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Introduction

Illegal animal poaching has been an active trade for decades. It poses serious threats to the survival of iconic
animal species and causes economic problems in local communities due to an absence of wildlife. Surveil-
lance has previously been identified to be effective at preventing a loss of wildlife due to poaching. The
characteristics and increasing capabilities of unmanned aerial vehicles (UAVs) provide new, innovative pos-
sibilities to address the problems of illegal animal poaching.

This thesis proposes a novel multi-UAV surveillance model to prevent the loss of wildlife in national parks.
While UAV technology has previously been used to provide surveillance, these models require further devel-
opment to fully exploit their potential. An autonomous multi-UAV surveillance model that integrates swarm
intelligence with bayesian networks to predict poacher activity is therefore proposed to address adaptive
poacher behaviour and prevent the loss of wildlife. This research analyses the effects of the bayesian net-
work on surveillance effectiveness and efficiency. In addition, the influences of online bayesian learning and
adaptive poacher behaviour on surveillance performance is considered in order to prevent a potential loss in
surveillance effectiveness in the long-term. The emergent behaviour is evaluated in a case study concerning
Aloegrove Safari Park in Namibia and simulated using the agent-based modelling paradigm.

This thesis report is organised as follows. In Part I, the scientific paper of this research is presented, after
which the appendices relevant to this paper are presented in Part II. These appendices provide elaboration
on the proposed model, as well as additional simulation results and statistical analyses of the performed
simulations. Finally, Part III contains the relevant literature study that supports this research.

xiii





I
Scientific Paper

1





Integrating swarm intelligence with bayesian networks for continuous
UAV-based surveillance in dynamic environments

J.H.J. Knuyt

Under supervision of Dr. O.A. Sharpans’kykh

Air Transport and Operations, Faculty of Aerospace Engineering
Delft University of Technology, Delft, The Netherlands, 21 April 2022

Abstract
The loss of wildlife due to illegal poaching activity poses threats on both the survival of iconic animal species
and the livelihood of local communities. This research proposes a distributed surveillance model in which
a UAV swarm autonomously coordinates continuous surveillance in a dynamic environment. The adaptive
behaviour of poachers has the potential to negatively affect surveillance performance and is therefore taken
into consideration through the proposed ACOSG model. The novelties of this research are twofold. A
mission selection algorithm is proposed that addresses the deficiencies of the existing HAPF-ACO model
while improving on surveillance effectiveness. Bayesian learning is applied to dynamically prioritise surveil-
lance efforts of the proposed HAPF-BLACOPS model. Additionally, the learning rate of both poachers
and UAVs is analysed to determine whether surveillance remains effective in response to adaptive poacher
behaviour. Simulation results show that the proposed model significantly outperforms the current state-
of-the-art HAPF-ACO model. Prioritisation of surveillance efforts is achieved through the use of (A)BNs,
such that coverage of the target area is reduced by 30%, while maintaining the surveillance effectiveness of
the current state-of-the-art. It is found that the interactions between the APF and ACO modules limit the
extent to which the (A)BNs’ predictions influence the UAVs’ spatiotemporal patterns and therefore limit
the effects of prioritisation on surveillance performance as well. The adaptive capabilities of the poachers
and the learning rate of the UAV swarm do not significantly affect surveillance performance and the loss of
wildlife, due to a limited amount of newly gained experience. Future research opportunities are identified
that can improve the influence of the (A)BN on surveillance performance and prioritisation.

1 Introduction
Animal poaching has been an active trade for decades [1, 2]. The illegal trade in wildlife is considered to be the
fourth largest criminal industry worldwide [3, 4] and also provides financial support to terrorist organisations
[5, 6, 7]. Poaching therefore poses risks to national security, along with serious threats to the survival of iconic
animal species [8, 9]. Additionally, local communities face economic problems as a result from a decline in
tourism activities, caused by the absence of wildlife [10].

As early as 1990 it was concluded that law enforcement and adequate manpower were required to effectively
fight poachers. Detection of poaching activities was found to be most effective at preventing a loss of wildlife
[1]. Effective and innovative solutions are required to address the lack of available resources and to address
these poaching activities in national parks [11, 12]. Unmanned Aerial Vehicles (UAVs) are commonly called
upon to address this topic [13]. Their advantage is their capability to carry a large variety of sensors, their
increasing affordability [14, 5, 15] and their ability to monitor remote target areas [16]. The disadvantage of
traditional surveillance strategies that rely on ground patrols, is the inability to monitor vast national parks in
their entirety [17]. Their observations regarding poaching activity are therefore biased [18].

Current state-of-the-art surveillance models provide evolving coordination of distributed and continuous surveil-
lance through learning from successes. These models usually do not consider dynamic and adaptive targets such
as poachers. Continuous adjustment of surveillance efforts is needed to address such evolving crime patterns
[19], in order to prevent a loss of effectiveness as a result from initial model parameters not remaining applicable
under changing poacher behaviour [20, 21, 22]. Such complex systems with adaptive intruders, where continuous
and distributed surveillance is needed, have not been explored sufficiently. Neither have the adaptive and coor-
dination mechanisms of poacher behaviour been integrated in a single model. Current state-of-the-art poacher
decision models use Game Theory to accurately describe these behavioural aspects of their decision making
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process on an individual basis. The poachers’ objective has not been simulated as dynamic input for the UAVs
either, which results from wildlife movement ecology. Previously proposed surveillance models therefore do not
actively consider the driving factors of the intruders to optimise path planning. This two-sided surveillance
problem, which is a dynamic environment in which both the intruders and the defenders adapt to each other’s
behaviour, remains a relatively unexplored area of research [23]. This leaves opportunities for improvement
by realising learning UAV-based surveillance that can dynamically prioritise surveillance efforts through dis-
tributed coordination in response to intelligent intruders. This addresses the potential influence of adaptive
poacher behaviour on long-term surveillance effectiveness, which has been disregarded in previous research.

This research explores the effects of online Bayesian learning in a two-sided surveillance problem on surveil-
lance performance. The proposed HAPF-BLACOPS model utilises swarm intelligence to provide a distributed
approach to the coordination of autonomous and continuous multi-UAV surveillance. It builds on the current
state-of-the-art HAPF-ACO model by using Bayesian Networks (BNs) for online learning and probabilistic in-
ference regarding poacher activity. These BNs are characterised by a graphical representation (directed a-cyclic
graph) of the joint probability distributions (JPDs) to describe poacher behaviour through random variables.
Online learning can be achieved by updating the underlying conditional probability tables (CPTs) when new
evidence becomes available. These BNs fit the characteristics of the problem at hand, given their ability to iden-
tify causal relationships and perform risk estimation through probabilistic inference [24, 25]. This knowledge of
poacher behaviour is used to allocate available resources towards locations with relatively high probabilities of
criminal activity [26, 27, 28]. The UAV swarm in the proposed model achieves adaptive behaviour through co-
ordination of the UAVs’ local knowledge of the environment. Multi-agent learning (MAL) therefore becomes an
emergent property of the UAV swarm [29] that depends on the exchange of newly obtained information regard-
ing poacher activity [20, 21, 28]. The agent-based modelling (ABM) paradigm provides a framework to define
the behavioural properties and interactions of model elements from a bottom-up approach. It is therefore used
to formalise the interactions of the proposed surveillance model, to simulate the presence of adaptive poachers
through the proposed ACOSG model and to simulate wildlife movement ecology of a black rhino population
through a relatively simple resource selection function (RSF).

The novelties of this research are twofold. First, distributed BNs are integrated with the ant colony optimisa-
tion (ACO) module within the proposed HAPF-BLACOPS model in order to consider the poachers’ behaviour
in improving surveillance effectiveness by enforcing dynamically adjusted prioritised surveillance. Second, this
proposal aims to prevent a loss in long-run effectiveness of surveillance performance resulting from initial model
parameters not remaining applicable under adaptive poacher behaviour. The effects of online learning on surveil-
lance performance in a two-sided surveillance problem are therefore analysed.

The remainder of this work is structured as follows. Section 2 elaborates on relevant research within the fields
of autonomous surveillance, poacher behaviour and rhino behaviour models. Section 3 then introduces the
methodology used in this work, after which Section 4 formalises the ABM to simulate the proposed models.
Section 5 elaborates on the calibration process of model parameters, validation of model output and on the
simulation results. Section 6 discusses these simulation results, after which conclusions are drawn and future
research opportunities are identified in Section 7.

2 Preliminary work
This section provides an overview of academic work relevant to this research. It is structured such that Section
2.1 introduces the various concepts within the topic of surveillance, after which active research areas within the
field of automated and learning surveillance are discussed. Section 2.2 familiarises the reader with developments
within the field of Game Theory to model human decision making, after which Section 2.3 introduces concepts
to simulate animal movement ecology.

2.1 Autonomous UAV-based surveillance
This section elaborates on the classification of surveillance problems first, after which the most relevant work
regarding surveillance is discussed. We do not provide a comprehensive summary and categorisation of previ-
ously performed work within this extensive field of research, For detailed overviews of research within this field,
we like to invite the reader to refer to [23, 14, 30, 31, 32].

The surveillance problem at hand is known as the coverage path planning problem and originates from the
second world war, when the objective was to find submarines [23]. The topic at hand is not to be confused
with the coverage problem, where the objective is to find optimal, static locations for a set of sensors that
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are to continuously monitor a target area. Coverage path planning addresses the robotics’ subtopic of motion
planning, where each robot is assigned to a path such that the entire target area is explored within the capa-
bilities of the robots, while avoiding obstacles. The paths are limited by the robot’s capabilities in terms of
kinematics, payload, endurance, communication and/or sensor constraints [32, 30, 33]. Another distinction is to
be made between discrete and continuous surveillance, as this work focuses on the latter. Discrete surveillance
is terminated once the entire target area has been searched or once all intruders within the target area are
found [34, 35]. The objective in discrete surveillance is to minimise the total search time required to cover the
entire target area, or to find all intruders [36]. Continuous surveillance is a generalisation of the surveillance
problem that has not been explored as much. Persistence is required within the context of poachers, since an
additional challenge arises in the behaviour of poachers that can enter a target area at different locations at
unknown times. This means that the set of intruders to be found evolves over time and locations that were
previously covered are to be revisited to achieve effective surveillance [30]. Continuous surveillance focuses
on periodically revisiting locations and usually minimises the largest revisit time [23], also referred to as the
idleness, refresh time, latency or age. This is defined as the time between two consecutive visits to a location
within the target area [30, 37, 32]. Sub-optimal solution techniques are usually applied since the continuous
surveillance problem is NP-hard [38]. Finally, a distinction between solution approaches can be made by iden-
tifying systems capable of global communication and bio-inspired systems driven by local autonomy [34]. Such
distributed approaches do experience the disadvantage of not guaranteeing exhaustive coverage and the need
to overcome local minima [35, 39]. Local autonomy translates to each UAV having local knowledge regard-
ing the system and its environment, that is obtained from short range communication. The accuracy of local
knowledge varies due to the communication constraints, but it is utilised to make decisions regarding path
planning. Such systems can overcome challenges arising due to the absence of digital infrastructure in extreme
environments where law enforcement aims to find poachers in vast target areas [40]. Since this research focuses
on utilising learning and autonomous surveillance to detect poaching activities in vast, hard-to-reach areas, the
focus of this research lies with continuous coverage path planning (surveillance) that utilises local autonomy.
Local communication between the swarm members of a distributed model and their interactions with the en-
vironment cause emergent behaviour at a macro level, which can be observed from a global point of view [41, 42].

The Green Security Game (GSG) is a concept that provides a Game Theory based approach to continuous
surveillance that aims to prevent illegal poaching activity. It is a field of research that has received substantial
attention. Optimal patrol routes can be computed through the previously developed PAWS [43], OPERA [44]
or CAPTURE [45] frameworks, by simulating the interactions between poachers and rangers as a repeated
strategy game. These centralised solution methods render these techniques ineffective for online path planning
[46] in scenarios with an absence of digital infrastructure to support the required communication channels [40].
A continuous surveillance approach that is to be implemented within the context of this research is required to
be robust and able to operate in the presence of limited communication capabilities [47, 48]. There is also a
lack of consideration of ecology movement within these Game Theory based solutions [49].

Most research towards (multi-agent) surveillance addresses this topic with predetermined patrol routes [50, 51,
52, 53, 54, 48, 55] or uses space decomposition to create patrol routes [56, 57, 47]. These approaches also lack
online path planning and distributed coordination, which can be achieved through local autonomy utilising
artificial potential fields, swarm intelligence and behaviour-based methods [58, 59]. Distributed approaches are
also advantageous over centralised models in terms of adaptability, simplicity, modularity, reliability, robustness
and low communication bandwidth requirements [30, 42].

The common approach in distributed models to achieve continuous surveillance is to toggle the state of grid
cells between an explored and unexplored state. The period of time after which this state is to be switched is
to be tuned carefully. Toggling the state too early prevents the swarm from covering the entire target area [35],
whereas re-exploration is performed too late if the opposite occurs. In distributed systems, elements perform
internal decision making without any centralised control point. Ant colony optimisation (ACO) achieves this
through evaporating pheromone concentrations. Each swarm member has a certain environmental awareness
through its own unique digital pheromone map. The pheromone concentrations on this map are the product of
a target location’s priority and the location’s idleness. Collaborative surveillance is achieved by broadcasting
these pheromone maps to nearby swarm members. The local autonomy in turn motivates each swarm member
to plan their path according to the pheromone concentrations [34, 35].

Prioritisation of surveillance efforts has proven to be effective in fighting crime [26]. Such a concept is proposed
in [37], where continuous surveillance of a target area is performed in a non-uniform manner by specifying the
pheromone evaporation rates to be proportional to a grid cell’s relative importance [12]. The proposed BAPS
model achieved stochastic path planning through a greedy algorithm that computes transition probabilities
from the pheromone concentrations and the distance from a target location. In [60] the swarm members use
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gained experience regarding successfully completed tasks to adjust response thresholds for specific tasks. The
transition probabilities are therefore adjusted using learning and forgetting rates, depending on the agent’s
experience. This is a different approach to gradually improve the effectiveness and success rate of the overall
surveillance mission objective through implicit coordination.

The limitation of these proposals is that the objective of the intruder that is to be found is not considered during
path planning. Neither do these approaches incorporate operational and/or kinematic constraints that apply
to the swarm members. These aspects can influence surveillance performance negatively [61]. The HAPF-ACO
model addresses a number of these limitations by combining kinematic constraints, artificial potential fields
(APF) and an ACO module. The magnitude of the artificial forces is used to switch between the APF and the
ACO modules and to incorporate collision avoidance. The ACO module utilises pheromone maps to establish
distributed coordination of continuous surveillance. Prioritised surveillance in consideration of the intruders’
objective is not considered however. In addition, a range constraint is introduced that forces swarm members
to occasionally return to their base of operations to recharge [40].

2.2 Modelling adaptive and rational poachers
The review of surveillance models in the previous section shows that current state-of-the-art surveillance models
mainly consider static intruders that do not respond to the searching party. Humans are intelligent rational
beings however, who are capable of expressing behaviour that includes evasive and cooperative action. This
section discusses models that have gained significant support to simulate poacher decision making in order
address such two-sided surveillance problems [23].

Game Theory-based models describing decision making of rational entities have established accurate models
to simulate bounded human rationality [43]. The Quantal Response (QR) model proposed in [62] models hu-
man rationality as a probabilistic decision making process. It assumes that better choices are more likely to
occur relative to worse choices, although the best choice is not made with certainty. This QR model has been
extended to incorporate bounded rationality. This extension considers that a rational entity may not have
full knowledge of its surroundings and that decisions are influenced by the interplay of emotion and cognition.
The proposed Subjective Utility Quantal Response (SUQR) model was found to predict human decisions more
accurately compared to the QR model [63]. The Collaborative Opportunistic Security Game (COSG) model is
another extension that considers the advantages of collaborative behaviour for poachers through adjustment of
the reward factor in the QR function [64]. The SUQR model has also been extended to incorporate the effects
of gained experience on decision making processes, which resulted in the Adaptive Subjective Utility (ASU)
function [10].

To date, these proposals modelling the influence of bounded rationality and gained experience on decision
making, have not been integrated. This research proposes to integrate the COSG and the ASU models to
analyse the two-sided surveillance problem at hand. The emergent behaviour of this proposed poacher model
will be used as input for the proposed surveillance model in order to address the identified limitations of current
state-of-the-art surveillance models.

2.3 Modelling wildlife movement ecology
Both the UAVs and the poachers discussed so far are interested in wildlife, albeit that their objectives conflict.
Where the ultimate objective of GSGs is to prevent wildlife loss due to illegal poaching, poachers aim to kill
wildlife for other gains. It is therefore crucial to incorporate animal movement ecology in order to prevent the
loss of animal species [65, 66]. Wildlife movement ecology models the spatiotemporal patterns of animals by
depicting the mechanistic components of animal movement in response to changes in the environment [67].

Simplistic models that can simulate animal movement include random walk theory, where equal probabilities
are assumed for movement in each possible direction. More advanced models allow for simulating correlated
random walks to simulate a correlation between successive steps using a directional bias towards preferred lo-
cations [68, 69]. Topographical and environmental attributes influence these biases [66, 70]. Levy walks aim
to simulate movement where local (tactical) movement is mixed with less frequent (strategic) far-ranging com-
mutes, also allowing to return to previous locations. These methods require dense positional data for empiric
evaluation to verify that animals indeed perform Levy walks [68] and calibration of such models is important
to avoid inappropriate management strategies [71, 66].

Such historic data is not available for this research. It is therefore proposed to model wildlife movement ecology
using calibrated resource selection functions (RSFs). These provide a solid foundation to develop an empirical
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link between habitat use and population distribution. It assesses which habitat characteristics, both biotic and
abiotic factors, are important to a specific animal species to quantify a probability of an animal utilising a
certain resource [72].

Modelling these animal decision processes allows for quantification of intruder rewards and penalties based on
the animal population distribution within the target area [63]. In addition, animal movement dynamics can
be provided as input for the proposed surveillance model such that the intruders’ objective can be taken into
account to adjust path planning [12, 73].

3 Methodology
The methodology visualised in Figure 1 is applied in this research. The steps comprise four phases: defining
the purpose of this research, defining the ABM model, collecting training data to construct BNs and testing
the hypotheses through simulation.

The purpose of this research is to quantify the effects of online Bayesian learning in a two-sided surveillance
problem on surveillance performance. Swarm intelligence is integrated with (A)BNs and simulated using the
ABM paradigm to obtain quantitative data describing model performance. The research question has been
formulated as follows:

"How does a learning multi-UAV approach to coordination of autonomous continuous surveillance
influence effectiveness of detecting coordinating and adapting intruders in vast target areas?"

It is hypothesised that prioritised surveillance efforts using (A)BNs as input for swarm intelligence results in
improved surveillance effectiveness. Additionally, online learning of the UAV swarm is expected to prevent a
long-term reduction in surveillance performance as a result from adaptive poacher behaviour.

Figure 1: The methodology used in this research.

The ABM paradigm lies at the basis of the proposed model that is used to answer the research question. This
paradigm has shown to be effective at overcoming limitations of equation-based and game theoretical models.
It has also shown to be a promising method for simulating anti-poaching models [74, 75, 65, 49]. ABMs can
incorporate detailed behavioural and ecological processes, while also being able to simulate adaptive responses
of agents. This is achieved by defining the local static and dynamic properties of the environment, the agents
and the interactions between these model elements from a bottom-up approach. It therefore supports modelling
complex spatiotemporal interactions and analysis of the local interactions that affect overall system performance
and emergence [49, 65]. An ABM model is proposed in Section 4.
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The ABM paradigm provides a framework for defining the scope and the behavioural properties of the model
elements from a bottom-up approach. The proposed ABM model1 comprises UAV, poacher and rhino agents
to simulate the emergent behaviour of an anti-poaching surveillance model. The presence of park rangers is
excluded to prevent additional complex model interactions. Provided that a target area in Namibia is considered
[76] and the availability of relevant wildlife ecology movement research, it was chosen to consider the black rhino
(or Diceros bicornis) in the ABM model. Data is collected from literature and satellite images to quantify the
environment of Aloegrove Safari Park and the rhino population. Expert knowledge provided by Eyeplane B.V.
is taken into consideration to describe poacher behaviour in the target area. Parameters of the poacher and
rhino models are then calibrated through sensitivity analyses to obtain realistic results, given the unavailability
of historic data regarding poacher and rhino activity. Calibration of the UAV swarm is particularly important,
since the difficulty with swarm intelligence lies in creating autonomous models that are precise enough to timely
adapt to the dynamics of the environment while dealing with operational constraints [59]. This is performed by
systematically calibrating the individual modules of the surveillance model and integrating these one at a time.
UAV kinematics, battery re- and discharging are simplified in order to facilitate the overall calibration process
and to simplify analysis of emergent behaviour of the ABM model. In addition, poacher evasive behaviour upon
detection by a UAV is excluded as well. ABM model specification is concluded once the emergent behaviour of
the ABM model has been validated and results in a desired level of accuracy to simulate realistic (anti-)poaching
activities.

A BN relies on historic data regarding poaching behaviour to predict criminal activity. This training data is
collected through simulation of the validated ABM model due to an absence of historic data from the real world.
The amount of training data gathered is based on required computation time and available hardware capacity.
The collected data is used as input for structure and parameter learning to define several BNs2. This is needed
to enlighten our knowledge with an accurate understanding of the relation between the random variables in
order to describe poacher behaviour with a BN. In addition, we propose to exploit expert knowledge to define
the directed a-cyclic graphs (DAGs) and conditional probability tables of a number of artificial BNs (ABNs).
These ABNs are used to design controlled experiments and to compare simulation results of the experiments
with the performance of BNs inferred from the training data. A variety of (A)BNs is compared to determine
the impact of structure and parameter learning on surveillance effectiveness.

Several experiments are designed to test the hypotheses and the influence of model parameters on observed
emergent behaviour. These experiments are discussed in further detail in Section 5. Both sample size and
simulation length is determined from analysis of the coefficient of variation. Performance of the proposed
HAPF-ACO model is analysed through sensitivity analysis and quantified using key performance indicators
(KPIs) obtained from literature. The results are assessed through correlation factors, analysis of spatiotemporal
patterns and statistical tests. This includes testing for normality using the Shapiro-Wilk test and measuring
significance using the Wilcoxon signed rank test and the paired t-test for normally distributed KPI data. Paired
tests are used since model output is obtained with the same population of agents. A significance level of 5% is
used for these statistical tests.

