 

2 

1 

0 

0 

0 

1 

Power of 

^i 

V . 
1 

0 

0 

3 

0 

0 

1 

2 

0 

1 

2 

0 

1 

2 

1 

1 

2 

3 

1 

Table 35. Coefficients and powers of K^-polynomial for x=0.6 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Coefficient 

C. 
1 

0 

1.14830x10 
0 

1.52827x10 

6.68774x10"' 
0 

5.80186x10 
0 

-3.72790x10 

1.50400x10 
Q 

-1.92169x10 
l 

1.31887x10 
l 

3.60576x10 

3.90539x10 

-7.62452x10"' 

-4.34806x10" 
1 

1.07642x10 
Q 

-1.20723x10 

2.89690x10" 

9.26507x10 

9.61027x10" 

-1.52201x10" 

2.36964x10"' 

1.02351x10"' 

-5.66654x10"' 

-2.97668x10" 

-3.94694x10 

2.03666x10"' 

Power of Z 

s . 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

Power of 

tan e 
s 
X 

^ 

0 

0 

0 

0 

0 

0 

1 

1 

2 

2 

0 

0 

0 

0 

1 

2 

0 

0 

0 

0 

1 

2 

2 

1 

Power of 

'̂ E/̂ O 

u. 
1 

0 

1 

1 

2 

2 

2 

1 

2 

2 

2 

0 

1 

1 

2 

0 

2 

0 

0 

1 

2 

2 

2 

2 

1 

Power of 1 

h 
^i 

0 

0 

3 

1 

2 

3 

1 

2 

1 

2 

0 

0 

1 

1 

1 

2 

0 

3 

0 

1 

2 

0 

2 

0 

Table 36. Coefficients and powers of K -polynomial for x=0.7 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Coefficient 

^i 

2.78074x10" 

3.79837x10 

3.45696x10 

2.87946x10 

4.03683x10" 

-4.65991x10 

-2.85455x10° 

4.36673xlo' 

-5.98466xlo' 

3.06700x10 

-2.79628x10 

-3.17681xlo' 

6.15558x10 

2.10900x10 

1.87899xlo' 

3.52852x10" 

-2.33519x10° 

-1.13230x10° 

1.21624x10° 

4.37569x10"' 

7.59610x10"' 

1.94198xlo' 

-3.17524xlo' 

6.81420x10° 

-1.17677x10 

-2.03469x10"' 

-3.91583x10"' 

3.12484x10"' 

6.72536x10"' 

-1.79963x10"' 

-1.18739x10° 

2.37083x10 

Power of Z 

^ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

Power of 

tan e 
X 

t. 
1 

0 

0 

0 

0 

0 

0 

1 

2 

2 

2 

2 

2 

2 
2 

2 

0 

0 

0 

0 

0 

1 

1 

1 

1 

2 

0 

0 

0 

0 

0 

1 

1 

Power of 

^E/^0 

" i 

0 

0 

1 

1 

2 

2 

2 

0 

0 

0 

1 

1 

0 

2 

2 

0 

0 

1 

2 

2 

1 

1 

1 

2 

2 

0 

0 

0 

1 

2 

0 

0 

Power of 

A . 
1 

V. 
1 

0 

3 

0 

1 

0 

1 

0 

0 

1 

3 

0 

2 

0 

1 

3 

0 

3 

0 

1 

3 

0 

2 

3 

3 

0 

0 

1 

3 

0 

2 

2 

3 
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33 

34 

35 

36 

37 

1.01405x10 

-7.71482x10 

-2.35894x10 

-6.56064x10° 

5.98944x10 

2 

2 

2 

2 

2 

1 

1 

2 

2 

2 

2 

2 

0 

0 

1 

0 

1 

0 

3 

1 

Table 37. Coefficients and powers of K -polynomial for x=0.7 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Coefficient 

C. 
1 

2 

6.24487x10 

3.13343x10"' 

-4.47576x10" 

-9.07230x10"' 

-2.47680x10" 

-8.40292x10"' 

6.64169x10"^ 

8.14497x10" 

2.65926x10"' 

-1.30269x10"' 

2.44126x10"' 

2.76463x10"' 

3.56886x10" 

-6.43053x10"' 

-2.23179xl0~' 

-2.43987x10"' 

6.49649x10"' 

3.31181x10"' 

-1.92557x10"^ 

Power of Z 

s . 
1 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Power of 

tang 
s 
X 

t. 
1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

2 

0 

0 

2 

1 

Power of 

\/^o 

u. 
1 

0 

1 

2 

0 

0 

1 

1 

2 

1 

0 

0 

1 

1 

1 

0 

2 

2 

1 

1 

Power of 

^i 

V . 
1 

0 

1 

1 

3 

2 

0 

1 

0 

3 

2 

3 

0 

1 

3 

1 

1 

3 

0 

1 

Table 38.Coefficients and powers of K -polynomial for x=0.7 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1 

12 

1 3 

14 

15 

16 

17 

18 

19 

20 

2 1 

22 

2 3 

24 

2 5 

2 6 

27 

2 8 

29 

30 

31 

32 

3 3 

C o e f f i c i e n t 

C. 
1 

2 . 0 7 7 4 2 x 1 0 " ' 

- 2 . 2 2 1 2 7 x 1 0 " ' 

4 . 7 2 8 8 3 x 1 0 

1 . 4 6 0 6 0 x 1 0 " ' 

- 2 . 7 3 1 0 9 x 1 0 

- 4 . 2 1 2 4 1 x 1 0 

9 . 4 2 8 8 5 x 1 0 
0 

- 2 . 0 4 2 5 0 x 1 0 

- 5 . 6 3 4 5 0 x 1 0 " ' 

2 . 0 1 1 2 1 x 1 0 

2 . 6 6 2 1 3 x 1 0 " ' 

1 . 1 6 1 2 4 x 1 0 " ' 

- 1 . 4 7 7 5 2 x 1 0 

1 . 9 4 9 1 7 X 1 0 
0 

- 2 . 7 2 8 2 3 x 1 0 

7 . 0 6 6 4 4 x 1 0 " ' 

2 . 8 0 6 4 4 x 1 0 
0 

1 . 2 2 9 1 1 x 1 0 

5 . 3 5 8 2 6 x 1 0 

- 2 . 5 5 6 1 4 x 1 0 
0 

- 7 . 3 1 7 2 2 x 1 0 

- 1 . 8 8 8 4 7 x 1 0 " ' 

- 2 . 6 5 5 9 3 x 1 0 " ' 

1 . 0 8 8 0 5 x 1 0 " 

3 . 5 7 1 1 3 x 1 0 " ' 

- 1 . 9 1 5 0 7 x 1 0 " 

2 . 5 2 3 0 0 x 1 0 " ' 

- 9 . 0 6 9 1 1 x 1 0 " ' 
0 

- 2 . 8 6 7 0 8 x 1 0 

3 . 7 0 9 4 5 x 1 0 

7 . 4 2 9 0 3 x l o ' 

- 1 . 4 2 3 8 4 x 1 0 ° 

4 . 3 8 7 1 0 x 1 0 ° 

P o w e r o f Z 

^ i 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

P o w e r o f 

t a n 9 
s 

X 

^ i 

0 

0 

0 

0 

0 

0 

0 

1 

1 

2 

0 

0 

0 

0 

0 

1 

1 

1 

2 

2 

2 

0 

0 

0 

0 

0 

0 

1 

2 

2 

2 

2 

2 

P o w e r o f 

^ E / ^ 0 

' ^ i 

0 

0 

1 

2 

2 

2 

2 

0 

2 

2 

0 

0 

1 

2 

2 

1 

1 

2 

0 

1 

2 

0 

0 

1 

1 

2 

2 

2 

0 

0 

2 

2 

2 

P o w e r o f 

^ i 

V . 
1 

0 

2 

0 

0 

1 

2 

3 

1 

0 

0 

0 

1 

0 

1 

3 

1 

3 

3 

1 

3 

0 

0 

1 

0 

1 

1 

3 

3 

2 

3 

0 

1 

2 

Table 39. Coefficients and powers of K -polynomial for x=0.8 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Coefficient 

C. 
1 

5.88189x10"' 

4.34765x10 

2.00902x10 
0 

-5.58331x10 
-9.72288x10"' 

1.74641x10 

-2.19749x10 

1.22175x10 

1.89463x10"' 

3.66149x10"' 

6.66130x10"' 

-1.65108x10" 

2.27292x10"' 

-2.39706x10"' 

-4.33732x10"' 

-1.21061x10" 

2.69159x10"' 

1.30770x10"' 

-3.41882x10"' 

1.14838x10"' 

-3.70986x10 

2.54793x10 

1.63528x10 

2.04222x10 

-2.94409x10 
0 

9.59024x10 
-1.00282x10 

1.91599x10 

-6.29038x10° 

9.67031x10"^ 

3.44031x10"' 

1.34795x10 

Power of Z 

^ 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

0 

0 

0 

0 

2 

2 

2 

Power of 

tan 9 
^x 

t. 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

2 

1 

1 

1 

2 

2 

1 

2 

2 

Power of 

^E/^0 

u , 
1 

0 

0 

1 

1 

2 

2 

0 

0 

1 

1 

2 

2 

0 

0 

1 

1 

1 

2 

2 

2 

1 

1 

2 

2 

0 

1 

2 

0 

2 

0 

2 

2 

Power of 

A. 
1 

V. 
1 

0 

1 

0 

2 

0 

1 

1 

2 

0 

1 

2 

3 

1 

3 

0 

1 

3 

1 

2 

3 

1 

2 

1 

0 

3 

3 

3 

0 

0 

1 

0 

2 

Table 40.Coefficients and powers of K -polynomial for x=0.8 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

