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Preface
Dear reader, in front of you lies my master thesis: “Pedestrian Interaction Modelling: Leveraging Tra-
jectory Prediction for Belief Representation”. I have dedicated the majority of the past year to this work,
which will conclude my graduation project as well as my master in Robotics at the Delft University of
Technology. During this time I have immersed myself in the world of interaction modelling and trajec-
tory prediction with the goal of making a meaningful contribution to the field of pedestrian interaction
modelling. With this goal in mind, I have researched the effectiveness of integrating a probabilistic tra-
jectory forecasting model, trained on a belief-based dataset, into an interaction modelling framework
driven by communication and beliefs. To test its abilities I have created a two-dimensional simulation
setup capable of simulating several interactive pedestrian traffic scenarios, of which all my findings are
reported in this thesis document.

This has been the biggest project I have ever worked on and I have enjoyed it a lot. I could not have
done it alone, which is why I want to thank my daily supervisors Anna and Olger, for all the feedback,
brainstorming and other support you have provided throughout the entire process. Your guidance has
really helped me stay motivated and focused on the goal. I also want to thank my supervisor Arkady
for your expertise, encouragement, and valuable insights. I would also like to thank my family, friends,
and anyone close to me who has helped me to get to this point, and finally I would like to thank you,
the reader for taking the time to read my work. I hope you will enjoy it.

T.H. Weinans
Delft, January 2024
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Abstract—Autonomy in traffic (e.g., autonomous
vehicles) could potentially benefit mobility, safety,
accessibility and sustainability. However, the
realisation of these advancements is highly dependent
on how effective these autonomous vehicles interact
with vulnerable road users such as pedestrians. Before
we can understand how pedestrians will interact with
autonomous vehicles, it is essential to understand how
pedestrians interact among themselves in interactive
traffic scenarios. Previous studies have focused on
describing these scenarios with probabilistic trajectory
prediction methods such as TrajFlow. However,
these approaches often fall short in capturing the
nuances of mutual interactions. Simple interaction
models have been proposed that can describe these
interactions, but neglect the influence of another
person’s intentions. To address this issue, in existing
work the Communication-Enabled-Interaction (CEI)
framework was proposed that describes interactions
by modelling communication and a belief of another
person’s intentions. The idea of using beliefs in
interaction modelling is based on the concept that
people have a general but uncertain idea about
the plans of other people. These beliefs are one
of the fundamental aspects of the CEI framework
and must therefore contain valuable information
about possible decisions. That is why this study
investigates the use of the probabilistic trajectory
prediction method TrajFlow for the belief construction
of the CEI framework. TrajFlow is trained on the
belief-based Forking Paths dataset, integrated into
the CEI framework, and tested in four simulated
pedestrian interaction scenarios. The analysis shows
that the framework is able to simulate plausible
interaction behaviour, dealing with conflicting goals
and trajectories in multiple simulations. By doing so,
this study takes a positive step towards modelling
pedestrian interactions and contributes to the broader
goal of realising the benefits linked to autonomy in
traffic.

Index Terms—Pedestrian behaviour, interaction
modelling, trajectory prediction

I. Introduction
In this day and age, there is a great deal of research

being done towards autonomous vehicles (AVs) in traffic
situations, such as self-driving cars and delivery robots.
There are many promised benefits related to mobility,
safety, accessibility and sustainability [1]. Despite all these
anticipated benefits, the realisation of these advancements
is highly dependent on how effective their interaction

is with human road users, particularly vulnerable road
users like pedestrians [2]. In order to understand how
pedestrians will interact with AVs, it is essential to
understand how pedestrians interact among themselves
in interactive traffic scenarios. By understanding how
pedestrians navigate and negotiate with fellow road users,
insights can be gained that will enhance the development
of safer and more efficient AVs. Investigating pedestrian-
pedestrian interactions is therefore an essential step that
will aid the integration of safe and effective AVs in our
evolving urban landscapes.

To gain this understanding, different approaches have
been employed. One of these approaches is trajectory
prediction, where the future states of pedestrians, or
dynamic agents in general, are predicted by a forecasting
model based on their current and past states. The
reasoning behind this is that if the predictions are
accurate, collisions can be avoided by planning a path
that is not in conflict with the anticipated movements of
these dynamic agents. An alternative approach involves
the use of modelling methods. These methods aim to
create a model that describes the underlying dynamics
and behaviours of agents. Unlike trajectory prediction
methods, modelling methods try to capture the broader
patterns and principles that guide human interactions.

AVs often rely on predictions of the future, which
is commonly done with trajectory prediction. However,
future human behaviour is inherently uncertain, both
aleatoric i.e. by the randomness of external events, and
epistemic i.e. by lack of knowledge from the observer [3].
High and lower-level decisions, related to behaviour levels
[4], are cause for different modes. In this context, these
modes refer to the multiple possible outcomes or paths
of the future trajectory. An example would be a person
walking towards an intersection and having options to go
straight, left or right based on their desired destination.
These high-level modes might be obvious, but there are
also lower-level modes which might include slowing down
or speeding up to pass before someone else, and making
a tight or a wide turn to avoid a puddle. The complexity
and situational dependence of these modes make it difficult
to make accurate trajectory predictions for human road
users.

To address the issue of uncertainty, numerous methods
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aim to predict future agent trajectories probabilistically.
These methods vary from using Gaussian Mixture
Models (GMMs) [5, 6] to employing advanced generative
networks. Generative networks like Generative Adversarial
Networks (GANs) [7, 8], Conditional Variational
Autoencoders (CVAEs) [9, 10], and Variational Recurrent
Neural Networks (VRNNs) [11, 12] are particularly
interesting as they can understand complex patterns
without needing to know the number of expected modes.
They offer the advantage of flexibility and the ability to
handle various complexities within trajectory prediction
tasks, as opposed to GMM-based methods. However,
despite these cutting-edge techniques showing good
prediction accuracy, they tend to suffer from the problem
of mode collapse. Here the generator fails to capture the
full diversity of the data distribution and produces limited
or repetitive outputs, which is especially a problem in the
GAN-based methods.

To tackle these challenges, a promising method is using
Normalizing Flows (NFs) which are specifically designed
to learn how data is distributed. A particularly promising
method is TrajFlow [13], which is a probabilistic trajectory
prediction approach focused on improving the accuracy of
learned distributions and accurately predicting uncertain
human behaviour in traffic scenarios.

Trajectory prediction methods like TrajFlow, need to
be trained on trajectory data before they can predict
trajectories. This training data has a crucial impact on the
effectiveness of the model to create accurate predictions.
There are a great number of real-world datasets that
are used for trajectory training and evaluation, such
as ETH/UCY [14, 15], SSD [16], nuScenes [17] and
KITTI [18]. However, they all face a fundamental issue:
only a single trajectory is observable out of all the
potential future trajectories that could have been taken.
As discussed previously, a single starting trajectory can
result in multiple valid future trajectories influenced by
high- and low-level modes. A solution for overcoming this
issue is provided in the Forking Paths dataset [19]. By
creating a simulated environment where annotators create
multi-future trajectories, multimodality is established in
the data.

Another reason why it is difficult to create an
understanding of how human road users like pedestrians
act in interactive scenarios is that in interactions,
mostly described by modelling frameworks, both road
users influence each other’s behaviour by continuously
responding to the actions of the other agent. These
responses are guided by the communication between
agents and determine priority and acceptance among
road users [20]. Examples of this are a merging scenario
where one vehicle needs to make way for the other, or
two pedestrians walking on a collision path where both
agents watch each other’s movements in order to pass
safely. Modelling these complex interactions proves to be
a difficult task.

For the issue of describing interactions, multiple
modelling frameworks have been introduced. Modelling
human traffic behaviour has mostly focused on studying
individuals, like how one vehicle follows other vehicles
[21, 22], changes lanes [23, 24], or accepts gaps in traffic
[25, 26]. These models often assume that one person
responds to others, but those others do not respond
back. For example, in car-following models, the following
driver reacts to the leading vehicle, but the leading
one does not react based on the follower. This one-
way interaction assumption [27] helps to understand a
single person’s behaviour but is not ideal for scenarios
involving mutual interactions, like intersections. Game
theory still is commonly used to model these interactive
agent systems [28, 29, 30]. However, it faces challenges as
it assumes agents always act rationally, ignores the role of
communication, and simplifies agents’ actions.

To address these limitations, the Communication-
Enabled-Interaction (CEI) framework [27] was proposed.
This framework is built to model the entire two-way
interaction between agents by considering the joint
interactive system, guided by communication and the
creation of beliefs about another person’s intentions. It
does not have the limitations of game-theoretic models and
can comprehensively describe interactive behaviours.