4 ABM Specification
This section formulates the ABM and the interactions of its elements, which are visualised in Figure 2. The
local properties and capabilities of the individual elements define the emergent behaviour of the ABM [77, 78].
The proposed UAV-based surveillance model, HAPF-BLACOPS, is an improved version of the HAPF-ACO
model that is integrated with an (A)BN. The UAV agents rely on swarm intelligence to prevent wildlife loss
by detecting illegal poaching activity. UAV behaviour is therefore based on the exchange of locally available
information among swarm members to facilitate local autonomy [59]. Poacher agents are simulated through a
novel decision model, ACOSG, that combines the COSG and the ASU models. This allows for simulation of
poachers that can coordinate with each other and adapt their strategy in response to surveillance efforts. A
wildlife population is simulated as well, utilising RSFs to simulate black rhino movement ecology.

1Implemented using the Python based Mesa Framework: https://mesa.readthedocs.io/en/master/
2Implemented using the Python based pgmpy Framework: https://pgmpy.org/
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Figure 2: Overview of interactions between ABM elements and the models describing the agents’ behaviour.

The following subsections are structured in accordance with the ABM paradigm and specify the models and
interactions shown in Figure 2 in further detail. The ABM’s environment is therefore elaborated upon first in
subsection 4.1. Subsection 4.2 then provides an overview of the interactions among the agents. After which
subsections 4.3, 4.4 and 4.5 specify the models describing the behavioural properties and interactions of the
black rhino, poacher and UAV agents respectively. Finally, subsection 4.6 proposes a number of (A)BNs that
are integrated with the HAPF-BLACOPS model.

4.1 Environment
A 10 by 10km area within the Aloegrove Safari Park in Namibia is used to describe the environment of this
ABM. This particular target area is selected due to available expert knowledge from Eyeplane B.V. and previous
research regarding poaching activity in the area [76]. This target area E is discretised for simulation purposes
into Nx x Ny equally sized grid cells σ (from hereon referred to as patches) of size Lx x Ly. All patches
represent an area of 500 by 500m, such that a unit distance ∆d is defined as 500m and a balance is found
between computation costs and preventing flocking of UAVs for larger swarm sizes as a result of an insufficient
size of the target area. Each patch’s static properties are defined from abiotic factors. Abiotic factors relevant to
rhinos and poachers include the presence of water sources [45, 3], roads [79, 3], vegetation (density) [80, 45, 71]
and the terrain slope [81]. SRTM V3 data [82] is used to quantify the target area’s elevation and vegetation
density is quantified using NDVI data provided by Landsat 8 satellite data [83]. Appendix A elaborates further
on the definition of the environment and quantification of these abiotic factors. These environmental attributes
influence the decisions made by the set of agents, Sagents, which comprises all types of agents in the ABM model.
The target area is therefore described by a graph G(E,A) where E = {(x, y)|x = 1, 2, · · · , Nx, y = 1, 2, · · · , Ny}
are the positions of the patches and A = {(xk, yk)| ∀ k ∈ Sagents} are the positions of the black rhino, poacher
and UAV agents. A base of operations for the UAV swarm is located at the (x, y) position (8, 14) [76].

4.2 Agent interactions
The environmental attributes provide input for various ABM model elements. This is visualised in figure 3, which
indicates how agents consider both environmental attributes and observations regarding other agents in their
cognitive decision processes. It summarises how environmental attributes are utilised by both rhino, poacher
and UAV agents, while the presence of individual agents provides input for other agents. The following sections
specify the behavioural properties of the agents in further detail by elaborating on the actions defined in figure 3.
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Figure 3: Visualisation of agent interactions and their internal decision processes.

4.3 Rhino agents
Black rhinos are a ubiquitously solitary species and crepuscular animal, formation of groups is unlikely and
ephemeral if it does indeed occur [80]. Rhino agents therefore have internal belief properties regarding their
environment that allows them to consider the presence of other rhinos in their decision making. The rhino
population being simulated is defined as Srhinos = {arhino1 , · · · , arhinon }, 1 ≤ n ≤ Nrhinos where Nrhinos is the
size of the rhino population. These rhinos are also eager to be nearby water sources during midday and dusk
[3, 84]. Previous research has also found a correlation between vegetation density, the distance from roads
(and therefore tourism) and the presence of black rhinos [71, 85]. Their longest period of rest is during the
mid-day heat [80]. Stochastic modelling of animal movement remains a state-of-the-art basis to gain a deeper
understanding of an animal’s choices regarding habitat utilisation [68]. Black rhino behaviour is therefore
proposed simulated through a Markov Decision Process utilising RSFs to quantify transition probabilities [86].
A number of time periods is distinguished to account for the different behavioural activities of black rhinos
throughout the day. The RSF therefore utilises a different set of (a)biotic factors as input to differentiate
between these activities. The number of input variables, x⃗, for the RSF is limited to reduce added model
complexity that can result from multiple input variables [78]. These input variables are normalised in order
to simplify the calibration and validation process of the RSF model. Their weights, w⃗, are calibrated through
sensitivity analysis in the absence of historical data regarding black rhino movement. Quantification of these
(a)biotic factors and the weights is elaborated upon in further detail in Appendix A.
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4.3.1 Path planning

Black rhino movement behaviour is simulated through a stochastic model utilising a RSF (see Equation 1) to
compute transition probabilities from patch σi to an adjacent patch σj . These transition probabilities from σi

are quantified for each adjacent patch σj in the Von Neumann Neighbourhood (VNN), which is defined as the
set of possible options, Si = {σ1, · · · , σk}, k ∈ VNNi, towards which a rhino agent can move. The RSF uses
a linear combination of weighted factors to simulate black rhino behaviour [87, 86]. The output of the path
planning action from Figure 3 is an updated patch towards which the rhino agent moves.

p(σi, σj , t) =
ew⃗·x⃗σi,σj,t∑

k∈Si

ew⃗·x⃗σi,σk,t

(1)

The RSF considers different input variables and their respective weights for each defined time period, shown
in Table 1. The RSF considers the euclidean distance, xroad,σj , of patch σj to the closest road, as well as the
number of black rhinos present on the patch in question, xrhino,σj

, for each time period.

Table 1: Input variables for RSF describing black rhino behaviour.

Time Period Input 1 Input 2 Input 3
Forage (00h00 - 04h30) xroad,σj

xrhino,σj
xvegetation,σj

Drink (04h30 - 09h30) xroad,σj
xrhino,σj

xwater,σj

Forage (09h30 - 12h00) xroad,σj xrhino,σj xvegetation,σj

Rest (12h00 - 20h30) xroad,σj xrhino,σj xrest,σj

Forage (20h30 - 24h00) xroad,σj
xrhino,σj

xvegetation,σj

During periods of foraging, the rhino agents prioritises for vegetation, which is quantified from NDVI data [83].
Black rhinos tend to revisit patches with NDVI values of, on average, 0.23, with a standard deviation of 0.02
[80]. Equation 2 therefore quantifies xvegetation,σj this preference with a normal distribution to stimulate visits
to patches with an NDVI value that is similar to these findings.

xvegetation,σj
=

1

1 + (
NDV I(σj)−0.23

0.02 )2
(2)

During sunrise, rhino agents are motivated to drink water by favouring patches with a relatively small euclidean
distances xwater,σj towards such water sources. Lastly, resting is preferred during the heat of the day. This
implies a preference for no movement, which is quantified by defining xrest,σj according to Equation 3. It
motivates black rhino agents to remain stationary during this time period.

xrest,σi
=

{
1, if σj = σi

0, else (3)

4.4 Poacher agents
The main objective of each poacher agent, apoacher, is to find and kill the rhino agents. The poachers move
through the target area towards their target, χ, by performing the actions visualised in Figure 3. These agents
therefore rely on observations regarding the presence of rhino and UAV agents to determine their strategy. The
proposed ACOSG model combines the COSG and ASU models. The COSG model utilises the SUQR function
to simulate the interplay between emotion and cognition influencing rational decision making and coordination
among poachers [64]. The ASU model utilises gained experience to adjust the preference for a given strategy
[10]. The following elaborates on the behavioural properties of the poacher agents visualised in Figure 3 and
thereby introduces the proposed ACOSG model.

4.4.1 Enter target area

Poacher agents enter the target area by road for its easy access. The exact entry point is chosen randomly from
the roads specified in Appendix A. Initiation of these poaching activities occurs daily at 20h30, emphasising
that these activities occur during night time (Eyeplane B.V., personal communication, 1 September 2020).
Considering the possibility that poachers can scout the environment and the rhino population prior to this,
the poacher agents are assumed to know the current locations of all rhino agents at the time of entry. This
information is stored in their target map Stargets = {χ1, · · · , χn}, ∀ n ∈ Srhinos.
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Considering the collaborative aspects of the ACOSG model, two poacher agents enter the target area at this
point in time. The choice for two poachers was on the one hand made to increase the rate at which observation
for the UAVs’ BN are gathered and on the other hand to prevent an exponential increase in collaboration
possibilities and therefore model complexity. Each of these sets of poachers (one set for each simulated day)
is from hereon referred to as a pair of poacher agents, denoted by Spair = {apoacherΨ1

, apoacherΨ2
}. Collaboration

among poacher agents occurs only within one such a set of poacher agents.

4.4.2 Identify targets

Upon initialisation of a poacher agent at its entry point, the agent collects the current whereabouts of all unique
targets that are present within the environment in Stargets. The poacher then removes targets from this set,
if the target in question was killed at an earlier time by the poacher. The belief of available targets therefore
shrinks as the poacher progresses through the targets in its target map.

4.4.3 Update target map

Additionally, the poacher scans for rhinos within a radius Rpoach of its current position σi at time t to update
Stargets with the most current rhino whereabouts. The updated whereabouts are also passed on to the other
poacher that is part of Spair, if these poachers have agreed to collaborate.

4.4.4 Update defender map

The poacher simultaneously searches for UAV agents within a radius of Rdetect from the poacher’s current
position si at time t. The location and time of detection of the UAV agent is then stored by the poacher
and shared with the other poacher agent within Spair. Sharing this information among Spair only occurs in
case of collaboration. The defender map is an empty set upon entry of the target area and is updated as new
information regarding UAV whereabouts comes available.

4.4.5 Coordinate collaboration

The poacher agents apoacherΨ1
and apoacherΨ2

within a pair Spair then each choose a target from their unique set
Stargets and coordinate their collaboration strategy. When a poacher successfully tracks a target χ, it kills the
rhino and earns a reward Rχ. Collaboration increases this reward with a factor ϵ. Collaboration is advanta-
geous for two reasons. First, the poachers can cover more ground and therefore collect more information of
UAV and agent whereabouts, which increases their chances of avoiding UAVs and successfully tracking targets
[10]. Second, poachers receive a larger reward for collaborating. The disadvantage of collaboration is that the
penalty for being apprehended increases, since the penalty, Pχ, is proportional to the reward as discussed in
Appendix A. Collaboration between poachers only occurs in case of mutual agreement.

Algorithm 1 describes how the poachers can reach agreement regarding collaboration and formulates how targets
are chosen from a poacher’s own unique target map Stargets. First, each poacher computes the transition
probabilities for the two possible strategies of a given target χ ∈ Stargets. These two strategies refer to the
possibility to collaborate, or not. The transition probabilities are computed according to Equation 4. It is
based on three input variables; the terrain slope (Eyeplane B.V., personal communication, 1 September 2020),
the reward and the penalty. It combines the ASU model to consider the poachers’ experience, which is the
combined set Srewards, which contains rewards and penalties obtained through killing rhinos and poachers
being apprehended by UAVs. This experience adjusts the weights of the input variables through the inclination
I. The weight of the experience increases over time, which is quantified in Appendix A [10].

p(χi, χj , t) =
e(1−Iχj

(t))·ωslopexχj
+(1+Iχj

(t))·ωrewardRχj
+(1+Iχj

(t))·ωpenaltyPχj∑
χ∈Stargets

e(1−Iχ(t))·ωslopexχ+(1+Iχ(t))·ωrewardRχ+(1+Iχ(t))·ωpenaltyPχ (4)

The inclination I is based on the average of collected payoffs (both rewards and penalties) within the time
interval [t0, t]. The inclination increases as the average payoff at a patch becomes relatively large in comparison
to the average payoff collected over all other positions, up to the current time t. It therefore encourages poachers
to prefer tacking targets in areas with a higher success rate. The relative importance of the inclination can be
adjusted with the CASU constant [10]. Appendix A provides details regarding quantification of the inclination,
calibration of the weights in Equation 4 and the CASU constant.

The attractiveness of a target, described in Algorithm 1, is defined as the strategy with the highest transition
probability (see equation 5). This results in Satt for each poacher, containing the attractiveness for each target.
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Each poacher then chooses its optimal target χoptimal from Satt. Each poacher also chooses a sub optimal target
χsub optimal from the strategies without collaboration.

Att(χj , t) = max
{
pnot collaborate(χi, χj , t), p

collaborate(χi, χj , t)
}

(5)

Algorithm 1: ACOSG algorithm for choosing a poaching strategy and target.
Input : Spair, Stargets

Output: New targets χ for each poacher in Spair

1 ;
2 for apoacher ∈ Spair do
3 for χj ∈ Stargets do
4 Compute transition probability p(χi, χj , t)

not collaborate according to Equation 4 ;
5 Compute transition probability p(χi, χj , t)

collaborate according to Equation 4 ;
6 Compute attractiveness Att(χj , t) according to Equation 5 ;

7 ;
8 for apoacher ∈ Spair do
9 χoptimal = argmax

j
Satt(χj , t) χ

sub optimal = argmax
j

p(χi, χj , t)
not collaborate

10 ;
11 // Coordinate collaboration strategy
12 ;
13 if apoacherΨ1

and apoacherΨ2
prefer the same type of collaboration strategy then

14 Each poacher chooses its optimal target χoptimal as their active target χΨ

15 else
16 Each poacher chooses its sub optimal target χsub optimalas their active target χΨ

17 ;
18 return χΨ1

, χΨ2

Once each poacher within Spair has determined its preferred target. If both poachers indeed prefer choosing a
target with a collaborative strategy, then the two poachers collaborate until either poacher needs to choose a
new target. If either poachers does not prefer a collaborative strategy, then both poachers are forced to choose
their sub optimal target [64].

4.4.6 Track target

Moving towards the active target is achieved through Equation 4 as well, except now patches σj are considered
rather than targets. Stochastic poacher movement is simulated based on these transition probabilities as a
discrete-time Markov Chain (DTMC) with a discrete state-space [88]. The active target χ, the presence of
UAVs and the terrain slope provide input to quantify the reward and penalty that motivate a poacher to move
to an adjacent patch. Refer to Appendix A for further details regarding the quantification of these transition
probabilities.

4.4.7 Update reward map

While tracking an active target χ, a number of situations can occur. First, the poacher can find its active
target, after which the poacher will update the reward map. It also updates its target map and re-initiates
Algorithm 1. Second, the poacher can find a non-active target that is present in its target map. In this case, the
poacher updates the reward map and its target map, but Algorithm 1 is not re-initiated. Third, the poacher
can encounter UAV agent, in which case the poacher is apprehended.

Once a poacher agent has found a rhino agent that is within the poacher’s target map, the position σj , time t
and reward Rχ of the kill are stored in the reward map Srewards

3. The information in Srewards is at all times
available to all poacher agents.

In case a poacher is found by a UAV agent, the poacher is apprehended and removed from the simulation. The
penalty defined in Algorithm 1 is stored in Srewards, together with the position σj and time t.

3A rhino agent that is found by a poacher agent is only killed for the pair of poachers to which the poacher in question belongs.
The death of a rhino agent is therefore only virtual, such that it does not affect the perception of the rhino population for a different
pair of poachers. This method is used to prevent simulating reproduction factors that affect population dynamics.
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4.4.8 Return to base

Upon entry, poachers choose a base within the target area. This choice is biased towards elevated locations,
as quantified in Appendix A. Once a poacher successfully kills its active target, the poacher returns to its base
in accordance with the algorithm described in subsection 4.4.6. Once the poacher has reached its base, the
poacher starts tracking a newly identified target obtained from Algorithm 1.

4.4.9 Leave target area

Once a poacher’s target map is empty, the poacher performs path planning back to its original entry point in
accordance with the algorithm described in subsection 4.4.6. Once a poacher successfully reaches this target,
the poacher is removed from simulation and from its Spair.

4.4.10 Poacher types

Two poacher types are distinguished and incorporated in the ABM model, based on expert knowledge from
Eyeplane (Eyeplane B.V., personal communication, 1 September 2020). Type 2 poacher agents identify a base
as discussed in subsection 4.4.8. Type 1 poachers do not choose such a base however. Type 1 poacher agents
choose to track a single target from their initial target map, which is chosen from an initial deployment of
Algorithm 1. Type 1 poachers therefore return to their original point of entry upon killing their target. The
behaviour described in subsection 4.4.8 is therefore only applicable to type 2 poacher agents.

4.5 UAV agents
A swarm of UAV agents, SUAV s = {aUAV

1 , · · · , aUAV
n }, 1 ≤ n ≤ NUAV s, performs continuous surveillance in

the target area, E, in order to find poacher agents and prevent wildlife loss. The proposed surveillance model
is based on the HAPF-ACO model [40] and is integrated with (A)BNs to achieve online learning and prioritise
surveillance efforts. The HAPF-ACO model integrates an ACO module with an APF module to achieve swarm
coordination, target tracking, collision avoidance and continuous surveillance. The proposed Hybrid Artificial
Potential Field Bayesian Learning Ant Colony Optimisation Prioritised Surveillance (HAPF-BLACOPS) model
is introduced in the following subsections.

Each individual UAV in the swarm has a local belief regarding the state of the swarm, regarding the presence
of intruders and regarding the distribution of wildlife in the target area. This belief is based on a UAV’s local
target probability map (TPM), artificial potential field map (APFM), its local pheromone map (LPM) and its
local rhino map (LRM). These maps are updated through local communication among swarm members and
through observing the environment. Communication among swarm members is possible if the euclidean distance
between UAVs is less than the maximum communication range, Rsen [40]. The available knowledge stored in
these maps influences a UAV’s path planning, as visualised in Figure 3.

The TPM of the k-th UAV agent, TPMk(t) = {pk(x,y)(t) | x = 1, 2, · · · , Nx, y = 1, 2, · · · , Ny}, describes the
distribution of poachers in the target area as believed at time t. It assigns a probability of poacher existence
pk(x,y)(t) ∈ [0, 1] to each patch. The existence probabilities are computed from Equation 6, by integrating over
some distribution f(x, y) that describes the known intruders’ presence in the target area, as proposed in [40].

pk(x,y) =

∫ xLy

(x−1)Ly

∫ yLx

(y−1)Lx
f(m,n)dmdn

Nx∑
m=1

Ny∑
n=1

pk(m,n)

(6)

The presence of poachers induces an attraction force, F̂ k
att, at the k-th UAV’s current position (σi). In addition,

UAVs sense the presence of obstacles. This research only considers other UAVs as obstacles. The presence of a
UAV induces a repulsion force, F̂ k

rep on the k-th UAV, which prevents the UAV in question from moving closer
to nearby UAV agents. The resulting APFM, APFMk(t) = {F̂ k

res(σi)}, ∀ σi ∈ E, describes the resultant force
obtained after summation over all present attraction and repulsion forces at a given patch. These attraction
and repulsion forces are computed from Equations 7 and 8 respectively. The parameters b and katt influence
the magnitude of these forces. The c parameter influences the rate of change of the magnitude of the repulsion
forces as the euclidean distance, ∥x̂σi,σj∥, increases [40]. In Equation 8, aUAV

nearby is the UAV agent which is
closest to the patch σi in consideration. Appendix A elaborates on the calibration process of these parameters.

F̂ k
att(σi) =

∑
σj∈E

katt ·
x̂σi,σj

∥x̂σi,σj
∥2

· (pkσj
− pkσi

) (7)
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F̂ k
rep(σi) =

∑
aUAV
j ∈Nc

k

b

c
·

e
1
c ·∥x̂σi,a

UAV
j

∥
· x̂σi,aUAV

j

(e
1
c ·∥x̂σi,a

UAV
j

∥
− e

1
c ·∥x̂σi,a

UAV
nearby

∥
)2

, if dmin < ∥x̂σi,aUAV
j

∥ ≤ dmax (8)

The LPM contains the pheromone concentrations, τ , for each patch in E as believed by the k-th UAV, such
that LPMk(t) = {τk(x,y)(t) | x = 1, 2, · · · , Nx, y = 1, 2, · · · , Ny}. These pheromone concentrations are bound to
a minimum, τmin, and maximum value, τmax. These boundaries and the pheromone increments used to update
the LPM are to be determined carefully in order to achieve effective coverage of the target area [35]. Appendix
A therefore addresses the calibration of these parameters.

Finally, the LRM contains the known whereabouts of rhino agents, as perceived by the k-th UAV. This map is
continuously being updated from sensor detections and synchronisation among swarm members. This LRM is
used to provide input for the (A)BN, as discussed in subsection 4.6.

Upon initialisation of the ABM, each UAV is given a random heading ϕ and position (x, y). Each UAV agent
initialises its TPM, APFM, LPM and its LRM without initial knowledge regarding poacher presence. A uniform
target existence distribution is therefore applied to quantify the TPM [40]. Similarly, the LPM is initialised such
that all pheromone concentrations are equal to the midpoint between the boundaries on the concentrations.
The magnitude of the resultant forces in the APFM determine whether the UAV relies on its APFM for its
path planning. These behavioural characteristics are specified in further detail in the following sections.

4.5.1 Sensor detection

The UAV is assumed to be equipped with a sensor that can detect poachers within each unique patch within its
vicinity, Rdet. The influence of environmental factors on sensor performance [89, 90, 91, 92] is accounted for by
considering the probability of a true detection, PD and a failure to successfully detect the presence of poachers,
PF [40]. In addition, these sensor parameters are adjusted between day- and nighttime to address the varying
lighting conditions under which poachers operate and its affect on detection performance [93].

The LRM is also updated by detecting the presence of rhino agents. A distinction with poacher detection is
made by neglecting the above sensor parameters for detecting rhinos.

4.5.2 Update target probability map

These poacher sightings are stored and shared among the UAV swarm. The most current poacher whereabouts
are used to update and quantify the poacher existence probabilities in the TPM. This is described by the Wiener
random process described in [40], given that the UAV does not know the speed of movement of the poacher.