Coefficient 

C. 
1 

3.44724x10"^ 

1.57437x10"' 

-1.24263x10"' 

-8.00466x10"' 

-9.41774x10"' 

-2.86837x10"' 

-1.46913x10"' 

1.14895x10"' 

-4.57533x10"' 

1.77024x10"' 

-1.16799x10"' 

1.08940x10" 

1.28529x10" 
0 

1.37762x10 
-7.40226x10 

-1.98478x10"' 

1.13830x10"' 

-6.50591x10"' 

3.02109x10 

-1.36263x10"' 

1.56943x10"^ 

-5.21823x10"' 

4.69550x10"' 

-2.07603x10"' 

-1.02309x10"' 

4.37783x10"' 

Power of Z 

= i 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

2 

0 

0 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

Power of 

tan e 
=x 

^ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

1 

2 

2 

2 

1 

1 

1 

2 

2 

1 

1 

Power of 

^E/*O 

u . 
1 

0 

0 

1 

2 

0 

0 

1 

1 

1 

2 

2 

2 

0 

1 

1 

2 

0 

1 

2 

0 

2 

2 

2 

2 

1 

1 

Power of 

h 

^i 

0 

3 

3 

1 

0 

2 

0 

1 

3 

0 

2 

3 

0 

0 

3 

0 

0 

0 

3 

3 

0 

1 

0 

3 

0 

1 

Table 41. Coefficients and powers of K -polynomial for x=0.8 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Coefficient 

C. 
1 

5.78921x10"' 

5.48705x10"' 
0 

4.72979x10 
Q -2.43459x10 

-6.86422x10"' 

-5.32060x10"' 

1.43507x10 

4.22475x10"' 

1.97703x10"' 

-1.29499x10"^ 

-1.27207x10"' 
0 

-7.60864x10 
-2.61404x10 

1.19140x10 

2.70101x10 

7.55210x10 

1.26025x10 
0 

-4.06508x10 

-3.02806x10 
7.46118x10"' 

3.65338x10"' 
0 

-1.57938x10 
0 

2.93711x10 
7.92343x10"' 

0 

-1.91686x10 

Power of Z 

s . 
1 

0 

0 

0 

0 

1 

1 

1 

2 

2 

2 

2 

0 

0 

0 

0 

0 

1 

1 

1 

2 

2 

2 

2 

2 

2 

Power of 

tan e 
^x 

t. 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

2 

2 

2 

1 

2 

2 

1 

2 

2 

2 

2 

1 

Power of 

\/^o 

u. 
1 

0 

0 

1 

1 

1 

1 

2 

1 

1 

2 

2 

0 

1 

0 

0 

2 

1 

0 

2 

0 

0 

0 

2 

2 

1 

Power of 

^i 

^i 

0 

1 

0 

1 

0 

1 

1 

0 

1 

0 

1 

2 

3 

0 

2 

1 

3 

0 

1 

3 

0 

3 

1 

3 

3 

Table 42.Coefficients and powers of K -polynomial for x=0.9 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

2 3 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

C o e f f i c i e n t 

^ i 

7 . 0 8 3 3 8 x l o " ' 

5.18820x10 

-1 .99554x10 

- 4 . 7 5 3 9 2 x 1 0 " ' 

1.06284x10 

- 8 . 4 3 0 2 9 x 1 0 " 

- 1 . 2 5 3 6 0 x 1 0 " 

1 .91512x10" ' 

- 1 . 5 0 0 3 2 x 1 0 " ' 

1.92610x10" 

8 .01379x10" ' 

1.16538x10"^ 

-4 .84115x10 

-4 .22219x10° 

3.93820x10 

1.26584x10 
2 

-1 .82613x10 

-1 .12818x10 

2.14891x10 
2 

-1 .32306x10 

-5 .19123x10 

-1 .73841x10 

5 .62809x10" ' 
Q 

3.12705x10 

6.55534x10 

1.10477x10 

2 .22179x10" ' 

- 6 . 2 9 9 6 8 x 1 0 " ' 
0 

-6 .01973x10 
- 4 . 7 2 0 3 6 x 1 0 " ' 

-1 .37463x10 
0 

1.16317x10 
1.16877x10 

Power of Z 

s . 
1 

0 

0 

0 

1 

1 

1 

1 

2 

2 

2 

2 

2 

1 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

Power of 

t a n 9 
s 

X 

t . 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

2 

2 

2 

2 

1 

1 

1 

2 

2 

2 

1 

1 

2 

2 

2 

1 

1 

Power of 

^E/^O 

" i 

0 

1 

1 

0 

0 

1 

2 

0 

0 

1 

1 

2 

1 

1 

1 

1 

0 

1 

1 

2 

0 

1 

2 

0 

0 

2 

0 

2 

2 

1 

1 

1 

1 

Power of 

^ i 

V . 
1 

0 

0 

2 

1 

2 

0 

2 

0 

3 

0 

2 

0 

0 

0 

1 

3 

1 

1 

2 

3 

2 

1 

0 

0 

1 

1 

1 

2 

1 

0 

3 

1 

3 

Table 4 3.Coefficients and powers of K -polynomial for x=0.9 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Coefficient 

^i 

- 2 
4.82069x10 

0 
5.84711x10 

-4.75411x10 

-5.59450x10" 

5.49112x10" 

5.48893x10"' 
Q 

-2.24794x10 

-9.50604x10"' 

3.20695x10"' 
0 

1.40785x10 

9.17161x10"' 

-3.76493x10"' 

1.50713x10"' 

-1.10186x10"' 

3.57601x10"' 

-2.51326x10"' 

-3.67332x10"' 

1.17211x10" 

-3.69784x10 

1.66122x10 

3.95173x10 

8.87010x10 

-4.20393x10 

2.91040x10"' 

3.91848x10"' 
1 

1.17670x10 
0 

-3.96703x10 
-1.36948x10"' 

-2.91280x10 

5.79204x10 

-1.22679x10 

3.70134x10"' 

Power of Z 

s. 
1 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

0 

0 

0 

0 

0 

2 

2 

Power of 

tan e 
=x 

t. 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

2 

2 

1 

1 

1 

1 

2 

2 

2 

1 

1 

Power of 

^E/^0 

" i 

0 

0 

1 

2 

2 

2 

0 

1 

1 

1 

2 

2 

0 

0 

0 

1 

2 

2 

0 

1 

2 

0 

1 

0 

0 

0 

2 

0 

0 

2 

0 

2 

Power of 

A 
1 

^i 

0 

3 

2 

0 

1 

2 

3 

0 

1 

2 

0 

1 

1 

2 

3 

3 

2 

3 

3 

3 

2 

3 

3 

0 

2 

3 

2 

0 

3 

2 

3 

2 
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33 

34 

2 . 8 9 5 8 7 x 1 0 

- 5 . 1 3 7 0 5 x 1 0 " ' 

2 

2 

2 

2 

0 

2 

3 

2 

Table 44.Coefficients and powers of K -polynomial for x=0.9 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Coefficient 

C, 
1 

8.58453x10"' 
0 

1.26484x10 
7.48262x10 

-6.39486x10 
0 

1.86234x10 
-3.27633x10 

1.42478x10"' 

-1.20680x10"' 
J 

-1.39817x10" 

-9.92650xl0~' 

1.27584x10 

-1.27089x10"' 

1.44941x10"' 

-1.69328xl0~' 

7.05701x10 

5.26987x10 

-3.40353x10 

-3.42722x10 

5.79771x10 

1.26539x10 

Power of Z 

s . 
1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

2 

2 

2 

0 

1 

1 

2 

2 

2 

Power of 

tan e 
s 
X 

t. 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

1 

2 

1 

2 

1 

Power of 

^E/\ 

'̂ i 

0 

1 

1 

1 

2 

2 

0 

0 

1 

1 

2 

0 

1 

2 

1 

0 

1 

2 

2 

1 

Power of 

h 
1 

0 

1 

2 

3 

0 

1 

0 

1 

0 

1 

2 

0 

1 

2 

3 

3 

3 

3 

3 

3 

Table 24. Coefficients and powers of K -polynomial for x=0.3 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Coefficient 

^i 

-1.18795x10"' 
Q 

2.01598x10 
0 

6.87514x10 

-1.15131x10 

-7.13361x10"' 
Q 

3.47574x10 

2.01846x10 

-3.03496x10" 

-2.35333x10" 

1.88149x10"' 
1 

-5.47917x10 

1.45517x10 
1 

1.97521x10 

1.77607x10 

-5.13660x10 

-9.41584x10"' 

2.81359x10"' 
Q 

4.27159x10 

7.66821x10"' 

-8.45623x10"' 

Power of Z 

= i 

0 

0 

0 

0 

0 

0 

1 

2 

2 

2 

0 

0 

0 

1 

1 

2 

2 

2 

2 

2 

Power of 

tane^ 
X 

^i 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

2 

2 

1 

2 

1 

1 

2 

2 

1 

Power of 

^E/^0 

" i 

0 

0 

1 

1 

2 

2 

1 

1 

1 

2 

0 

0 

2 

0 

0 

0 

2 

0 

1 

1 

Power of 

A . 
1 

^i 

0 

1 

0 

1 

0 

1 

2 

0 

3 

0 

2 

1 

3 

2 

1 

2 

2 

1 

0 

2 

Table 45.Coeff ic ients and powers of K -polynomial for x=1.0 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

c o e f f i c i e n t 

^ i 

9 . 9 3 3 7 6 x 1 0 " ' 