Although complex trajectory prediction models like
TrajFlow are great at handling the uncertainty and
complexity inherent in pedestrian trajectories, they can
fall short in capturing the nuances of mutual interactions
through communicating intentions among pedestrians
in interactive scenarios. On the other hand, while
modelling frameworks like CEI do provide a sophisticated
methodology to model interactions among agents, they
lack a valid implementation for 2D scenarios, including
a robust method that can create beliefs about complex
and uncertain pedestrian trajectories. This difference
highlights a significant gap in research. An approach
is needed that joins the detailed understanding of
how pedestrians interact using the CEI framework,
and the advanced predictive abilities of TrajFlow.
This approach will aim to improve the understanding
of pedestrian behaviour in interactive situations by
simulating pedestrian movements in interactive traffic
scenarios. So, to bridge this gap the following research
question is formulated:

What influence does the integration of TrajFlow’s
multimodal trajectory prediction in the Communication-
Enabled-Interaction framework have on simulated
pedestrian behaviour in interactive traffic scenarios?

To answer this question the CEI framework is combined
with TrajFlow. The dynamics of the CEI model are
expanded to suit 2D pedestrian simulations and will
handle the overall interaction modelling, while the belief
about other persons’ actions is generated by TrajFlow
multimodal trajectory prediction, making use of the
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Figure 1: A schematic overview of the CEI framework [27].
Plans update based on risk-thresholds & risk estimates
emerging from a belief of the other driver. Communication
links one driver’s plans to the belief of the other.

combined potential of these methodologies. TrajFlow is
trained on the Forking Paths dataset, where its belief-
based nature fits perfectly with TrajFlow’s role in the CEI
model. A pedestrian interaction simulation environment is
designed, aiming to showcase its effectiveness.

II. Background
A. Communication-Enabled-Interaction Framework

The Communication-Enabled-Interaction (CEI)
framework [27] as proposed by Siebinga et. al. forms
a solid basis for modelling agent interaction behaviour.
This framework considers that agents have plans and
beliefs about others’ actions, affecting their behaviour
based on perceived risks. Unlike other models that
assume individual, one-sided interactions between agents,
the CEI framework captures the entire interaction
between them. It provides a structured method for
modelling human-human traffic interactions, and by
considering the joint interactive system and integrating
explicit communication, it does not have the limitations
of traditional game-theoretic models, offering a more
comprehensive understanding of interactive behaviours.

The CEI framework consists of four essential
components describing the interaction between two agents:
risk perception, a deterministic plan, communication, and
probabilistic belief. A schematic overview is shown in
figure 1.

1) Risk-Based Re-plan: The framework combines risk-
based decision-making with the human preference for
satisfactory solutions. Agents adjust their plans based
on perceived risk levels, with low risk-threshold agents
adapting early and high risk-threshold agents benefiting
from others’ risk reduction.

2) Plan: The plan defines an agent’s intended actions
for the near future covering part of the interaction. This
plan, created by a risk-unrelated planning algorithm,

prioritizes factors like desired speed and comfort, which
is achieved by minimizing the following cost function:

c =
N∑(

vn − vd
)2 +

(
ain

n

)2 (1)

where N is the time step, v is the velocity, and ain is the
input acceleration. Risk perception is regularly evaluated
to determine plan suitability. If re-planning is needed, the
risk-thresholds constrain the planning process.

3) Communication: The communication links one
agent’s plan to the other agent’s belief. In the framework,
an implicit communication model is used which observes
the agent’s position p and velocity v.

4) Belief: Both agents are assumed to have probabilistic
beliefs of the anticipated actions of the other agent in
the near future. Bayesian updating is used where the
previous belief point serves as the prior distribution, and
the resulting posterior is used as the updated belief point.
The likelihood is assumed to be a Gaussian distribution
with a known standard deviation with position p, time t
and maximum comfortable acceleration ac.

N

(
µ = p

t
, σ2 =

(
act

6

)2
)

(2)

The framework runs simulation steps with a time
interval ∆t. For each step, the agent updates its belief
of the other agent and computes the perceived risk. If this
risk is higher than the upper risk-threshold their plan is
updated so that the perceived risk will be reduced. If the
risk is below the lower risk-threshold and the last plan
update was a longer time ago than the saturation time τ ,
the plan is also updated to ensure the agent does not stay
stuck in a plan that has a low risk, but does not move
efficiently to their goal.
B. TrajFlow

TrajFlow as proposed by Mészáros et. al. [13] is
a probabilistic trajectory prediction method based on
Normalizing Flows (NFs), that provides an analytical
expression of the learned distribution. By using a
Recurrent Neural Network Auto Encoder (RNN-AE) to
encode trajectories into a lower-dimensional abstraction
and NFs to learn distributions over these abstracted
trajectory features, TrajFlow is able to capture complex,
multi-modal distributions without the need to predefine
the number of expected modes. This means it is applicable
to a broad spectrum of scenarios and diverse datasets,
offering flexibility and robustness in handling trajectory
prediction tasks. It has shown predictive performance
on par with or superior to state-of-the-art methods on
the real-world ETH/UCY [14, 15] pedestrian dataset,
supporting the previous statement. Furthermore, TrajFlow
distinguishes itself by offering open-source code for
its framework, enabling easy access, modification, and
application of the model to specific domains and datasets.
A schematic overview is given in figure 2.
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Figure 2: Schematic overview of the TrajFlow architecture
[13]. In the normalizing direction trajectory information
is encoded to learn the distribution with NFs, in the
generative direction this distribution is used to generate
new future trajectories.

C. Forking Paths
The Forking Paths dataset [19] is constructed by taking

real-world pedestrian datasets and recreating them in the
3D CARLA simulator [31], allowing multiple annotators
to control pedestrians. The result is a truly multimodal
dataset containing multiple future trajectories branching
from the exact same starting trajectory, containing
multiple variations in high-level human behaviour, which
is impossible to simulate automatically. The set contains
750 sequences from 10 annotators across 7 scenes and
provides diverse annotations for identical past trajectories.
Each sequence covers about 15 seconds, with an average
of 5.9 future trajectories per agent. See figure 3 for an
example.

III. Methods
In order to create a framework capable of showing

realistic pedestrian behaviour in interactive pedestrian
scenarios, CEI, TrajFlow, and Forking Paths were utilized.
The CEI framework was modified and formed the
base environment in which everything was combined,
as this framework provides a structured method for
modelling two-sided interactions with its four modules:
belief, plan, risk and communication. TrajFlow was used
to formulate the beliefs of the pedestrians, as it can
capture the complex, multi-modal distributions present in
pedestrian movements and use that to predict trajectories
accompanied by a likelihood. The Forking Paths dataset
aligns seamlessly with the study’s objectives as it not only

Figure 3: Example from the Forking Paths dataset [19].
The yellow line denotes the past trajectory of a pedestrian
and the green lines are continuations of the annotators in
the simulation.

contains multimodal pedestrian data but also consists of
trajectories that represent the beliefs of the annotators,
making them highly suitable as the foundation for
constructing beliefs within the CEI framework. Therefore
TrajFlow was trained on the Forking Paths dataset.
A. Implementation

TrajFlow was trained on the Forking Paths dataset,
where 8 timesteps (∆ttf = 0.4s) leading up to the split
in multiple futures were taken as past trajectories and 12
timesteps after the split were taken as future trajectories.
The past trajectories of all pedestrians were encoded and
concatenated to form the conditional argument of the NF.
The future trajectories were encoded separately and were
what the NF aimed to learn the distribution of. After this
distribution was learned, for prediction, TrajFlow encodes
the past trajectory information of the pedestrians in the
scene, and with the learned distribution was able to output
100 possible future trajectories together with a likelihood
score. The Forking Paths data that was used for the
training of TrajFlow consists of all the scenes where only
pedestrians interact with each other. The positions from a
top-down view were extracted and scaled to be represented
in meters.
B. Modification

Several changes have been made in order to utilise the
CEI framework for a two-dimensional pedestrian scenario
simulation. These changes are in the overall dynamics of
the system, as well as planning, belief construction, and
risk evaluation.

1) Overall dynamics: In the paper where the CEI
framework was proposed, a case study was performed
that tests the effectiveness in a simple merging scenario.
This scenario consisted of two cars modelled as point
masses moving along a predefined track where the
accelerations, velocities, and positions were all expressed
in one dimension.