4.5.3 Synchronise swarm

Communication is possible among UAV agents within coordination distance, rcoork , of each other. This radius
is dependent on the number of UAV agents within the communication range Rsen, such that the number of
UAVs the k-th UAV communicates with, is limited [40]. The k-th UAV can therefore only communicate with a
subset, N c

k ⊂ SUAV s, of the swarm. These UAVs exchange poacher sightings, rhino sightings and their travelled
paths with each other.

4.5.4 Update local pheromone map

The obtained information from synchronisation is used to update the pheromone concentrations in the LPM
at each time step according to Equation 9. This mechanism enables autonomous coordination of continuous
and prioritised swarm surveillance [50, 40]. The pheromone concentration at a patch τk(x,y)(t) is increased by a
factor ∆τg0 at each time step to motivate UAVs to re-explore the target area, whereas visits from a UAV agent
to a patch reduce these pheromone concentrations.

τk(x,y)(t+∆t) = τk(x,y)(t) + pkBN (x, y, t) ·∆τg0 −
∑

aUAV ∈Nc
k

∆τ
(k,aUAV )
l(x,y) (t) (9)

It is proposed to utilise the posterior probability distribution from an (A)BN to adjust the increments of these
pheromone concentrations. The rate at which the pheromone concentrations increase is therefore proportional
to the posterior probability, pkBN (x, y, t), describing poacher activity. The (A)BNs used to perform probabilistic
inference are discussed in subsection 4.6.
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The k-th UAV accounts for the presence of other UAVs based on exchanged UAV positions (xaUAV (t), yaUAV (t)).
The magnitude by which the pheromone concentrations are reduced in response to visits from these UAV agents
is dependent on the local update constant, ∆τl0 and the distance ∥x̂∥ between patches, as seen in Equation 10
[40]. Appendix A elaborates on the calibration method of these model parameters.

∆τ
(k,aUAV )
l(x,y) (t) =

{
∆τl0 · 1

R4
det

·
(
R4

det − ∥x̂(x,y),(xaUAV (t),yaUAV (t))∥4
)
, if ∥x̂(x,y),(xaUAV (t),yaUAV (t))∥ ≤ Rdet

0, else
(10)

4.5.5 Predict target probability map

The UAVs adjust the TPM prior to computing the APF to incorporate future movement of the poachers. Equa-
tion 11 therefore combines the target existence probabilities currently in the TPM with the target detection
results to adjust for movement of the dynamic targets, where τ ∈ [0, 1] is used to characterise the dynamic
environment. If the sensor detected a poacher at a given patch and the local knowledge regarding the poacher
whereabouts obtained through synchronisation is in agreement with said observation, then b(t) is defined to be
equal to 1 [40].

pimn(t+∆t) =


τ · pimn(t) (not detected)

PD·pi
mn(t)

PF+(PD−PF )·pi
mn(t)

(detected and b(t) = 1)
(1−PD)·pi

mn(t)
1−PF+(PF−PD)·pi

mn(t)
(detected and b(t) = 0)

(11)

4.5.6 Update artificial potential field map

The k-th UAV then quantifies the resultant force for each patch in the APFM from the TPM through summation
over the artificial forces obtained with Equations 7 and 8.

4.5.7 Recharge and update BN

Once a UAV reaches its base of operations for recharging, it exchanges newly gained observations regarding
poacher activity with the database at the base. The exchanged data is used to update the conditional probability
tables of the UAV’s BN in order to achieve online learning. Updating the BN is performed during recharging
since it is computationally expensive [25]. A simple linear recharge rate is assumed for the recharging purpose,
as to limit the complex interactions with the emergent behaviour of the UAV swarm.

4.5.8 Path planning

Each UAV decides how path planning is performed based on Algorithm 2. It requires a UAV’s unique APFM,
LPM, LRM, current position σi and the UAV’s current heading ϕi. Additionally, each UAV monitors its trav-
elled distance since leaving the base of operations, Lpast, to determine when the UAV needs to return for
recharging. The UAV chooses one of five path planning mission types (MTs) in accordance with the proposed
algorithm. By choosing for one of these mission types, the UAV either returns to base or it relies on its APF
or its ACO module for path planning. These five mission types are discussed below. The output of Algorithm
2 is a new patch, σj , towards which the UAV moves. This patch is chosen from a set of adjacent patches, Ωi,
that can be reached without violating the turn angle constraint induced from the maximum turn angle ϕmax.
The proposed algorithm differentiates from the HAPF-ACO model by prioritising the UAV’s remaining range
and considering the maximum turn angle in the range constraint.
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Algorithm 2: HAPF-BLACOPS mission selection algorithm
Input : APFM, LRM, LPM, Lpast, σi, ϕi

Output: σj

1 ;
2 q ∼ U(0, 1) ;
3 ;
4 if Lpast(t+∆t) > 1

2 · Lmax − L∆ϕ then
5 // Path planning according to mission type 1
6 else if q ≤ 1− λAPF · Fres(σi)

Fres,max(Ωi)
then

7 // Path planning according to mission type 2
8 else
9 q1 ∼ U(0, 1) ;

10 if q1 < q2 then
11 // Path planning according to mission type 3
12 else
13 // Path planning according to mission type 4

14 ;
15 return σj

Mission type 1: return to base of operations
The UAV moves towards and adjacent patch within Ωi that minimises the difference, ∆ϕ, between the UAV’s
future heading ϕj and the heading towards the base of operations. This method of path planning is performed
in case the travelled distance at t +∆t becomes larger than half the UAV’s maximum range Lmax. The UAV
also adjusts its choice of mission type by considering the distance required to align its current heading with the
heading towards the base of operations. The difference between these two headings is defined as L∆ϕ.

Mission type 2: path planning using the APF module
The UAV draws a random variable q from a uniform distribution and compares this with the relative magnitude
of the resultant forces in the APFM to determine whether the magnitude of the resultant forces within Ωi is such
that obstacle avoidance or target tracking is to be prioritised. The λAPF parameter influences the importance
of the APF module and is calibrated in Appendix A. A new patch is chosen by minimising for the difference
between the resultant force’s direction at the current patch and the heading ϕj obtained from moving towards
adjacent patch σj ∈ Ωi.

Mission type 3: path planning using the ACO module
The ACO module utilises the pheromone concentrations and heuristic information ησj to determine a path that
maximises the weighted product of these factors according to Equation 12. The heuristic information describes
the frequency of visits to a patch σj as perceived by a UAV’s communication with nearby swarm members.
It is quantified using Equation 13, where N∆t(t − 24hours, t) is the number of time steps in a 24 hour time
period and where νσj

(t− 24hours, t) is the number of visits to a patch during this time period. The exponents
α and β characterise the optimised path and are included in a Global Sensitivity Analysis (GSA), discussed in
subsection 5.4.

σj = argmax
k∈Ωi

{
τσk

(t)α · ησk
(t)β

}
(12)

ησj (t) = 1−
νσj

(t− 24hours, t)
N∆t(t− 24hours, t)

(13)

Mission type 4: stochastic path planning using the ACO module
The parameter q2 is set to 0.5 to stimulate unpredictable UAV path planning through stochastic movement.
This is needed to limit the ability of poachers to accurately learn, predict and evade the surveillance efforts
of UAVs through the ASU model [94]. Stochastic path planning is therefore simulated through a DTMC, for
which the transition probabilities are computed from Equation 14.

p(σi, σj , t) =


τσj

(t)α·ησj
(t)β∑

σk∈Ωi

τσk
(t)α · ησk

(t)β
, σj ∈ Ωi

0, σj /∈ Ωi

(14)
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4.5.9 Apprehend poachers

When a UAV agent moves to a patch at which it successfully detects a poacher within a distance of Rapprehend,
the UAV apprehends the poacher. The poacher is then removed from simulation, as discussed in subsection
4.4.7, after which the UAV continuous its surveillance task.

4.6 Integration of Bayesian Networks
The proposed HAPF-BLACOPS utilises (A)BNs to achieve prioritised surveillance by integrating the ACO with
an (A)BN, as defined by Equation 9. (A)BNs are characterised by a graphical representation describing the
joint probability distributions (JPDs) that can be used for probabilistic inference and risk prediction. These
can be characterised by reoccurring behavioural features and are therefore predictable by considering both ge-
ographical and temporal features to forecast criminal activity [95, 96]. The underlying conditional probability
tables can be updated when new evidence becomes available [25]. A distinction is made between artificially
defined BNs (ABNs) and BNs obtained from training data. The DAG and conditional probability tables of an
ABN are defined from expert judgement. The (A)BNs are used to perform probabilistic inference of poacher
activity and to update the pheromone concentrations of the ACO module accordingly.

A DAG consists of a set of nodes (random variables) and edges, indicating the conditional (in-)dependencies
between the discrete random variables. The random variables used to define the DAGs of the (A)BNs consid-
ered in this research are selected from expert knowledge (Eyeplane B.V., personal communication, 1 September
2020) and [97]. The various combinations of random variables can result in a large set op (sub-)optimal DAGs
to describe the training data. The optimal DAG to describe a training dataset can be obtained from score-based
structure learning algorithms such as PC and Hill Climb Search [98, 99] or expert knowledge [25]. The accuracy
of a DAG describes how well it fits a given dataset and is quantified with the BIC, BDeu and K2 scoring
functions [100, 101]. Appendix B therefore defines the DAGs that are obtained through structure learning and
the conditional probability tables for a number of (A)BNs being analysed in this research. This selection of
(A)BNs results from a qualitative analysis and from comparison of the dependencies in DAGs to expert judge-
ment. Figure 4 visualises three DAGs that are analysed. The first DAG being defined from expert judgement as
ABN4, the second (BN9) being learned from the training data and the third (BN expert) being a combination
of structure learning and expert judgement.

(a) A DAG defined
from expert judgement
(ABN4).

(b) A DAG defined from
structure learning (BN9).

(c) A DAG defined from combining structure learning results and
expert judgement (BN expert).

Figure 4: Visualisation of three DAGs being analysed.

The random variables providing the structure of the DAGs in Figure 4 are discretised from the (a)biotic fac-
tors characterising the target area (discussed in Appendix A). In addition, the target area is discretised into
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a number of BN regions among which surveillance efforts are to be prioritised. These BN regions, shown in
Figure 4, are defined to reduce computation costs and such that each region is characterised by a unique set
of features. Since the discretisation methods to define the random variables and the BN regions can influence
this goodness of fit [102], the influence of these parameters on surveillance performance is analysed in Section
5. Both supervised and unsupervised data discretisation techniques are considered to define uniform bin widths
for this purpose.

The conditional probability tables are then estimated through a parameter learning algorithms such as Maximum
Likelihood Estimation (MLE), Bayesian Estimation or Expectation Maximisation (EM) [100]. Finally, the UAV
agents perform probabilistic inference to predict adaptive poacher activity in a given region within the target
area and perform path planning.

(a) Discretisation into 3 BN regions. (b) Discretisation into 9 BN regions.

Figure 5: Discretisation of the target area into predefined BN regions.

5 Simulation Results
This section elaborates on steps 5 through to 7 from the methodology presented in Figure 1. First, a description
and a flowchart is provided to elaborate on the approach used to calibrate model parameters, validate model
output and to analyse the emergent behaviour of the HAPF-BLACOPS model and its performance in comparison
to the current state-of-the-art. Second, the results of the experiments are presented and elaborated upon. The
required number of simulation runs and simulation time for these experiments was quantified with the coefficient
of variation of model output, for which the results are presented in Appendix A.

5.1 Simulation Approach
Prior to performing the experiments from Table 2, calibration of the parameters of the discussed rhino, poacher
and UAV models was performed through sensitivity analyses. The model output was validated against expert
knowledge, research describing rhino behaviour and against historic poaching data. A systematic approach was
used to calibrate the model parameters and the individual HAPF-BLACOPS modules to obtain sufficiently
realistic model output. This was achieved by simulating the ABM model with the individual models that define
the rhino, poacher and UAV agents’ behaviour respectively. Calibration of the weights of the RSF in Equation
1 simulating black rhino behaviour was performed first. After which the ACOSG’s weights from Equation 4
were calibrated. Then the parameters of the APF and the ACO were calibrated individually, before building
the hybrid APF and ACO model. Compositional analysis of the individual models and their modules, prior
to combining these, prevents interactions between these features (shown in Figure 3) from influencing model
output. By gradually combining each of these features, their joint influence on model output was analysed
[103]. Appendix A elaborates upon these steps in greater detail and discusses the validation of model output.
Appendix C provides an overview of the model parameters that were used in the experiments, unless stated
otherwise.

The validated ABM is used in experiments E1 through to E84 to perform simulations that test the hypotheses
of this research and answer the research question. Table 2 provides a summarising description of each of
these experiments and their objective. The results of the performed simulations are quantified according to a

4Experiments E5 and E6 are presented and discussed in Appendix F.
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number of KPIs, which are elaborated upon in Appendix D. ABNs are used in several experiments5 to provide
a controlled simulation environment, in which the quality of the training data does not influence the emergent
behaviour of the ABM.

Table 2: Description of performed experiments.

Experiment Description Hypothesis tested
with KPI

E1 The effect of the proposed mission selection algorithm on
model output regarding collision avoidance and violation of
the range constraint is analysed by simulating the HAPF-
ACO and the HAPF-BLACOPS models without a (A)BN.

Range violations
Collisions

E2 The effect of prioritising surveillance efforts through ABNs on
surveillance effectiveness and efficiency is analysed by simu-
lating the HAPF-BLACOPS and HAPF-ACO models.

Apprehensions
Catch per unit effort
Coverage fairness

E3 A global sensitivity analysis of the HAPF-BLACOPS input
parameters (NUAV s, α, β, Rsen, ∆τl0, Acknowledgement of
the APF) is performed to quantify their influence on the emer-
gent behaviour of the UAV swarm and determine a set of
parameters that improves surveillance performance and the
influence of the (A)BN on model output.

Spearman correlation coef-
ficients

E4 The effects of prioritising surveillance efforts through various
(A)BNs on surveillance effectiveness and efficiency are anal-
ysed by simulating the HAPF-BLACOPS with the adjusted
input parameters obtained in E3 and comparing to model
performance obtained in E2.

BN scoring functions
Apprehensions
Catch per unit effort
Coverage fairness

E5 The influence of the dimensions of the BN regions, specified in
Figure 5, on surveillance effectiveness is analysed by simulat-
ing the HAPF-BLACOPS with the adjusted input parameters
obtained in E3.

Loss of wildlife
GAI
Spatiotemporal patterns

E6 The potential bias resulting from considering solely appre-
hended poacher data to predict poacher activity is analysed
by extending the training data with observations of unappre-
hended poachers and simulating the HAPF-BLACOPS model
with the adjusted input parameters obtained in E3.

Apprehensions
Catch per unit effort
Coverage fairness
Spatiotemporal patterns

E7 The influence of the ASU function on the emergent adap-
tive behaviour of poacher agents is analysed through adjust-
ment of the ACOSG input parameter CASU in an environment
where the adjusted HAPF-BLACOPS input parameters ob-
tained in E3 are used.

Coefficient of variation of
spatiotemporal patterns
Apprehensions
Loss of wildlife

E8 Compositional analysis of the HAPF-BLACOPS modules is
performed to determine how internal interactions influence
the effects of updating the ACO module with (A)BN predic-
tions on surveillance performance. The proposed surveillance
model is simulated with the adjusted input parameters ob-
tained in E3 and with ABM parameters that are updated
according to the results obtained in E4, E5, E6 and E7.

Coverage
Coverage fairness
Apprehensions
Loss of wildlife
Catch per unit effort
Collisions

The experiments discussed in Table 2 are also shown in Figure 6. This elaborates on step 7 of the methodology
in Figure 1 by providing an overview of the interconnection between the successive simulation experiments. The
hypotheses of this research are listed as well.

5Simulations in E3, E5 and E6 are performed solely using ABN4, shown in Figure 4(a).

18



Figure 6: Description of causal relations between the experiments and their respective hypotheses.

5.2 E1: Analysis of proposed mission selector
Experiment 1 tests the hypothesis that the mission selection algorithm (see Algorithm 2) from the proposed
HAPF-BLACOPS model addresses the identified shortcomings of the HAPF-ACO model’s mission selector.
The proposed mission selector was designed with the objective of preventing UAVs from violating their range
constraint, since it was found that the range constraint in the HAPF-ACO model did not consider the maximum
turning angle in determining the remaining range. In addition, the HAPF-ACO did not prioritise a violated
range constraint over other mission types. Simulations for this experiment were performed with tmax set at 10
days. Both the HAPF-ACO and the HAPF-BLACOPS models were simulated with the same model parameters
and without a (A)BN. The HAPF-ACO model shows that several UAVs returned to their base of operation with a
negative remaining range, as seen in Figure 7(a). The proposed mission selector in the HAPF-BLACOPS model
prioritises the range constraint over other mission types and considers the maximum turn angle combined with
the UAV’s current heading to determine when the operational range will be violated, as discussed in subection
4.5.8. This prevents any UAV from violating its range constraint, as seen in Figure 7(a).
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(a) Range violations by UAVs. (b) Collisions among UAVs. (c) Poachers apprehended by UAVs.

Figure 7: Performance comparison of proposed mission selector in HAPF-BLACOPS with HAPF-ACO.

In addition, due to simplifications in the mission selector achieved from the prioritisation of the range constraint,
the UAV is more consistent in choosing a mission type. This results in more frequent use of the APF, resulting
in a reduction of, on average, 84% mid-air collisions between UAVs, as seen in Figure 7(b). Another secondary
effect visualised in Figure 7(c) shows that the use of the ACO and APF becomes such that the surveillance
effectiveness, in terms of number of apprehensions, is, on average, doubled, such that 50% of poachers are being
apprehended. The variation in surveillance effectiveness remains unaffected however. Statistical analysis of these
results, presented in Table E.1 in Appendix E, show that the improved performance of the HAPF-BLACOPS
model is indeed significant, since the p-values are less then 0.05. The hypothesis for this experiment, stated in
Figure 6, is therefore accepted.

5.3 E2: Baseline performance of HAPF-BLACOPS with ABNs
Experiment 2 analyses how the use of various ABNs influences both surveillance effectiveness and efficiency of
the proposed HAPF-BLACOPS model in comparison to the current state-of-the-art. Both the DAG and the
conditional probability tables of these ABNs were designed based on the spatiotemporal patterns found during
calibration. Appendix B provides the specification of these DAGs and their conditional probability tables.
Figure 8 quantifies how these ABNs influence surveillance performance.

(a) Poachers apprehended by UAVs. (b) Catch per unit effort. (c) Coverage fairness.

Figure 8: Performance comparison of HAPF-BLACOPS utilising ABNs to predict poaching activity.

Due to the increased simulation duration in comparison to E1 in subsection 5.2, the HAPF-ACO model is able
perform significantly better on average at apprehending poachers. However, the HAPF-ACO model does show
significant variation in model performance, due to the randomness in the mission selector. The performance
of the ABNs in terms of apprehending poachers, the catch per unit effort and the coverage fairness shows,
based on the statistical analysis in Table E.2, no significant improvement or degradation in comparison to the
HAPF-ACO model. This is caused by the underlying interactions in the mission selector defined in Algorithm 2.
These, combined with the presence of the swarm, limit the amount of path planning being performed according
to the BN and the ACO. This is also supported by the spatiotemporal patterns of the UAVs, visualised in
Appendix F. These indicate no different preference for certain BN regions in comparison to their preferences
in the HAPF-ACO model. The magnitude of the variance in Figure 8 also indicates that HAPF-BLACOPS
performance is unstable, which is similar to the HAPF-ACO model. The hypothesis in Figure 6, stating that
the use of ABNs improves surveillance effectiveness and efficiency, is rejected based on this experiment. A
GSA was therefore performed to determine the influence of model parameters on model output and improve
performance.
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5.4 E3: Global sensitivity analysis of HAPF-BLACOPS
A global sensitivity analysis of the model parameters in Table 3 was performed with simulations of the HAPF-
BLACOPS model utilising ABN4 (specified in Appendix B) in order to determine their effects on model output
and test the hypothesis stated in Figure 6. Parameter screening was performed to determine this set of parame-
ters for which their influence on the emergent behaviour is both complex to predict and beneficial to understand.
Latin Hypercube Sampling (LHS), utilising discrete uniform distributions to sample parameter combinations,
was used to reduce the required number of simulations. The Spearman rank correlation coefficients were com-
puted, since the model input-output relationship was not expected to be linear [75]. A 3k factorial design
was implemented to be able to capture both the strength and direction of nonlinear effects on model output
[104, 105], except for the Acknowledgement of the APF. This parameter enforces whether a UAV agent omits
path planning according to mission type 2 (defined in Algorithm 2) by setting the magnitude of q to 0 when
the magnitude of Acknowledgement of the APF is set to 0.

Table 3: HAPF-BLACOPS parameters analysed during GSA.

Model parameter NUAV s α β Rsen ∆τl0 Acknowledgement
of the APF

Considered values 5, 10, 20 1, 3, 5 1, 3, 5 1, 3, 5 0.1, 10, 100 0, 1

The obtained Spearman correlation coefficients are presented in the lower-triangle of Figure 9. Their respective
p-values are presented in the upper-triangle of the this figure. Most of these p-values meet the significance level
of 5%, except for, mainly, the p-values related to correlations between the β parameter and model output. This
could be related to the quantification of the heuristic information, which is dependent on path planning of the
UAV swarm, the mission selection algorithm and therefore the complex and partially stochastic interactions
within the ABM. The hypothesis for E3 is only partially accepted, since no significant effect on model output
is observed for the parameters α and β.

Figure 9: GSA Correlation matrix showing the Spearman correlation coefficients.
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The size of the UAV swarm, NUAV s, has the strongest effect on the number of apprehensions being made by
the UAVs and results in a significant reduction of loss of wildlife. Albeit that this correlation with wildlife loss
is weaker than the correlation with swarm size. This indicates that scaling of the HAPF-BLACOPS model may
be the most effective way to reduce the loss of wildlife, but there is no linear relation between these two aspects.
Additionally, it shows that surveillance efficiency reduces as the swarm size is increased. This was expected
since the travelled distance grows exponentially, whereas the amount of poachers that needed to be apprehended
did not change. In addition, Figure 8 indicated an apprehension rate of well above 70%. The spawn rate of the
poacher agents therefore limits these results to some extent, as supported by Figure F.7 in Appendix F. This
figure indicates an apprehension rate exceeding 90% for swarm sizes of 10 UAVs, which approaches 100% as the
swarm size is increased further.