3 . 1 2 4 9 2 x 1 0 

- 3 , 5 6 1 9 2 x 1 0 

2 , 8 8 8 7 5 x 1 0 
Q 

1 . 4 6 1 0 3 x 1 0 

- 5 . 0 2 9 2 0 x 1 0 " ' 

- 4 . 1 1 6 9 6 x 1 0 " 

- 2 . 8 8 3 4 6 x 1 0 " ' 

2 . 1 1 8 0 8 x 1 0 " ' 

- 3 . 7 2 2 7 6 x 1 0 

- 1 . 1 6 5 3 9 x 1 0 

- 4 . 5 9 2 4 6 x 1 0 

2 . 4 9 0 7 1 x 1 0 
1 

6 . 4 4 4 6 1 x 1 0 

1 . 5 4 0 8 7 x 1 0 

1 . 1 0 5 5 4 x 1 0 

9 . 5 8 5 7 4 x 1 0 
l 

1 . 7 8 3 9 5 x 1 0 

1 . 5 4 6 6 1 x 1 0 

- 1 . 2 9 2 5 3 x 1 0 
i 

- 5 . 6 2 1 4 7 x 1 0 

- 4 . 4 2 9 2 3 x 1 0 

- 4 . 8 0 4 4 8 x 1 0 " ' 

- 4 . 8 0 6 4 0 x 1 0 

- 6 . 7 0 2 9 9 x 1 0 " 

- 3 . 1 2 2 3 3 x 1 0 

6 . 3 9 5 3 0 x l 0 ~ ' 

3 . 2 0 1 6 1 x 1 0 

4 . 7 8 9 8 4 x 1 0 

- 8 . 2 1 6 0 5 x l O ~ ' 

7 . 3 7 3 4 0 x 1 0 

P o w e r o f Z 

^ i 

0 

0 

0 

0 

1 

1 

1 

2 

2 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

2 

2 

2 

2 

2 

P o w e r o f 

t a n e 
^x 

t . 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

2 

2 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

2 

2 

2 

1 

1 

P o w e r o f 

*E/^O 

u . 
1 

0 

1 

1 

2 

0 

1 

2 

0 

1 

0 

1 

2 

2 

2 

1 

2 

0 

0 

2 

2 

1 

0 

0 

0 

2 

2 

0 

0 

1 

1 

1 

P o w e r o f 

^ i 

^ i 

0 

0 

1 

0 

3 

1 

0 

3 

2 

0 

3 

0 

1 

3 

0 

2 

0 

3 

0 

1 

0 

2 

0 

2 

0 

3 

1 

2 

0 

0 

2 

T a b l e 4 6 , C o e f f i c i e n t s and powers of K - p o l y n o m i a l f o r x=1.0 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Coefficient 

C. 
1 

1.20038x10"' 

-2.82693x10"' 

4.71273x10"' 

-5.21481x10"' 

-3.20622x10"' 

4.16623x10"' 

3.72223x10"' 

-2.98658x10"' 

1.70393x10"' 

-1.68435x10"' 

2.67771x10"' 

-1.49122x10" 

1.46661x10"' 

7.96811x10"' 

-7.98236x10" 

-2.38902x10"' 

6.38107x10" 

-7.06930x10" 

6.90654x10" 

-1.13384x10"' 

1.51088x10" 

Power of Z 

^ 

0 

0 

0 

0 

1 

1 

1 

2 

2 

2 

2 

2 

2 

0 

0 

1 

1 

1 

2 

2 

2 

Power of 

tan e 
^x 

t. 
1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

2 

1 

2 

2 

1 

2 

2 

Power of 

\/^o 

"i 

0 

1 

1 

1 

0 

0 

2 

1 

1 

1 

2 

2 

2 

0 

0 

1 

1 

1 

2 

2 

2 

Power of 

A. 
1 

1 

0 

0 

1 

3 

2 

3 

0 

0 

1 

2 

0 

1 

2 

2 

0 

1 

0 

2 

0 

0 

1 

Table 47 .Coefficients and powers of K -polynomial for x=1.0 
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GENERATOR LINE 

TRAILING EDGE 

EFFECTIVE SKEW ANGLE 

EFFECTIVE SKEW LINE 

SKEW ANGLE AT x 

LEADING EDGE 

FIG.50 SKETCH TO DEFINE EFFECTIVE SKEW AND LOCAL SKEW ANGLES Sg^ 



- 198 -

3 0 h 

2.0 

Kc 

1.0 

Kt 

O 

X 
X 
X 

1 = 
1 = 

j s 

Z = 3 

-

_ 

_£ 

^ 

Kc~ 

^ 
J 

Kt] 

A 

0.1273 
0.3820 
0.6366 

• . — ' 

Z-— 

"^ 

-\~ 

y 
"1^ 

/ 
> " 

__^ 

— 

y' 

'^' 

-^ 

1 — 

~r" 

, ^ 

^ 
•"^ 

J 
r 

— 

X 

< ^ 

— 

- j -

r y 

^ 

Ka 

^^ 

;:iH 

— 

— 

7 

-
y' 

„y 

-

^ 

• T 

ACCORDING TO MORGAN [ A - I ] POLYNOMIAL 

3 0 

2.0 

Kc 

1.0 

Kt 

O 

Z = 5 

Té^==:=-=^^ 

Z =6 

-.-r: 

_c 

:»= 

J T ' 

1 

;-Si 

*" 

v^ 

Kc 

*=^ 
Ktj 
z;^ 

J 

3i?^ 

; ^ 
/ ' 

1 

^ 

= ^ 

^ 

• ^ 

^ 
iJT] 

> ^ 

1 

1 

, ^ 

; ^ 

. _ . 

^.o-' 

^ 

'i-
X . 

_• 

1 

\^ 

^ 

5 ^ 

-
/b 

- j < 

-

^ 
^x 
—o 

X 

• 

1 

4.0 

3 0 

Ka 

2.0 

1.0 

0.35 0.55 0.75 0.95 115 0.35 0.55 0.75 0.95 1.15 
A E / ' ' E /AO 

FIG.51 RESULTS OF POLYNOMIALS FOR LIFTING SURFACE CORRECTIONS 
FOR X = 0 3 AND 9sx = 0. 
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FIG.53 RESULTS OF POLYNOMIALS FOR LIFTING SURFACE CORRECTIONS 
FOR X = 0.4 AND 9sx =0 . 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Coefficient 

c. 
1 

u 
2.02777x10 

1.24905x10 

9.82058x10"' 

2.16554x10"' 

7.62355x10"' 
1 

-1.00340x10 

-2.72320x10 

5.60305x10"^ 

-3.08334x10"' 

-3.46120x10"' 

2.45805x10 

1.84664x10 

6.00509x10"' 

-2.73228x10 

4.07967x10 

-7.58383x10"' 

1.06848x10 

-3.22825x10"' 

1.49636x10"' 

Powers of X 

^ 

0 

0 

0 

0 

2 

2 

2 

3 

4 

4 

4 

4 

4 

Powers of Z 

^ 

0 

1 

1 

2 

0 

1 

1 

2 

2 

2 

1 

1 

2 

1 

0 

0 

1 

2 

2 

Powers of 

=̂ i 

0 

0 

1 

2 

2 

0 

1 

0 

1 

2 

0 

1 

1 

0 

0 

2 

0 

1 

2 

X 

Table 48.Coefficients and powers of K -polynomial for high skews 

(A.=0.2546) 
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1 

2 

3 

4 

5 

6 

7 

8 
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10 

Coefficient 

c. 
1 

1 

1.12215x10 

1.97422x10 

-1.56434x10"' 

-4.02815x10 

-8.35271x10 

4.75346x10 

1.21907x10 

-6.09326x10 

-1.63664x10 

7.36687x10 

Powers of x 

a . 
1 

0 

0 

0 

1 

1 

2 

2 

3 

4 

4 

Powers of Z 

b. 
1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

2 

Powers of 

d. 
1 

0 

1 

0 

0 

1 

0 

1 

1 

0 

2 

"< 

Table 49 .Coefficients and powers of K -polynomial for high skews 

(X^=0.2546) 
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2 

3 
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5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Coefficient 

c . 
1 

-2.92330x10"' 

1.96293x10"' 

2.25090xl0~' 

-9.74349x10"' 

3.82143x10"^ 

-1.68137x10"' 

2.85782x10"' 

3.88645x10"' 

-2.08159x10"' 

-4.31435x10"' 

-8.62862x10"^ 

6.44546x10"' 

-8.99078x10"' 

2.66389x10"' 

-8.66308xl0~' 

8.57897x10"' 

1.27725x10"' 

9.44608x10"^ 

3.96425x10"' 

-9.93084x10"^ 

-4.10845x10"' 

-2.59281x10"' 

Powers of x 

a . 
1 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

3 

3 

3 

4 

4 

4 

Powers of Z 

b. 
1 

0 

0 

1 

1 

2 

2 

2 

0 

0 

1 

2 

2 

2 

1 

2 

2 

1 

2 

2 

1 

2 

2 

Powers of (6 ) 

d. 
1 

0 

1 

0 

2 

0 

1 

2 

0 

1 

0 

0 

1 

2 

0 

1 

2 

2 

0 

1 

0 
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Table 50. Coefficients and powers of K -polynomial for high skews 

{A^=0.2546) 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Coefficient 

'̂i 

8.65275x10 

9.68244x10 

9.49071x10"' 

-2.42277x10"^ 

-8.73305xl0~' 
j 

-5.14997x10 

-4.15264x10 
2 

1.34613x10 

5.64964x10 

-6.72181x10"' 