4



anet
x (vx) = ain(vx) − ar(vx)

vt+1
x = vt

x + at
x ∗ t

pt+1
x = pt

x + vt
x ∗ t

(3)

anet is the net acceleration, ain is the applied input
acceleration, ar is the negative acceleration due to friction
forces, v is velocity, and p is position. Since the goal of this
research is to examine the system for pedestrians in two
dimensions, the point mass dynamics were adjusted so that
accelerations, velocities, and positions are also expressed
in 2D. The frictional forces have been neglected, as their
effect on the net accelerations of humans walking at a low
velocity is minimal.

anet
x,y (vx, vy) = ain(vx, vy)
vt+1

x,y = vt
x,y + at

x,y ∗ t

pt+1
x,y = pt

x,y + vt
x,y ∗ t

(4)

2) Planning: The planning is performed in acceleration
space. Differing from the original model, each pedestrian
has a maximum and minimum acceleration amax and
amin in both x and y directions. In the planning step,
an optimizer searches actions between those minima and
maxima for the prediction time horizon T . Using the 2D
point mass dynamics from equation 4 it can infer the
velocities and positions for all T .

Since the goal is not anymore for a car to follow a
predefined path comfortably, but rather for pedestrians to
reach their end position, the cost function from equation
1 was altered.

c = cp + cv

cp =
T∑

n=1
(∥pn − pgoal∥2)2

cv =
T∑

n=1

({
0 if vdiff ≤ 0
v2

diff if vdiff > 0

)
vdiff = ∥vn∥2 − vpref

(5)

This cost function c consists of a positional part cp and
a velocity part cv. The positional cost is calculated by
taking the L2 norm (calculating the absolute distance)
of the difference between all future positions pn and the
goal position pgoal of the pedestrian, and taking the sum.
Positions closer to the goal yield a lower positional cost
and this gives the pedestrian incentive to move towards the
goal position. The velocity cost is calculated by taking the
L2 norm of all the velocities vn for time T , subtracting the
preferred velocity vpref , setting the cost to zero when it is
below zero and squaring the remaining values after which
the sum is taken. This essentially means that velocities
with a norm higher than the preferred (average walking)
velocity are penalized exponentially while slowing down
to prevent a collision or when the destination is reached
will never be penalised. Within the bounds of risk, this

optimizer searches for the optimal acceleration actions to
minimize the cost function.

3) Belief construction: The belief construction in the
original framework was executed by observing the other
agent’s 1D position and velocity on the predefined track,
extrapolating it over time assuming constant velocity,
resulting in a Gaussian distribution with a constant
and known standard deviation. For the 2D pedestrian
implementation, trajectories become more uncertain and
complex due to multimodality, and a more sophisticated
method of creating beliefs is necessary. Therefore belief
construction is handled differently with TrajFlow. Every
time the belief is updated, TrajFlow receives the last
eight positions p[ttf −7,ttf ] with an interval of ∆ttf of the
other agents’ history and returns 100 future trajectories
of twelve position points p[ttf +1,ttf +12] accompanied by
log probabilities for each trajectory. These trajectories
consist of possible future positions for the other pedestrian
and form the belief that is used in the risk evaluation.
To find out how TrajFlow’s belief construction performs,
another simpler method for creating beliefs was used
for comparison. This belief construction is based on the
assumption of constant velocity and acceleration, similar
to the 1D simple merging scenario, infused with Gaussian
noise.

pnew = pold + v ∗ dt + 0.5 ∗ a2 ∗ dt

noise ∼ N (0,
1
20

)

pnew = pnewnoise ∗
(

1 + belief_index
belief_length

)
pold = pnew

(6)

First, pnew is calculated with kinematics, and then
a Gaussian noise is sampled, which is added to pnew

proportional to the distance of the point. Lastly, pold

is updated and this is repeated until there are 100
trajectories with 12 timesteps each, conforming to the
shape of the TrajFlow belief. This belief based on constant
velocity and noise will be referred to as the naïve belief
from this point forward.

4) Risk evaluation: Since the risk evaluation is based
on both the plan and belief, and both elements have been
modified, a new method to evaluate the risk had to be
used.

During the risk evaluation, the pedestrian’s position
plan is compared with the beliefs. More precisely, the
planned positions of the pedestrian in the time horizon
T are filtered and matched for the timestamps [ttf +
1, ttf +12] from the belief and compared with the 100 belief
positions from TrajFlow. A distance array d is formed
containing all the distances between the twelve positions
within the planned trajectory and the 100 belief positions
at the corresponding timesteps.

d = ∥pplan
[ttf +1,ttf +12] − pbelief

[ttf +1,ttf +12]∥2 (7)
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Figure 4: Sigmoid function for computation of risk values.

After the absolute distances between the plan and belief
positions are computed, they are passed to a Sigmoid
function shown in figure 4.

σ(d) = 1
1 + ed−4 (8)

This function returns a risk of collision between 0 and
1, scaled so that the risk goes to 0 as the distance
is great, then increases with an S-shape going to 1
when the distance nears 0. The risks for the 100 belief
trajectories and position plan at corresponding timesteps
are multiplied by the normalised probabilities P for each
belief trajectory and summed, resulting in a risk array
rarray with a single risk for each of the 12 position plan
points. The maximum risk is taken as the risk rplan of
the current plan, which will trigger a re-plan if necessary
based on the risk-thresholds.

rarray =
100∑
n=1

(σ(dn) ∗ P )

rplan = max {rarray}
(9)

Evaluating a plan on the maximum perceived risk of
that plan is based on the intuition that a person will
not continue to carry out a plan for which they feel
the risk is too high at some point and is performed
similarly in the 1D simple merging scenario. An alteration
was made to the framework so that if the last re-plan
was performed because the upper risk-threshold was
exceeded and afterwards the risk has dropped under
the lower risk-threshold, it does not wait for τ seconds
before re-planning but instead performs a single re-plan
directly before going back using the saturation time
normally. This ensures that the pedestrians will not keep
following a non-optimal path after the risk of collision
has disappeared.

Figure 5: Overview of the scenarios: The pedestrians are
shown as dots and their goal positions as dotted circles
with a cross in the middle. All pedestrians have an initial
heading in the direction of their goal positions.

C. Experimental Setup
1) Simulations scenarios: A simulation environment

was created to emulate pedestrian interactions and
assess the effectiveness of the combined model. This
pedestrian simulation environment is a 2D plane where
two pedestrians can move freely, considering their
dynamics. Four different walking scenarios were created
within this simulation environment. These scenarios were
selected because they all contain conflicting trajectories
and therefore two-way interaction is necessary to resolve
these conflicts. Each scenario mirrors real-life situations,
like avoiding collisions or heading toward the same
goal. These scenarios let us test how TrajFlow and the
CEI framework model simulate pedestrian behaviour and
assess their effectiveness in modelling these interactions.
A visualisation of these scenarios is shown in figure 5.

a) Walking straight scenario: In this scenario, both
pedestrians are placed at a certain distance from each
other. The pedestrians have the same absolute velocity
and are walking towards each other. Their goal position
is the starting position of the other pedestrian. In this
experiment, the pedestrians are forced to move out of each
other’s way in order to reach their destination without
colliding.

b) Crossing paths scenario: In this scenario, both
pedestrians are placed on the left in the simulation. They
have the same absolute velocity and a heading so that they
will cross paths in the middle of their trajectory to their
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goal position with an angle of 90◦. In this experiment, the
pedestrians will need to avoid collision by either moving
out of the way or changing their velocity to pass before or
after the other pedestrian.

c) Overtake scenario: In this scenario, one pedestrian
is trying to overtake the other. The first pedestrian has
an absolute velocity twice as large as that of the other.
The goal position is in the same direction but twice as far
away. Trying to maintain their preferred velocity, one has
to overtake the other.

d) Same goal scenario: In this scenario, both
pedestrians are trying to reach the same goal position,
have the same absolute velocity and are walking towards
each other. This will result in conflicting behaviour, where
the risk-bounds play a key role in which pedestrian will
yield first.

2) Parameters & data collection: The simulations were
performed in the CEI framework with a timestep of
∆t = 0.05s and a saturation time τ = 1.0s. Different
risk-thresholds were selected for the simulations using
TrajFlow belief and the ones using the naïve belief. Non-
identical belief systems lead to non-identical perceived
risks, which inevitably lead to differences in behaviour.
Simply comparing behaviours then is unfair, which is
why the risk-thresholds were selected to have a similar
perceived risk in identical situations. For finding suitable
risk-thresholds a simple test simulation was performed
in which the pedestrians did not update their plans.
The perceived risks of the pedestrians for both belief
constructions were plotted over time as can be seen in
figure 6. This provides a point at which the upper risk-
thresholds can be selected so that both thresholds will
be exceeded at the same time. For the TrajFlow-based
belief, the lower and upper risk-thresholds were set at
0.6 and 0.8 respectively and for the naïve belief, the
lower and upper risk-thresholds were set at 0.7 and 0.9
respectively. To learn how the framework behaved when
two pedestrians did not have the same risk-thresholds,
simulations were run where one of the pedestrians had
its risk-thresholds reduced by 0.3 for both the upper and
lower threshold. Data collection was performed by running
the simulations described in section III-C1. For each of
the four scenarios, with TrajFlow belief or naïve belief,
with equal or different risk-thresholds, 10 simulations were
executed resulting in a total of 160 simulations. A full
overview is shown in Appendix A. Although the CEI
model itself is deterministic, the belief constructions are
not. It is therefore important to run multiple simulations
so that outliers will not negatively impact the overall
analysis. For all simulations, data is recorded at each
timestep.