The increasing swarm size also shows strong correlation with prioritisation of surveillance efforts, as quanti-
fied by the coverage fairness. The amount of collisions also increases significantly however. This combination
of correlation factors indicates that, although most patches in the target area are visited more frequently as
quantified by the reduction in GAI, the UAVs are performing surveillance relatively close to each other. The
UAVs therefore collaborate on patrolling certain regions such that these regions are prioritised. The downside
is that the UAVs can no longer prevent mid-air collisions through the APF due to the relatively small distance
between the swarm members and the solutions provided by the APF. The APF is characterised by defining a
short-term optimal solution, therefore not necessarily preventing future collisions.

As expected, increasing the Rsen parameter, the maximum communication distance, results in UAVs commu-
nicating more frequently, which is also quantified in Figure F.9 in Appendix F. The main result of this is an
increased reliance on mission type 2 however. This results from a better situational awareness regarding the
swarm’s spatial distribution, which means that the individual UAVs utilise the APF more frequently to prevent
collisions with nearby UAVs. The secondary effect is therefore the observed reduction in collisions seen in Figure
9. The correlation factors also indicate that the improved synchronisation frequency among swarm members
results in improved efficiency in terms of the catch per unit effort. It appears that surveillance efficiency can
either be improved by adjusting the maximum communication range, which strengthens the effects of UAV
presence in the LPM update mechanism, or by directly adjusting the ∆τl0 parameter. An increase of this
ACO parameter results in more surveillance prioritisation, a slight reduction in apprehensions and also a slight
increase in loss of wildlife (see Appendix F). Surprisingly, it also influences the use of mission type 3 and 4,
for which no evident cause has been identified. The data presented in Figure F.7 in Appendix F also shows
that the improvement regarding surveillance effectiveness as a results from adjusting Rsen reaches a stagnation
point, which is reached when communications are no longer limiting coordination.

Since the results presented so far indicate a strong influence of the APF module on the emergent behaviour,
analyses were performed by disregarding the APF module. A positive correlation between Acknowledgement
of the APF and model output means that the use of the APF module, and therefore the use of mission type
2, also results in an increase in model output. The correlation matrix in Figure 9 shows that use of the APF
has a smaller impact on wildlife loss in comparison to use of the ACO module (mission type 3 and 4), although
these correlations are relatively weak. The correlation with the amount of collisions is fairly strong and the data
indicates that the avoidance forces dominate the attraction forces, such that the APF module has a relatively
small affect on the apprehension rate. Disregarding the APF therefore significantly influences how the (A)BN
affects the swarm’s spatiotemporal patterns, as supported by Figure F.10 in Appendix F.

Finally, the α and β parameters do not influence surveillance effectiveness and/or surveillance efficiency. Al-
beit unexpected, this behaviour results from the different order of magnitude of the pheromone concentrations
and the heuristic information. Where the heuristic information is bound to a maximum magnitude of 1, the
pheromone concentrations can reach a magnitude of 4000 (refer to Appendix A). The influence of the pheromones
is therefore dominant in the choice for the ACO module. These unequal orders of magnitude therefore limit the
influence of these weight parameters on model output.

Given these additional insights, the remaining experiments from Figure 6 are performed with an updated set of
model parameters. The updated parameter value for Rsen is 5, since this results in better surveillance effective-
ness and efficiency compared to adjusting the local update constant of the ACO module, ∆τl0. Additionally,
the APF module is disregarded by setting the magnitude of Acknowledgement of the APF to 0 in the remaining
experiments, unless explicitly stated otherwise.
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5.5 E4: Performance of HAPF-BLACOPS with (A)BNs and GSA parameters
This experiment simulates various (A)BNs with the adjusted parameters from E3 to test the hypothesis that
adjusted HAPF-BLACOPS parameters can improve influence of (A)BNs on surveillance effectiveness and ef-
ficiency. The selection of simulated (A)BNs was determined from analysis of data discretisation, structure
learning and various combinations of random variables to achieve an optimal DAG (refer to Appendix B for
further elaboration). This analysis did not determine a single (A)BN that outperformed the others, based on
scoring functions. Both ABNs and BNs were therefore simulated with the HAPF-BLACOPS model and com-
pared the model behaviour obtained in E2, discussed in subsection 5.3.

The simulation results in Figure 10(a) indicate an improvement in surveillance effectiveness for ABN3 and
ABN4 of approximately 40% in comparison to E2 (see Figure 8). Despite the small magnitude of the catch
per unit, Figure 10(b) also shown an improvement of 40% in surveillance efficiency. This is the combined re-
sult from the correlation factors observed in Figure 9, which indicates that both acknowledgement of the APF
and the communication distance Rsen have the strongest influence on these aspects. Additionally, adjustment
of the local pheromone update rule also aids in achieving this performance improvement, albeit to a smaller
extent. The statistical significance of these results in Table E.3 indicates that surveillance effectiveness and
prioritisation is indeed significantly altered, whereas the improvement in surveillance efficiency does not meet
the significance level of 5%. The hypothesis for E4, stated in Figure 6, is therefore partially accepted. These
results are elaborated upon further below.

(a) Poachers apprehended by UAVs. (b) Catch per unit effort. (c) Coverage fairness.

Figure 10: Performance of HAPF-BLACOPS utilising (A)BNs and updated parameters obtained from GSA.

Model performance of the HAPF-ACO model without the adjusted parameter from the GSA is also presented in
Figure 10. It is seen that surveillance effectiveness can be improved significantly by optimising model parameters,
whereas prioritisation efforts are, in accordance with Figure 9, significantly reduced for the HAPF-BLACOPS
model. Increased use of mission types 3 and 4 by disregarding the APF module shows that path planning is
more severely influenced by the heuristic information, which emphasises the need for uniform surveillance of
the entire target area.

Additionally, using different (A)BNs does not significantly affect performance. The spatiotemporal patterns
shown in the swarm plots in Appendix F do not show significant changes among these various (A)BNs either.
The adjusted parameters do show changing patterns in comparison to results obtained in subsection 5.3, which
indeed converge to some extent to the regions where poachers and rhino agents are active. This indicates that
Algorithm 2 influences the effects of (A)BNs on surveillance efforts. Their prioritisation either does not alter
path planning significantly or the (A)BNs do not capture the behaviour of the poachers correctly. Finally, the
differences between the DAGs and their respective conditional probability tables do not provide closure on a
distinct explanation for the observed variance in BN8 coverage fairness.

5.6 E7: Influence of adaptive poachers on surveillance effectiveness
Provided the knowledge gained through the previous experiments, this experiment analyses to what extent
adaptive poacher behaviour can be observed and its potential effect on surveillance effectiveness. The ACOSG
model simulates adaptive poacher behaviour by using gained experience regarding apprehensions and successful
rhino kills to determine new strategies and perform path planning. The rate at which this experience results
in adaptive behaviour depends on the amount of collected experience and the parameter CASU . These simula-
tions analyse the influence of this parameter on the emergent poacher behaviour and the secondary effects on
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surveillance effectiveness. It is hypothesised that an increased reliance on this experience through adjustment
of the ASU function parameter destabilises the coefficient of variation of the poachers’ spatiotemporal patterns.
In addition, it is expected that surveillance effectiveness is reduced.

The coefficient of variation used to quantify whether adaptive behaviour can be observed in the spatiotemporal
patterns of the poachers is shown in Figure 11. Provided that the magnitude of the inclination increases in
response to a reduction in the magnitude of CASU (see Equation A.4), it is expected that the coefficient of
variation becomes less stable as simulations with relatively small values of CASU progress. Specifically, this is
expected for those regions where poachers find rhinos and are being apprehended by UAVs, which is within
the BN regions A2, B1 and B2 (see Appendix A). The coefficient of variation for the remaining regions is
therefore also expected to fluctuate as a result from the interchanged preference regarding the BN regions from
Figure 5(b). Figure 11 does not show such trends in the poachers’ spatiotemporal patterns, since the order of
magnitude of the coefficient of variation remains relatively identical when the magnitude of CASU is altered.
No consistent increase in the coefficient of variation and the spatiotemporal patterns (visualised in Appendix
F) is observed and the hypothesis is therefore rejected.

(a) Poacher type 1 with CASU at 0.01. (b) Poacher type 1 with CASU at 1.0. (c) Poacher type 1 with CASU at 100.0.

(d) Poacher type 2 with CASU at 0.01. (e) Poacher type 2 with CASU at 1.0. (f) Poacher type 2 with CASU at 100.0.

Figure 11: Coefficient of variation of BN region utilisation by poacher types 1 and 2 during simulation.

Figure 12 and Table E.6 elaborate on these observations by showing that surveillance effectiveness is not sig-
nificantly altered as a result from adjustment of the parameter CASU . It is also confirmed by Figure 12(c)
that the poachers do not utilise the target area in a different manner, which is either caused by the limited
simulation time or a lack of experience. The calibration process, discussed in Appendix A, elaborates on the
limited amount of experience that can be gained from killing rhinos and being apprehended.

(a) Apprehensions. (b) Loss of wildlife per unit effort. (c) Fraction of target area where rhinos
are killed.

Figure 12: Influence of poacher experience on poacher and UAV behaviour.
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5.7 E8: Compositional analysis to quantify BN impact
This experiment combines the gained knowledge from the previous experiments and analyses the impact of the
(A)BNs on surveillance performance through compositional analysis. The model parameters for E8 were not
updated in accordance with Figure 6, since the hypotheses in E5, E6 and E7 were rejected. E8 is performed
to determine how internal interactions of the HAPF-BLACOPS model influence the effects of updating the
ACO module with (A)BN predictions on surveillance performance. It tests the hypothesis that the complex
interactions of the model’s modules limit the (A)BNs influence on model output and that optimising model
parameters can further improve surveillance performance in comparison to the HAPF-ACO model.

Simplifications of the internal interactions of the proposed surveillance model’s mission types (MTs) are anal-
ysed by performing an experiment according to the model parameters in Table 4. The results from the GSA
in subsection 5.4 are combined with the results found in subsection 5.5 and Appendix F. Both ABN4 and BN9
are simulated with the HAPF-BLACOPS model (see Table 4). The HAPF-ACO model is simulated as well,
with the model parameters from E1, which is referred to as the reference HAPF-ACO model. The HAPF-
BLACOPS model is also simulated with the model parameters from E1, which is referred to as the reference
HAPF-BLACOPS model. The HAPF-ACO (Reference) and the HAPF-BLACOPS (Reference) models update
the pheromone concentrations as specified in [40]. The HAPF-BLACOPS model is also simulated with ABN4
and the parameters of E2, which is referred to as the reference ABN4 model.

Additionally, the HAPF-BLACOPS model is simulated with both ABN4 and BN9 and the parameters obtained
from the GSA. A number of alternatives are simulated as well, which include an increased swarm size and an
alternative where β is set to zero. Setting β to zero essentially reduces Algorithm 2 to rely solely on the ACO
module for path planning, since the APF and the heuristic information are disregarded. It was also chosen to
disregard mission type 4, which simulates stochastic path planning based on the ACO module, when setting β
to zero. This allows for analysis of the prioritisation that is expected to result from the (A)BNs in further detail,
since the results in Figures 8 and 10 were unable to fully quantify the added value of the proposed (A)BNs.
The simulation results are elaborated upon below and their statistical significance is summarised in Table E.8.

Table 4: Model parameters for E8.

Surveillance model (A)BN NUAV s δτl0 CASU α β use of MT2
HAPF-ACO (Reference) - 5 0.1 1.0 1.0 3.0 True
HAPF-BLACOPS (Reference) - 5 0.1 1.0 1.0 3.0 True
ABN4 (Reference) ABN4 5 0.1 1.0 1.0 3.0 True
ABN4 (GSA) ABN4 5 0.1 1.0 1.0 3.0 False
ABN4 (GSA, NUAV s = 10) ABN4 10 0.1 1.0 1.0 3.0 False
ABN4 (GSA, MT3, β = 0) ABN4 5 0.1 1.0 1.0 0.0 False
BN9 (GSA, MT3, β = 0) BN9 5 0.1 1.0 1.0 0.0 False
HAPF-BLACOPS (GSA, MT3, β = 0) - 5 0.1 1.0 1.0 0.0 False

Figures 13(a), 13(b) and 13(c) indicate how well the target area is being monitored by the UAV swarm for
these various surveillance models. From comparison of the HAPF-ACO (Reference) and HAPF-BLACOPS
(Reference) it is seen that the proposed mission selector (refer to Algorithm 2) results in a slight (insignificant)
reduction of the total coverage of the target area. This is mainly a result from a significant increase in use of
the APF module through mission type 2. This prevents UAV collisions (see Figure 14(a)) and draws the UAVs
apart and therefore indirectly causes the UAVs to explore the target area at a higher rate (seen in Figure 13(c)).
Integrating ABN4 does not result in significantly different model behaviour, as previously found in subsection
5.3. The interactions between the various mission types prevent the UAVs from consistently relying on the
(A)BN’s predictions to perform path planning.

The effects of incorporating GSA parameters is discussed in subsection 5.5. It influences the emergent behaviour
of the UAV swarm significantly. Although significant changes in prioritisation of surveillance efforts are not
achieved (see Figure 13(b)). Increasing the size of the swarm results in significant improvement regarding the
loss of wildlife (see Figure 14(c)) and therefore surveillance effectiveness, but this merely results from an im-
proved coverage rate (see Figure 13(c)).

Setting the weight factor of the heuristic information β to zero, while simultaneously disregarding mission type 4,
results in significant prioritisation of UAV surveillance efforts, see Figure 13(b) and the spatiotemporal patterns
in Appendix F. By solely relying on the ACO and the BN for path planning, coverage of the target area and
the rate at which coverage is performed drop significantly (see Figure 13) as a direct result from prioritised
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surveillance. This comes at a cost of a severe increase in the number of mid-air UAV collisions (see Figure 14(a))
due to the absence of the APF module. It also negatively affects the loss of wildlife to some extent. Surveillance
efficiency is not improved (see Figure 14(d)) from these prioritisation efforts, since the UAVs cannot hover above
patches.

(a) Coverage of target area. (b) Coverage fairness. (c) Coverage in 1 day.

Figure 13: Performance comparison of utilising adjusted parameters obtained from GSA.

(a) Collisions among UAVs. (b) Apprehensions.

(c) Loss of wildlife. (d) Catch per unit effort.

Figure 14: Performance comparison of utilising adjusted parameters obtained from GSA.

The HAPF-BLACOPS model was also simulated without a (A)BN, with the GSA parameters, β set to zero and
with sole use of mission type 3. Figures 13 and 14 show that the added value in terms of surveillance effectiveness
and efficiency achieved from using (A)BNs is diminished. Despite the spatiotemporal patterns of the UAVs
(presented in Appendix F) prioritising their efforts to the regions where rhinos and poachers are expected, the
limitation of the turn angle and not having the option to hover limit this performance improvement. However,
it is seen that the (A)BN’s probabilistic inference (when using these GSA parameters, with β set to zero and
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with only MT3 results in significantly different spatiotemporal patterns in comparison to this HAPF-BLACOPS
model, that relies on the global update rule proposed in [40]. The complex interactions between the various
mission types, combined with pheromone update rules, limits the influence of (A)BNs’ probabilistic inference
on path planning. The hypothesis stated previously is therefore accepted. Another limitation of the (A)BNs is
that a time delay exists between prioritising a patch and arriving at the patch in question, such that poachers
have the possibility to abandon the patch in question.

6 Discussion and future work
The performed experiments focused on three aspects. First, the hypothesis regarding the mission selector
algorithm of the proposed HAPF-BLACOPS model was tested through simulation. Second, the learning rate of
the poachers and its influence on surveillance effectiveness was analysed through adjustment of the ASU function
in the proposed ACOSG model. Third, analysis of the effects of the (A)BNs on surveillance performance was
performed through various steps in order to answer the research question stated in Section 3. The findings of
these elements and their root cause are discussed in greater detail below.

6.1 Mission selector of HAPF-BLACOPS model
The proposed HAPF-BLACOPS surveillance model relies on a mission selection algorithm that addresses the
deficiency of the current state-of-the-art HAPF-ACO model regarding the range constraint. This deficiency
involves a lack of consideration of the maximum turn angle of a UAV in computing the distance required to
return to their base and the possibility to neglect the priority of returning to their base for recharging. These
factors condone a UAV to violate their range constraint. The proposed mission selector defines the interactions
between the mission types that define UAV path planning and the emergent behaviour of the UAV swarm. It
successfully re-prioritises the range constraint such that violations of the range constraint are prevented, thereby
providing support for the hypothesis regarding the effectiveness of the proposed mission selector.

The frequency at which the APF module is used for path planning also increases significantly, thereby signif-
icantly reducing the amoutn of UAV collisions as a result from these re-prioritisations. These collisions are
avoided by the swarm members through heading adjustments under influence of the APF module, which do not
necessarily align with the optimal path resulting from the ACO module. This limitation of the APF module to a
2-dimensional surveillance space limits the possibilities for the swarm members to coordinate their surveillance
efforts in accordance with the ACO’s pheromone concentrations. Alternatively, speed adjustments, as proposed
in [106], or altitude adjustments could be utilised to prevent collisions, without the APF interfering with the
preferred path as described by the ACO module. Despite these potential conflicts between the APF and ACO
modules, the proposed mission selection algorithm also achieves an increase of 50% in terms of the amount of
apprehensions made. This results from the increased consistency of using the APF module for path planning,
which motivates the swarm members to stay clear from each other. It does not result from the attraction
forces, since the avoidance forces appear to be dominant in the APF module as a result from the presence
of multiple swarm members. Additionally, the attraction forces do not actively steer swarm members towards
future locations of a poacher. This effectively results in a larger spread of the swarm throughout the target area,
which increases the apprehension rate as a secondary effect. Careful calibration of such modules is therefore
recommended, as well as a third dimension such that interference of optimal solutions from the different modules
can be minimised.

6.2 Effects of adaptive behaviour on surveillance performance
Both the adaptive behaviour of poachers and online learning of the UAV swarm were simulated. The hypotheses
stated that adaptive poacher behaviour that results from gained experience would negatively affect surveillance
effectiveness and destabilise the spatiotemporal patterns of the poachers.

Simulations of the proposed ACOSG and HAPF-BLACOPS model did not show these expected patterns how-
ever. The poachers’ learning rate depends on the amount of apprehensions and killed wildlife, such that differ-
entiation between regions within the target area depends on the amount of obtained rewards and the variance
among the average of these rewards. Since the simulation time and the observed spatiotemporal patterns of
the poachers did not allow for the collection of rewards in the entire target area, differentiation between various
regions within the target area resulting from the ASU function is limited. The consideration of a homogeneous
rhino population also limits differentiation, since collected rewards are similar in magnitude, therefore rendering
different regions within the target area of equal interest as a result from the definition of the ASU function
and the limited amount of gained experience. Analysis of the spatiotemporal patterns and success rate of the
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intruders therefore did not indicate changing behaviour and the potential effect on surveillance effectiveness was
not identified.

Analysis of the learning rate of the UAV swarm also showed that the conditional probability tables experience
minor adjustments from updating the BNs with newly gained poacher data. This observation is in accordance
with the absence of adaptive poacher behaviour. The low learning rate of the UAV swarm can be accredited
to a number of factors, including a limited communication rate of new observations among swarm members, a
limited amount of simulation time and the amount of data describing the conditional probability tables of the
BN. A method where more recent observations are weighted relatively severe, could be able to overcome these
limitations to some extent. Such a proposal is, in essence, used in [60]. Finally, the learning rate of the UAV
swarm and the poachers are co-dependent and could therefore be analysed to a better extent in future research
by considering these factors as well as a heterogeneous wildlife population.

6.3 Effects of (A)BNs on HAPF-BLACOPS performance
Both artificially created BNs and BNs trained from synthetic data were used to adjust the emergent behaviour
of the ACO module within the proposed HAPF-BLACOPS model. A global sensitivity analysis of HAPF-
BLACOPS model parameters and a compositional analysis of its modules showed that model parameters sig-
nificantly affect internal model interactions and limit the influence of both the ACO and the (A)BN on the
emergent behaviour. In fact, the APF was required to be disregarded in order for the (A)BNs to be able to
adjust the spatiotemporal patterns of the UAV swarm. In addition, the difference in order of magnitude of the
pheromone concentrations and the heuristic information used by the ACO module causes an unequal contri-
bution of these aspects to ACO based path planning. Further simplifications made to the mission selector, by
disregarding the heuristic information and relying solely on the ACO module within mission type 3 for path
planning, showed promising results.

Despite difference in scores of the DAGs, surveillance performance is similar for the various (A)BNs that were
considered. This indicates that the core model component required to predict simulated poacher behaviour
is captured by a limited number of random variables. Indeed, incorporating various (a)biotic factors in the
(A)BN results in different prioritisation of surveillance efforts as seen in the spatiotemporal patterns of the
UAV swarm, without affecting the loss of wildlife however. The level of prioritisation achieved by the (A)BNs
does not alter the main focus area where surveillance is being performed and therefore does not improve surveil-
lance effectiveness in comparison to the HAPF-BLACOPS model utilising the pheromone update mechanism of
the existing HAPF-ACO model. The probabilistic inference therefore needs more control over ACO based path
planning in order to significantly adjust these spatiotemporal patterns. The main effect of relying solely on the
ACO module and its (A)BN in mission type 3 is a reduction of 30% in terms of target area coverage without
a loss in surveillance effectiveness, which results from prioritisation of surveillance efforts. This improvement
comes at the cost of a significant increase of UAV collisions however, since the APF module was required to be
disregarded for this behaviour to emerge.

This shows that dynamic prioritisation of surveillance efforts using the (A)BNs does not improve surveillance
effectiveness on the long term, since the subtle prioritisation efforts that were achieved, are diminished by the
continuous interactions between the (A)BN, the pheromone readjustments from swarm presence and by the
synchronisation among swarm members. In addition, surveillance efficiency is not improved either, since the
UAVs are forced to move to an adjacent patch at each time step and cannot hover above a patch of interest.
The turn angle also limits a UAV from moving within small BN regions and therefore requires larger distances
to be covered before being able to return. Research opportunities therefore exist in addressing the limitations of
these module interactions. Additionally, this research was limited to expert judgement to define the BN regions,
whereas machine learning could result in different spatiotemporal patterns and prioritisation of the UAV swarm.