1.05575x10"' 
2 

-1.48957x10 

-2.47538xlo' 

-1.27825x10 

1.04036x10"' 

-2.57815x10"' 

6.47761x10 

1.14329x10 

-7.31471x10"' 

-8.83453x10"^ 

Powers of x 

^i 

0 

0 

0 

0 

0 

1 

1 

2 

2 

2 

2 

3 

3 

3 

3 

3 

4 

4 

4 

4 

Powers of Z 

^ 

0 

0 

1 

2 

2 

0 

0 

0 

0 

1 

2 

0 

0 

0 

2 

2 

0 

0 

1 

2 

Powers of 
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2 
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2 

0 

1 

0 

1 

0 
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0 
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0 

2 
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x 

Table 51. Coefficients and powers of K -polynomial for high skews 

(A .=0.382) 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Coefficient 

c. 
1 

1 
1.10606x10 

2.13273x10 

-1.33272x10"' 

-4.06248x10 

-8.98589x10 

4.88940x10 

1.30557x10 

-6.49956x10 

-1.75252x10 

8.88577xl0~' 

fowers of x 

a. 
1 

0 

0 

0 

1 

1 

2 

2 

3 

4 

4 

Powers of Z 

1, 
1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

2 

Powers of 

^i 

0 

1 

0 

0 

1 

0 

1 

1 

0 

2 

'̂' 1 
X 

Table 52.Coefficients and powers of K -polynomial for high skews 

(A .=0.382) 
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i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Coefficient 

'̂ i 

6.51655x10"' 

3.56363x10"' 

-7.02449x10"' 

-5.16297x10"' 

2.70219x10"' 

-3.59651x10 

1.61209x10"' 

-5.58543x10"' 

1.97056x10" 

Powers of x 

a . 
1 

0 

0 

0 

1 

1 

2 

3 

4 

4 

Powers of Z 

b. 
1 

0 

2 

2 

2 

2 

2 

2 

0 

2 

Powers of 

<̂i 

0 

0 

1 

0 

1 

1 

1 

0 

0 

" • ' . 

Table 53.Coefficients and powers of K -polynomial for high skews 

(A^=0.382) 



- 218 

14.0 

Xi =0.2546 
Xi =0.3820 

ACCORDING TO GUMMING [ A - 3 ] 
+ 

POLYNOMIAL 

X=0 .5 

tty 

• P 

f 

K.1 

• ' ) 

1̂ 

Kt 

y^ 

- • — • 

-— 

^ 

— 

1 

-—" 

— 

J^ 

^ 

-—•-

y 

(Kc 

k 

-

._!_ 

Kc 

1.0 

0Sx 0.3 0.6 

0 

Ka 

-4.0 

-8 .0 

0.2 

0.1 

X=0.7 

r 

¥-

X - , 
•f-

1 

K^^ 

Kt" 

f 

1 

— • - -

°°°? 

Kc 

w 

• - ^ 

2.0 

Kc 

1.0 

X = 0.9 

"\ 

Jt= 

>•-

_ l . . 

\1 
KaJ 

. 

Kt] 
— 
—7 

N 

_ ^ 

N 

: 

'^t *5; 

-«-

1 

s 

— 

" ^ 

• ^ 

r̂  
<-

kc 

b 

^t 
-

-4 

^* 

1 

3.0 

Kc 

2.0 

0.5 0.55 1.1 O esx ^=5 1 " "J 0Sx 

FIG.65 RESULTS OF HIGH SKEW POLYNOMIALS FOR LIFTING CORRECTIONS 
FOR Z = 5 AND Ag/AQ =075. 



- 219 -

REFERENCES OF CHAPTER 1 

l-l] L. Euler; "Theorie plus complette des Machines qui sont 

mises en mouvement par la reaction de 1'eau": 

Histoire de 1'Académie Royale des Sciences et Belles 

Lettres (Mém. de l"Acad. Tom. X ) , Berlin, 1754, 

pp. 277-295. 

Burrill; "Sir Charles Parsons and Cavitation": 

Trans, of The Institute of Marine Engineers, Vol. 

LxIII, no. 8, 1951. 

Reynolds; "The Causes of the Racing of the Engines of 

Screw Steamers Investigated Theoretically and by 

Experiment": .̂'rans. Royal Institution of Naval 

Architects, 1873. 

Reynolds; "On the Effect of Immersion on Screw Propel­

lers": Trans.Royal Institution of Naval Architects, 

1874. 

[1-5] J.I. Thornycroft and J.W. Barnaby; "Torpedo Boat 

Destroyers": Minute of Proc. of the Institution of 

Civil Engineers, Vol. 122, part IV, 1894-1895. 

Burrill; "Developments in Propeller Design and 

Manufacture for Merchant Ships": Trans, of the 

Institute of Marine Engineers, 1943. 

[1-7] J. auf'm Keller; "Enige aspecten bij het ontwerpen van 

scheepsschroeven": Schip en Werf, No. 24, 1966. 

[l-s] C A . Parsons and S.S. Cook; "Investigations into the 

Causes of Corrosion or Erosion of Propellers": 

Trans, of the Institution of Naval Architects, 

Vol. 61, 1919. 

[1-2] L.C. 

[1-3] O. 

[1-4] O. 

[ i - e ] L.C. 



- 220 -

[l-9] P. Eisenberg, H.S. Preiser and A. Thiruvengadam; "On the 

Mechanics of Cavitation Damage and Methods of 

Protection": Trans, of the Society of Naval Architects 

and Marine Engineers, Vol. 73, 1965. 

[l-io] J.D. van Manen; "Bent Trailing Edges of Propeller Blades 

of High Powered Single Screw Ships": International 

Shipbuilding Progress, January 1963. 

[l-ll] J.D. van Manen; "The Effect of Cavitation on the 

Interaction Between Propeller and Ship's Hull": 

International Shipbuilding Progress, January 1972. 

[1-12] E. Huse; "Pressure Fluctuations on the Hull Induced by 

Cavitating Propellers": Norwegian Ship Model 

Experiment Tank Publication No. Ill, March 1972. 

[1-13] P. van Oossanen and J. van der Kooy; "Vibratory Hull 

Forces Induced by Cavitating Propellers": Trans. 

Royal Institution of Naval Architects, Vol. 115, 1973. 

[1-14] P. Sabathé et L. Guieysse; "Acoustique Sous-Marine": 

Dunod Paris,1964. 

[1-15] P. van Oossanen; "Cavitation Testing of Marine Propellers": 

Schip en Werf, Vol. 39, no's 13 and 14, 1972. 

[1-I6J J. Lockwood-Tayler; "Screw Propeller Theory": Trans, of 

the North East Coast Institution of Engineers and 

Shipbuilders, 1942. 

[1-17] L.C. Burrill; "Aerodynamics and Marine Propeller Design": 

Trans, of the North East Coast Institution of 

Engineers and Shipbuilders, Vol. 81, 1965. 

[1-I8J K. Kafali; "An Investigation of the Pressure Distribution 

Around the Profiles Suitable for Marine Propellers": 



- 221 -

Publication no. 64 of the Swedish State Shipbuilding 

Experimental Tank, 1968. 

[1-19] C.A. Johnsson; "On Theoretical Predictions of 

Characteristics and Cavitation Properties of 

Propellers": Publication no. 64 of the Swedish 

State Shipbuilding Experimental Tank, 1968. 

[1-20] K.O. Holden; "Type and Extent of Cavitation on Hydrofoils 

and Marine Propeller Blades": Det norske Veritas 

Report no. 72-2-M, 1972. 

[1-21] C.A. Johnsson; "Correlations of Predictions and Full 

Scale Observations of Propeller Cavitation": 

International Shipbuilding Progress, June 1973. 



- 222 -

REFERENCES OF CHAPTER 2 

l] A.B. Bailey; "The relationship between Flow Separation 

and Cavitation": Oxford University, Department of 

Engineering Science, Report No. 1111/70 July, 1970. 

2] V.H. Arakeri; "Viscous Effects in Inception and 

Development of Cavitation on Axi-Symmetric Bodies": 

California Institute of Technology, Engineering and 

Applied Science Division, Report No. Eng. 183-1, 

January 1973. 

3] P. van Oossanen; "Profile Characteristics in Cavitating 

and Non-Cavitating Flows": International Shipbuilding 

Progress, March 1971. 

4] G. Kuiper; "Some Remarks on Lifting Surface Theory": 

International Shipbuilding Progress, Vol. 18, 

No. 199, 1971. 

5] Wm.B. Morgan, V. Silovic and S.B. Denny; "Propeller 

Lifting Surface Corrections": Trans. Society of 

Naval Architects and Marine Engineers, Vol.76, 1968. 

6] S. Tsakonas, C.Y. Cheng and W.T. Jacobs; "Unsteady 

Lifting Surface Theory for a Marine Propeller of 

Low Pitch Angle Distribution": Journal of Ship 

Research, Vol. 9, September 1965. 

7] S. Tsakonas, W.R. Jacobs and P. Rank; "Unsteady Propeller 

Lifting Surface Theory with Finite Number of 

Chordwise Modes": Journal of Ship Research, Vol. 12, 

March 1968. 

8] S. Tsakonas; "An Exact Linear Lifting-Surface Theory for 

a Marine Propeller in a Non-Uniform Flow Field": 



- 223 -

Journal of Ship Research, Vol. 17, No. 4, Dec. 1973. 

9] P. Verbrugh; "Unsteady Lifting Surface Theory for Ship 

Screws": Report no. 68-036-AH of the Netherlands 

Ship Model Basin, April 1968. 

