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 19 Summary

Summary
Reduction of energy consumption is currently high on the political agenda of many 
countries. Because buildings consume a significant amount of the total energy 
consumption they form a big energy saving potential. For this reason the EPBD was 
introduced. This directive introduced a mandatory energy performance certificate for 
all buildings in Europe (in the Netherlands implemented as energy label). The initial 
aim of this directive was to make people aware of the energy efficiency state of the 
building that they buy or rent.

Although the initial aim of the energy performance certificate was to create 
awareness, it is currently also used for other purposes (e.g. monitoring energy 
saving progress, setting up energy saving action plans, to calculate payback 
times and to set energy saving targets). However, a tool used for those purposes 
should predict energy consumption fairly accurate and that is not the case for the 
energy certificate.

Due to the increased availability of more details building energy consumption data 
previous research in many European countries (e.g. Netherlands, France, Denmark, 
United Kingdom) has shown that there is a discrepancy between predicted and 
actual energy consumption. The discrepancy between predicted and actual energy 
consumption is often referred to as the energy performance gap (EPG). . One of the 
main problems of these EPG is that energy saving measures often do not result in the 
expected energy savings. Nevertheless, theoretical energy consumption calculations 
are widely used and their use is increasingonly

The occupant is often blamed for the EPG, because their behaviour is not taken 
into account in the theoretical calculation. The calculation models make use of a 
standardized occupant behaviour (indoor temperature, ventilation rate and use of 
domestic hot water are the same in every calculation).

Almost all studies about the energy performance gap assume or prove that occupants 
have a significant influence on it. However, the amount of influence is unclear. 
Some studies found proof for 4.2%, others for 51% . The relationship of the energy 
performance gap with building characteristics is studied significantly less frequent.
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This thesis aims to determine the extent to which building characteristics and residents 
explain the gap between theory and practice concerning building energy consumption, 
and to investigate if it is possible to reduce this gap.

Research method

Large databases are used to determine the relationship of occupant and building 
characteristics with the difference between theory and practice of residential 
energy consumption. The databases contained building characteristics, occupant 
characteristics, theoretical and actual annual energy consumption data on a 
household level. Primarily data from the Netherlands is used; for the third part of 
the research also Danish data was available. The data is used for statistical analysis 
to determine the relationships of the difference between theory and practice with 
occupant and building characteristics.

First statistical analyses are carried out on cross-sectional data with information 
of 1.4 million dwellings to define the relationship of occupant and building 
characteristics with the energy performance gap. This is done by analysing 
different household groups and by analysing the highest and lowest energy 
consuming groups.

Second, the biggest consequence of the energy performance gap is investigated: 
the gap between expected energy savings and actual energy savings after a thermal 
renovation. This has been done by analysing the actual and theoretical energy 
consumption before and after renovation of almost 90,000 renovated houses in the 
Netherlands. Only houses that were occupied by the same household before and 
after renovation were taken into account.

Third, because the results of those two studies show that the difference 
between theory and practice has a relationship with both building and occupant 
characteristics, the third part of this research investigates to which extent building 
and occupant characteristics are responsible for variances in actual residential 
energy consumption.

Finally, because the previous three parts showed the complexity of residential 
energy consumption and it dependence on many direct and indirect factors we 
could conclude that it is impossible to reduce the energy performance gap on an 
individual level without changing the calculation method. Nevertheless, literature 
review showed that simple calculation tools for buildings’ energy consumption are an 
important tool for policymakers. Therefore, the last part of this thesis aims to reduce 
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the performance gap on a housing stock level without changing the calculation 
method. This is done by calibrating  simulation models by using actual energy 
consumption data.

Results

Can analysing building characteristics and household groups provide better 
insight into the energy performance gap?

The first part of this thesis shows that analysing specific household types and 
building characteristics can contribute to a better understanding of the influence of 
the occupant on actual energy consumption and the energy performance gap.

The analyses showed that single person households consume the least energy 
for heating per square meter and households with families consuming the most. 
For low energy efficient houses (label D-G) family households have the smallest 
energy performance gap, while for higher energy efficient houses (label A-C) single 
person households have the smallest gap. This indicates that there is no direct 
relationship between the performance gap and occupant characteristics or there are 
other factors that have a higher influence on the performance gap. Analysis of the 
highest and lowest 10% consumers groups can help policymakers to choose the 
right target groups for their energy-saving policies and campaigns. Single person 
households occur more often in the low energy consuming group and households 
with three or more members in the high consuming group. Households without 
children occur more frequently in the low gas consuming groups. For the income we 
found that low incomes occur more frequently in the extreme groups (high and low 
consuming groups) and less in the “average” consuming group. Employed occupants 
occur more often in the low energy consuming group than unemployed occupants; 
this indicates that occupancy time has a significant influence on Building’s energy 
consumption. Analysis of the ventilation system shows that the type of ventilation 
system is especially important for energy efficient houses. For houses with an energy 
label F or G the distribution of ventilation systems does not differ significantly for 
the high, low and average consuming groups. The energy efficient houses show (as 
expected) that balanced ventilation systems occur more frequently in low consuming 
groups and houses with natural ventilation systems in high energy consuming 
groups. This indicates that the type of ventilation systems becomes only important 
when the building has an energy label higher than F or G.
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A comparison of the frequency of each construction year for the high, low and 
average energy consuming group shows that the frequencies of the construction 
year of the buildings differ significantly for houses with category A, B and C. The 
results show that, within one label,  older houses occur more frequently in the high 
consuming groups and more recently built houses occur more frequently in the 
low consuming groups, despite their equal energy label. This indicates that even if 
buildings are renovated it seems to be difficult to achieve the same performance as 
new built houses.

Do occupant and building characteristics have a relationship with the difference 
between actual and theoretical energy savings after a thermal renovation?

One of the most important consequences of the EPG is the lower-than-expected 
energy savings after a renovation. Because the first part of the research showed that 
both building and occupant characteristics have a significant influence on buildings’ 
energy consumption and therewith the EPG, the second part of this research 
investigates the relationship of building and occupant characteristics on actual 
energy savings after a thermal renovation. The actual and theoretical energy savings 
of 90,000 renovated houses with the same occupant before and after renovation 
were investigated. The analyses were carried out for eleven different renovation 
measures (varying from single renovation measures to deep renovation measures). 
The statistical analyses show that although deep renovation measures result in the 
highest energy savings, they also result in the highest Energy Saving Gap (ESG). 
Further it was found that the effectiveness of renovations is dependent on the state 
of the building prior to the thermal renovation. Also a relationship with the type of 
occupant and the amount of energy saved after a renovation was found. On average 
renovations of relatively low energy efficient houses result in bigger energy saving 
gaps than renovations of relatively high efficient houses. Single family dwellings save 
on average more energy than multifamily dwellings after a thermal renovation. Apart 
from deep renovations it is impossible to conclude which thermal renovation measure 
is the most effective because it is dependent on the energy efficiency of the building 
prior to the thermal renovations, the type of building, income level of occupant and 
occupancy time. Tailored thermal renovation advice is required to decide on the most 
effective thermal renovation measures.
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To what extent are occupants and building characteristics responsible for the 
variances in actual residential energy consumption?

Because the previous two research topics showed that both occupant and building 
characteristics are important factors for the difference between actual and 
theoretical energy consumption the third part of the research studies to which extent 
occupants and building characteristics are responsible for the variances in actual 
energy consumption. This study made use of Dutch and Danish building energy 
consumption data. It compared the actual energy consumption of the year 2010 
and 2015 for groups of houses with the same occupant and houses with different 
occupants. The results show that both, for the Dutch and Danish case approximately 
half of the variation in consumption can be ascribed to differences in building 
characteristics and the other half in differences in occupant behaviour. Variations 
in residential heating consumption across the years of Dutch social housing can 
be explained by occupants (49%), the Dutch energy simulation model (theoretical 
consumption) (20%), and by other physical characteristics that are not taken into 
account in the building simulation model (32%). For the Danish case, we showed 
that 48% of the variation in residential heating consumption can be explained by 
occupants, 27% by the building and 25% by other physical characteristics.

The research also showed that the influences of the occupant on variances in energy 
consumption are dependent on the characteristics of the building. For example 
the influence of the occupants is larger for energy efficient house than for energy 
inefficient houses.

Is it possible to reduce the energy performance gap on a building stock level?

The previous three research parts show that actual residential energy consumption is 
very complex and different for every household. It is dependent on many parameters, 
direct and indirect, which are almost impossible to incorporate in simple building 
calculation models that are often used by policymakers. Nevertheless it is important 
for policymakers to have simple tools to determine potential energy savings, set energy 
saving targets, to grant subsidies and to determine which energy saving measures 
are needed to reduce residential energy consumption. Therefore, the last part of the 
thesis introduces a method that uses actual energy consumption data and automatic 
calibration techniques to improve assumptions in building energy simulation models 
used to assess whole building stocks. Two types of models were tested; the first one 
being the steady state model used in the Netherlands in the framework of EPBD, the 
other one being a dynamic model in EnergyPlus. The method was able to reduce the 
root mean square error of the energy performance gap with nearly 24% for the steady 
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state simulation method, and with 27% for the dynamic simulation method, and, most 
important, the average energy performance gap in the sample as well as in the control 
group, disappeared almost completely. Therefore this method has the potential to make 
building simulation models a more reliable tool for policy makers.

Conclusion

The findings in the previous sections result in the overall conclusion answering the 
main research question:

Can occupant and building characteristics provide better insights into the 
difference between theory and practice in residential energy consumption, and is 
it possible to reduce this difference?

This thesis results in two main conclusions. First, both occupants and building 
characteristics have a significant relationship with the gap between theory and 
practice in residential energy consumption and saving. Second, it is impossible 
to reduce the energy performance gap on an individual level without using more 
detailed data than the buildings simulation tools that the Dutch government 
currently uses and is planning to use in 2020 (NTA 8088). However, reducing the 
average energy performance gap on a building stock level is possible by adapting the 
assumptions used in building energy simulation models. 

In the first part of this study, we investigated the influence of building and occupant 
characteristics on the energy performance gap. This was followed by an investigation 
of the gap between predicted and actual energy saving after a thermal renovation. 
Both show that not only occupants but also the building characteristics play an 
important role in the difference between theory and practice. An analysis of the 
variances in actual energy consumption through comparing consumption over 
the years of houses with the same occupants and houses with changed occupants 
showed that occupants are currently responsible for almost 50% of the variance and 
building characteristics for the other 50%. 

All of these findings together prove that it is important to continue analysing actual 
energy consumption to determine real-life home energy use. The results show that 
the relationships between building and occupant characteristics and actual energy 
consumption are very complex and therefore difficult – and perhaps impossible – to 
incorporate in traditional physical building simulation models. The results point to the 
possibility that conventional physical building simulation models should be completed 
with data-driven models that make use of e.g. machine learning techniques. 
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A first step using optimisation algorithms/machine learning techniques and actual 
energy consumption data in building simulation models was shown in chapter 5 of 
this thesis. This chapter showed that it is possible to reduce the average energy 
performance gap significantly by optimising the parameters in the simulation model 
by using actual energy consumption data of multiple dwellings. The use of actual 
energy consumption data in combination with optimisation algorithms on multiple 
buildings, help to improve the assumptions for the simulation method, which reduces 
the energy performance gap and make the outcomes more reliable. In this thesis a 
proof of principle is  shown, to make the method practically usable more research is 
needed  The method will lead to a  better reliability of building energy simulations, 
which is crucial for (amongst others) policymakers and practitioners to make the 
right decision regarding energy renovations, subsidies, energy saving targets, and 
energy saving policies in the built environment. 
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Samenvatting
Energiebesparing staat tegenwoordig in veel landen hoog op de politieke agenda. 
Omdat het energiegebruik in gebouwen verantwoordelijk is voor een significant deel 
van het totaal energiegebruik wordt verwacht dat er een groot besparingspotentieel 
is in gebouw gebonden energiegebruik. In 2003 werd de “Energy Performance 
of Building Directive” (EPBD) geïntroduceerd om te kunnen meten hoe energie-
efficiënt een gebouw is. Deze richtlijn introduceert onder andere een verplicht 
energieprestatiecertificaat voor alle gebouwen in Europa. Het doel van deze richtlijn 
was om mensen bewuster te maken van de energie efficiëntie van het gebouw dat ze 
kopen of huren. 

Om het energieprestatiecertificaat te bepalen wordt eerst een theoretisch 
energiegebruik berekend. Hoewel het energieprestatiecertificaat in eerste instantie 
bedacht is om bewustzijn te creëren, wordt het tegenwoordig ook gebruikt 
voor andere doeleinden. (bijvoorbeeld: monitoren van energiebesparing, of 
stellen van energiebesparingsdoelen en actieplannen en voor het berekenen van 
terugverdientijden). Voor een tool die op die manier gebruikt wordt is het belangrijk 
dat het energiegebruik relatief accuraat wordt voorspeld, wat op dit moment niet het 
geval is.

Verschillende onderzoeken hebben aangetoond dat er grote verschillen zijn 
tussen het werkelijk en theoretisch energiegebruik. Omdat de berekening van het 
energieprestatiecertificaat uitgaat van een standaard situatie en daarom geen 
rekening houdt met verschillen in gebruikersgedrag (bijvoorbeeld: gewenste 
binnentemperatuur, ventilatiegedrag en gebruik van warm tapwater) wordt het 
verschil tussen werkelijk en berekend energiegebruik vaak toegeschreven aan 
verschillen in gebruikersgedrag. 

Bijna alle onderzoeken naar het verschil tussen werkelijk en theoretisch gebruik 
concluderen dat de gebruiker een significante invloed heeft op het verschil, maar de 
hoeveelheid invloed is onduidelijk. Sommige studies vonden bewijs voor 4.2% van 
het verschil in werkelijk en theoretisch gebruik en andere onderzoeken vonden dat 
de gebruiker voor 51% verantwoordelijk is. Het verschil in theoretisch en werkelijk 
energiegebruik in relatie met specifieke gebouwkarakteristieken is veel minder 
onderzocht. Het is onduidelijk in hoeverre het verschil is toe te schrijven aan de 
gebruiker en in hoeverre tot andere gebouw gerelateerde aspecten.
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Dit proefschrift heeft als doel vast te stellen in hoeverre de gebruiker en 
gebouwkarakteristieken een relatie hebben met het verschil tussen werkelijk en 
voorspeld energiegebruik in een woning en het onderzoekt of het mogelijk is om het 
verschil tussen werkelijk en theoretisch verbruik te verkleinen zodat het theoretisch 
energiegebruik een beter hulpmiddel wordt voor onder andere beleidsmakers.

Onderzoeksmethoden

In dit onderzoek wordt gebruik gemaakt van grote databases om te vergelijken 
wat de relatie van gebruikers en gebouwkarakteristieken is met het verschil tussen 
werkelijk en theoretisch energiegebruik in een woning. De databases bevatten 
informatie over gebouwkarakteristieken, gebruikerskarakteristieken, theoretisch en 
werkelijk energiegebruik op een individueel woningniveau. Er wordt voornamelijk 
gebruik gemaakt van Nederlandse data; alleen voor het derde deel van dit 
onderzoek was ook data uit Denemarken beschikbaar. De relatie van gebruikers en 
gebouwkarakteristieken met het verschil tussen werkelijk en theoretisch gebruik 
geanalyseerd met behulp van verschillende statistische analyse methodes. De 
eerste statische analyses zijn uitgevoerd op cross-sectionele data met informatie 
van bijna 1,4 miljoen woningen. In deze analyse is de relatie van gebruikers en 
gebouwkarakteristieken met het verschil tussen werkelijk en theoretisch gebruik 
onderzocht. Dit is gedaan door het analyseren van verschillende huishoudgroepen 
en door het analyseren van groepen huishoudens die behoren in de 10% hoogste en 
10% laagste energiegebruikersgroepen.

Daarna is een van de grootste consequenties van het verschil tussen werkelijk en 
theoretisch verbruik onderzocht: lager dan verwachtte energiebesparingen na een 
thermische renovatie. Het energiegebruik voor en na de renovatie van bijna 90.000 
gerenoveerde woningen in Nederland is geanalyseerd. Belangrijk aspect van dit 
onderzoek is dat enkel woningen met dezelfde bewoner voor en na de renovatie zijn 
meegenomen in de analyse om de invloed van bewonersgedrag zoveel mogelijk uit 
te sluiten.

Omdat de eerste twee onderzoeken aantonen dat het verschil tussen theoretisch 
en werkelijk energiegebruik niet enkel afhankelijk is van bewoners, maar ook van 
gebouwkarakteristieken, wordt in het derde deel van dit onderzoek bepaald in 
hoeverre gebouwkarakteristieken en hoeverre de bewoner verantwoordelijk is voor 
verschillen in het energiegebruik.
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Omdat de eerste drie onderzoeken allemaal aantonen dat zowel de gebruiker als de 
gebouwkarakteristieken belangrijke factoren zijn voor het verschil tussen werkelijk 
en theoretisch energiegebruik, kan geconcludeerd worden dat wanneer er geen 
enkele informatie over de gebruiker bekend is, het zeer onwaarschijnlijk is dat 
het werkelijke energiegebruik goed voorspeld wordt. Voorgaand onderzoek heeft 
aangetoond dat er niet enkel een verschil tussen werkelijk en theoretisch verbruik 
is op individueel gebouwniveau, maar ook op woningvoorraadniveau. Dit terwijl men 
zou kunnen verwachten dat die invloed van gebruikersgedrag zichzelf uitmiddelt. 
Omdat het theoretisch energieverbruik een belangrijk hulpmiddel is voor onder 
andere beleidsmakers, is het belangrijk dat de resultaten van deze berekening 
op zijn minst overeenkomen met het gemiddelde werkelijke energiegebruik van 
een woningvoorraad. Daarom heeft het laatste onderdeel van dit proefschrift als 
doel om een methode te ontwikkelen waarmee het gemiddelde verschil tussen 
werkelijk en theoretisch verbruik verkleind kan worden door gebruik van werkelijke 
energiegebruiksdata en slimme optimalisatie-algoritmes. 

Resultaten

Hoe kunnen gebouwkarakteristieken en huishoudgroepen bijdragen aan een 
beter inzicht in het verschil tussen werkelijk en theoretisch energie gebruik in 
woningen?

Het eerste deel van dit proefschrift toont aan dat het analyseren van 
huishoudgroepen en gebouwkarakteristieken in relatie tot het verschil in werkelijk 
en theoretisch energiegebruik inderdaad kan bijdragen aan het beter begrijpen 
van het verschil tussen werkelijk en theoretisch gebruik. De analyses laten zien 
dat eenpersoonshuishoudens minder energie per vierkante meter gebruiken dan 
huishoudens bestaande uit meerdere gezinsleden. Ook laat de analyse zien dat 
voor de energie-inefficiënte woningen (label D-G) het verschil tussen theoretisch en 
werkelijk gebruik het kleinst is voor woningen waar gezinnen wonen en voor relatief 
energie-efficiënte woningen het verschil het kleinst is voor eenpersoonshuishoudens. 
Dit wijst erop dat er geen directe relatie is tussen het verschil in theoretisch en 
werkelijk energiegebruik en bewonerskarakteristieken, of er zijn andere factoren die 
meer invloed hebben op het verschil. Een analyse van de hoogste en laagte 10% en 
gemiddelde energiegebruikersgroepen kan beleidsmakers helpen de juiste doelgroep 
te kiezen voor energiebesparingsbeleid en campagnes. Eenpersoonshuishoudens 
komen vaker voor in de laagste 10% gebruikersgroep dan in de gemiddelde en 
hoge gebruikersgroepen. Huishoudens met drie of meer leden komen juist vaker 
voor in de 10% hoogste gebruikersgroep en huishoudens zonder kinderen komen 
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vaker voor in de laagste 10% gebruikersgroep. Voor het inkomen vonden we dat 
huishoudens met een laag inkomen vaak voorkomen in de extreme groepen, dus de 
hoogste en de laagste 10% en minder in de gemiddelde gebruikersgroep. Wanneer 
de bewoners van een woning een baan hebben, komen ze vaker voor in de lage 
energiegebruiksgroepen dan de bewoners zonder baan; dit zou kunnen komen 
doordat mensen zonder baan vaker thuis zijn wat de gebruikerstijd en vaak daarmee 
het energiegebruik doet toenemen. Als we naar het ventilatiesysteem kijken valt 
op dat het ventilatiesysteem vooral in energie-efficiënte woningen een belangrijk 
verschil maakt. Voor woningen met een energielabel F of G is er nauwelijks verschil 
te zien in de verdeling van het type ventilatiesysteem per energiegebruikersgroep. 
Voor de meer energie-efficiënte huizen is duidelijk te zien dat een gebalanceerd 
ventilatiesysteem vaker voorkomt in de 10% laagste energiegebruikersgroep. 
Woningen met een natuurlijk ventilatiesysteem komen juist vaker voor in de 10% 
hoogste energiegebruikersgroep. Dit laat zien dat het type ventilatiesysteem 
belangrijker wordt naarmate de woning een beter energielabel heeft. Een vergelijking 
van de bouwperiode voor de hoge, lage en gemiddelde energiegebruikers 
categorieën laat zien dat bij gebouwen met een energie efficiënt label (A-C) het 
bouwjaar een sterke relatie heeft met de kans dat een woning in een hoog, gemiddeld 
of lage energiegebruikersgroep hoort. De resultaten laten zien dat oudere woningen 
vaker in de 10% hoogste energiegebruikers groep horen en meer recent gebouwde 
woningen vaker in de laagste 10% energiegebruikersgroep. Dit wijst erop dat het 
moeilijk is om een woning zo te renoveren dat het dezelfde energieprestaties kan 
halen als een nieuwbouwwoning. 

Hebben bewoners en gebouwkarakteristieken een relatie met het verschil tussen 
werkelijk en theoretische energiebesparing na een thermische renovatie?

Een van de meest problematische gevolgen van het verschil tussen theoretisch 
en werkelijk gebruik is dat energierenovaties vaak resulteren in lagere 
energiebesparingen dan verwacht. Omdat het eerste deel van dit onderzoek liet zien 
dat, de bewoner- en gebouwkarakteristieken beiden een significant effect hebben 
op energiegebruik in gebouwen, onderzoekt het tweede deel van dit proefschrift de 
relatie tussen gebruikers en gebouwkarakteristieken op de energiebesparing na een 
energierenovatie. De werkelijke en theoretische besparing van 90,000 woningen 
met dezelfde gebruiker voor en na de renovatie zijn onderzocht. In de analyse wordt 
onderscheid gemaakt tussen 11 verschillende renovatiemaatregelen (variërend 
van losse renovatie maatregelen tot een combinatie van renovatiemaatregelen). De 
statistische analyses laten zien dat ondanks dat diepe renovaties resulteren in de 
hoogste energiebesparing, ze ook resulteren in het hoogste verschil in werkelijke 
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en theoretische energiebesparing. Verder vonden we dat de effectiviteit van een 
renovatie afhankelijk is van de staat van het gebouw voorafgaand aan de renovatie. 
Er is ook een relatie met het type gebruiker en de hoeveelheid energiebesparing 
na een renovatie gevonden. Gemiddeld resulteren renovaties van erg energie 
inefficiëntegebouwen (energielabel D-G) in een groter verschil tussen werkelijk en 
theoretische energiebesparing dan renovaties van energie-efficiënte gebouwen. 
Eengezinswoningen besparen gemiddeld meer na een energierenovatie dan 
meergezinswoningen Met uitzondering van diepe renovaties (waarbij het hele 
gebouw energetisch wordt verbeterd) is het onmogelijk te zeggen welke thermische 
renovatie maatregelen het meest effectief zijn omdat dat afhankelijk is van de staat 
van de woning voor de renovatie, het type woning, inkomen van de bewoners en 
de bezettingsgraad van de woning. Daarom is maatwerkadvies noodzakelijk om te 
bepalen wat de meest effectieve thermische renovatiemaatregel is.

In hoeverre zijn bewoners en gebouwkarakteristieken verantwoordelijk voor de 
variantie in werkelijk energiegebruik in woningen?

In het derde onderdeel van dit proefschrift onderzocht in hoeverre de bewoners 
en in hoeverre de gebouwkarakteristieken verantwoordelijk zijn voor de variantie 
in werkelijk energiegebruik. Deze studie maakt gebruik van zowel Nederlandse 
als Deense data. We vergelijken het energiegebruik van de jaren 2010 en 2015 
met elkaar voor een groep woningen met dezelfde bewoner(s) en voor een groep 
woningen waar de bewoners verhuisd zijn. De resultaten laten zien dat zowel 
de Nederlandse als voor de Deense data ongeveer de helft van de variatie in 
energiegebruik tussen woningen toegeschreven kan worden aan de gebruiker 
en de andere helft aan gebouw- en omgevingskarakteristieken. Variatie in het 
energiegebruik in Nederlandse woningen wordt voor 49% verklaard door de 
bewoner, 20% door het theoretische energiegebruik berekend met de energielabel-
methode en 32% door andere fysische karakteristieken die op dit moment 
niet meegenomen worden in de theoretische berekening. Voor de Deense data 
vonden we dat de bewoners voor 48% verantwoordelijk zijn voor het verschil in 
energiegebruik, 27% door gebouwkarakteristieken en 25% door andere fysische 
eigenschappen. Met dit onderzoek is opnieuw aangetoond dat zowel de bewoner als 
de gebouwkarakteristieken belangrijke parameters zijn voor het verklaren van het 
werkelijke energiegebruik. Daarnaast toont dit onderzoek aan dat de invloed van de 
gebruiker verschilt voor verschillende woning karakteristieken. Zo laat dit onderzoek 
zien dat de invloed van de gebruiker groter is bij energie-efficiënte woningen dan bij 
energie-inefficiënte woningen. 
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Is het mogelijk om het verschil tussen theoretisch en werkelijk energieverbruik op 
woningvoorraad niveau te verkleinen?

De vorige drie onderzoekonderdelen hebben aangetoond dat het werkelijke 
energiegebruik erg complex is en verschilt voor elk huishouden. Het energiegebruik 
is afhankelijk van veel verschillende parameters, direct en indirect, waardoor het 
bijna onmogelijk (en misschien ook onwenselijk)is al deze parameters op te nemen 
in een simpelgebouwsimulatie model. Dit terwijl simpele gebouw simulatie modellen 
belangrijke tools zijn voor beleidsmakers om de potentiele energiebesparing van de 
woningvoorraad te berekenen, energiebesparingsdoelen vast te stellen, subsidies toe 
te kennen en vast te stellen welke energiebesparingsmaatregelen nodig zijn om het 
energiegebruik in een woning te reduceren. Daarom wordt in het laatste onderdeel 
van dit proefschrift een methode ontwikkeld die door gebruik van werkelijke 
energiegebruiksdata helpt het gemiddelde verschil tussen werkelijk en theoretisch 
energiegebruik op gebouwvoorraadniveau te verkleinen. De methode maakt gebruik 
van traditionele automatische kalibratietechnieken en werkelijke energiegebruiksdata 
om daarmee de aannames die in gebouwsimulatiemodellen gemaakt worden te 
verbeteren, waardoor de het verschil in theoretisch en werkelijk energiegebruik op 
gebouwvoorraad niveau wordt verkleind. Twee theoretische berekeningsmethoden 
zijn getest: een statische en een dynamische simulatiemethode. Voor de statische 
simulatie is dezelfde methode gebruikt als in Nederland gebruikt werd voor het 
energielabel en voor de dynamische methode is de software EnergyPlus gebruikt. De 
aannames die geoptimaliseerd werden in de kalibratieprocedure zijn hetzelfde voor 
beiden methoden en afkomstig uit de Nederlands energielabel methode gebaseerd 
op de EPBD. De methode was niet alleen in staat om de "Root Mean Square Error" 
(RMSE) te reduceren met bijna 24% voor de statische methode en 27% voor 
de dynamische methode, maar liet het gemiddelde verschil tussen werkelijk en 
theoretisch gebruik ook bijna helemaal verdwijnen. Hieruit kan geconcludeerd 
worden dat deze methode de potentie heeft om energiesimulatiemodellen voor 
gebouwen een meer betrouwbare tool te maken voor beleidsmakers.
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Conclusies

De bevindingen van de hiervoor beschreven onderzoeken leiden tot het 
beantwoorden van de hoofdvraag van dit onderzoek:

In hoeverre kunnen de bewoners en gebouwkarakteristieken het verschil tussen 
werkelijk en theoretische energiegebruik verklaren en is het mogelijk om dit 
verschil te reduceren?

Dit proefschrift resulteert in twee belangrijke conclusies. Ten eerste: zowel de 
gebruiker als de gebouwkarakteristieken hebben een significante relatie met het 
verschil tussen theoretisch en werkelijke energiegebruik en -besparing. Ten tweede: 
het is onmogelijk om de energieprestatiekloof te reduceren op een individueel 
gebouwniveau zonder meer gedetailleerde data te hebben dan de gebouwsimulaties 
die de Nederlandse overheid nu en in de toekomst (NTA 8088) van plan is te 
gaan gebruiken. Desalniettemin bewijst dit proefschrift dat het reduceren van de 
energieprestatiekloof op gebouwvoorraadniveau wel mogelijk is door de aannames in 
gebouwsimulatiemodellen te optimaliseren.

In het eerste deel van dit proefschrift werd onderzocht wat de invloed van gebouw- 
en gebruikerskarakteristieken op de energieprestatiekloof is. Dit werd gevolgd door 
een onderzoek naar de kloof tussen voorspeld en werkelijke energiebesparing na 
een thermische renovatie. Beiden laten zien dat niet enkel de gebruiker, maar zeker 
ook de gebouwkarakteristieken een belangrijke rol spelen in het verschil tussen 
theoretisch en werkelijk energiegebruik. De verschillen tussen het energiegebruik 
van verschillende woningen is onderzocht door het energiegebruik tussen 2010 en 
2015 met elkaar te vergelijken voor twee verschillende groepen. De eerste groep 
bestaat uit woningen met dezelfde bewoner(s) tussen 2010 en 2015 en de andere 
groep bestaat uit woningen waarbij de bewoners veranderd zijn tussen 2010 en 
2015 (bijvoorbeeld door verhuizing). De resultaten van deze analyse laten zien dat 
ongeveer 50% van de variantie veroorzaakt wordt door de gebruiker en de andere 
50% door gebouwkarakteristieken.

Al deze bevindingen samen bewijzen opnieuw hoe belangrijk het is om het werkelijke 
energiegebruik te blijven monitoren. De resultaten laten ook zien hoe complex 
het werkelijke energiegebruik eigenlijk is, en dat het misschien wel onmogelijk is 
om al deze informatie te implementeren in bestaande simulatiemodellen. Daarom 
zijn alternatieven methoden nodig. De resultaten wijzen in de richting van een 
combinatie van traditionele gebouwsimulatiemodellen gebaseerd op bouwfysische 
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eigenschappen gecombineerd met data-gedreven modellen die gebruik maken van 
machine learning technieken. 

Een eerste stap van het gebruik van machine learning technieken en werkelijke 
gebruiksdata is genomen in hoofdstuk 5 van dit proefschrift. Dit hoofdstuk 
laat zien dat het mogelijk is de gemiddelde energieprestatiekloof te reduceren 
door de aannames in gebouw simulatie modellen te calibreren met werkelijke 
energiegebruiksdata. Dit soort technieken kunnen ertoe bijdragen dat traditionele 
gebouwsimulatiemodellen een meer betrouwbare tool worden dan ze nu zijn. In 
dit proefschrift wordt enkel getoont dat het principe werkt. Om de methode ook 
daadwerkelij in praktijk te brengen is extra onderzoek bezig. Dit is van belang omdat 
betere betrouwbaarheid van deze simulatiemodellen (onder andere) beleidsmakers 
en mensen in de praktijk helpen bij het maken van de juiste beslissingen omtrent: 
energie renovaties, subsidies, energiebesparingsdoelen en energiebesparingsbeleid 
in de gebouwde omgeving. 
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1 Introduction

 1.1 Residential energy consumption

The reduction of energy consumption is currently high on the political agenda of 
many countries. Worldwide, a total of 13,760 Mtoe of energy is consumed annually, 
and without any changes this is expected to increase 30% by 2050 [1]. Moreover, 
approximately 30% of the total energy consumption is for buildings. In 2015, the 
international climate agreement (the Paris Agreement) was signed by 185 countries, 
including the EU member states who collectively account for 15% (2,064 Mtoe) of 
the total world energy consumption [1]. For execution of the climate agreement, the 
EU agreed to reduce CO2 emissions by 20% compared to 1990, 40% by 2030, and 
80%–95% by 2050 [2]. Dwellings are responsible for a significant amount of the 
final energy consumption in Europe (25%); hence, it is not surprising that they are of 
great interest to policymakers, practitioners, and researchers [3].

In the Netherlands, which is the main study area of this thesis, a significant amount 
of the final energy consumption is used by households (22%). Currently, an average 
Dutch household uses 1,432 m3 (13989 kWh) of natural gas and 2,966 kWh of 
electricity annually (2015)[4]. The majority of Dutch residential energy consumption 
is used for space heating. Most houses in the Netherlands (85%) use gas boilers 
as their heating system, with the consequence that natural gas is the main energy 
source for Dutch households. The majority of the gas boilers are condensing boilers 
75% [5]; however, there are still houses with less efficient gas boilers and some even 
use local gas stoves. Recently, the number of houses connected to district heating 
and houses with heat pumps have increased, with 11 % [6] of houses connected to a 
district heating system and almost 3% [7]using a heat pump as a heating system.
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 1.1.1 Current policies

To fulfil the requirements of the Paris Agreement, the Dutch government prepared 
the energy report (2016) [8]in which they explain how these CO2 reductions can be 
achieved. The report proposes a combination of CO2 reduction by reducing energy 
consumption, increasing the number of renewable energy sources, and CO2 emission 
trading. Meanwhile, the Dutch government agreed to make the reduction target for 
2030 even more ambitious by aiming for a CO2 reduction of 49% instead of 40% [9]. 
In December 2018, the concept design of the Climate Agreement for the Netherlands 
was presented, which describes how the proposed CO2 reduction targets can be 
achieved [10]. The concept Climate Agreement contains information about several 
sectors, one of which is the built environment. Concerning dwellings, the Climate 
Agreement states that this is the start of transforming the entire housing stock. New 
buildings will be built (nearly) energy neutral, and existing houses will be renovated 
by improving their insulation, installing energy efficient heating installations, adding 
mechanical heating system with heat recovery, improving the air tightness and by 
using renewable energy sources instead of gas. In total, this should lead to an energy 
saving of 100PJ [10]. These are not the first measures that the Dutch government 
has taken to reduce residential energy consumption.

 1.1.2 Energy requirements new built buildings

The oil crisis in 1973 increased the awareness of energy consumption. Consequently, 
the first regulations concerning energy requirements were introduced in 1975. The 
first regulation about building energy consumption in the Netherlands demanded 
a minimum Rc-value of 1.3 m2K/W for roofs and opaque façade elements. Soon 
afterwards, double glazing became mandatory for living areas. Currently, the 
minimum Rc-values for dwellings are significantly stricter: 3.5 m2K/W for ground 
floors, 6 m2K/W for roofs, and 4.5 m2K/W for facades [11]. In 1995 the energy 
performance coefficient was introduced in the Netherlands [11]. This is a non-
dimensional number that reflects the energy performance of a building. The lower 
the energy performance coefficient, the more energy efficient the dwelling. The 
coefficient is based on insulation rates, efficiency of building installations, ventilation 
systems, and physical characteristics of the dwelling. In 1995, the maximum energy 
performance coefficient was 1.4; currently (2019), the maximum energy performance 
coefficient for dwellings was reduced to 0.4. In 2020 the Dutch Energy Performance 
Coefficient will be replaced by “BENG eisen” (Nearly Energy Neutral requirements). 
Those requirements do not only take the energy demand in account but also the 
amount of fossil fuel per square meter and the amount of renewable energy sources.
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 1.1.3 Energy requirements existing buildings

The energy performance coefficient in the Netherlands is developed for newly built 
buildings, and is used as a tool to steer the energy efficiency of these buildings. 
For newly built buildings to become more energy efficient, the government 
reduces the maximum energy performance coefficient, which implies that newly 
built buildings are required to become more energy efficient when they are built. 
However, approximately 75% of the housing stock in 2050 has already been built 
today [12]. This has the direct implication that stricter building regulations only for 
newly built buildings will not be sufficient to achieve the energy saving targets set 
by the government. To encourage homeowners to improve the energy performance 
of existing buildings the European Commission introduced the Energy Performance 
of Building Directives (EPBD). This directive is developed to make it possible for 
consumers to make an informed choice that will help them to save energy and 
money, and also as a tool for EU and individual member states to make a stable 
environment for investment decisions to be taken [13]. Currently, the directive 
is also used to promote the use of smart technology in buildings, streamline 
existing rules, accelerate building renovation, and as a tool to monitor the energy 
performance of buildings across Europe [14].

The EPBD made it mandatory for every EU country to have an Energy Performance 
Certificate for buildings that are either sold or rented [14]. Contrary to the Dutch 
Energy Performance Coefficient, this Energy Performance Certificate is meant for 
both newly built and existing buildings. The exact calculation method of the EPBD 
is different for each country. In the Netherlands the Energy Performance Certificate 
calculation method is a simplified version of the Energy Performance Coefficient. 
The reason for this simplification is that building characteristics data for existing 
buildings are not as well documented as they are for newly built buildings; hence, the 
input for the Energy Performance Certificate is often collected by visual inspection. 
In the Netherlands, the Energy Performance Certificate is often referred to as the 
Energy Label, and the method is described in ISSO 82.1 and 82.31. However, for 
clarity, we give a short explanation of the Dutch Energy label below.

1 The method described here is the method of the Energy label in 2011. Since 2014 there has been an 
updated version of the calculation method, but the data used in this thesis is based on the method of 2011. 
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The Dutch Energy Label is based on insulation, type of heating system, type of 
domestic hot water system, type of ventilation system, and airtightness of the 
building. A simplified heat transfer calculation determines the energy index, and the 
Energy labels (A-G) are related to the energy index (Table 1.1). The energy index 
is calculated based on theoretical energy consumption, and indicates the energy 
efficiency of the house (Eq. 1.1).

TABLE 1.1 Energy index related to Energy label (ISSO 82.1)

Energy Label Energy Index (EI)

A++ ≤0.5

A+ 0.51–0.7

A 0.71–1.05

B 1.06–1.3

C 1.31–1.6

D 1.61–2

E 2.01–2.4

F 2.41–2.9

G ≥2.9

EQUATION 1.1

EI = Energy Index
Q  tot= total energy consumption [MJ]
Ag = Area [m2]
Averlies = heat loss area [m2]

The theoretical energy consumption is a combination of energy used for heating, 
domestic hot water, energy for pumps and ventilators, energy consumption for 
lighting, and the generation of energy by solar systems and cogeneration systems. 
The energy consumption for heating is based on a simple annual heat loss 
calculation, an average indoor temperature of 18 °C, and the energy efficiency of 
the heating system. Energy for domestic hot water is determined by the assumed 
number of occupants in the house, which in turn are assumed from the floor area in 
m2 and the energy efficiency of the Domestic Hot Water (DHW) system. The entire 
calculation method can be found in ISSO 82.1 and 82.3 [15].

155 106 9560
tot

g verlies

QEI
A A

=
⋅ + ⋅ +  
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EQUATION 1.2

Qtot = total energy consumption
Qrv = total energy consumption for room heating
Qtap = total energy consumption for domestic hot water
Qhulp = total energy consumption for help energy (e.g. pumps and ventilators)
Qverl = total energy consumption for lighting
Qpv = annual contribution of photovoltaic solar energy system
Qwkk = annual contribution of cogeneration

FIG. 1.1 Explanation calculation method Dutch energy label 2011

As shown in the Energy label calculation method described in Figure 1.1, the energy 
label is based on the results of a theoretical energy consumption calculation. The 
calculation method assumes standards for energy related occupant behaviour 
(temperature settings, ventilation rate, domestic hot water use). Although it is 
clear that because of this the theoretical energy consumption calculated with this 
method can only be valid for a standardised situation, it is not always used as such. 
Theoretical energy consumption is used by policymakers to determine energy 
saving targets that would be reasonable to achieve, develop energy-saving policies, 
monitor the energy performance of the housing stock, determine the maximum 
rent of a house, and to assign subsidies (e.g. STEP subsidy and stimuleringspremie 
Meer Met Minder). Further, theoretical energy consumption calculation results are 
used in practice. For example, theoretical calculations are used to determine which 
renovation measures would be the most effective, and to calculate payback times 
and energy savings.

Because the Energy Label is not only used as an indicator of the energy efficiency 
state of a building, it is important that the theoretical energy consumption results 
at least reflect actual energy consumption fairly accurately. However, currently this 
is not the case, and large gaps were found between actual and theoretical energy 
consumption in previous research (see Figure 1.2). This gap between actual and 
theoretical energy consumption is often referred to as the Energy Performance Gap. 
One of the main problems of the gap is that energy saving measures will not result in 
the expected energy savings.

Policymakers are becoming more aware of the energy performance gap, which 
is also shown in the new norm NTA8800 that replaces the Energy Index and the 
Energy Performance Coefficient that will be used from 2020 in the Netherlands[16]. 

tot rv tap hulp verl pv wkkQ Q Q Q Q Q Q= + + + − −  
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This norm starts with a paragraph stating that the calculated energy consumption 
results will not be similar to the actual energy consumption. According to the norm 
this is due to occupant behaviour (number of occupants, ventilation behaviour, 
temperature settings, use of sun shading, maintenance, and settings of appliances), 
external influences (outdoor temperatures, shading, or obstructions due to adjoining 
plots) and of the location of the building in the Netherlands [10]. Although it seems 
that policymakers are more aware of the energy performance gap, the new method 
described in NTA 8800 results in an outcome of energy consumption in kWh/m2 per 
year instead of the dimensionless energy index and energy performance coefficient 
that are currently used. This change will probably make even more people use the 
outcome of this calculation as the expected energy consumption of a building. 

 1.2 The Energy Performance Gap

Figure 1.2 is one of many examples that shows the difference between average 
actual and theoretical gas consumption per energy label. The Energy Performance 
gap is detected in many European countires. Numerous explanations can be 
found for the performance gap. In general, the explanations can be divided into 
building characteristics and aspects related to occupant behaviour. However, many 
people assume that the influence of occupants is the most important, because the 
occupant determines whether a heating system is on or off and how much domestic 
hot water is consumed [17-19]. Additionally, energy-related occupant behaviour 
differs significantly between individuals; hence, it is often unknown. Consequently, 
assumptions about energy-related occupant behaviour have to be made in building 
energy simulation models. The differences between actual and assumed occupant 
behaviour have a significant influence on the gap [20]. Therefore, more information 
is needed to determine the actual influence of the occupant on residential energy 
consumption. However, studying occupant influence is not a straightforward 
procedure, because occupants differ considerably from each other.
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FIG. 1.2 Actual and theoretical gas per m2 of dwellings consumption per energy label (Majcen et al., 2013)

Nevertheless, many researchers have already attempted to gain insights into the 
influence of occupant behaviour on residential energy consumption (among others: 
Druckman and Jackson [21], O’Neill and Chen [22], Yun and Steemers [23], Brounen, 
Kok [24], and Alberini and Filippini [25]). The methods and approaches they have 
used are diverse, and so are the results. The results of those studies do exhibit a 
common acceptance that occupants influence residential energy consumption; 
however, the magnitude of that influence remains unclear. For example, Guerra Santin 
et al. [26] demonstrated that 4.3% of the variance in actual energy consumption for 
heating can be explained by occupants (based on Dutch data) while Gill et al. [27] 
found a responsibility of the occupant of 51% (based on UK data).