7 Conclusions
This research focused on distributed coordination of continuous surveillance efforts in accordance with predic-
tions of criminal activity based on (A)BNs. The ABM paradigm was used to explore the effects of learning and
prioritised surveillance on performance of the proposed HAPF-BLACOPS model in a two-sided and dynamic
environment.

Analysis of adaptive intruder behaviour, simulated with the ACOSG model, indicates that the learning rate of
the intruders does not result in significantly changing spatiotemporal patterns. This is accredited to the limited
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amount of rewards gained from the simulated wildlife population and the homogeneity of these rewards, which
limits differentiation between regions within the target area. A learning rate in the intruders’ behaviour is there-
fore not identified. The anticipated negative influence of the poachers’ adaptability on surveillance effectiveness
and the loss of wildlife was therefore not observed. Although the swarm achieves online learning by adjusting
the conditional probability tables of the BNs in accordance with new observations regarding poacher behaviour,
these adjustments do not result in significantly different model predictions regarding poacher activity. The spa-
tiotemporal patterns do not evolve, since these new observations do not describe changed intruder behaviour.
In addition, newly gained observations are not prioritised by the BN over historic data. The learning rate of
the swarm therefore results in insignificant changes of the conditional probability tables, which do not alter the
spatiotemporal patterns of the swarm within the simulation time.

The proposed HAPF-BLACOPS model does outperform the current state-of-the-art HAPF-ACO model on var-
ious aspects. The adjustments to the mission selection algorithm readjust the priorities between the mission
objectives. This results in a 50% improvement regarding surveillance effectiveness due to increased reliance
on the APF module, while simultaneously significantly reducing the amount of collisions and preventing range
constraint violations.

Further analysis through global sensitivity analysis and compositional analysis shows that model parameters
significantly influence the emergent behaviour of the swarm and limit the influence of the ACO module and the
(A)BN on path planning. Adjustment of model input parameters can significantly reduce the loss of wildlife,
which results mainly from a reduction in use of the model’s APF module. Simulation results show that path
planning based on the APF and the ACO modules conflict, since the APF is limited to heading adjustments to
avoid collisions. Further simplification of the HAPF-BLACOPS model by neglecting the heuristic information
and analysis of the spatiotemporal patterns of the swarm indicates that prioritisation through the (A)BN’s prob-
abilistic inference is indeed achieved, albeit that the spatiotemporal patterns are only slightly adjusted. The
main focus of surveillance efforts are not altered by the (A)BNs. In addition, the various (A)BNs achieve similar
levels of performance, which indicates that only a small subset of the random variables under consideration is
required to predict poacher behaviour. Despite the influence of the (A)BNs on the spatiotemporal patterns,
their influence on the ACO module is diminished by the complex interactions within the UAV swarm. This
results from synchronisation and from accounting for the presence of swarm members. Nevertheless, adjustment
of the HAPF-BLACOPS model parameters results in a level of surveillance effectiveness the is similar to the
current state-of-the-art, at a reduction of 30% in coverage of the target area. These improvements come at the
cost of a significant increase in the number of mid-air collisions however.

These simulation results and the accompanying spatiotemporal patterns indicate that prioritised surveillance
shows to be promising for addressing illegal activity. Future research opportunities therefore lie in analysing
the effects of three-dimensional path planning to reduce the interference between the APF and ACO modules.
Additionally, further analysis of model parameters could shed light on the complex interactions within the
HAPF-BLACOPS model that limit the effects of updating pheromone concentrations through probabilistic
inference on the prioritisation efforts and the spatiotemporal patterns of the UAV swarm.
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A
Model elaboration

This appendix provides a detailed elaboration of the ABM specification. The ABM is built on the Mesa
framework [107] and provides a bottom-up approach to simulating the interactions of the ABM elements [103].
An ABM consists of multiple elements, referred to as agents, that form a multi-agent system. The behaviour
of each agent is determined by rules that describe its response to events in the environment. The ABM
in consideration consists of three agents; the rhino, poacher and UAV agents. Their interactions result in
higher-order system behaviour, referred to as emergent behaviour [103]. The remaining model element is the
environment, in which the agents aim to achieve their objectives. This appendix is structured such that details
regarding the environment are provided first in Section A.1. The following sections elaborate on the behavioural
properties of the individual agents. Sections A.2, A.3, A.4 elaborate on the rhino, poacher and UAV agents
respectively. Finally, section A.5 analyses the variability of model output through the coefficient of variation in
order to determine the required sample size and simulation time for the experiments.

A.1 Environment
Aloegrove Safari Park in Namibida provides the basis for the environment in the ABM. This particular target
area is selected due to available expert knowledge from Eyeplane regarding poaching activity in the area [76].
The 10 by 10km target area shown in Figure A.1(a) is discretised into 400 equally sized patches. Each patch
is characterised by a number of abiotic factors that are relevant to rhinos and poachers. These include the
presence of water sources [45, 3], roads [79, 3], vegetation (density) [80, 45, 71] and the terrain slope [81]. The
ground elevation in the target area is quantified using SRTM V3 data [82]. The elevation h of an individual
patch is calculated from the mean of available elevation data within this patch, for which the result is visualised
in Figure A.1(b). In turn, the terrain slope between adjacent patches σi and σj is computed in accordance with
Equation A.1, where ∆d is the unit distance.

terrain slope(σi, σj) =
hσj − hσi

∆d
(A.1)

The vegetation density is quantified using NDVI data provided by Landsat 8 satellite data [83]. In order
to account for seasonal changes in NDVI, the average NDVI is computed over a five year period starting
January 1st 2015 and ending on January 1st 2020. This data is transformed to the discretised target area in a
similar manner as to the elevation data, see Figure A.1(c). Values of NDVI range from -1 to +1 and indicate
vegetation greenness, where larger values represent richer vegetation [83]. No dynamic (biotic) factors have
been implemented, since this is outside the scope of this research. The locations of roads and water sources
[76] are used to quantify the euclidean distance between individual patches and its closest road/water source,
see Figures A.1(d) and A.1(e). In addition, the euclidean distance between individual patches and the base of
operations has also been computed in Figure A.1(f). The euclidean distances are scaled based on the relevant
maximum euclidean distance such that normalised euclidean distances are obtained, which simplifies calibration
of model parameters. The aforementioned properties can be accessed by the agents and provide input for their
cognitive behaviour.
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(a) Satellite image of Aloegrove Safari
Park, Namibia (Google, n.d.) [108].

(b) Terrain elevation at each individual
patch [82].

(c) Five year average NDVI at each indi-
vidual patch [83].

(d) Normalised euclidean distance be-
tween each individual patch and its clos-
est road [76].

(e) Normalised euclidean distance be-
tween each individual patch and its clos-
est source of water [76].

(f) Normalised euclidean distance be-
tween each individual patch and the base
of operations [76].

Figure A.1: Visualisation of abiotic factors describing the target area.

A.2 Rhino Agents
The black rhino agent population consists of 10 rhinos, which is based on estimated black rhino population
densities that range from 0.48 to 0.94 rhinos/km2 [109]. The simulated rhino agents move to an adjacent patch
every four timesteps ∆t to account for the different speeds of the agents. Black rhino behaviour is described
in [80], where distinction is made between male and female rhinos. This research considers homogeneous black
rhinos, such that no distinction is made between age, sex or other rhino characteristics. All black rhinos have
an equal reward, Rrhino, for being killed. Black rhino movement is simulated in the environment of Figure A.1
with a RSF to quantify transition probabilities, see Equation 1. Different behaviour types for a number of time
periods throughout the day are specified in Table 1. Calibration of the weights in the RSF model is therefore
performed for each of these time periods individually.

A.2.1 Calibration of RSF parameters

Sensitivity analyses were performed for each of sets of the parameters in Table 1 on the interval w ∈ [0.0, 1.0]
with steps of 0.1. Rhino behaviour during the defined time periods was then visualised through heatmaps, as
shown in Figure A.2.
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(a) Equal RSF parameter values of 0.6.

(b) Calibrated RSF parameter values.

Figure A.2: Heatmaps visualising the relative amount of visits by rhino agents to a patch within the environment.

The objective of this calibration step was to determine a set of RSF weights that results in clustering of rhinos
around water sources (see Figure A.1(e)) and areas with relatively high NDVI values (see Figure A.1(c)). A
systematic analysis of the influence of various ratios between the weights indicates that too small values for wroad

and wrhino result in clustering around roads and a relatively high rhino population density. It was found that
a value of 0.6 for both these weights results in a more realistic distribution of the rhino population throughout
the environment. The analysis then focused on determining weights that characterise the objectives during the
individual time periods defined in Table 1. Figure A.2(b) shows how the rhino agents cluster around the three
available water sources, while also spreading out over the environment in comparison to Figure A.2(a), where
all weights are set at 0.6. Calibration of the rhino RSF model was therefore concluded by setting the weights
wwater, wvegetation and wrest at 0.8. The emergent behaviour in Figure A.2(b) was found to best represent
how black rhinos are a ubiquitously solitary species that show circuitous behaviour around water sources, while
remaining relatively stationary during the period of resting and perform habitat selection based on NVDI [80].

A.3 Poacher Agents
The ACOSG model uses the reward for killing a rhino agent to simulate poacher behaviour. The poachers
compute this reward, Rχ, from Equation A.2. This also accounts for the amount of normalised euclidean
distance, ∥x̂R∥, required to travel to the target, by penalising targets that are relatively far away. It also
considers the amount of targets at the patch, Nχ, in question, which is determined from a poacher’s target map
(discussed in subsection 4.4).

Rχ = Rrhino ·Nχ · (1− ∥x̂R∥) (A.2)

The penalty, Pχ, is proportional to this reward and adjusted for observed UAV presence to determine a benefit-
cost ratio. The most current UAV presence is stored in a poacher’s defender map (discussed in subsection
4.4). The objective of the penalty is to stay clear from UAVs and prevent apprehension. It is quantified from
Equation A.3, which motivates poachers to increase the normalised euclidean distance ∥x̂P ∥ to the most nearby
UAV.
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Pχ = Rχ · (∥x̂P (t)∥ − ∥x̂P (t+∆t)∥) (A.3)

The inclination, I, quantifies the experience of poachers gained through (un-)successfully killing rhinos. It is
a function of the rewards and penalties collected at certain patches within the target area and is computed
from Equation A.4 [10]. The magnitude of the inclination, and therefore the learning rate of poachers, can be
influenced with the CASU parameter. The inclination of a patch σj increases as the average of the rewards
and penalties obtained at the patch in question, avg(Sk

rewards(σj)), increases with respect to the average of
rewards and penalties collected in the entire target area E. It is penalised by the variance of these average
reward values. The importance of the inclination and therefore its influence on the transition probabilities of
the ACOSG model is dependent on elapsed simulation time. This in quantified by considering t as the time that
has passed since the simulation started (t0) and tmax as the total simulation time. The weight of the inclination
therefore increases as simulation progresses [10].

Iσj (t) =
∆t2

tmax · t− t2
· 1

CASU
·

∑
k∈[t0,t]

(
avg(Sk

rewards(σj))− avg(Sk
rewards(E))

Var(avg(Sk
rewards(σj))− avg(Sk

rewards(E)))
) (A.4)

A.3.1 Choice for a base of operations

Poacher agents can also choose a base of operation, whereto these agents return at predefined milestones during
their missions (discussed in subsection 4.4). This base is chosen upon entry of the target area, with a preference
for elevated patches. The probability of choosing a base at a given patch is therefore quantified from Equation
A.5 in accordance with the environment’s elevation.

p(σj) =
ehσj∑

σk∈E

ehσk (A.5)

A.3.2 Calibration of ACOSG parameters

The parameters of the ACOSG model are calibrated through sensitivity analyses due to an absence of historic
data on poacher activity. The weight parameter CASU of the inclination is set at 1.0 during these steps. The
poaching statistics in [110] are used as guidance to validate whether ACOSG model behaviour is realistic. These
statistics indicate that a minor loss of wildlife within the considered target area on an annual basis would be
realistic. Albeit realistic, these low rates of wildlife loss do not result in experience needed for the inclination
to influence poacher behaviour. The validation process therefore did not correct for the difference in size of the
target area in relation to the reported statistics on country-level.

Since the ACOSG model considers the presence of UAV agents, the calibration process of the poacher model
parameters is an iterative process. Calibration therefore initially focused on determining parameter values for
wreward and wslope by performing a sensitivity analysis and simulating poacher and rhino behaviour for ten
simulation days. The performance of the poacher agents is quantified (see Figure A.3) in terms of the average
time between kills, number of killed rhinos and the average altitude covered by the poachers. Figures A.3(a) and
A.3(b) show that poaching efficiency does changes significantly as a results from varying the wreward and wslope

parameters. It also indicates that reducing the wslope parameter has an adverse effect on loss of wildlife and
the average time between these kills. This is caused by the location of the elevated areas (see Figure A.1(b)).
Figure A.3(c) shows that a low preference for killing rhinos and a low preference to avoid large terrain slopes,
results in behaviour that does not succeed at killing rhinos. In addition, this causes poachers to move through
the environment, while being ignorant regarding the amount of energy spent on covering rough terrain. These
results indicate that the poachers are more effective at killing rhinos when they stay away from large elevation
differences and have a large preference for a reward. This is expected since the rhino agents focus on objectives
which are not located in elevated locations within the target area. Provided the objective of this research is to
analyse poaching activity and provided the relatively small elevation differences in the target area (see Figure
A.1(b)), calibration of the poacher parameters was continued with values for wreward and wslope of 1.0 and 0.2
respectively. In addition, these ACOSG parameters result in somewhat similar losses of wildlife as reported for
Namibia in 2020 [110], albeit in a shorter time period and within a smaller target area.
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(a) Influence on average time between
kills.

(b) Influence on number of killed rhinos. (c) Influence on terrain slope preference.

Figure A.3: Sensitivity analysis of ACOSG parameters wreward and wslope.

The following step of ACOSG model parameter calibration was performed with the presence of 5 UAV agents
randomly moving through the target area. The ACOSG parameters found previously resulted in small amount
of observations regarding poaching activity. The following therefore analysed poacher behaviour with signifi-
cantly larger parameter values, which is visualised in Figure A.4. When the weight of the reward is increased
significantly, while the weight of the penalty is reduced, the poachers achieve to kill approximately 50% more
rhinos in comparison to the results in Figure A.3. A large number of rhino kills is preferred for simulation
purposes, since this allows for a larger set of rewards to be collected that in turn stimulates the adaptability
of the poachers. Figure A.4 also indicates a nonlinear relation between the reward, the penalty, the weight
of the terrain slope and terrain utilisation by the poachers. The objective of this step was to simultaneously
stimulate poachers that utilise elevated areas while achieving a loss of relatively large loss of wildlife that is
similar in magnitude to the data reported in [110]. Simultaneously, poachers were needed to be apprehended
to such an extent that both improvement and deterioration could be shown be implementing the proposed
HAPF-BLACOPS model without the ACOSG being a limitation on surveillance performance. Utilisation of
elevated areas was required such that type 2 poachers were motivated to go to their base.

The weights for wreward, wpenalty and wslope were therefore calibrated at values of 200, 100 and 0.2 respec-
tively. This set of calibrated weights provides a balance between the different objectives, while also limiting the
percentage of apprehensions to approximately 0.6.
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Figure A.4: Sensitivity analysis of ACOSG parameters wreward and wslope and wpenalty.

Lastly, the spatiotemporal patterns of the poachers were analysed in comparison to those of the rhino agents.
All rhino agents are initially given a reward Rrhino of 1.0. Figure A.5 shows how the behaviour of both type 1
and 2 poachers is influenced when this parameter is increased by a factor 4. The spatiotemporal patterns are
visualised by differentiating between the BN regions in the target area according to Figure 5(b). The data in
these swarmplots indicate the number of agents present within a specific BN region at a given time, but only
for that region that is observed most frequently when considering all simulation runs. During these calibration
steps, 60 simulation runs were performed for each combination. The data further differentiates between the
first three n-th most frequently observed regions to provide an indication of the agent distribution throughout
both space and time.
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(a) Spatiotemporal patterns of agents for Rrhino of 1.

(b) Spatiotemporal patterns of agents for Rrhino of 4.

Figure A.5: Swarm plots visualising spatiotemporal patterns of most frequently observed poacher positions
during simulation.

The observed patterns for both type 1 and type 2 poachers with a rhino reward of 1.0 indicate stochastic
movement through the target area, whereas an increase of the reward to a value of 4.0 results in converging
spatiotemporal patterns for both poacher types. Type 2 poachers also appear to utilise a larger fraction of the
target area, compared to type 1 poachers. This is caused by the different objectives of these poacher types, as
discussed in subsection 4.4.10. Poachers of type 2 aim to kill several rhinos, therefore requiring the poacher
to move through various regions of the target area. Poachers of type 1 focus on a single rhino instead, which
therefore supports the observed spatiotemporal patterns that type 1 poachers are mainly active in the C-regions
and the A2-region with a rhino reward of 1.0. This is related to the fact that poachers utilise the roads, which
are located in the C-regions (see Figure A.1(d)), as entry points. The A2-region is located in central position in
the target area, which indirectly forces the poachers to move through this region on multiple occasions, towards
their targets.

The converging patterns converge to the A2- and B-regions, which is where the rhinos are present as well. The
increased rhino reward therefore motivates the poachers to become active mainly in those regions that are of
interest to the rhinos as well. In addition, the converged spatiotemporal patterns in Figure 5(b) allow for better
analysis of possible adaptive behaviour in response to UAV surveillance efforts. We therefore choose to set
the Rrhino parameter at a value of 4.0, despite the secondary effects this imposes on the emergent behaviour
observed in Figure A.4.
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A.4 UAV Agents
The proposed HAPF-BLACOPS surveillance model is built on the current state-of-the-art HAPF-ACO model,
which relies on two modules to simulate path planning. The proposed surveillance model inherits the model
parameters defined in [40], but requires calibration of several parameters that influence the behaviour of the
APF and ACO modules. A systematic approach was taken such that calibration is performed on the individual
modules to prevent interactions between these modules. These simulations were performed with a swarm of 5
UAVs performing path planning according to the HAPF-ACO model, while disregarding the range constraint.
The simulation time was 10 days and a total of 60 simulation runs were performed for each combination of
parameters. The following subsections describe the systematic approach to calibrate the model parameters
through sensitivity analysis.

First, the parameters influencing the magnitude of the avoidance forces, computed from Equation 8, are cali-
brated such that the amount of collisions among UAVs is minimised. No attractions forces are considered at
this point and the maximum pheromone concentration is limited to 1.0, such that path planning according
to the ACO module is purely stochastic. Second, the parameters influencing the magnitude of the attraction
force, computed from Equation 7, are calibrated such that suitable surveillance effectiveness is achieved while
disregarding collision avoidance. Finally, the results from the previous two steps were united with the objec-
tive of achieving effective surveillance, while preventing a significant increase in the number of collisions. The
maximum pheromone concentration of the ACO module was also fine tuned to ensure that the target area is
monitored sufficiently. A number of iterations were performed on the steps detailed below, but only the final
results are presented.

A.4.1 Calibration of the APF module’s avoidance force

The parameters b, c and λAPF influence the path planning based on the APF module, see Equation 8 and
Algorithm 2. It was found that the parameter b does influence the collision rate among UAVs, despite its
influence on the magnitude of the avoidance forces. This results from Algorithm 2, which considers only the
ratio of avoidance force magnitudes to determine whether the UAV adheres to the APF module. A value of
2.0 for b was used during the calibration steps, unless stated otherwise. Figure A.6 therefore shows only the
influence of the c and λAPF parameters on the distribution of the UAV swarm and the amount of collisions.

(a) Influence on distance between UAVs.

(b) Influence on amount of UAV collisions.

Figure A.6: Sensitivity analysis of APF module parameters c and λAPF .
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The c parameter influences the rate of change of the avoidance force’s magnitude and therefore affects how soon
collision avoidance becomes important. The choice for utilisation of the APF module increases when λAPF is
given a small magnitude. A large range of parameter values were therefore analysed. The results in Figure
A.6(a) show that c has the strongest effects on the distance between the UAVs. In addition, this results in
Figure A.6(b) show that there is an inverse relation between the magnitude of c and the amount of collisions,
as expected from a reduction in smaller distances between the UAVs for large values of c. The data shows that
the impact of its magnitude does not strongly affect the amount of collisions, although smaller values for c are
preferred to avoid collisions.

A.4.2 Calibration of the APF module’s attraction force

Calibration of parameters affecting the attraction force and its resulting influence on APF path planning was
analysed by disregarding collision avoidance. The magnitude of the b parameter was therefore set to 0.0
during this calibration step. Additionally, the magnitude of the ACOSG parameter wdefender was set to 0.0
to circumvent the effects from poacher-UAV interactions on surveillance effectiveness. The magnitude of the
attraction force depends on the distance between the UAV and the target, the UAV’s TPM and the attraction
force coefficient katt. Similarly to the mechanism regarding collisions avoidance, the magnitude of the attraction
force does not influence APF behaviour when the attraction and avoidance forces are not united. The data in
Figure A.7 therefore only shows the influence of the λAPF and τmax parameters on surveillance performance.
The parameter τmax is considered to analyse how the ACO module and therefore exploration of the target area
interacts with the attraction forces and surveillance effectiveness.

(a) Influence on surveillance efficiency. (b) Influence on surveillance effectiveness.

Figure A.7: Sensitivity analysis of APF module parameters τmax and λAPF .

The results in Figures A.7(a) and A.7(b) indicate a fairly parabolic relation between λAPF and surveillance
performance, whereas a linear relation was found in Figure A.6. In order to effectively and efficiently apprehend
poachers, while also minimising the amount of UAV collisions, it appears an optimum can be deduced from these
results. Collision avoidance requires a magnitude for λAPF as small as 0.3, whereas surveillance effectiveness
and efficiency is optimal for values between 0.4 and 0.7. However, surveillance effectiveness reduces relatively
quickly when the magnitude of λAPF is reduced below 0.5. The magnitude of λAPF was therefore set to 0.6.

The influence of the maximum pheromone concentration, and therefore the influence of exploration through the
ACO module, does not significantly affect surveillance performance. Smaller values for τmax do imply that the
pheromone concentrations more easily reach their maximum ceiling, which reduces prioritisation of surveillance
efforts. In addition, it was found that the pheromone concentrations do not reach the lower bound as a result
from the update constants inherited from [40]. The ACO module’s update mechanism was therefore found to
be balanced.