3) Metrics: In order to create quantifiable results,
metrics were constructed that helped describe the
simulation results. These metrics were used to see whether
the framework as a whole behaves as expected and
compare TrajFlow’s and the naïve beliefs.

Figure 6: Perceived risk of pedestrians over time when no
re-plans are performed in the straight scenario.

a) Maximum deviation: For each trajectory, the
maximum deviation from the from the shortest path from
start to goal was calculated as follows:

For i = 0 to n

devi = |(x2 − x1)(y1 − yi) − (x1 − xi)(y2 − y1)|√
(x2 − x1)2 + (y2 − y1)2

maximum deviation = max {devi}

(10)

devi is an array containing all the deviations, where
(x1, y1) are the start coordinates, (x2, y2) are the goal
coordinates, and (xi, yi) are the ith coordinates from
the path trajectory. This metric shows how close the
simulated pedestrians will stay to their preferred path.
The expectation is that pedestrians with a higher risk-
threshold will stay closer to their preferred path compared
to pedestrians with a lower risk-threshold.

b) Moment of deviation: For each pedestrian, the
moment of deviation is also computed. This is the first
index where the deviation from the shortest path to the
goal is greater than 0.1m.

moment of deviation = min{i | [devi > 0.1]} (11)

This metric is especially interesting when the
pedestrians do not have the same risk-threshold. If
the pedestrian with the lower risk-threshold will yield
earlier than the one with a higher risk-threshold, the
framework is working as intended.

IV. Results
This chapter shows the results that follow from the

experiments. For each scenario, the expectations are given
and the observations are discussed. Each scenario contains
four combinations, TrajFlow or naïve belief construction
with equal or different risk-thresholds, containing ten
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simulations each. In all simulations where the risk-
thresholds are different, the orange pedestrian has the
lower risk-threshold values. Visualising all this data from
160 simulations here is not feasible so examples are used
to visualise the results. These results are handpicked
and contain favourable behaviour. Unfavourable behaviour
and other inconsistencies are discussed. For the complete
visualisations, please refer to Appendix B.

A. Straight Scenario

1) Expectations: It is expected that both pedestrians
will walk toward each other before yielding and continuing
to their destination. Since this scenario is symmetric, the
expectation for pedestrians with equal risk-thresholds is
that both pedestrians yield an equal amount for each other
on average. Note that the belief construction is stochastic,
so variations are expected. When the pedestrians have
different risk-thresholds it is expected that the low
risk-threshold pedestrian yields earlier and more on
average. In both cases, the magnitude and direction of
yielding will depend on the shape of the constructed belief.

2) Observations: Visualisations of the examples are
shown in figure 7. Let’s begin by examining the figures
7a and 7e where the risk-thresholds were the same for
both pedestrians and the belief was created with TrajFlow.
Conforming to the expectation, the pedestrians walked
towards each other, before yielding a comparable amount,
after which they followed the fastest path towards their
goals. This behaviour was reflected in the rest of the
simulations (Appendix B.1), where in most cases both
pedestrians yielded a comparable amount, with some cases
where one yielded more than the other as a result of the
stochasticity.

Next, we’ll examine the figures 7b and 7f, where the risk-
thresholds were also the same for both pedestrians, but the
naïve belief construction was used. The trajectories looked
very similar to the first ones, where both pedestrians
walked towards each other before yielding a comparable
amount and continuing to their goals. A noticeable
difference was that the pedestrians yielded later and more
abruptly. When looking at the other nine trajectories
(Appendix B.1), some cases with unnatural behaviour
emerged. This includes cases where pedestrians yielded
more than five meters, walked backwards or even walked
in a small circle.

For the third configuration, figure 7c and 7g, the risk-
thresholds were different for both pedestrians and the
belief was created with TrajFlow. The behaviour was
as expected, where the high risk-threshold pedestrian
stayed closer to its preferred path. Looking at the other
nine trajectories, this behaviour showed in most cases
(Appendix B.1). The pedestrian with the high risk-
threshold had a significantly lower maximum deviation
and the pedestrian with the low risk-threshold deviated

TrajFlow
Equal risk

Naïve
Equal risk

TrajFlow
Different risk

Naïve
Different risk

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Straight scenario trajectory examples. 7a
uses TrajFlow belief construction and has equal risk-
thresholds, 7b uses the naïve belief and has equal risk-
thresholds, 7c uses TrajFlow belief and has different risk-
thresholds, 7d uses the naïve belief and has different risk-
thresholds. When the risk-thresholds are different, the
orange pedestrian has lower risk-thresholds. Underneath
in 7e, 7f, 7g, 7h the same scenarios are shown zoomed in on
the interaction with equal x-axis and y-axis proportions.

significantly earlier from their preferred path, as shown in
figure 8a and 8b.

For the last configuration, figure 7d and 7h, the risk-
thresholds were different for both pedestrians and the
naïve belief construction was used. The trajectories had a
similar shape to the ones with TrajFlow belief, where the
high risk pedestrian stayed closer to its preferred path.
Looking at the other nine trajectories (Appendix B.1), it
was observed that the high risk pedestrian stayed closer
to its preferred path as can be seen in figure 8c. The
low risk pedestrian however did not deviate significantly
earlier, and actually moved backwards in all of the cases.

3) Beliefs: The observed behaviour described above
can be attributed to the difference in belief construction.
Examples of the data-driven TrajFlow belief and the
naïve belief are shown in figure 9. The belief created
by TrajFlow, where beliefs with a higher likelihood are
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(a) (b) (c)

Figure 8: Boxplots comparing metrics of pedestrians
between equal and different risk-thresholds in the straight
scenario.

plotted in darker green, clearly shows the expectation
that the pedestrian will try to avoid and move away
from the straight path to one side or the other. The
naïve belief construction does not show a preference to
move in any other direction than continuing straight
with Gaussian-infused noise. The naïve belief also has a
narrower spread compared to the data-driven belief. A
consequence of this is that in the simulations containing
the naïve belief, the perceived risk will stay low for longer
before suddenly increasing quite sharply, explaining the
late and more abrupt deviations of trajectories.

4) Overall influence TrajFlow: Visually comparing the
trajectories of the framework with TrajFlow belief and
naïve belief in this scenario demonstrates the benefits
of using TrajFlow. The pedestrians show plausible
interaction behaviour, where pedestrians with equal risk-
thresholds both yielded a comparable amount in order
to safely pass each other. When the risk-thresholds were
different the pedestrian accepting low risk yielded earlier
and the pedestrian with the higher risk-threshold deviated
less from its preferred path. The framework with the
naïve belief lacked this behaviour, where with the same
risk-thresholds the pedestrians sometimes passed each
other on the same side of their preferred path, made more
sudden turns and sometimes even moved backwards or in
a circle to avoid collision. When the risk-thresholds were
different the pedestrian accepting higher risk still had
to yield substantially. The low risk-threshold pedestrian
did not deviate earlier and moved backwards in all ten
simulations.

(a) TrajFlow belief

(b) Naïve belief

Figure 9: Visualisation of TrajFlow belief 9a and naïve
belief 9b in the straight scenario.

B. Cross Scenario
1) Expectations: The expectation for this scenario

is that both pedestrians will walk toward the centre
where they will meet. The scenario is symmetric so it
is expected that pedestrians with equal risk-thresholds
will deviate a comparable amount on average in order to
safely pass each other. Variations are expected since the
belief construction is stochastic. When the pedestrians
have different risk-thresholds the expectation is that the
low risk-threshold pedestrian will yield earlier and more
on average. In both cases, the magnitude and direction of
yielding will depend on the shape of the constructed belief.