Investigating the energy-related behaviour of residents is difficult because it is 
often time-consuming, intrusive for the occupants, and entails privacy-sensitive 
information. Therefore, these types of studies are often conducted on relatively 
small samples or based on self-reported behaviour of the resident, which potentially 
creates biases because people are tempted to provide socially desirable responses.

Many researchers do not use actual energy-related occupant behaviour in their 
studies, but instead rely on occupant characteristics [21, 24, 26, 28-30]. Occupant 
characteristics are easier to collect and less sensitive to bias than self-reported 
behaviour. The previously referred studies have proven that using occupant 
characteristics is indeed an efficient way to understand actual residential energy 
consumption, and thus the influence of the occupant on the energy performance gap.
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Another factor that makes studying energy-related occupant behaviour complex 
is that some studies imply that this behaviour is not only influenced by personal 
preferences and habits, but also by the technical characteristics of the dwellings 
[31-34]. For example, many researchers found theoretical energy consumption 
in less-efficient houses to be higher than the actual energy consumption, and the 
energy consumption of more-energy-efficient houses to be lower than actual usage 
([35, 36]). These phenomena are often referred to as the rebound and prebound 
effects [34].

There are several explanations why the rebound and prebound effects occur. The 
first assumes that comfort expectations increase when people live in an energy-
efficient house instead of an energy-inefficient house. The second is that energy-
efficient buildings have more potential to influence residential energy consumption. 
Energy-inefficient houses, for example, often have natural ventilation systems that 
are completely dependent on the behaviour of the occupant. More energy-efficient 
buildings often have natural inlet and mechanical exhausts or balanced ventilation 
systems that can also be controlled by the occupant, but are a little bit less sensitive 
for behaviour. Moreover, the increase of low-temperature heating systems in energy 
efficient-buildings has the consequence that the occupant has less influence due to 
the relativaly slow reaction time of the system.

As written previously, both the occupant and the technical aspects of a house 
are expected to have an influence on the energy performance gap. For example, 
assumptions are made in every building energy simulation model. This is especially 
true for older houses, because their characteristics are often not documented. 
Important assumptions that are made include insulation rates of the building 
envelope and airtightness of the building. However, even for newer buildings it is 
often unclear if the buildings are built as documented, and mistakes could have been 
made during the construction process.

Further, tools used for simulation are always a simplification of reality, but some are 
more simplified than others. Moreover, depending on the purpose of the simulation, 
the simplification can have an influence on the energy performance gap.
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 1.3 Problem Statement

Building energy simulation results are widely used by practitioners and policymakers. 
Previous studies have shown significant differences between actual and theoretical 
(simulated) energy consumption. This difference makes these simulations less 
reliable. One of the main problems of these differences is that energy saving 
measures often do not result in the expected energy savings. Nevertheless, 
theoretical energy consumption calculations are widely used and their use is 
increasing [37].

Previous research found that there is not only a discrepancy between energy 
consumption on individual level but also on a building stock level. Actual energy 
consumption in energy efficient houses (energy label A-C) is often higher than 
theoretically expected. Conversely, energy consumption in energy inefficient houses 
(energy label E-G) is often lower than theoretically calculated. Although the energy 
label calculation method states that the purpose of this calculation is simply to make 
the energy efficiency state of buildings comparable, and not to predict residential 
energy consumption, the outcomes of the calculation are not always used as such.

In practice, the energy label and its associated theoretical energy consumption is 
used for the design of energy saving policies, assess the feasibility of energy saving 
targets, assign subsidies, determine the maximum rent, and to monitor progress 
of the energy efficiency state of buildings [38-40]. The energy saving targets that 
have to be met are, however, based on actual savings. Therefore, if the gap between 
theoretical and actual energy consumption is large, the targets will not be met.

Previous studies have shown that residential energy consumption is dependent on 
building characteristics and occupant behaviour [21-27]. Almost all studies about 
the energy performance gap assume (or prove) that it is significantly influenced 
by the occupants. However, the amount of this influence is unclear, with some 
studies suggesting 4.2% [26] and others 51% [27]. The relationship of the energy 
performance gap with building characteristics on the energy performance gap has 
been studied significantly less frequently.

Presently, it is unclear to what extent occupants and building characteristics are 
related to the energy performance gap. Knowing this information is important, 
because it informs the users of building energy simulation models, how they can use 
the simulation outcomes and to what extent they can rely on them. It will also show 
if and how theoretical energy consumption models can be improved to reduce the 
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energy performance gap. If more is known about the magnitude and cause of the 
gap, one can manage expectations and perhaps solutions can be found to reduce the 
energy performance gap to make building energy simulations a more reliable tool.

 1.4 Aim & Research questions

The main aim of this thesis is to determine the extent to which building characteristics 
and residents explain the gap between theory and practice concerning building energy 
consumption, and to investigate if it is possible to reduce this gap.

This aim is achieved by answering the main research question: 

Can occupant and building characteristics provide better insights into the 
difference between theory and practice in residential energy consumption, and is 
it possible to reduce this difference?

The main question is answered through four key questions. The first key question is:

1 Can analysing building characteristics and household groups provide better insight 
into the energy performance gap?

This key question is answered by analysing the relationships of building and 
occupant characteristics with the energy performance gap.

The main consequence of the energy performance gap is that thermal renovations 
often result in lower-than-expected energy savings. Therefore the second key 
question is:

2 Do building and occupant characteristics have a relationship with the difference 
between actual and theoretical energy savings after a thermal renovation?

To understand the relationship between building and occupant characteristics 
and the gap between predicted and actual energy savings, theoretical and actual 
residential energy consumption before and after thermal renovations are analysed.
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Because it is commonly accepted that occupants influence actual residential 
energy consumption (and therefore the energy performance gap), actual energy 
consumption should be studied more in depth using the following question:

3 To what extent are occupants and building characteristics responsible for the 
variances in actual residential energy consumption?

This is investigated by studying residential energy consumption of two different years 
for a group of houses with the same occupant over time and a group of houses with 
different occupants over time.

Finally, after answering the first three key research questions, more will be known 
about the influence of the occupant and technical characteristics on actual energy 
consumption, energy savings, and the energy performance gap. The last research 
question investigates if it is possible to reduce the energy performance gap on a 
building stock level without changing the calculation method by answering the 
following question:

4 Is it possible to reduce the energy performance gap on a national level by adapting 
the assumptions in the calculation method?

Together, the answers to these key questions form the answer to the main research 
question; hence, they will show how theoretical energy consumption results can 
be used in practice and by policymakers. Additionally, the results will provide new 
insights into if and how the calculation method can be changed to become a truer 
reflection of reality.

 1.5 Data

This thesis uses several datasets, all based on actual buildings containing annual actual 
residential energy consumption data, annual simulated energy consumption data, and 
technical building characteristics data. These building characteristics include the type 
of heating system, insulation rate, type of ventilation system, type of domestic hot water 
system, and floor area. This section presents all the databases we used and identify 
their sources. Additionally, we reflect on the representativeness of the datasets and the 
studied data. Table 1.2 shows which database is used for which part of the research.
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TABLE 1.2 Databases used in this thesis

Chapter 2 Chapter 3 Chapter 4 Chapter 5

Database SHAERE & Dutch 
statistics data

SHAERE & Dutch 
statistics data

SHAERE, Dutch 
statistics data, Danish 
Building and Dwelling 
Register & Statistics 
Denmark data

WoON

Year 2014 2010 – 2014 2010 – 2015 2012

Number of 
investigated cases

1.4 million dwellings Almost 90,000 
dwellings

887,685 dwellings 331 dwellings

Details Cross-sectional 
analysis entire 
database

Renovated houses with 
the same occupant 
between 2010 and 
2014

Only non-renovated 
houses with focus on 
houses with different 
occupants between 
2010 and 2015

Only apartment 
buildings that use gas 
as a heating source. 
Gas consumption data 
2010

 1.5.1 SHAERE database

The Sociale Huursector Audit en Evaluatie van Resultaten Energiebesparing 
(SHAERE) database—which in English means “social rental sector audit and 
evaluation of energy saving results”—is owned by AEDES (the umbrella organisation 
of Dutch social housing associations). Dutch social housing organisations own 
31% of the total housing stock in the Netherlands, and the SHAERE database 
contains 60% of the social housing stock. Along with building characteristics such 
as insulation, type of glazing, ventilation, heating, and domestic hot water systems, 
the SHAERE database also contains a pre-label, the corresponding theoretical 
energy consumption, and energy index. A pre-label is an energy label that has not 
been validated by the authorities, but contains the same information as ones that 
are validated. The advantage of the pre-labels is that they are made as soon as the 
energy performance of a house is upgraded. This database is updated every year, 
with the aim to monitor the energy efficiency state of the dwelling stock. The SHAERE 
databased is used to answer the first three key questions. The SHAERE database 
from the year 2014 was used for the first key question, SHAERE 2010-2014 was 
used for the second key question, and SHAERE 2010-2015 was used for the third 
key question.
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 1.5.2 Dutch Statistics data

The theoretical energy consumption per dwelling is included in the SHAERE 
database. However, the actual energy consumption is required to identify the 
performance gap. For this research, we had access to the actual annual energy 
consumption data of Dutch households provided by energy companies via the 
Statistics Netherlands (CBS). This database contains annual actual energy 
consumption on a household level. We also had access to occupant characteristics 
data on a household level from the same source. The occupant characteristics data 
includes income, type of income (from work, benefits, etc.), household composition, 
number of occupants, occupants above and below the age of 65, number of children, 
and age of children. Because this data was all available on a household level, we were 
able to link those databases and execute the analysis.

 1.5.3 Danish data

For the third key question, data from both the Netherlands and Denmark were 
used. The Danish data comes from two sources. Data on building and household 
characteristics were taken from Statistics Denmark’s administrative registers, which 
covers the full population. These were merged with data on household energy 
consumption for space heating and hot water from the Danish Building and Dwelling 
Register (BBR), which is part of the Danish Ministry of Taxation. Heat supply utilities 
in Denmark are required by law to submit household energy consumption data to 
BBR, who subsequently compile and prepare data for research and other purposes. 
The administrative data from Statistics Denmark is accessible in anonymised form 
through an online server.

 1.5.4 WoON energy database

The WoON energy database was used for the last key question of this study. WoON 
was used instead of the SHAERE database because it is not possible to conduct an 
optimisation with MATLAB in the protected environment of CBS. The WoON database 
has an advantage over the SHAERE database in that the actual energy consumption 
per house is already included in the database. The WoON energy database is based 
on a survey carried out by the Dutch government (every 5 to 6 years), to gather 
information on the energy performance of the Dutch dwelling stock. In this thesis, 
we used the results of the WoON energy survey of 2012, which was the most 
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recently available dataset. The database contains 4800 houses, which should be 
representative for the entire Dutch dwelling stock. In this study, the actual and 
theoretical energy consumption per household, the building characteristics, and the 
occupant characteristics were used for the analysis.

 1.6 Research approach

Different research methods are used to answer the key research questions, and in 
this section we explain them.

The first part of this research is based on descriptive statistics and explains 
how building characteristics and household groups can shed light on actual and 
simulated residential energy consumption. This is achieved by comparing actual and 
theoretical energy consumption of almost 1.4 million houses for different household 
groups (this is an combination of occupant characteristics2) per different energy 
efficiency group (energy label) of houses. This is followed up by comparing the 
distribution of building characteristics and occupant characteristics for the highest 
and lowest 10% of energy consuming groups of the building. 

In the second part, statistical analyses are used for almost 90,000 renovated houses 
to compare actual energy savings and the energy saving gap for different renovation 
measures or combinations of measures. Only houses with the same occupant for the 
two compared years are taken into account. Moreover, logistics regressions are used 
to indicate the building and occupant characteristics that influence the probability on 
lower-than-expected energy savings after a thermal renovation.

The third part of this research identifies the amount of influence of occupants3 
and technical characteristics of the building on variances in residential energy 

2 Occupant characteristics in this thesis includes the following: household composition, age, number of 
children, employment status and income. The terms occupant characteristics and household characteristics 
have the same meaning in this thesis. 

3  " influence of occupants" as used in chapter 4 of this thesis means a combination of changes in heating 
consumption of the same occupant over time and changes in heating consumption due to changing  
occupants. 
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consumption. This is investigated by comparing the energy consumption of a 
group of houses with the same occupant in those years and a group with changed 
occupants. The data are from two different years. The method is adapted from an 
approach introduced in 1978 by Sonderegger. Compared to Sondereggers study, 
this method uses significantly improved data from the Netherlands and Denmark. In 
total, 375,387 non-renovated Dutch houses and 512,393 Danish houses are studied.

Finally, the last key question is answered by introducing a new method based on 
automated building calibration techniques using optimization algorithms with the 
aim to reduce the Energy Performance Gap on a building stock level.

Introduction 
Chapter 1 

Variances in 
actual energy 
consumption  

Chapter 4 

ESG (Energy 
Saving Gap) 
Chapter 3 

EPG (Energy 
Performance Gap) 

Chapter 2 

Reduction Energy 
Performance Gap 

Chapter 5 

Conclusion 
Chapter 6 

Building characteristics versus Occupant characteristics 

FIG. 1.3 Thesis outline
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 1.7 Added value of the research

In this section, the scientific and societal relevance of the research is explained.

 1.7.1 Scientific contribution

As shown in section 3 of this chapter, many researchers have already investigated the 
energy performance gap. This thesis builds on this existing knowledge by studying 
the influence of both technical and occupant influence on the energy performance 
gap. While many researchers only focussed on one of these two influences, both 
the energy performance gap and the consequences of the energy performance gap 
(lower-than-expected energy savings) are investigated in this thesis. Further, the 
fact that the influence of building and occupant characteristics are not always the 
same for each situation is considered. The aim is not only to provide a better insight 
in the energy performance gap but also to develop a method that will reduce this 
gap. All of this research is executed by using large databases that contain actual and 
theoretical energy consumption data on a dwelling level of many individual dwellings. 
The data mainly origins from the Netherlands, however because the databases are 
large, it is expected that many findings of the research will also be applicable for other 
countries. Furthermore, this thesis can also be seen as a bundle of examples that shows 
methods for analysing and reducing the energy performance gap. This thesis adds new 
knowledge on more accurate building energy modelling

The first two parts of this thesis are empirical studies. In the first empirical study, the 
relationship between technical characteristics, household groups, and the energy 
performance gap are discussed. Furthermore, the highest and the lowest 10% of 
energy consuming houses are analysed per efficiency group. The results indicate which 
technical characteristics and occupant groups most frequently occur in these groups; 
this has never been accomplished previously, especially not on such large datasets.

In the second part, pre- and post-thermal renovation energy consumption are 
analysed with the reason that energy savings are often lower than expected (which 
is one of the main consequences of the energy performance gap). Because analyses 
of pre- and post-thermal renovation energy consumption are very rare, especially on 
such a large scale, this study contributes significantly to the scientific field by testing 
existing theory and providing new insights into the reasons for lower than expected 
energy savings after a thermal renovation.
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The third part of this study presents an examination of the influence of the occupant 
and technical characteristics on the variances in actual energy consumption. This is 
accomplished by applying and extending an “old” method (that compares variances 
in energy consumption among “movers” and “stayers”) to new, more diverse, and 
strongly improved data from the Netherlands and Denmark.

The last part of this study describes a new method for reducing the average energy 
performance gap. The method is based on automated building energy simulation 
calibration method and improves the assumptions taken in building energy 
simulations. The effectiveness of the method is proven by applying the method on 
both steady state and dynamic building energy simulation methods.

 1.7.2 Societal contribution

This study contributes to a better understanding of the energy performance gap, 
a better understanding of how and when to use theoretical energy consumption 
results, and a better insight into the influence of assumed values in building energy 
calculation methods. This is of importance for to the scientific field and for society. 
When policymakers are more aware of the difference between actual and theoretical 
energy consumption and the difference between actual and expected savings of 
thermal renovations, they can adapt their expectations concerting energy savings 
accordingly. Furthermore, knowing which parameters increase and decrease 
the probability of lower energy savings than expected will help policymakers. 
Understanding the influence of assumptions built into the theoretical energy 
calculation method is very important for policymakers, because it can help them to 
reduce the energy performance gap on a building stock level, which will mean that 
they will base new policy designs on more accurate calculation results.

Practitioners will greatly benefit from recognising to what extent calculation results 
can differ from reality. For example, based on the results they can provide a range 
of payback times instead of a concrete number. Knowing how much of the variance 
in energy consumption among houses can be explained by the occupant (and 
how much by the technical characteristics of a building), will help practitioners 
understand to what extent they can influence residential energy consumption, and 
to what extent the results can differ from reality. Furthermore, the awareness of the 
impact of assumptions on the energy calculation results and the energy performance 
gap is very important for practitioners, because it can stimulate them to provide 
more tailored advice.
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The method that this thesis presents to reduce the energy performance gap on an 
aggregated level will not only help scientist to make better assumptions in building 
energy simulation models, but it will also help policymakers to make better official 
guidelines for assumptions in building energy simulations, which will make those 
simulations a more reliable tool for policymakers.

 1.8 Structure of the Thesis

This research consists of four parts that all contribute to the main aim of this 
study: determining to what extent building characteristics and residents explain the 
difference between theory and practice concerning building energy consumption. 
Additionally, this thesis indicates whether (and how) assumptions made in 
theoretical energy consumption models can be improved to reduce the energy 
performance gap on a building stock level (Figure 1.3).

To achieve this main aim, the relationship between technical and resident 
characteristics and the energy performance gap is investigated. This is done by 
analysing a large database containing more than 1 million households. In the 
analysis, the relationship between building characteristics and household groups 
with actual and theoretical energy consumption is investigated. To obtain more 
specific insights, the highest and lowest 10% of energy consuming houses are 
subjected to a more detailed analysis. This is presented in Chapter 2.

The next chapter focusses on the biggest consequence of the energy performance 
gap: lower-than-expected energy savings after a thermal renovation. In this chapter 
we analyse the actual energy savings and the gap between actual and theoretical 
energy savings for different types and combinations of thermal renovation measures. 
In Chapter 3, the factors that might influence the probability of lower-than-expected 
energy savings are also investigated.

Because many people assume that the gap is completely caused by occupant 
differences, in Chapter 4 the variances in actual energy consumption are analysed 
to determine the extent that occupants and technical characteristics influence 
this variance.
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In Chapter 5, a method is introduced that automatically calibrates the assumptions 
for theoretical energy consumption by using actual energy consumption data with 
the aim of reducing the energy performance gap on a building stock level and to 
make building energy simulations a more reliable tool.

Together, these chapters will make it possible to answer the main research question: 
To what extent do technical characteristics and residents influence the energy 
performance gap in buildings, and what does this mean for the usability of building 
simulation results? Additionally, these chapters will make it possible to provide policy 
and research recommendations. These are presented in Chapter 6, which is the final 
chapter of this thesis.
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2 Performance 
Gaps in Energy 
Consumption: 
Household Groups 
and Building 
Characteristics
Published as: van den Brom, P., Meijer, A., & Visscher, H. (2018). Performance gaps in energy consumption: 
household groups and building characteristics. Building Research & Information, 46(1), 54-70

This dissertation deals with the Energy Performance Gap (EPG) and the influence 
of residential and technical characteristics on it. The EPG is the consequence 
of the discrepancy between actual and theoretical energy consumption. It 
is currently unclear to what extent technical characteristics and occupants 
contribute to this gap. This chapter presents the first exploratory research 
results of the dissertation, explaining the EPG and its relationship with building 
characteristics and household groups. This is done by studying a large database 
(1.4 million houses) containing cross-sectional building, occupant and energy 
consumption data on a household level. First, the average actual and theoretical 
energy consumptions (gas and electricity) of different household groups (varying 
by income level, type of income, and number and age of occupants) are compared 
for each energy label. After this, we analyse the groups in the top and bottom 
10% for energy use to determine which building and occupant characteristics 
contribute the most to higher or lower-than-expected energy consumption.
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ABSTRACT The difference between actual and calculated energy is called the ‘energy 
performance gap’. Possible explanations for this gap are: construction mistakes, 
improper adjusting of equipment, excessive simplification in simulation models 
and, occupant behaviour. Many researchers and governmental institutions think 
this gap is mainly caused by the occupant. However, only limited evidence exists. 
Therefore, an analysis is presented of actual and theoretical energy consumption, 
based on specific household types and building characteristics. Using a large dataset 
(1.4 million social housing households), the average actual and theoretical energy 
consumption (gas and electricity) of different household types and characteristics 
(income level, type of income, number of occupants and their age) were compared 
for each energy label. Additionally, the 10% highest and lowest energy consuming 
groups were analysed. It is shown that taking combinations of occupant 
characteristics into account instead of individual occupant characteristics provides 
new insights in the influence of the occupant on residential energy consumption. 
For example: In contradiction to previous studies, low-income households consume 
more gas per m2 (space heating and hot water) than households with a high income 
for all types of housing. Furthermore, the performance gap is not only caused by the 
occupant, but also by the assumed building characteristics.

KEYWORDS Household energy, Occupant behaviour; Energy performance; Energy consumption, 
big data, energy epidemiology, performance gap
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 2.1 Introduction

In 2002, the EU introduced the Energy Performance of Building Directive (EPBD). 
The EPBD requires buildings to have an Energy Performance Certificate (EPC), or 
energy label, when sold or rented. In the Netherlands, the energy label is calculated 
based on both the building characteristics and modelled heating behaviour of 
occupants. Through a simplified heat transfer calculation, a theoretical energy 
usage is determined that relates to an energy label. The theoretical energy usage 
for residential buildings contains building related energy usage (e.g. energy for 
heating, hot water, ventilation, lighting in communal areas). Energy use for electrical 
appliances and lighting in private areas is excluded. The aim of this energy label 
is to show potential buyers or renters the energy efficiency of their dwelling in an 
simple and comprehensible way [1]. Apart from this, the labelling system is used 
by policymakers to set energy saving targets and develop policies. For example, the 
Dutch social housing associations signed a covenant to renovate their building stock 
to reach an average energy label B by 2021 and thereby an energy reduction of 33% 
between 2008 and 2021 [2].

The discrepancies between actual (measured by energy distribution companies) 
and theoretical energy consumption (as calculated by the energy label) were found 
by several researchers [3-6]. This set of discrepancies is known as the ‘energy 
performance gap’. Majcen et al. [3] showed that occupants of ‘energy-inefficient’ 
buildings consume less gas (for space heating and hot water) than expected, while 
occupants of ‘energy-efficient’ buildings consume more than expected. Apart from 
gas, there is also a gap between theoretical and actual electricity consumption. 
However, this gap of electricity is expected, because theoretical energy consumption 
only incorporates building-related energy consumption and not electricity 
consumption for electrical appliances and lighting. The performance gap for gas 
consumption is more difficult to explain because it primarily contains energy 
consumption for heating, which is dependent on multiple factors.

Several researchers found a significant influence of the occupant on residential 
energy consumption [7-10]. Some researchers even claim that the energy 
performance gap is primarily caused by occupant behaviour [11, 12]. This suggests 
that occupants in G label dwellings behave more energy efficiently than occupants 
in more energy-efficient dwellings. Additionally, occupants in energy-efficient 
dwellings are assumed to have a higher comfort level than occupants in less energy-
efficient dwellings, which could be an explanation for the underestimation of high 
energy efficient buildings Guerra Santin [13] for example, found that the average 
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indoor temperature in energy-efficient dwellings is higher than in energy inefficient 
dwellings. This can partly be explained by the so called ‘rebound effect’. The rebound 
effect is defined by Herring and Sorrell [14] as the increase of energy consumption 
in services for which improvements in energy efficiency reduce the costs.4 The 
opposite of the rebound effect is also found to be true, also known as the ‘prebound 
effect’ [5].

It is generally known that occupants influence residential energy consumption. 
However, researchers have so far only been able to use occupant behaviour to 
explain some of the variance. For example, Guerra Santin [15] found evidence for 
3.2%–9.4% of the variance in energy consumption due to occupant behaviour 
and Majcen [16] for 9.1%. Despite limited evidence for the actual influence of 
occupant behaviour on residential energy consumption, several organizations and 
governments have implemented campaigns to change energy behaviours. A clear 
knowledge base of how inhabitants actually use energy is necessary to improve the 
effectiveness of energy-saving campaigns, to help policymakers set more realistic 
energy-saving targets, and to reduce the energy performance gap. However, it is 
rather time consuming and intrusive to gather actual occupant behaviour data. As 
there is relatively little explanation for the discrepancy in actual and theoretical 
energy use, better insight into the influence of the occupant on residential energy 
consumption is required. Results from in-use building performance research 
(actual energy consumption) instead of pre-occupancy consumption (theoretical 
consumption) are essential for the development of energy saving policy instruments 
[17, 18].

The lack of available occupant data is probably one of the reasons researchers found 
only limited evidence for the influence of occupant behaviour on the performance 
gap. Also, most studies that investigate actual energy consumption focus either 
on occupant behaviour or the building’s characteristics. The rebound effect, 
however, suggests an interaction between behaviour and building characteristics. 
Understanding occupant behaviour is essential to predict the energy performance of 
buildings [19]. Therefore, the present study investigates the research question:

‘Can analysing actual energy consumption by specific household types and building 
characteristics contribute to a better understanding of the role of the occupant in 
actual energy consumption and the energy performance gap?’

4 An example of the rebound effect is when a home is retofitted with insulation or a more efficient boiler. 
The expected efficiency gain is negated if people increase the hours of space heating and/or raise the internal 
(winter) temperature. This results in a higher energy use.
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This research uses large databases. The first database is the SHAERE database from 
the umbrella organisation of the Dutch social housing associations. This database 
contains building characteristics and theoretical energy consumption data from 1.4 
million social rented houses in the Netherlands. The other two databases contain 
occupant characteristics and annual energy consumption data from Statistics 
Netherland. By combining occupant characteristics and analysis per energy label, 
it is possible to use large databases to investigate the influence of the occupant on 
residential energy consumption [20] and identify clear patterns and trends.

This paper is structured as follows. The next section presents an overview of the 
literature on the influence of occupant behaviour on residential energy consumption 
along with an explanation of the Dutch energy label system. Next, an overview of 
the databases and a description of the methods are provided. Then the findings are 
described. The final two sections contain the discussion and conclusions.

 2.2 Existing studies

This section describes findings of previous research regarding the influence of 
occupant behaviour on residential energy consumption. Findings that are not from 
the Netherlands are noted as such in the text.

 2.2.1 Influence of actual behaviour on energy consumption

Residential energy includes energy for lighting and appliances, cooking, domestic 
hot water, heating. In the Netherlands, heating consumes the largest share of a 
building’s energy [21]. It is widely recognized that building characteristics influence 
the actual energy consumption in terms of heating. For example, buildings with 
a high insulation level consume less energy for heating than buildings with a low 
insulation level. However, occupant behaviour is also found to have an effect on 
actual energy consumption for heating. For example, the hours that heating is at its 
maximum temperature explains 10.3% of the variance in actual energy consumption 
for heating [22]. The number of hours the radiator is on in a certain room also 
explains a part of the variance of actual energy consumption for heating (living room 
8,8%, bedroom 8.1% and bathroom 5,9%) [22]).

TOC



 62 Energy in Dwellings

Furthermore, in China the setpoint temperature was found to significantly influence 
residential energy consumption [23]. Lowering the setpoint temperature by one 
degree can result in a significant reduction in energy use, similar to roof insulation 
[24]. The setpoint temperature at night and in the evening has more impact on total 
energy use than the temperature setting during the day [24].

Appliances are the second main energy consumer in an average Dutch household 
[21]. Research in the UK found that 19% of energy is consumed by stand-by and 
continuous appliances (e.g., refrigerators) [25]. In Denmark, 10% of household 
energy is used solely for stand-by appliances [26]. More frequent use of electrical 
appliances over previous years has resulted in an increase of electricity consumption. 
For example, more frequent use of dishwashers has caused a decrease of gas 
consumption for hand washing but increased electricity use [27].

Energy for domestic hot water is the third highest energy consumer in an average 
Dutch household [21]. The energy used for domestic hot water is, apart from the 
domestic hot water system, strongly related to the number of people per household 
[28]. The majority of domestic hot water is used for showering or bathing. The 
frequency of showers has been stable in recent years (on average 12 times a week 
per household) [28].

Energy use for cooking has decreased in recent years. People go out for dinner more 
often, and delivery and takeaway meals are more common [28].

 2.2.2 Influence of occupant characteristics on actual energy 
consumption

Several studies show a correlation between actual energy consumption and occupant 
characteristics. Occupant characteristic data is available on a larger scale than 
occupant behaviour data. Additionally, correlations between occupant characteristics 
and energy consumption are more usable for policymakers than actual behaviour 
data. Therefore, many researchers focus on occupant characteristics instead of 
actual behaviour to study the influence of occupant behaviour on residential energy 
consumption. The paragraph below describes the findings of previous research on 
the influence of occupant characteristics on gas and electricity consumption.

Incomes in England were found to be positively correlated with the actual energy 
consumption in a household [9, 29]. A 1% increase in income increases the total 
energy consumption by 0,63%, according to Vringer and Blok [30]. The correlation 
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for electricity (r=0.25; p<0.01) was found to be marginally stronger than for gas 
(r=0.23; p<0.01)[29]. A larger number of household members also results in higher 
energy consumption, but it decreases the energy consumption per person [4, 23, 24, 
29-35].

Age is found to be the most determining indirect effect on heating and cooling 
energy use in different countries [15, 23, 35, 36]. Occupants between 40 and 50 
years demand the highest comfort and also have the highest average net income 
[34, 37]. Households with young children ventilate less, whereas households with 
older children ventilate more [15]. Education level has only a very limited impact 
on residential energy consumption. Higher-educated people set their thermostat 
for fewer hours on the highest temperature setpoint than lower-educated people 
[15]. Household size and the presence of teenagers in the house is found to have 
a significant effect on energy consumption for appliances [38]. Finally tenants are 
found to have a higher rebound effect than home owners (tenants 31%–49% and 
home owners 12%–14%).

These results show that studying occupant characteristics is an effective way 
to investigate the influence of occupants on residential energy consumption. 
Additionally, studying occupant characteristics instead of actual behaviour data 
enables us to work with larger datasets.

 2.2.3 Other explanations for the energy performance gap

Although occupant behaviour is expected to be one of the main explanations for the 
energy performance gap, other possible explanations should not be neglected. The 
insulation level of the building is seldom measured; in most cases it is estimated 
based on available building documents. As little or no data is available for older 
buildings, the insulation level of these buildings is determined based on the 
construction year of the building. Recent research by Rasooli et al. [39] suggests 
that these assumptions could be an important explanation for a part of the energy 
performance gap.

Several studies show that the thermal mass of a building contributes significantly to 
its heating energy demand. This could be another explanation for the performance 
gap [40, 41]. However, the thermal mass is not taken into account in the theoretical 
energy calculation of the Dutch energy performance certificate. Therefore, this could 
influence the discrepancy between actual and theoretical energy consumption.
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Additionally, the theoretical energy consumption calculation method that is used 
for the determination of the energy label, only contains building related energy 
consumption. However, the actual energy consumption data also includes occupant 
related energy consumption (e.g., use of electrical appliances).

Finally, the theoretical energy consumption is calculated with a steady state model 
in this research. This model might be oversimplified. The assumed to be most 
oversimplified aspects are assumed to be: heat transfer between adjacent rooms 
with identical air temperature, definition of the combined radiative-convective heat 
transfer coefficient, different definitions of solar gains (by surfaces or by the air), and 
Including/excluding solar gains by exterior surfaces such as roofs [42]. Time is not 
taken into account in the steady state method, so the occupant behaviour is static 
in the Dutch energy label calculation. Although, relationships between behaviour 
patterns and occupant characteristics are found in previous research [43]. And using 
occupancy patterns models have proven to significantly improve the accuracy of the 
estimation in space heating energy use [44].

 2.3 Dutch Energy label

This section describes briefly how the theoretical energy consumption for Dutch 
dwellings is calculated and how the energy label is determined. Additionally, it 
describes the assumptions that are made about the occupant in this calculation. The 
entire calculation and determination method of the energy label can be found in ISSO 
ISSO [45] (energieprestatie advies woningen).

As mentioned above, the theoretical energy is based on a simplified heat loss 
calculation. The air tightness, insulation level and ventilation rate are taken into 
account to define the energy demand for heating. The energy consumption for 
domestic hot water is based on the assumed domestic hot water use in litres 
and the energy efficiency of the domestic hot water installation. The theoretical 
energy consumption only contains building-related energy usage, which is the 
sum of primary energy for heating, domestic hot water, pumps/fans and lighting in 
common areas, minus the energy gained from solar panels and cogeneration. This 
is also important to consider when actual and theoretical energy consumption are 
compared. The theoretical energy consumption is calculated for a standard situation 
that assumes the following:
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 – average indoor temperature of 18 °C;

 – average internal heat production due to appliances and people of 6 W/m2;

 – 2620 degree days (equal to 212 heating days with an average outdoor temperature 
of 5.64°C);

 – heating gains from sun, vertical south orientation 855 MJ/m2 ;

 – a ventilation rate based on floor area and type of ventilation system;

 – standard number of occupants based on the floor area (Table 2.1);

 – 0.61 showers per day per person;

 – 0.096 baths per day per person (if there is a bath present).

EQUATION 2.1

Qtotal= total theoretical primary energy consumption [MJ]
Qspace heating= total theoretical primary energy consumption for space heating 
[MJ]
Qwaterheating= total theoretical primary energy consumption for domestic hot 
water [MJ]
Qaux.energy= total theoretical primary energy consumption for pumps/ventilators 
[MJ]
Qlighting= total theoretical primary energy consumption for lighting [MJ]
Qpv= total theoretical primary energy gains from solar [MJ]
Qcogeneration= total theoretical primary energy gains from cogeneration [MJ]

TABLE 2.1 Assumed number of occupants in theoretical energy calculation (ISSO 82.3)

Floor area [m2] Number of assumed occupants

<50 1.4

50–75 2.2

75–100 2.8

100–150 3.0

>150 3.2

 .total space heating waterheating aux energy lighting pv cogenerationQ Q Q Q Q Q Q= + + + − −
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 2.4 Data

This section describes the data used for this research and its representativeness.

 2.4.1 SHAERE database

The SHAERE (Sociale Huursector Audit en Evaluatie van Resultaten 
Energiebesparing: in English: social rental sector audit and evaluation of energy 
saving results) database is owned by AEDES (the umbrella organisation of Dutch 
housing). Dutch social housing organisations own 31% of the total housing stock 
in the Netherlands. The SHAERE database contains 60% of social housing stock. 
Besides building characteristics (e.g. insulation, type of glazing, ventilation, heating, 
and domestic hot water systems) the SHAERE database also contains a pre-label 
and the corresponding theoretical energy consumption and energy index. A pre-
label is a label that has not been validated by the authorities but contains the same 
information as the validated one. The advantage of the pre-labels is that they are 
made as soon as the energy performance of a house is upgraded. The database is 
updated every year. For this research, the 2014SHAERE database was used.

 2.4.2 CBS (Dutch Statistics) data

The theoretical energy consumption per dwelling is included in the SHAERE 
database, but to identify the performance gap, the actual energy consumption is 
required. For this research, the authors had access to the actual annual energy 
consumption data of Dutch households provided by energy companies via the 
Statistics Netherlands Bureau (CBS). This database contains annual actual energy 
consumption on a household level. In addition, access was granted to occupant 
characteristics data on a household level from the same source. The occupant 
characteristics data includes income, type of income (from work, benefits, etc.), 
household composition, number of occupants, occupants above and below age 65, 
number of children, and age of children. This granularity of the data was available 
at the household level. This allowed the research team to link those databases and 
execute the analysis.

TOC



 67 Performance Gaps in Energy Consumption: Household Groups and Building Characteristics

This is one of the first studies that had access to such a large and extensive 
database. Addresses and other personally identifiable data were encrypted to ensure 
the occupants’ privacy. Furthermore, the data could only be accessed via a secured 
server from Statistics Netherlands. The data can only be exported on an aggregated 
level of at least ten households.

 2.4.3 Cleaning data

The raw dataset was filtered before the analysis. First duplicate cases and cases that 
were not checked in 2014 were removed from the dataset (reduction of 240,330 
cases). Next, unrealistic floor areas for social housing in the Netherlands(all 
dwellings smaller than 15 m2 and larger than 300 m2) were deleted (reduction 
of 20.734 cases). Also all cases with a gas powered heating system that had a 
gas consumption of zero were removed, as were the cases with an electricity 
consumption of zero. Finally, all cases with a primary energy use above 4000MJ 
per m2 were deleted. The final dataset contained 1,431,019 cases. A correction 
for climate was applied though the application of degree days. As the energy 
consumption data of district and block heating were found to be unreliable, all cases 
with this type of heating system were removed from the dataset.

 2.4.4 Household types

Based on occupant characteristic data, 18 household types were formed. These are 
based on income, household composition, type of income, and age. These household 
types represent almost 80% of the total number of cases in the SHAERE database 
(Table 2.2).
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TABLE 2.2 Number of household in the 10% highest and lowest energy consuming groups

Energy label Number of households

A 5018

B 18076

C 30703

D 22003

E 11413

F 6330

G 2442

Household types are not equally distributed among energy labels. Single households 
and retired couples appear to live more often in A and B label dwellings than in the 
less energy-efficient dwelling types. Single households that receive state benefits or 
have a low to average income live more often in dwellings with a low energy label. 
The same applies for couples with a low or average income and for receivers of state 
benefits. Households with a high income on average live more often in dwellings 
with a high energy label. Families with children and a high income live more often in 
dwellings with an energy label A. Families with a low or average income live less often 
in buildings with a high energy label (A and B) but also less often in buildings with a 
low energy label (F and G).

 2.4.5 Representativeness of the dataset

This section compares the SHAERE database with the national situation. First, the 
SHAERE database contains only rental dwellings data, which represents 55.8% of 
the housing stock [46].

Compared to the national housing stock in the Netherlands, the SHAERE database 
contains fewer dwellings with an energy label A and B [47]. Compared to the 
national housing stock, the SHAERE database contains more multifamily dwellings. 
Fewer buildings were constructed before 1965 and between 1992 and 2005 in the 
SHAERE database than in the total national stock. More buildings were constructed 
between 1965 and 1991 in the SHAERE database compared to the national stock.

The average number of household members in SHAERE (1.85) is lower than the overall 
national average in the Netherlands (2.2). A comparison between the assumed number 
of occupants in the energy performance calculation and that of the SHAERE database 
shows that the assumed number is always higher than the actual number.
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The average income of the occupants in the SHAERE database is lower than the 
average income of the total Dutch housing stock. The first to the fifth income 
percentiles are overrepresented and the higher income percentiles, sixth to tenth, are 
underrepresented in the SHAERE database.

Occupants over 65 occur more often in the SHAERE database than in the national 
database (28.9% SHAERE database, 15% Dutch population). Particularly in 
dwellings with a better energy label, the number of people aged 65 and older is 
higher in the SHAERE database.

 2.5 Method

Gas and electricity consumption per m2 are studied in this article. This metric was 
chosen to reduce the impact of variations in floor area. Two methods are used. First, 
the theoretical and actual average energy consumption for each household type 
per energy label are compared. The comparison is made on the energy label for two 
reasons. First, previous research found a relationship between occupant behaviour 
and the energy efficiency of the dwelling [5, 12]. Second, the data revealed that 
household types are unevenly distributed among the energy labels. The statistical 
significance of this comparison is checked with a linear regression.

The second method is a more in-depth analysis of the highest 10% energy 
consuming group and the lowest 10% energy consuming group of every energy label 
(Table 2.3). This approach was used because it is expected that the most relevant 
factors will be more clearly visible in the extreme groups than in the average group, 
where the factors will be less visible because there is more noise. The assumption is 
that the observation of the extreme groups will distinguish the relevant parameters 
more quickly. Both groups are analysed for household type and other occupant 
characteristics as well as, the building characteristics. The significance of the results 
is checked with a chi-square analysis. Analyses are conducting with the using IBM 
SPSS statistics 22 software.
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TABLE 2.3 Household types

Household 
composition

Age Children Age children Work Income

1 Single >65+ No NA Retired NA

2 Single < 65 No NA State benefit NA

3 Single < 65 No NA Employed Low

4 Single < 65 No NA Employed Middle

5 Single < 65 No NA Employed High

6 Couple >65 No NA Retired NA

7 Couple < 65 No NA State benefit NA

8 Couple < 65 No NA Employed Low

9 Couple < 65 No NA Employed Middle

10 Couple < 65 No NA Employed High

11 Family < 65 Yes < 12 State benefit NA

12 Family <65 Yes < 12 Employed Low

13 Family < 65 Yes < 12 Employed Middle

14 Family < 65 Yes < 12 Employed high

15 Family < 65 Yes At least one 
> 12

State benefit NA

16 Family < 65 Yes At least one 
> 12

Employed Low

17 Family < 65 Yes At least one 
> 12

Employed Middle

18 Family < 65 Yes At least one 
> 12

Employed High

 2.6 Results

The results are divided into two parts: gas consumption and electricity consumption. 
For both parts, first the difference between actual and theoretical consumption is 
explained and then the highest and lowest energy consuming groups are compared. 
When interpreting the results, it should be noted that the majority of the residential 
buildings in the Netherlands (as in this database) use gas for space heating and 
domestic hot water.
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 2.6.1 Gas consumption

Comparing actual and theoretical gas consumption per energy label reveals that 
supposedly energy efficient buildings (energy label A-B) consume more gas than 
expected. Buildings that are supposed to be inefficient (energy label C-G) consume 
less gas than expected (Figure 2.1). These findings confirm the findings of Majcen et 
al. [3].
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FIG. 2.1 Comparison of actual versus theoretical gas consumption per m2 (error bars show 1sd).