A.4.3 Calibration of the APF and ACO modules united

Using the calibrated λAPF parameter, the APF’s attraction and avoidance forces are united with the ACO
module. This step is performed to ensure that neither force fully counteracts the influence of the other. Both
rhino and poacher behaviour is simulated in this step as well, although poachers disregard the presence of
UAVs. Figure A.8 present the surveillance performance for a range of parameter values of b, c, katt and τmax

determined from previous calibration steps.
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(a) Influence on surveillance efficiency.

(b) Influence on amount of UAV collisions.

Figure A.8: Sensitivity analysis of APF and ACO module parameters on surveillance performance.

The parameters b and katt influence the prioritisation between avoidance and attraction forces, since these
parameters determine the magnitude of these forces. The data in Figure A.8(a) show that these magnitude do
not affect surveillance efficiency. Neither is surveillance efficiency affected by the upper bound on the pheromone
concentrations. Figure A.8(b) indicates that katt does influence the amount of UAV collisions for relatively small
values of c. This indicates that the rate of change of the avoidance force is more important than the magnitude.
The ACO module does not appear to affect the rate of collisions. The magnitude of katt was therefore calibrated
at 0.001, the magnitude of b was set at 1.0, the magnitude of c at 0,4 and the magnitude of τmax at 4000.0
in order to minimise the amount of UAV collisions, prevent the ACO of limiting prioritisation efforts, without
affecting surveillance effectiveness.

A.5 Analysis of ABM output variability
Stochastic model dynamics affect model output. A fixed seed was therefore used for the random number gen-
erator and analysis of model output was performed using the coefficient of variation, cv, to balance output
variability with computation costs [104].
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The stability of KPIs describing model performance is visualised as a function of the sample size (the number
of simulation runs) in Figure A.9. The number of collisions among UAVs is the sole KPI indicating a relatively
large coefficient of variation as the sample size increases. Considering the priority of the proposed model that
lies with apprehending poachers and considering that the change in magnitude of the coefficient of variation
for the remaining KPIs reduces below 0.02 at a sample size of 50, we used a sample size of 50 in the performed
experiments.

(a) Coefficient of variation. (b) Change in magnitude of coefficient of variation.

Figure A.9: The coefficient of variation for the HAPF-BLACOPS model as function of sample size.

In addition, Figure A.10 visualises the coefficient of variation of the spatiotemporal patterns of the agents in
the ABM. It indicates how the preference of individual agent types to visit the BN regions, defined in Figure 5,
fluctuates throughout duration of the simulation runs. The simulation duration, tmax, is set at 20 days based
on the change in magnitude of the coefficient of variation, which reduces below 0.01 after 14 days. This added
simulation time is to allow for adaptive behaviour to emerge in the experiments.

(a) Poacher Type 1 (b) Poacher Type 2

(c) Rhino (d) UAV

Figure A.10: Coefficient of variation for the ABM based on the spatiotemporal patterns of the agents.
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B
Specification of Bayesian Networks

This appendix provides details regarding (A)BNs analysed through simulations. First, the random variables
describing the DAGs are discussed, after which the DAGs and their resepctive conditional probability tables of
the (A)BNs are specified. The conditional probability tables of the BNs are not provided due to their complexity.
This appendix is concluded with an analysis of the scores, quantified by the BDeu, BIC and K2 score functions.
These are used to compare how well the different DAGs fit the training data. Not all of the random variables
are used for each BN. The score functions were used to determine the set of random variables that represents
the training data best.

B.1 Definition of BN nodes
The training data upon which structure and parameter learning is performed is obtained from 100 simulations
with the HAPF-BLACOPS model (without utilising a BN), during which observations regarding poacher activity
are collected by the UAVs. These observations consist of a number of random variables, represented by nodes in
a DAG, that are found in literature [97] and selected based on their data availability. These include the presence
of rhinos, poachers and UAVs. These three random variables are discretised and assumed to be dichotomous.
Additionally, the BN region (as specified in Figure 5(b)) and the time period defined in 1 are discrete random
variables that are used by the UAVs. Abiotic factors including the presence of water sources and roads are
considered by computing the fraction of their surface as a function of the surface of a specific BN region. Other
abiotic factors that are part of these observations are the NDVI and terrain elevation defined in Appendix A.
Finally, based on collected data regarding poacher and UAV presence, the UAVs compute the frequency at
which a BN region is monitored (the patrol effort) and the frequency at which rhinos are being killed in a BN
region (the hit rate). The following provides de DAGs for various (A)BNs.
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B.2 Specification of Artificial Bayesian Networks
This section specifies the DAGs and the conditional probability tables belonging to the ABNs that are defined
from expert knowledge regarding UAV, poacher and rhino behaviour.

B.2.1 Specification of ABN1

The DAG and conditional probability tables for ABN1 are defined in Figure B.1 and Tables B.1, B.2 and B.3
respectively.

Figure B.1: The DAG of ABN1.

Table B.1: Conditional probability table for ABN1 node Poacher presence.

Poacher presence True False
0.9 0.1

Table B.2: Conditional probability table for ABN1 node UAV presence.

Poacher presence UAV presence (True) UAV presence (False)
True 0.2 0.8
False 0.4 0.6

Table B.3: Conditional probability table for ABN1 node BN region.

UAV presence Poacher presence A1 A2 A3 B1 B2 B3 C1 C2 C3
True True 0.05 0.1 0.05 0.1 0.3 0.2 0.05 0.1 0.05
True False 0.0125 0.1 0.0125 0.15 0.35 0.25 0.0125 0.1 0.0125
False True 0.4
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B.2.2 Specification of ABN2

The DAG and conditional probability tables for ABN2 are defined in Figure B.2 and Tables B.4, B.5 and B.6
respectively.

Figure B.2: The DAG of ABN2.

Table B.4: Conditional probability table for ABN2 node BN region.

BN region A1 A2 A3 B1 B2 B3 C1 C2 C3
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Table B.5: Conditional probability table for ABN2 node UAV presence.

UAV presence True False
0.2 0.8

Table B.6: Conditional probability table for ABN2 node Poacher presence.

BN region UAV presence Poacher presence (True) Poacher presence (False)
A1 True 0.05 0.95
A2 True 0.1 0.9
A3 True 0.1 0.9
B1 True 0.2 0.8
B2 True 0.05 0.95
B3 True 0.05 0.95
C1 True 0.9 0.1
C2 True 0.95 0.05
C3 True 0.6 0.4
A1 False 0.6 0.4
A2 False 0.6 0.4
A3 False 0.6 0.4
B1 False 0.3 0.7
B2 False 0.3 0.7
B3 False 0.3 0.7
C1 False 0.3 0.7
C2 False 0.3 0.7
C3 False 0.3 0.7
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B.2.3 Specification of ABN3

The DAG and conditional probability tables for ABN3 are defined in Figure B.3 and Tables B.7, B.8, B.9 and
B.10 respectively.

Figure B.3: The DAG of ABN3.

Table B.7: Conditional probability table for ABN3 node BN region.

BN region A1 A2 A3 B1 B2 B3 C1 C2 C3
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Table B.8: Conditional probability table for ABN3 node UAV presence.

BN region UAV presence (True) UAV presence (False)
A1 0.6 0.4
A2 0.4 0.6
A3 0.6 0.4
B1 0.5 0.5
B2 0.5 0.5
B3 0.5 0.5
C1 0.4 0.6
C2 0.6 0.4
C3 0.4 0.6

Table B.9: Conditional probability table for ABN3 node Rhino presence.

BN region Rhino presence (True) Rhino presence (False)
A1 0.3 0.7
A2 0.7 0.3
A3 0.2 0.8
B1 0.8 0.2
B2 0.8 0.2
B3 0.6 0.4
C1 0.1 0.9
C2 0.1 0.9
C3 0.1 0.9

Table B.10: Conditional probability table for ABN3 node Poacher presence.

UAV presence Rhino presence Poacher presence (True) Poacher presence (False)
True True 0.75 0.25
True False 0.95 0.05
False True 0.1 0.9
False False 0.9 0.1
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B.2.4 Specification of ABN4

The DAG and conditional probability tables for ABN4 are defined in Figure B.4 and Tables B.11 and B.12
respectively.

Figure B.4: The DAG of ABN4.

Table B.11: Conditional probability table for ABN4 node BN region.

BN region A1 A2 A3 B1 B2 B3 C1 C2 C3
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Table B.12: Conditional probability table for ABN4 node Poacher presence.

BN region Poacher presence (True) Poacher presence (False)
A1 0.1 0.9
A2 0.8 0.2
A3 0.1 0.9
B1 0.99 0.01
B2 0.9 0.1
B3 0.8 0.2
C1 0.1 0.9
C2 0.1 0.9
C3 0.1 0.9
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B.3 Specification of Bayesian Networks obtained from training data
This section specifies the DAGs belonging to the BNs that are obtained from structure and parameter learning.
Hill-Climb Search was used to specify these DAGs, since this structure learning method resulted in DAGs that
best described the relations between the ABM interactions. Their respective conditional probability tables
are not listed due to the complexity of these DAGs. The collected training data was combined with Bayesian
Estimation to obtain these conditional probability tables.

B.3.1 Specification of BN5

The DAG of BN5 is defined in Figure B.5.

Figure B.5: The DAG of BN5.

B.3.2 Specification of BN6

The DAG of BN6 is defined in Figure B.6.

Figure B.6: The DAG of BN6.
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B.3.3 Specification of BN7

The DAG of BN7 is defined in Figure B.7.

Figure B.7: The DAG of BN7.

B.3.4 Specification of BN8

The DAG of BN8 is defined in Figure B.8.

Figure B.8: The DAG of BN8.

B.3.5 Specification of BN9

The DAG of BN9 is defined in Figure B.9.

Figure B.9: The DAG of BN9.
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B.3.6 Specification of BN-Expert

The DAG of BN-Expert is defined in Figure B.10. This DAG is obtained from a combination of structure
learning results and expert judgement in order to determine whether human knowledge regarding the model
interactions can aid surveillance performance.

Figure B.10: The DAG of BN-Expert.

B.4 Scores of BN DAGs
Table B.13 summarises how well the previously presented DAGs fit the training data. The BDeu, BIC and
K2 scoring functions were used to quantify this goodness of fit and to analyse whether the scoring method
influenced these results. The data in Table B.13 shows that these different scoring functions result in the same
score for a given DAG.

Some of the random variables considered in the presented DAGs represent continuous data. Discretisation is
required, but it can result in a loss of information [111] and it can therefore affect how well the DAGs fit the
training data [98]. Several discretisation techniques were therefore analysed and compared with these BDeu,
BIC and K2 scoring functions. Both supervised and unsupervised discretisation techniques were analysed. The
CAIM, MDLP and Freedman-Diaconis rule were applied to discretise the training data for their performance
and efficiency characteristics [111]. The CAIM and MDLP discretisation techniques were unable to determine
the optimal set of bins and their scoring results are therefore excluded from Table B.13. The Freedman-Diaconis
rule was also applied since it uses uniform bin widths and is relatively simple to implement [112]. This method
resulted in over 100 bins per random variable and as a result was excluded from Table B.13 as well, since this
level of discretisation requires a more sufficient amount of training data to describe the continuous data without
loss of information [111].

Discretisation of the continuous data was therefore performed by predefining the number of uniform bins. The
results for 2, 4 and 6 bins are shown in Table B.13. The magnitude of the obtained scores is such that none of
the DAGs appears to significantly outperform the others. Interestingly, an increase in the number of bins to dis-
cretise the training data only improves the score for BN6, whereas the opposite trend is seen for BN7, BN8 and
BN9. The main difference between these BNs is that BN6 mainly considers abiotic factors to predict poacher
activity, whereas the remaining BNs do not. This trend does not change when unapprehended poachers data
is included in the training data. This suggests that the additional observations from unapprehended poachers
do not provide the BN with unaccounted for insights regarding poacher behaviour. Instead, the magnitude of
the scores is reduced as a result from an increase in sample size of the training data. The scores also indicate
that the most simplistic DAG, which is ABN4, results in the best fit to the training data. These BNs do
not differentiate between the poacher types, despite literature suggesting to differentiate for different types of
criminal activity in order to accurately predict their behaviour [95]. This choice was made since the calibration
results of the ACOSG model, shown in Appendix A, indicate that the spatiotemporal patterns are similar for
the two poacher types being considered. Finally, the choice was made to discretise the continuous data in 4
uniform bins in order to be able to differentiate better between various circumstances during simulation of the
proposed surveillance model.
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Table B.13: Goodness of fit of DAGs, quantified with scoring functions BDeu, BIC and K2.

(A)BN model Bins (If applicable) Unapprehended poachers Scoring function Score
ABN1 - - BDeu -2360170.9
ABN1 - - BIC -2360226.4
ABN1 - - K2 -2360145.6
ABN2 - - BDeu -2528034.0
ABN2 - - BIC -2528082.1
ABN2 - - K2 -2528089.1
ABN3 - - BDeu -2815478.7
ABN3 - - BIC -2815491.7
ABN3 - - K2 -2815473.8
ABN4 - - BDeu -2035022.6
ABN4 - - BIC -2035039.0
ABN4 - - K2 -2035024.3
BN5 2 Exclude BDeu -2979641.6
BN5 2 Exclude BIC -2979659.4
BN5 2 Exclude K2 -2979718.7
BN5 4 Exclude BDeu -2972398.2
BN5 4 Exclude BIC -2972555.8
BN5 4 Exclude K2 -2972687.6
BN5 6 Exclude BDeu -2945593.9
BN5 6 Exclude BIC -2945809.5
BN5 6 Exclude K2 -2945960.4
BN5 2 Include BDeu -5867895.1
BN5 2 Include BIC -5867912.2
BN5 2 Include K2 -5867978.6
BN5 4 Include BDeu -5777693.3
BN5 4 Include BIC -5777755.6
BN5 4 Include K2 -5777851.0
BN5 6 Include BDeu -5777693.3
BN5 6 Include BIC -5777755.6
BN5 6 Include K2 -5777851.0
BN6 2 Exclude BDeu -2924434.4
BN6 2 Exclude BIC -2924443.6
BN6 2 Exclude K2 -2924512.0
BN6 4 Exclude BDeu -2760588.2
BN6 4 Exclude BIC -2760693.9
BN6 4 Exclude K2 -2760890.9
BN6 6 Exclude BDeu -2523178.3
BN6 6 Exclude BIC -2523377.8
BN6 6 Exclude K2 -2523658.7
BN6 2 Include BDeu -4140756.6
BN6 2 Include BIC -4140669.7
BN6 2 Include K2 -4140772.0
BN6 4 Include BDeu -4051685.3
BN6 4 Include BIC -4051649.5
BN6 4 Include K2 -4051816.5
BN6 6 Include BDeu -4051685.3
BN6 6 Include BIC -4051649.5
BN6 6 Include K2 -4051816.5
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Table B.13: Goodness of fit of DAGs, quantified with scoring functions BDeu, BIC and K2.

(A)BN model Bins (If applicable) Unapprehended poachers Scoring function Score
BN7 2 Exclude BDeu -2704029.6
BN7 2 Exclude BIC -2704452.1
BN7 2 Exclude K2 -2703963.9
BN7 4 Exclude BDeu -3061502.7
BN7 4 Exclude BIC -3063862.2
BN7 4 Exclude K2 -3061424.6
BN7 6 Exclude BDeu -3394910.1
BN7 6 Exclude BIC -3400644.5
BN7 6 Exclude K2 -3394824.7
BN7 2 Include BDeu -5167838.8
BN7 2 Include BIC -5168277.8
BN7 2 Include K2 -5167797.3
BN7 4 Include BDeu -5824401.0
BN7 4 Include BIC -5826839.7
BN7 4 Include K2 -5824365.7
BN7 6 Include BDeu -6465229.2
BN7 6 Include BIC -6471203.5
BN7 6 Include K2 -6465214.0
BN8 2 Exclude BDeu -2702083.4
BN8 2 Exclude BIC -2702202.7
BN8 2 Exclude K2 -2702054.2
BN8 4 Exclude BDeu -3013855.8
BN8 4 Exclude BIC -3014153.3
BN8 4 Exclude K2 -3013777.8
BN8 6 Exclude BDeu -3284946.4
BN8 6 Exclude BIC -3285406.5
BN8 6 Exclude K2 -3284791.0
BN8 2 Include BDeu -5146304.1
BN8 2 Include BIC -5146427.5
BN8 2 Include K2 -5146277.9
BN8 4 Include BDeu -5708132.4
BN8 4 Include BIC -5708434.5
BN8 4 Include K2 -5708055.8
BN8 6 Include BDeu -6205615.3
BN8 6 Include BIC -6206084.7
BN8 6 Include K2 -6205458.7
BN9 2 Exclude BDeu -2326952.1
BN9 2 Exclude BIC -2327001.7
BN9 2 Exclude K2 -2326956.2
BN9 4 Exclude BDeu -2657494.5
BN9 4 Exclude BIC -2657632.6
BN9 4 Exclude K2 -2657508.6
BN9 6 Exclude BDeu -2931627.7
BN9 6 Exclude BIC -2931850.4
BN9 6 Exclude K2 -2931637.7
BN9 2 Include BDeu -4487483.7
BN9 2 Include BIC -4487534.2
BN9 2 Include K2 -4487489.2
BN9 4 Include BDeu -5090356.5
BN9 4 Include BIC -5090494.4
BN9 4 Include K2 -5090368.2
BN9 6 Include BDeu -5595164.1
BN9 6 Include BIC -5595389.8
BN9 6 Include K2 -5595173.2
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C
Default model parameters

Most of the model input parameters are inherited from the HAPF-ACO model proposed in [40]. Table C.1
summarises the parameters used for the various experiments in this research, unless explicitly specified otherwise.
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Table C.1: Default model parameter values.

Parameter Definition Default
value

Unit

∆t Each model time step simulates an amount ∆t of real
world time

30 mins

Nrhino Rhino population size within the environment 10.0 -
wroad Weight of the euclidean distance to the closest road 0.6 -
wrhino Weight of the presence of other rhino agents 0.6 -
wwater Weight of the euclidean distance to the closest water

source
0.8 -

wvegetation Weight of the vegetation index quantified by the NDVI 0.8 -
wrest Weight of not moving to a different location 0.8 -
wdefender Weight of the presence of UAV agents 100.0 -
wreward Weight of the presence of rhino agents 200.0 -
wslope Weight of the terrain slope 0.2 -
Rrhino Reward of a rhino agents 4.0 -
ϵ Collaboration reward coefficient 1.1 -
δ0 Variance of normal distribution 5.0 -
CASU Weight parameter of the Inclination 1.0 -
ϕmax Maximum turning angle 45.0 °
R Maximum radius of detection 3.0 km
Rattack Maximum radius of attack 0.0 km
Rsen Maximum radius of communication 3.0 km
k Adjusting rate 1.0 -
ηtopo Expected number of neighbour UAV agents 5.0 -
Lmax Maximum range 330.0 km
PD Sensor detection probability during day time 0.9 -
PF Sensor false detection probability during day time 0.1 -
PDnight

Sensor detection probability during night time 0.6 -
PFnight

Sensor false detection probability during night time 0.4 -
Recharge rate Recharge rate of UAV agent battery 20 %/∆t
din Maximum radius of detection by sensor without

performance degradation
0.5 km

dout Maximum radius of successful detection by sensor 3 km
τmin Minimum pheromone concentration 0.0 -
τmax Maximum pheromone concentration 4000.0 -
F Environmental uncertainty factor 0.02 -
∆τg0 Global update rule pheromone concentration 15 -
∆τl0 Local update rule pheromone concentration 0.1 -
katt Attraction force coefficient 0.001 -
b Avoidance force magnitude coefficient 1.0 -
c Avoidance force rate of change coefficient 0.4 -
τ Attenuation coefficient 0.5 -
dmax Maximum operating distance of avoidance force 3 km
dmin Minimum operating distance of avoidance force 0.5 km
λ Environmental perception factor 0.6 -
δe Wiener random process parameter 2 -
α Importance factor of pheromone information 1 -
β Importance factor of heuristic information 3 -
q2 Threshold for mission selector 0.5 -
Nt Iteration threshold for selecting exception transition rule 10 ∆t
recent coverage period Time period used to compute the heuristic information 24 hours
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D
Specification of KPIs

This appendix provides details on the KPIs that are used to quantify the performance of the surveillance model.

Catch per unit effort
The surveillance efficiency of the swarm that coordinates surveillance is computed from the cumulative distance
travelled by the swarm and the cumulative number of apprehensions, according to Equation D.1 [22]. The
poachers’ kills per unit effort is computed in a similar manner from the loss of wildlife and the cumulative
distance covered by the poachers.

Catch per unit effort(t) = Napprehensions(t)∑
k∈SUAV s

dk(t)
(D.1)

Coverage fairness
The prioritisation efforts of the UAV swarm are quantified through the coverage fairness. This KPI indicates
the amount to which the efforts of monitoring each patch in the target area deviates from a uniform distribution
of surveillance efforts, as specified in Equation D.2 [113, 114]. It computes the standard deviation from the set
Svisits(t), which describes the number of visits by each UAV to each patch in the target area up to time t.

Coverage fairness(t) = σ(Svisits(t)) (D.2)

Global average idleness (GAI)
Continuous surveillance is commonly optimised by minimising the global average idleness, which is computed
from Equation D.3. It quantifies the average time lag between two consecutive visits to the patches σj in the
target area E during the time period [t0, t]. It is based on a summation of the average idleness AIdl(σj , t) for
all individual patches and dividing by the number of locations to obtain an overall average [12].

GAI(t) =

∑
σi∈E

AIdl(σi, t)

Npatches

(D.3)

Wildlife loss distribution
The spatial distribution of killed rhinos is a value between 0 and 1 and is quantified from Equation D.4. The
larger the magnitude of this ratio is, the larger the percentage of the target area is wherein rhinos are being
killed by the poachers.

Wildlife loss distribution(t) =

∑
σi∈E

kσi(t)

Npatches
, k = 1 if a rhino has been killed by a poacher at patch σi at time t

(D.4)
Reward distribution
The distribution of the rewards is a value between 0 and 1 which quantifies the proportion of the target area
where no rewards and penalties have been collected. It is computed from Equation D.5. Larger values indicate
that in a relatively small percentage of the target area apprehensions/kills are not recorded.