10] G. Kuiper; "Some Preliminary Results of an Exact Treatment 

of the Linearized Lifting Surface Integral Equation": 

Netherlands Ship Model Basin, Report no. 69-108-SP, 

1969. 

11] W. van Gent; "Unsteady Lifting Surface Theory for Ship 

Screws": To be published. 

12] J.L. Hess and A.M.O. Smith; "Calculation of Potential Flow 

about Arbitrary Three-dimensional Lifting Bodies": 

Douglas Aircraft Company, Report no. MDC J5679-01, 

1972. 

13] O.W. Hoiby; "Three-Dimensional Effects in Propeller 

Theory": Norwegian Ship Model Experiment Tank, 

Publication No. 105, May 1970. 

14] K.O. Holden; "Type and Extent of Cavitation on Hydrofoils 

and Marine Propeller Blades": Det Norske Veritas, 

Report No. 72-2M, 1972. 

15] C.A. Johnsson and T. S^ntvedt; "Propeller Excitation and 

Response of 230.000 TDW Tankers": Det Norske 

Veritas, Publication No. 79, November 1972. 

16] D. Küchemann; "A simple Method for Calculating the Span 

and Chordwise Loading on Straight and Swept Wings 

of any Given Aspect Ratio at Subsonic Speeds": 

Aeronautical Research Council, R&M. No. 2935, 

London, 1956. 



- 224 -

[2-17] J. Weber; "The Calculation of the Pressure Distribution 

over the Surface of Two-Dmensional and Swept Wings 

with Symmetrical Aerofoil Sections": Aeronautical 

Research Council, R&M. No. 2918, London 1956. 

[2-I8] C.A. Johnsson; "Pressure Fluctuations Around a Marine 

Propeller: Results of Calculations and Comparison 

with Experiment": Publication no. 69 of the Swedish 

State Shipbuilding Experimental Tank, 1971. 

[2-19] S. Tsakonas and W.R. Jacobs; "Theoretical Calculations 

of Vibratory Thrust and Torque and Comparisons with 

Experimental Measurements": Stevens Institute of 

Technology, Davidson Laboratory Report No. 827, 

February 1961. 

[2-20] B. Vedeler; "On Marine Propeller Forces in Calm Water 

and Waves and the Strength of Propeller Shaft 

; Systems in Single Screw Ships": Det Norske Veritas 

Report 68-12-M, 1968. 

[2-21] H. Tanibayashi; "Practical Approach to Unsteady Problems 

of Propellers": International Shipbuilding Progress, 

1973. 

[2-22] C.F.L. Kruppa; "High Speed Propellers": Report of the 

University of Michigan, 1967. 

[2-23 J V.E. Johnson, R.A. Barr. A. Thiruvengadam and A. Goodman; 

"Ship Cavitation Research at Hydronautics, 

Incorporated": Symposium on Testing Techniques in 

Ship Cavitation Research, Trondheim, 1967. 

[2-24] H.W. Lerbs; "Moderately Loaded Propellers with a Finite 

Number of Blades and an Arbitrary Distribution of 

Circulation": Trans, of the Society of Naval 

Architects and Marine Engineers, Vol. 60, 1952. 



- 225 -

25] A. Betz; "Screw Propellers with Minimum Loss of Kinetic 

Energy": Reprinted in Vier Abhandlungen zur Hydro-

und Aerodynamik by L. Prandtl and A. Betz, 1929. 

26] S. Goldstein; "On the Vortex Theory of Screw Propellers": 

Proceedings of the Royal Society (London), Series 

A, Vol. 63, 1929. 

27] C.N.H. Lock and D. Yeatman; "Tables for Use in an 

Improved Method of Airscrew Strip Theory Calculation' 

Reports and Memoranda no. 1674, Aeronautical 

Research Council, Her Majesty's Stationary Office, 

London, 19 35. 

28] K.N. Kramer; "Weiterführung von Goldsteins Lösung des 

Optimalproblems fur Schraubenpropeller": Deutsche 

Versuchsanstalt fur Luftfahrt, 1941. 

29] S. Kawada; "On the Induced Velocity and Characteristics 

of a Propeller": Journal of the Faculty of 

Engineering, Tokyo, Imperial University, Vol.20,1933. 

30] S. Kawada; "Induced Velocity by Helical Vortices": 

Journal of the Aeronautical Sciences, Vol.3, 1936. 

31] J.W. Wrench; "The Calculation of Propeller Induction 

Factors": David Taylor Model Basin, Report no.1116, 

1957. 

Johnsson; "On Theoretical Predictions of 

Characteristics and Cavitation Properties of 

Propellers": Publication no. 64 of the Swedish 

State Shipbuilding Experimental Tank, 1968. 

33] O.W Hoiby; "Three-Dimensional Effects in Propeller 

Theory": Norwegian Ship Model Experiment Tank, 

Publication No. 105, May 1970. 

32] C.A. 



- 226 -

34] W.R. Sears; "Some Aspects of Non-Stationary Airfoil 

Theory and its Practical Application": Journal of 

the Aeronautical Sciences, Vol. 8, no. 3, January 1941 

35] T. S0ntvedt; "Theoretical Calculations of Hydrodynamic 

Loading on the Marine Propeller, Part I, Open-Water 

Performance": Det norske Veritas,Report no.71-64-M, 

1971. 

36] L.C. Burrill; "Calculation of Marine Propeller 

Performance Characteristics": Trans, of the North 

East Coast Institution of Engineers and 

Shipbuilders, Vol. 60, 1944. 

37] K. Minsaas and O.H. Slattelid; "Lifting Surface 

Corrections for 3 Bladed Optimum Propellers": 

International Shipbuilding Progress, Vol. 18, No.208, 

Dec. 1971, pp. 437-452. 

38] R.A. Gumming, Wm.B. Morgan and R.J. Boswell; "Highly 

Skewed Propellers": Trans. Society of Naval 

Architects and Marine Engineers, Vol. 80, 1972. 

39] J.D. van Manen; "On the Usefulness of a Test with a 

Propeller Model in a Cavitation Tunnel": Symposium 

on Testing Techniques in Ship Cavitation Research, 

Trondheim, 1967. 

40] B. Thwaites; "Incompressible Aerodynamics": The Claren­

don Press, 1960. 

41] J.A. Geurst; "Linearized theory of two-dimensional cavity 

flows": Thesis, Delft, Technological University, 1961. 

42] T. Theodorsen and I.E. Garrick; "General Potential 

Theory of Arbitrary Wing Sections": National 

Advisory Committee for Aeronautics, Report no.452,1933 



- 227 -

43] Krakowiak, Bindel and Brard; "Un programme algol pour 

Ie calcul de la repartition de pression sur un 

profil en courant uniforme": Bassin D'Essais Des 

Carènnes, Report no. 91306 BA-N-CM, 1954. 

44] S. Goldstein; "Low-Drag and Suction Airfoils": Journal 

of the Aeronautical Sciences, Vol. 15, no. 4, 

april 1948. 

45] E.J. Watson; "Formulae for the computation of the 

functions employed for calculating the velocity 

distribution about a given aerofoil": Rep.Memor. 

aero.Res.Coun.,London 2176, 1945. 

46] I.H. Abbott and A.E. Von Doenhoff; "Theory of Wing 

Sections": Dover Publications, Inc. 1958. 



- 228 -

REFERENCES OF CHAPTER 3 

[3-1] T. Theodorsen; "Theory of Wing Sections of Arbitrary 

Shape": National Advisory Committee for Aeronautics, 

Report no. 411, 1932 

[3-2] F.W. Riegels; "Aerofoil Sections": Butterworths, London 

1961. 

[3-3] I.H. Abbott and A.E. Von Doenhoff; "Theory of Wing 

Sections": Dover Publications, Inc. 1958. 

[3-4] L.C. Burrill; "Calculation of Marine Propeller 

Performance Characteristics": Trans. North East 

Coast Institution of Engineers and Shipbuilders, 

Vol. 60, 1943-44. 

[3-5] J.G. Hill; "The Design of Propellers": SNAME, Vol. 57, 

1949 

[3-6] P. van Oossanen; "Profile Characteristics in Cavitating 

and Non-Cavitating Flows": International Shipbuilding 

Progress, March 1971. 

[3-7] T.P. O'Brien; "Marine Screw Propellers": Hutchinson 

Scientific and Technical, London,1962. 

[3-8] T. S0ntvedt; "Theoretical Calculations of Hydrodynamic 

Loading on the Marine Propeller, Part I, Open-Water 

Performance": Det norske Veritas, Report no.71-64-M, 

1971 

[3-9] E.J. Glover; "A Design Method for the Heavily Loaded 

Marine Propeller": Paper issued by the Royal 

Institution of-Naval Architects, 1973. 



- 229 -

[3-10] B. Thwaites; "Incompressible Aerodynamics": The 

Clarendon Press, 1960. 

[3-11] N. Curie and S.W. Skan; "Approximate Methods for 

Predicting Separation Properties of Laminar Boundary 

Layers": Aeronautical Quarterly 8, 257, 1957. 

[3-12] R. Michel; "Etude de la Transition sur les Profils 

d'Aile-Etablissement d'un Point de Transition et 

Calcul de la Trainee de Profil en Incompressible": 

Onera, Rapport 1/1578A, July 1951. 

[3-13] A.M.O. Smith; "Transition, Pressure Gradient, and 

Stability Theory": Proceedings of 9th International 

Congress of Applied Mechanics, Brussels, Belgium, 

Vol. 4, p. 234, 1956. 