2) Observations: Visualisations of the examples are
shown in figure 10. Let’s begin by examining the figures
10a and 10e where the risk-thresholds were the same for
both pedestrians and the belief was created with TrajFlow.
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TrajFlow
Equal risk

Naïve
Equal risk

TrajFlow
Different risk

Naïve
Different risk

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Cross scenario trajectory examples. 10a
uses TrajFlow belief construction and has equal risk-
thresholds, 10b uses the naïve belief and has equal risk-
thresholds, 10c uses TrajFlow belief and has different risk-
thresholds, 10d uses the naïve belief and has different
risk-thresholds. When the risk-thresholds are different, the
orange pedestrian has lower risk-thresholds. Underneath
in 10e, 10f, 10g, 10h the same scenarios are shown
zoomed in on the interaction with equal x-axis and y-axis
proportions.

Conforming to the expectation, the pedestrians walked
towards the centre, before yielding a comparable amount
trying to pass behind the other, after which they followed
the fastest path towards their goals. This behaviour was
reflected in the rest of the simulations (Appendix B.2),
where in most cases the pedestrians yielded to pass behind
the other, sometimes letting the bottom pedestrian pass
first, and sometimes the top one.

Next, we’ll examine the figures 10b and 10f, where the
risk-thresholds were also the same for both pedestrians,
but the naïve belief construction was used. The trajectories
also conformed to expectations in that the pedestrians
walked towards the centre before yielding to resolve
conflict, and continuing the fastest path towards their
goals. A noticeable difference is that the pedestrians were
trying to pass in front of each other. The same behaviour
was shown in the rest of the simulations (Appendix B.2),

where the paths often crossed in the right half of the
simulation environment.

For the third configuration, figure 10c and 10g, the
risk-thresholds were different for both pedestrians and
the belief was created with TrajFlow. In this example
the behaviour was as expected, where the most effort
to avoid a collision was done by the low risk-threshold
pedestrian, who passed behind the high risk-threshold
pedestrian. Looking at the other trajectories (Appendix
B.2), the behaviour of the high risk-threshold pedestrian
staying closer to its preferred path was not dominant
in all of the simulations, which is also reflected by the
maximum deviation metric, which shows no significant
change compared to same risk-threshold pedestrians.
The moment of deviation was significantly later for the
high risk-threshold pedestrian, which does conform with
expectations and is shown in figure 11a.

For the last configuration, figure 10d and 10h, the
risk-thresholds were different for both pedestrians and the
naïve belief construction was used. The trajectories were
as expected, where the most effort to avoid a collision was
done by the low risk-threshold pedestrian, who passed
in front of the other pedestrian on the right side of
the simulation environment. Looking at the other nine
trajectories (Appendix B.2), the behaviour of the high
risk-threshold pedestrian staying closer to its preferred
path was not dominant in all of the simulations. This is
reflected by the maximum deviation metric, which shows
no significant change compared to same risk-threshold
pedestrians. There were also two cases in which the low
risk-threshold pedestrian walked in a loop, in one case
even causing the optimiser to fail and run off the page.
The moment of deviation was significantly earlier for the
low risk-threshold pedestrian, which does conform with
expectations and is shown in figure 11b.

3) Beliefs: The observed difference in behaviour
described above can be attributed to the difference in
belief construction. Examples of the data-driven TrajFlow
belief and the naïve belief are shown in figure 12. The
belief created by TrajFlow, where beliefs with a higher
likelihood are plotted in darker green, has a wider
spread compared to the naïve belief. As a consequence,
if the orange pedestrian tries to reduce its risk with
the TrajFlow belief by moving a bit more to the right,
the risk reduction is not that large, moving more down
however, will decrease the risk more significantly. It might
seem like the pedestrian goes right into the path of the
belief, but note that the perceived risk is computed by
comparing the current plan at a future timestep against
the beliefs at that same future timestep. With the naïve
belief, the perceived risk is low for a while and then
suddenly increases at the end of its plan. Moving a bit
more to the right will decrease that risk and make the
plan safe again.
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(a) (b)

Figure 11: Boxplots comparing metrics of pedestrians
between equal and different risk-thresholds in the cross
scenario.

4) Overall influence TrajFlow: Visually comparing
the trajectories of the framework with TrajFlow and
naïve beliefs in this scenario demonstrates a slight
preference for using TrajFlow over the naïve belief
implementation, although both do not show perfect
behaviour. The simulations with TrajFlow show more
plausible interaction behaviour. When the risk-thresholds
were equal the pedestrians did not diverge far from their
preferred path. After moving towards each other, one
let the other pass before they continued to their goal.
There were however cases in which one of the pedestrians
moved backwards to resolve the conflict. When the risk-
thresholds were different the pedestrian accepting high
risk deviated later, but there was no significant difference
in the amount of deviation and the expected behaviour
is not shown in all the simulations. The framework with
naïve beliefs performed a bit worse, where with the same
risk-thresholds in 7 cases the pedestrians were unable to
resolve the conflict quickly, resulting in the last part of
the trajectory being almost straight up or down towards
their goal. When the risk-thresholds were different the
pedestrian with the lower risk-threshold yielded earlier,
but there was no significant change in the maximum
deviation. Furthermore, there are two cases in which the
low risk-threshold pedestrian walked in a circle.

C. Overtake Scenario
1) Expectations: The expectation for this scenario is

that both pedestrians will walk upward towards their
goal until a conflict has to be resolved. This scenario is
not symmetric since the blue pedestrian has twice the
speed and distance to cover to the goal. It is expected

(a) TrajFlow belief

(b) Naïve belief

Figure 12: Visualisation of TrajFlow belief 12a and naïve
belief 12b in the cross scenario.

that in the scenario where both pedestrians have equal
risk-thresholds, the overtaking blue pedestrian will
do (most of) the work to yield and avoid the other
orange pedestrian. When the risk-threshold of the orange
pedestrian is lower than that of the blue one, it is
expected that the orange pedestrian will also move out
of the way to make space for the high risk-threshold
pedestrian. In both cases, the magnitude and direction of
yielding will depend on the shape of the constructed belief.

2) Observations: Visualisations of the examples are
shown in figure 13. Let’s begin by examining the figures
13a and 13e where the risk-thresholds were the same
for both pedestrians and the belief was created with
TrajFlow. The expected behaviour was shown, where
both pedestrians were walking straight towards their
goal until the conflict needed to be resolved and the

11



TrajFlow
Equal risk

Naïve
Equal risk

TrajFlow
Different risk

Naïve
Different risk

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13: Overtake scenario trajectory examples. 13a
uses TrajFlow belief construction and has equal risk-
thresholds, 13b uses the naïve belief and has equal risk-
thresholds, 13c uses TrajFlow belief and has different risk-
thresholds, 13d uses the naïve belief and has different
risk-thresholds. When the risk-thresholds are different, the
orange pedestrian has lower risk-thresholds. Underneath
in 13e, 13f, 13g, 13h the same scenarios are shown
zoomed in on the interaction with equal x-axis and y-axis
proportions.

blue pedestrian deviated from its path to pass the
orange pedestrian while the orange pedestrian stuck to its
preferred path. This behaviour was reflected in the rest
of the simulations (Appendix B.3), where the overtaking
blue pedestrian deviated from its path to perform the
overtaking manoeuvre and the orange pedestrian stayed
close to its preferred path.

Next, we’ll examine the figures 13b and 13f, where the
risk-thresholds were also the same for both pedestrians,
but the naïve belief construction was used. Both
pedestrians started walking towards their goal just like
with TrajFlow belief. When the conflict started, both
the overtaking blue pedestrian and the orange pedestrian
yielded from their path, and looking closely at the
timestamps shows that the orange pedestrian yielded even
a bit earlier. In all the other nine cases (Appendix B.3), the
orange pedestrian yielded more than the overtaking blue

pedestrian and in four cases the blue pedestrian barely
yielded at all. In all cases the orange pedestrian yielded
first.

For the third configuration, figure 13c and 13g, the
risk-thresholds were different for both pedestrians and
the belief was created with TrajFlow. In this example
the behaviour was as expected, where instead of just the
overtaking blue pedestrian, now also the orange pedestrian
made some effort to yield from its preferred trajectory.
Looking at the other simulations (Appendix B.3), in
all the cases the overtaking blue pedestrian made the
most effort to yield and overtake, and in six cases the
orange pedestrian also made an effort to yield. In two of
those cases however, both pedestrians yielded in the same
direction. The expected behaviour is reflected by metrics
where the overtaking blue pedestrian yielded significantly
later and the orange pedestrian yielded significantly more,
compared to the situation where the risk-thresholds were
equal, as is shown in figure 14a and 14b.

For the last configuration, figure 13d and 13h, the
risk-thresholds were different for both pedestrians and
the naïve belief construction was used. In the example
the blue overtaking pedestrian yielded less than the
orange pedestrian, which also yielded earlier from its
preferred path. When taking a look at the full set of
simulations (Appendix B.3), it was shown that the orange
pedestrian yielded earlier and more in all cases, and in
only three cases the blue overtaking pedestrian made any
real effort to yield from its preferred path. The maximum
deviation metric shows a significant increase for the
orange pedestrian when the risk-thresholds were different
as can be seen in figure 14c.