Household types are then added to the comparison between actual and theoretical 
gas consumption. This provides a better insight on their influence. Figures 2.2 and 
2,3 show the results of this comparison. To keep the results section concise, only 
results for energy labels B and E are shown. The comparison results suggest that 
actual energy consumption is more influenced by the household type than theoretical 
energy consumption. This is as expected because type of household is not taken into 
account in the theoretical energy calculation method.
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FIG. 2.2 Comparison of mean actual versus theoretical gas consumption per household group – energy label B.
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FIG. 2.3 Comparison of mean actual versus theoretical gas consumption per household group – energy label E.
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TABLE 2.4 Comparison regression analysis of gas consumption energy (reference dummy variable is Single high income)

Energy label B
R2=0,011

Energy label B + area 
R2=0,082

Energy label E
R2=0,010

Energy label E + area 
R2=0,089

B std. B sig. B std. B sig. B std. B sig. B std. B sig.

constant 11.73 <0.01 18.29 <0.01 16.26 <0.01 24.58 <0.01

Single. 65+. 
Retired

-0.63 -17.67 <0.01 -1.39 -0.10 <0.01 -0.04 0.00 0.51 -0.24 -0.01 <0.01

Single. State 
benefits

-0.01 -0.31 0.75 -1.24 -0.07 <0.01 -0.59 -0.03 <0.01 -1.78 -0.08 <0.01

Single. Low 
income

-0.16 -0.01 <0.01 -1.54 -0.06 <0.01 -0.63 -0.02 <0.01 -1.78 -0.05 <0.01

Single. middle 
income

-1.36 -0.07 <0.01 -2.43 -0.12 <0.01 -1.82 -0.08 <0.01 -2.76 -0.11 <0.01

Couple. 65+. 
Retired

-0.95 -0.06 <0.01 -1.02 -0.06 <0.01 -0.73 -0.03 <0.01 -0.07 0.00 0.25

Couple. State 
benefits

0.04 0.00 0.69 -0.07 0.00 0.44 0.07 0.00 0.59 0.10 0.00 0.42

Couple. Low 
income

1.01 0.01 <0.01 0.10 0.00 0.60 -0.32 0.00 0.23 -1.17 -0.01 <0.01

Couple. Middle 
income

-0.46 -7.09 <0.01 -0.69 -0.02 <0.01 -0.61 -0.02 <0.01 -0.68 -0.02 <0.01

Couple. high 
income

-1.21 -14.23 <0.01 -1.07 -0.03 <0.01 -1.42 -0.03 <0.01 -1.18 -0.03 <0.01

Family. Children < 
12. State benefits

1.37 0.04 <0.01 1.21 0.03 <0.01 1.22 0.03 <0.01 0.88 0.02 <0.01

Family. Children < 
12. low income

1.45 0.01 <0.01 1.26 0.01 <0.01 1.63 0.01 <0.01 1.11 0.01 <0.01

Family. Children < 
12. middle income

0.08 0..00 0.34 0.43 0.01 <0.01 0.05 0.00 0.63 0.24 0.01 0.03

Family. Children < 
12. high income

-0.85 -0.01 <0.01 -0.07 0.00 0.64 -0.49 -0.01 0.02 0.04 0.00 0.83

Family. One or 
more children > 
12. State benefits

-0.98 0.03 <0.01 1.45 0.05 <0.01 1.08 0.03 <0.01 1.49 0.05 <0.01

Family. One or 
more children > 
12. low income

1.52 0.01 <0.01 1.91 0.01 <0.01 1.19 0.01 0.06 1..83 0..01 <0.01

Family. One or 
more children > 
12. middle income

0.13 0.00 0.30 0.86 0.02 <0.01 0.71 0.01 <0.01 1.24 0..02 <0.01

Family. One or 
more children > 
12. high income

-0.54 -0.01 <0.01 0.49 0.01 <0.01 -0.19 0.00 0.49 0.95 0..01 <0.01

floor area -0.08 -0..28 <0.01 -0.10 -0..29 <0.01
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Single households have the lowest and family households the highest gas 
consumption for every energy label. This confirms previous research that a 
higher number of occupants results in higher gas consumption. Single and family 
households with a high income consume less gas in almost all cases compared to 
single and family households that have a low income for every energy label. These 
findings are confirmed by the regression analysis (Table 2.4) for the majority of the 
household types. This contradicts the findings of Vringer and Blok [30]. A possible 
explanation is the use of gas consumption per m2 instead of total gas consumption.

It is expected that people with a high income live in houses with a larger area, 
which they do not heat constantly. However, if the same regression analysis is 
performed with the floor area of the dwelling, then a negative relationship exists 
between income and gas consumption, although the impact is smaller (Table 2.4). 
This suggests that the size of the floor area is only part of the explanation for why 
households with a high income are often in the low gas consumption group than 
households with a low income. Another possible explanation is that households with 
a high income may spend less time at home than households with a low income and, 
therefore, consume less gas.

As expected, only a limited relationship was found between household type 
and theoretical energy consumption. The relationship can be traced back to 
household characteristics.

The largest difference between average actual and theoretical gas consumption 
in the total sample is found for single households that receive state benefits. The 
smallest difference is found for families with a high income from work. Analyses 
that take the energy labels into account show the smallest performance gap for 
family households in dwellings with a low energy label (D-G). Single households 
show the smallest gap for dwellings with an energy label between A and C. This 
means that there is no direct relationship between the performance gap and 
occupant characteristics or there are other factors that have a higher influence 
on the performance gap. Another explanation is that the average household type 
behaviour is dependent on the energy efficiency of the dwelling; e.g. household types 
behave more energy efficiently in energy inefficient dwellings than in energy efficient 
dwellings (the prebound effect).
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 2.6.2 Highest and lowest gas consuming groups compared to 
the average

To get a better insight into the actual energy consumption, the households with the 
10% highest and 10% lowest actual gas consumption per energy label are analysed. 
The chi-square was used to test the statistical difference in the distribution of the 
three groups (10% highest energy consumers, 10% lowest energy consumers and 
80% average energy consumers).
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FIG. 2.4 Comparison of highest, average and lowest 
mean theoretical gas consumption per energy label.

FIG. 2.5 Comparison of highest, average and lowest 
mean actual gas consumption per energy label.

Figures 2.4 and 2.5 show the average actual and theoretical gas consumption per 
energy label, the mean lowest 10% and the mean highest 10% gas consuming 
group. The difference between the highest, lowest and total theoretical gas 
consuming groups provides evidence that building characteristics influence the 
actual energy consumption. However, these differences are smaller compared to the 
actual energy gas consuming groups. This suggests that other factors also influence 
the actual energy consumption.

A comparison between the average actual and theoretical gas consumption for the 
lowest 10% gas consuming group shows an almost flat gas use for the actual gas 
consumption and (as expected) an increasing theoretical energy use as the label 
increases. The comparison of the actual and average theoretical gas consumption for 
the highest 10% gas consuming group shows that even the average highest actual 
gas consuming group consumes less gas than the predicted actual gas consumption.
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To understand why residential buildings belong in the highest or lowest actual 
energy consuming group, a more detailed comparison was made. This involved the 
comparison of the highest and lowest energy consuming groups for both the building 
and occupant characteristics.

A comparison of the distribution of household types for the total, highest and lowest 
gas consuming groups per energy label shows that the distribution of household 
types is different between groups (Energy label B χ2(34,N=185390)=3747, 
p<0.001 and energy label E χ2(34,N=115659)=2287, p<0.001) Single households 
occur more frequently in the lower gas consuming group than in the other groups, 
independent of label type. With the exception of the single retired household, this 
group occurs more often in the lower gas consumption group for labels A, B and C, 
and more often in the higher gas consuming group for labels F and G. This implies 
that the building characteristics have a larger influence on elderly people than on 
other household types. An explanation for this phenomenon could be that elderly 
people are more often at home and, therefore, heat their house longer. However, 
this explanation cannot be confirmed by this research because actual occupant 
behaviour is not available. The comparison also shows that family households with 
children aged 12 years and above occur more often in the higher gas consuming 
groups for every label type.

Specific occupant characteristics were also compared. In agreement with previous 
studies, the number of household members shows that households with one member 
occur more often in the lower gas consumption group, and households with three 
or more members occur more often in the higher gas consumption group. The 
difference in distribution is significant (energy label B χ2(8,N=185390)=1832, 
p<0.001 and energy label E χ2(8,N=115659)=1037, p<0.001).

Households without children occur more frequently in the low gas consuming group 
and an increased number of children cause the household to occur more often in the 
higher gas consuming group (Figure 2.6). The distribution difference between groups 
is significant (energy label B χ2(8,N=185390)=921, p<0.001 and energy label E 
χ2(12,N=115659)=491, p<0.001).
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FIG. 2.6 Comparison of the distribution of the number of children in a household for the highest, average and 
lowest gas-consuming group.

The chi-square test showed a significant difference of the distribution of household 
incomes between the high, low and average energy consuming groups (energy label 
B χ2(18,N=185390)=1332, p<0.001 and energy label E χ2(18,N=115659)=838, 
p<0.001) Lower-income households occur more often in the extreme groups (high 
and low gas consumption) and higher-income households occur more often in the 
average group. In the previous comparison per occupant group, however, we found 
that higher incomes are related to lower gas consumption. A possible explanation is 
the household type was not taken into account in this comparison. Therefore, other 
household characteristics (e.g. the number of household members) can therefore 
influence the results.

If there is at least one household member who is employed, the chance that this 
household belongs to the low energy consuming group is higher than when no 
member is employed (energy label B χ2(10,N=185390)=430, p<0.001 and energy 
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label E χ2(10,N=115659)=256, p<0.001). A possible explanation for this could be 
that the house is occupied less hours per day if someone works. Also other studies 
found that occupation time influences the residential energy consumption [24, 48].

Apart from the occupant characteristics, Figure 2.4 suggests that building 
characteristics also influence whether a building belongs to the highest or lowest 
gas consuming group. Therefore, the distribution of certain building characteristics 
in the highest and lowest energy consuming group are analysed per energy 
label group. The influence of heating systems could only be studied with some 
reservations because the condensing boiler is present in more than 90% of A, B, C 
and D dwellings. F and G dwellings have a higher mix of heating systems. Analysing 
the heating systems shows that the gas fire (an appliance that heats and individual 
room) occurs more frequently in the low energy consuming group, despite a low 
energy-efficiency rating(energy label B χ2(12,N=185390)=213, p<0.001 and energy 
label E χ2(14,N=115659)=712, p<0,001).A possible explanation is that gas fire are 
not able to heat the same floor area as buildings with a central heating system, a 
suggestion earlier made by Majcen et al. [49].

The distribution of housing type among the highest, lowest and average 
gas consuming groups is also significantly different (energy label B 
χ2(16,N=185390)=4702, p<0.001 and energy label E χ2(16,N=115659)=2650, 
p<0.001). Single family houses occur more often in the high consuming groups, 
while apartments occur more often in the low gas consuming groups. This can 
partly be explained by single family houses having a larger building envelope 
than apartments.

As expected, buildings that are well insulated (Rc value>3.86) occur more often in the 
low-consuming group and buildings with poor or no insulation (Rc value<2.86) occur 
more often in the high-consuming group (energy label B χ2(10,N=185390)=2761, 
energy label E χ2(8,N=115659)=164). The results for energy label G were 
not conclusive. The average U-value of the window is lower for the low energy 
consuming groups (energy label B χ2(10,N=185390)=630 and energy label B 
χ2(10,N=115659)=197)

Mechanical exhaust ventilation and natural ventilation occur more often in the high 
energy consumption group from label A (Figure 2.7), while a balanced ventilation 
system occurs more often in the low energy consumption group (energy label 
A χ2(6,N=185390)=2132, p<0.001, energy label B χ2(9,N=192354)=6779, 
p<0.001 and energy label C χ2(6,N=115659)=356, p<0.001).Labels B and C have 
a negligible number of balanced ventilation systems; therefore, mechanical exhaust 
ventilation occurs more often in the low energy consuming group and natural 

TOC



 79 Performance Gaps in Energy Consumption: Household Groups and Building Characteristics

ventilation in the high energy consuming group. No conclusive results were found for 
the buildings with an energy label lower than C because they have a low variety in 
ventilation systems.
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FIG. 2.7 Comparison of the distribution of ventilation systems for the highest, average and lowest gas-
consuming group.

Within the A label group, older buildings occur more often in the high gas consuming 
group than newer buildings (Figure 2.8). It is highly unlikely that buildings built 
before 1991 had an energy label A from origin, because building regulations did 
not require it. It is expected, therefore, that the buildings with an older construction 
year in label A dwellings are renovated. Our findings suggest that it is difficult for 
renovated buildings to reach the same energy-performance level as newer buildings. 
Fuel poverty could be another explanation. However, it is less probable, because we 
found the amount of high income households in this group is five times higher than 
the amount of low income households.
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FIG. 2.8 Comparison distribution of construction year for the highest, average and lowest gas-
consuming group.

These findings support the general idea that the input for theoretical energy 
calculations for buildings with a high energy label is more reliable than the input for 
buildings with a low energy label. More assumptions are likely made about the input 
for older buildings than for more recent buildings, due to the availability of data.
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 2.6.3 Electricity

Comparisons of the average actual and theoretical electricity consumption per 
household type divided per energy label show a difference among household types 
(Figures 2.9 and 2.10). Single households consume the least electricity per square 
meter of floor area. Families, especially those with children above 12 years of 
age, consume the most energy. Families that receive state benefits have a lower 
electricity consumption than people who have a high income from work. For couples, 
the electricity consumption for people with state benefits is a little higher than for 
employed people. Couples with a low income consume relatively the least electricity.
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FIG. 2.9 Comparison of mean actual versus theoretical electricity consumption per household group – 
energy label B.
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FIG. 2.10 Comparison of mean actual versus theoretical electricity consumption per household group – 
energy label E.

 2.6.4 Highest and lowest electricity consuming group compared to 
the average

The 10% highest and 10% lowest electricity consumer groups were analysed 
for electricity consumption. Little difference was found for the influence of 
the household type per energy label. As a consequence, the energy labels are 
not taken into account in this analysis. The distribution of household types 
between the high, low and average energy consuming groups differ significantly 
(χ2(34,N=55441)=1100756, p<0.001). Single occupant households occur more 
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often in the lower-income groups than families. Single retired households occur 
most frequently in the lowest electricity consuming group. In the higher electricity 
consuming groups, families and couples occur most frequently, especially families 
with children older than 12.

Occupants with a high income occur more frequently in the higher electricity 
consuming groups. Occupants with a low income occur more frequently in the low 
electricity consuming groups (χ2(18,N=1100756)=15126, p<0.001).

Also a significant difference was found for the distribution of number of people per 
household (χ2(8,N=1100756)=42472, p<0.001). Single households occur more 
often in the low energy consuming group and households with two or more members 
occur more often in the high energy consuming groups.

 2.7 Discussion

One of the strengths of this study is the extensive dataset, with 1.4 million 
dwellings. In contrast to most studies of occupants’ influence on residential energy 
consumption, the present study takes both occupant characteristics and building 
characteristics into account. This sample only contains buildings owned by social 
housing organizations in the Netherlands, therefore all dwellings are rental dwellings. 
Studies in Germany and the Netherlands show that tenants behave differently 
from housing owners; for example, the rebound effect for tenants is found to be 
significantly larger than for home owners [12, 50].

The main target group of Dutch housing associations are people with a low income 
and, therefore, the average income of the sample size is lower than that of the 
entire Dutch population. Additionally, the average number of household members is 
relatively low in the SHAERE database compared to the national average. This may 
have influenced our findings.

In the data filtering process, several possible mistakes were found in both the 
SHAERE data and the Dutch Statistics datasets. Although the current authors tried 
to reduce the amount of incorrect data as much as possible, there could still be 
cases with wrong data. Remaining sources of errors could be due to mistakes in the 
technical process, such as meter uncertainties, or translation mistakes from one 
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database to the other, and human mistakes during the registering process of the 
houses in the SHAERE database, which is performed manually.

Housing organisations ought to update their databases each year, but it is not known 
how accurately or in how much detail they update the state of their building stock. 
Also, the accuracy of the actual energy consumption data from the Dutch statistics 
is not known. Additionally, energy companies are only required to report energy 
consumption every three years. This means that the data that was provided is not 
necessarily the actual data from 2014, but more likely to be data from 2012 or 
2013. Although this is a serious limitation of the dataset, this is the best available 
data on such a large scale.

The theoretical energy calculation method is only a simplified version of reality. 
Therefore, it is not realistic to expect it to bridge the energy performance gap at 
the level of individual households. However, it should be able to reduce the gap 
for the average energy consumption. For this reason, this research focused mainly 
on average energy consumption. Although general conclusions can be drawn for 
specific socio-economic household types, it should be noted that each household is 
unique, and therefore, the occupants’ behaviour can be different from the average.

The occupant characteristics data used in this research do not account for changes 
within household demographics during the year, e.g. domestic separations, the birth 
of children and becoming unemployed.

Despite these limitations, this research provides new insights into the influence 
of occupant characteristics on actual energy consumption and provides several 
indications for further research.

 2.8 Conclusions

The findings of this research show that analysing specific household types and 
building characteristics contributes to a better understanding of the influence of 
the occupant on actual energy consumption and the energy performance gap. 
The analysis of the highest and lowest 10% of consumers can help policymakers 
to choose the right target groups for their energy saving policies and campaigns. 
Energy saving advice can also be tailored to specific household types.
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The results imply that the building characteristics have a higher impact on elderly 
people than on younger people. This could be an incentive for policymakers to 
prioritize building renovations for elderly people.

Single households with a high income are found to have the lowest average energy 
consumers. A possible explanation could be that they spend less time at home 
compared to other household types. Therefore, energy saving campaigns focussed 
on residential behaviour might be not the most effective. However, families with a 
low income or families that receive state benefits could benefit from energy saving 
campaigns focussing on the reduction of gas consumption. For the reduction of 
electricity consumption, this research suggests that focussing on families with high 
incomes would be the most effective.

The analysis reveals that a disparity between buildings in the same energy group. 
Buildings constructed more recently consume less energy than older buildings 
within the same energy label grouping. The energy performance of a new building 
with energy label A is not the same as a renovated building with an energy label A. 
This suggests that although renovated buildings reach similar energy performances 
on paper, these are not achieved in practice. A consequence is that expectations 
(and financial and other formulations) will need to be different in order to reflect 
this reality.

The results of this research could also be beneficial for energy consultants and 
authorities responsible for providing Energy Performance Certificates. Additionally, 
the findings can help consultants to explain to their clients that energy consumption 
is not only dependent on physical factors, but also on the occupants’ behaviour.

Although a reduction of the performance gap was not a goal, the findings can be 
used to better interpret the results of energy simulation. People that make building 
simulations can, for example, inform their clients about the differences between 
actual and theoretical energy consumption and the possible explanations. This can 
help clients understand why actual energy consumption is sometimes higher than 
expected and thus prevent disappointment.

Nevertheless, more research is required. In this research, relationships between 
certain occupant characteristics and actual energy consumption are found, but the 
causes of these relationships are not investigated. To explain these relationships, a 
similar study should be executed on more specific actual behaviour data. A smaller 
database should be sufficient, for this follow up research.
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3 Actual energy 
saving effects of 
thermal  renovations 
in dwellings
Longitudinal data analysis 
including building and occupant 
characteristics

Published as: van den Brom, P., Meijer, A., & Visscher, H. (2019). Actual energy saving effects of thermal 
renovations in dwellings—longitudinal data analysis including building and occupant characteristics. Energy 
and Buildings, 182, 251-263.

In the previous chapter, we showed that using combinations of occupant 
characteristics instead of individual occupant characteristics can provide new 
insights into the influence of the occupant on residential energy consumption. 
Furthermore, we demonstrated that studying the highest and lowest energy-
consuming groups can contribute to a better understanding of residential energy 
use. However, one of the main consequences of the energy performance gap was 
not studied: namely, that thermal renovations often result in lower-than-expected 
energy savings. Therefore, this chapter explains which parameters influence 
energy savings after a thermal renovation. We do this by studying almost 90,000 
renovated houses from which we have actual and theoretical energy consumption 
before and after renovation. In the analyses, we take into account that the influence 
of parameters probably differs per thermal renovation measure. Furthermore, we 
determine to what extent the rebound and prebound effects can explain lower-than-
expected energy savings, and we determine the probability of this occurrence.
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ABSTRACT Energy renovations often result in lower energy savings than expected. Therefore, 
in this study we investigate nearly 90,000 renovated dwellings in the Netherlands 
with pre and post renovation data of actual and calculated energy consumption. 
One of the main additions of this paper, compared to previous studies on thermal 
renovation, is that it only takes dwellings into account with the same occupants 
before and after renovation, using a large longitudinal dataset. Overall this paper 
shows new insights towards the influence of the energy efficiency state of a building 
prior to energy renovation, the type of building, the number of occupants, the income 
level of the occupants and the occupancy time on the actual energy savings, the 
energy saving gap and on the probability of lower energy savings than expected. We 
also investigate if the influence is different per type of thermal renovation measure. 
Some of the findings are: It is impossible to conclude which single thermal renovation 
measure is the most effective because this is dependent on the energy efficiency 
of the building prior to the energy renovation, type of building, income level and 
occupancy; Occupants with a high income save more energy than occupants with 
low income; dwellings with employed occupants benefit more from improved building 
installations than dwellings occupied by unemployed occupants; The prebound 
and rebound effects are only part of the explanations for lower than expected 
energy savings; Deep renovations result more often in lower than expected energy 
savings than single renovation measures but nevertheless they result in the highest 
average energy saving compared to other thermal renovation measures. The results 
could be used for more realistic expectations of the energy reduction achieved by 
thermal renovations, which is important for (amongst others) policymakers, clients 
and contractors who make use of energy performance contracting, home owners, 
landlords and (social) housing associations and as a starting point to improve the 
energy calculation method.

KEYWORDS thermal renovations, dwellings, longitudinal data, energy saving gap, occupant and 
building characteristics
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 3.1 Introduction

Several studies demonstrate evidence of the energy performance gap [1-3]. This 
gap indicates that, on average, energy-efficient dwellings consume more energy 
than expected, and energy-inefficient dwellings consume less energy than expected. 
The consequence of this gap is that another gap arises, the gap between actual and 
predicted energy savings after energy renovations [4]. In this paper, this new gap is 
referred to as the energy saving gap (ESG). The ESG is also demonstrated in other 
studies [5-9]. All indicate that on average, the majority of energy renovations result 
in lower energy savings than expected.

Many researchers, policymakers and practitioners assume the occupant to be 
primarily responsible for overestimated energy saving effects [10, 11]. The 
rebound and prebound effects should explain the discrepancy between expected 
and achieved savings [4, 12]. The rebound effect can be explained as follows: 
“Since energy-efficiency improvements reduce the marginal cost of energy services, 
the consumption of those services may be expected to increase. This increased 
consumption of energy services may be expected to offset some or all of the 
predicted reduction in energy consumption” [13]. In practice this means that instead 
of reducing energy for space heating by improving the thermal characteristics 
of a house, a renovation might instead lead to increased comfort demand [14, 
15]. This would imply that occupants behave less energy efficient in efficient 
dwellings (rebound effect) and vice versa (the prebound effect) [4]. However, other 
factors could also explain (part of) the energy saving gap. For example: incorrect 
assumptions of building characteristics, especially of older buildings [16-18]. 
The building characteristics of older buildings are not always well documented; 
therefore, the insulation levels of those buildings are often estimated and might not 
reflect reality (measuring is time consuming and relatively difficult) [17, 19]. Also 
mistakes in the construction process could cause (part of) the gap. Another reason 
for the gap could be the calculation method. A building energy simulation is always 
a simplification of reality; if the method is oversimplified, then this could result in 
under- and/or overestimations of building energy consumption.

The energy saving gap has become a concern by several parties, some of the 
reasons why a better insight in lower than expected savings are desired are: Firstly, 
policymakers often use expected energy savings as a basis to design new energy 
saving policies, the ESG makes that the policies do not match the intended goals 
[20]. An evaluation of the EED [21] mentions that energy renovation plans or 
guidelines are still lacking in identifying the most effective measures for each climate, 
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country (according to its national energy regulations), type of dwelling, size, age, 
operation, and maintenance, dwelling envelope, and more. Secondly, clients and 
contractors who make use of energy performance contracting would benefit from 
accurate energy saving predictions: “energy performance contracting is a particular 
form of service contract in which the contractor must ensure, through a binding 
commitment, that a specified amount of energy will be saved through the project” 
[22, 23]. Third, home owners, landlords and (social) housing associations might be 
more willing to renovate if they have a high certainty on the payback time of their 
thermal renovation measures [24].

Therefore we aim in this study to obtain a better insight into the actual energy 
savings after thermal renovations, the energy saving gap and the probability of 
lower energy saving effects than expected. Contrary to most previous studies on 
thermal renovation, we use longitudinal data instead of cross-sectional data [8, 25-
28], including pre- and post-renovation energy consumption data (measured and 
calculated), as well as building and occupant characteristics data. This longitudinal 
character prevents possible bias, as changes of occupants are followed in time. The 
possible bias is also reduced by taking the occupant into account, which is seldom 
done before in studies towards actual energy savings after thermal renovations[5]. 
Furthermore, post-renovation studies are often based on relatively small samples 
because pre- and post-thermal renovation data are scarce, but in this paper we have 
the availability of a relatively large dataset, including nearly 100,000 renovated 
dwellings. The research is divided into four parts. In the first part we investigate if 
building and occupant characteristics (the energy efficiency of the building prior 
to a thermal renovation, type of building, number of occupants, income level of 
occupant and the occupancy time) have an effect on the energy savings of different 
types of thermal renovation measures. We also investigate if the effect is different 
per renovation measure. This analysis is followed by a similar analysis of the energy 
saving gap. Then we determine how frequent the prebound and rebound effects 
occur in the renovated buildings. Finally, we conclude with a detailed logistic 
regression in which we investigate which factors influence the probability on lower 
than expected energy savings after a thermal renovation.

The research is structured as follows: In section 2, we provide the state of the 
art of the research, which includes the calculation method for residential energy 
consumption. Then, we describe the database and the research method. After this 
we give a description of how we define thermal renovations in this paper. The results 
section presents the results of the four different analyses described above. In the 
discussion section, we explain the advantages and disadvantages of the method 
and data that we used and how this influences the results, and finally we draw 
general conclusions.
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 3.2 State of the art - Actual and theoretical 
energy consumption and the energy 
saving gap

In this section we explain the calculation method of theoretical energy consumption 
used in this paper, the expected/actual energy savings and the energy saving gap.

Since heating is the main energy consumer of dwellings in the Netherlands and 
because energy consumption for heating has the highest unexplained energy 
performance gap [26], only the energy use for heating and domestic hot water 
(dhw) is studied. Because approximately 90% of the Dutch households use gas as a 
heating source we can, by studying only gas consumption distinguish the energy used 
for heating and dhw versus the energy used for household appliances. This means 
that houses that do not use gas as a heating source are removed from the analysis. 
Energy saving in this paper can therefore be read as gas savings/energy saving for 
heating. Cooling systems are not common in Dutch households and are therefore 
not included in the analysis. The expected energy consumption (energy demand) for 
heating used in this paper is based on the method that the Dutch government uses to 
define the Energy Performance Certificate. The method is based on a quasi-steady-
state calculation (the entire calculation method is described in ISSO 82.3 [29]). To 
calculate the energy demand for heating the following parameters are taken into 
accounts: air tightness, insulation levels, ventilation rates, efficiency of the heating 
system. A normalised number of occupants per m2 determine together with the 
efficiency of the dhw system how much energy is required for hot water.

The amount of expected energy saved after a renovation is the difference of the 
estimated energy consumption before renovation and after renovation (eq 3.1). We 
correct for building size by using the energy consumption per square meter of floor 
area, because building-related energy is highly dependent on the floor area of the 
building [30]. Since we do not know the specific moment of the year the renovation 
took place, we decided to compare the first year of our database (2010) with the last 
year of our database (2014) (eq 3.1). This means that energy saving is determined 
as the gas consumption of year 2010 minus that of year 2014. To make the years 
comparable a correction for degree days is applied. The amount of actual saving is 
the amount of energy consumed before the renovation minus the amount of energy 
consumed after the renovation (eq 3.2). These data are obtained at an address level 
from Statistics Netherlands (CBS). The energy saving gap is equal to the expected 
savings minus the actual savings (eq 3.3).
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EQUATION 3.1

fQsaving= expected energy savings after renovation [MJ/m2] 
fQpre= expected gas consumption before renovation (year 2010)[MJ/m2] 
fQpost= expected gas consumption after renovation(year 2014) [MJ/m2]

EQUATION 3.2

Qsaving= actual energy saving after renovation [MJ/m2] 
Qpre= actual gas consumption before renovation (year 2010) [MJ/m2] 
Qpost= actual gas consumption after renovation (year 2014) [MJ/m2]

EQUATION 3.3

ESG= energy saving gap [MJ/m2] 
fQsaving= expected energy saving after renovation [MJ/m2] 
Qsaving= actual energy saving after renovation [MJ/m2]

 3.3 Data

Two different data sources are used in this study. The first one is the SHAERE 
database, which is from the umbrella organisation of the Dutch social housing 
companies in the Netherlands (AEDES). The main aim of this database is to monitor 
the energy efficiency of the social housing stock in the Netherlands. It contains 
60% of the social housing stock in the Netherlands, which, comprising 30% of the 
total housing stock, is relatively large, compared to other countries. This means 
that the database contains a significant share of all dwellings in the Netherlands. 
It also contains most of the input variables that are used to calculate the energy 
performance of dwellings, and these data are present for five consecutive years 
(2010-2014). The second source is data from Statistics Netherlands (2010-2014) 
and contains actual annual energy consumption data and occupant characteristics 

saving pre postfQ fQ fQ= −
 

  

saving pre postQ Q Q= −  

  

saving savingESG fQ Q= −  
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data on a household level. Because of privacy protection we are only allowed to 
publish the results on an aggregated level (a minimum of 10 cases).

Approximately 90% of the Dutch households use gas as a heating source for their 
homes [31]. Most households use a combined gas boiler that provides both heating 
and dhw. Since heating is the main energy consumer of the dwellings and because 
energy consumption for heating has the highest unexplained energy performance 
gap [26], we studied only dwellings that use gas as a heating source and electricity 
consumption is not taken into account (127,183 cases). This means that energy 
saving in this paper can be read as gas savings.

Dwellings with collective heating systems were deleted from the database because 
the Statistics Netherlands expressed doubts about the quality of those data. 
Furthermore, cases with a floor space of over 1000 m2 and dwellings with gas 
consumptions higher than 500,000 MJ were discarded from the analysis (150 cases 
and 10 cases). Statistics Netherlands obtains its actual energy consumption data 
from energy supply companies, and it is officially only required to collect these data 
once every three years. Since it is important to have the correct energy consumption 
in the correct year for this analysis, we deleted the dwellings with the exact same 
energy consumptions as the previous year (307,975 cases) because it is highly 
unlikely that a dwelling consumes exactly the same amount of energy every year. 
To make the actual energy saving data comparable to the predicted energy saving, 
the energy consumption data were normalized to 2,262 degree days per year which 
is used as standard in the theoretical calculations. Almost 95% of the occupants, 
stayed in their dwelling after renovations. To prevent possible bias from change in 
occupant behaviour as much as possible we excluded all cases where the occupant 
before renovation was different compared to after renovation (221,165 cases). One 
could expect that dwellings that are deeply renovated would undergo a change of 
occupants more often than those in which only one thermal renovation measure 
is applied, because for deep renovations it is more often necessary that the house 
is uninhabited. However, from our data, there was no difference in the percentage 
of changed occupants between the single renovation measures and the deep 
renovations. Also dwellings in which other renovation measures than mentioned in 
section 5 or administrative corrections were found are excluded from the analysis 
(41,597 cases). Finally there were 228,991 cases that didn’t have information to 
identify if a renovation was or was not executed; therefore also those cases are 
excluded from the analysis, leaving with a total of 235,753 cases. From which 87,513 
houses are renovated between 2010 and 2014 (see Figure 3.1).
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longitudinal data 
household level 

(2010-2014) 

renovated 

same occupant 
(87,513) 

different 
occupant 

non  renovated 

same occupant 
(148,240cases) 

different 
occupant 

FIG. 3.1 Analysed data

 3.4 Methods

First, we used descriptive statistics in which we determine how frequent the thermal 
renovation measures occur in the database and how frequent this results in lower 
and higher than expected energy savings. These descriptive analyses should 
indicate whether thermal renovations indeed result more often in lower savings 
than expected.

To test whether the savings per renovation measure differ significantly from 
dwellings that were not renovated, a Kruskal-Wallis test (which is a one-way ANOVA 
on ranks) with a follow-up pairwise comparison was executed. The Kruskal-Wallis 
test was chosen instead of a traditional ANOVA because the energy saving data are 
not normally but leptokurtic distributed. The leptokurtic distribution could make 
the Type I error rate too low, and consequently the power too high, if a traditional 
ANOVA was used [32].

When the average energy savings per renovation measure are known, we investigate, 
as shown in Figure 3.2, whether specific building and occupant characteristics 
influence the amount of energy saved and if they are different per renovation 
measure. For these analyses, we execute also the Kruskal-Wallis test. If there are 
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only two groups compared, then the Whitney U-test is used which is the non-
parametric equivalent of the independent samples t-test. In the second part of the 
analysis, similar analyses were conducted for the energy saving gap (Figure 3.2).

The following building and occupant characteristics are investigated: the energy 
efficiency of the building prior to the thermal renovation, the building type, 
household income, the number of employed occupants and the number of household 
members. These specific occupant characteristics were chosen for two reasons, 
namely availability and because previous research or existing theories expect a 
correlation between those aspects and energy consumption and/or the energy 
saving gap [1, 33]. For example, from a previous study, we know that ventilation 
with heat recovery reduces energy more in dwellings that are well insulated and 
have a high airtightness than in those that are poorly insulated and have low 
airtightness [34]. This would mean that the energy efficiency state of the building 
prior to the thermal renovation influences the amount of energy saved. Regarding 
building type, we expect that insulation measures would be more profitable for 
single-family dwellings than for multifamily dwellings because the former generally 
have a relatively larger building envelope area. This means that heat loss because 
of poor insulation has a larger impact on single-family dwellings than on multifamily 
dwellings. The level of employment is assumed to be correlated with the occupancy 
time of a building. Previous research found strong correlations between the number 
of occupancy hours and residential energy consumption [35-37]. The number of 
household members was found to correlate with residential energy consumption 
[37-40]. Finally, income was also often mentioned as being influential on residential 
energy consumption [30, 41].

Energy renovation measure(s) 

 part 1 Energy saving 
part 2 Energy Saving Gap 
 part 4 probability on lower energy  
  savings than expected 

 1. Energy performance level before renovation 
 2. Dwelling type 
 3. Number of occupants 
 4. Occupancy 
 5. Income  

FIG. 3.2 Research method parts 1, 2 and 4 (dashed line are direct effects in part 4)

Because the rebound and prebound effect are expected by several researchers 
to be a main cause of lower energy savings than expected, we apply in the third 
part of this research descriptive statistics in which we define if the rebound and/
or prebound effect occur. The prebound effect is assumed to occur if the energy 
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consumption before renovation is more than 10% lower than expected. The 
rebound effect is assumed to occur if energy consumption after renovation is more 
than 10% higher than expected. And finally we conclude this paper with a logistic 
regression in which we investigate the influence of the above-mentioned occupant 
and building characteristics on the probability that thermal renovations result in 
lower-than-expected energy savings (Figure 3.2). Since we expect that the occupant 
and building characteristics do not only have a direct effect (continuous lines in 
Figure 3.2) on the probability of overestimated saving effects but also an interaction 
effect (dashed lines in Figure 3.2) we also add interaction terms of the building and 
occupant characteristics in the regression.

 3.5 Description of thermal renovation in 
this paper

To prevent confusion and because the terms ‘maintenance’ and ‘renovation’ are 
often used interchangeably, this section defines what we (in this paper) understand 
by thermal renovations. We define in this paper thermal renovation as renovation 
measures that are taken to reduce energy consumption used for thermal comfort. 
We identify four different types of thermal renovations. The first is the single thermal 
renovation measure, which is defined as a significant improvement (going from 
at least one category to another (Table 3.1) of only one building component. The 
building components that are considered are: roof insulation, floor insulation, façade 
insulation, window improvements, heating system, domestic hot water system (dhw 
system) and ventilation system. If dhw system and heating system are replaced at 
the same time, then this is identified as one measure, because most buildings in the 
Netherlands use a combined heating and dhw system. The second type of thermal 
renovation is a significant improvement in the insulation level of the entire building 
envelope. This means that at least two components are significantly improved in 
terms of insulation. The third type of thermal renovation is a significant improvement 
in all building installations (heating, dhw and ventilation). The fourth type of thermal 
renovation is deep renovation, which refers to a significant improvement in at least 
three building components that bring them to a level equal to or higher than the 
current building regulation standards. To determine whether the improvement is 
significant, we categorised the thermal renovations. The change from one “higher” 
category (see Table 3.1 for categories) to another is assumed to be a significant 
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improvement. Additionally, the improvements of the building installations must meet 
at least the current renovation standards (Table 3.1). For example, in this paper, 
the replacement of a boiler is only considered to be a thermal renovation if the new 
boiler has an efficiency of 0.95 (HR107 boiler). The categories are based on the 
Dutch ISSO publication 82.3 [29] (Table 3.1). We choose to use those categories 
because also the theoretical energy consumption is based on those. The change 
from natural ventilation to mechanical exhaust ventilation is also considered to be an 
improvement, despite the fact that this change is not per se expected to result in a 
theoretical energy reduction.

TABLE 3.1 Categories of building characteristics based on ISSO 82.1 2011

Categories

Window (frame 
+ glazing)  
[W/m2K]*

Floor 
insulation 
[Km²/W]

Façade 
insulation 
[Km²/W]

Roof insulation 
[Km²/W]

Heating 
system

dhw Ventilation

1 Single glass 
(U≥4.2)

No-insulation 
(Rc≤ 0.32)

No-insulation 
(Rc≤ 0.36)

No-insulation 
(Rc≤ 0.39)

Local gas 
heater

Tankless gas 
water heater

Natural 
ventilation

2 Double 
glass(2.85≤ 
U<4.2)

Insulated 
cavity 32<Rc≤ 
0.82

Insulated 
cavity 
0.36<Rc≤ 0.86

Insulated 
cavity 
0.39<Rc≤ 0.89

Conventional 
boiler (ɳ<0.80)

Electric boiler Mechanical 
exhaust 
ventilation

3 HR+ glass 
(1.95≤ 
U<2.85)

Up to40 mm 
insulation 
0.82≤ 1.15

Up to40 mm 
insulation 
0.86≤ 1.36

Up to40 mm 
insulation 
0.89≤ 1.22

Improved non-
condensing 
boiler (ɳ=0.8-
0.90)

Conventional 
combi boiler  
(ɳ =0.80)

Demand based 
mechanical 
exhaust 
ventilation **

4 HR++ 
glass(1.75≤ 
U<1.95)

40- 80mm 
insulation 
1.15<Rc≤ 2.15

40- 80mm 
insulation 
1.36<Rc≤ 2.36

40-80mm 
insulation 
1.22<Rc≤ 2.22

Condensing 
boiler 
(ɳ=0.925-
0.95)

Improved non-
condensing 
combi boiler 
(ɳ=0.80-0.9)

Balanced 
ventilation with 
heat recovery 
***

5 Triple 
insulation glass 
(U<1.75)

80-120 mm 
insulation 
2.15<Rc≤ 3.15

80-120 mm 
insulation 
2.36<Rc≤ 3.36

80- 120 mm 
insulation 
2.22<Rc≤ 3.22

Condensing 
boiler (ɳ=0.90-
0.925)

Condensing 
combi boiler 
(ɳ=0.90-0.95)

6 120-160 mm 
insulation 
3.15<Rc≤ 4.15

120-160 mm 
insulation 
3.36<Rc≤ 4.36

120-160 mm 
insulation 
3.22<Rc≤ 4.22

Condensing 
boiler (ɳ>0.95)

7 160-200 mm 
insulation 
4.15<Rc≤ 5.15

160-200 mm 
insulation 
4.36<Rc≤ 5.36

160-200 mm 
insulation 
4.22<Rc≤ 5.22

8 More than 
200mm 
insulatin 
Rc>5.15

More than 
200mm 
insulatin 
Rc>5.36

More than 
200mm 
insulatin 
Rc>5.22

* Wooden/plastic window frames are assumed
** Mechanical exhaust ventilation, rate is determined by CO2 level in the house
*** Mechanical ventilation system (inlet and exhaust) that uses a heat recovery system to minimize heat loss due to ventilation
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The categorization of renovation measures makes that we can identify if a renovation 
took place. For this study we do not distinguish the different levels of renovation e.g. 
we don’t take into account if a facade is renovated category 1 to 2 or from 1 to 5. 
Although this could also be an interesting topic for research in this study we assume 
that the renovation and the level of renovation is a choice that is taken carefully 
considering available budget on the moment of renovation, available techniques and 
practical aspects. The research of Majcen et al. [5] gives more insights on this topic.

 3.6 Results

In this result section we start with an in depth analysis of the energy savings followed 
by in depth analysis of the energy saving gap and descriptive statistics of the 
rebound and prebound effect finally we conclude with a detailed logistic regression.

The descriptive statistics in Table 3.2 show the number renovated houses that 
resulted in higher savings than expected, lower savings than expected and savings 
that are almost similar to what was expected. The table also demonstrates that 
almost 90,000 dwellings underwent a renovation within the renovation categories 
mentioned in section 5 (single measures; insulation of entire building envelope; 
improvement of building installations and deep renovations). As written in the 
method section all energy savings are corrected for degree days to make them 
comparable with theoretical energy consumption. Table 3.2 shows that on average, 
40% of the cases have higher energy savings than expected, while 57% have 
savings that were lower than expected and only 3% of the renovations have well 
predicted results (10% higher or lower than the expected savings). We choose for 
10% because previous comparisons of actual and theoretical energy consumption 
have shown that a prediction within a 10% range is very good. Further Table 3.2 
indicates that deep renovations most often result in lower energy savings than 
expected (81%). The same holds true for thermal renovations where two or more 
insulation measures are applied. In 35% of the cases the improvement of building 
installations results in higher than expected energy consumption. Regarding the 
single measures, we observe that the improvement in the combined heating and 
dhw system and in façade insulation most often result in lower-than-expected 
energy savings.
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TABLE 3.2 Number of cases per thermal renovation type comparison number of over- under and well predicted cases

Renovation measures 
2010-2014

Frequencies Frequencies 
-overestimated energy 
savingsa

Frequencies - well 
estimated energy 
savingsb

Frequencies - 
underestimated 
energy savingsc

Single renovation 
measures

78583 43556(55%) 2466 (3%) 32561 (42%)

Insulation roof 5164 3129 (61%) 138 (3%) 1897 (37%)

Insulation floor 10095 4367 (43%) 125 (1%) 5603 (56%)

Insulation facade 6504 4067 (63%) 160 (3%) 2277 (35%)

window 10103 5293 (52%) 291 (3%) 4519 (45%)

Heating system 7864 3790 (48%) 217 (3%) 3857 (49%)

dhw system 1895 1021 (54%) 13 (1%) 861 (45%)

Combi dhw & heating 27431 17158 (63%) 1389 (5%) 8884 (32%)

Ventilation system 9527 4731 (50%) 133 (1%) 4663 (49%)

Building insulation 3552 2405 (68%) 102 (3%) 1045 (29%)

Building installation 3848 2342 (61%) 169 (4%) 1337 (35%)

Deep renovations 1530 1246 (81%) 76 (5%) 208 (14%)

Total 87513 49549(57%) 2913 (3%) 35151(40%)

a Overestimated energy savings in this paper means the energy saving is at least 10% lower than expected.
b Well estimated energy savings in this paper means the energy savings are not more than 10% higher than expected and 
10% lower than expected
c Underestimated energy savings in this paper means that the energy saving is at least 10% higher than expected.

 3.6.1 Average actual savings per thermal renovation measure

Figure 3.3 shows the average gas consumption per renovation measure. The results 
of the Kruskal-Wallis test, comparing the savings per renovation type, demonstrate 
that the actual energy savings per renovation measures differ significantly from each 
other (H(11)=3,526.84, p<0.05), although the difference between non-renovation 
and especially domestic hot water (dhw) and ventilation are only small compared to 
no renovation measure.
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FIG. 3.3 Average energy saving (corrected for degree days) per thermal renovation measure (including 
confidence interval 0.05) dashed line is actual difference in gas reduction between 2010-2014 for non-
renovated houses

Figure 3.3 demonstrates (as expected) that most gas is saved when deep 
renovations are executed. The results also indicate that the energy consumption of 
non-renovated dwellings also decreased. This phenomenon is also found in previous 
studies [5, 42] that used data from the same source. There are several reasons 
that explain why non-renovated dwellings have a decrease in heating consumption 
between the years 2010 and 2014, such as a change in occupant behaviour 
(perhaps occupants used lower thermostat settings, or they might have reduced the 
number of hours that heat their dwelling). Another explanation could be mistakes 
in the monitoring system; e.g. renovation measures not registered in SHAERE. We 
made the years comparable by correcting the energy consumption by degree days, 
although this is a common method the method has also drawbacks that possible 
cause the found energy saving of non-renovated houses [43]. Because the exact 
reason of this autonomous reduction is unclear we represented the energy reduction 
of non-renovated buildings with a dashed line in Figure 3.3 and the following figures. 
Taking this dashed line into account, Figure 3.3 suggests that an improvement of 
dhw system or ventilation system might not result in or only limited energy reduction. 
This could be true because the main aim of improving a dhw system or ventilation 
system is often to increase the comfort level and not to save energy. For ventilation 
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this is especially the case in this dataset because most of the ventilation systems are 
renovated from a natural system to a mechanical exhaust system.