Reward distribution(t) = 1−

∑
σi∈E

kσi(t)

Npatches
, k = 1 if a reward/penalty has been collected at patch σi at time t

(D.5)
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Coverage
The coverage indicates the percentage of the target area E that has been monitored by the UAV swarm during
the time period [t0, t], see Equation D.6 [113, 40, 114].

Coverage(t) =

∑
σi∈E

kσi(t)

Npatches
, k = 1 if patch σi has been visited by a UAV at time t (D.6)

This KPI is also quantified by only considering the visits within a time period such as 24 hours [115].

Cumulative time since last communication
For each UAV in the swarm, SUAV s, the most recent time at which synchronisation with another swarm member,
taUAV
sync , is performed, is stored. The cumulative time since last communication is quantified from Equation D.7

[115] and is a measurement for how current the local information at each swarm member is.

Cumulative time since last communication(t) =
∑

aUAV ∈SUAV s

t− taUAV
sync (D.7)
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E
Statistical Elaboration

This appendix presents the statistical results describing the significance of the obtained results in Section 5.
The KPI data was first tested for normality with the Shapiro-Wilk test and QQ-plots. The KPI data resulting
from analysed models was then tested using either the Wilcoxon signed rank test or using the paired t-test for
normally distributed data to compare model performance and determine the significance of achieved results.
Paired statistical tests were used since the KPI data is obtained from simulation with the same population of
agents. A significance level of 5% was used for all statistical tests.

E.1 Results for E1
The data in Table E.1 shows the significance of model output, resulting from the proposed mission selector in
Algorithm 2. The results from the Wilcoxon test indicate significantly different model output for the HAPF-
BLACOPS model.

Table E.1: Statistical significance of model performance in E1.

KPI Reference model Model Statistical test Statistic P-value
UAVs violated range HAPF-ACO HAPF-BLACOPS Wilcoxon 0.0 1.77E-51
Collisions HAPF-ACO HAPF-BLACOPS Wilcoxon 5.0 6.38E-51
Apprehensions HAPF-ACO HAPF-BLACOPS Wilcoxon 44.0 1.35E-50

E.2 Results for E2
The data in Table E.2 shows the significance of model output, resulting from simulating the proposed HAPF-
BLACOPS model with different ABNs defined in Appendix B. The pairwise t-tests for ABN1, ABN2, ABN3 and
ABN4 indicate that these models do not result in significantly different model performance since the p-values
are larger than 0.05.

Table E.2: Statistical significance of model performance in E2.

KPI Reference model Model Statistical test Statistic P-value
Coverage fairness HAPF-ACO ABN1 Wilcoxon 170.0 0.1986
Catch per unit effort HAPF-ACO ABN1 Wilcoxon 132.0 0.0387
Apprehensions HAPF-ACO ABN1 Wilcoxon 131.5 0.0377
Coverage fairness HAPF-ACO ABN2 Wilcoxon 224.0 0.8612
Catch per unit effort HAPF-ACO ABN2 Wilcoxon 140.0 0.0938
Apprehensions HAPF-ACO ABN2 Wilcoxon 110.5 0.0987
Coverage fairness HAPF-ACO ABN3 Wilcoxon 192.0 0.4048
Catch per unit effort HAPF-ACO ABN3 Wilcoxon 164.0 0.1588
Apprehensions HAPF-ACO ABN3 Wilcoxon 163.5 0.1558
Coverage fairness HAPF-ACO ABN4 Wilcoxon 231.0 0.9754
Catch per unit effort HAPF-ACO ABN4 Wilcoxon 177.0 0.2536
Apprehensions HAPF-ACO ABN4 Wilcoxon 165.5 0.2607

E.3 Results for E4
The data in Table E.3 shows the significance of model output, resulting from simulating the proposed HAPF-
BLACOPS model the results obtained from GSA.
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Table E.3: Statistical significance of model performance in E4.

KPI Reference model Model Statistical test Statistic P-value
Coverage fairness HAPF-ACO ABN3 Wilcoxon 5.0 0.0046
Catch per unit effort HAPF-ACO ABN3 Wilcoxon 38.0 0.6002
Apprehensions HAPF-ACO ABN3 Wilcoxon 0.0 0.00147
Coverage fairness HAPF-ACO ABN4 Wilcoxon 6.0 0.0058
Catch per unit effort HAPF-ACO ABN4 t-test -0.6 0.5681
Apprehensions HAPF-ACO ABN4 t-test 7.5 7.73E-06
Coverage fairness HAPF-ACO BN5 Wilcoxon 0.0 0.0015
Catch per unit effort HAPF-ACO BN5 Wilcoxon 34.0 0.4212
Apprehensions HAPF-ACO BN5 Wilcoxon 0.0 0.00146
Coverage fairness HAPF-ACO BN6 Wilcoxon 1.0 0.0019
Catch per unit effort HAPF-ACO BN6 Wilcoxon 35.0 0.4631
Apprehensions HAPF-ACO BN6 Wilcoxon 0.0 0.00147
Coverage fairness HAPF-ACO BN7 Wilcoxon 0.0 0.0015
Catch per unit effort HAPF-ACO BN7 Wilcoxon 45.0 0.9721
Apprehensions HAPF-ACO BN7 Wilcoxon 1.0 0.00286
Coverage fairness HAPF-ACO BN8 Wilcoxon 16.0 0.0392
Catch per unit effort HAPF-ACO BN8 Wilcoxon 38.0 0.6002
Apprehensions HAPF-ACO BN8 Wilcoxon 0.0 0.00147
Coverage fairness HAPF-ACO BN9 Wilcoxon 1.0 0.0019
Catch per unit effort HAPF-ACO BN9 t-test -1.0 0.335
Apprehensions HAPF-ACO BN9 t-test 8.2 2.86E-06
Coverage fairness HAPF-ACO BN-expert Wilcoxon 5.0 0.0046
Catch per unit effort HAPF-ACO BN-expert t-test -0.3 0.7384
Apprehensions HAPF-ACO BN-expert t-test 6.0 6.35E-05

E.4 Results for E5
The data in Table E.4 shows the significance of model output, resulting from simulating the proposed HAPF-
BLACOPS model with different BN regions.

Table E.4: Statistical significance of model performance in E5.

KPI Reference model Model Statistical test Statistic P-value
GAI 9 BN regions 3 BN regions Wilcoxon 99.0 0.0793
Kills distribution 9 BN regions 3 BN regions t-test -0.1 0.9464
Reward distribution 9 BN regions 3 BN regions t-test 0.1 0.9464
Killed rhinos 9 BN regions 3 BN regions t-test -0,3 0,7584

E.5 Results for E6
The data in Table E.5 shows the significance of model output, resulting from simulating the proposed HAPF-
BLACOPS model and including observation from unapprehended poachers in the training data.

Table E.5: Statistical significance of model performance in E6.

KPI Reference model Model Statistical test Statistic P-value
Apprehensions Exclude Include Wilcoxon 128.5 0.7717
Catch per unit effort Exclude Include Wilcoxon 176.0 0.7547
Coverage fairness Exclude Include Wilcoxon 204.0 0.5578
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E.6 Results for E7
The data in Table E.6 shows the significance of model output, resulting from simulating the ACOSG model for
various weights of the inclination in the ASU function.

Table E.6: Statistical significance of model performance in E7.

KPI Reference model Model Statistical test Statistic P-value
Apprehensions CASU = 0.01 CASU = 1.0 Wilcoxon 64.5 0.9517
Kills per unit effort CASU = 0.01 CASU = 1.0 t-test 0.3 0.778
Coverage fairness CASU = 0.01 CASU = 1.0 Wilcoxon 81.0 0.3703
Apprehensions CASU = 0.01 CASU = 100.0 Wilcoxon 93.5 0.5683
Kills per unit effort CASU = 0.01 CASU = 100.0 t-test -2.5 0.022
Coverage fairness CASU = 0.01 CASU = 100.0 Wilcoxon 64.0 0.1259

64



E.7 Results for E8
The data in Table E.8 shows the significance of model output, resulting from simulating various alternatives for
the HAPF-BLACOPS model. Table E.7 defines the models shown in Table E.8.

Table E.7: Statistical significance of model performance in E8.

Model Abbreviation
ABN4 (Reference) MRef
ABN4 (GSA) M1
ABN4 (GSA, NUAV s = 10) M2
ABN4 (GSA, MT3, β = 0) M3
BN9 (GSA, MT3, β = 0) M4
HAPF-BLACOPS (GSA, MT3, β = 0) M5

Table E.8: Statistical significance of model performance in E8.

KPI Reference model Model Statistical test Statistic P-value
Coverage MRef M1 Wilcoxon 0.0 0.0001
Coverage MRef M2 Wilcoxon 0.0 0.0001
Coverage MRef M3 Wilcoxon 0.0 0.0000
Coverage MRef M4 Wilcoxon 0.0 0.0000
Coverage MRef M5 Wilcoxon 0.0 0.0000
Coverage fairness MRef M1 Wilcoxon 24.0 0.0025
Coverage fairness MRef M2 Wilcoxon 96.0 0.7369
Coverage fairness MRef M3 Wilcoxon 0.0 0.0000
Coverage fairness MRef M4 Wilcoxon 0.0 0.0000
Coverage fairness MRef M5 Wilcoxon 0.0 0.0000
Coverage (24h) MRef M1 t-test -8.4 0.0000
Coverage (24h) MRef M2 t-test -27.1 0.0000
Coverage (24h) MRef M3 Wilcoxon 0 0.0000
Coverage (24h) MRef M4 Wilcoxon 0 0.0000
Coverage (24h) MRef M5 t-test 21.6 0.0000
Collisions MRef M1 Wilcoxon 0.0 0.0000
Collisions MRef M2 Wilcoxon 0.0 0.0000
Collisions MRef M3 Wilcoxon 0.0 0.0000
Collisions MRef M4 Wilcoxon 0.0 0.0000
Collisions MRef M5 Wilcoxon 0.0 0.0000
Apprehensions MRef M1 Wilcoxon 1.0 0.0001
Apprehensions MRef M2 Wilcoxon 0.0 0.0000
Apprehensions MRef M3 Wilcoxon 74.5 0.0000
Apprehensions MRef M4 Wilcoxon 159.5 0.0000
Apprehensions MRef M5 Wilcoxon 34.0 0.0000
Loss of wildlife MRef M1 Wilcoxon 50.5 0.0418
Loss of wildlife MRef M2 Wilcoxon 19.0 0.0013
Loss of wildlife MRef M3 Wilcoxon 449.0 0.0010
Loss of wildlife MRef M4 Wilcoxon 602.5 0.0500
Loss of wildlife MRef M5 Wilcoxon 566.5 0.0589
Catch per unit effort MRef M1 Wilcoxon 1.0 0.0001
Catch per unit effort MRef M2 Wilcoxon 26.0 0.0032
Catch per unit effort MRef M3 Wilcoxon 73.0 0.0000
Catch per unit effort MRef M4 Wilcoxon 152.0 0.0000
Catch per unit effort MRef M5 Wilcoxon 31.0 0.0000
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F
Additional simulation results

This appendix provides the results for experiments E5 and E6 (as defined in Table 2 and Figure 6). In addition,
additional results are provided to elaborate on the emergent behaviour described in Section 5.

F.1 E5: Influence of BN regions on surveillance performance
Previous research has focused on analysing the size of hotspots to predict criminal activity and to differentiate
between different types of crime [102]. Provided that the ABM model simulates two types of poachers, the
number of BN regions is adjusted in accordance with Figure 5. This experiment tests the hypothesis (stated
in Figure 6) that smaller BN regions result in prioritisation efforts that better reflect poacher activity. These
adjusted dimensions of the BN regions influence the conditional probability tables and therefore the influence of
probabilistic inference on UAV path planning. The BN regions are defined such that each region is characterised
by its own unique abiotic features. The C-regions represent the entry points for the poachers. The B-regions
cover the areas with water sources that are preferred by rhinos during certain time periods of the day as defined
in Table 1. The A-regions are mainly characterised by their location relative to the B- and C-regions, the
elevation of the environment and the NDVI. In addition, the A-regions are relatively large in comparison to the
B- and C-regions.

Figure F.1 indicates that the spatiotemporal patterns of the UAVs in the ABM model are not significantly
influenced by varying these BN regions. The spatiotemporal patterns of the UAVs do not converge to the
regions where poacher are active. The hypothesis of E5 is therefore rejected.

(a) UAVs differentiating between 3 BN regions. (b) UAVs differentiating 9 BN regions.

Figure F.1: Spatiotemporal patterns of agents for different BN regions.

With an increase in the number of BN regions, the variance reduces of both the surveillance effectiveness (Figure
2(a)), the fraction of the environment in which rewards are collected becomes (Figure 2(d)). This is similar to
the trend seen in Figure 2(d), which visualises the distribution of the rhinos being killed over the target area.
Accurately differentiating between various hotspots within the target area therefore positively helps in reducing
wildlife loss to some extent. More BN regions also results in more prioritisation and therefore causes an increase
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in the variance of the GAI. The average model performance does not change significantly however. In addition,
the p-values for these KPIs do not meet the significance level of 5% (refer to Table E.4). The spatial patterns
in Figure F.1 only visualise the n-th most preferred region of choice, which indicates that the changes in the
variance are caused by changes in BN region preference of regions that are of lesser importance for the general
emergence of the ABM model. Indeed, the preference for the A-regions does not change significantly, whereas
slight changes, that are in accordance with the conditional probability tables, can be observed in the B-regions.

(a) Loss of wildlife. (b) GAI.

(c) Wildlife loss distribution (d) Reward distribution

Figure F.2: Coefficient of variation for the ABM based on the spatiotemporal patterns of the agents.
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F.2 E6: Analysis of BN bias through expansion of training data
This experiment analyses whether the training data captures the poacher behaviour without a bias and whether
this limits surveillance effectiveness. It addresses the inability to observe the behaviour of all poachers due to
the size of the target area, which can result in an incomplete understanding of intruder behaviour and therefore
a certain bias [17, 18]. Since the training data used in the experiments consists only of observations from
apprehended poachers, this experiment was designed to analyse whether this training data provides a complete
understanding of poacher behaviour. The training data is therefore expanded by observations regarding poacher
behaviour from poachers that remained unapprehended. The DAG of ABN4 was used in combination with the
training data to obtain the conditional probability tables through parameter learning. These conditional prob-
ability tables were obtained by discretising the training data into 4 bins and through Bayesian Estimation.

Both the spatiotemporal patterns in Figure F.3 and the KPIs in Figure F.4 show no change in surveillance
performance from including unapprehended poacher data in the training data. Analysis of the conditional
probability tables shows a marginal increase of preference for the A1- and C1-regions as a resulting from
including unapprehended poachers. This directly causes the observed increase in differentiation quantified by
the coverage fairness. Table E.5 also shows that no significantly different behaviour is observed in model output.
It is therefore determined that the additional training data does not contain significantly different dependencies
among the random variables in the BN such that a bias is not detected.

(a) Unapprehended poachers excluded from training data. (b) Unapprehended poachers included in training data.

Figure F.3: Spatiotemporal patterns of UAVs resulting from ex- and including unapprehended poachers in
training data.

(a) Poachers apprehended by UAVs. (b) Catch per unit effort. (c) Coverage fairness.

Figure F.4: Performance comparison of BN4 from ex- and including unapprehended poachers in training data.
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F.3 Additional results for E2
The swarmplots for E2 are visualised in Figures F.5 and F.6. The observed spatiotemporal patterns support
the hypothesis that the BN is not utilised by such an extent that it significantly changes UAV behaviour in
comparison to the HAPF-ACO model.

(a) HAPF-BLACOPS model utilising ABN1. (b) HAPF-BLACOPS model utilising ABN2.

(c) HAPF-BLACOPS model utilising ABN3. (d) HAPF-BLACOPS model utilising ABN4.

Figure F.5: Swarmplots visualising spatiotemporal patterns of the UAV swarm in E2.
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Figure F.6: Swarmplot visualising spatiotemporal patterns of the UAV swarm using the HAPF-ACO model.
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F.4 Additional results for E3
The contour plots below indicate the influence of the HAPF-BLACOPS parameters α, β, Rsen, ∆τl0 and the size
of the UAV swarm, NUAVs on model output, as obtained through GSA discussed in subsection 5.4. These results
were obtained by simulating ABN4, defined in Appendix B, integrated with the proposed HAPF-BLACOPS
surveillance model. A value of 0 for the acknowledgement of the APF indicates that mission type 2 is disregarded
by the HAPF-BLACOPS model.

(a) Influence of GSA parameters α, β, Rsen and NUAV s on apprehensions.

(b) Influence of GSA parameters α, β, APF acknowledgement and ∆τl0 on apprehensions.

Figure F.7: Contour plots of the percentage of apprehensions.
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(a) Influence of GSA parameters α, β, Rsen and NUAV s on coverage fairness.

(b) Influence of GSA parameters α, β, APF acknowledgement and ∆τl0 on coverage fairness.

Figure F.8: Contour plots of the coverage fairness.
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(a) Influence of GSA parameters α, β, Rsen and NUAV s on cumulative time since commu-
nication.

(b) Influence of GSA parameters α, β, APF acknowledgement and ∆τl0 on cumulative time
since communication.

Figure F.9: Contour plots of the cumulative time since last communication between UAVs.
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(a) Influence of GSA parameters α, β, Rsen and NUAV s on mission type 3 utilisation.

(b) Influence of GSA parameters α, β, APF acknowledgement and ∆τl0 on mission type 4
utilisation.

Figure F.10: Contour plots of the utilisation of mission types 3 and 4 for UAV path planning.
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F.5 Additional results for E4
The swarm plots below show the n-th most preferred BN-region, as preferred by the UAV swarm simulating
with the HAPF-BLACOPS model utilising various (A)BNs, defined in Appendix B. These swarm plots make
use of GSA results to improve surveillance performance, which results in the UAVs targeting regions where
both poachers and rhinos are active (as seen in Appendix A). Additionally, it is seen that the different DAGs
and their respective conditional probability tables all result in similar behaviour, which indicates that various
random variables being considered, do not accurately address poacher behaviour.

(a) HAPF-BLACOPS model utilising ABN3. (b) HAPF-BLACOPS model utilising ABN4.

(c) HAPF-BLACOPS model utilising BN5. (d) HAPF-BLACOPS model utilising BN6.

Figure F.10: Swarmplots visualising spatiotemporal patterns of the UAV swarm in E4.
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(e) HAPF-BLACOPS model utilising BN7. (f) HAPF-BLACOPS model utilising BN8.

(g) HAPF-BLACOPS model utilising BN9. (h) HAPF-BLACOPS model utilising BN-Expert.

Figure F.11: Swarmplots visualising spatiotemporal patterns of the UAV swarm in E4.
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F.6 Additional results for E7
The swarm plots below show the n-th most preferred BN-region, as preferred by both type 1 and type 2 poachers
for various levels of consideration of gained experience, which is quantified by the CASU parameter.

(a) ACOSG model utilising CASU of 0.01.

(b) ACOSG model utilising CASU of 1.0.

(c) ACOSG model utilising CASU of 100.0.

Figure F.12: Swarmplots visualising spatiotemporal patterns of type 1 and type 2 poachers.
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F.7 Additional results for E8
Figure F.13 presents the spatiotemporal patterns of the UAV swarm for various alternatives of the proposed
surveillance model.

(a) Spatiotemporal pattern of ABN4 (Refer-
ence).

(b) Spatiotemporal pattern of ABN4 (GSA).

(c) Spatiotemporal pattern of ABN4 (GSA,
NUAV s = 10).

(d) Spatiotemporal pattern of HAPF-
BLACOPS (GSA, MT3, β = 0).

(e) Spatiotemporal pattern of ABN4 (GSA,
MT3, β = 0).

(f) Spatiotemporal pattern of BN9 (GSA,
MT3, β = 0).

Figure F.13: Swarmplots visualising spatiotemporal patterns of the UAV swarm in E8.
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Abstract
The continued loss of wildlife due to poaching poses threats on iconic species and the livelihood of local
communities. A search for cost effective and innovative solutions to aid in fighting poachers and save ecosys-
tems and biodiversity in national parks has emerged as consequence. UAVs have been subject to growing
interest within green security contexts due to their ability to monitor illegal activities in large target areas. An
extensive literature review regarding UAV based anti-poaching efforts revealed interesting research opportu-
nities. In dynamic environments, where intelligent poachers can coordinate to find wildlife and can adapt
to law enforcement, there is a need for effective coordination of distributed multi-UAV persistent surveil-
lance. A swarm based surveillance model is therefore adjusted to incorporate prioritised, persistent surveil-
lance. Adaptive surveillance in response to adaptive poachers is achieved through online, distributed ma-
chine learning using Bayesian Networks to predict criminal activity. Implementation and simulation in an
ABM framework is to be used to compare performance with current state-of-the-art surveillance and per-
form sensitivity analysis of model input parameters.





1
Introduction

Wildlife is threatened by several forces including illegal wildlife trade, habitat destruction, pollution and cli-
mate change. Together, this amounts to more than 30000 animal species being at the risk of extinction [33].
Illegal trade in wildlife is considered to be the fourth largest criminal industry in the world [70, 80] and poses
serious risks on the survival of iconic species such as the tiger, rhino and the elephant [25, 81]. Poaching of
these animals has been going on for decades [30, 53] and has reduced the elephant population in Africa by
144.000 animals in the time period from 2007 to 2014. This trend has been continuing to affect the elephant
population at an annual rate of 8% due to poaching activity, although other animal species also remain under
threat [23, 29, 77]. Besides affecting wildlife, poaching also affects the livelihood of local communities that de-
pend on wildlife tourism [85]. It has also been found that it is used to partially finance terrorist organisations,
therefore indirectly posing risks to national security as well [8, 12, 70, 87]. Already in 1990 it was concluded
that law enforcement and adequate manpower was required to fight poachers, since detection was found to
be the most effective strategy [53]. Today, politicians still face challenges when it comes to balancing eco-
nomic development and the maintenance of healthy environments [51]. Park managers are still calling for
cost effective and innovative solutions to handle environmental problems that threaten the ecosystems in
national parks [22]. Challenges also arise from the lack of resources to fight illegal activities, therefore requir-
ing efficient and strategic allocation and scheduling of resources [17].