[3-14] J.F. Nash and Miss A.G.J. Macdonald; "The Calculation. 

of Momentum Thickness in a Turbulent Boundary 

Layer at Mach Numbers up to Unity" ;Aeronautical 

Research Council, C P . No.963, 1967. 

[3-15] J.F. Nash; "Turbulent-boundary-layer Behaviour and the 

Auxiliary equation": AGARDograph 97. Aeronautical 

Research Council, C P . 835, February 1965. 

[3-I6] J.F. Nash and A.G.J. Macdonald; "A Turbulent Skin-

Friction Law for Use at Subsonic and Transonic 

Speeds": Aeronautical Research Council, C.P.948, 

July 1966. 

[3-17] D.J. Hall and J.C Gibbings; "Influence of Stream 

Turbulence and Pressure Gradient upon Boundary 

Layer Transition": Journal Mechanical Engineering 

Science, Vol. 14, No. 2, 1972. 



- 230 -

[3-18] C.A. Johnsson; "Pressure Fluctuations around a Marine 

Propeller:Results of Calculations and Comparison 

with Experiment": The Swedish State Shipbuilding 

Experimental Tank, Publ.No.69, 1971. 

[3-19] D.E. Cummings; "Numerical Prediction of Propeller 

Characteristics": Journal of Ship Research, 

March 1973. 

[3-20] T. Cebeci and A.M.O. Smith; "Calculation of Profile Drag 

of Airfoils at Low Mach Numbers": Journal of 

Aircraft, Vol. 5, No. 6, 1968. 

[3-21] M.W.C Oosterveld and P. van Oossanen; "Recent 

Developments in Marine Propeller Hydrodynamics": 

Paper presented at International Jubilee Meeting 

on the Occasion of the 40th Anniversary of the 

Netherlands Ship Model Basin, August 30-September 1, 

I . . . 1972. 

[3-22] M.W.C. Oosterveld and P. van Oossanen; "Representation 

of Propeller Characteristics Suitable for 

1 •• L Preliminary Ship Design Studies" : international 

Conference on Computer Applications in Shipbuil­

ding, Tokyo, 1973. 

[3-23] H.W. Lerbs; "On the Effect of Scale and Roughness on 

Free Running Propellers": Journal of the American 

Society of Naval Engineers, Inc. Vol. 63, no. 1, 

February 1951. 

[3-24] S.F. Hoerner; "Fluid Dynamic Drag": Published by the 

Author, 1971. 

[3-25] M.A. Efroymson; "Multiple Regression Analysis": 

Numerical Methods, Vol. I, edited by Ralston and 

Wilf, Wiley 1959. 



- 231 -

[3-26] R.M. Pinkerton; "Calculated and Measured Pressure 

Distributions over the Midspan Section of the 

NACA 4412 Airfoil": National Advisory Committee 

for Aeronautics, Rep.no. 563, 1936. 

http://Rep.no


- 232 -

REFERENCES OF CHAPTER 4 

l] E.N. Harvey, W.D. McElroy and A.H. Whitely; "On 

Cavity Formation in Water": Journal Applied Physics, 

18, no. 2, 1947. 

2] R.T. Knapp, J.W. Daily and F.G. Hammitt; "Cavitation": 

McGraw-Hill Book Company 1970. 

3J V.H. Arakeri; "Viscous Effects in Inception and 

Development of Cavitation on Axi-Symmetric Bodies": 

California Institute of Technology, Engineering and 

Applied Science Division, Report No. Eng. 183-1, 

January 1973. 

4] A.J. Alexander; "An Investigation of the Relationship 

Between Flow Separation and Cavitation": National 

Physical Laboratory, TM 230, November 1968. 

5] A.B. Bailey; "The relationship between Flow Separation 

and Cavitation": Oxford University, Department of 

Engineering Science, Report No. 1111/70,July 1970. 

6] B.R. Parkin and J.W. Holl; "Incipient-Cvitation Scaling 

Experiments for Hemispherical and 1.5 Calibre Ogive-

Nosed Bodies": Report Nord 7958-264, Ordnance 

Research Laboratory, The Pennsylvania State 

University, May 1954. 

7 ] R.M. Pinkerton; "Calculated and Measured Pressure 

Distributions over the Midspan Section of the 

NACA 4412 Airfoil": National Advisory Committee 

for Aeronautics, Rep.no. 563, 1936. 

8 ] J.W. Daily; "Force and Cavitation Characteristics of the 

NACA 4412 Hydrofoil": California Institute of 

Technology, HML No. ND-19, June 1944.See also 

http://Rep.no


- 233 -

"Cavitation Characteristics and Infinite Aspect 

Ratio Characteristics of a Hydrofoil Section": 

Trans. American Society of Mechanical Engineers, 

Vol. 71, pp. 269-284, April 1949. 

9 ] R.W. Kermeen; "Water Tunnel Tests of NACA 4412 and 

Walchner Profile 7 Hydrofoils in Noncavitating 

and Cavitating Flows": California Institute of 

Technology, Report No. 47-5, February 1956. 

lo] R.W. Kermeen; "Water Tunnel Tests of NACA 66, -012 

Hydrofoil in Noncavitating and Cavitating Flows": 

California Institute of Technology, Report No. 47-7, 

February 1956. 

11 ] A.M.O. Smith; "Transition, Pressure Gradient, and 

Stability Theory": Proceedings of 9th International 

Congress of Applied Mechanics, Brussels, Belgium, 

Vol. 4, p.234, 1956. 

12] T. Cebeci, G.J. Mosinskis and A.M.O. Smith; "Calcula­

tion of Viscous Drag of Two-Dimensional and 

Axisymmetric Bodies in Incompressible Flows": 

American Institute of Aeronautics and Astronautics, 

Paper No. 72-1, 1972. 

13] C.A. Johnsson and T. S^ntvedt; "Propeller Excitation 

and Response of 230.000 TDW Tankers": Det Norske 

Veritas, Publication No. 79, November 1972. 

van Manen; "On the Usefulness of a Test with a 

Propeller Model in a Cavitation Tunnel": 

Symposium on Testing Techniques in Ship Cavitation 

Research, Trondheim, 1967. 

15] D.K. Brown; "Air Content, Surface Tension and Cavitation 

Inception": Admiralty Experiment Works, Technical 

14] J.D. 



- 234 -

Memorandum, No. 1/12, March 1973. 

16] A.P. Keller; "Investigations Concerning the Modeling 

of Flow Cavitation": University of Michigan, 

Report No. UMICH 01357-28-T, March 1973. 

17] J.W. Holl; "The Estimation of the Effect of Surface 

Irregularites on the Inception of Cavitation": 

American Society of Mechanical Engineers, Symp. on 

Cavitation in Fluid Machinery, G.M. Wood et al, 

(editors), 1965. 

18] R.T. Knapp; "Cavitation Mechanics and Its Relation 

to the Design of Hydraulic Equipment": Proceedings 

Institute Mechanical Engineers (london), A, 166, 

150-163, 1952. 

19] Lord Rayleigh; "On the Pressure Developed in a Liquid 

During the Collapse of a Spherical Cavity": 

Philosophical Magazine, 34, 94-98, August 1917. 

20] 0. Walchner; "Contributions to the Design of Ship 

Propellers without Cavitation": M.A.P. Völken-

rode, A.V.A. Monographs. 

21] J. Balhan; "Metingen aan enige bij Scheepsschroeven 

Gebruikelijke Profielen in Vlakke Stroming met 

en zonder Cavitatie": Doctor's Thesis 1951. Delft. 

Publ.no. 99 of the Netherlands Ship Model Basin. 

22] P. van Oossanen; "Report on Experiments with Typical 

Screw Propeller Type Sections in Cavitating and 

Non-Cavitating Flow": Report of the Netherlands 

Ship Model Basin, No. W.0. 179, December 1969. 

23J P. van Oossanen; " Profile Characteristics in 

Cavitating and Non-Cavitating Flows :lnternational 

http://Publ.no


- 235 -

Shipbuilding Progress, March 1971. 

[4-24] W.P.A. van Lammeren, J.D. van Manen and M.W.C Ooster­

veld; "The Wageningen B-Screw Series": Trans. 

Society of Naval Architects and Marine Engineers, 

Vol. 77, 1969. 

. Geurst; "Linearized Theory of Two-Dimensional 

Cavity Flows": Delft University of Technology, 

1961. 

Hanaoka; "Linearized Theory of Cavity Flow Past 

a Hydrofoil of Arbitrary Shape": Journal Society 

of Naval Architects of Japan, Vol. 115, 1964. 

Gutsche; "Sammlung und Auswertung von Unterlagen 

uber Kavitation und Theoretische Propellerberech-

nung": Schiffbauforschung. Heft 1, 1962. 

Gutsche; "Der Einfluss der Kavitation auf die 

Profileigenschaften von Propellerblattschnitten": 

Schiffbauforschung. Heft 1, 1962. 

Walchner; "Profilmessungen bei Kavitation. Hydrome-

chanische Probleme des Schiffsantriebes": Ham-

burgische Schiffsbau-Verscuchsanstat, 1932,S.256. 

[4-30] H.P. Rader; Discussion on Session 5 (Papers 15, 16, 17), 

Symposium on Cavitation in Hydrodynamics, National 

Physical Laboratory Teddington, England. Septem­

ber 1955. 

[4-25] J.A 

[4-26] T. 

[4-27] F. 

[4-28] F. 

[4-29] 0. 



- 236 -

REFERENCES OF CHAPTER 5 

[5-1] M.W.C. Oosterveld and P. van Oossanen. "Recent 

Developments in Marine Propeller Hydrodynamics": 

Paper presented at International Jubilee Meeting 

on the Occasion of the 40th Anniversary of the 

Netherlands Ship Model Basin, August 30-Septem­

ber 1, 1972. 