The average energy saving per renovation measures is known. However, we expect 
that occupant and building characteristics influence energy savings. We also 
expect that this influence is different per energy saving measure. Therefore, in the 
following paragraphs we compare the average saving per building and occupant 
characteristics per thermal renovation measure.

Average actual energy savings - energy efficiency 
of the building prior to thermal renovation

The Dutch government uses the energy index and the energy label to identify 
the energy efficiency of buildings. This index is based on the simplified heat loss 
calculation (see section 2), it is corrected for the floor area of the dwelling and 
the corresponding heat transmission areas [29]. The energy index is divided into 
several categories, which are the energy labels. Dwellings with an energy label A are 
supposed to be highly energy efficient, and dwellings with label G energy inefficient. 
In this section we investigate whether the energy label prior to the thermal 
renovation influences the average energy savings per renovation measure. Because 
almost no renovation measures are applied to dwellings with an energy label A, 
those dwellings are excluded from the analysis. The Kruskal Wallis test in Table 3.3 
shows that we found significant differences between the average energy savings 
per energy label for all renovation measures. Roof insulation, facade insulation and 
deep renovations yield the expected results: Energy savings are higher for non-
energy-efficient dwellings than for energy efficient-dwellings. For the renovation 
measures ‘improvements of the windows’, ‘insulation of building envelope’ and 
‘building installations’ we observe the same results, with the exception of dwellings 
with an energy label F or G. However, the confidence interval for those dwellings with 
a F and G label is relatively large. For the change in heating system and ventilation 
system we notice the opposite effect: energy-efficient-dwellings benefit more from an 
improved heating system than non-energy-efficient dwellings. In general, we found 
a relatively large confidence interval for the average energy reduction of dwellings 
with an energy label G, which indicates that the energy savings vary highly per case. 
Improvements in the dhw and floor insulation do not seem to be dependent on the 
energy label of the dwelling prior to thermal renovation.
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TABLE 3.3 Kruskal Wallis test: Energy label - saving

Renovation measure Kruskal Wallis test

Roof H(5)=19.082, p<0.05

Floor H(5)=18.717, p<0.05

Façade H(5)=45.853, p<0.05

Window H(5)=76.566, p<0.05

Heating H(5)=55.054, p<0.05

Dhw H(5)=28.242, p<0.05

Combi dhw & heating H(5)=57.371, p<0.05

Ventilation H(5)=34.820, p<0.05

Insulation H(5)=122.957, p<0.05

Installations H(5)=39.486, p<0.05

Deep renovation H(5)= 39.990, p<0.05
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FIG. 3.4 Comparison between average energy saving (corrected for degree days) per renovation measure 
divided per energy label prior to thermal renovation and Kruskal Wallis test
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As shown in Figure 3.4, roof, façade insulation, window improvements and insulation 
of the building envelope applied on dwellings with an energy label B (and sometimes 
also C) save less energy than dwellings that are not renovated (dashed line), which 
could mean that there is no significant energy saving. A possible explanation for 
this could be that dwellings with an energy label B are maybe not renovated, but 
administrative corrections are applied in the database. Because houses with a B 
label are already relatively efficient and therefore the probability that they will be 
renovated by the housing associations is lower. For two cases we found negative 
savings. The one for heating can be explained that in the Dutch case G label houses 
often have local gas heaters that have a lower capacity than newly installed heating 
installations which could lead to a higher consumption for heating because of 
increased comfort. Also for the improvement of domestic hot water system an 
increased comfort level could be an explanation for a negative energy savings.

Average actual energy savings - Type of dwelling

Apart from the energy efficiency of the dwelling prior to the renovation we also 
compared the influence of the type of dwelling on the effectiveness of an energy 
renovation (Figure 3.5). The results demonstrate that, on average, single-family 
dwellings always save more energy than multifamily dwellings (Figure 3.5). The figure 
also shows that the differences between multi and single family houses are almost 
similar for all renovation measures, which could indicate that there is no interaction 
effect between the renovation measures and the type of dwellings. Differently stated: 
a single family house benefits in terms of actual energy savings more from a thermal 
renovation than a multi-family house independently of which thermal renovation 
measure is taken. The only exception is the improvement of a dhw system and the 
change of all building installations, which could be explained by the fact that the 
use of dhw is not dependent on the building characteristics, such as the energy 
consumption for heating. Possible explanation why energy renovation measures are 
often more effective on single family houses than on multifamily houses is that single 
family houses have often compared to multifamily houses a relatively large building 
envelop that has a high influence of the energy use for heating.
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TABLE 3.4 Man Withney U-test: Dwelling type - saving

Renovation measure Man Withney U-test

Roof Z(1)=2.036, p=0.154

Floor Z(1)=1.316, p=0.251

Façade Z(1)=8.092, p<0.05

Window Z(1)=16.514, p<0.05

Heating Z(1)=66.867, p<0.05

Dhw Z(1)=2.148, p=0.143

Combi dhw & heating Z(1)=68.555, p<0.05

Ventilation Z(1)=18.997, p<0.05

Insulation Z(1)=15.770, p<0.05

Installations Z(1)=35.808, p<0.05

Deep renovation Z(1)=2.036, p=0.154
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FIG. 3.5 Difference in actual energy saving (corrected for degree days) for single and multi-family dwellings 
and Man Withney U-test
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Average actual energy saving -occupancy

The third comparison compares occupancy time of a house and the actual energy 
saving effect per measure. Previous studies demonstrated that occupancy has a 
highly significant influence on residential energy consumption [33,36,37,37,44]. 
Since occupancy data was not available, we assumed that households with one 
unemployed adult member have a higher occupancy time than households in which 
all adults have jobs. As shown in

Figure 3.6, renovation measures that improve building installations (heating, dhw 
system, ventilation, and all building installations) are all found to differ significantly 
for the group in which all (adult) household members work, compared to the group 
where at least one household member does not work. No significant differences 
are found for the other renovation measures. A possible explanation for the energy 
savings being influenced if the building installations are improved but not when 
the insulation level is improved could be that employed occupants have a more 
predictive occupancy pattern; therefore, the automatic control systems (for example, 
automatic thermostats) that often come with new building installations function 
better. However, this does not explain why the savings from hot tap water differ 
significantly. More research is needed to explain this phenomenon.

TABLE 3.5 Man Withney U-test: Employment - saving

Renovation measure Man Withney U-test

Roof Z(1)=11.782, p<0.05

Floor Z(1)=2.110, p=0.146

Façade Z(1)=0.009, p=0.923

Window Z(1)=0.332, p=0.564

Heating Z(1)=26.307, p<0.05

Dhw Z(1)=24.686, p<0.05

Combi dhw & heating Z(1)=6.952, p<0.05

Ventilation Z(1)=28.042, p<0.05

Insulation Z(1)=2.434, p=0.119

Installations Z(1)=10.062, p<0.05

Deep renovation Z(1)=0.451, p=0.502
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FIG. 3.6 Difference in energy saving (corrected for degree days) for households where all occupants have 
jobs and those in which not all occupants have jobs insignificant measures are shown transparent and Man 
Withney U-test

Average actual energy saving -income

The fourth comparison we make for energy saving is if energy savings per thermal 
renovation measure differ for incomes above versus below modal income. Based 
on previous literature, we would expect the average energy savings to be higher 
for people with a high income level than for those with a low income level [13, 
45]. Figure 3.7 shows that for all significant cases, occupants with a salary above 
the modal income save more energy than occupants below the modal income. 
These results could confirm previous findings that occupants are more willing to 
compromise on comfort to save energy and money if they have a relatively low 
income. After the renovation, they need less energy to achieve the same comfort 
level; therefore, they can afford a higher comfort level, which results in lower 
energy savings.
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TABLE 3.6 Man Withney U-test: Income - saving

Renovation measure Man Withney U-test

Roof Z(1)=5.246, p<0.05

Floor Z(1)=13.466, p<0.05

Façade Z(1)=5.265, p<0.05

Window Z(1)=0.640, p=0.424

Heating Z(1)=2.699, p=0.100

Dhw Z(1)=5.506, p<0.05

Combi dhw & heating Z(1)=7.198, p<0.05

Ventilation Z(1)=6.781, p<0.05

Insulation Z(1)=0.118, p=0.731

Installations Z(1)=5.640, p<0.05

Deep renovation Z(1)=1.380, p=0.240
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FIG. 3.7 Difference in energy saving (corrected for degree days) for households with below average incomes 
and those with above average incomes (insignificant measures are shown transparent) and Man Withney 
U-test

We also tested the influence of number of occupant but because we didn’t find 
significant results we don’t present them in the result section.
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 3.6.2 Average energy saving gap per thermal renovation measure

For the energy saving gap (expected saving minus actual saving) we executed similar 
analysis as we did for the actual energy saving. The aim of these analyses is to obtain 
a better insight into the aspects that are important for energy saving predictions. 
The results should give us some guidance for aspect that should be improved in the 
Dutch energy calculation method. In Figure 3.8 we compare the ESG per renovation 
measure. The Kruskal-Wallis test confirms that all renovation measures differ 
significantly (H(11)=11071.498, p<0.05) compared to no renovation measures. 
Figure 3.8 demonstrates that eight of the eleven renovation measures demonstrate 
a positive energy saving gap, meaning that the expected energy saving was higher 
than saved in reality. A negative energy saving gap implies that in reality, more 
energy is saved than expected. This means that floor insulation and improvements 
in the heating and ventilation system save more energy than expected, while the 
other measures save less energy than expected. However also when no renovation 
measures are applied we see a negative ESG (Figure 3.8). If we take this into account 
all measures except floor insulation result in lower energy savings than expected.
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FIG. 3.8 Average energy saving gap per thermal renovation measure

TOC



 111 Actual energy saving effects of thermal  renovations in dwellings

Average energy saving gap - Energy efficiency of 
the building prior to thermal renovation

Figure 3.9 demonstrate that the ESG of all types differs significantly depending on 
the energy efficiency status of the building before renovation. The results show that 
for all types of thermal renovations the energy saving gap is larger if the energy label 
is lower. Which means that renovations of houses with a low energy efficiency before 
renovation result in a bigger gap between estimated and actual energy saving. Only 
a change in the dhw system and floor insulation show different patterns. For dhw 
this is as expected because energy consumption for dhw is more related to occupant 
behaviour than to building characteristics.

TABLE 3.7 Kruskal Wallis test Energy label - ESG

Renovation measure Kruskal Wallis test

Roof H(5)=622.256, p<0.05

Floor H(5)=20.115, p<0.05

Façade H(5)=669.096, p<0.05

Window H(5)=190.020, p<0.05

Heating H(5)=297.538, p<0.05

Dhw H(5)=434.609, p<0.05

Combi dhw & heating H(5)=902.413, p<0.05

Ventilation H(5)=97.024, p<0.05

Insulation H(5)=1034.098, p<0.05

Installations H(5)=148.644, p<0.05

Deep renovation H(5)= 266.631, p<0.05
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FIG. 3.9 Average energy saving gap per energy label of the building prior to renovation for every type of 
thermal renovation. and Kruskal Wallis test

Average energy saving gap - type of dwelling

With regard to the type of dwelling, the average energy saving gap differs 
significantly for floor, façade insulation, improvements in heating, dhw and 
ventilation systems, the insulation of the entire building envelope, the improvements 
in all building installation systems and the deep renovations (Figure 3.10). 
The results show that the ESG is different per renovation measure. For most 
significant renovation measures we found a positive ESG (energy saving results are 
overestimated) with an exception for the ventilation system and single family houses 
with an improved dhw system. However for ventilation the ESG is smaller than the 
ESG for non-renovated houses. A renovation of the dhw system in single family 
houses shows a bigger negative ESG than the houses that are not renovated, this 
implies that on average a change of the dhw system in single family houses result on 
in more energy savings than expected.
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TABLE 3.8 Man-Withney U-test: dwelling type - ESG

Renovation measure Man Withney U-test

Roof Z(1)=14.435, p<0.05

Floor Z(1)=0.604, p=0.437

Façade Z(1)=63.121, p<0.05

Window Z(1)=0.006, p=0.937

Heating Z(1)=20.219, p=0.100

Dhw Z(1)=56.751, p<0.05

Combi dhw & heating Z(1)=7.344, p<0.05

Ventilation Z(1)=4.692, p<0.05

Insulation Z(1)=57.014, p<0.05

Installations Z(1)=5.555, p<0.05

Deep renovation Z(1)=16.820, p<0.05
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FIG. 3.10 Average energy saving gap, multifamily dwelling and single family dwellings compared per thermal 
renovation measure. Insignificant measures are shown transparent
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Average energy saving gap - Occupancy

Figure 3.11 illustrates that there are only a few types of renovation that show a 
significant differences in ESG between houses where all adults work and houses 
where not all adults work. Most of those measures are building installations 
measures (heating system; dhw system; combi dhw & heating system and ventilation 
system). We have seen a similar effect in the actual energy savings (section 5.2.3). 
The only exception is insulation of the building envelope, but although significant the 
differences for that measure are relatively small.

TABLE 3.9 Results Man-Withney U-test: ESG - (un)employed

Renovation measure Man Withney U-test

Roof Z(1)=-1.893, p=0.058

Floor Z(1)=-0.687, p=0.492

Façade Z(1)=-1.464, p=0.143

Window Z(1)=-1.751, p=0.080

Heating Z(1)=-5.012, p<0.05

Dhw Z(1)=-10.151, p<0.05

Combi dhw & heating Z(1)=-2.111, p<0.05

Ventilation Z(1)=-2.432, p<0.05

Insulation Z(1)=-1.977, p<0.05

Installations Z(1)=-0.330, p=0.741

Deep renovation Z(1)=-0.323, p=0.746
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FIG. 3.11 Average energy saving gap, households in which not all adults work and those where all adults 
work are compared per thermal renovation measures. Insignificant measures are shown transparent

Average energy saving gap - income

A comparison of occupants’ earnings below and above the national modal income 
reveals significant differences for the average energy saving gap of floor insulation, 
façade insulation, heating, ventilation and the insulation of the building envelope. 
In the cases with overestimated energy savings (positive energy saving gap), we 
notice that the households with an income below the national modal is larger than 
those with a higher income ( Figure 3.12), whereas the opposite holds true for the 
measures with a negative energy saving gap. This could indicate people with a low 
income living in energy-inefficient dwellings are more willing to reduce their comfort 
levels to save money than households with a high income.
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TABLE 3.10 Results Man Withney U-test: ESG - income

Renovation measure Man Withney U-test

Roof Z(1)=-0.190, p=0.850

Floor Z(1)=-3.825, p=<0.05

Façade Z(1)=-2.599, p<0.05

Window Z(1)=-1.152, p=0.249

Heating Z(1)=-2.679, p<0.05

Dhw Z(1)=-7.228, p<0.05

Combi dhw & heating Z(1)=-1.188, p=0.235

Ventilation Z(1)=-0.330, p=0.741

Insulation Z(1)=-3.134, p<0.05

Installations Z(1)=-0.671, p=0.502

Deep renovation Z(1)=-0.686, p=0.493
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FIG. 3.12 Average energy saving gap, households with an income below and above the national average are 
compared per thermal renovation measures. Insignificant measures are shown transparent
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 3.6.3 Occurrence of the prebound and rebound effect

Since previous studies assume that the rebound and prebound effects are the most 
important explanations for lower energy saving effects than expected, we take a 
closer look at those effects in this section. If the prebound and rebound effects are 
indeed the main cause of the energy performance gap, we would expect that the 
energy consumption before renovation is often lower than expected and the energy 
consumption after renovation is often higher than expected. If only the prebound 
effect occurs, we expect a lower energy consumption than expected before a thermal 
renovation and an energy consumption as expected after renovation. If only the 
rebound effect occurs, we would expect energy consumption as estimated before 
renovation and a lower energy consumption as expected after thermal renovations. 
In Table 3.11 we determined the number of buildings that have a higher, lower or 
similar as expected energy consumption. The table shows that both the rebound 
and/or prebound effects occurred only for a limited number of cases. Most 
households maintain their ‘habit’ by using more energy than expected before and 
after renovation or using less energy than expected before and after renovation. If we 
check per thermal renovation measure, we observe more or less the same ‘pattern’ 
for most renovation measures as listed in Table 3.11. However, for deep renovations, 
we note that the prebound and rebound effects together occur significantly more 
often (30%) than for the other renovation measures. This indicates that while those 
effects are responsible for some of the overestimated energy savings, they are not 
the only reason.

TABLE 3.11 Frequencies of over- and underpredicted energy consumption prior to and post thermal renovation

After renovation

Underprediction Well predicted Overprediction

Before
renovation

Underprediction 16538 (20%) 3598 (4%)b 3904 (5%)

Well predicted 5639 (7%) 4576 (6%) 5339 (6%)c

Overprediction 6049 (7%)a 6498 (8%) 31749 (38%)

a prebound & rebound effect / b prebound effect / c rebound effect
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 3.6.4 Probability of lower energy savings than expected

Because the previous section indicated that the rebound and prebound effect are not 
the only cause of lower energy savings than expected, we conduct a binary logistic 
regression analysis to identify which other parameters influence the probability on 
lower energy savings than expected. As mentioned before we consider the energy 
saving results to be lower than expected if the saving is more than 10% lower 
than calculated. The independent variables used in the logistic regression are the 
building and occupant characteristics that we discussed earlier as well as the energy 
saving measures and the energy performance gap of the building before the thermal 
renovation (Table 3.12). This parameter is added because previous studies state 
that next to the prebound and rebound effects, a probable explanation for the energy 
saving gap are an incorrect assumption in the energy calculation before renovation 
[1, 17]. As a second step of the logistic regression, we include the interaction 
between the thermal renovation type and the building and occupant characteristics 
because the previous sections demonstrated that these characteristics influence the 
energy savings differently per type of thermal renovation.

TABLE 3.12  Variables in logistic regression (DV=dependent variable, IV=Independent variable)

Type of variable Variable Categories

DV Lower energy savings than expected Yes/no (1/0)

IV Thermal renovations No renovation, Roof*, floor, façade, window, heating, 
dhw, combi dhw & heating, insulation, installations, 
deep renovation

IV Energy index Continuous variable

IV Building type Single family dwellings*/ multi family dwellings

IV Occupancy All adults work/at least one adult does not work

IV Income Above national middle income/below national 
middle income

Energy performance Gap The energy saving gap prior to the thermal 
renovation (Energy performance gap <0, actual 
energy consumption lower than estimated, energy 
performance gap>0 actual energy consumption 
higher than estimated)

IV Interaction All building and occupant characteristics variables * 
thermal renovation measures

IV Interactions Energy performance gap of year 2010 ∙ Energy 
index
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The binary logistic regression without interaction effects, demonstrates an 
insignificant result for the energy efficiency state of the building prior to thermal 
renovation, dwelling type and income. This is unexpected, since the previous analysis 
suggested that there is a relation between those parameters and the effectiveness 
of a renovation measure. We will examine the influence of the energy efficiency of 
a building when we look at the interaction effects. Most of the thermal renovation 
measures demonstrate a significant effect. A change in the dhw system increases 
the chance on lower savings than expected the most (odds ratio of 3.799). The 
occupancy level based on all occupants working or at least one adult occupant 
not working demonstrates that a low occupancy results in lower energy saving 
effects than expected more often than a high occupancy level. Finally, a large 
energy performance gap (which means the expected energy consumption is higher 
than the actual energy consumption) in the year 2010, when thermal renovations 
are not yet applied, result in higher chances that the energy saving results would 
be overestimated.

TABLE 3.13 Logistic regression results without interaction effects (Odds ratio above 1 higher chance on lower energy savings 
than expected, Odds ratio below 1 lower chance on lower energy savings than expected)

95% CI for Odds Ratio

B(SE) Lower Odds ratio upper

Energy Index -0.047(0.28) 0.902 0.954 1.008

Renovation measures* **

Floor insulation -0.352 (0.067)** 0.617 0.703 0.802

Façade insulation 0.095 (0.071) 0.958 1.100 1.263

Window -0.350(0.062)** 0.621 0.705 0.800

Heating system -0.573(0.065)** 0.496 0.564 0.640

dhw system 1.251(0.110)** 2.814 3.493 4.335

Combi dhw & heating 
system

-0.276(0.059)** 0.676 0.759 0.851

Ventilation -0.353(0.065)** 0.619 0.702 0.797

Insulation 0.139(0.093) 0.959 1.150 1.378

Installations 0.098(0.076) 0.951 1.103 1.279

Deep renovations 0.588(0.138)** 1.374 1.801 2.359

Single family dwelling* 0.022(0.029) 0.676 0.759 1.036

Income * -0.046(0.028) 0.924 0.978 1.105

Occupancy* -0.182(0.028)** 0.991 1.047 0.880

Energy Performance 
Gap

0.073(0.002)** 0.790 1.076 1.080

Constant 0.865(0.076)** 2.375

** Result is significant p<0.05, R2=0.064 (Cox&Snell) 0.089 (Nagelkerke). Model χ2(15)=2754.971, p<0.05.
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The first binary logistic regression is followed up with a second logistic regression 
using interaction effects. The interactions are based on the results we found in the 
previous sections. Based on the increase of the Cox and Snell R2 and the Nagelkerke 
R2, we can conclude that some of the interactions that we found in the previous 
sections are indeed present, and they contributed significantly to predicting the 
probability of energy saving effects after renovations will be lower than expected 
(Table 3.14). The interactions between “income and renovations” and “occupancy 
and renovations” are insignificant; therefore, they are not included in the model. 
For the energy efficiency of the building prior to the renovation we only found 
interactions effects and no direct effects. For those interactions we found significant 
effects for most renovation measures. Most building installation renovation measures 
show a higher chance on lower than expected energy savings after renovation when 
the building has a high energy efficiency, while the opposite applies for the insulation 
measures. Except for floor insulation and improved windows, the chance on lower 
than expected savings increases for those measures when the energy efficiency of 
the house increases. This confirms the findings in Figure 3.4 and Figure 3.9. Only 
for renovation measure “heating system” we found unexpected results, those show 
that the chance on lower than expected savings is higher for buildings with a high 
energy efficiency. Almost all renovation measures, except the change in ventilation 
system, dhw system and deep renovations demonstrate significant interaction effects 
with the type of building (Table 3.14). The interaction per building type indicate that 
the probability of lower than expected energy saving are more likely for multi-family 
dwellings. Only if the dhw system, heating system or all building installations are 
replaced the probability on lower than expected energy savings is more likely for 
single family houses, however those parameters are found to be insignificant. Those 
results confirm the findings shown in Figure 3.5 and Figure 3.10. We didn’t find 
significant interaction effects for income and occupancy and they are therefore not 
included in the final regression table results (Table 3.14).
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TABLE 3.14 Logistic regression results with interaction effects (Odds ratio above 1 higher chance on lower energy savings than 
expected, Odds ratio below 1 lower chance on lower energy savings than expected)

95% CI for Odds Ratio

B(SE) Lower Odds ratio upper

Renovation measures*/**

Floor insulation 0.822 (0.174)** 1.1618 2.275 3.200

Façade insulation -0.931(0.239) 0.0247 0.394 0.629

Window 0.056(0.164) 0.767 1.058 1.458

Heating system -1.477(0.157)** 0.168 0.228 0.310

dhw system 1.276(0.488)** 1.489 3.584 8.627

Combi dhw & heating system -0.220(0.112) 0.645 0.803 1.000

Ventilation -0.367(0.154)** 0.512 0.693 0.937

Insulation -1.359 (0.353)** 0.129 0.257 0.513

Installations 0.559 (0.239) 1.094 1.749 2.796

Deep renovations -1.012 (0.646) 0.102 0.363 1.289

Single family dwelling* -0.335(0.110)** 0.576 0.715 0.887

Occupancy* -0.175(0.028)** 0.808 0.851 0.896

Energy Performance Gap 0.076(0.002)** 1.075 1.079 1.083

EI*ren. Measure**

EI * floor insulation -0.760(0.080)** 0.400 0.468 0.547

EI * façade insulation 0.539(0.142) 1.298 1.715 2.264

EI*window -0.329(0.080)** 0.615 0.720 0.842

EI * heating 0.506(0.077)** 1.426 1.658 1.927

EI*dhw -0.022(0.224) 0.630 0.978 1.518

EI*combi dhw & heating -0.122(0.043)** 0.813 0.885 0.964

EI * ventilation -0.070(0.086) 0.789 0.933 1.103

EI * insulation 0.681(0.206)** 1.319 1.976 2.959

EI * installations -0.317(0.123)** 0.573 0.729 0.927

EI*deep renovations 0.578(0.331) 0.967 1.782 3.283

>>>
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TABLE 3.14 Logistic regression results with interaction effects (Odds ratio above 1 higher chance on lower energy savings than 
expected, Odds ratio below 1 lower chance on lower energy savings than expected)

Renovation measure* building type**

Single family*floor insulation 0.421(0.134)** 1.172 1.524 1.981

Single family * façade insulation 0.362(0.152) ** 1.067 1.436 1.932

Single family * window 0.387(0.133) ** 1.135 1.472 1.909

Single family * heating -0.208(0.140) 0.617 0.812 1.068

Single family * dhw -0.971 (0.299) ** 0.211 0.379 0.680

Single family * combi dhw & 
heating

0.442(0.124) ** 1.220 1.557 1.986

Single family * ventilation 0.238(0.143) 0.960 1.269 1.678

Single family * insulation 0.734(0.194) ** 1.425 2.082 3.043

Single family * installations -0.034 (0.186) 0.671 0.967 1.394

Single family * deep renovation 1.052 (0.324) ** 1.519 2.863 5.398

Constant 0.922(0.079)** 2.514

** Result is significant p<0.05, R2=0.081 (Cox&Snell) 0.112 (Nagelkerke). Model χ2(45)=3094.123, p<0.05

 3.7 Discussion

Regarding the data used in this paper one of the strengths is that a relatively large 
dataset containing pre- and post-renovation energy consumption data was used. 
Despite this large database, the data, especially of the occupants and energy 
consumption, were only available on an aggregated level. Therefore, there could be 
other parameters that influence the energy saving effects that are not taken into 
account in this analysis. Further research on the influence of other parameters is 
required to indicate whether they also play a role. Another disadvantages of the data 
used in this paper is that the data is only from social housing in the Netherlands; 
therefore, the dwellings are all rental dwellings. This means that the occupants did 
not initiate the renovations themselves, which might have had significant effects on 
the results, because previous studies demonstrated that, in some cases, tenants 
behave differently than home owners [11, 46]. Furthermore the occupants living 
in social housing in the Netherlands have on average a lower income than the 
average income of the Netherlands. However, since the Dutch social housing sector 
is relatively large (30% of the total housing stock) compared to other countries, the 
dataset also contained a significant number of households with an income above the 
national average. Therefore the results can be considered representative. Another 
aspect that we should take in consideration when interpreting the results of the ESG 
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analysis and the logistic regression is that the theoretical energy consumption used 
in this paper is based on a quasi-steady state calculation method, although several 
studies mention that using a steady state calculation method is acceptable for 
prediction year-round energy needs [47].

Regarding the methods used in this paper, one of the strengths, in comparison to 
previous studies, is that both the occupant and the building characteristics are taken 
into account, and only dwellings with the same occupants before and after renovations 
were considered in the analysis. Another, strength of this paper is that we investigated 
both actual savings and the energy saving gap, therefore a better insight was not only 
provided in the actual effect of thermal renovation, but also into the aspects that need 
attention/improvements in the energy calculation method. To identify if a renovation 
measure was applied we used categories, we assumed a renovation measure was 
executed if the building characteristics belonged to a “better” category in the year 
2014 than in 2010. One advantage of this method is that we avoid minimal changes in 
the database that do not contribute to a better performance, however we might also 
have lost some cases that fell on the edges of the categories. For this study we assume 
that the renovation and the level of renovation is a choice that is taken carefully 
considering available budget on the moment of renovation, available techniques and 
practical aspects. Therefore we do not distinguish the different levels of renovation 
(e.g. how much a building is extra insulated).

The results demonstrate that there is a significant energy reduction when no 
renovation measures are taken. A possible explanation could be the change in 
behaviour. However, another (probably more likely) explanation is errors in the 
monitoring process. Social housing companies in the Netherlands must update their 
data every year, but since this is a manual process done by many different people, 
errors can easily be made. Further we used a correction for degree days however 
this method also has drawbacks as mentioned in Azevedo et al. [43]. Despite its 
limitations, this research provides new insights and confirms existing theories 
about the reasons energy saving renovations often result in lower-than-expected 
energy savings.
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 3.8 Conclusion

The aim of this study was to get a better insight in the real energy savings after 
thermal renovations and in the reasons why they often result in lower energy 
savings than expected. Based on this research, we can conclude that the amount of 
energy saved after a thermal renovation is dependent on the energy efficiency of the 
dwelling prior to the thermal renovation, type of dwelling, income level of household 
and occupancy. However, the number of occupants per house was not found to 
have a significant effect. From the investigated types of renovation measures, deep 
thermal renovations have on average the highest energy saving gap (250MJ), despite 
this deep renovations save on average (141MJ) still the most energy. Apart from 
deep renovations it is impossible to conclude which thermal renovation measure 
is the most effective because the results show that it is dependent on indirect and 
direct aspects. This means that because every situation is unique, tailored thermal 
renovation advice is needed to decide on the most effective thermal renovation 
measure. Relatively energy efficient dwellings prior to a thermal renovation benefit 
on average more from improvements of the building installations, while dwellings 
that are energy inefficient prior to the thermal renovations benefit on average more 
from an improved building envelope. Energy savings due to thermal renovations are 
on average higher for single-family dwellings than for multifamily dwellings, with 
the exception of dhw systems. We also found indications that a high occupancy 
time seems to have a negative effect on the energy savings when new building 
installations are installed. Better instructions regarding these installations after they 
are fitted might be a solution to increase the energy saving effect of these renovation 
measures. Furthermore, we indicate that occupants with a high income save on 
average more energy than occupants with low income. Based on these results, 
one should consider that while the thermal renovations for a household with a low 
income might be lower than expected, they will increase comfort.

For the energy saving gap, we found like in previous studies that the energy savings 
for low energy efficient buildings prior to thermal renovations are not well predicted. 
It is important that more research is conducted to improve the assumptions we 
make for these buildings in order to reduce the energy saving gap and prevent lower 
than expected saving effects and payback times. The results also indicate that this 
is probably even more important for single-family dwellings than for multifamily 
dwellings. Furthermore, we found that maybe more attention should be paid to 
building installations and how occupants use them because we observe that the 
energy saving gap is significantly larger if occupants are more often at home and the 
building installations are changed.
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The analysis of the occurrence of the energy performance gap before and after 
renovation showed that only in 7.6% of the cases a prebound and rebound effect 
occurred. This percentage is different per renovation measure. As expected, the 
prebound and rebound effect occur significantly more often in buildings that 
underwent a deep renovation than in buildings that underwent a single measure 
renovation. However, the results also show that if the occupant consumes more 
energy than expected before the thermal renovation, they often also consume more 
energy than expected after renovation and the other way around. This means that 
the rebound and prebound effect explain only part of the energy saving gap.

The logistic regression showed that the energy efficiency prior to the renovation, 
type of dwelling and occupancy have a significant effect on the probability that 
energy savings after thermal renovations result in lower energy savings than 
expected, we did not only find direct effects but also interaction effects. The 
influence of the energy efficiency of the building prior to the thermal renovation and 
the type of dwelling is dependent on the type of thermal renovation that is applied.

Overall, this paper has shown new insights towards the influence of the energy 
efficiency state of a building prior to thermal renovation, the type of building, the 
number of occupants, the income level of the occupants and the occupancy time 
on the actual energy savings, the energy saving gap and on the probability on 
lower energy savings than expected. For more accurate estimations towards energy 
savings after renovations, those influencing factors should be taken into account 
as direct and indirect (interaction) effects. The results could also be used to have 
more realistic expectations of the energy reduction achieved by thermal renovations, 
which is important for (amongst others) policymakers, clients and contractors who 
make use of energy performance contracting, home owners, landlords and (social) 
housing associations. Although this paper showed the most effective thermal 
renovation measures for specific household and building characteristics, the costs 
of the renovation measures should also be taken into account to make a realistic 
assessment which measure is the best to apply for a specific case. Therefore, we 
advise that further research towards effective thermal renovations should include the 
costs and benefits of the different renovation types.
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4 Variances in 
Residential Heating 
Consumption 
Importance of Building 
 Characteristics and Occupants 
Analysed by Movers and Stayers

Published as: Van den Brom, P., Hansen, A. R., Gram-Hanssen, K., Meijer, A., & Visscher, H. (2019). Variances 
in residential heating consumption–Importance of building characteristics and occupants analysed by movers 
and stayers.Applied Energy, 250, 713-728.

The previous two chapters showed discrepancies between actual and theoretical 
energy consumption and savings. Both acknowledged that the occupant has an 
influence on actual energy consumption; however, the extent of the influence is 
still not clear. Therefore, the aim of this chapter is to determine to what extent the 
occupant is responsible for the variance in energy consumption among buildings. 
We do this by examining two large datasets containing household and building 
characteristics as well as actual energy consumption data , originating from two 
different countries: the Netherlands and Denmark. The analyses show not only the 
influence of the occupant on the variance but also whether this influence differs if 
the buildings have different characteristics.

ABSTRACT It is commonly accepted that occupants have a significant influence on the 
variation in residential heating consumption. However, the scale of that influence 
lacks empirical investigation. The aim of this study was to distinguish which part 
of the variance in actual residential heating consumption can be attributed to the 
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occupants, and which part to the building itself. This was achieved by applying 
and extending a method suggested by Sonderegger in 1978, using updated and 
significantly improved data from two different countries: the Netherlands and 
Denmark. These data contain different types of heating supply systems (district 
heating and natural gas) and different housing forms (multi and single-family social 
housing, and private detached single-family houses). For the studied databases, 
the results indicate that approximately 50% of the variance in heating consumption 
between houses can be explained by differences related to occupants. The other 
50% can be explained by the characteristics of the building itself and other 
physical parameters, which are often not taken into account in simulation models 
of heat transmission within buildings. Additional analyses indicate that the relative 
influence of occupants on heating consumption differs depending on the building 
characteristics of the dwelling. For example, the influence of occupants is larger 
when the building is more energy efficient. Based on the research results, it can be 
concluded that it is unrealistic to aim for a building simulation model that perfectly 
projects residential heating consumption for individual cases. However, creating 
building simulation models and occupant consumption profiles that accurately 
represent average residential heating consumption should be possible.

KEYWORDS Residential building; Space heating; Actual energy consumption; 
Building energy simulation; occupants
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Nomenclature

DHW = domestic hot water
Adjheat t   = standardised heat consumption year t  [kWh]
heat t   = annual heat consumption year t  [kWh]
avg_heat 2010  = average annual heat consumption of the year 2010  [kWh]
avg_heat 2010  = average annual heat consumption of the year 2015  [kWh]
Cv  = Coefficient of variance
Sd  = Standard deviation
Nheat t   normalised heat consumption year t  [kWh]
c t   = constant, result from linear regression year t
b t   = coefficient, result from linear regression year t
LRC   = logarithm of relative heat consumption
Var max   = maximum variance

= variance year t 
= variance in heating consumption of ‘movers’ due to changes in 

heating consumption of the same occupants over time (SO) and 
variance due to changes in heating consumption due to new 
occupants moving into the house (NO) 

= variance in heating consumption of ‘stayers’: due to changes in 
heating consumption of the same occupants over time (SO)

= maximum variance in heating consumption, when everything is 
different compared to the previous period. Due to changes in 
heating consumption of the same occupants over time (SO) and 
changes in heating consumption due to new occupants moving into 
the house (NO) and change of physical characteristics that are not 
taken into account in the linear regression model (Ph)

SO = changes in heating consumption over time of the same occupants 
[%]

NO = changes in heating consumption due to new occupants moving into 
the house [%]

Ph = Physical characteristics that are not taken into account in the linear 
regression analyses [%]

AB = building characteristics that were available in the database and are 
taken into account in the linear regression [%]

2 s ta y e r sL R Cσ   

2 m o v e r sL R Cσ   

[ ]2
m a xV a rσ

2
tσ
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 4.1 Introduction

Household energy consumption is estimated to be responsible for approximately 
26% of the total energy consumption in Europe [1] . Therefore, policymakers see 
a large potential for energy savings in this sector. However, previous studies have 
indicated that thermal renovations often result in lower energy savings than expected 
[2]. This discrepancy between actual and theoretical savings is caused (among other 
factors) by the energy performance gap (EPG), which is the discrepancy between 
actual and calculated energy consumption of a household. The EPG illustrates 
that it is not possible to explain residential energy consumption by solely relying 
on building simulation models [3]. Several studies have also demonstrated that 
residential energy consumption varies largely due to the characteristics of the 
occupants as indicators of behavioural patterns [4-6]. For example incomes in 
England were found to be positively correlated with the actual energy consumption 
in a household [5] and a larger number of household members also results in higher 
energy consumption, but it decreases the energy consumption per person [6]. Age is 
found to be the most determining indirect effect on heating [4].

Based on previous studies, it is expected that occupants play an important role in 
this EPG, but the scale of this role is unclear [7]. Some researchers even expect the 
occupant role to be more important than the role of building characteristics [8, 9]. 
Sonderegger [10] was one of the first who attempted to define the extent to which 
occupants are responsible for the variance in energy consumption among similar 
houses, by studying movers (houses with changed occupants) and stayers (houses 
with the same occupant over time). Accordingly, Sonderegger compared the variance 
in energy consumption of houses with movers and houses with stayers. The aim 
of his method was to define the extent to which the variance in residential energy 
consumption was related to either occupants or building characteristics.

This study applies Sonderegger’s method to two significantly larger and more diverse 
datasets from the Netherlands and Denmark. This means that our data contains 
almost one million houses and households, compared to the 200 similar houses in 
Sonderegger’s study. This comparative design enables a stronger generalisability 
of the results, which is seldom seen in quantitative energy consumption studies. 
Because many researchers found a relation between building characteristics and 
occupant behaviour, the analyses are extended by studying whether the influence of 
occupant behaviour depends on the building characteristics.
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By doing this, the importance of the role of occupants for understanding variation in 
energy consumption among households is indicated, and the interaction of different 
types of building characteristics with the behaviour of occupants is shown. Knowing 
how much of the variance in energy consumption is caused by occupants enables 
a better insight in how to interpret the energy consumption results and how much 
variance in energy consumption can be expected due to variation in occupant 
behaviour. The results also indicate over which range the energy simulation can 
expected to be assumed to be correct. Further, the paper will show which part of 
the variance can be explained by the physical characteristics that are not taken into 
account in the energy simulation.

This paper first reviews research studies investigating the influence of the occupant 
on residential energy consumption. This section is followed by an explanation of 
the data used for this study, an explanation of Sonderegger’s method, and how 
this method is adapted to make it suitable for our datasets. Then, the results of the 
analysis are presented. In the discussion section, the authors consider both the 
advantages and disadvantages of the adapted method and the data used. Finally, 
conclusions are drawn in the final section.

 4.2 Literature review

Many researchers have already investigated variations in residential energy 
consumption in similar dwellings, and sought to explain the reasons for the variance 
in energy consumption among similar dwellings. In this literature review, an overview 
of studies on this topic is provided, and the research results, applied methods, and 
type and origins of the data are discussed. The aim of this review is to indicate 
current knowledge about the influence of occupants on building-related energy 
consumption and to define how this study could contribute to further insights.

The literature for this review was selected based on the following conditions: First, 
the aim of the research must include a better understanding of residential energy 
consumption and the influence of occupants; Second, the research must be based on 
measured data/post-occupancy data. This means that studies using simulated data were 
excluded from this literature review. The reasoning behind this that the use of simulated 
data is a simplification of reality, and therefore does not reflect the complexity of actual 
energy consumption. Finally, only references from academic journal papers are used.
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 4.2.1 Comparing results

Table 4.1 shows a summary of the literature review, and the first column lists the 
aims of the study. Although the aims of the studies appear similar, the results 
and conclusions vary. All studies concluded that occupants and their behaviour 
play a significant role in the amount of residential energy consumption. However, 
the amount of the impact is different across the studies, with some claiming that 
occupants are the most influential factor. For example, Steemers and Yun [5] found 
that the roles of occupant behaviour and socio-economic factors are the most 
important components for determining residential energy consumption. According to 
their research, the physical characteristics of dwellings (such as construction year, 
type and floor area) are less important. However, it should be taken into account that 
they also considered that the type of heating and/or cooling system and its control 
to be a decision of the occupant, and thus a behavioural factor.

Other studies concluded that the building characteristics are the principal 
determining factor for residential energy consumption. For example, Guerra Santin et 
al. [11] found that 42% of residential energy consumption can be determined by the 
building characteristics, and only 4.2% by occupant characteristics. In this study, 
it has to be taken into consideration that Guerra Santin et al. [11] used the linear 
regression to determine those percentages with the building characteristics, and 
subsequently added the occupant characteristics. Therefore, they did not consider 
possible relationships between occupant behaviour and building characteristics. 
These results might have been different if they had started with the occupant 
characteristics. Huebner et al. [12] found that building characteristics account for 
approximately 39% of the variability in energy consumption, socio-demographic 
factors are 24%, heating behaviour is 14%, and attitudes and other behaviour 
account for only 5%. However, a combined model including all predictors explains 
only 44% of all variability. Sonderegger [10] found that 54% of the variance in 
energy consumption among similar buildings could be explained by “obvious building 
characteristics”, 15% by the change of occupants, 17% by lifestyle, and 13% by 
house-related quality differences. The obvious building characteristics referred to 
by Sonderegger include for example the number of bedrooms, which he takes into 
account by applying a regression analysis. House related quality differences are 
the physical characteristics of the house that are not considered in the regression 
model, for example, if a tree blocks the solar radiation. Further, Brounen et al. [13] 
found that residential heating consumption is primarily determined by the building 
characteristics, such as its construction year or type.
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Other studies found the same (or almost the same) impact level of building and 
occupant characteristics on residential energy consumption. For example, Verhallen 
and Raaij [14] discovered that household behaviour explains 26% of residential 
energy consumption, and house characteristics explain 24%. They also found an 
interaction between building characteristics and residential energy consumption. As 
an illustration, house insulation has a positive effect because people tend to lower 
their thermostat settings more often, and they are more likely to open their windows 
more frequently. Similarly, a recent study [15] investigated how occupant behaviour 
is related to building characteristics (including heating and ventilation installations 
and building year). Gill et al. [16] found that energy efficiency behaviour accounts 
for 51% of the variance in heat consumption between dwellings. However, they 
explicitly state that behaviour is not claimed to be the dominant factor.

Several aspects can explain why the conclusions differ although the aim of the studies 
is similar. For example, the sample size and the level of detail of the collected data differ 
significantly between studies. Comparing the research of Spataru et al. [17] and the 
study of Brounen et al. [13] similar aims can be ascertained, but the data and focus 
of the researchers are completely different. The first used highly detailed monitoring 
data from a single house, while the latter used a large but more aggregated database 
containing information of one million houses and their occupants. Unavoidably, this 
results in different types of research and different research results.