(a) (b) (c)

Figure 14: Boxplots comparing metrics of pedestrians
between equal and different risk-thresholds in the overtake
scenario.
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3) Beliefs: The observed difference in behaviour
described above can be attributed to the difference in
belief construction. Examples of the data-driven TrajFlow
belief and the naïve belief are shown in figure 15. The
belief created by TrajFlow, where beliefs with a higher
likelihood are plotted in darker green, clearly shows the
expectation that the blue pedestrian will try to avoid
and move away from the straight path to overtake on one
side or the other. This results in the perceived risk of
the orange pedestrian staying low, so it can continue on
its preferred path while the blue pedestrian manoeuvres
around it. The naïve belief construction has a narrower
spread and does not show an expectation that the
blue pedestrian will move away. As a consequence, the
perceived risk of the orange pedestrian will suddenly
increase quite steeply, triggering re-plans and yielding,
allowing the blue overtaking pedestrian to stay closer to
its preferred trajectory.

4) Overall influence TrajFlow: Visually comparing the
trajectories of the framework in this scenario demonstrates
the benefit of using TrajFlow. The pedestrians show
plausible interaction behaviour, where in scenarios with
equal risk-threshold pedestrians, the person coming
from behind performing the overtaking manoeuvre
moved out of the way to pass the slower pedestrian in
front, who stayed close to its preferred path. When the
risk-thresholds were different, the high risk-threshold
pedestrian still deviated the most, where in six cases
the low risk-threshold pedestrian also made some effort
to create space. The framework with the naïve belief
lacks this behaviour, where with the same risk-thresholds
both the pedestrian in front, as well as the one in the
back deviated from their paths during the overtake. The
pedestrian in front deviated even more than the one
performing the overtaking manoeuvre, who in four cases
barely deviated at all. When the risk-thresholds were
different it was shown that the orange pedestrian yielded
earlier and more in all cases, and the blue overtaking
pedestrian only made any real effort to deviate from its
preferred path in three cases.

D. Same goal scenario
1) Expectations: It is expected that both pedestrians

will walk toward each other before a conflict arises after
which they will yield to avoid each other until one of the
pedestrians reaches the destination. Since this scenario
is symmetric, the expectation for pedestrians with equal
risk-thresholds is that both pedestrians yield an equal
amount for each other on average. Note that the belief
construction is stochastic, so variations are expected.
When the pedestrians have different risk-thresholds
it is expected that the low risk-threshold pedestrian
yields earlier and more, allowing the high risk-threshold
pedestrian to yield less and reach the goal. In both cases,

(a) TrajFlow belief

(b) Naïve belief

Figure 15: Visualisation of TrajFlow belief 15a and naïve
belief 15b in the overtake scenario.

the magnitude and direction of yielding will depend on
the shape of the constructed belief.

2) Observations: Visualisations of the examples are
shown in figure 16. Let’s begin by examining the figures
16a and 16e where the risk-thresholds were the same for
both pedestrians and the belief was created with TrajFlow.
Conforming to the expectation, the pedestrians walked
towards each other, before yielding a comparable amount,
after which one of the pedestrians proceeded towards the
goal, keeping the other at a distance. Looking at the
rest of the simulations (Appendix B.4), similar behaviour
emerged. In five cases one of the pedestrians reached
the goal quickly, while in the other five cases, they first
spiraled around the goal before one of the pedestrians
reached it.

Next, we’ll examine the figures 16b and 16f, where the
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TrajFlow
Equal risk

Naïve
Equal risk

TrajFlow
Different risk

Naïve
Different risk

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16: Same goal scenario trajectory examples. 16a
uses TrajFlow belief construction and has equal risk-
thresholds, 16b uses the naïve belief and has equal risk-
thresholds, 16c uses TrajFlow belief and has different risk-
thresholds, 16d uses the naïve belief and has different
risk-thresholds. When the risk-thresholds are different, the
orange pedestrian has lower risk-thresholds. Underneath
in 16e, 16f, 16g, 16h the same scenarios are shown
zoomed in on the interaction with equal x-axis and y-axis
proportions.

risk-thresholds were also the same for both pedestrians,
but the naïve belief construction was used. The trajectories
look similar to the ones created with TrajFlow, where
both pedestrians walked toward each other before yielding,
followed by one pedestrian reaching the goal. A noticeable
difference was that with the naïve belief the pedestrians
yielded later and more drastic. The other simulations
(Appendix B.4) reflect this behaviour, showing both
pedestrians walking towards the goal before both yielding,
followed by one pedestrian reaching the goal. In seven of
the cases the pedestrian not reaching the goal was moving
backwards at some point.

For the third configuration, figure 16c and 16g, the
risk-thresholds were different for both pedestrians and the
belief was created with TrajFlow. The behaviour was as
expected, showing that the low risk-threshold pedestrian
yielded earlier and more drastically, allowing the high

risk-threshold pedestrian to yield less and reach the goal.
Looking at the other nine trajectories, this behaviour
was reflected in all cases (Appendix B.4). The metrics
also show that the high risk-threshold pedestrian had a
significantly lower maximum deviation, and the low risk-
threshold pedestrian yielded significantly more and earlier,
all compared to situations with equal risk-thresholds, as
shown in figure 17a, 17b and 17c.

For the last configuration, figure 16d and 16h, the
risk-thresholds were different for both pedestrians and the
naïve belief construction was used. The trajectories had a
similar shape to the ones with TrajFlow belief, where the
high risk pedestrian stayed closer to its preferred path
and reached the goal. Looking at the other simulations
(Appendix B.4), similar behaviour was shown, with a
difference compared to TrajFlow in the sharpness of the
turns when yielding. In one case the goal is reached by
the low risk-threshold pedestrian, but on average the low
risk pedestrian deviated more, which is also shown as
a significant increase in the maximum deviation metric
shown in figure 17d.

3) Beliefs: The observed behaviour described above
can be attributed to the difference in belief construction.
Examples of the data-driven TrajFlow belief and the
naïve belief are shown in figure 18. The belief created
by TrajFlow, where beliefs with a higher likelihood are
plotted in darker green, shows a wider spread in beliefs
compared to the more narrow naïve beliefs. A consequence
of this is that in the simulations containing the naïve
belief, the perceived risk will stay low for longer before
suddenly increasing quite sharply, explaining the late
and more abrupt deviations of trajectories. A reason for
the occurring spiralling behaviour with the data-driven
belief is that there is more variation between beliefs at
different time points, this can cause an oscillation where
both pedestrians think it is safe to move towards the
goal, before creating a new belief pushing their perceived
risk above the threshold. In the naïve belief the spread
is more consistent in the direction of movement, so once
the stochasticity enables one pedestrian to take control
the other pedestrian will not change its direction towards
the goal, as this would push their perceived risk over the
threshold.

4) Overall influence TrajFlow: Visually comparing the
trajectories of the framework with TrajFlow and naïve
beliefs in this scenario demonstrates a slight preference
for using TrajFlow over the naïve belief implementation,
although both do not show perfect behaviour. When
the risk-thresholds were equal, in half of the cases the
trajectories showed plausible interaction behaviour where
both pedestrians yielded to avoid each other, after which
one pedestrian found the way to the goal, and the
other kept moving around it in a curve. In the other
half of the cases, both pedestrians got stuck in a spiral
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(a) (b)

(c) (d)

Figure 17: Boxplots comparing metrics of pedestrians
between equal and different risk-thresholds in the same
goal scenario.

around the goal before one of them reached it. When
the risk-thresholds were different the low risk-threshold
pedestrian deviated earlier and more, enabling the high
threshold pedestrian to deviate less and reach the goal
in all cases. The framework with naïve beliefs and equal
risk-thresholds performs better because it does not show
the spiraling behaviour that TrajFlow had, but also worse
because in seven scenarios, one pedestrian is moving
backwards while the other one reaches the goal. When
the risk-thresholds were different the low risk-threshold
pedestrian showed a very sharp change in trajectory, and
the high threshold agent could use that most of the time
to get to the goal. In one case the low risk-threshold
pedestrian reached the goal while the high risk-threshold
pedestrian was walking away.

(a) TrajFlow belief

(b) Naïve belief

Figure 18: Visualisation of TrajFlow belief 18a and naïve
belief 18b in the same goal scenario.