W. van Gent and P. van Oossanen; "Influence of Wake 

on Propeller Loading and Cavitation": Paper held 

at Second Lips Propeller Symposium, Drunen, Holland, 

1973. See also International Shipbuilding Progress, 

1973. 

Wm.B. Morgan, V. Silovic and S.B. Denny; "Propeller 

Lifting Surface Corrections": Trans. Society of 

Naval Architects and Marine Engineers,Vol.76,1968. 

R.A. Gumming, Wm.B. Morgan and R.J. Boswell; "Highly 

Skewed Propellers": Trans. Society of Naval 

Architects and Marine Engineers, Vol. 80, 1972. 

M.W.C. Oosterveld and P. van Oossanen; "Representation 

of Propeller Characteristics Suitable for 

Preliminary Ship Design Studies": International 

Conference on Computer Applications in Shipbuil­

ding, Tokyo, 1973. 

W.P.A. van Lammeren, J.D. van Manen and M.W.C. Ooster­

veld; "The Wageningen B-Screw Series": Trans. 

Society of Naval Architects and Marine Engineers, 

Vol. 77, 1969. 

[5-7] P. van Oossanen; "A Method to Minimize the Occurrence 

of Cavitation on Propellers in a Wake": Inter­

national Shipbuilding Progress, September 1971. 

Netherlands Ship Model Basin, publ.no.388. 

[5-2] 

[5-3] 

[5-4] 

[5-5] 

[5-6] 

http://publ.no


- 237 -

REFERENCES OF APPENDIX 

[ A - I ] Wm.B. Morgan, V. Silovic and S.B. Denny; "Propeller 

Lifting Surface Corrections": Trans. Society of 

Naval Architects and Marine Engineers,Vol.76,1968. 

K. Minsaas and O.H. Slattelid; "Lifting Surface 

Corrections for 3 Bladed Optimum Propellers'' : 

International Shipbuilding Progress, Vol. 18, 

No. 208, Dec. 1971, pp. 437-452. 

R.A. Gumming, Wm.B. Morgan and R.J. Boswell; "Highly 

Skewed Propellers": Trans. Society of Naval 

Architects and Marine Engineers, Vol. 80, 1972. 

H.M. Cheng; "Hydrodynamic Aspect of Propeller Design 

Based on Lifting Surface Theory: Part 1-Uniform 

Chordwise Load Distribution": David Taylor Model 

Basin Report 1802, 1964 and "Hydrodynamic Aspect 

of Propeller Design Based on Lifting Surface 

Theory: Part II-Arbitrary Chordwise Load Distribu­

tion": David Taylor Model Basin Report 1803,1965. 

J.E. Kerwin and R. Leopold; "A Design Theory for 

Subcavitating Propellers", Trans. Society of 

Naval Architects and Marine Engineers, vol. 72, 

1964, pp.294-335. 

G.G. Cox; Report of Propeller Committee to the 

13th International Towing Tank Conference, 

Hamburg and Berlin, 1972. 

[A-7 J M.A. Efroymson; "Multiple Regression Analysis": 

Numerical Methods, Vol. I, edited by Ralston 

and Wilf, Wiley 1959. 

[A-2] 

[A-3] 

[A-4] 

[A-5] 

[A-6] 



- 238 -

NOMENCLATURE 

UPPER CASE LETTERS 

Al, A2 constants in least squares method for determination 

of effective camber distribution in non-uniform flow 

A expanded area of propeller blades 

A^ Fourier coefficient in expansion of conformal 

transformation parameters ijj and e 

A Fourier coefficients in expansion of conformal 
r 

transformation parameters ^ and e 

A disc area of propeller 

Bi, B2 constants in least squares method for determination 

of effective camber distribution in non-uniform flow 

BTF blade thickness fraction based on maximum thickness 
X 

of blade section 

Cl, C2 constants in least squares method for determination 

of effective camber distribution in non-uniform flow 

C drag coefficient, 

C^ = D/^pU^c 

C drag coefficient for a = 0 

C three-dimensional part of C 

C maximum value of drag coefficient due to cavitation 
max 

C minimum value of drag coefficient of blade section 
min 
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value of drag coefficient in non-cavitating flow 

skin-friction coefficient 

three-dimensional value of lift coefficient, 

C^ = L/^pU'c 

lift coefficient for a = 0 

two-dimensional value of lift coefficient 

two-dimensional value of lift coefficient in 

potential flow 

three-dimensional value of lift coefficient in 

potential flow ' 

lift coefficient for non-cavitating flow 

pressure coefficient, 

C = 1 - (v/U)^ 
P 

pressure coefficient on profile or blade section at 

drag force and propeller diameter 

drag force at x 

shape factor of boundary layer and non-dimensional 

value of circulation 

Fourier coefficients in expansion for radial 

distribution of non-dimensional circulation 

shape factor of boundary layer 

induction factor 
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I. axial induction factor 
A 

I Fourier coefficients in expansion for radial 
n 

distribution of axial induction factor 

T 
I Fourier coefficients in expansion for radial 

distribution of tangential induction factor 

I tangential induction factor 

advance ratio, 

J = V^/nD 
A 

ratio of value of Knapp's similarity parameter for 

decline to that for growth 

K lifting surface correction factor for camber 

K lift curve-slope factor for effect of viscosity 
8 

IE_ thrust coefficient, 

K^ = T/pn'D" 

K_ torque coefficient , 

KQ = Q/pn^D^ 

K angle of attack lifting surface correction factor for 

thickness 

K lifting surface correction factor for ideal angle 
a ^ ^ 

of incidence 

K zero-lift angle of attack factor for effect of 
cto 

viscosity 

L lift force 
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distance of leading edge to generator line 

lift force at x 

number of chordwise points at which effective camber 

is calculated 

pitch of blade section and non-dimensional ordinate 

along pitch line from position of maximum thickness 

to leading and trailing edges for use in formula for 

coordinates of B-series propellers 

effective atmospheric pressure 

vapour pressure at prevailing temperature 

torque 

coordinate of radial distribution of torque at x 

bubble radius and radius of propeller 

resultant of lift and drag forces on blade section 

Reynolds number based on free-stream velocity and 

coordinate x along blade section surface 

Reynolds number based on free-stream velocity at the 

position of cavitation inception 

Reynolds number based on free-stream velocity and 

distance of position of point of transition from 

leading edge 

Reynolds number based on momentum thickness of 

boundary layer 
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Reynolds number based on momentum thickness and local 

velocity at the position of cavitation inception 

Reynolds number based on momentum thickness and local 

velocity at the position of transition 

thrust 

coordinate of radial distribution of thrust at x 

undisturbed free-stream velocity 

induced velocity 

axial induced velocity component 

velocity induced by straight line vortex 

tangential induced velocity component 

undisturbed velocity 

resultant velocity at blade section 

average value of axial inflow velocity component along 

lifting line 

average value of axial inflow velocity component over 

propeller disc 

local value of axial inflow velocity component 

average value of axial inflow velocity component along 

chord line of blade section 

local value of radial inflow velocity component 
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average value of radial inflow velocity component along 

chord line of blade section ̂  

local value of tangential inflow velocity component 

average value of tangential inflow velocity component 

along chord line of blade section 

coefficients 

number of propeller blades 

LOWER CASE LETTERS 

conformal transformation parameter 

power of Z in polynomial for derivative of C with 

respect to a for B-series propellers and power of x 

in polynomials for lifting surface correction factors 

for high skews 

power of expanded blade area ratio in polynomial for 

derivative of C with respect to a for B-series 

propellers and power of Z in polynomials for lifting 

surface correction factors for high skews 

chord length of blade section 

power of pitch-diameter ratio in polynomial for 

derivative of C with respect to a for B-series 

propellers and power of 9 in polynomials for lifting 

surface correction factors for high skews 

power of a in polynomial for derivative of C with 

respect to a for B-series 

power of Z in polynomial for C^ of B-series propellers 
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maximum camber of blade section 

power of expanded blade area ratio in polynomial 

for C of B-series propellers 
L 

ordinates of geometric camber distribution of blade 

section at k th position on chord 

change in geometric camber at k th position on chord 

due to curvature of undisturbed flow along chord 

ordinate of geometric camber distribution of blade 

section at x 
c 

position along chord of blade section where the camber 

is maximum 

ordinate of effective camber distribution of blade 

section at x 
c 

change in geometric camber at x due to curvature of 

undisturbed flow along chord 

function of x /c for determination of two-dimensional c 
zero-lift angle of attack in potential flow 

function of x /c for determination of two-dimensional 

ideal angle of attack in potential flow 

acceleration due to gravity 

power of pitch-diameter ratio in polynomial for C 

of B-series propellers 

power of angle of attack in polynomial for C of 
LI 

B-series propellers 
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part of expression for axial induced velocity which 