In addition, the starting point of the researcher (and the definition of the influence 
of the occupant on residential energy consumption) can mean that those studies 
with similar aims arrive at different conclusions. For example, all studies indicated 
that occupants have a significant influence on residential energy consumption. 
However, there is discussion about the magnitude of this influence, and whether it is 
more influential than, building characteristics. One of the reasons for these different 
research results is the different starting point of the research. Some researchers take 
the house and its physical characteristics as a starting point [18], while others focus 
on the occupant. Here, they assume the occupant chooses the house and therefore 
the influence of this choice is part of the influence of the occupant on residential 
energy consumption [8]. Often, when the first starting point is applied, the building 
characteristics seem to be more important. Conversely, when the second starting 
point is applied, occupant influence appears to be more important. Several studies 
have indicated an awareness of these direct and indirect effects [5, 9, 20]. For 
example: Steemers and Yun [5] demonstrated that behavioural, physical and socio-
economic parameters have direct and indirect influence of energy use; and Estiri 
[20] showed that household characteristics have almost the same impact on building 
energy consumption as building characteristics, if not only their direct effect but also 
their indirect effects are taken into account.
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 4.2.2 Occupant characteristics

Many of the studies use occupant characteristics to indicate the influence of the role 
of occupants on residential energy consumption. The main reason for this is that 
occupant characteristics are easier to collect than (for example) detailed behavioural 
indicators, and they are available for a higher number of households. As several 
studies suggest that occupant characteristics indicate occupant behaviour, it also 
appears a sensible approach. Several occupant characteristics are found to correlate 
with actual energy consumption. The strongest and most frequently-mentioned 
correlations are those between the number of occupants [4, 12, 18-24], and income 
[5, 12, 19, 20, 22, 25].

 4.2.3 Statistical methods

While the studies have differences in data and focus, their statistical methods are 
similar. Almost all studies use cross-sectional statistical analysis5 techniques, 
with the majority using linear regression or multiple linear regression analysis. 
Within studies on the impact of prices on residential energy consumption, panel 
data are more frequently used [26, 27]. In our literature review, only the study of 
Sonderegger [15] makes use of longitudinal/panel data6. In his research, 205 similar 
houses were monitored for 3 years (1971-1973). The resulting data included energy 
consumption figures, building characteristics, and which occupants were living the 
house during the monitored years. The research is based on the assumption that if 
the occupants remain the same, energy consumption will be more constant over time 
than if they move and are replaced by other occupants.

Conducting energy consumption research can benefit significantly from longitudinal 
data and the accompanying statistical data analysis techniques. In the past, many 
studies used data from similar houses to compare the influence of the occupant on 
residential energy consumption. However, no houses are exactly similar, owing to 
different locations and layouts. Therefore, longitudinal data and the accompanying 
statistical data analysis techniques are highly beneficial for conducting energy 
consumption research. For example, multiple houses over time can be monitored, 
and the direct influence of the building characteristics can be excluded from the 

5 Cross sectional data is data of many different subjects at the same point of time

6 Longitudinal/panel data is data of many different subject that are followed over multiple points in time
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analysis because these factors remain the same (assuming that the house is not 
renovated). This presents significant potential for evaluating the effect of policy 
changes, newly installed technologies and renovations.

 4.2.4 Conclusions of the literature review

Based on this literature study, it can be concluded that determining the effect of the 
occupant behaviour on residential energy consumption is highly dependent on the 
boundaries that the researcher set for the term occupant influence. The results of 
determining the influence of occupants on residential energy consumption varied 
from 4.2% to more than 50%. Furthermore, if longitudinal data are available then 
the research should benefit from its possibilities. Further, most studies on the 
influence of occupants on residential energy consumption are based on one dataset 
from one country or region. Moreover, the literature review indicates that all studies 
acknowledge that occupants affect actual energy consumption but the degree of 
influence varies between the studies. A lack of large databases and detailed building 
and occupant data makes it difficult to establish a constant value or even a range 
for such influence, since many of the previous studies have been conducted on 
small databases.

TABLE 4.1 Literature overview of studies that aim to get a better insight into residential energy consumption and the reason for 
the variance in energy consumption among similar dwellings

Aim/research question Data, type, country Method Conclusion ref

to determine the factors 
responsible for the 
remaining 46% variation 
that cannot be explained by 
conventional factors.

–  Twin rivers project, 248 
townhouses,

–  monthly electric and 
natural gas meter 
readings

–  UK

regression, 
three-factor 
multiplica-
tive model

54% of the variance is explained by 
obvious building characteristics, change of 
occupants explains 15%, lifestyle explains 
17% and persistent house-related quality 
differences explain 13%.

[10]

to determine the factors 
that determine energy 
use for home heating are 
investigated in this study.

–  145 similar houses 
79 with standard 
insulation and 78 with 
superior insulation.

–  Natural gas meters, 4 
moments in time

–  The Netherlands

factor 
analysis

–  Home characteristics, special 
circumstances, and sociodemographic 
together explain 58 % of the energy 
use variance.

–  Household behaviour alone explains 
26 %

–  home characteristics alone 24 %
–  special circumstances alone explain 11 

% of the energy-use variance

[14]

>>>

TOC



 138 Energy in Dwellings

TABLE 4.1 Literature overview of studies that aim to get a better insight into residential energy consumption and the reason for 
the variance in energy consumption among similar dwellings

Aim/research question Data, type, country Method Conclusion ref

to determine to what 
extent consumer behaviour 
influences space heating 
energy demand and 
test the linear approach 
describing space heating 
energy demand by 
means of a simple linear 
dependence on climate 
(heating degree days) and 
the thermal quality of a 
building (heat load).

–  400 households
–  Data on energy 

consumption (without 
electricity demand for 
appliances) by fuel type 
are available for at least 
1 year, in most cases for 
2 or 3 years. sociological, 
and structural data

–  Austria

service 
factor 
analysis

–  The result of this investigation provides 
evidence of a rebound-effect of about 15 
to 30% due to building retrofit.

[28]

to determine to what extent 
energy performance is 
determined by interactions 
between occupants, 
behaviour and buildings 
systems, as well as 
building and climate 
characteristics establish.

–  3358 housing units 
for heating and 2718 
housing units for cooling 
climate

–  actual energy 
consumption data 
for heating and 
cooling and building, 
occupant behaviour 
and socioeconomic 
characteristics data

–  50 states in US

regression 
models 
and path 
analysis

–  Climate and building characteristics 
alone are insufficient as determinants of 
energy demand.

–  Most significant parameter is climate. 
Second is a set of parameters related to 
occupant behaviour, specifically in terms 
of the choices made about heating and 
cooling systems and their control

–  Less important than might be expected 
are some physical characteristics of the 
dwellings

[5]

to gain greater insight 
into the effect of occupant 
behaviour on energy 
consumption for space 
heating by determining 
its effect on the variation 
of energy consumption in 
dwellings while controlling 
for building characteristics

–  15000 interview-based 
survey

–  3 years of heating (gas 
consumption data) 
including household 
characteristics and use of 
the dwelling,

–  the Netherlands

ANOVA & 
multiple 
regression 
analysis

–  building characteristics determine 42% 
of the energy use in a dwelling

–  adding occupant characteristics and 
behaviour increases the explanation 
factor with 4.2%

[11]

to determine the direct, 
indirect, and total 
impacts of household and 
building characteristics 
on residential energy 
consumption

–  microdata from the 
13th Residential Energy 
Consumption Survey 
(RECS)

–  total household energy 
consumption

–  US

structural 
equation 
modelling

–  the direct impact of household 
characteristics on residential energy 
consumption is significantly smaller than 
the indirect impact.

–  Taking both direct and indirect impact 
into account the total impact of 
households on energy consumption 
is only slightly smaller than that of 
building characteristics.

[20]
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TABLE 4.1 Literature overview of studies that aim to get a better insight into residential energy consumption and the reason for 
the variance in energy consumption among similar dwellings

Aim/research question Data, type, country Method Conclusion ref

understanding the 
spectrum of residential 
energy consumption

–  residential Energy 
Consumption Survey 
(RECS) public use 
microdata set

–  total household energy 
consumption

–  US

quantile 
regression 
analysis

–  Results show that housing size matters 
for space conditioning

–  housing type has a more 
nuanced impact.

–  Some, not all, types of multifamily 
housing offer almost as much savings as 
a reduction in housing area by 100 m2, 
compared to single-family houses.

[24]

Identifying the key 
determinants and effects 
of occupants’ behaviour 
on energy use for space 
heating

–  313 household
–  annual gas consumption
–  the Netherlands

Pearson 
correlation 
samples 
t-test, 
ANOVA, 
Chi-square 
regression 
model

–  Interaction between occupant behaviour 
and building characteristics are found

–  occupant behaviour (indirect and direct) 
can predict 11,9% of the variation in 
energy use.

[18]

to evaluate the 
relationships between 
occupancy and energy 
usage, as well to diagnose 
the performance and 
energy efficiency

–  1 house, one family was 
extensively monitored

–  energy consumption for 
heating

–  UK

–  In order to reach the 2050 target to 
reduce carbon emissions by 80%, the 
behaviour of the occupant is increasingly 
important, being responsible for the 
energy consumption in the building.

[17]

the contribution of 
behaviours to actual 
performance

–  26 similar dwellings
–  domestic electricity heat 

and water consumption 
and occupant behaviour

–  UK

linear 
regression

–  Energy-efficiency behaviours account 
for 51% of the variance in heat 
consumption in dwellings

–  37% of the variance in electricity 
consumption can be explained by energy 
behaviour

–  and 11% of the variance in water 
consumption can be explained by 
energy behaviour.

[16]

to identify the influences 
of the occupant 
behaviour on the building 
energy consumption.

–  annual building energy 
use intensity (EUI) 2003

–  annual energy 
consumption

–  Japan

cluster 
analysis, 
Grey 
relational 
analysis

–  Weather conditions significantly 
influenced occupant behaviour, thereby 
impacting building energy consumption.

–  Households tended to maintain their 
lifestyles, and the level of their general 
indoor activities associated with these 
end-use loads did not fluctuate widely 
from month to month.

[29]

to determine if energy 
efficiency of appliances and 
houses or user behaviour is 
the more important

–  50000 households
–  meter readings 

heating and electricity 
consumption, socio-
economic information on 
their inhabitants, building 
information

–  Denmark

regression 
and 
literature 
study

–  user behaviour is at least as important 
as the efficiency of technology 
when explaining households’ energy 
consumption in Denmark.

[8]
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TABLE 4.1 Literature overview of studies that aim to get a better insight into residential energy consumption and the reason for 
the variance in energy consumption among similar dwellings

Aim/research question Data, type, country Method Conclusion ref

Determining the extent to 
which the use of gas and 
electricity is determined by 
the technical specification 
of dwellings as compared 
to the demographic 
characteristics of 
the residents.

–  3000000 Dutch homes 
and their occupants

–  annual gas and electricity 
consumption

–  the Netherlands

regression –  Residential gas consumption is 
determined principally by structural 
dwellings characteristics, such 
as the vintage, building type, and 
characteristics of the dwelling,

–  while electricity consumption 
varies more directly with household 
composition, in particular income and 
family composition.

[13]

to determine the impact of 
occupants on residential 
energy consumption 
in China.

–  642 surveys related to 
behaviour and energy use 
in winter and 838 surveys 
in summer

–  household energy data 
building and occupant 
characteristics and 
behaviour

–  China, Hangzhou

bivariate 
correlation, 
path, and 
multiple 
linear 
regression 
analysis

–  household socio-economic and 
behaviour variables are able to explain 
28.8% of the variation in heating and 
cooling energy consumption.

[21]

to what extent different 
types of variables 
(building factors, 
socio-demographics, 
attitudes and self-
reported behaviours) 
explain annualized energy 
consumption in residential 
buildings

–  data from a sample of 
924 English households 
collected in 2011/12

–  annual energy 
consumption

–  England

lasso 
regression

–  Building variables on their own explained 
about 39% of the variability in energy 
consumption

–  socio-demographic variables 24%
–  heating behaviour 14%
–  attitudes &other behaviours only 5%.
–  a combined model encompassing all 

predictors explained only 44% of all 
variability, indicating a significant extent 
of multicollinearity between predictors.

[12]

socio-cultural differences in 
heat consumption

–  household data and 
building characteristics 
data

–  households’ annual heat 
consumption for space 
heating and heating of 
hot water

–  Denmark

regression –  households’ heat consumption levels 
vary across social groups

–  social groups indicate differences in 
heating-consuming habits..

–  the results of the paper indicate that 
around one-third of the impact of 
educational and income differences 
between households on heat 
consumption are due to differences in 
heat-consuming habits (direct effect), 
whereas the rest, two thirds, are due to 
differences in households and houses 
(indirect effects)

[19]
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TABLE 4.1 Literature overview of studies that aim to get a better insight into residential energy consumption and the reason for 
the variance in energy consumption among similar dwellings

Aim/research question Data, type, country Method Conclusion ref

to provide a better 
understanding of the main 
determinants of residential 
energy consumption 
in order to guide 
energy policymaking.

–  survey data 36000 
occupants, national 
housing survey

–  household energy 
consumption

–  France

Multiple 
Corre-
spondence 
Analysis and 
Ascending 
Hierarchical 
Classifi-
cations, 
OLS regres-
sion.

–  energy prices were the most important 
factors determining domestic 
energy consumption.

–  Occupant characteristics significantly 
affect domestic energy use.

[30]

 4.3 Data

Two databases are used in this study: one with data from Dutch houses and 
households and one from Danish houses and households. This section explains the 
two datasets and how they are used in this study. The first part explains the Dutch 
database and the second part the Danish database.

 4.3.1 Dutch data

The Dutch data originate from two different sources. The first one is the SHAERE 
database, which is a database from Dutch social housing organisations in the 
Netherlands. It is primarily used to monitor energy efficiency and contains 60% 
of the Dutch social housing stock. Of the total housing stock, social housing stock 
in the Netherlands is relatively large compared to other countries, accounting for 
30%. This means the database contains a significant share of all houses in the 
Netherlands. Within these houses in the database, 46.9% are single family houses 
and 53.1% are multi-family houses. For single-family houses, the vast majority 
are terraced. The database contains most of the input variables that are used to 
calculate the energy performance of houses, the energy performance certificate, and 
predicted energy consumption per house for six years (2010-2015). This dataset is 
combined with actual annual energy consumption data from Statistics Netherlands. 
Energy consumption data are considered private (sensitive information); therefore, 
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it is only allowed to publish the results on an aggregated level. Apart from actual 
energy consumption data the Statistics Netherlands database also contains 
occupant characteristics data (such as income, number of household members, and 
employment status).

Approximately 95% of Dutch households use gas as a heating source for their 
house [31]. In countries such as the Netherlands and Denmark, energy for heating 
constitutes the main energy demand of a house. Further, energy consumption for 
heating has the highest energy performance gap. Therefore, only houses that use 
gas as a heating source are studied. This enables us to distinguish energy consumed 
for heating and domestic hot water (and sometimes cooking) on one side and energy 
consumed for electrical appliances on the other side. Because domestic hot water 
is on average a relatively small part of the gas consumption of Dutch houses from 
now gas consumption will be referred to as the energy used for heating. However the 
amount of gas consumption for domestic hot water is significant (in the Netherlands 
on average 16%) and therefore it is important that the reader should be aware that 
this is included in the term “heating consumption” [32]. Energy supply companies 
in the Netherlands are only obligated to report actual energy consumption every 
three years. If the data is not reported, energy consumption data of the previous 
year is used and therefore all cases with exactly the same gas consumption as the 
previous year are deleted (approximately 15% of the total amount of cases). It is 
assumed highly unlikely that a household would use precisely the same amount of 
gas every year.

Houses with collective installation systems are deleted from the database because 
the Dutch statistical experts expressed doubts about the quality of this data. 
Further, because the databases that we use are relatively large, there is an increased 
probability of them recording unrealistic values that might affect the results. To avoid 
possible bias of those unrealistic values and errors biasing the results, the highest 
and lowest 1% of household energy consumption (kWh) and area (m2) are removed 
for each year in the analysis. Because the relative energy consumption is used in 
this study (explained in section 5 energy consumption 2015/energy consumption 
2010), cases with a relative consumption higher than 12 were deleted. This is 
because some extreme values were found that are highly unlikely and yet have a 
significant influence on the mean (891 cases), so they can be considered outliers. 
For this analysis, it is important that the building characteristics are constant. 
Therefore, dwellings with changed building characteristics (such as renovations or 
administrative corrections) are deleted (approximately 30% of the cases). Finally, 
only cases that had at least an energy consumption record for the years 2010 and 
2015, and a theoretical energy consumption record for at least one year are taken 
into account. After filtering, data on 375,382 houses remained.
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 4.3.2 Danish data

The Danish data came from two sources. Data on building and household 
characteristics were taken from Statistics Denmark’s administrative registers, which 
covers the full population. These were merged with data on household energy 
consumption for space heating and hot water from the Danish Building and Dwelling 
Register (BBR), which is part of the Danish Ministry of Taxation. Heat supply utilities 
in Denmark are required by law to submit household energy consumption data to 
BBR, who subsequently compile and prepare data for research and other purposes. 
The administrative data from Statistics Denmark is accessible in anonymised form 
through an online server.

The data are registered on housing units. Therefore, the used data on energy 
consumption is from single-family detached houses that are individually metered 
to avoid uncertainties about which households the consumption relates to. Single-
family houses are the predominant type of housing in Denmark, accounting for 44 
% of the housing stock in 2014 (Statistics Denmark). Further, in the Danish sample, 
92.57 % of the houses are owner-occupied. Data for houses with an individual 
heat supply ( for example oil-fired boiler) has some uncertainties regarding the 
periodisation of yearly energy consumption because it is not clear at what time the 
fuel is used. Therefore, data is restricted to houses supplied with district heating 
or gas, which together supplied 78 % of Danish households in 2015 (Statistics 
Denmark). By law, all households in Denmark have individual metering of their 
energy consumption, independently if the supply is by gas or by district heating. 
By restricting the study to households supplied with district heating, or a gas 
supply that has registered heat consumption, the data covers approximately 64% 
of all single-family detached houses in Denmark. It is not possible to distinguish 
between energy used for space-heating and domestic hot water, but it is estimated 
that space-heating accounts for approximately 80%, while the remainder is for 
domestic hot water [33]. However, in newer houses the percentage attributes to 
space heating might be lower due to their higher energy efficiency. To mitigate 
the risk of unrealistic values and errors biasing the results, the highest and lowest 
1% of household energy consumption (kWh) and areas (m2) are removed for each 
year in the analysis. Moreover, the sample was restricted to domestic housing, 
not for business. Further, if the house had no registered occupants, its data were 
removed from the sample. Taken together, this removed approximately 17 % of the 
observations. Finally, 1,425 observations were removed because their consumption 
in 2015 was more than five times higher than in 2010. Also 27,547 observations 
were removed because they did not have the same building characteristics registered 
in 2010 and 2015. After filtering, data of 512,393 houses remained.Table 4.2 shows 
the variables used in the regression as building characteristics.
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TABLE 4.2 Variables used in the regression model as building characteristics for Danish dataset

Variable name Variable description Categories

gas Heating supply: natural gas or district heating? 0= District heating; 1=Natural gas

area Heated area (m2) Continuous

rooms Number of rooms Count

woodstove Do the house have a woodstove or fireplace? 1=yes

Attic floor Do the house have an attic floor? 1=yes

basement Do the house have a basement? 1=yes

roof Roof material 1=fibrecement; 2=cement stone; 3=tile, 4=other 
material

exteriorwall Exterior wall material 1=Bricks; 2=Wood; 3=Concrete; 4=Other material

building-
period7a

Building period in 7 categories 1=<1938; 2=1938-1960; 3=1961-1972; 4=1973-
1978; 5=1979-1998; 6=1999-2006; 7=>2006

 4.4 Method

This section explains the method used in this study, which is based on the method 
proposed by Sonderegger [10]. This method is based on the difference in variance 
between movers and stayers. Therefore, this methodology section starts by 
describing how movers and stayers are identified. This is followed by an explanation 
of Sonderegger’s method, which describes step-by-step how the method was 
applied, and how it was made applicable for our data. This description also explains 
why the variance in relative heat consumption instead of the average relative heat 
consumption is studied (heat consumption 2015 divided by heat consumption 
2010). Further, it should be mentioned that when heating consumption is referred 
to in the text, this also includes energy consumption for domestic hot water. This 
is included because the amount of energy consumed for hot water is relatively 
small compared to energy used for heating (approximately 20%) [33]. Energy for 
Domestic Hot Water (DHW) is, compared to energy for heating, less dependent on 
the technical characteristics of a building. The amount of energy consumption for 
DHW will be relatively large for energy-efficient buildings compared to relatively 
energy-inefficient buildings, because the energy demand for heating is in energy-
efficient buildings is lower than in energy-inefficient buildings, while the domestic 
hot water demand is not influenced by the energy-efficiency of the building. This is 
something to be aware of because it allows for possible bias.
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 4.4.1 Identifying movers and stayers

To identify movers and stayers in the databases, it was determined whether the 
reference person in a household stayed the same or changed between 2010 and 
2015. For the Dutch case, the reference person of a house is already identified in 
Statistics Netherlands data. For the Danish case, the oldest person in the house is 
selected as the reference person (if two people have exactly the same age, one is 
randomly chosen). This method could cause some bias because it is possible that 
the reference person will leave the house but the others will stay (or the other way 
around). However, given the large size of the datasets, this is considered acceptable, 
and so the authors do not expect those cases to influence the results significantly.

 4.4.2 Method description

The starting point of Sonderegger’s method is the assumption that the heat 
consumptions of two different time periods will have a higher correlation for houses 
with the same occupant than for houses with different occupants, because occupants 
continue to have the same behaviour over time. To investigate this, a comparison 
is made of the variance in relative heat consumption of a group of houses where 
occupants remained the same (stayers) and a group where occupants changed 
(movers). The variance of relative heat consumption and not the mean is chosen for 
study, because the variance shows how far the relative heat consumption of different 
cases is distributed. A large variance would mean that the spread of the relative 
heating consumption is wide, whereas a small variance would mean the opposite 
(Figure 4.1)
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FIG. 4.1 Fictive normal distributions to show the effect of data with the same mean but a different variance

The analyses used heat consumption data from 2010 and 2015. To make the heat 
consumption of those two years comparable, a standardization method is applied: 
the heat consumption of 2015 is multiplied by the ratio of the means of the years 
2010 and 2015 (Eq. 4.1), Doing this ensures the removal of variances in heat 
consumption due to weather and other external factors.

EQUATION 4.1

adjheat2015 = standardised heat consumption 2015
avg_heat2010 = average annual heat consumption 2010
avg_heat2015 = average heat consumption 2015
heat2015 = annual heat consumption 2015 for individual house

The standardisation is followed by a linear regression, where the dependent 
variable = actual heat consumption, and the independent variable = theoretical 
heat consumption/building characteristics. This linear regression is conducted for 
two reasons: 1. To determine which part of the variance in energy consumption 
for heating can be explained by the available building characteristics (AB) in the 
database; and 2. To make the buildings comparable. The regression coefficients are 
used to normalise the heating consumption, which makes the buildings comparable 
even though they have different building characteristics.

2010
2015 2015

2015

_
_

avg heatadjheat heat
avg heat

 
=  
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EQUATION 4.2 

EQUATION 4.3 

Nheatt = normalised heat consumption year t
ct = constant, result from linear regression year t
bt = coefficient, result from linear regression year t

Then, the relative heat consumption is determined, which is the normalised heat 
consumption of 2015 divided by the normalised heat consumption of the year 
2010 (Eq. 4.4). When the relative heat consumption is close to one it means the 
heat consumptions of 2010 and 2015 are similar, whereas values of lower than 
one means the heat consumption of 2015 was lower than in 2010. Further, a figure 
higher than one means the heat consumption of 2015 was higher than in 2010. To 
make the data useful for further comparison, the natural logarithm of the relative 
consumption is calculated.

EQUATION 4.4

LRC = logarithm of relative heat consumption

This makes the variance of relative heat consumption of movers and stayers 
comparable. However, to determine how much influence the movers and stayers 
have on the variance, first the maximum possible variance has to be determined. 
This maximum possible variance is determined by adding up the variance of movers 
in 2010 and 20157. This would be the variance if the consumption level of each 
house in the second period were totally unrelated to its own level in the first period. 
Because the logarithm of relative heat consumption is used also the variance of the 
logarithm of heat consumption for 2010 and 2015 should be used.

EQUATION 4.5 

7 Based on the law of propagation of variance of uncorrelated factors

2010 2010 2010 2010Nheat c b heat= + ⋅  

  

2015 2015 2015 2015Nheat c b adjheat= + ⋅  

  

2015

2010

ln NheatLRC
Nheat

 
=  

 
 

2 2
max 2010 2015Var σ σ= +   
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Varmax = maximum variance
σ2

t = log variance year t

The following assumptions are crucial for understanding how to define which part 
of the variance in heating consumption is due to occupants and which part is due 
to the building characteristics. This study assumes that the heat consumption in 
houses with the same occupant(s) (stayers) for the two periods would result in a 
higher correlation of heat consumption between those periods than that in houses 
with changed occupant(s) (movers). This assumption is made because occupants 
are expected to have a rather stable heating consumption pattern over time, for 
example, due to energy consumption practices and comfort expectations that gets 
embodied and ‘carried’ from one situation to the next [34, 35]. Energy consumption 
practices refer to routinized forms of behaviour that occupants perform in their 
everyday life, and although such practices have some continuity over time, they are 
also in constant change, for example in relation to new material surroundings [36, 
37]. Therefore, occupants are expected to change consumption patterns over time, 
especially when moving into a new house. Thus, this study distinguishes between 
two types of changes over time. The first type relates to houses where the occupants 
do not move, which is expressed in the variance of the logarithm relative heating 
consumption of the stayers in this research. To these occupants the changes will be 
referred to as ‘changes in heating consumption of the same occupants over time’ 
(SO). The second type relates to houses where the occupants change because new 
occupants move in (movers). It is expected that the practices performed by the 
previous (in 2010) and the new occupants (in 2015) have some similarities because 
they are performed in more or less the same material surroundings. However, it is 
also expected that the heating consumption in the ‘movers’ group changes over 
time because the occupants in the house are new due to the interaction between the 
practices that the occupants ‘carry’ with them and the new material surroundings 
of the occupants, resulting in completely different consumption patterns. These 
changes are referred to as ‘changes in heating consumption due to new occupants’ 
(NO). Finally, the linear regression is demonstrated on the variances due to ‘available 
building characteristics’ (AB). For the Dutch case, theoretical heat consumption was 
available, and for the Danish case, the characteristics are mentioned in Table 4.2. 
However, the ‘available building characteristics’ (AB) in the databases are probably 
not the only physical characteristics that explain part of the variance in energy 
consumption among houses. It is expected that there will be other physical aspects 
that account for the variance of heat consumption, which will be indicated by the 
maximum variance in heat consumption. Based on these assumptions, the variance 
in heat consumption can be explained as follows:
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2 stayersLRCσ    = variance in heating consumption of ‘stayers’: due to changes in 
heating consumption of the same occupants over time (SO)

2 moversLRCσ    = variance in heating consumption of ‘movers’ due to changes in heating 
consumption of the same occupants over time (SO) and variance due to changes in 
heating consumption due to new occupants moving into the house (NO)

[ ]2
maxVarσ = maximum variance in heating consumption, when everything is different 

compared to the previous period. Due to changes in heating consumption of the 
same occupants over time (SO) and changes in heating consumption due to new 
occupants moving into the house (NO) and change of physical characteristics that 
are not taken into account in the linear regression model (Ph)

Following these assumptions, it is possible to calculate how much of the variance 
is due to ‘changes in heating consumption of the same occupants over time’ 
(SO), ‘changes in heating consumption due to new occupants’ (NO), and ‘Physical 
characteristics that are not taken into account in the linear regression analyses’ (Ph). 
Additionally, there are the results of the linear regression, which indicates how much 
of the variance can be explained by the building characteristics that are taken into 
account in the linear regression (AB).

EQUATION 4.6 

EQUATION 4.7

EQUATION 4.8

2AB R= of linear regression

To investigate whether the influence of the occupant changes for different type 
of building characteristics, exactly the same procedure on a split file per building 
characteristics category is conducted. When the entire procedure is conducted for 
every building characteristics and each category, the differences per building category 
characteristics can be compared. The categories we investigated are as follows:

[ ] ( )
2

2
2
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1 Energy label (Dutch data)
2 Construction year (Dutch and Danish data)
3 Building type (Dutch data)
4 Heating system (Dutch and Danish data)
5 Ventilation system (Dutch data)

 4.5 Results

This section presents the results of the different analyses. It starts by showing the 
general results for both databases, and also describe the intermediate steps. These 
results are followed by the results per building characteristic. The first building 
characteristic that is explored is the energy label, followed by the construction 
period, dwelling type, type of heating system, and type of ventilation system. 
Depending on data availability, the analyses are executed either on both databases 
or on the Dutch database.

 4.5.1 General results (full dataset)

As described in the method section, first the heating consumption for 2015 is 
standardized (Eq. 4.1). The results are presented in Table 4.3, which indicate that 
the coefficients of variances of 2010 and 2015 are similar, which means that the 
spread of the consumption is equal for both years.
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TABLE 4.3 Standardising heating consumption

Full sample (N=373,582) Full sample (N=512,393)

The Netherlands Denmark

2010 Mean [kWh] 13,963.7 19,284.3

Standard deviation 5,969.3 7,672.0

Coefficient of variance 0.427 0.398

2015 Mean [kWh] 9,909.1 16,267.4

Standard deviation 4,379.2 6,365.2

Coefficient of variance 0.441 0.391

2015 adjusted* Mean [kWh] 13,963.7 19,319.9

Standard deviation 6,158.4 7,559.6

Coefficient of variance 0.441 0.391

* 2015 values multiplied by the ratio of the means

After this, a linear regression for 2010 and 2015 is conducted, with actual heat 
consumption as a dependent variable. The independent variables that are used 
for the regressions are different for the Dutch and the Danish cases due to data 
availability. For the Dutch case the energy performance of a house which is often 
referred to as “theoretical heating consumption” is used. The theoretical heating 
consumption is calculated based on the building characteristics, using the method 
described in ISSO-publication 82 [38], with the main aim to determine the energy 
performance certificate of Dutch dwellings (because the theoretical energy 
consumption is based on all available building characteristics available in the 
database). For the Danish case, the parameters indicated in Table 4.2 are used. 
With this regression it can be determined how much of the variance in heating 
consumption can be explained by the available building characteristics (average R2 
of regression models). The regression results indicate that the “theoretical heating 
consumption” explains (on average) 22.7% of the variance in heating consumption 
for the Dutch case, and 28.2% for the Danish case. The results of the regression 
(constant and B coefficient) are also used to correct for the building characteristics 
(Eq. 4.2 and Eq. 4.3). The regression results can be found in the Appendix in 
Tables 4.7, 4.8 and 4.9. After correcting the heating consumption for building 
characteristics, the results in Table 4.4 demonstrate (as expected) that the variance 
and means for both years and for movers and stayers are close.
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TABLE 4.4 Normalised heating consumption for movers and stayers in the Netherlands and Denmark

Stayers (Netherlands) Movers (Netherlands) Stayers (Denmark) Movers (Denmark)

Sample (N=254,056) Sample (N=121,326) Sample (N=389,890) Sample (N=122,503)

2010 Mean 98.855 ± 0.076 101.513 ± 0.115 99.380 ± 0.053 102.377 ± 0.101

Sd 38.211 ± 0.054 40.155 ± 0.082 33.324 ± 0.038 35.324 ± 0.071

Cv 0.387 ± 0.001 0.396 ± 0.001 0.335 ± 0.000 0.345 ± 0.001

2015 Mean 101.034 ± 0.080 96.944 ± 0.118 100.306 ± 0.053 99.212 ± 0.096

Sd 40.411 ± 0.057 40.982 ± 0.083 33.217 ± 0.038 33.473 ± 0.068

Cv 0.400 ± 0.001 0.423 ± 0.001 0.331 ± 0.000 0.337 ± 0.001

Sd = standard deviation; Cv = coefficient of variance. Error standard deviation was estimated by Sd/sqrt(2N), error the mean 
Sd/sqrt N and error of coefficient of variation is error Sd/mean.

To identify how the heating consumption of 2010 and 2015 in the movers and 
stayers groups relate to each other, the relative heating consumption is calculated. 
This is the heating consumption of 2015 divided by the results for 2010. A natural 
logarithmic value is used to make the data useful for further comparison (Eq 4.4). A 
comparison of the natural logarithmic relative heating consumption for movers and 
stayers with each other shows that the variance differs between movers and stayers. 
This is an indication that (as assumed) the correlation of heating consumption of 
stayers between one year and another is higher than the correlation of houses with 
different occupants (Table 4.5).

TABLE 4.5 Relative heating consumption of stayers and movers in the Netherlands and Denmark

Stayers (Netherlands) Movers (Netherlands) Stayers (Denmark) Movers (Denmark)

Sample (N=254,056) Sample (N=121,326) Sample (N=389,890) Sample (N=122,503)

LRC LRC LRC LRC

Mean 0.011 ± 0.001 -0.066 ± 0.002 0.0102 ± 0.001 -0.030 ± 0.001

Standard 
deviation

0.384 ± 0.001 0.574 ± 0.001 0.379 ± 0.000 0.450 ± 0.001

Variance 0.147 ± 0.049 0.329 ± 0.018 0.143 ± 0.042 0.203 ± 0.030

Now the relative heating consumption for movers and stayers is known, the 
linear regressions show how much of the variance can be explained by the 
available building characteristics. Next, the maximum possible variance in heating 
consumption is defined for the occupant, and building characteristics that were not 
the same over the years. This will enable determining how much of the variance is 
explained by the physical characteristics that were not available in the database 
(which are the characteristics not considered in previously- conducted linear 
regressions). This is achieved by adding the variance of the heating consumption 
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in 2010 from the movers group together with the variance in heating consumption 
in 2015. For reasons of comparison, the natural logarithmic variance in heating 
consumption is used (Table 4.6).

TABLE 4.6 Logarithm normalised heating consumption of movers in the Netherlands and Denmark

Movers (Netherlands) LNG Movers (Denmark) LNG

Sample (N=121,326) Sample (N=122,503)

2010 Mean 4.529 ± 0.001 4.559 ± 0.001

Standard deviation 0.473 ± 0.001 0.399 ± 0.001

Variance 0.224 ± <0.001 0.159 ± <0.001

2015 Mean 4.461 ± 0.001 4.530 ± 0.001

Standard deviation 0.547 ± 0.001 0.393 ± 0.001

Variance 0.299 ± <0.001 0.154 ± <0.001

Following Sonderegger’s method, it is assumed that the maximum variance of 
heating consumption is the sum of three factors:

1 “changing heat consumption over time of the same occupants” (SO): 
time-dependent variable for the ith house

2 “changing heat consumption due to new occupants moving into the house” (NO): 
of the occupant of the ith house, independent of time

3 “Physical characteristics that are not taken into account in the linear regression 
analysis because they were not available in the database” (Ph) of the ith house, 
time independent.

The variance of relative heating consumption of movers is the sum of two factors:

1 “changing heat consumption over time of the same occupants” (SO): 
time-dependent variable for the ith house

2 “changing heat consumption due to new occupants moving into the house” (NO): 
of the occupant of the ith house, independent of time

Finally, the variance of relative heating consumption of stayers is:

1 “changing heat consumption over time of the same occupants” (SO): 
time-dependent variable for the ith house
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Based on these assumptions it can be calculated which part of the variance is caused 
by which factor. However, it should be remembered that the available building 
characteristics have been corrected by using the linear regression results. Equations 
4.6, 4.7 and 4.8 show how the amount of influence of each parameter is calculated. 
The results are shown in Figure 4.2. For the Dutch case: 28% of the variance can be 
explained by changes in heating consumption due to new occupants over time (NO); 
22.6% by changes in heating consumption of the same occupants over time (SO); 
29.9% by physical characteristics not available in the database (Ph); and 19.5% by 
the building characteristics that were available in the databases (AB). For the Danish 
case: 33.7% of the variance is explained by changing heating consumption patterns 
of the same occupants over time (SO); 14.1% by changing heating consumption 
patterns due to new occupants (NO); 25% by physical characteristics that were not 
available in the database (Ph); and 27.3% by available building characteristics (AB). 
The use of different prediction variables for the linear regression that determines 
the influence of available building characteristics explains why there are different 
percentages for the categories: “available building characteristics” and “other 
physical characteristics” for the Dutch and the Danish case. However, for occupant 
behaviour, large differences were also found between the Dutch and Danish cases. A 
possible explanation for this could be the origin of the data. The Dutch data is from 
the social housing sector, while the Danish data contains data from the homeowner-
occupied sector. These aspects are addressed more in depth in the discussion 
section. Nevertheless, both analyses indicate that approximately 50% of the variance 
is due to occupant behaviour, and the other 50% is due to physical characteristics. 
These results are different when compared to the results of Sonderegger. This is 
understandable if our hypothesis that the amount of influence of the occupant on 
residential heating consumption is also dependent on the building characteristics 
of the house they live in is true. To test this, the same analysis on different groups of 
the sample in the next sections is conducted. The results are discussed per building 
characteristic; and depending on data availability, the analyses are conducted on 
both the Dutch and Danish samples.
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FIG. 4.2 Comparison influence building characteristics and occupants on variance energy consumption - 
Denmark and The Netherlands

 4.5.2 Results per energy label

Executing the same analysis per energy label shows that occupants (changing 
heating consumption over time (SO) + changing heating consumption due to new 
occupants (NO)) have on average more influence percentage wise on the variance of 
energy-efficient houses than on energy-inefficient houses (Figure 4.3). This finding 
is in accordance with the assumptions in previous studies (e.g. [28]). However, 
this conclusion is only true if we compare dwellings with at least two label steps 
difference, e.g. the influence of the occupant is on average larger for a B Label 
dwelling than for an A Label dwelling. Further, it has to be taken into consideration 
that the variance of buildings with an energy-inefficient label is higher than the 
variance in energy-efficient buildings. This means that if one looks at the physical 
units, the influence of the occupant is higher for energy inefficient houses, but also 
the influence of building characteristics is higher for energy-inefficient houses (see 
appendix Figure 4.10 for results physical units).
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building characteristics not included in linear regression (Ph) building characteristics included in linear regression (AB)

FIG. 4.3 Comparison of influence of building characteristics and occupants on variance energy consumption 
- Dutch data energy label

 4.5.3 Results per construction year

An analysis of the construction year confirms our previous results in the analysis 
of the energy label. Figure 4.4 and Figure 4.5 indicate that in more recently built 
buildings (which are in most cases more energy-efficient than older buildings) a 
larger percentage of the variance is caused by occupants, while for older buildings 
the physical characteristics appear important for explaining the variance. However, 
especially for the Dutch case, this pattern is less clear than for the energy label 
results. A possible explanation is that very old buildings are more likely to be 
renovated than newer buildings. The construction period 1979-1998 forms an 
exception for both countries and shows a relatively low influence of the occupant. 
A possible explanation is that those buildings are not renovated yet, while buildings 
built before 1979 might be more frequently renovated and buildings built after 1999 
were initially already built significantly more energy-efficient.
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FIG. 4.4 Comparison of influence of building characteristics and occupants on variance energy consumption 
- construction year Dutch data

Figure 4.5 shows that the available building characteristics (AB) tend to capture a 
larger part of the variation in newer buildings, and physical characteristics (Ph) a 
smaller part. Especially in very new buildings, occupant behaviour seems important 
for explaining variations across the years.
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FIG. 4.5 Comparison of influence of building characteristics and occupants on variance energy consumption 
- construction year Danish data
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 4.5.4 Results per building type

Regarding the building type (building types defined in EPISCOPE are used[39]), 
Figure 4.6 indicates that occupants (changing heating consumption over time 
(SO) + changing heating consumption due to new occupants (NO)) explain a 
larger percentage of the variance for multi-family houses (common staircase with 
galleries, common staircase no gallery, maisonette) than for single-family houses 
(detached houses, semi-detached houses, end houses and terraced houses). 
Possible explanations for this could be that small changes in consumption patterns 
are more effective in multi-family houses than in single-family houses, because of the 
relatively smaller floor area of those dwellings. For example, opening a window in a 
small room will have more effect on thermal climate than opening a window of similar 
size in a larger room. This would also explain why the terraced houses do not show 
differences with the other multi-family houses, because from the single family houses 
they have, on average, the smallest floor area.

19.5% 18.4%
10.5% 11.4% 10.1% 12.1% 9.3% 12.1%
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FIG. 4.6 Comparison of influence of building characteristics and occupants on variance energy consumption 
- Dutch data dwelling type

 4.5.5 Results per type of ventilation system

The comparison of the three different ventilation systems in Figure 4.7 indicates that 
the influence of the occupant is larger for houses with a balanced ventilation system 
compared to houses with a natural or forced inlet mechanical exhaust ventilation 
system. This is expected, because houses with a balanced ventilation system often 
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make use of heat recovery systems. To make optimal use of such a system, all 
air that enters and leaves the building should go through this system. However, 
occupants are still able to open windows. Opening the windows means the air does 
not pass the heat recovery system, which will lead to extra heat losses. Opening 
windows when a heat recovery system is installed will therefore have a larger 
effect than in houses where no heat recovery system is installed. Further, balanced 
ventilation systems are primarily installed in energy-efficient buildings. In Figure 
4.3 it was already demonstrated that energy-efficient buildings are relatively more 
sensitive to occupant behaviour compared with energy-inefficient buildings.
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FIG. 4.7 Comparison of influence of building characteristics and occupants on variance energy consumption 
- Dutch data ventilation system

 4.5.6 Results per type of heating system

Finally, the heating systems are compared. Because of the differences in the 
databases, the compared categories are different for the Dutch and Danish cases. 
For the Dutch case, different gas heating systems are compared. The results of the 
Dutch case (Figure 4.8) indicate (contrary to previous findings) that on average 
relatively energy-efficient installations are less sensitive to occupant behaviour than 
energy-inefficient systems. However, the most energy-efficient condensing boiler is 
an exception and the differences are relatively small, and therefore no conclusion can 
be drawn from this comparison. Furthermore, the figure shows that the consumption 
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patterns that change over time (SO) are significantly higher for houses with a local 
heater (gas stove). One could expect that this is due to the relatively small sample of 
the local heater, however if we study the error of the variances the results seem still 
reliable (error of ±1%). This is interesting, because the operation of boiler systems 
are more or less the same, but the local gas heaters have a different operating 
system. Therefore, these results could indicate that different operation systems 
cause differences in behaviour.
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FIG. 4.8 Comparison of influence of building characteristics and occupants on variance energy consumption 
- Dutch data heating system

For the Danish case, a comparison was made between houses with gas heating 
and district heating systems. The results indicate, in particular, that the share of 
consumption that changes, because of changed occupants, is lower for houses with 
a district heating system compared to houses that are heated by gas.
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FIG. 4.9 Comparison of influence of building characteristics and occupants on variance energy consumption 
- Danish data heating system

 4.6 Discussion

One of the main advantages of this study compared to previous studies is that this 
study could make use of two big datasets that included housing data over a six-year 
period. Using longitudinal data in residential heating consumption research presents 
significant potential for evaluating the effect of policy changes, newly installed 
technologies and renovations. Further, analyses on this topic have seldom been 
conducted based on two large datasets from two different countries (the Netherlands 
and Denmark).