E. Left-side bias
In the simulations with TrajFlow belief where

pedestrians were walking towards each other, like
the straight and same goal scenario, a pattern emerges:
the pedestrians consistently moved to their left in order
to avoid each other. To figure out why that is the case,
the beliefs of one pedestrian walking towards another
were plotted over multiple timesteps as can be seen in
figure 19. This plot indicates that the TrajFlow belief has
a higher probability of predicting trajectories that are
going to the left. A consequence is that the other agent
will create plans that pass on the other (right) side to
keep the perceived risk lower. There are several reasons
which might cause this that will be discussed in section
V.
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Figure 19: Visualisation of overlayed TrajFlow beliefs from
multiple timesteps.

V. Discussion

The objective of this research is to find an answer to the
research question:

What influence does the integration of TrajFlow’s
multimodal trajectory prediction in the Communication-
Enabled-Interaction framework have on simulated
pedestrian behaviour in interactive traffic scenarios?

To investigate this, the Communication-Enabled-
Interaction framework has been extended to work for
pedestrians in two-dimensional scenarios. Modifications
in the overall dynamics, planning, and risk evaluation
were made to accommodate this. TrajFlow was trained on
the Forking Paths dataset and has been integrated into
the framework so that its trajectory predictions could be
utilised for the belief construction in the framework. Four
interactive pedestrian simulation scenarios were created
in which the influence of TrajFlow’s integration could be
investigated both qualitatively and quantitatively.

In most cases, using the data-driven TrajFlow belief
construction has an advantageous effect on the realism
of the simulated pedestrian behaviour. The plausible
interaction behaviour is especially noticeable in the
straight and overtake scenario, where the beliefs show
a clear indication of the expectation to go left or right
instead of continuing straight. In the straight scenario,
the pedestrians take smoother paths to pass each other,
and in the overtake scenario the belief that the overtaking
pedestrian would deviate from its path enabled the
pedestrian that was being overtaken to stay on its
preferred path. In the cross and same-goal scenario,
the advantage of using TrajFlow is less obvious. In
the cross scenario, the behaviour shows mostly plausible
interactions and the pedestrians do not deviate far from
their path to let the other one cross, however, there

are exceptions where the conflict resolution results in
odd-looking trajectories. Compared to the naïve belief
construction it does show more promise, as there the
conflict resolution often spanned a long time, causing
the pedestrians to take sub-optimal paths towards their
goals. In the same-goal scenario, when the risk-thresholds
are different, the expected behaviour is shown in the
simulations using TrajFlow. When the risk-thresholds are
equal, however, in half the cases the pedestrians got stuck
in a spiral before one of them reached the goal.

This brings us to the limitations of using the data-driven
TrajFlow belief in the CEI framework and the limitations
of this study as a whole.

A. Limitations
1) Simulations: A limitation of this work was the

limited number of simulations that have been run. While
the original CEI framework is deterministic and would
have required only one simulation run for each scenario,
the variability introduced by the belief construction made
it necessary to conduct multiple simulations for each
specific scenario and setup. However, these simulations
were time-consuming, so a trade-off had to be made
between running as many simulations as possible and
spending a reasonable amount of time. In the end, the
decision was made to run 10 simulations per scenario,
which together with 16 different scenario setups amounted
to 160 simulations. However, this finite number is not
enough to fully cover the entire spectrum of possible
events. As a consequence, the data might not have
accurately reflected the complete range of pedestrian
behaviours and interactions.

A consequence of the limited runs of simulations
was the limited variation in risk-thresholds and initial
simulation conditions. The simulations were performed
using a set of distinct risk-thresholds (equal or different)
and a single set of initial conditions per scenario. While
being sufficient for a proof of concept, these did not
cover the entire spectrum of possibilities. The true risk-
thresholds of pedestrians cover a wide range of risk taking
behaviours influenced by factors such as personality, past
experiences and situational context. Using a wider range
of risk-thresholds would have provided a more nuanced
understanding of how these risk-thresholds impact the
interaction modelling. The initial simulation conditions
were a predefined set of pedestrian placements, velocities
and goal positions. This limited the span of possible
interactions and emerging behaviours that were explored
in each scenario. The use of a variety of initial conditions
could have accommodated a better analysis of the
robustness and variability of the pedestrian behaviour.

Another aspect to consider is how accurately our
simulations reflect real-life situations. In the overtake
scenario for example, the framework provided the
pedestrian walking in front with indirect communication
about the velocity and position of the pedestrian behind.
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When getting overtaken you usually do not have this
information. In the same goal scenario, in the real world
when you see someone going exactly where you are going,
you use visual and social clues to infer whether that
person is going to stay there shortly so you can wait and
temporarily change your goal, or find a new final goal all
together. In the case that you really would want to go
to that exact position where someone else is going, you
would start a conversation about it, all aspects that were
not possible in the simulations.

These simplified scenario representations formed a
limitation. Although the aim of the created pedestrian
scenarios was to mirror real-world interactions like
collision avoidance, overtaking, and shared goals, their
design in a simulation environment is inherently simplified.
Actual pedestrian dynamics in interactions involve a
great many factors that were beyond the scope of
the scenario simulations such as terrain and obstacles,
diverse behaviours like pedestrian group dynamics, and
context factors such as crowded spaces which all play a
role in shaping pedestrian interactions. The simulation
scenarios may therefore have oversimplified the real-world
complexities and potentially limited the generalizability of
this study’s findings.

2) Training TrajFlow: A limitation that might be in
the training of TrajFlow is the representativeness of the
training data. The predictive capabilities of TrajFlow were
influenced by the data that it was trained on because it
relied on learning the patterns and behaviours that are
present in the training dataset. The dataset might have
introduced biases inherent to that set. If, for instance,
the dataset did not capture certain pedestrian behaviours,
TrajFlow might not have been able to generalize well for
these types of behaviours.

Another limitation was the way the data was processed
before the learning process started. For all the scenarios
from the data, only the eight timesteps leading up to
the branching in multi-future scenarios, and the twelve
timesteps after, were considered. This might restrict
the contextual understanding capabilities and limit the
anticipation of long-term trajectories or interactions
formed over extended periods of time.

This brings us to a limitation that came from the
Forking Paths dataset. While this dataset is grounded
in real-world data, it provides multiple plausible future
trajectories that are created by a limited number of ten
annotators. This group might not have been a good
representation of the entirety of pedestrian interaction
behaviour and might not contain outlier behaviour, or
indeed too much of it, limiting the representativeness of
TrajFlow’s belief construction and therefore the capacity
of the modelled pedestrian interactions.

Moreover, the dataset contains 750 sequences across
7 scenes, but after removing the sequences containing
interactions with vehicles, this was reduced to 184
sequences across 4 scenes. The dataset was therefore

limited in scope, possibly lacking variations in interactions
present in crowded or unconventional settings, and
possibly restrained the belief construction to a specific
subset of scenarios. If most of the trajectories in the
dataset were pedestrians moving to their left when they
avoid someone, that behaviour would be reflected in the
trajectories that TrajFlow would predict once trained on
this data. This might very well be the reason why the
pedestrians using the data-driven TrajFlow belief often
evade each other on the left.

Since the different scenes in the dataset were limited,
it is also very likely that there are scenarios that do
not occur often. If for example there are almost no
instances of pedestrians crossing paths diagonally, it can
not be expected that TrajFlow can accurately predict how
pedestrians act in those situations.

3) Framework integration: Another potential limitation
was in the mismatch of the CEI timestep ∆t =
0.05s and TrajFlows timestep ∆t = 0.4s. This might
cause difficulties in accurately capturing nuanced and
quick changes in behaviour or trajectory variations.
Consequently, this could limit the effectiveness of
TrajFlows prediction in the ”real-time” CEI decision-
making context. Furthermore, the filtering of the position
plan timesteps to only match the ones of the belief for
risk evaluation leads to a significant loss of information.
This can especially become problematic in scenarios where
the velocity over the last timesteps was low and increases
suddenly. One might think an easy fix is to either increase
the timesteps in the CEI framework or decrease the
timesteps in which TrajFlow operates. Unfortunately, this
will introduce new problems. Increasing the timestep
in which the CEI framework, and consequently the
simulation, runs to ∆t = 0.4s will reduce the
computational power needed to perform simulations, but
could significantly compromise the accuracy and quality
of those simulations. Finer details and rapid changes
within the pedestrian behaviours might be overlooked or
misrepresented due to the greater timestep. On the other
hand, decreasing the timestep for TrajFlow predictions
poses another problem. Trajflow was trained to use the
last 8 timesteps to predict the following 12 steps in the
future. With a timestep of ∆t = 0.4s and an average
human walking speed, this translated to a distance of
4.8m and 7.2m respectively. Decreasing the timestep to
∆t = 0.05s would decrease the trajectory distance from
which TrajFlow must learn to 0.6m and 0.9m. The length
of the trajectories would be too short to extract any
meaningful information. To maintain the same predictive
distance of 7.2m with a timestep ∆t = 0.05s, TrajFlow
has to produce trajectories of 96 points into the future.
This is four times more than the maximum that TrajFlow
has been tested on, and it might run into issues with
compounding errors due to its autoregressive nature.
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B. Recomendations and further research

With regard to the gained insights and encountered
limitations in this study, multiple recommendations for
further research come to mind. These offer opportunities
to expand and improve on this work and could
offer valuable insights and advancements in modelling
pedestrian behaviours within interactive traffic scenarios.