can be simplified by means of the Glauert integral 

part of expression for tangential induced velocity 

which can be simplified by means of the Glauert integral 

unit vector along u-axis 

unit vector along v-axis 

unit vector along w-axis 

coefficients in polynomial for derivative of C with 

respect to a for B-series propellers 

coefficients in equation for two-dimensional value of 

zero-lift angle of attack in potential flow 

coefficients in equation for two-dimensional value 

of ideal angle of incidence in potential flow 

vector along lifting line 

length along lifting line from origin to hub radius 

length along lifting line from origin to propeller tip 

integer used in Fourier series expansion for radial 

distribution of non-dimensional circulation 

revolutions per second of propeller and integer used 

in Fourier series expansion for the radial distribution 

of the value of the induction factors 

conformal transformation parameter and integer defining 

location of points on profile shape in conformal 

mapping procedure 



- 246 -

effective liquid tension causing growth _or decline of 

cavity 

radial coordinates 

radius of propeller hub 

vector distance between vortex element of bound vortex 

line and point at which induced velocity is calculated 

power of Z in polynomials for lifting surface correction 

factors 

integration parameter in Poisson's integral for the 

conjugate function occurring in conformal transfor­

mation procedure and time of growth or decline of cavity 

power of tangent of local skew angle in polynomials 

for lifting surface correction factors 

t extrapolated blade section thickness at leading and 

trailing edges 

maximum thickness of blade section 
X 

ratio of given thickness ordinates of blade section to 

ordinates of elliptical thickness distribution 

effective wake thickness of profile or propeller 

blade section 

cartesian coordinate 

power of expanded blade area ratio in polynomials for 

lifting surface correction factors 

cartesian coordinate and local velocity on profile 
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V. power of induced advance ratio in polynomials for 

lifting surface correction factors 

V local velocity on blade section or profile at x 
c 

w cartesian coordinate 

X non-dimensional radial coordinate, 

x = r/R 

X coordinate along chord of blade section 

X coordinate of k th position along chord of blade section 
=k 

X position on profile or blade section at which -C 
Cl P 

equals the cavitation index nearest to the leading 
edge 

X position on profile or blade section at which -C 
C2 ^ P 

equals the cavitation index furthest from the 
leading edge 

C} position on profile or blade section at which cavity 

terminates 

X thrust eccentricity of propeller blade 

X, non-dimensional radius of propeller hub, 

X non-dimensional arc length along surface of blade 

section or profile 

cartesian coordinate and ordinate of suction and 

pressure sides of profile or blade section 

y^ ordinate of elliptical blade section thickness 

distribution 
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yf 'Yu u vertical ordinate of point on blade section of B-series 
lace back 

propellers on face and back with respect to pitch line 

V ordinate of given blade section thickness distribution 
g 

y ,y ordinate on pressure and suction side of profile or 

p s 

^k 

"k 

blade section at location of turbulent separation 

GREEK SYMBOLS 

a angle of attack 

a ,. effective angle of attack in approximate three-
eff 

dimensional pressure distribution calculation 

a average incidence of undisturbed flow over blade 

section with respect to nose-tail line 

Aa variation in incidence angle along blade section with 
g 1 

respect to average value a 

a^ incidence of undisturbed flow at k th position along 

blade section with respect to nose-tail line 

Aa variation in incidence angle along blade section 

at k th position with respect to average value 

a. three-dimensional value of ideal angle of attack 

a. two-dimensional value of ideal angle of attack 

a. two-dimensional value of ideal angle of attack in 
1 2 

'^ potential flow 

a angle of attack with respect to nose-tail line of 

profile or blade section 
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three-dimensional value of zero-lift angle of 

attack 

two-dimensional value of zero-lift angle of attack 

two-dimensional value of angle of zero-lift in 

potential flow 

advance angle and conformal transformation parameter 

(equal to the two-dimensional value of angle of 

attack for zero-lift in potential flow) 

hydrodynamic pitch angle 

advance angle at k th position along chord of blade 

section 

corrected value of zero-lift angle of attack for 

effect of viscosity 

circulation <: 

effective pitch angle of propeller blade section 

angle between nose-tail line of blade section with 

respect to pitch line 

displacement thickness of boundary layer 

displacement thickness of boundary layer on pressure 

and suction side at the location of turbulent separation 

conformal transformation parameter 

corrected value of e for effect of viscosity 

effective three-dimensional value of e used in 

pressure distribution calculation 
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open-water efficiency, 

'̂° ~ 2TTKQ 

momentum thickness of boundary layer and angular 

polar coordinate 

momentum thickness at location of cavitation inception 

angular polar coordinate of k th position along 

blade section 

skew angle at blade tip 

skew angle at radius x 

angular polar coordinate of lifting line at x 

angular polar coordinate of radial vector to x on 

lifting line 

induced advance ratio 

kinematic viscosity 

pressure gradient parameter of boundary layer 

fluid density 

radius of curvature of leading edge of profile or 

blade section 

radius of curvature of trailing edge of profile or 

blade section 

cavitation index based on resultant velocity for 



251 

propeller blade section and based on free-stream 

velocity for profile 

a ., value of cavitation index for begin of lift or 
crit 

drag loss 

a. value of cavitation index at cavitation inception 

o„ cavitation number based on rotational tip speed 

T wall shear stress 

w 

(j), (jl Q variable substituted for x and x in Fourier expansion 

for radial distribution of induction factors and 

non-dimensional circulation 

conformal transformation parameter 

conformal transformation parameter 

iji , i|i value of at leading and trailing edge 

conformal transformation parameter 
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SUMMARY 

In this thesis a method is developed for the calculation of the 

performance characteristics and of the extent and type of cavitation 

on propellers. The effects of viscosity and non-uniform inflow on 

these aspects are considered. 

The Lerbs induction factor method forms the basis of the propeller 

theory presented in chapter 2. For the present purpose the inverse 

application of this method is required. Convergence is reached 

by means of introducing an extra iteration for the hydrodynamic 

pitch angle. The effect of non-uniform flow is considered by 

repeating the calculations at every required blade position. The 

average of the undisturbed inflow velocities over the blade sections 

is used to determine the advance angle at each blade position. The 

effect of the variation of the undisturbed inflow velocities over 

each blade section is accounted for by effectively distorting the 

geometric camber distribution. The effect of the bound vortices 

is included because of their non-zero contribution to the induced 

velocity in a non-uniform flow. The calculation of the pressure 

distribution on the blades at each blade position is carried out 

after further distorting blade section camber and by defining an 

effective angle of attack such that a three-dimensional 

approximation is obtained with a two-dimensional method. 

For the correct prediction of propeller performance particularly 

in off-design conditions, it is necessary to account for viscous 

effects on the lift and drag properties of propeller blade sections. 

This topic is considered in chapter 3. Viscous effects on the lift 

coefficient are accounted for by means of boundary layer theory. 

A correlation is obtained between the lift-curve slope and the 

effective thickness of the wake in the absence of laminar boundary 

layer separation. The effect of viscosity on the angle of zero-lift 

is found to be dependent on the relative wake thickness of suction 

and pressure sides. A calculation procedure for the drag coefficient 

is developed from the results of an "equivalent profile" analysis 

of the experimental characteristics of the Wageningen B-series 

propellers. 
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An analytical method for the assessment of cavitation 

characteristics of propellers is presented in chapter 4. A 

boundary layer analysis of the results of cavitation inception 

studies on profiles revealed that cavitation inception always 

occurs in the laminar-turbulent transition region of the boundary 

layer. A criterium for the extent of cavitation is derived by 

calculating the value of Knapp's dynamic similarity parameter for 

spherical cavities for growth and decline from the results of 

cavitation measurements on profiles. A study of measured pressure 

distributions at various angles of attack and values of the 

cavitation index leads to an approximate method for the 

calculation of the pressure distribution on a cavitating profile. 

With this result a general procedure for the change in lift and 

drag due to cavitation can be deduced. 

In chapter 5 various results of calculations are presented which 

demonstrate the validity of the developed theory. 
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SAMENVATTING 

In dit proefschrift wordt een methode gegeven voor de berekening 

van de voortstuwingseigenschappen en van de omvang en het type 

van cavitatie op scheepsschroeven. De invloeden van viscositeit 

en niet-uniforme aanstroming op deze aspecten worden in aanmerking 

genomen. 

De inductiefactormethode van Lerbs vormt de basis van de schroef-

theorie, die gegeven wordt in hoofdstuk 2. Voor het onderhavige 

doel is toepassing van deze methode in omgekeerde zin vereist. 

Convergentie werd verkregen door middel van het invoeren van een 

extra iteratie voor de hydrodynamische spoedhoek. De invloed van 

niet-uniforme aanstroming wordt in aanmerking genomen door her­

haling van de berekeningen op iedere gewenste bladpositie tijdens 

een omwenteling. Het gemiddelde van de ongestoorde instroomsnel-

heden over de bladsecties wordt gebruikt om de snelheidsgraad op 

iedere bladpositie te bepalen. De invloed van de variatie van de 

ongestoorde instroomsnelheden over iedere bladsectie wordt in 

rekening gebracht door de geometrische welvingsverdeling te ver­

vormen. De invloed van de gebonden wervels wordt meegerekend 

vanwege hun eindige bijdrage tot de geïnduceerde snelheid in een 

niet-uniforme stroming. De berekening van de drukverdeling op de 

bladen voor iedere bladstand tijdens een omwenteling wordt uitge­

voerd na een verdere vervorming van de welving van de bladsecties 

en door het definiëren van een effectieve invalshoek zodanig dat 

een drie-dimensionale benadering wordt verkregen met een twee­

dimensionale methode. 

Voor de juiste voorspelling van de voortstuwingseigenschappen van 

de schroef, speciaal onder omstandigheden die afwijken van het 

ontwerp, is het noodzakelijk de viskeuze invloeden op de lift- en 

weerstandseigenschappen van schroefbladsecties in rekening te 

brengen. Dit onderwerp wordt behandeld in hoofdstuk 3. Viskeuze 

invloeden op de liftcoefficient worden in rekening gebracht door 

middel van grenslaagtheorie. Een relatie wordt verkregen tussen 

de helling van de liftkromme en de effectieve dikte van het zog 

zonder laminaire grenslaagloslating. De invloed van de viscositeit 