There are some significant differences between the Dutch and the Danish datasets 
that should not be neglected. The most important difference is that the Dutch 
database contains multi- and single-family social rental houses, while the Danish 
dataset contains private detached houses. Several studies have shown that there 
is a difference between tenant and homeowner behaviour. Moreover, it could be 
expected that the building type would influence the results, because in multi-family 
housing one apartment can be heated from the other. This implies that the energy 
consumption in an apartment might also change when the neighbours change. This 
effect is not shown in the analysis separately. If this is the case, then the change 
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due to change of neighbours is included in the change in occupant consumption 
patterns over time. Despite the differences, both databases indicated that occupants 
are responsible for half of the residential heating consumption and the building 
characteristics for the other half. Further, other values calculated from the datasets 
seemed to be remarkably close together. The difference might be reflected in the 
distribution of occupant consumption patterns. The results show that the percentage 
explained by moving occupants is relatively higher for the Dutch dataset (28%) 
compared to the Danish dataset (14.1%). This suggests that the consumption 
patterns of the moving Dutch occupants differ more from the consumption patterns 
of the previous occupants, compared to the Danish occupants. This could be due to 
house buyers exhibiting more similarities in consumption patterns with the previous 
owners, compared to new tenants with previous tenants. This could be the case 
because occupant characteristics of Dutch social housing tenants are very diverse, 
while the houses show more similarities and all have a low rental price compared to 
the owner-occupied housing stock.

One of the uncertainties in this study is the choice of using the data from 2010 and 
2015. As Sonderegger [10] mentions in his study, it is expected that the variance 
in heating consumption among stayers increases over the years. However, it is 
expected that the variance will proportionally increase in time, because of the limited 
number of decisions that can be taken, the workings of peer pressure, and other 
‘stabilising influences’. In his paper, Sonderegger assumes that equilibrium will be 
achieved after six years, which supports our choice of years. However, he also states 
that his assumption awaits confirmation by further research. Accordingly, this is an 
uncertainty that should be taken into consideration.

 4.7 Conclusions

This research investigated the influence of building characteristics and occupants on 
the variances in residential energy consumption. Therewith this study contributes to 
a better understanding of the energy performance gap and better interpretation of 
residential energy modelling and forecasting results. This is one of the first studies 
towards the influence of building characteristics and occupants on actual residential 
heating consumption on such a large scale with data from two different countries, 
which is seldom seen in the field.
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This paper showed that variations in residential heating consumption across the 
years of Dutch social housing can be explained by occupants (49%), the Dutch 
energy simulation model (theoretical consumption) (20%), and by other physical 
characteristics that are not taken into account in the building simulation model 
(32%). For the Danish case, the results showed that 48% of the variation in 
residential heating consumption can be explained by occupants, 27% by the building 
characteristics mentioned in Table 4.2 and 25% by other physical characteristics. 
These results suggest that approximately half of the variation in residential heat can 
be ascribed to differences between buildings and approximately half of the variation 
to differences in occupant behaviour. These results were found by using an existing 
method (suggested by Sonderegger in 1978) with new and strongly improved data. 
This enabled comparisons of national contexts (The Netherlands and Denmark), of 
different types of heat supply (district heating and natural gas), different housing 
formats (social housing and private single-family houses), and different building 
types (detached and multi-family).

The results show that approximately half of the variance could be attributed to 
buildings and half to occupants. However, the follow-up analysis per building 
characteristic showed that the influences of the occupant are dependent on the 
building characteristics of the building. For example, the influence of occupants 
is larger for energy-efficient houses than for energy-inefficient houses. This is 
demonstrated in both comparisons of houses with different energy labels, and the 
analysis of houses built in a different period for the Dutch and the Danish cases. 
The results also show that the influence of occupants is dependent on the type of 
building installations in the house. For example, the occupant consumption patterns 
seem more important when the house has a local gas stove as a heating system than 
when the house has a gas boiler. Further, the influence of occupants is different, 
depending on the type of house.

The results of this research suggest that, on average, occupants significantly 
influence the variance in energy among buildings. Moreover, the magnitude of this 
influence is dependent on building characteristics, because some buildings are more 
sensitive to occupant consumption patterns than others. This is an important insight, 
because this indicates that building simulations will not be able to predict actual 
heating consumption correctly and accurately if occupant consumption patterns 
are considered. Although the results indicated that the influence of occupants 
is almost as important as the influence of building characteristics on residential 
heating consumption, thermal renovations will remain an important measure for 
reducing residential heating consumption. This is because deep thermal renovations 
(if correctly executed) usually result in an energy reduction for heating. Regarding 
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occupant behaviour, more research is needed to determine the extent that occupant 
consumption patterns can be influenced to reduce residential energy consumption.

The results also indicate that there is still a relatively large number of physical 
characteristics that cause variance in heating consumption. More research is needed 
to determine the nature of these physical characteristics. If more is known about 
these parameters, they could be used to improve building simulation models. The 
high influence of occupants also suggests that it is not useful to aim for a perfect 
simulation model for one specific building, especially when the occupant behaviour 
is unknown. However, one can aim for a simulation model that shows the average 
heating consumption of a larger group of buildings.

This paper is one of the first studies to make use of large longitudinal databases 
in the field of residential heating consumption. It has already demonstrated the 
importance of this type of data for the field. Longitudinal databases that contain 
residential heating consumption data present significant potential for evaluating the 
effect of policy changes, newly installed technologies, and renovations.
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Appendix

TABLE 4.7 Linear regression results of the Dutch sample year 2010 and 2015 (AB)

Model Unstandardized coefficients 2010 t Sig.

B Std. Error

Constant 27,224.01 79.84 341.07 <0.01

Theoretical gas 
consumption [MJ]

19.03 0.0070 314.022 <0.01

* R2 0.210, dependent variable gas consumption 2010

Model Unstandardized coefficients 2015 t Sig.

B Std. Error

Constant 28,246.89 83.88 803.153 <0.01

Theoretical gas 
consumption[MJ]

19.24 0.07 0.517 <0.01

* R2 0.180, dependent variable adjusted gas consumption 2015

(AB) Average explanation of available building characteristics is (0.217+0.186)/2 = 0.2015 = 20.15%
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TABLE 4.8 Linear regression results of the Danish sample year 2010 and 2015

Model Unstandardized coefficients 2010 t Sig.

B Std. Error

Constant -37,990.73 240.366 -158.05 <0.01

* R2 0.2860, dependent variable gas consumption 2010

Model Unstandardized coefficients 2015 t Sig.

B Std. Error

Constant -38,546.99 241.192 -159.82 <0.01

* R2 0.2595, dependent variable adjusted gas consumption 2015

(AB) Average explanation of available building characteristics is (0.286+0.2595)/2 = 0.27275 = 27.28%

TABLE 4.9 Coefficients per parameter of the linear regression of the Danish sample year 2010 and 2015

Model heat2010 adjheat2015

Coef. SE Coef. SE

Area (logarithmic transformed) 11,420.611*** 55.956 11,757.833*** 56.149

Gas (1=Yes) 3.727,314*** 18.492 1,024.326*** 18.556

Number of rooms 173.442*** 10.298 212.825*** 10.333

Wood-stove (1=Yes) -1,316.447*** 23.932 -1,329.944*** 24.015

Attic floor (1=Yes) -715.892*** 27.752 -944.257*** 27.847

Basement (1=Yes) 3,025.429*** 24.130 3,344.441*** 24.213

Building period (ref. “Before 1938”)

1938-1960 -508.627*** 34.381 -587.511*** 34.499

1961-1972 -1,737.207*** 36.120 -1,859.880*** 36.244

1973-1978 -2,954.989*** 40.084 -3,170.666*** 40.222

1979-1998 -5,149.254*** 43.136 -5,040.772*** 43.284

1999-2006 -5,937.958*** 53.440 -6,018.504*** 53.624

After 2006 -7,816.063*** 66.363 -8,027.991*** 66.591

Roof material (Ref. “Fibercement”)

Cement stone 346.156*** 29.141 19.578 29.241

Tile 1,204.509*** 25.175 1,068.295*** 25.262

Other material 1,513.594*** 35.536 1,609.229*** 35.658

Exterior wall material (Ref. “Bricks”)

Wood -1,963.962*** 71.393 -1,480.936*** 71.638

Concrete 364.676*** 46.569 329.333*** 46.729

Other material -565.596*** 91.204 -503.470*** 91.517

Constant -37,990.729*** 240.366 -38,546.992*** 241.192

R2 0.286 0.260

Number of observations 512,393 512,393

*** p<0.01, ** p<0.05, * p<0.1
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FIG. 4.10 Comparison of influence of building characteristics and occupants on variance energy 
consumption using physical units instead of percentages - Dutch data energy label
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5  Calibration of 
Energy  Simulation 
Models on a 
Building Stock Level 
using Actual Energy 
 Consumption Data
Making Building Energy 
 Simulations a more Reliable Tool 
for Policymakers

Submitted for publication as: van den Brom, P., Itard, L., & Visscher, H. (2020). Automated calibration of 
energy simulation models on a building stock level using actual energy consumption data.,

The previous chapters demonstrated that both, technical characteristics 
and residents play a role in the Energy Performance Gap. They also showed 
that residential energy consumption differs widely among households. This 
implies that predicting energy consumption for an individual building, without 
knowing the exact behaviour of the occupant, will almost never be accurate for 
individual cases. However, the conclusion of Chapter 4 suggests that, although 
predicting energy consumption on an individual level is impossible without 
specific occupant and building information, the average energy consumption of 
a building should be able to be predicted fairly precisely. Therefore, this chapter 
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investigates whether the average Energy Performance Gap can be reduced by 
changing the assumptions that are used in building simulation models. To see 
if the assumptions can be improved to reduce the Energy Performance Gap, 
313 dwellings are simulated, and the results are compared to actual energy 
consumption. After this, a calibration on building stock level is carried out using 
actual data with the aim that the theoretical model can learn from real energy 
consumption data.

ABSTRACT Building energy simulation models are an important tool, not only in building design 
but also for policy making. Previous research has shown that there is a significant 
gap between actual energy consumption, and the energy consumption calculated 
by building energy simulation models. Many researchers, practitioners, and 
policymakers mainly impute this energy performance gap to occupant behaviour. One 
would expect this gap to be less at building stock level because occupant behaviour 
would be averaged. However, the performance gap is known to be high at a building 
stock level too, indicating a more structural problem in building energy simulation 
models. Being able to assess and predict correctly energy use in the building stock 
is essential to realize national and international energy saving targets. As actual 
energy consumption data at individual house level are becoming more often available 
or are registered by national bodies, this research introduces a method that uses 
actual energy consumption data and automatic calibration techniques to improve 
assumptions in building energy simulation models used to assess the whole building 
stock. Two types of models were tested; the first one being the steady state model 
used in NL in the framework of the EPBD, the other one being a dynamic model in 
EnergyPlus. The method was able to reduce the root mean square error of the energy 
performance gap by nearly 24% for the steady state simulation method, and by 
27% for the dynamic simulation method, and, most important, the average energy 
performance gap in the sample (133 dwellings) as well as in the control group (180), 
disappeared almost completely. This method has the potential to make building 
simulation models a more reliable tool for policymakers.

KEYWORDS Energy performance gap, actual energy consumption, calibration, reliable decision 
tool
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Nomenclature

acc = accumulated intensity of solar radiation on a vertical plane on 
the south [MJ/m2]

A catg,i = floor area category house i [-]
A fac,i = area façade [m2]
A g = floor area [m2]
A g,i = floor area house i [m2]
A j = area daylight opening including window frame area [m2]
B = presence of bathtub [-]
C b = standard domestic hot water use per bathtube 41.5 [l/day]
C conv = conversion factor 68.734 [MJ day/l year]
C d = standard domestic hot water use per shower visit 20.8 [l/day]
C k = standard domestic hot water use in kitchen 13.03 [l/day]
C p = standard domestic hot water use per person 7.1 [l/day]
C w = standard domestic hot water use sink 3.97 [l/day]
D = presence of shower [-]
f 2 = factor for the part of airtightness related characteristic air 

tightness
[-]

GGF i = family factor per house i [-]
i = house number [-]
ɳ b,i = utilization factor of the heat gain [-]
ɳ heat = system efficieny of heating system [-]
ɳ spec = specific efficiency [-]
ɳ sys,i = system efficiency of room heating installation [-]
P i = number of family members per house i [-]
Q act,i = actual energy use house i [MJ/year]
Q demand,i = theoretical energy demand house i [MJ/year]
Q dhw,i = theoretical energy use for domestic hot water in house i [MJ/year]
Q heat,i = theoretical energy use for heating in house i [MJ/year]
Q gain,i = theoretical heat gains house i [MJ/year]
Q hbruto,i = gross heat demand for house i [MJ/year]
Q heat,i = heat generation efficiency [-]
q inf,10i = air tightness of house i [dm3/s]
Q infil,i = heat loss due to infiltration of house i [MJ/year]
Q intern,i = heat gain due to internal heat production in house i [MJ/year]
Q intern = internal heat production per m2 usable floor area [W/m2] 
Q loss,i = total heat loss of house i [MJ/year]
Q pilotflame,i = energy use pilot flame heating installation of house i [MJ/year]
Q sol,i = heat gain due solar radiation of house i [MJ/year]
Q stilstandsv = standby losses of domestic hot water system [MJ/year]
Q theo,i = total theoretical energy use of house i [MJ/year]
Q trans,i = heat loss due to transmission of house i [MJ/year]
Q vent,i = heat loss due to ventilation [MJ/year]
R cj,i = Thermal resistance [m2K/W]
RMSE = Root Mean Square Error [MJ/year]
T e = outdoor temperature [K]
t hp = duration heating season 18,3168 [Ms]
T i = indoor temperature [K]
t stook = duration heating season [Ms]
U glass,i = Thermal transmittance of glass of house i [W/m2K]
z.rs = orientation and shading reduction coefficient of daylight 

opening*
[-]

ZTA = solar heat gain factor [-]
α i = heat resistance of the air layer on the inner side of the 

construction 0.13 [m2K/W]

α o = heat resistance of the air layer on the outer side of the 
construction 0.04 [m2K/W]

c = heat capacity air 1000 [J/kgK]
ρ = air tightness air 1.2 [kg/m3]
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 5.1 Introduction.

Reducing residential energy consumption is currently high on the political agenda of 
many national and municipal governments. Household final energy consumption is 
estimated to be responsible for approximately 25% of the total energy consumption 
in Europe [1]. Building energy simulations are frequently used to make informed 
decisions in the design process, to calculate payback times, and to decide which 
renovation measure would result in the highest energy saving at acceptable costs. 
Simulation results are not only used at an individual building level, but also at a 
building stock level. For example, policymakers use the results of building energy 
simulation models at a housing stock level to determine which and how many 
renovation measures have to be taken to achieve the energy saving goals that are 
set, and to evaluate the requirements for existing or new energy supplies at regional 
or national levels [2]. Municipalities and housing associations use such models to 
decide on what neighbourhoods or building blocks to target in renovation programs.

Although building energy simulation results are widely used for decision-making, 
several studies have shown that there is a large gap between simulation results and 
actual energy consumption or savings [3-9]. The gap between simulated and actual 
energy consumption is often referred to as the energy performance gap (EPG). As 
a consequence of this gap, energy saving targets and payback times are often not 
achieved [10-12].

Many studies have already investigated the EPG and found relationships between 
energy consumption and both occupant and building characteristics [13]. These 
relationships often have both direct and indirect influences on residential energy 
consumption [14]. The high number of input variables that are needed for building 
energy simulation models, the interaction of these variables, the unpredictability of 
occupant behaviour, and climate conditions make residential energy consumption 
complex to predict. In fact, the results of previous studies show that every house and 
every resident is unique in their energy consumption. Based on the previous research 
findings it is fair to conclude that it is impossible to predict energy consumption 
accurately at an individual level when the assumptions for occupant behaviour 
remain constant for every building (e.g. temperature set points and ventilation 
rates) [15]. In addition to occupant behaviour and building characteristics, 
oversimplification of simulation models, mistakes in the construction process, wrong 
inputs, and assumptions in the simulation models also contribute to the EPG.
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Further, a significant average EPG is detected at the dwelling stock level, which is 
clearly shown in Figure 5.1. This figure presents the average difference between 
actual and theoretical energy consumption per energy label (Energy Performance 
Certificate) of dwellings in the Netherlands [16]. For policymakers, the average 
energy consumption of building stock, or a specific group of buildings, is more 
important than the energy consumption of individual dwellings, because policy 
targets are based on these aggregated dwellings. This is also stimulated by the 
Energy Performance Building Directive (EPBD), which requires every member state 
to provide a roadmap with measurements at a national level to achieve the required 
reduction of CO2 emissions [17]. In addition, also other organisations (apart from 
the government) use building simulation results for policymaking. For example, the 
Dutch social housing associations signed an agreement that they would reduce the 
energy consumption of their housing stock by 33% by 2021, compared to their use 
in 2008. This target has to be reached by renovating the buildings up to an average 
energy label of B. However, Figure 5.1 shows that on average, energy efficient 
buildings (labels A–B) consume more energy than expected, while energy inefficient 
buildings (labels D–G) consume less energy than expected. Consequently, less 
energy will be saved than expected in reality because the targets were set based on 
simulated energy and not on the actual energy. This example shows that steering 
with inaccurate models will reduce the probability of achieving the aimed energy 
saving goals. This is also confirmed by the research of Filippidou et al. [18].

Despite these drawbacks, building energy simulation models are currently the best 
tool available. However, for these simulations to become a more effective tool, 
it is important that they predict actual energy consumption fairly accurately. On 
an individual level, calibration methods are often used to reduce the EPG [19]. 
Assumed values such as temperature settings, and ventilation and infiltration rates, 
are adapted so that the simulation results match the detailed measured energy 
consumption data. If the gap for the baseline model is reduced, it is more likely 
that the estimates of energy saving measures will be reliable [20]. This implies 
that the payback times of renovation measures can be more accurately estimated, 
which means the consultant has more information to determine the most optimal 
renovation to reduce energy consumption as much as possible. 

Differences in occupant behaviour are often mentioned as the most important cause 
of EPGs [21]. However, Figure 5.1 shows that there is also a gap in the average 
energy consumption per energy label. If differences in occupant behaviour are the 
most important cause of the gap, it is expected that the differences in behaviour 
would be equalised for the average consumption. However, Figure 5.1 shows this is 
not the case. This indicates that there is probably a more structural problem than 
only differences in occupant behaviour. To reduce the average EPG calibration on 
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an individual level, using high frequency measured energy data (e.g. hourly data or 
lower), is not a solution because this type of calibration would result in overfitting 
outcomes for one specific dwelling and not provide information to reduce the EPG 
on a building stock level and it would be too time consuming. Up to now calibration 
procedures only take place on individual building level. This means that on building 
stock level, the level on which policymakers often work, the models are not calibrated 
and therefore not reliable. 

In this research we propose a method to reduce the EPG on a building stock level. 
The method is based on a traditional calibration method but doesn’t require high 
frequency energy data of dwellings; instead it requires annual actual energy data 
of individual dwellings which is more widely available. To prevent overfitting energy 
data of multiple dwellings is required that together form a representative sample of 
the building stock. The starting point of the method is that every simulation model 
makes use of assumptions; for example for energy related occupant behaviour (such 
as temperature settings or ventilation rate); sometimes also assumptions are made 
for building characteristics that cannot be identified by visual inspections like façade 
insulation [22]. The hypothesis is that if the assumptions in building simulation 
models are more carefully chosen, the average EPG will be smaller and the building 
energy simulation models will become an even more useful tool for policymakers. 
The proposed method to reduce the gap does not change the calculation method, 
but aims to make different assumptions for the simulation models to allow more 
accurate predictions. This is achieved by using actual yearly energy consumption 
data for each individual dwelling, similar as a traditional calibration procedure. 
An optimisation algorithm calibrates the model by changing the assumptions in 
order to reduce the average squared difference between actual and theoretical 
energy consumption at building stock level looking at the average consumption in 
the group/stock. One could say that the simulation model “learns” from the actual 
energy consumption data. The proposed method is demonstrated by using a sample 
of 133 dwellings from the Dutch national housing energy survey: ‘WoON module 
energie 2012’ [23]. The effectiveness of the method is tested by a control group 
of 180 dwellings. Further, the method is tested for a steady state simulation model 
as well as a dynamic simulation model. Those two different methods are tested 
because the steady state is frequently used in practice and one could assume that 
the EPG is (partly) caused by using a steady state instead of a dynamic situation. 
The assumptions in these models are based on the standard values set in ISSO 82.3, 
which is used for the Dutch energy label calculation method.
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This paper is structured as follows: First, the two building energy simulation (BES) 
models that are used in this research and the standard values as set in ISSO 82.3 
are explained. Second, the dataset we use for the optimisation is described, followed 
by an explanation on the method. The results are then described and explained in 
the results section. The advantages, disadvantages, and points of attention of the 
method are discussed in the discussion section. Finally, conclusions are drawn and 
recommendations are made for further research. 
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 5.2 Description of the BES models

The method is demonstrated on two types of models, a steady state and a dynamic 
BES model. In this section both methods are explained. .

 5.2.1 Steady state model: the Dutch energy labelling method

Like to all European countries, Dutch buildings are required to have an energy 
certificate if they are rented out or sold. In the Netherlands, this certificate is 
referred to as the energy label. The energy label of a building is determined by the 
Energy Index, which is based on the calculated energy consumption of a building. 
The calculation method for the Dutch energy label and Energy Index is based on 
the building characteristics of the building, which can be found in ISSO 82.3 and 
82.1 [24]. It is a static yearly calculation method based on energy balances (see 
also description below). This method is also used by the national government, 
housing associations and municipalities to set targets at stock level and monitor 
the advances of specific building stocks. For instance the energy labels are stored 
in a national data base to track the energy performance of the housing stock and 
to assign subsidies for energy renovations; the housing associations use their own 
database (SHAERE) to track the energy efficiency of their housing stock and to 
define policies and targets.   

Description of Steady state BES model

Due to our cleaning process and selection of cases (see Section 5.3) some aspects 
described in ISSO 82.3 were not applicable to our dataset [24]. For example, 
our dataset did not contain dwellings with heat recovery in the shower, quality 
declarations of certain building installations, solar energy, boilers outside the 
thermal envelope, heat pumps, circulation pipes, secondary heating, or domestic hot 
water systems. Further, all dwellings in the sample had a high temperature space 
heating system (>55 °C) and none of the dwellings has a glass enclosed patio. 
Therefore, the method we describe below is a simplified version of both ISSO 82.1 
and 82.3 (publication year 2011). 

In the method for this study, we used theoretical energy consumption, which is a 
combination of energy use for domestic hot water and heating (Eq 5.1).  
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EQUATION 5.1

Qtheo,i= total theoretical energy use of house i [MJ/year]
Qdhw,i = theoretical energy use for domestic hot water in house i [MJ/year]
Qheat,i = theoretical energy use for heating in house i [MJ/year]

The amount of energy used for domestic hot water is based on the amount of 
domestic hot water used and the efficiency of the heating system. The amount of 
domestic hot water used is based on the number of occupants in the house, which 
in turn is based on four different floor area categories. Apart from the number of 
occupants, the presence of a shower or bath will influence the amount of domestic 
hot water usage. All of this together forms the amount of used domestic hot water, 
which is represented by Eq 5.2. 

EQUATION 5.2

Qdhw,i = theoretical energy use for domestic hot water in house i [MJ/year]
Cconv = conversion factor 68,734 [MJ day/l year]
Ck = standard domestic hot water use kitchen 13.03 [l/day]
GGFi = family factor per house i [-]
Cp = standard domestic hot water use per person 7.1 [l/day]
Cd = standard domestic hot water use per shower visit 20.8 [l/day]
D = presence of shower [-]
Pi = number of family members per house i [-]
Cb = standard domestic hot water use per bath 41.5 [l/day]
Bi = presence of a bathtub in house i [-]
Pi = number of family members per house i [-]
Acatg,i = floor area category in house i [-]
ηspec = specific heat efficiency [-]
Qstilstandv = standby losses of domestic hot water system [MJ/year]
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Energy use for heating can be seen as a balanced system. Due to transmission, 
ventilation, and infiltration, a building loses heat (Eq 5.6) and due to solar radiation, 
internal heating loads, and the heating system, a building gains heat (Eqs 5.9-5.11). 
If a constant temperature is assumed (which is the case in this method) the gains 
and losses should be in balance. Because the amount of energy provided by the 
heating system to the room is not equal to the amount of energy the system needs, 
the efficiency of the heating system should also be taken into account (Eqs 5.3-5.5). 
The efficiency of the systems is dependent on the type of boiler.

EQUATION 5.3

EQUATION 5.4

EQUATION 5.5

+𝑄𝑄"#$$,& = 𝑄𝑄()*+$,&+𝑄𝑄*&),&     EQUATION 5.6

Qheat,i = theoretical energy use for heating in house i [MJ/year]
Qhbruto,  i = gross heat demand for house i [MJ/year]
ηheat = system efficiency of heating system i [-]
Qdemand,i = theoretical energy demand in house i [MJ/year]
ηsys,i = system efficiency of room heating installation in house i [-]
Qloss,i = total heat loss of house i [MJ/year]
ηb,i = utilization factor of the heat gain in house i [-]
Qgain,i = theoretical heat gains in house i [MJ/year]
Qtrans,i = transmission losses of house i [MJ/year]
Qair,i = ventilation and infiltration losses of house i [MJ/year]

Transmission losses are dependent on the façade area, Rc value of the facade, 
glass area, U value of the windows, and difference between indoor and outdoor 
temperature (Eq 5.7). 
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EQUATION 5.7

Qtrans,i = transmission losses of house i [MJ/year]
Afac,i = façade area of house house i [m2]
αi = heat resistance of the air layer on the inner side of the construction 0.13 
[m2K/W]
Rcj,i = thermal resistance facade of house i [m2 K/W]
αo = heat resistance of the air layer on the outer side of the construction 0.04 
[m2K/W]
Ai = glass area of house house i [m2]
Ti = indoor temperature [K]
Te = outdoor temperature [K]

thp = duration heating season 18,3168 [Ms]

The heat loss due to air change is described in Eq 5.8. The ventilation rate is 
dependent on type of ventilation system. Infiltration is dependent on floor area and 
building type. Our sample contained only one dwelling type, and the infiltration rate 
was therefore the same per m2 for each building. 

+

EQUATION 5.8

Qair,i = ventilation and infiltration losses of house i [MJ/year]
ρ= air tightness air 1.2 [kg/m3]
c = heat capacity air 1000 [J/kgK]
qvj,i = factor for air tightness related to floor area of house i [dm3/s.m2]
Ti = indoor temperature [K]
Te = outdoor temperature [K]
thp = duration heating season 18,3168 [Ms]
f2 = factor for the part of airtightness related characteristic air tightness [-]
qinf,10i = airtightness of house i [dm3/s]
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In addition to the heating system, the building gains heat by internal heat gains and 
solar radiation (Eqs. 5.9-5.11). 

EQUATION 5.9

Qgain,i = theoretical heat gains in house i [MJ/year]
Qintern,i = heat gain due to internal heat production in house i [MJ/year]
Qsol,i = heat gain due to solar radiation in house i [MJ/year]

EQUATION 5.10

Qintern,i = heat gain due to internal heat production in house i [MJ/year]
Qintern = internal heat production per m2 usable floor area [W/m2]
tstook = duration heating season 18,3168 [Ms]
Ag,i = floor area house i [m2]

EQUATION 5.11

Qsol,i = heat gain due to solar radiation in house i [MJ/year]
Ai = glass area of house house i [m2]
ZTAi = solar heat gain factor of house i [-]
z.rs = orientation and shading reduction coefficient of daylight opening [-]
acc= accumulated intensity of solar radiation on a vertical plane on the south [MJ/
m2]

Assumptions in the Dutch energy labelling method

The energy labelling method is primarily meant to provide a quick and 
understandable insight into the energy efficiency state of existing buildings. Because 
the building characteristics documentation of existing buildings is often not up to 
date (or not available), the building characteristics have to be gathered by visual 
inspections. However, it is for financial (keeping the inspection costs low) and 
technical reasons not always possible to determine all the building characteristics 
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required by visual inspections alone. Therefore, the ISSO 82.3 method provides 
standard values that can be used if the required data are not available. Apart from 
building characteristics, standard values for energy related occupant behaviour are 
also provided. Table 5.1 presents descriptions of how the assumptions for building 
characteristics and occupant behaviour are made, and on which characteristics they 
are dependent. The values are dependent on different characteristics of the building 
e.g. the Rc values are dependent on construction year, the ventilation rates are 
dependent on the type of ventilation system and the amount of domestic hot water is 
dependent on the floor area category the dwelling belongs to..
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TABLE 5.1 Assumptions according to ISSO 82.3

Category Assumptions

Façade insulation (Rc, 
[m2K/W])

If the insulation is unknown and cannot be measured the assumed insulation level is based 
on construction year. ISSO 82.3 assumes the following values
Built before 1965 = 0.19
Built between 1965-1975 = 0.43
Built between 1975 – 1988 = 1.3
Built between 1988 – 1992 = 2
Built after 1992 = 2.3

Floor insulation
(Rc, [m2K/W])

If the insulation is unknown and cannot be measured the assumed insulation level is based 
on construction year. ISSO 82.3 assumes the following values
Built before 1965 = 0.15
Built between 1965-1975 = 0.17
Built between 1975 – 1983= 0.52
Built between 1983 – 1992 = 1.3
Built after 1992 = 2.53

Roof insulation(Rc, [m2K/W]) If the insulation is unknown and cannot be measured the assumed insulation level is based 
on construction year. ISSO 82.3 assumes the following values
Built before 1965 = 0.22
Built between 1965-1975 = 0.86
Built between 1975 – 1988 =1.3
Built between 1988 – 1992 = 2
Built after 1992 = 2.53

Ventilation rate Assumed ventilation rate is based on type of ventilation system (natural ventilation, 
mechanical exhaust ventilation, demand based mechanical exhaust ventilation, balanced 
ventilation with heat recovery) and minimum ventilation rate per m2 floor area. natural 
ventilation qvnat,i =0.47; mechanical exhaust ventilation qvmech,i=0,47; demand based 
ventilation qdb,i=0,29; balanced ventilation qvbal,i=0,47. If a heat recovery system is present 
qv,j,i is multiplied by 1- efficiency of heat recovery system

Infiltration rate Assumed infiltration rate is based on floor area and type of building (detached dwelling, 
semidetached dwelling, terraced house, common staircase and galleries, common staircase 
no galleries and maisonettes)
f2i= air permeable factor based on ventilation system (0.12 for demand based else 0.13); 
The exact values of qinf,10i can be found in table 14 of ISSO 82.3 (2011).

Indoor temperature Assumed average constant indoor temperature of 18oC (building is considered as being one 
zone; the average is based on heated floor area)

Domestic hot water 
consumption

Assumed amount of domestic hot water is based on number of occupants, which is based on 
floor area. Further it takes into account if a shower or bath and/or dishwasher is/are present 
and if water saving shower heads are installed. Eq 5.2

Efficiency of heating system The assumed efficiency of the heating system is based on the type of system, but also if the 
system is placed outside or within the thermal envelope of the building. The exact values can 
be found in table 19 of ISSO 82.3 (2011).

Efficiency of domestic hot 
water system

The assumed efficiency of the heating system is based on the type of system, but also if the 
system is placed outside or within the thermal envelope of the building. The exact values can 
be found in table 24 of ISSO 82.3 (2011).
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 5.2.2 Dynamic BES model

In addition to the steady state BES the method is also tested on a dynamic BES 
method. In the steady state simulations stationary conditions are assumed, and 
average values of environmental temperatures and for solar radiation are used. 
Because the process is in reality more complex, dynamic simulation methods are 
developed.  The dynamic simulation models should be able to show a more realistic 
representation of reality, because they also take dynamic effects into account, such 
as the properties of the structures and the effects of climatic variations over time. 

For this case study, we used EnergyPlus software to make dynamic BESs at 
individual building level. First, the input file was created using DesignBuilder, which 
is a graphical user interface that uses EnergyPlus to calculate building energy 
consumption [25]. The basic simulation file is a simple square-shaped building 
with windows on two sides of the building, a gas boiler, a gas domestic hot water 
system, and a mechanical exhaust ventilation system. The simplified geometry is 
used because the used database did not contain information about the orientation of 
windows and facades.  The partition walls between dwellings are modelled as a wall 
with a very high insulation rate (Rc = 10 m2k/W). This was also done for the roofs 
or floors of the apartments, because we assumed that they were not exposed to the 
outdoor environment. This is because our sample contains only apartments in the 
middle of a building block, i.e. surrounded at both sides, below and above by other 
identical apartments (sees section 5.3.1). The other assumptions that had to be 
taken are the same as the assumptions described in the steady state BES method. 

 5.3 Data

This section provides a description of the database, the validity of the models that we 
used, a description of the sample which we use to demonstrate the proposed method 
and a description of the control group which we use to demonstrate the effectiveness 
of the method.
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 5.3.1 Description database

The database used for this research is the WoON energy module database from 
2012, which is currently the most recent available dataset containing both actual 
and theoretical energy consumption. The WoON energy module 2012 provides a 
representative sample of the energy performance of houses in the Netherlands in 
2012. The dataset contains the following information for each individual dwelling: 
building type, floor area, type of heating system, type of domestic hot water system, 
construction year, insulation rates of floor roof and facades (assumed based on 
construction year or measured by thickness) ventilation system, theoretical yearly 
gas and/or electricity consumption, and actual gas and/or electricity consumptions 
for each year of the period 2004–2010. The dataset contains 4,800 cases. The 
actual gas consumption data are available as standard yearly consumption, meaning 
that the measured annual consumption was standardized according to annual degree 
days before being stored in the WoON database. For this research the standardized 
energy consumption was converted back to actual annual consumption of the 
considered year by correcting back for the degree days of that year. 

Building characteristics data were gathered by visual inspections. However, if it was 
not possible to determine the characteristics from a specific building component, 
assumptions were made as described in Table 5.1, which are the standard values 
that we will optimise. 

Approximately 95% of Dutch households use gas as a heating source [26]. In 
countries such as the Netherlands, energy for heating constitutes the main energy 
demand of a house. Further, energy consumption for heating has the highest EPG. 
Therefore, we only studied houses that use gas as a heating source. This enabled us 
to distinguish energy consumed for heating and domestic hot water (and sometimes 
cooking) on one side, and energy consumed for electrical appliances on the other side.  

As this research is primarily focused on testing the effectiveness of the proposed 
method, for simplicity the sample was reduced to houses with one floor (1469 
dwellings), and only houses with an individual gas fired combination boiler for space 
and domestic hot water heating, reducing the sample further to 876 dwellings. In 
the Netherlands houses with one floor are mainly apartments. To further reduce 
the complexity of the calibration we only consider façade insulation, meaning only 
apartments that are not located under the roof or on the ground floor were taken 
into account, which reduced the sample to 313 houses. This is significantly less than 
the initial 4800 cases; however, the sample shows a comparable EPG to the entire 
sample, and was therefore assumed to be large enough for the method demonstrated 
in this paper, see  fig. 5.2.
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FIG. 5.2 Comparison of actual versus theoretical gas use in buildings based on the WoON database selected 
sample 313 cases (2012)

 5.3.2 Model validation before optimisation

The WoON Energy dataset also contains theoretical energy consumption data. This 
gave us the opportunity to compare the simulation results of our dynamic building 
simulation model in Energy Plus with the theoretical energy consumption data in the 
database. The theoretical energy consumption data in the database is defined by the 
static Energy labelling method from ISSO 82.3. However, because not all input data was 
available (such as orientation for each window, height of dwelling, volume of dwelling) 
some extra assumptions had to be made (see section 5.3.1). Because of this, and 
because of the slightly different calculation method, it was expected that our simulation 
results would differ from the results in the WoON database. However, the basic principle 
should still stand: energy efficient dwellings should use less energy than energy 
inefficient dwellings in both models. To compare the results, we conducted a linear 
regression analysis  (Figure 5.3 and Figure 5.4).The results show an R2 of 79% for the 
steady state and 73% for the dynamic model. This is assumed to be acceptable, which 
means our dynamic model works and we can continue to the next step. The results also 
showed that for both models the EPG was present and the magnitude of the gap was 
comparable. Figure 5.5 and Figure 5.6 also show that the gap is comparable with the 
gap that we found by using the original WoON data in Figure 5.2.
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FIG. 5.3 Linear regression Theoretical energy use WoON 
database versus results steady state simulation model

FIG. 5.4 Linear regression Theoretical energy use WoON 
database versus results dynamic simulation model
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FIG. 5.5 Actual versus Theoretical gas consumption 
calculated with steady state simulation method

FIG. 5.6 Actual versus Theoretical gas consumption 
calculated with dynamic simulation method
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 5.3.3 Sample selection

To demonstrate the method we did not use the entire sample, instead we used a 
sample representing WoON energy module 2012. We use this representative sample 
as well as a control group to verify the method. 

The selection of the sample has to be completed carefully because each standard 
value had to occur multiple times to prevent overfitting. Therefore, a complete 
random selection was not possible. The procedure used for the sample selection 
was as follows: first a complete random sample of 100 cases was selected. By 
using frequency tables, we checked whether the optimisation parameters (i.e. the 
standard values) occurred frequently enough in the sample. If this was not the case, 
the variable was split per category and for the missing category, a random selection 
was made. These small random selections were added to the complete random file 
and all duplicate cases were deleted. For example: in the complete random sample 
there were almost no houses with a balanced ventilation system. To compensate for 
this, the file was split in the categories of the ventilation system (natural ventilation, 
mechanical exhaust ventilation, demand based, and a balanced ventilation system 
with heat recovery). For the file with a balanced ventilation system with heat 
recovery, 10 cases were randomly selected and added to the complete random file. 
This was done for all categories with a number of cases lower than 10. After adding 
all the extra cases, all the duplicate cases were deleted resulting in a sample of 133 
cases. The remaining cases were used as a control group. 

 5.3.4 Control group selection

Because our sample is relatively small all cases that are not in the sample are used 
for the control group. If the available dataset is larger, the control group should be 
randomly selected in the same way as the sample selection. As an ideal, the control 
group should also be a representative sample of the entire group. Further, depending 
on the size of the control group, it should be ascertained that there are no influential 
outliers of actual energy consumption, as these could bias the results. 
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TABLE 5.2 Frequency of the categories in the dataset

Frequency total
(313 cases)

Frequency sample
(133 cases)

Frequency control 
group (180 cases)

Rc façade

Measured during inspection 34% 31.7% 35.8%

Assumed in dwellings constructed before 1965 25.9% 26.3% 25.6%

Assumed in dwellings constructed between 
1965-1975

4.5% 7.5% 2.3%

Assumed in dwellings constructed between 
1975-1988

10.8% 7.5% 13.2%

Assumed in dwellings constructed between 
1988-1992

5.8% 7.5% 4.5%

Assumed in dwellings constructed after 1992 19.2% 19.5% 18.9%

Ventilation system

Natural ventilation 31.0% 30.8% 33.4%

Mechanical exhaust ventilation 53.0% 52.6% 57.1%

Mechanical exhaust ventilation (demand based) 7.7% 8.3% 7.8%

Balanced ventilation with heat recovery 8.3% 8.3% 8.9%

Efficiency space heating system

Conventional boiler ( ɳ<0.80) 0.3% 0% 0.6%

Improved non-condensing boiler (ɳ= 0.8-0.9) 23% 20.3% 26.8%

Condensing boiler (ɳ =0.90-0.95) 3.8% 3.8% 4.1%

Condensing boiler (ɳ >0.95) 72.8% 75.9% 75.5%

Efficiency dhw system

Hot water boiler (ɳ=0.7) 0.3% 0% 0.6%

Hot water boiler (ɳ=0.8) 23% 20.3% 26.8%

Hot water boiler (ɳ=0.9) 75.8% 79.7% 78.1%

dhw consumption

dhw floor area <50m2 4.8% 7.5% 3.0%

dhw 50< floor area <75 m2 41.3% 40.6% 44.8%

dhw 75< floor area <100 m2 37.8% 36.1% 41.8%

dhw 100 < floor area <150 m2 15.4% 15.8% 16.2%
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 5.4 Method

This section describes the proposed method for reducing the average EPG. With 
the average EPG we mean the average of the difference between theoretical and 
actual energy consumption of a group of individual dwellings. The first part of this 
section provides a general description of the method; then the entire procedure is 
described in detail, and finally some practical information about the implementation 
of the optimisation problem is given for the steady state and dynamic BES method 
separately.  

 5.4.1 General description of the method

The proposed method is inspired by traditional automated calibration methods; 
however, instead of matching high frequency (hour and less) simulated energy 
consumption pattern with a high frequency actual energy consumption pattern at an 
individual building level, the aim is to match simulated annual energy consumption of 
a housing stock (defined as being a group of houses, typically an apartment building, 
a neighbourhood, or the asset of an housing association or even the national stock) 
with actual annual energy consumption data.  

An overview of the procedure is given in Figure 5.7. The parameters that we use for 
the calibration are the standard values of the ISSO 82.3, see Table 5.1 and Table 5.2, 
i.e.: indoor temperature, Rc value of facades, air change rate and amount of domestic 
hot water consumption. Because previous studies were based on calibration of 
indoor temperature only, the indoor temperature is optimized first [20] in order to 
study how the calibration improves when other variables are added afterwards. In 
the discussion we come back to the disadvantage of this procedure. This is to avoid 
some values ‘compensating’ for others. For example, if the real indoor temperature is 
lower than assumed, the average energy consumption will be lower. The optimisation 
method could find a lower indoor temperature, but it could also be that it finds 
higher insulation values for all categories to compensate for the assumption of a 
high indoor temperature. This interchangeability is one of the risks of optimisation. 
The optimisation of the indoor temperature is reflected in the upperpart of Figure 
5.7 and will be executed as follows: The indoor temperature will be adapted and the 
individual dwellings will be simulated, then the simulation results are compared with 
actual energy consumption.
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After the indoor temperature is optimised, the other parameters (Rc values façade, 
ventilation rate and amount of domestic hot water consumption) are optimised 
following the same procedure as described for the indoor temperature optimisation, 
however, those are optimised simultaneously.

After the optimisation procedure the results are analysed and finally be tested on the 
control group. 
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 5.4.2 Detailed description method

The following paragraphs provide a more detailed overview of the automated 
calibration method and which aspects are taken into account. 

Optimisation problem

For automatic calibration, the Root Mean Square Error is minimized by adapting the 
assumptions that are made in building simulation models. The Root Mean Square 
Error is in this case the root of the squared difference between theoretical and actual 
energy consumption of individual dwellings divided by the total number of dwellings 
in the sample (eq5.1). The RMSE was chosen instead of the real average difference 
of theoretical and actual energy consumption to prevent Mean Bias Error. Some 
dwellings will consume more than expected and others less than expected which 
could mean that positive and negative differences will cancel each other out. We use 
the squared difference, as we do in the RMSE, to correct for this problem. This leads 
to the following objective function:

EQUATION 5.12 

Qtheo,i = annual theoretical energy consumption of building i [kWh]
Qact,i = annual actual energy consumption of building i [kWh]
RMSE = root mean square error
n = number of cases
i = dwelling number

Boundary conditions

As explained, the proposed method focuses on adapting the standard values of the 
simulation model. This section describes the standard values and their boundary 
conditions for the Dutch energy label method. As described in Section 5.3, there 
are many assumptions in the calculation method of the Dutch energy label. All 
buildings in the database are inspected visually, therefore only ‘real’ standard values 
are taken into account (for example, if the Rc-value of the wall is determined by 
measurement, we consider this value to be accurate, and this value will not be varied 
(this is also reflected in Figure 5.7 by the circles that are not framed in one of the 
squares); further, the U-value of the windows are not considered in the optimization 
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either, because it is relatively simple to identify the type of window based on visual 
inspection. Because our sample does not have sufficient variation in the type of 
combi gas boilers, the efficiency of the heating and domestic hot water system are 
not calibrated, however, if a larger and more diverse dataset would be available 
those could also be calibrated. The following parameters are optimised: Rc value 
of the façade (for each building period), indoor temperature setting, ventilation in 
combination with infiltration rate per ventilation system, and domestic hot water 
consumption. Boundary conditions are defined to reduce the number of possibilities 
of the optimisation, to make sure that the results will be realistic, and to reduce 
computation time. The boundary conditions defined for each parameter inTable 
5.3. The smaller the range of the assumptions the smaller the search area of the 
optimisation, and therefore the more likely it will be that the global minimum will be 
found within an acceptable amount of computation time. A first study has shown 
that the results can compensate for each other (e.g. a high insulation level can lead 
to a high ventilation rate and the other way around), therefore it is important that 
the boundary conditions are chosen properly. However, more research is needed to 
determine the exact role of the boundary conditions (see also discussion). 