1) Enhanced Dataset Diversity: Further research should
focus on the generation or acquisition of datasets that
contain a broader spectrum of pedestrian behaviour in
interactive scenarios, preferably as an extension to the
Forking Paths dataset. These datasets could then be
used in training to improve the predictive capabilities of
TrajFlow with more behavioural patterns to see whether
substantial changes in behaviour emerge.

2) Real-World Complexity Integration: Another
valuable course of action to continue this research would
be to investigate ways that integrate more real-world
complexity into pedestrian simulation scenarios. This
could include obstacles, group dynamics, crowded spaces
and varying terrains (pavement/road/grass), which will
significantly impact the interactions.

3) Dynamic Risk Perception and Responses: It would
be very interesting to study mechanisms that enable
dynamic risk-thresholds. Investigating how humans
change their risk-thresholds based on the current
circumstances and actions of others could significantly
influence interaction modelling.

4) Temporal Alignment Enhancement: Research
addressing the mismatch between TrajFlow’s predictions
timestep and CEI’s simulation timestep could help
optimize the integration of trajectory predictions within
real-time decision-making frameworks.

5) Multi-Agent Interactions and Communication:
Using the CEI framework for multi-agent communication
and interaction would enable the investigation of
interesting pedestrian interaction scenarios where its
workings can be examined in scenarios guided by group
dynamics.

6) Benchmarking and Generalizability Testing:
Conducting an extensive benchmarking investigation
on various integrated trajectory prediction models with
different interactive pedestrian scenarios and datasets.
This analysis would offer insight into the robustness of
models and performance across conditions.

7) Human-Robot Interaction Studies: Exploring
pedestrian behaviour modelling in the context of
interactions with autonomous agents or robots. Studying
how pedestrians react and adjust their behaviour
when facing interactions with automated systems and
comparing the similarities and differences with pedestrian-
pedestrian behaviour could be a crucial development for
safer traffic scenarios in the future.

VI. Conclusion

In conclusion, this research tries to overcome the gap
between sophisticated interaction modelling frameworks
like the Communication-Enabled-Interaction framework
and complex trajectory prediction models like TrajFlow by
integrating them into a single framework focussed on the
modelling of pedestrian interaction behaviour and testing
it on four interactive scenarios.

The findings show that beliefs created by TrajFlow can
give a significant boost in simulating plausible pedestrian
interaction behaviour, but there are also some drawbacks
concerning for example training data and timing-related
issues. These limitations in simulation constraints and
dataset biases emphasize the need for further research.

Nonetheless, a foundation is created on which future
research can build and possible research directions
are presented, aiding the enhancement of pedestrian
behaviour modelling in interactive traffic scenarios by
combining data-driven prediction models with interaction
modelling frameworks, and contributing to safer urban
environments and intelligent mobility systems.
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A
Simulation parameters

Straight path experiment
Experiment Belief Risk agent 1 Risk agent 2 Runs
1.1 Trajflow 0.6 0.8 0.6 0.8 10
1.2 Trajflow 0.6 0.8 0.3 0.5 10
1.3 Naïve 0.7 0.9 0.7 0.9 10
1.4 Naïve 0.7 0.9 0.4 0.6 10

Crossing path experiment
Experiment Belief Risk agent 1 Risk agent 2 Runs
2.1 Trajflow 0.6 0.8 0.6 0.8 10
2.2 Trajflow 0.6 0.8 0.3 0.5 10
2.3 Naïve 0.7 0.9 0.7 0.9 10
2.4 Naïve 0.7 0.9 0.4 0.6 10

Overtake experiment
Experiment Belief Risk agent 1 Risk agent 2 Runs
3.1 Trajflow 0.6 0.8 0.6 0.8 10
3.2 Trajflow 0.6 0.8 0.3 0.5 10
3.3 Naïve 0.7 0.9 0.7 0.9 10
3.4 Naïve 0.7 0.9 0.4 0.6 10

Same goal experiment
Experiment Belief Risk agent 1 Risk agent 2 Runs
4.1 Trajflow 0.6 0.8 0.6 0.8 10
4.2 Trajflow 0.6 0.8 0.3 0.5 10
4.3 Naïve 0.7 0.9 0.7 0.9 10
4.4 Naïve 0.7 0.9 0.4 0.6 10
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28 B. Qualitative Results

B.1. Experiment: Straight

Figure B.1: Experiment: Straight, Risk threshold: Equal, Belief: TrajFlow
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Figure B.2: Experiment: Straight, Risk threshold: Equal, Belief: TrajFlow, magnified
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Figure B.3: Experiment: Straight, Risk threshold: Equal, Belief: Naïve
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Figure B.4: Experiment: Straight, Risk threshold: Equal, Belief: Naïve, magnified
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Figure B.5: Experiment: Straight, Risk threshold: Different, Belief: TrajFlow
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Figure B.6: Experiment: Straight, Risk threshold: Different, Belief: TrajFlow, magnified
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Figure B.7: Experiment: Straight, Risk threshold: Different, Belief: Naïve
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Figure B.8: Experiment: Straight, Risk threshold: Different, Belief: Naïve, magnified



36 B. Qualitative Results

B.2. Experiment: Cross

Figure B.9: Experiment: Cross, Risk threshold: Equal, Belief: TrajFlow
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Figure B.10: Experiment: Cross, Risk threshold: Equal, Belief: TrajFlow, magnified
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Figure B.11: Experiment: Cross, Risk threshold: Equal, Belief: Naïve
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Figure B.12: Experiment: Cross, Risk threshold: Equal, Belief: Naïve, magnified
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Figure B.13: Experiment: Cross, Risk threshold: Different, Belief: TrajFlow
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Figure B.14: Experiment: Cross, Risk threshold: Different, Belief: TrajFlow, magnified
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Figure B.15: Experiment: Cross, Risk threshold: Different, Belief: Naïve
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Figure B.16: Experiment: Cross, Risk threshold: Different, Belief: Naïve, magnified
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B.3. Experiment: Overtake

Figure B.17: Experiment: Overtake, Risk threshold: Equal, Belief: TrajFlow
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Figure B.18: Experiment: Overtake, Risk threshold: Equal, Belief: TrajFlow, magnified
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Figure B.19: Experiment: Overtake, Risk threshold: Equal, Belief: Naïve
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Figure B.20: Experiment: Overtake, Risk threshold: Equal, Belief: Naïve, magnified
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Figure B.21: Experiment: Overtake, Risk threshold: Different, Belief: TrajFlow
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Figure B.22: Experiment: Overtake, Risk threshold: Different, Belief: TrajFlow, magnified
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Figure B.23: Experiment: Overtake, Risk threshold: Different, Belief: Naïve
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Figure B.24: Experiment: Overtake, Risk threshold: Different, Belief: Naïve, magnified
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B.4. Experiment: Same Goal

Figure B.25: Experiment: Same Goal, Risk threshold: Equal, Belief: TrajFlow
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Figure B.26: Experiment: Same Goal, Risk threshold: Equal, Belief: TrajFlow, magnified



54 B. Qualitative Results

Figure B.27: Experiment: Same Goal, Risk threshold: Equal, Belief: Naïve
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Figure B.28: Experiment: Same Goal, Risk threshold: Equal, Belief: Naïve, magnified
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Figure B.29: Experiment: Same Goal, Risk threshold: Different, Belief: TrajFlow
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Figure B.30: Experiment: Same Goal, Risk threshold: Different, Belief: TrajFlow, magnified
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Figure B.31: Experiment: Same Goal, Risk threshold: Different, Belief: Naïve
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Figure B.32: Experiment: Same Goal, Risk threshold: Different, Belief: Naïve, magnified
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62 C. Quantitative Results Experiment

C.1. Metric: Maximum deviation

(a) Simulation: straight (b) Simulation: cross

(c) Simulation: overtake (d) Simulation: same goal

Figure C.1: Metric: maximum deviation
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C.2. Metric: Moment of deviation

(a) Simulation: straight (b) Simulation: cross

(c) Simulation: overtake (d) Simulation: same goal

Figure C.2: Metric: moment of deviation
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