The assumptions for the Rc values are based on the requirements of the Dutch 
building code at the time of construction. For the lower bound the assumed Rc value 
of the previous category is selected, and for the upper bound the value of the next 
category is chosen. Because the values of the first two categories (before 1965 
and between 1965–1975) are close together they have the same lower bound. In 
addition, the values of the last two categories (between 1988–1992 and after 1992) 
are relatively close to each other; therefore, for those cases higher upper bounds 
are selected. The air change rate in the building is dependent on a combination 
of infiltration and the type of ventilation system. For the air change rate, an upper 
bound of 300% and a lower bound of -90% of the initial assumption are selected. 
For the amount of domestic hot water use (as a lower bound) the average amount of 
water for one person is selected and as an upper bound the average amount of water 
for five persons is selected. Relative values for the air change rate and domestic hot 
water consumption were chosen because those values are dependent on multiple 
factors and therefore different per individual dwelling (as shown in Table 5.1). The 
0% in Table 5.3 can be read as the standard value according ISSO 82.3. 
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TABLE 5.3 Lower and upper bound of optimization parameters

Lower bound Assumed value 
according ISSO 82.3

Upper bound

Rc value façade [units]

Before 1965 0.19 0.19 1.3

Between 1965-1975 0.19 0.43 1.3

Between 1975-1988 0.43 1.3 2

Between 1988-1992 1.3 2 3

After 1992 1.3 2.3 3.5

Air change rate

Natural ventilation -90% 0% +300%

Mechanical exhaust ventilation -90% 0% +300%

Mechanical exhaust ventilation demand based -90% 0% +300%

Balanced ventilation system with heat recovery -90% 0% +300%

Indoor temperature setting 15°C 18°C 28°C

Domestic hot water consumption

dhw floor area <50m2 -39% 0% 286%

dhw 50< floor area <75 m2 -55% 0% 182%

dhw 75< floor area <100 m2 -65% 0% 142%

dhw 100 < floor area <150 m2 -67% 0% 133%

* 0% means that the standard values of ISSO 82.3 is used

Optimisation algorithm

Now the optimisation problem and the boundary conditions are known, an 
optimisation algorithm is required. Due to the high computation time and relatively 
high number of variables, a ‘brute-force’ optimisation (calculating every possible 
scenario) is not possible. Therefore, the Global Optimisation Toolbox in Matlab is 
used. This toolbox has several predefined optimisation algorithms that can be used 
for optimising a function. Because our objective function is the RMSE which results 
from the energy simulation of all buildings in the sample, the computation time 
per run is relatively high (especially when the dynamic simulation model is used), 
making the optimisation process relatively slow. Therefore, it is important to choose 
an efficient optimisation algorithm. The function that we will optimise is a nonlinear 
function which has multiple local minima, and therefore only global optimisation 
methods are suitable for this optimisation. Some of the possible predefined 
optimisation algorithms (available in Matlab) are pattern search, genetic algorithm, 
simulated annealing, particle swarm optimisation, surrogate optimisation, and the 
global search method. Due to the relatively high computational requirements for 
the dynamic simulations, the surrogate optimisation model is assumed to be the 

TOC



 196 Energy in Dwellings

best method to use for optimizing the parameter settings of the assumption in the 
dynamic building simulation method. However, other optimisation algorithms can 
be applied on the steady state model because this model requires significantly less 
computation time. Therefore, the particle swarm optimisation method is used for 
the steady state optimisation. The particle swarm method is selected because a 
comparison of different optimisation algorithms by Matlab showed that it requires 
relatively few iterations, which means the method is relatively fast [27, 28]. 

Analysing the optimised parameters

To test if the optimized settings used in the assumptions indeed reduce the energy 
performance gap the RMSE of the simulations with the initial assumptions and 
the RMSE of the simulation with the optimised parameters are compared. If the 
RMSE reduces, this is an indication that the gap reduces. A second test that is 
done is a linear regression of actual energy consumption versus theoretical energy 
consumption with the initial and the optimised parameters. If the R2 of the regression 
with the optimised parameters is higher it means that the simulation model indeed 
predicts better with the optimised parameters. Finally a similar graph as shown in 
Figure 5.1 is made to show the reduction of the average energy performance gap.

Influence of optimised parameters on RMSE

After the automated calibration the optimised parameters are studied more in depth 
to check if the optimisation indeed performed as expected. We would expect that 
each optimised parameter has an effect on the reduction of the RMSE. To test this 15 
more simulations were executed. 

The first simulation showed the results with all optimised parameters. The second 
simulation showed the results with all optimised parameters, except for indoor 
temperature, the third with optimised parameters except for the Rc values of façades 
from before 1965, and so on. By comparing the RMSE of the simulations, it is 
possible to determine whether the individual parameters contribute to a lower RMSE 
and is therefore a better assumption that the initial one. If the optimisation functions 
as desired all simulation results will lead to a higher RMSE than the simulation in 
which we used all optimised parameters.

Because not every category of assumption occurs the same amount of times in 
the database the above method does not provide information about the amount of 
influence of each parameter category on the RMSE. Therefore, to determine which 
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standard values have the highest impact, another four extra simulations were 
executed, whereby we use the optimised parameters except for one parameter 
category. For example, to determine the importance of the insulation rate of the 
façade we compared the RMSE of the optimised results with the RMSE of the 
simulation results of the sample with the initial standard values for the insulation 
rate, and optimised standard values for all other parameters. A larger difference 
indicates that the optimised results have a higher impact on the RMSE. 

 5.4.3 Practical implementation of co-simulation

Because Matlab was used for the optimisation and because the steady state 
simulation is relatively simple, the simulation model was rebuilt in Matlab according 
to the description in 2.1.1 and could be directly connected to the optimisation 
algorithms in Matlab. In addition to the steady state simulation, we also tested the 
method using a dynamic simulation method. In general, the method works exactly 
the same as for the steady state method. However, for the dynamic simulation we 
decided to use the external software EnergyPlus, which meant that a connection 
of this software and the optimisation tool in Matlab was required. Energy Plus was 
chosen because this is validated software that is widely recognised in the field. 
To connect EnergyPlus with Matlab, the co-simulation toolbox was used, which 
facilitates the communication between EnergyPlus and Matlab. The toolbox used 
the Building Control Virtual Test Bed (BCVTB), which is a software environment that 
allowed us to couple different simulation programs to each other for co-simulation 
[29]. Figure 5.8 shows an overview how this connection between Matlab and 
EnergyPlus was made. 
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FIG. 5.8 Overview of connection Matlab and EnergyPlus

As Figure 5.8 shows, to connect Matlab and EnergyPlus, several input files had to 
be prepared. First, we defined which parameters were to be optimised, and which 
would remain fixed for every building. Then, for every building in the sample, an 
.idf file was created in Matlab, (automated by using the find and replace function). 
This produced an .idf file available for every building, containing the geometry and 
window characteristics data. In our study, by using the replacing string function, all 
parameters that differed per dwelling (but were not supposed to be optimised) were 
replaced by their number from the WoON database, for example floor area, volume, 
façade area, U-value of the window, and measured insulation values. This resulted in 
133 separate .idf files for the sample and 180 files for the control group.

 5.5 Results

This section presents and analyses the results of the optimisation for both the steady 
state and the dynamic BES model. The results will be presented in the same order as 
described in the method section. The first part presents the optimisation results of 
the dynamic and steady state models. After this the results are analysed. In the third 
section we study the influence of the optimised standard values on the RMSE, and 
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finally we show the effectiveness of the method by applying the optimised standard 
values on a control group. Because we applied the method on both a steady state 
and dynamic simulation model, the results are shown for both examples. 

 5.5.1 Optimisation results

As described in the method section and presented in Figure 5.7 first, the indoor 
temperature is optimised and afterwards the other variables are optimised 
simultaneously.  

Optimisation indoor temperature

For the optimisation of the indoor temperature in the steady state method we applied 
two optimisation algorithms, the surrogate and the particle swarm optimisation 
method. The reason why we tried both is to check if both would result in the same 
result and this was indeed the case. For the steady state method we found an 
average indoor temperature of 16.2 °C. A comparison of the optimisation methods 
indicates that the number of required simulations to come to this value is lower for 
the surrogate method; however, the computation time is almost the same. A reason 
for this is that the surrogate model requires more computational power to determine 
the next best guess than the particle swarm method. Therefore, the particle swarm 
method is indeed better for the steady state simulation, because it can achieve more 
simulations in the same amount of time than the surrogate model; therefore, the 
probability of finding the global minimum will be higher. However, for the dynamic 
BES model, the simulation time is decisive, making the surrogate model a preferable 
method.

The calibrated indoor temperature of 16.2 °C of the steady state simulation is 
significantly lower than the assumed constant average indoor temperature of 
18 °C in the actual method. This may be because on average people use lower 
heating temperature, or heat the house less at night, or do not heat the complete 
floor heated area. For the dynamic model, using the surrogate model, we found an 
even lower indoor temperature of 15.9 °C. Optimisation of the indoor temperature 
reduces the RMSE 6% for the steady state model and 15% for the dynamic building 
simulation model. A linear regression between actual energy use and theoretical 
energy consumption after optimization did not result in a significant improvements of 
the R2. 

TOC



 200 Energy in Dwellings

Optimisation façade insulation, air change rate 
and DHW consumption

After the indoor temperature is calibrated it is used as fixed input and the other 
parameters are optimised simultaneously. Due to time restrictions, the dynamic 
simulation model ran fewer simulations than the steady state simulation model. In 
total, the optimisation of the dynamic simulation model ran 1100 iterations, from 
which each iteration contained one run of simulation of the entire sample. For the 
steady state model the particle swarm method was applied, slightly more than 90 
iterations were executed, from which each iteration contained 100 simulations of 
the entire sample (Figure 9-13). The computation time for the dynamic model was 
six days on a computer with a CPU of 3.2 GHz, using one core. The optimisation 
of the steady state model took a little bit under 10 minutes. However, both show 
a significant improvement in the RMSE (25% for the steady state model and 27% 
for the dynamic model). A linear regression of the theoretical energy consumption 
versus actual energy consumption shows an increase of 10% of the R2 (18% before 
optimisation and 28% after optimisation) for the steady state model (see Figure 5.9 
and 5.11). The dynamic model shows an increase of 5% (15% before optimisation 
and 20% after optimisation) (see Figure 5.10 and 5.12). All these factors indicate 
that the model predicts the heating energy more effectively with the optimised 
parameters/standard values (see sections 5.5.2 for these values). 
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Steady state simulation results before optimization [MJ]

FIG. 5.9 Regression actual energy use versus 
steady state simulated energy use before 
optimisation on sample

FIG. 5.10 Regression actual energy use versus 
dynamic simulated energy use before optimisation 
on sample
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Steady state simulation results afteroptimization [MJ]

FIG. 5.11 Regression actual energy use versus 
steady state simulated energy use after optimisation 
on sample

FIG. 5.12 Regression actual energy use versus 
dynamic simulated energy use after optimisation on 
sample

For the resulting average EPG in each label category, the use of the optimised 
standard values leads to a significant improvement. A comparison is presented 
in Figure 5.13 and 5.15 for the steady state simulation and Figure 5.14 and 5.16 
for the dynamic simulation, showing that in each label category the average 
consumption is much closer to the actual one and therefore the average EPG 
reduced significantly when optimised standard values were applied in the simulation 
method.
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FIG. 5.13 Actual versus theoretical gas 
consumption calculated with steady state simulation 
method before optimisation - sample

FIG. 5.14 Actual versus theoretical gas 
consumption calculated with dynamic simulation 
method before optimisation - sample

TOC



 202 Energy in Dwellings

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

A B C D E F G

m
ea

n 
an

nu
al

 g
as

 c
on

su
m

pt
io

n 
[M

J]
Energy label

Actual gas use 2010 [MJ]

Steady state simulation results after optimization [MJ]

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

A B C D E F G

ga
s u

se
 2

01
0 

[M
J]

Energy label

Actual gas use 2010 [MJ]

Dynamic simluation results after optimization [MJ]

FIG. 5.15 Actual versus theoretical gas 
consumption calculated with steady state simulation 
method after optimisation - sample

FIG. 5.16 Actual versus theoretical gas 
consumption calculated with dynamic simulation 
method after optimisation - sample

 5.5.2 Control group results

For the optimisation, we used a sample of the entire dataset. The follow-up analyses 
show that the optimisation works for the sample. However, the main aim of the 
method was that the optimized standard values could be used for better prediction of 
the entire building stock. Therefore, the buildings in the control group were simulated 
twice with a dynamic and steady state simulation method. The first simulation used 
the standard values recommended in ISSO 82.3 and the second simulation used the 
optimised standard values. If the method works, the average EPG should also be 
reduced for the control group. The results are shown in Figure 5.17–5.25 and they 
indeed show that the gap was significantly reduced; this indicates that the method 
functioned as expected and is therefore an effective method for reducing the average 
EPG to make building simulation models a more useful tool for policymakers.

The RMSE of the control group reduced significantly with the adapted standard 
values. The RMSE reduced from 23002.82 MJ to 16454.25 MJ, a reduction of 28% 
for the steady state method and from 18842.40 MJ to 25884.64 MJ, a reduction of 
27% for the dynamic simulation method (see figure 5.17-5.20). Moreover, the R2 
of the linear regression between actual energy consumption and theoretical energy 
consumption showed a significant improvement. Before optimisation, we found for 
the steady state method an R2 of 12.4% and after the optimisation the R2 increased 
to 21.3%, in the dynamic method we found an improvement of the R2 of 4% (see 
figure 5.21-5.24). The main aim of the optimisation was to reduce the average 
performance gap by optimising the standard values in the BES models
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FIG. 5.17 Actual versus theoretical gas 
consumption calculated with steady state simulation 
method before optimisation – control group

FIG. 5.18 Actual versus theoretical gas 
consumption calculated with dynamic simulation 
method before optimisation – control group
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FIG. 5.19 Actual versus theoretical gas 
consumption calculated with steady state simulation 
method after optimisation – control group

FIG. 5.20 Actual versus theoretical gas 
consumption calculated with dynamic simulation 
method after optimisation – control group

Therefore, although we are not certain the optimised parameters are fully 
representative of the reality and further research is needed (see sections 5.6, 5.7), 
this method shows that it is possible to generate data-driven standard values for 
the model that seem realistic and lead to a more accurate prediction of the average 
energy consumption in a specific building stock.
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Steady state simulation results before optimization [MJ]

FIG. 5.21 Regression actual energy use versus 
steady state simulated energy use before 
optimisation on control group

FIG. 5.22 Regression actual energy use versus 
dynamic simulated energy use before optimisation 
on control group
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FIG. 5.23 Regression actual energy use versus 
steady state simulated energy use after optimisation 
on control group

FIG. 5.24 Regression actual energy use versus 
dynamic simulated energy use after optimisation on 
control group

 5.5.3 Analysis of the optimised standard values

The optimised standard values are presented in Table 5.4. The results for the 
dynamic and steady state models are slightly different. This is logical because the 
calculation method is also slightly different. 
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The results indicate that in general, the insulation rate of the façade was 
underestimated for buildings built before 1965 and between 1965 and 1975, which 
is in accordance with previous research [22]. For dwellings built between 1975 
and 1992, an overestimation was detected, whereby the buildings are in reality 
less insulated than assumed. For the insulation rate of buildings built after 1992, 
the results show a higher number than initially assumed. A possible explanation 
for this is that a relatively large number of dwellings in the category “>1992” were 
constructed after 2000. In 2000, the energy performance coefficient (an indicator 
for energy-efficient state of new built buildings in the Netherlands) became stricter. 
To achieve this coefficient, it is possible the buildings were constructed with a higher 
Rc value than required according to the building decree. 

For the indoor temperature, we found a significantly lower indoor temperature than 
the assumed 18 °C. A possible explanation for this is that our model assumes the 
entire building is constantly heated up to 18 °C, although in reality heating is often 
lowered during the night and bedrooms are (in the Netherlands) often not heated 
at all [30, 31],  which makes a lower average indoor temperature a more realistic 
assumption.

For the air change rate (based on a ventilation system) we found that buildings 
with natural ventilation have a lower ventilation rate than buildings with mechanical 
exhaust ventilation, although the ISSO 82.3 method assumes that they have the 
same amount of compulsory ventilation. The results seem legitimate as mechanical 
systems are installed to remedy for poor natural air flows. Further, for demand-
based ventilation, the optimisation suggested higher ventilation rates. This could 
be possible because in reality people also open the window next to their ventilation 
system. For the balanced ventilation system, we found different results for the 
dynamic and the steady state models. A possible explanation is that the heat loss of 
dwellings with a balanced ventilation system and heat recovery was so low that the 
amount of ventilation had a limited impact, which provided inconclusive results. On 
average the optimised standard values suggest a higher ventilation rate should be 
assumed. 

According the standard values in ISSO 82.3, the amount of hot water used is 
highly dependent on the floor area category the dwelling belongs, however, the 
optimisation results show that the amount of domestic hot water used does not differ 
that much for the two smallest floor area categories. The results of this optimisation 
could indicate that the categorisation of domestic hot water consumption might not 
be accurate. This could be because actual DHW is expected to depend directly from 
the number of persons living in the house, rather than from the m2 and the (in the 
norm) expected relationship between number of people and floor area is rather weak.
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TABLE 5.4 Optimised parameters for the steady state and dynamic simulation methods

Initial assumption (ISSO 
82.3)

optimised parameters  
of steady state BES 
model

optimised parameters of 
dynamic BES model

Façade insulation

<Rc1965 0.19 0.49 0.41

Rc1965-1975 0.43 0.51 0.78

Rc 1975-1988 1.3 0.75 1.1

Rc 1988-1992 2 0.88 1.45

>Rc 1992 2.3 3.1 3.1

Ventilation and infiltration rate

Natural ventilation 0% +31% +42%

Mechanical exhaust ventilation 0% +88% +75%

Mech. Exh. Demand based 0% +124% +20%

Balanced with heat recovery 0% +30% -17%

Indoor temperature 18 oC 16.2 oC 15.9 oC

Domestic hot water consumption

dhw floor area <50m2 0% +135% +166%

dhw 50< floor area <75 m2 0% -5% +17%

dhw 75< floor area <100 m2 0% +21% +42%

dhw 100 < floor area <150 m2 0% -3% +30%

* 0% is initial value according ISSO 82.3

 5.5.4 Influence of optimised parameters on RMSE

To test if all parameters were optimised, another 15 simulations were made for both 
methods. In each run, we used the optimised values except for one variable; for that 
variable we use the original input as described in ISSO 82.3. If the RMSE was higher 
than the optimisation result we could conclude that the changed assumption indeed 
reduced the performance gap. If the RMSE was higher than the optimised RMSE, 
we could conclude that for that particular variable the initial value would have been 
better. The results are shown in Table 5.5 and indeed indicate that each parameter 
resulted in a lower RMSE. 
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TABLE 5.5 Change RMSE for different variables analysis

RMSE steady state simulation [MJ] RMSE dynamic simulation [MJ]

Optimised 14758.68 15622.52

Façade insulation

<Rc1965 15420.6 17762.94

Rc1965-1975 14886.93 15622.52

Rc 1975-1988 14783.96 15626.04

Rc 1988-1992 14764.02 15683.77

>Rc 1992 15071.67 15634.48

Ventilation and infiltration rate

Natural ventilation 14829.24 15760.99

Mechanical exhaust 16092.82 16541.27

Mechanical exhaust demand based 14904.58 15633.16

Balanced ventilation with heat recovery 14794.00 15628.52

Indoor temperature 16250.83 17939.97

Domestic hot water consumption

DHW floor area <50 m2 14868.23 15923.66

DHW floor area ≥50 m2 & <75m2 14760.15 15739.68

DHW floor area ≥75 m2 & <100m2 14814.43 15944.59

DHW floor area ≥100 m2 & <150m2* 14759.16 15741.72

* there are no dwellings with a floor area > 150m2 in the dataset

To determine which optimized parameter had the highest impact on the performance 
gap, four extra simulation runs were completed (see Table 5.5). In these runs, we 
again used the optimised values except for one of the four optimised parameter 
categories (façade insulation, air change rate, indoor temperature, and domestic 
hot water consumption). The results of the steady state model showed that the 
adapted parameter settings for the insulation rate had the highest impact followed 
by the ventilation rate, indoor temperature, and finally the amount of domestic hot 
water consumption. This is in accordance with previous studies on the sensitivity of 
parameters in building energy simulation models [32]. The results of the dynamic 
simulation method were similar, with the exception of indoor air temperature. The 
indoor air temperature for the dynamic simulation model was the parameter with 
the greatest influence. In the previous results, we already saw that the optimized 
parameter setting for indoor air temperature for the dynamic simulation model was 
lower than the optimized parameter setting for temperature for the steady state 
model. It is understandable that this is also reflected in the RMSE. It shows the 
sensitivity of building simulation models climate data.
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TABLE 5.6 determining the influence of the optimisation per parameter

RMSE steady state [MJ] RMSE dynamic simulation [MJ]

Optimised results 14758.68 15622.52

Façade insulation 17288.78 17772.04

Air change rate 16322.93 16687.69

Indoor temperature 16250.83 17939.97

Domestic hot water consumption 14925.49 16466.4

 5.6 Discussion

This research introduced the first step towards a method to reduce the average 
performance gap on a building stock level. The results show that calibrated 
standard values use in BES by using optimization algorithms is a powerful way 
of reducing the average performance gap. However, the optimised parameters 
from this research should not directly be used as new assumptions for the Dutch 
energy label calculation method. One of the reasons is that in our analysis we only 
used apartment buildings with a gas heating system, which means the dataset is 
not representative of the entire housing stock. Because our sample only included 
a limited number of different efficiencies of the heating and domestic hot water 
systems, we decided not to optimise the efficiency of those systems. Because we 
did optimise the indoor temperature separately, it could be that the optimised 
indoor temperature corrects for the efficiency of the heating system. It is therefore 
recommended to search for a more secure procedure in the future where all variables 
would be optimized concurrently.

During the study, it was found that the boundary conditions used for the optimisation 
have a significant influence on the outcome, especially the computation time. In this 
study, the boundary conditions were based on a theoretical background and previous 
research results; however, more sample measurements should be completed to 
determine whether the chosen boundary conditions are the most appropriate. 

A drawback of this method is that actual energy consumption data of multiple houses 
with different characteristics needs to be available. This is not the case in every 
country; however, in many countries there is a recurring survey that monitors the 
national building stock. These data could be used to optimise the parameter settings 
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used in the assumptions (for example, in the Netherlands, the WoON database; 
in Denmark Statistics Denmark administrative registers and Danish Building and 
Dwelling Register (BBR); and in the UK the “English Housing” survey).

Although the results seem promising, we should keep in mind that we used an 
optimisation algorithm and not the brute force method, which makes it possible that 
there might be better assumptions possible than the ones we found. This brings 
us directly to the following point of the physical meaning of optimised parameters. 
Similar to traditional calibration techniques and other reversed engineering methods, 
this method does not ensure that adaptions made in the assumptions are a realistic 
reflection of reality. This is also demonstrated by the differences in results for the 
dynamic and steady state simulation models. 

 5.7 Conclusions and policy implications

This research introduced the first steps towards a method to reduce the average 
EPG, by adapting standard values in building energy simulation model to make 
building simulation models a more reliable tool for policymakers. The research 
showed that the EPG of both the steady state and dynamic models are comparable. 
The case studies prove that the RMSE can be reduced by approximately 25%–
27% and the R2 can be improved by 4–10%. For both steady state and dynamic 
simulation models, the method reduced the average EPG significantly. The results 
seem promising, although in the discussion section we already mentioned some 
potential room of improvement More research is needed to make the method more 
reliable and practically usable. The following aspects should be investigated in 
further research:

 – What are the exact conditions that the optimisation sample and control groups 
should fulfil to increase the reliability of the optimisation results (e.g. how many 
cases are needed per parameter)?

 – Having strict boundary conditions will speed up the optimisation process and 
therefore increase the probability of finding the correct results. More research should 
be done towards the lower and upper boundary conditions of each parameter and to 
which extent they are active or inactive.
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 – More research should be completed for the best metric for the optimisation model. In 
this case we used the RMSE; however, it is possible that this increased the overfitting 
probability because outliers have a heavier weight than when (for example) the mean 
absolute error would have been used. 

 – Although a significant reduction of the EPG was achieved in this research, it 
is possible that a higher reduction could be achieved. For example, the indoor 
temperature is now the same for every dwelling but previous research has shown 
that the indoor temperature is dependent on the energy efficiency of the houses 
(high energy efficient dwellings have a higher average indoor temperature compared 
to low energy efficient dwellings). Optimisation of indoor temperature for different 
categories might reduce the EPG even further [33], but this would lead to a ‘new’ 
method.

 – More attention should be paid from a mathematical point of view to what parameters 
under which conditions can really be optimised without the risk of interchangeability 
and which nonlinear constraints are necessary. These non-linear constraints may 
also make it possible to optimise all parameters simultaneously instead of optimising 
the indoor temperature first. . 

Despite the extra research that is needed, the first results of the method seem 
promising and with some additional research we believe that the average EPG can 
be significantly reduced, which would make building simulation tools a more reliable 
tool for policymakers. Average energy consumption and energy savings on a building 
stock level will be predicted more accurately which will enable more realistic energy 
saving targets. The method would be especially useful for example for the EPBD. 
Every country has its own simulation model, with their own assumptions. However, 
by using the proposed calibration method, the simulation models can be calibrated 
at the same level and improved. Countries can keep their own simulation models but 
the calibration of the model can be made transparent and improved by adapting the 
assumptions. This makes the models comparable and makes it possible to compare 
the outcomes of the simulation models with each other. This is especially important 
because the EPBD is currently not only used as a source of information for potential 
buyers and/or tenants, but is also used as a monitoring tool by both, European and 
national policymakers. 
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Some important aspects that should be taken into account when using the proposed 
method, which is summarized in Figure 5.25 are

2 Having enough cases per optimization parameter 
3 Make sure that the group is representative
4 Prevent overfitting
5 Avoid influential outliers because they will have a significant influence on the end 

result
6 This method does not aim to reduce the gap between predicted and actual energy 

consumption on an individual building level but only on a building stock level

This research did not only present a new effective method to make better 
assumptions for more realistic BES results, but it also showed how much 
influence the assumptions have on BES results This should be taken into account 
by policymakers when preparing new calculation norms for building energy 
consumption. This research once again shows the importance of monitoring real 
energy consumption data and shows that it is still important to gather this type of 
data in order to be able to learn from this data. 
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1. Investigate assumptions

2. Determine which parameters 
should be optimised

3. Determine lower and upper 
bounds of those parameters

4. Define optimisation problem

5. Select optimisation algorithm

6. Select optimisation sample

7. Optimise

8. Analyse results of control 
group

9. Analyse optimisation results. 

10. Use optimised parameters 
on control group

FIG. 5.25 Summary of proposed method

TOC



 213 Calibration of Energy  Simulation Models on a Building Stock Level using Actual Energy  Consumption  ata

References

[1] Eurostat, Final energy consumption by sector, t2020_34, Editor. 2016: https://ec.europa.eu/eurostat/web/
products-datasets/-/T2020_34.

[2] Crawley, D.B., Building Performance Simulation: A Tool for Policymaking, in Department of Mechanical 
Engineering. 2008, University of Strathclyde: Glasgow, Scotland, UK. p. 307.

[3] Hamilton, I.G., et al., Energy efficiency in the British housing stock: Energy demand and the Homes Energy 
Efficiency Database. Energy Policy, 2013. 60: p. 462-480

[4] de Wilde, P., The gap between predicted and measured energy performance of buildings: A framework for 
investigation. Automation in Construction, 2014. 41: p. 40-49.

[5] Majcen, D., L. Itard and H. Visscher, Actual and theoretical gas consumption in Dutch dwellings: What causes 
the differences? Energy Policy, 2013. 61: p. 460-471.

[6] Guerra Santin, O., Occupant behaviour in energy efficient dwellings: evidence of a rebound effect. Journal of 
Housing and the Built Environment, 2013. 28(2): p. 311-327.

[7] Menezes, A.C., et al., Predicted vs. actual energy performance of non-domestic buildings: Using post-
occupancy evaluation data to reduce the performance gap. Applied Energy, 2012. 97: p. 355-364.

[8] Sunikka-Blank, M. and R. Galvin, Introducing the prebound effect: the gap between performance and actual 
energy consumption. Building Research & Information, 2012. 40(3): p. 260-273.

[9] Cozza, S., J. Chambers and M.K. Patel, Measuring the thermal energy performance gap of labelled residential 
buildings in Switzerland. Energy Policy, 2019: p. 111085

[10] Galvin, R., Making the ‘rebound effect’ more useful for performance evaluation of thermal retrofits of existing 
homes: Defining the ‘energy savings deficit’ and the ‘energy performance gap’. Energy and Buildings, 2014. 
69: p. 515-524.

[11] Filippidou, F., N. Nieboer and H. Visscher, Effectiveness of energy renovations: a reassessment based on 
actual consumption savings. Energy Efficiency, 2018.

[12] Majcen, D., L. Itard and H. Visscher, Energy labels in Dutch dwellings - their actual energy consumption and 
implications for reduction targets, in ECEEE 2013 Summber study - rethink, renew restart. 2013.

[13] van den Brom, P., A. Meijer and H. Visscher, Performance gaps in energy consumption: household groups and 
building characteristics. Building Research & Information, 2017: p. 1-17.

[14] van den Brom, P., A. Meijer and H. Visscher, Actual energy saving effects of thermal renovations in 
dwellings—longitudinal data analysis including building and occupant characteristics. Energy and Buildings, 
2019. 182: p. 251-263.

[15] van den Brom, P., et al., Variances in residential heating consumption – Importance of building characteristics 
and occupants analysed by movers and stayers. Applied Energy, 2019. 250: p. 713-728.

[16] Majcen, D., L.C.M. Itard and H. Visscher, Theoretical vs. actual energy consumption of labelled dwellings in 
the Netherlands: Discrepancies and policy implications. Energy Policy, 2013. 54: p. 125-136.

[17] EU, amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/
EU on energy efficiency, in L 156/75, E. Parlement, Editor. 2018, Offical Journal of the European Union: 
Strassbourgh. p. 17.

[18] Filippidou, F., N. Nieboer and H. Visscher, Are we moving fast enough? The energy renovation rate of the 
Dutch non-profit housing using the national energy labelling database. Energy Policy, 2017. 109(Supplement 
C): p. 488-498.

TOC



 214 Energy in Dwellings

[19] Coakley, D., P. Raftery and M. Keane, A review of methods to match building energy simulation models to 
measured data. Renewable and Sustainable Energy Reviews, 2014. 37: p. 123-141.

[20] Heo, Y., R. Choudhary and G.A. Augenbroe, Calibration of building energy models for retrofit analysis under 
uncertainty. Energy and Buildings, 2012. 47: p. 550-560.

[21] Gram-Hanssen, K., Households’ energy use - which is the more important: efficient technologies or user 
practices?, in World Renewable Energy Congress 2011, EEE, Editor. 2011: Linkoping, Sweden.

[22] Rasooli, A., L. Itard and C.I. Ferreira, A response factor-based method for the rapid in-situ determination of 
wall's thermal resistance in existing buildings. energy and buildings, 2016. 119: p. 51-61.

[23] Rijksoverheid.nl., WoON2012 energie module, BZK, Editor. 2014.

[24] ISSO, Energieprestatie advies woningen, in 82.3, ISSO, Editor. 2011: Rotterdam.

[25] DesignBuilder, Version 3.0.0.043. 2000-2009; Available from: www.designbuildersoftware.com.

[26] ECN, energie-nederland and Netbeheer-nederland, energietrends 2014, in energietrends. 2014.

[27] Matlab. Particle Swarm Optimisation Algorithm. 2019; Available from: https://nl.mathworks.com/help/gads/
particle-swarm-optimisation-algorithm.html.

[28] Goy, S., Towards smarter cities: On the potential of Model Predictive Control for energy saving and increased 
exibility in the built environment, in School of Mechanical and Materials Engineering, College of Engineering 
and Architecture. 2019, University College Dublin: Dublin. p. 302.

[29] Nouidui, T. Building Controls Virtual Test Bed. 2016 2016-04-22 [cited 2019 26-2]; Available from: https://
simulationresearch.lbl.gov/bcvtb/FrontPage.

[30] Majcen, D., L. Itard and H. Visscher, Statistical model of the heating prediction gap in Dutch dwellings: 
Relative importance of building, household and behavioural characteristics. Energy and Buildings, 2015. 105: 
p. 43-59.

[31] Guerra-Santin, O. and L. Itard, Occupants’ behaviour: determinants and effects on residential heating 
consumption. Building Research & Information, 2010. 38(3): p. 318-338.

[32] Ioannou, A. and L.C.M. Itard, Energy performance and comfort in residential buildings: Sensitivity for building 
parameters and occupancy. Energy and Buildings, 2015. 92: p. 216-233.

[33] Guerra Santin, O., L. Itard and H. Visscher, The effect of occupancy and building characteristics on energy 
use for space and water heating in Dutch residential stock. Energy and Buildings, 2009. 41(11): p. 1223-
1232.

TOC



 215 Conclusions and recommendations

6 Conclusions and 
recommendations

 6.1 Introduction

This thesis investigated if and to what extent occupant and building characteristics 
explain the gap between theory and practice of building energy consumption. Further, 
it introduced a method to reduce this gap on a building stock level by using actual 
energy consumption data. The study made use of large databases with actual and 
theoretical annual energy consumption data, occupant characteristics data and 
building characteristics data on an individual dwelling level. The main reason for this 
study is that reducing residential energy consumption is high on the political agendas 
of many countries. Up to now, energy-saving policies, subsidies, and action plans, as 
well as energy monitoring, are often based on theoretical energy consumption and 
savings, whereas energy-saving targets are expected to meet actual energy savings 
[1-4]. Because there is a significant gap between theoretical and actual energy 
consumption the saving targets are often not met [5]. It is therefore important to get a 
better insight into this gap and, if possible, reduce it. One of the strengths of this study 
compared to existing ones is that large databases with actual and theoretical annual 
energy consumption on an individual dwelling level are used, not only containing 
building characteristics data but also occupant characteristics data.

Theoretical energy consumption can be calculated by several methods. This study 
mainly uses the calculation method from the Dutch government that was used until 
2014 to determine the energy label (energy performance certificate) of a house. 
This method is based on a steady state method. The theoretical energy consumption 
results of the energy label calculation method are widely used in the Netherlands, 
e.g. to determine subsidies and rent limits and to conduct energy-saving action 
plans. Some people suggest that the cause of the energy performance gap is the 
oversimplified steady state method used by the Dutch government, however, chapter 

TOC



 216 Energy in Dwellings

5 of this thesis showed that the energy performance gap is also present in dynamic 
simulation models .

This study was only possible due to a variety of data sources. The first is the SHAERE 
database, which contains the building characteristics data of a significant number 
of social rental houses in the Netherlands. It also contains energy labels (energy 
performance certificate) and the corresponding theoretical energy consumption. 
The SHAERE database is updated every year, which makes it possible to follow the 
changes in building characteristics over the years. The second data source is from 
Statistics Netherlands. This database contains actual energy consumption provided 
by the energy supply companies in the Netherlands at address level. Statistics 
Netherlands also has data available at the person level, which can be linked to the 
addresses. Because the information from Statistics Netherlands is privacy sensitive, 
the data can only be used in a protected environment and research results are 
only allowed to be exported on an aggregated level (at least 10 cases or more). 
Another dataset that was used is data on building and household characteristics 
from Statistics Denmark’s administrative registers, which cover the full population 
of Denmark. These were merged with data on household energy consumption for 
space heating and hot water from the Danish Building and Dwelling Register (BBR), 
which is part of the Danish Ministry of Taxation. The WoON database, which is the 
last data source, is based on a survey carried out by the Dutch government to gather 
information on the energy performance of the Dutch dwelling stock. This research is 
carried out every 5 to 6 years. In this study, we used the results of the WoON energy 
survey for 2012, which was the most recently available dataset.

This study is split into four key questions, each represented in one chapter of 
the thesis. In the second chapter, the relationship between occupant groups and 
building characteristics with the energy performance gap was explored. Because 
previous studies showed proof of a relationship between behaviour and the energy 
performance of a building, the relationship between the energy performance gap and 
occupant groups was studied with regard to the energy label. Following this, more 
detailed information was gathered by comparing the characteristics of the highest 
and lowest 10% energy-consuming groups.

One of the most important consequences of the energy performance gap is that 
the energy savings of thermal renovations are often lower than expected. Because 
of this, almost 90,000 renovated houses are studied to determine if there is a 
relationship between the building and occupant characteristics and the magnitude 
of the energy savings, as well as the energy saving gap (see chapter 3). First, the 
actual energy saving achieved by thermal renovation measures were investigated to 
determine which energy saving measure is the most effective. Next, the magnitude 
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of the energy saving gap was investigated, for different renovation measures. Finally, 
a logistic regression was executed to determine the probability of lower-than-
expected-energy savings after a thermal renovation.

As this study progressed, it became clear that both the occupant and building 
characteristics influence residential energy consumption. However, the magnitude 
remained unclear and because significant variances in energy consumption 
among similar buildings were found, the influence of occupants and the technical 
characteristics on these variances were studied (see chapter 4). This is done 
by comparing the actual energy consumption of two different years for a group 
of houses retaining the same occupants with a group of houses with changing 
occupants over those years. This was the only study in which we had access to 
actual energy consumption data from both the Netherlands and Denmark.

Because both the occupant and building characteristics influence residential energy 
consumption and their influence is not only direct but also via interaction effects, it 
became clear that improving the theoretical energy consumption on the individual level 
without requiring more detailed input data is impossible. However, more detailed data 
is often not available, especially not on a large scale. Therefore, it seemed reasonable 
to attempt to reduce the energy performance gap on a building stock level by adapting 
the assumptions in the calculation method. This is done by an automated calibration 
method. The calibration method was not applied on an individual building, which is 
normally the case, but was used on a group of houses (see chapter 5).

This chapter presents the conclusions and recommendations from this study. Section 
6.2 presents an overview of the conclusions of the previously mentioned chapters. 
Section 6.3 presents the overall conclusion through answering the main research 
question. After this the limitations of this study are then discussed in section 6.4. 
This is followed up by section 6.5 which provides the recommendations for policy 
practice and further research. Lastly, some final remarks are provided in section 6.6.
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 6.2 Key questions

The main question of this study is "Can occupant and building characteristics 
provide better insight into the difference between theory and practice of buildings' 
energy consumption and is it possble to reduce the gap between theory and 
practice?" To answer the main question, four key questions are formulated, which 
are each highlighted in one chapter of this thesis. This section provides an overview 
of the answers on the key questions and their sub-questions. Together, they form the 
answer to the main research question, which will be presented in section 6.3.

 6.2.1 Performance gaps in energy consumption – 
household groups and building characteristics

To achieve the main aim of this study, the second chapter of this thesis details how 
building characteristics and household groups provide better insights into actual and 
theoretical residential energy consumption. The research question that is answered 
for this part of the study follows:

Can analysing building characteristics and household groups provide better insight 
into the energy performance gap?

This is investigated by analysing a large database containing more than 1 million 
households with occupant and building characteristics, as well as theoretical and 
actual energy consumption data, on a dwelling level. In the analysis, the relationship 
between building characteristics and household groups with actual and simulated 
energy consumption is examined. To obtain more specific insights, a more detailed 
analysis was conducted on the houses in the highest and lowest 10% energy-
consuming groups. In this comparison the distribution of occupant and building 
characteristics for the highest, lowest and average energy consuming groups 
were compared.

Before answering this research question, a literature review was carried out to 
determine what is already known about the energy performance gap for residential 
buildings. Many studies indicate that the main cause of the energy performance 
gap is differences in energy-related occupant behaviour (see sections 2.1 and 2.2 
of chapter 2). Because actual energy-related occupant behaviour data is difficult 
to collect, many researchers (and also this study) base their studies on occupant 
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characteristics instead of energy-related behaviour [6-11], which are found to have 
a relationship with energy related occupant behaviour but are easier to collect. The 
literature review shows that studying occupant characteristics is an effective way to 
investigate the influence of occupants on residential energy consumption. Although 
the literature shows that energy-related occupant behaviour is expected to be 
the main explanation of the energy performance gap, there are other aspects that 
could play a role, such as the simplifications and assumptions that are made for the 
calculation method. However, they are investigated less frequently in this context.

 The energy performance gap of residential gas consumption

Because previous studies have shown that the energy performance gap varies 
considerably between different energy-efficiency categories (energy labels), an 
analysis was performed to determine if this was also the case for the SHAERE 
database. Similar to the results of Majcen et al. (2013) , Figure 6.1 indeed shows 
that energy-efficient buildings consume more energy than expected and energy-
inefficient buildings consume less energy than expected.
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FIG. 6.1 Actual versus theoretical gas consumption per energy label based on data SHAERE database 2014
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What is the relationship between the energy performance 
gap per household group concerning gas consumption?

To determine the relationship between the energy performance gap and household 
groups, 18 different household groups were generated, see Table 6.1, and compared 
for average actual energy consumption and the average energy performance gap.

TABLE 6.1 Household groups

Household 
composition

Age 
(years)

Children Age of children 
(years)

Work Income

1 Single ≥65 No n.a Retired n.a

2 Single <65 No n.a State benefit n.a

3 Single <65 No n.a Employed Low

4 Single <65 No n.a Employed Middle

5 Single <65 No n.a Employed High

6 Couple >65 No n.a Retired n.a

7 Couple <65 No n.a State benefit n.a

8 Couple <65 No n.a Employed Low

9 Couple <65 No n.a Employed Middle

10 Couple <65 No n.a Employed High

11 Family <65 Yes < 12 State benefit n.a

12 Family <65 Yes < 12 Employed Low

13 Family <65 Yes < 12 Employed Middle

14 Family <65 Yes < 12 Employed high

15 Family <65 Yes At least one > 12 State benefit n.a

16 Family <65 Yes At least one > 12 Employed Low

17 Family <65 Yes At least one > 12 Employed Middle

18 Family <65 Yes At least one > 12 Employed High

The analysis showed that single person households consume on average the least 
energy per square meter for heating and family households consume the most. The 
largest energy performance gap, however, is found for single-person households 
that received state benefits and the smallest is found for families with a high 
income. Because it was confirmed that the energy performance gap differs for each 
energy label category, the relationship between the energy performance gap per 
household group was investigated separately for each energy label category (see 
Figure 6.1). The results show that for the low-energy-efficient houses (labels D–G), 
family households have the smallest energy performance gap and for high-energy-
efficient houses (labels A–C), single person households have the smallest gap. This 
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indicates that there is no direct relationship between the performance gap and 
occupant characteristics or there are other factors that have a higher influence on 
the performance gap. Another explanation could be that the average energy-related 
household type behaviour is dependent on the energy efficiency of the dwelling, e.g. 
household types behave more energy efficiently in energy-inefficient than in energy-
efficient dwellings (the pre-bound effect).

What can we tell about the highest and 
lowest gas-consuming groups?

To obtain a more detailed insight into the energy performance gap, the highest, average 
and lowest energy consumer groups are compared. Figure 6.2 and Figure 6.3 show 
the comparison for theoretical and actual energy consumption, respectively. The 
results clearly show that the differences between the groups are significantly higher for 
actual energy consumption compared to theoretical energy consumption. The figures 
also show that even the highest actual gas-consuming group consumes less gas 
than the predicted gas consumption. This indicates that the difference between low 
and high consuming groups is only partly dependent on building characteristics.
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FIG. 6.2 comparing lowest, average and highest gas 
consuming groups theoretical consumption, based 
on data SHAERE and CBS database 2014

FIG. 6.3 comparing lowest, average and highest gas 
consuming groups actual consumption based on 
data SHAERE and CBS database 2014

To understand better why some households belong to a high-energy-consuming 
group and others to a low-energy-consuming group, the distribution of the groups 
are compared for different occupant and building characteristics. From these 
analyses, it can be concluded that occupant and building characteristics have a 
relationship with being placed in the low-, average- or high-energy-consuming 
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group. For example, single-person households occur more often in the low-energy-
consuming group and households with three or more members are more often 
found in the high-consuming group. In addition, households without children occur 
more frequently in the low-gas-consuming group. It was also found that low-
income households occur more frequently in the extreme groups and high-income 
households occur more often in the average group. Employed occupants are more 
often placed in the low-energy-consuming group than unemployed occupants, this is 
independent from the energy energy label of the dwelling.

A closer look into the building characteristics show that single-family houses occur 
more often in the high-consuming group and apartments occur more often in the 
low-gas-consuming group. It was also found that houses with poor insulation occur 
more frequently in the high-energy-consuming group. An analysis also shows that 
the type of ventilation system is especially important for energy-efficient houses. For 
houses with energy labels F or G, the distribution does not differ significantly per 
group. Energy-efficient houses show (as expected) that balanced ventilation systems 
occur more frequently in the low-consuming group and natural ventilation systems 
are more often in the high-energy-consuming groups. The construction year of the 
building differs significantly for categories A, B and C. The results show clearly that 
older houses occur more frequently in the high-consuming group and more recently 
built houses occur more frequently in the low-consuming group. This indicates 
that even if buildings are renovated, it seems to be difficult to achieve the same 
performance as new-built houses.

The energy performance gap or residential electricity consumption

The energy performance gap of electricity consumption is easier to explain. The 
main cause of the gap is that in the calculation method, only building-related energy 
consumption is taken into account. This means that energy use for appliances and 
lighting (lighting is only considered building-related in utility buildings) are not taken 
into account. The results also show that the difference in electricity use between 
energy-efficient and energy-inefficient buildings is relatively small. This indicates that 
the use of electricity by occupants is not influenced by the energy efficiency state of 
their house. Further, the results show that the differences between household groups 
are significantly larger for actual electricity consumption compared to theoretical 
electricity consumption. Families with children older than age 12 consume the most 
electricity and single person households consume the least.
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Conclusions

 – The findings of this study show that analysing specific household types and building 
characteristics contributes to a better understanding of the influence of the occupant 
on actual energy consumption and the energy performance gap.

 – The analysis of the consumers in the highest and lowest 10% energy-consuming 
groups can help policymakers choose the right target groups for their energy-saving 
policies and campaigns.

 – The analysis showed that single person households consume the least energy per 
square meter for heating and family households consume the most.

 – For low-energy-efficient houses (labels D–G), family households have the smallest 
energy performance gap and for high-energy-efficient houses (labels A–C), single 
person households have the smallest gap.

 – The average highest 10% actual gas-consuming group consumes less gas than the 
lowest predicted gas-consuming group.

 – Single-person households occur more often in the low-energy-consuming group and 
households with three or more members more often appear in the high-consuming-
group.

 – Households without children occur more frequently in the low-gas-consuming group.

 – Low income households occur more frequently in the extreme groups and high-
income households occur more often in the average group.

 – Employed occupants occur more often in the low-energy-consuming group than 
unemployed occupants. This indicates that a higher occupancy time results in higher 
energy consumption.

 – The type of ventilation system is especially important for energy efficient houses. 
For houses with energy labels F or G, the distribution does not differ significantly per 
group. Energy efficient houses show (as expected) that balanced ventilation systems 
occur more frequently in the low-consuming group and natural ventilation systems 
are found more often in the high-energy-consuming group.
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 – The construction year of the building differs significantly for categories A, B and 
C. The results clearly show that older houses occur more frequently in the high-
consuming group and more recently built houses occur more frequently in the low-
consuming group. This indicates that even if buildings are renovated, it seems to be 
difficult to achieve the same energy performance as new-built houses.

 6.2.2 Actual energy-saving effects of thermal renovations in 
dwellings – longitudinal data analysis including building and 
occupant characteristics

Because the previous section showed that occupant and building characteristics 
significantly influence the energy performance gap, the next research question 
(presented in chapter 3 of this thesis) focusses on the main consequence of the 
energy performance gap: lower-than-expected energy savings after a thermal 
renovation. This study investigates the actual energy savings and the gap between 
actual and simulated energy savings for different types and combinations of thermal 
renovation measures. The research question that is answered in this study is:

Do occupant and building characteristics have a relationship with the difference 
between actual and theoretical energy savings after a thermal renovation?

This is investigated by analysing annual residential energy consumption data before 
and after the renovation of 90,000 houses in the Netherlands. Eleven renovation 
measures are identified to examine their relationship with building and occupant 
characteristics. Further, the probability that renovations result in lower-than-
expected energy savings is investigated in research question. Also this question is 
answered by several sub questions, which are discussed below.

How frequently do thermal renovations result in 
lower-than-expected energy savings?

On average, 41% of the cases have higher energy savings than expected, 56% have 
savings that were lower than expected and only 3% of the renovations have well-
predicted results (within 10% of the expected savings).

The descriptive statistics presented in chapter 3 also indicate that deep renovations 
most often result in lower energy savings than expected (82%). The same holds true 
for thermal renovations in which two or more insulation measures are applied. In 
35% of the cases, the improvement of building installations results in higher-than-
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expected energy consumption. Regarding the single measures, we observed that 
improvement in the combined heating and hot water system and in façade insulation 
most often result in lower-than-expected energy savings.

Which thermal renovation measures result, on 
average, in the highest energy savings?

Figure 6.4 demonstrates (as expected) that most gas is saved when deep 
renovations are executed. The next highest energy-saving measures are 
improvements in installation systems (heating, hot water and ventilation systems) or 
a combi hot water and heating system, the insulation of the entire building envelope, 
the heating system, a change in windows, roof insulation, façade insulation, floor 
insulation and, finally, a ventilation and hot water system.
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FIG. 6.4  Average energy saving per thermal renovation measure (including confidence interval 0.05), based 
on data SHAERE and CBS database 2010-2014 
Note: Dashed line is actual difference in gas reduction between 2010–2014 for non-renovated houses.
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Which thermal renovation measures result, on 
average, in the highest energy saving gap?

A comparison of the energy saving gap demonstrates that although deep renovations 
usually result in the highest energy savings, they also have the highest energy 
performance gap. In addition, the roof, façade, and entire envelope insulation have 
a relatively large energy performance gap if one compares this with their actual 
savings, whereas floor insulation saves more energy than expected (see Figure 6.5).
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Which factors have a relationship with the height of the 
actual energy savings after a thermal renovation?

There are several parameters found that influence the amount of energy saved 
after a thermal renovation. First, the energy savings per renovation measure is 
dependent on the energy-efficiency state of the building prior to the thermal 
renovation. Relatively energy-efficient houses benefit more from improved building 
installations, whereas relatively low-energy-efficient houses benefit more from 
improved insulation.

Second, on average, thermal renovations in single-family dwellings result in higher 
actual energy savings than multi-family dwellings. Energy renovation measures are 
often more effective on single-family houses than on multi-family houses because 
single-family houses have on average a relatively large building envelop, which highly 
influences energy use for heating.

Third, the results indicated that houses in which all adult members are employed 
have, on average, higher energy savings after building installation improvements 
than those in which not all adult members are employed. A possible explanation for 
this is that employed occupants might have more predictive occupancy patterns; 
therefore, the automatic control systems (for example, automatic thermostats) 
that often come with new building installations function better. However, this does 
not explain why the savings from hot tap water differ significantly. More research is 
needed to explain this phenomenon.

Households with a high income seem to save, on average, more energy after 
a thermal renovation compared to households with a low income. A possible 
explanation for this is that households with a low income are more willing to 
compromise on comfort to save energy and money in an energy inefficient house. 
After the renovation, less energy is needed to achieve the same comfort level; 
therefore, they can afford a higher comfort level, which results in lower energy 
savings. Another explanation is that households with a high income more frequently 
live in multi-family houses with larger building envelopes that have a high influence 
on the energy demand.
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Which factors have a relationship with the energy 
performance gap after a thermal renovation?

There are several parameters that influence the amount of energy saved after a 
thermal renovation. For almost all thermal renovation measures, the energy-saving 
gap grows when the energy label is lower. This means that a renovation of a house 
with previously low energy-efficiency results in a larger gap between estimated and 
actual energy consumption.

The analysis also demonstrated that, on average, single-family dwellings save more 
energy than multi-family dwellings. Because the average savings per square meter is 
used, the average floor area is not an explanation for that phenomenon.

Only a few types of renovation show significant differences in the energy-saving gap 
between houses in which all adults work and those in which they do not. Most of 
those measures concern building installations (e.g., heating systems; DHW systems; 
combination DHW and heating systems; and ventilation systems).

In cases of overestimated energy savings (positive energy-saving gap), more 
households with an income below the national average income are noticed than 
those with a higher income, whereas the opposite holds true for measures with a 
negative energy-saving gap. This could indicate that people with a low income living 
in energy-inefficient dwellings are more willing to reduce their comfort levels in 
energy inefficient dwellings to save money than households with a high income.

Which parameters most influence the probability 
of lower-than expected energy savings?

At the end of chapter 3, the parameters that influence the probability of lower-than-
expected energy savings were presented and it was found that 56% of the thermal 
renovations resulted in lower energy savings than expected. The binary logistic 
regression demonstrates that the employment status (all adult household members 
employed versus not all adult household members employed) and the energy 
performance gap before the thermal renovation significantly influence the probability 
of lower-than-expected energy savings. Because it is expected that the influence 
of the parameters differ for each renovation measure, the logistic regression is 
executed again with interaction effects. The results of the binary logistic regression 
with interaction effects show that the energy-efficiency state of the building before 
the renovation also has a significant influence on the probability of lower-than-
expected energy savings; however, the influence differs for each renovation measure. 
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The building type also showed significant interaction effects, which means that the 
relationship of lower-than-expected energy savings with the building type also differs 
for each renovation measure.

Conclusions

 – Deep renovation measures result in the highest energy savings but also in the 
highest energy-saving gap.

 – The effectiveness of renovations is dependent on the state of the building prior to the 
thermal renovation.

 – The effectiveness of renovations is partly dependent on the type of occupant who is 
living in the dwelling.

 – Renovations of low-energy-efficient houses result, on average, in a larger energy-
saving gap than high-energy-efficient houses.

 – On average, single-family dwellings save more energy than multi-family dwellings 
after a thermal renovation.

 – The amount of energy saved after a thermal renovation is dependent on the energy 
efficiency of the dwelling prior to the thermal renovation, type of dwelling, income 
level of household and employment status.

 – Apart from deep renovations, it is impossible to conclude which thermal renovation 
measure is the most effective, because it is dependent on the energy efficiency of 
the building prior to the thermal renovations, the type of building, income level of 
occupants and occupancy time.

 – Tailored thermal renovation advice is required to decide on the most effective 
thermal renovation measure.
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 6.2.3 Variances in residential heating consumption – importance of 
building characteristics and occupants analysed by movers 
and stayers

The previous research questions showed that occupants and building characteristics 
both have a significant influence on buildings’ energy consumption. However, the 
magnitude is unclear and because many people assume that the energy performance 
gap is completely caused by differences of occupants, an analysis of the variances 
in actual energy consumption was conducted to determine to what extent occupants 
and building characteristics influence this variance (see chapter 4). The research 
question that is answered in this study is:

To what extent are occupants and building characteristics responsible for the 
variances in actual residential energy consumption?

This research question is answered by analysing about 370,000 non-renovated 
houses from the Netherlands and about 510,000 houses from Denmark between 
the years 2010-2015. This comparative design enables a stronger generalisability 
of the results, which is seldom seen in quantitative energy consumption studies. 
The actual annual energy consumptions of houses with the same occupant and 
houses with different occupants over the years were compared. Using this method 
we did not only investigate different occupant characteristics (like the previous two 
research questions) but we studied the influence of the occupant on residential 
energy consumption in general. The question is answered by sub-questions that are 
explained below.

To what extent are occupants and building characteristics 
responsible for the variances in actual residential 
energy consumption on a national level?

As shown in Figure 6.5, approximately half of the variation in residential heat can 
be ascribed to differences between buildings and the other half to the occupant. 
Variations in residential heating consumption across the years of Dutch social 
housing can be explained by occupants (49%), by the Dutch energy simulation 
model (theoretical consumption) (20%), and by other physical characteristics that 
are not taken into account in the building simulation model (32%). For the Danish 
case, 48% of the variation in residential heating consumption can be explained by 
occupants, 27% by the building and 25% by other physical characteristics (see 
Figure 6.6).
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FIG. 6.6 Comparison of the influence of building characteristics and occupants on the variances in energy 
consumption – Denmark and the Netherlands, based on SHAERE and CBS database 2010-2015 for the 
Netherlands and Building and Dwelling Register (BBR), the Danish Ministry of Taxation 2010-2015 for 
Denmark

Is the influence different for different energy labels?

Executing the same analysis for each energy label shows that occupants have 
more influence percentage-wise on the variance of energy-efficient houses than on 
energy-inefficient houses. An analysis of the construction year confirms the previous 
results in the analysis of the energy labels.

Is the influence different for different building types?

The analysis indicates that occupants explain a higher percentage of the variance 
for multi-family houses than for single-family houses. A possible explanation for 
this could be that small changes in consumption patterns are more effective in 
multi-family houses than in single-family houses because of the relatively smaller 
floor area of those dwellings. For example, opening a window in a small room will 
have more effect on the thermal climate than opening a window of a similar size in a 
larger room.
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Is the influence different for different ventilation systems?

The comparison of the three different ventilation systems (natural ventilation, 
natural inlet and mechanical exhaust, and balance ventilation with heat recovery) 
indicates that the influence of the occupant is higher for houses with a balanced 
ventilation system compared to houses with a natural or natural inlet mechanical 
exhaust ventilation system. This is expected, because houses with a balanced 
ventilation system often make use of heat recovery systems. To make optimal use 
of such a system, all air that enters and leaves the building should go through this 
system. However, occupants are still able to open windows. Opening the windows 
means the air does not pass the heat recovery system, which will lead to extra heat 
losses. Opening windows when a heat recovery system is installed will therefore 
have a more significant effect than in houses in which no heat recovery system is 
installed. Further, balanced ventilation systems are primarily installed in energy-
efficient buildings.

Is the influence different for different heating system?

Finally, we compared the heating systems. Because of the differences in the 
databases, the categories we compared are different for the Dutch and Danish cases. 
For the Dutch case, we compared different gas heating systems. The results of the 
Dutch case show (contrary to previous findings) that relatively energy-efficient 
installations are less sensitive to energy-related occupant behaviour than energy-
inefficient systems. However, the differences between boilers are relatively low, 
although the distribution of local gas heaters is an exception. This is interesting 
because the operation of boiler systems are more or less the same, but the local gas 
heaters have a different operating system. Therefore, these results could indicate 
that different operation systems cause differences in energy-related behaviour. For 
the Danish case, a comparison was made between houses with gas heating and with 
district heating systems. These results indicate that the share of consumption that 
changes because of changed occupants is lower for houses with a district heating 
system compared to houses that are heated by gas.

Conclusions

 – Approximately half of the variation in residential heating consumption can be 
ascribed to differences between buildings and the other half to differences in energy-
related occupant behaviour.
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 – Variations in residential heating consumption across the years of Dutch sample can 
be explained by occupants (49%), the Dutch energy simulation model (theoretical 
consumption) (20%), and by other physical characteristics that are not taken into 
account in the building simulation model (32%).

 – For the Danish case, 48% of the variation in residential heating consumption can 
be explained by occupants, 27% by the building characteristics and 25% by other 
physical characteristics.

 – The influences of the occupant on variances in energy consumption are dependent 
on the building characteristics.

 – The influence of occupants is larger for energy-efficient houses than for energy-
inefficient houses.

 – The influence of occupants is dependent on the type of building installations in 
the house.

 – There is still a relatively large number of physical characteristics that cause 
variances in heating consumption that are not (correctly) taken into account in the 
theoretical energy calculation.

 6.2.4 Calibration of energy simulation models on a building stock 
level using actual energy consumption data

Based on the results of the previously described studies we can conclude that it is 
impossible to predict residential energy consumption accurately on an individual 
level without having both occupant and building characteristics data. However, it 
is expected that on an aggregated level the predictions can be improved. Accurate 
prediction models on a dwelling stock level are important for policymakers, strategy 
developers and others. Therefore, the research question of the fourth part of this 
thesis is:

Is it possible to reduce the energy performance gap on a building stock level?

This research question is answered by developing a method that aims to reduce the 
average energy performance gap. To develop this method several sub-questions 
are answered.
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Is the energy performance gap present in both 
steady state and dynamic simulation models?

The results of chapter 5 show that if the same level of information is known, the 
energy performance gap is indeed present for both the steady state and dynamic 
simulation model. Also the magnitude of the gap is comparable (See Figure 6.7 and 
Figure 6.8).
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consumption (calculated with steady state method), 
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FIG. 6.8 comparison actual versus simulated gas 
consumption (calculated with dynamic method) , 
based on data from WoON energiemodule 2012

How can we improve the assumptions in simulation models?

An optimisation method is used to reduce the Root Mean Square Error of a sub 
sample of dwellings by adapting the assumptions that are used in the model. 
Because the optimised sample is representative,the optimised parameters can be 
used to predict residential energy consumption of other buildings, which makes 
existing simulation tools a more reliable tool. The effectiveness of the method is 
tested on a control group. The proposed method is inspired by traditional automated 
calibration methods, however instead of matching a detailed simulated energy 
consumption pattern with a detailed actual energy consumption pattern on an 
individual building level, the proposed method aims to match simulated annual 
energy consumption of multiple houses with actual annual energy consumption data 
at the same time. The proposed method contains 11 steps (Figure 6.9).
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1. Investigate assumptions

2. Determine which assumptions 
should be optimised

3. Determine lower and upper 
bounds of those assumptions

4. Define optimisation problem

5. Select optimisation algorithm

6. Select optimisation sample

7. Optimise

8. Analyse results of control 
group

9. Analyse optimisation results. 

10. Use optimised assumptions 
on control group

FIG. 6.9 Stepwise method description
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Which assumptions are made in building simulation models?

For every building simulation model assumptions are made. For simplicity reasons 
we do not describe all possible assumptions that can/have to be taken in building 
simulation models. Instead we limited ourselves to the assumptions that are taken in 
the calculation method of the Dutch energy label and energy index (ISSO 82.3) [12]. 
If possible the building characteristics are defined by visual inspection, otherwise 
assumptions are made. If the Rc-value of the façade is unknown, an assumption 
for this value is made based on construction period. The same is done for the 
assumptions of the Rc value of the floor and roof. Another assumption that often is 
made is the ventilation rate. In the ISSO 83.2 method that we studied, the ventilation 
rate is based on floor area and type of ventilation system. Infiltration rate is based 
on floor area and type of building. The average indoor temperature is assumed to be 
the same for every building (18°C). The assumed use of domestic hot water is based 
on number of occupants, which is based on the floor area category of the dwelling. 
Furthermore, there are efficiencies of the heating system and domestic hot water 
systems which are based on the equipment details provided by the manufacturer. 
For simplicity reasons in the case studies we used to prove the effectiveness of the 
method, only the thermal insulation of the wall, the amount of domestic hot water 
use, indoor temperature and the air change rate are optimised.

What are the boundary conditions?

The assumptions for the Rc values in the Dutch energy labelling method are based on 
requirements of the Dutch building code at the time of construction. For the lower 
bound the assumed Rc value of the previous category is chosen and for the upper 
bound the value of the next category is chosen. Because the values of the first two 
categories (before 1965 and between 1965 – 1975) lay close together, they have the 
same lower bound. Also, the values of the last two categories (between 1988 - 1992 
and after 1992) lay relatively close to each other. Therefore, for those cases higher 
upper bounds are chosen. The air change rate in the building is dependent on a 
combination of infiltration and type of ventilation system. For the ventilation system 
an upper bound of 200% and a lower bound of -90% of the initial assumption are 
chosen. For the amount of domestic hot water use, as a lower bound the average 
amount of water for one person is chosen and as an upper bound the average 
amount of water for five persons is chosen. The indoor temperature is assumed to 
have a maximum of 25 oC and a minimum of 14 oC.
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Which optimisation algorithm should be used?

The choice of the most effective optimisation algorithm for a certain optimisation 
problem is difficult to determine in advance of the optimisation. The only way to be 
certain about the most optimal optimisation choice is to try multiple algorithms. 
However, this is time consuming and defeats the purpose of finding the minimum. 
Although determining the most efficient algorithm is not possible without trying 
multiple methods, an educated guess can be made by analysing the optimisation 
problem and optimisation studies done in the past. For the optimisation problem 
in this study, two optimisation algorithms are chosen. For the dynamic simulation 
model the surrogate optimisation model of Matlab is chosen. This model first tries 
multiple random options. Based on the results of those trials a surrogate model is 
conducted which helps the algorithm to choose the next best guess. Because the 
computation of the surrogate model also requires some computation time, this 
method is only efficient if the optimisation problem is computational intensive; this 
is the case for the dynamic simulation model. The steady state simulation model is 
significantly less time consuming and therefore another optimisation algorithm might 
be more effective. For this optimisation model the particle swarm method is chosen. 
This algorithm has shown in previous studies to be, in a majority of the cases, more 
efficient than the other available algorithms (e.g. Genetic Algorithm, Pattern search).

Does an improvement of assumptions solve 
the energy performance gap?

The research shows that the method indeed reduces the energy performance gap 
significantly for both the steady state and dynamic simulation method (see Figure 6.10-
6.13). By applying the method, a reduction of the Root Mean Square Error of 20-25% 
was achieved and the R2 of a linear regression between actual and simulated energy 
consumption improved with 8-11%. The main outcomes of the optimisation are: that 
the average indoor temperature should be assumed significantly lower compared to 
the current assumption; the insulation rates of the older buildings should be assumed 
higher than currently assumed. Currently the ventilation rates for naturally ventilated 
dwellings and for dwellings with a mechanical exhaust ventilation system are assumed 
the same, however the optimisation shows that naturally ventilated homes have a 
lower ventilation rate than dwellings with a mechanical exhaust ventilation system. 
For domestic hot water we found that the defined floor area categories are likely not 
yet optimal. For the smallest dwelling category we found that the assumed amount 
of domestic hot water should be higher, while the assumed value for dwellings in the 
second size category should be a bit lower. This means that on average the domestic 
hot water consumption of those two categories lay closer together than assumed.
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FIG. 6.11 comparison actual versus simulated gas 
consumption before optimisation (calculated with 
dynamic simulation method) , based on data from 
WoON energiemodule 2012
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Conclusions

 – There is an energy performance gap for both steady state and dynamic simulation 
models and the magnitude of this gap is similar.

 – The optimisation sample should be representative for the entire sample but should 
also contain enough cases per parameter that will be optimised.
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 – The most important assumptions to optimise are indoor temperature, insulation rate 
of façade (floor and roof if present), ventilation and infiltration rate and the amount 
of domestic hot water use

 – To reduce the energy performance gap an optimisation method can be applied which 
aims to reduce the Root Mean Square Error by adapting the assumptions of the 
simulation method within certain boundary conditions.

 – The proposed optimisation method indeed reduces the energy performance gap 
significantly. The Root Mean Square error is reduced with 20-25% and the R2 of 
a linear regression between actual and theoretical annual energy consumption 
increases with 8-12% Which indicates that the optimised parameters settings indeed 
result in a better prediction of residential energy consumption.

 – More research should be done towards the physical meaning of the optimisation 
results and the practicle applicability. 

 6.3 Overall conclusion

The answers to the research questions presented in the previous section result in an 
overall conclusion to the main research question:

Can occupant and building characteristics provide better insights into the 
difference between theory and practice in residential energy consumption, and is 
it possible to reduce this difference?

This thesis results in two main conclusions. First, both occupants and building 
characteristics have a significant relationship with the gap between theory and 
practice in residential energy consumption and saving. Second, it is impossible 
to reduce the energy performance gap on an individual level without using more 
detailed data than the buildings simulation tools that the Dutch government 
currently uses and is planning to use in 2020. However, reducing the average energy 
performance gap on a building stock level is possible by adapting the assumptions 
used in building energy simulation models.
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In the first part of this study, we investigated the influence of building and occupant 
characteristics on the energy performance gap. This was followed by an investigation 
of the gap between predicted and actual energy saving after a thermal renovation. 
Both show that not only occupants but also the building characteristics play an 
important role in the difference between theory and practice. An analysis of the 
variances in actual energy consumption through comparing consumption over 
the years of houses with the same occupants and houses with changed occupants 
showed that occupants are currently responsible for almost 50% of the variance and 
building characteristics for the other 50%.

All of these findings together prove that it is important to continue analysing actual 
energy consumption to determine real-life home energy use. The results show that 
the relationships between building and occupant characteristics and actual energy 
consumption are very complex and therefore difficult – and perhaps impossible – to 
incorporate in traditional physical building simulation models. The results point 
to the possibility that conventional physical building simulation models should 
be completed with data-driven models that make use of  e.g. machine learning 
techniques.

A first step using optimisation algorithms/machine learning techniques and actual 
energy consumption data in building simulation models was shown in chapter 5 of 
this thesis. This chapter showed that it is possible to reduce the average energy 
performance gap significantly by optimising the parameter settings used in the 
assumptions in the simulation model by using actual energy consumption data of 
multiple dwellings. The use of optimisation algorithms on multiple buildings, help 
to improve the assumptions for the simulation method, which reduces the energy 
performance gap and make the outcomes a more reliable tool. A better reliability 
of building energy simulations is crucial for (amongst others) policymakers and 
practitioners to make the right decision regarding energy renovations, subsidies, 
energy saving targets, and energy saving policies in the built environment. 
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 6.4 Data quality and limitations

 6.4.1 Gas consumption for space heating

In this study, residential energy consumption is defined as households’ energy 
use for various indoor purposes: space and water heating, space cooling, 
cooking, lighting and electrical appliances. In the Netherlands, residential energy 
consumption has a significant influence on the total energy consumption. The 
majority of residential energy consumption in the Netherlands is used for space 
heating, but a significant amount of residential energy consumption is used for 
domestic hot water and lighting and appliances (Figure 6.14). Energy demand for 
cooking and space cooling have a negligible (average 2.2%) influence on the total 
Dutch residential energy consumption and are therefore not taken into account in 
this study.

Because the majority of the Dutch residential energy consumption is used for space 
heating and previous studies have indicated that the energy performance gap for 
space heating is much more difficult to explain than the energy performance gap for 
lighting and appliances, the main focus in this study is on the energy performance 
gap as it relates to space heating [17]. Because the vast majority of Dutch 
households (90%) use gas as a heating source for space heating , the difference in 
actual and simulated gas consumption was used to define this energy performance 
gap. This implies that houses that use electricity or district heating as the main 
heating source are not taken into consideration. There are, in the Netherlands, 
often highly energy efficient heating systems (heat pumps and cogeneration) 
in energy efficient houses, but there are also some inefficient houses that use 
electrical radiators.
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FIG. 6.14 Residential energy consumption in the Netherlands(Eurostat 2017 [17])

 6.4.2 SHAERE database

The representativeness of the data also forms a possible limitation of the research. 
To answer the first three research questions, the SHAERE database is used, which 
contains only houses from social housing companies. This means that there is a bias 
in ownership. Although the Dutch social housing sector mainly provides houses for 
people with a relatively low income, there were also houses with occupants with a 
relatively high income. This makes it acceptable to use the SHAERE database, which 
provides great benefits, as it is the largest available database in the Netherlands on a 
detailed level (on average, more than 1 million houses per year). Additionally, social 
housing companies that deliver their data to the SHAERE database are required to 
do so every year. This means that there are records for several years for each house, 
which makes it possible to follow the development not only of the social housing 
stock but also of individual houses, tracking the effect of thermal renovations. This 
also means that any data provider mistakes will not have a significant influence on 
the overall analysis.
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 6.4.3 Danish data

In the fourth chapter not only the SHAERE and Statistics Netherlands databases are 
used, but also two Danish databases are used. Those databases are similar to the 
Statistics Netherlands and SHAERE databases. However, unlike the SHAERE database, 
the Danish database only contains owner-occupied houses. This could cause possible 
bias, however, the majority of the Danish housing stock is owner-occupied and therefore 
it is believed that the research results will not be influenced significantly.

 6.4.4 WoON database

The fifth chapter uses the WoON database. This database was used because the 
protected Statistics Netherlands environment for microdata did not allow for the 
possibility to conduct an optimisation. The main problem of the WoON database is 
that not all building characteristics that are needed for the energy label calculation 
are incorporated in the database. For example, only the orientation of the living room 
is given but not the orientation of all windows. According to the documentation for 
the missing data, some assumptions were made but the owner of the database was 
not able to determine what those assumptions were. This made it difficult to build a 
simulation model that represented the theoretical energy consumption as presented 
in the database. However, the results of the research presented in chapter 5 indicate 
that the method used is suitable to reduce the energy performance gap.

 6.4.5 Theoretical energy consumption

This study compares actual and simulated energy consumption; however, there are 
several ways to simulate energy consumption, some more accurate than others. This 
study primarily used simulated energy consumption based on the calculation method 
ISSO 82[12], which is also the method used for the EPCB. It should be mentioned 
that this method is a very simplified reflection of reality, based on a quasi-steady-
state calculation method. Nevertheless, this method was used because it is the 
basis for many energy-saving policies and monitoring systems. In addition, many 
researchers have shown that if one compares the annual energy demand results of 
steady-state simulation methods with dynamic simulation methods, the results will 
not differ significantly [13]. This was also shown in chapter 5 of this dissertation. 
Additionally, for dynamic simulation methods to be more accurate, more detailed 
information is required, which is often not available.
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 6.4.6 Correcting actual energy consumption

To make the actual energy consumption comparable with the theoretical energy 
consumption, it has been corrected for degree days (see chapters 2, 3 and 5). 
However, previous studies have shown that this method is not perfect [14, 15].
For example, it is expected that occupants in low-insulated houses will use their 
heating system more often than occupants in a highly insulated house. Therefore, the 
correction could lead to a overestimation of actual energy consumption.

 6.5 Recommendations

This study showed that residential energy consumption, along with the energy 
performance gap, is dependent on numerous different parameters that occur in 
endless possible combinations. This implies that it is almost impossible to predict 
energy consumption on an individual dwelling level if only building characteristics 
are known, mainly because interaction effects make their relationship complex. 
However, this study showed that with the use of actual energy consumption data and 
optimisation techniques, the energy prediction models can be improved on a building 
stock level without changing the calculation method or adding extra information into 
the model. This study also proves the importance of monitoring and the availability 
of actual energy consumption, occupant and building characteristics data. Based 
on the research results, recommendations can be made in three categories: policy, 
practice and future research.

 6.5.1 Recommendations for policy

Theoretical energy consumption results from the Dutch energy label method are 
widely used by policymakers. They are used to monitor the energy efficiency state of 
the Dutch building stock, increase awareness, determine which actions are needed 
to achieve the desired energy-saving targets, assess the progress of energy-saving 
policies, and award subsidies. However, the energy-saving targets that should be 
reached are related to actual energy consumption. Because there is a significant 
mismatch between theoretical energy consumption and consumption in practice, 
energy saving policies often do not achieve the desired results.
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The first recommendation to policymakers is that one should always be aware 
that the theoretical energy consumption from this method does not aim to predict 
residential energy consumption accurately. If the theoretical energy consumption 
results of this calculation are used, it should be taken into account how they could 
differ and what the consequences are for their policies. This study, along with 
previous studies by Guerra Santin [9], and Filippidou [16], provide significant 
information that will help to understand the potential risks of using theoretical 
energy consumption.

Second, policymakers should be aware that the energy performance gap exists on 
two different levels. The first is the housing stock level. This discrepancy causes 
problems when the method is used to monitor the energy savings from building 
renovations of Dutch building stock, determine which actions are needed to achieve 
the desired energy-saving targets, and assess the progress of energy-saving 
policies. This study presents a method to reduce the gap on a building stock level 
by changing the assumptions in the calculation method. Chapter 4 demonstrated 
that the influence of occupants varies for different building characteristics (see 
chapter 4). Because the housing stock and its characteristics change, this suggests 
that the assumptions should be calibrated on a regular basis to minimize the energy 
performance gap in the long run. To achieve higher energy savings, policymakers 
could make use of the results in, for example, chapters 2 and 3. The second chapter 
discusses the characteristics of the highest and lowest energy-saving groups and the 
third chapter shows the average energy savings for each renovation measure.

The second level in which the energy performance gap is also a problem is on an 
individual dwelling level. Subsidies are for example awarded based on the number of 
label steps that the building improves after renovation. However, chapter 2 showed 
us that there are also differences within each label category (see chapter 2), which 
means that not necessarily the most efficient renovation measure will be chosen 
if one is only focussed on improving the energy label of a building. Further, not all 
renovation measures are as effective, although they result in higher energy efficiency 
on paper (see chapter 3). For example, a more energy-efficient hot tap water 
system often results in higher energy consumption. Chapter 3 also showed that the 
magnitude of the energy performance gap prior to the renovation plays an important 
role in the probability of having lower energy savings than expected. Therefore, it 
might be better to look at the current energy bill, energy-related occupant behaviour 
and building characteristics to determine which energy-saving measures are the 
most effective and make a more realistic estimation of the amount of the subsidy 
that should be granted. This may be time-consuming but results from this study 
indicate that it should be possible to construct models that make use of real energy 
consumption data, which can help provide more useful guidance.

TOC



 246 Energy in Dwellings

This study also demonstrated the importance of the availability of data. Real energy 
consumption and building and occupant characteristics data are of importance 
in obtaining insight into the actual effectiveness of energy renovations and the 
energy performance of the housing stock. This study shows that the energy-
performance and energy-saving gaps are dependent on occupants and building 
characteristics. Due to the most recent energy transition plans, the characteristics of 
the housing stock will change significantly; in addition, occupant characteristics are 
changing over time (for example, there are currently significantly more one-person 
households than in the past). This implies that constant monitoring is needed. The 
energy transition will require extra monitoring as new systems are introduced and 
it is important to monitor whether these systems indeed result in the requested 
energy savings.

Another important aspect that should be considered is that the energy transition 
will result in significantly more houses heated by electricity and district heating 
systems. Currently, we were able to distinguish energy use for heating and domestic 
hot water by analysing gas consumption because most houses in the study use gas 
as a heating source. Data of energy use for district heating is considered unreliable 
according to Statistics Netherlands and electricity consumption data is mixed with 
energy use for appliances. This makes the analysis and monitoring process of actual 
energy consumption significantly more difficult and it is therefore advisable to take 
this into account and find solutions for this problem.

A new energy label calculation method will be introduced in 2020 (NTA 8088). It is 
recommended that, as soon as possible, policymakers get an understanding of how 
this method relates to the previous methods for the energy labels and to actual 
energy consumption. It is also recommended that when new calculation methods 
are introduced, conversion methods are developed to ensure that databases from 
previous years will remain usable. In the NTA 8088 the Energy Index (which is a 
non-dimensional number that should reflect the energy performance of a building) 
is replaced by a theoretical energy consumption number in kwh/m2. This will tempt 
people even more to use theoretical energy consumption for for example predictions 
of energy savings, setting energy saving targets , which will make it even more 
important that the gap between actual and theoretical energy consumption will be as 
small as possible.
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 6.5.2 Recommendations for practice

To determine potential energy savings, one should take the current energy 
consumption and energy-related occupant behaviour into account. Results also 
show that the effects of some energy saving methods are smaller than others. 
Before renovation, one should be aware of this. The results of this research could 
be used to determine the probability of lower-than-expected energy saving effects 
after a thermal renovation and the results give a suggestion which aspects are 
important to take into account by making the decision for the most effective 
energy saving measure. However, because every situation is unique, tailored advice 
remains important.

This study demonstrated that a renovated house with energy label A consumes, on 
average, significantly more energy than a newly built house with energy label A. This 
could indicate that mistakes or shortcuts in the renovation process were made; for 
example, re-insulating an old building that is not perfectly straight like a new building 
is often more difficult and time consuming, which may provoke hurried, poor-quality 
work. Therefore, it is recommended to pay extra attention that renovations of older 
houses are executed as required.

Further, it was proven that it is most efficient to start with the reduction of residential 
energy consumption. This shows that one should start by increasing the insulation 
level of the building envelope and, only when this is optimised, put effort in installing 
more energy efficient building installations (see chapter 3).

The results also show that the most effective renovation measure depends on the 
current state of the dwelling and how the dwelling is used. Therefore, the most 
effective measure differs for each household. Tailored advice is needed to determine 
the most effective method for a specific case (see chapter 3).

One should also realise that if reducing energy consumption is the only aim of a 
thermal renovation and the payback time has to be as short as possible, an increase 
in comfort level can then not be demanded. For example, this study showed that 
the change of a local gas stove into a condensing gas boiler often results in an 
increase in energy usage. This is likely because of an increase in the comfort 
level in the house. Therefore, one should take into account that, although some 
building installations are presented as energy-saving measures, they only reduce 
consumption if the comfort level (and sometimes) in the house remains the same as 
before the renovation measure. However, in reality this is often not desirable. This 
should be explained in advance of the renovation to the occupants and/or home 
owner to prevent unrealistic expectations of energy savings. 
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 6.5.3 Recommendations for future research

Although this study examined many aspects, consequences and solutions for the 
energy performance gap, there is still much to be done to solve the problems of 
this gap. In addition, the current developments within the energy transition require 
further study.

First, practice shows that there is a need for simple simulation models that can be 
used to monitor the energy-efficiency state of the building stock, determine which 
actions are needed to achieve the energy-saving goals, and decide how much of a 
subsidy can be granted. Currently, the theoretical energy consumption results of 
the energy label calculation are often used for this purpose. However, the energy 
performance gap of this method makes it unsuitable. This study showed that the gap 
can be decreased using calibration techniques on a building stock level. However, 
we only tested a limited amount of assumptions and building types. For further 
development of this method it is recommendable that the optimisation method is 
applied on a larger sample with more parameters that have to be optimised. Further, 
for predicting energy consumption on an individual level, this study showed that 
actual energy consumption, building characteristics and occupant data can provide 
better insights into the energy performance gap. The results are, however, not yet 
incorporated in easy-to-use models, but they show potential for this. Therefore, 
it is recommended that future studies should focus on how to use actual energy, 
occupant and building data in easy-to-use models that fairly accurately predict 
actual energy consumption on both an individual and building stock level.

Second, the ongoing energy transition in the Netherlands aims for a housing stock 
that does not use natural gas. This study examined only houses with natural gas as a 
heating source. Because currently 85% of the houses in the Netherlands use natural 
gas as a heating source, this does not cause bias. The change from gas to electric, 
district heating or possibly hydrogen will significantly change the characteristics 
of the building stock and, in turn, the actual energy consumption and energy 
performance gap. Monitoring the effectiveness of these measures is important 
because this transition aims to reduce CO2 emissions and energy consumption. One 
should also investigate how to deal with the lack of reliable energy consumption 
data for houses on district heating systems and the issue that all-electric houses’ 
actual energy data are a combination of energy use for heating, domestic hot water, 
appliances and lighting.

Third, there are other aspects that influence the energy performance gap that 
were not taken into account in this study but should be considered in the future. 
Although some of the research results indicate that there might also be problems in 
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the construction process that influence the magnitude of the energy performance 
gap, this study did not investigate this. Further studies should investigate to what 
extent this aspect influences the energy performance gap. In addition, mistakes in 
the building inspection process could influence the gap but are not investigated in 
this study.

Finally, costs are not taken into account in this study. This study only focusses 
on the actual savings and examines how to achieve the highest energy savings; 
however, in practice, energy renovation decisions are often based on cost. Therefore, 
we recommend that, apart from energy-efficiency research and energy prediction 
models, the costs of certain measures are taken into consideration in future studies. 
Having both available would allow for a more well-rounded perspective in making 
informed choices of building energy renovation measures.

 6.6 Final remarks

The aim of this study was to determine the relationship between building and 
occupant characteristics and the gap between theory and practice of residential 
energy consumption, as well as to reduce the energy performance gap. This is 
investigated by analysing large databases that contain actual and theoretical energy 
consumption, occupant and building characteristics data. The study presented 
the relationships between occupant and building characteristics and the energy-
performance and energy-saving gaps. Further, the study demonstrated the influence 
of building characteristics and occupants on actual residential energy consumption. 
Finally, a method to reduce the energy performance gap on a building stock level 
by using actual energy consumption data was introduced. The results show that 
reducing the performance gap on individual level can be accomplished by adding 
more detailed occupant characteristics and behaviour data, the reduction on 
an aggregated level can be accomplished by changing the assumptions in the 
calculation method. Although this thesis is mainly based on Dutch data, this thesis 
does not only provide valuable insights for the national but also for the international 
research community, because the problem of the energy performance gap exists 
in any country that uses theoretical energy consumption for policy making, design 
decision making and the calculation of payback times of energy renovations. The 
thesis shows the importance of the energy performance gap, the importance of 
monitoring actual energy consumption data; and a first step towards the use of 

TOC



 250 Energy in Dwellings

machine learning techniques in combination with actual energy consumption data 
and building energy simulation models. Based on the results of this research it 
is expected that the solution of the energy performance gap and therewith the 
reliability of building energy simulation models lays in a combination of actual energy 
consumption data, statistical and machine learning techniques and existing building 
energy simulation techniques.
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Energy in Dwellings
A comparison between Theory and Practice

Paula van den Brom

Energy simulation models for buildings are widely used by policymakers, researchers and 
consultants as a tool to advice on the reduction of residential energy consumption. Previous 
studies have shown that there is a gap between theoretical building energy simulation results 
and actual energy use. The discrepancy between theory and practice is problematic, as for 
instance expected energy savings are often not achieved. This thesis shows that analysing 
specific household types and building characteristics can contribute to a better understanding of 
amongst others the influence of the occupant on actual energy consumption. The effectiveness of 
thermal renovations is dependent on both occupants and building characteristics, which means 
tailored advice on renovation measures is necessary. We also found that occupants and building 
characteristics are equally responsible for variances in actual residential energy consumption. 
To reduce the gap between theory and practice on a single building level, simulation models 
are improved using calibration methods. In the final part of this thesis, a method is developed 
to calibrate simulations on a building stock level, making building energy simulation tools more 
reliable for policymakers.
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