Surveillance drones have been subject to growing interest throughout the last decade due to their flexibil-
ity to carry a variety of sensors. Efficient control and surveillance of illegal activities in terrestrial areas has
been identified as the most common practical implementation area for Unmanned Aerial Vehicles (UAVs). Al-
though their implementation is restricted by their maximum endurance [8, 40, 48], conservation applications
have gained increasing interest in the last decade thanks to the affordability, flexibility and safety character-
istics of UAVs. Despite their endurance, their usefulness is particularly of interest when large areas are to be
monitored, that are difficult to cover by ground. This is specially an interesting topic when UAV technology
is combined with machine learning techniques. These techniques can improve effectiveness of crime pre-
vention through continuously learning from criminals [94]. In turn, this can be used to predict patterns of
illegal activities, such as poaching in national parks [8, 22, 59, 74, 77, 87]. These characteristics have resulted
in the surveillance problem being studied extensively. The focus from these studies has shifted over the years
from single UAV to multi-UAV approaches and a distinction can be made between discrete and persistent
surveillance [13, 57]. A single sweep of the target area to detect criminal activity ends once full coverage has
been achieved. This is not effective in green security, since poachers can continuously enter national parks.
The behaviour of poachers has been studied extensively using Stackelberg Security Games (SSGs) in order to
optimise security resource allocation. This has lead to the development of advanced human decision models
to model poacher behaviour in multi-stage games [23], although the wildlife dimension has been neglected
in most research.

This thesis proposes a multi-agent based approach to tackle the challenges regarding the allocation of limited
resources to perform surveillance in complex dynamic environments. The use of a bottom-up approach to
understand the collaborative and adaptive behaviour of the poachers and the UAVs, along with local spatial
communications between agents indicates that an agent-based method is less complex than Game Theory
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approaches [2, 54]. Agent Based Modelling (ABM) is also capable of explicitly representing the environment
along with its dynamics, it can accommodate spatial patterns of inter-agent mechanics, while exploring feed-
back loops and adaptations within these systems [51, 82].

1.1. Problem definition
The various characteristics of green security require an effective multi-UAV approach to perform persistent
surveillance such that poacher activity can be detected. The lack of resources at national parks and other
contextual aspects pose challenges to be overcome by the to-be-proposed multi-UAV surveillance model.

A fully autonomous system would allow local authorities to experience economic benefits by abandoning
the task of searching for poachers. This is usually done on foot in extreme environments, leaving large areas
uncovered [29]. A non-deterministic online learning surveillance approach is needed due to these vast areas
in which poachers can collaborate, evade local authorities and adapt to surveillance strategies [51, 56]. The
surveillance approach also requires a distributed coordination method to account for a lack of digital infras-
tructure [97], which is also beneficial to the system’s robustness.

This research takes a novel multi-agent based modelling approach to implementing and analysing a fully
autonomous, distributed and learning multi-UAV persistent surveillance model that can be used to mitigate
adaptive poacher activity in dynamic environments, while considering operational constraints. Additionally,
surveillance effectiveness is to be improved by incorporating prioritised surveillance such that locations of
known criminal activity are targeted more frequently. In doing so, state-of-the-art human decision making
models will be considered that incorporate possibilities for collaborations and adaptation of behaviour. The
dimension of wildlife motion will also be included to quantify the animal population density as input for the
poacher’s decision making. From the ABM perspective, this requires modelling the target area and the be-
haviour and decision making of the poachers, the animals and the UAVs [51, 82]. Finally, the to-be-developed
surveillance model used to mitigate poacher activity will be analysed using simulations and sensitivity anal-
yses. The results will be used to compare effectiveness with a state-of-the-art surveillance model to validate
the proposed model.

1.2. Report structure
The body of this report is structured in order to elaborate further on the problem definition by first discussing
previous research, from which a research proposal is derived. Chapter 2 therefore discusses the state-of-
the-art literature in which relevant work is discussed and analysed. From there, a research gap is identified
such that a research proposal can be formulated. This is covered in Chapter 3, where the research questions
are formulated in accordance with the extensive literature review and the research gap. Chapter 4 presents
the research methodology that will be used to address the identified research gap and to provide a scope for
the research project. This chapter also elaborates on the to-be-performed simulation setup, which will be
used to quantify the effectiveness of the proposed model. Chapter 5 discusses the expected results from this
simulation experiment and research project in general. Here, the results of this research proposal are related
to previous work in order to justify the relevance of this work. The schedule of this research, containing the
various project phases discussed in the previously mentioned chapters, is discussed in Chapter 6. Finally, a
conclusion will be drawn in Chapter 7 regarding this research proposal’s feasibility and its relevance.



2
Current state-of-the-art research

In order to understand how current state-of-the-art literature is progressing regarding the problem of surveil-
lance in national parks, an extensive literature review is performed. This literature review first covers the
challenge of performing surveillance using autonomous robots in target areas. Various solution approaches
are discussed, after which the most relevant solution techniques are discussed in further detail. Next, the
review focuses on the targets to be detected through surveillance and aims to identify relevant techniques
that model human poachers and their decision making in a realistic manner. These two aspects form the
basis of the model that is to be developed. This is followed by discussing work regarding machine learning
techniques in surveillance contexts that can be used to improve effectiveness of crime detection. Finally, this
Chapter concludes with a formulation of the research gap such that further research opportunities can be
identified.

2.1. Surveillance using autonomous robots
The problem statement introduced some aspects that need to be considered for the multi-UAV persistent
surveillance model. This section elaborates further on these contextual requirements that are based on the
relevant state-of-the-art literature discussed below. A number of models are discussed, between which a
comparison will be made in the following sections to conclude this aspect of the literature review.

The surveillance problem is not a new concept as it dates back to the second world war, when the objective
was to find submarines [66]. Surveillance is also known as the coverage path planning (CPP) problem, which
is a non-deterministic polynomial-time-hard (NP-hard) problem. This means that it is unknown whether
efficient algorithms exist to find solutions in polynomial time, whereas given solutions can be efficiently veri-
fied to be correct solutions to the problem [11]. The solution approaches address a motion planning subtopic
in robotics, where each robot needs to be assigned to a created path such that every location in a target area
can be explored within the capabilities of the robot, while avoiding obstacles. These capabilities include the
robot’s limitations w.r.t. kinematics, endurance, communications and sensor footprint [13, 57]. The basic
concept of surveillance is visualised in Figure 2.1 where several UAVs are used to monitor the target area. It
is not to be confused with the coverage problem, where optimal locations are to be determined for a set of
sensors that are to continuously monitor a target area. The exploration problem in which dynamic targets are
to be identified is more similar, although exploration does not necessarily result in full area coverage and is a
discrete search [57]. Surveillance can be achieved through application of various types of UAVs, usually cat-
egorised as fixed-wing and rotary-wing UAVs. Each type has its own challenges and advantages. Fixed-wing
UAVs support longer flights due to their aerodynamics and endurance capabilities. Heavier payloads can be
carried, although a runway is required for take-off and landing. Rotary-wing UAVs are capable of hovering
thanks to the use of rotary blades which support Vertical Take-Off and Landing (VTOL) operations, whereas
the fixed-wing design does not allow for hovering above targets. Rotary-wing UAVs have lower payload carry-
ing capabilities and their endurance is limited to about 20-25 minutes. Hybrid UAVs exist to overcome these
restrictions [13], although these are not considered in the remainder of this literature review.
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Figure 2.1: Multi-UAV surveillance in a discretised target area [57]

The need for robust and reliable systems that improve the efficiency of search algorithms utilising multi-
ple robots has increased due to the rise of autonomous systems [20, 57, 66]. The surveillance problem has
been solved through a variety of approaches since the second world war [9, 13, 31], although limited research
has been aimed at the persistent surveillance problem since then [57]. A distinction within literature can be
made by recognising that persistent surveillance is a generalisation from surveillance [57], where the search is
completed upon finding the targets [31]. Introducing persistence also brings additional challenges that need
to be dealt with [37]. Persistence is achieved by revisiting locations within a given area [57]. This is a cru-
cial distinction since the intruders within this thesis’ problem definition can enter the area at any moment.
Criminals can wait before entering the national park in order to avoid surveillance drones, enabling intruders
to move through areas that were patrolled by UAVs at an earlier point in time. It is also possible that once a
poacher has been detected in a certain area, which is then considered to be clean from criminals, a different
poacher decides to go to this same area. This emphasises to need to continuously monitor the target area
in order to achieve effective surveillance. The persistent surveillance problem is also commonly referred to
as patrolling or continuous sweep coverage [67]. The objectives of solution algorithms are closely related to
periodically revisiting locations in order to minimise the largest revisit time, also referred to as the idleness,
refresh time, latency or age [13, 16, 57]. Despite the requirement of achieving this objective being at the core
of each of these approaches, contextual differences cause variations in solution approaches. Sub-optimal
solution techniques are usually applied since the persistent surveillance problem is NP-hard [67]. Another
distinction among solution approaches can be made by identifying systems capable of global communica-
tion and bio-inspired systems driven by local autonomy [31]. Such distributed approaches do experience the
disadvantage of not guaranteeing exhaustive coverage and the need to overcome local minima [32, 86]. Local
autonomy translates to each UAV having local knowledge regarding the system and environment states and to
make decisions based on this information combined with information gained from indirect (or short range)
communication. Flocks of birds and termites are the source of inspiration for these local autonomy models
and define the swarm intelligence algorithms. Similar to pheromone usage is the method utilising social po-
tential fields. These systems use both attraction and repulsion forces which can be adjusted dynamically and
determine the motion of UAVs. The law forces are based on distances and influence the emergent behaviour
of the system [69]. Communication in such systems is generally over short ranges via a one-to-many protocol
and can be the preferred solution method for a number of reasons. The first being scalability, as local com-
munication does not cause significant performance requirements within the system of UAVs when a UAV is
added and/or removed from the system. Second, limited awareness regarding the system and environment
results in diversity regarding decision making of individual UAVs. In case all UAVs have access to all available
information, it is more likely that each UAV will make the same decision. In turn, the system will converge to
some optimal state. Introducing diversity also improves the system’s resilience against failure. Thirdly, short
range communications pose less stringent requirements on UAV hardware and weight restrictions, which
translates into a cheaper UAV [32].

As mentioned, a distinction among surveillance methods can be made by considering discrete and contin-
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uous searches. Discrete approaches are used when the number of targets is known in advance, such that
the mission is considered complete either once the target area has been fully searched or once all targets
have been found [32]. Such approaches are useful in context of search and rescue where online methods that
continuously update the knowledge of the environment are preferred [13]. Considering the need to identify
poacher activity and adapt to the dynamic environment and evasive manoeuvres, online methods are re-
quired to be applied within this research as well. An example of the discrete surveillance approach is the dis-
tributed Mixed Integer Linear Program (MILP) approach considering communication shortcomings in [26].
It uses greedy heuristics to reduce the solution space and limit computation times. Robustness is introduced
through the assumption that all robots have similar and current knowledge of the system such that individu-
ally computing the MILP solution results in similar solutions [26], thus introducing a computationally heavy
solution approach relative to swarm based solutions. In [20] the authors emphasised the need to improve
computational costs in order to effectively consider dynamic environments. A discrete exploration approach
based on reinforced random walk was proposed by Albani, D. et al [3] that is computationally cheaper com-
pared to the method proposed in [26]. Each individual UAV splits the target area into two parts and explores
either one based on a utility value such that prioritisation occurs. The UAVs are randomly guided to poorly
explored areas to cover the entire target area. Apart from being discrete, the algorithm also prevents UAVs
from revisiting previously areas [3].

The common approach to modifying such methods in order to obtain persistent surveillance is to toggle the
state of grid cells within the target area from explored to unexplored after some period of time. This forces
the UAVs to re-explore the node in question such that persistent surveillance is created. The challenge with
such an approach is to determine the period of time after which the state of such a node is to be toggled. Tog-
gling the state too early prevents the swarm from covering the entire target area as the UAVs are being drawn
to the same locations over and over [32]. The effectiveness of detecting criminal activity drops if the state is
toggled too late, resulting in the UAVs not re-exploring these nodes in time. In the extreme, this can cause the
UAVs to become stuck at certain locations upon full coverage of the target area without having the objective
to re-explore.

Within game theory, models regarding conservation are referred to as green security games. Examples of
such continuous surveillance models include PAWS [23], OPERA [91] and CAPTURE [56]. These models in-
corporate spatial aspects as well as adaptive poachers and imperfect law enforcement behaviour. The focus
is mainly on the interactions between poachers and rangers in order to find optimal surveillance strategies
[23] and ignore the behavioural and ecological aspects of wildlife that drive the poachers [54]. Such solution
methods use centralised optimisation approaches rendering such surveillance techniques inefficient in on-
line, distributed environments. Similar to the proposed method in [24], the model of the target is integrated
in the solution models, such that these models cannot be generalised to different targets. Computing these
solutions requires extensive computation times as well, especially for an increasing number of UAVs [24] and
scaling up to larger environments [23]. In [51] the authors point out that wildlife’s adaptive behaviour of
habitat selection, movement ecology, and its responses to dynamic environments are key to successful con-
servation. Wildlife research has therefore mainly focused on understanding wildlife use of habitats and how
resource availability affect their avoidance of certain areas, since it can have profound effects on movement
patterns. Research to green security is therefore a cross-disciplinary field [51], as highlighted by Game The-
ory based models that heavily rely on behavioural models describing the poachers [56]. Despite the urgency
of incorporating wildlife dynamics, artificially created environments are advantageous when the focus of re-
search does not lie with the dynamics of a particular ecosystem. The environments can be modeled using
biotic and abiotic factors. Abiotic factors used to model environment in ABM models include land cover, el-
evation, temperature and water. These factors are considered essential in finding emergent properties from
local interactions in realistic ecosystems [51].
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Figure 2.2: Sweep surveillance approach on decomposed target area, blue lines indicate the search paths of the individual UAVs [13]

Other continuous surveillance approaches use some form of grid decomposition to define partitions that are
to be monitored by individual robots, visualised in Figure 2.2. Such approaches were presented in [43, 63, 92],
where the target area was subdivided into rectangular subareas by minimising the overlap. A different grid de-
composition method is to use the Voronoi algorithm [92]. Decentralised graph partitioning approaches have
been studied as well that rely on predefined rules [86]. Most of these works do not incorporate path plan-
ning since these methods are considered to be modular. Decentralised decomposition of the environment
introduces additional challenges such as the need to detect failed UAVs with short-range communication ca-
pabilities. Such challenges become larger as the partitioned areas grow larger than the footprint of the UAV.
This requires periodic meetings among neighbouring UAVs or with a central node [68]. Another solution is
fixed formation surveillance where UAVs have a fixed relative position in order to be able to constantly (in-
directly) communicate with each other [35, 75]. Lissajous curves have been applied to solve the persistent
surveillance problem as well, although its central characteristics limit its robustness [10].

A simple search path is proposed in [66], where robots coordinate by following equally spaced and paral-
lel search paths resulting in a sweeping search. Royset, J. et al. proposed an exact solution using a MINLP
approach to address the surveillance problem with the objective of minimising the largest non-detection
probability [72]. Such exact solutions are found to be computationally expensive [46, 69], such that search
approaches were introduced that use short-sighted algorithms to determine optimal solutions only for a lim-
ited set of future time points [66]. An approach combining grid decomposition and evaporation of certainty
levels was proposed in [47], where UAVs define their path using the A∗ algorithm. Rather than assigning
robots to various areas of the target area, it is also possible to compute a search path along the border [34]
or through all locations that require monitoring [1, 62]. From there it is easily adjusted to include multiple
robots by segmenting the search path as shown in Figure 2.3. Each patrolling robot inverts its direction once
the end of its segment is reached, such that continuous surveillance is obtained. The approach is based on
one-to-one coordination that aims to minimise the observation intervals and the time between detecting and
sharing new information. Their work also considered heterogeneous robots such that larger segments are as-
signed to robots with a higher velocity, although its robustness to hardware failure is not considered [1]. In
[6] individual robot capabilities are used to assign each individual to a partition of the target area, after which
a zamboni flight pattern is implemented. Such search patterns are effective and the approach can easily be
adjusted to incorporate different search patterns, but its unpredictability is limited. In order to account for
the unpredictable search path, a sweeping approach was proposed that ensured detection of moving targets
based on the target’s maximum relative velocity. This requires several UAVs to fly in fixed formation such that
the width of the formation is based on the amount of distance the target can cover before it moves past the
last UAV [5]. Despite the 100% probability of detection of moving targets, the approach does not allow for
hardware failure and is not robust. It also uses sweep coverage techniques such that targets can plan their
visits in between surveillance moments. Despite being able to detect the targets, Li, M. et al. proposed to
consider uncertain apprehension. This allows the targets to escape, depending on the available manpower to
apprehend them [46]. However, the escape and pursue mechanisms are not within the scope of this research
project (see Chapter 4 for further elaboration).
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Figure 2.3: Persistent surveillance using a single search path through all locations of interest while avoiding obstacles (in black) [13]

As previously mentioned, some approaches implement heterogeneous UAV capabilities by varying their ve-
locities to assign them to tasks [1]. Another aspect is to constrain surveillance to the operational limits of the
UAVs by considering endurance, manoeuvrability and payload restrictions [13, 52].

Swarm intelligence based methods are bio-inspired and build upon natural intelligence fundamentals such
as behavioural autonomy, social interaction, and learning. These approaches are pheromone-based in or-
der to guide UAVs through grid-discretised target areas. These pheromones can be left at a given location,
can evaporate over time and can be propagated to the neighbourhood [27]. Low computational cost is an
important advantage of swarm intelligence, since this allows energy to be used for movement rather than
for decision-making [13]. Different types of pheromones can be used to differentiate between information
types and was proposed in [61]. It was used to assign individual UAVs to partitions of the target area and
to implement collision avoidance. Their method involved a discrete search through implementation of a
pheromone to prevent revisits. A similar approach using a central coordinator was implemented in [71] aim-
ing to minimise communications among UAVs. Albani, D. et al. also focused on discrete surveillance using
swarm intelligence, but added the possibility to prioritise locations within the target area [4]. In [21], an ant
colony optimisation based algorithm to cover discrete searches in a fully distributed manner was proposed.
Distributed pheromone maps were stored locally such that inter UAV communications were required to syn-
chronise these maps when within communication range. Nigam, N. et al. extended upon this by considering
the persistent surveillance problem and incorporating UAV dynamics to limit the turn radius [58]. Such a dis-
tributed approach was shown to be useful in identifying and following wildfires utilising deep reinforcement
learning to help UAVs autonomously decide on their next action based on observations from the environment
[38]. The need to incorporate UAV kinematics was acknowledged in [36], since this may influence surveillance
performance as well. The constraint of limited communication capabilities in a swarm based approach was
introduced by Howden, D. such that distributed pheromone maps needed to be synchronised. This model
was also capable of prioritising locations within the target area as explained in further detail in section 2.1.1
[31].

The vast target areas considered in this research, combined with the need for robust and reliable systems [57],
call for distributed persistent surveillance algorithms. Implicit or locally explicit communication, rather than
explicit coordination, is preferred since data transfer over vast areas and/or rough terrain may be difficult.
Realistic persistent surveillance approaches must be robust and able to operate in the presence of limited
communication capabilities [35, 63]. Such decentralised approaches are also advantageous over centralised
systems in terms of adaptability, simplicity, modularity, reliability, robustness and low communication band-
width requirements. Approaches based on multi-agent planning, MILP optimisation, space decomposition
and evolutionary algorithms are generally based on a centralised coordination technique. Algorithms utilis-
ing potential fields, swarm intelligence and behaviour-based methods often use a distributed approach [57].
Therefore, the most relevant distributed approaches to persistent surveillance are discussed in greater detail.

2.1.1. Prioritised surveillance using distributed pheromone maps
The need for scalability, robustness and the limitations w.r.t. communications have shifted studies from cen-
tral systems to autonomous robot swarms. The approach proposed by Howden, D. [31] differentiates from
other surveillance solutions by considering the persistent surveillance problem from a pheromone control
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based approach. The basis lies with limited communications and the use of digital pheromone maps to
model environmental awareness [31]. The approach builds on the work of Erignac, C. where surveillance was
limited to a single sweep of the target area and did not prioritise certain areas [21]. A challenge of pheromone
based models was to overcome agents getting stuck in local minima. This was overcome by introducing
euclidean distances into the heuristic motion planning, which has similar properties to using a greedy hill
descent approach [31].

The proposed algorithm utilises distributed time-priority product based pheromone maps to guide the UAVs.
Pheromone concentrations are the product of a grid cell’s priority priorityC and the time passed since its last
visit ∆t from a UAV as computed from Equation 2.1 [31].

pC = priorityC ·∆t (2.1)

Each UAV at location P has access to a local pheromone map where each grid cell C contains two values, the
first being the time since a grid cell was last visited and the second being a priority level. These priority levels
are to be obtained from knowledge regarding the environment, such as historic data, experience or from
expert knowledge. UAVs prefer to move to grid cells with high pheromone concentrations pC . After visitation
by a UAV, the pheromone concentration is reset to zero such that persistent surveillance is incorporated [31].

h = p2
C

d(C ,P )+d(C ,P + r )
(2.2)

The path planning is performed by the A* algorithm, where the pheromone levels are used as weights. The
target location for the A* algorithm is obtained from the heuristic h in Equation 2.2, which is computed for all
cells in the pheromone map. The distance d in the denominator is used to overcome local minima such that
UAVs are motivated to explore the target area. This heuristic h also considers collision avoidance through
repulsive forces r , as this poses an additional penalty to the heuristic h. Synchronisation of the pheromone
maps among UAVs is performed when within a pre-specified communication range. This enables global en-
vironmental awareness for each UAV as synchronising the pheromone maps indirectly specifies the paths
flown by other UAVs. The model outperforms previous work w.r.t. computational load and also improves in
the area of revisiting times, which makes it an interesting model within this context [31]. Especially when
considering that the UAVs are required to perform computations online, thus asking for quick decision mak-
ing and motion control. Despite the advances, the presented solution method does not consider dynamically
adapting the priority levels. Due to its deterministic motion planning the approach’s effectivity is expected to
be limited when being applied in real world poacher scenarios that can coordinate and adapt to surveillance
strategies. Besides, the approach does not account for operational constraints introduced through the prob-
lem characteristics of persistent surveillance.

Howden, D. et al. expanded upon their previous work in [31] by considering the need to detect and track
fires [32]. The model builds on Equations 2.1 and 2.2 and each UAV increases the pheromone levels of its
own unique pheromone map automatically by an amount proportional to the urgency of surveillance. These
internal maps are shared for a given duration at fixed intervals, such that neighbouring UAVs can synchro-
nise their own maps. Synchronisation of the pheromone maps is achieved through comparing and adapting
the lowest of local and received pheromone concentrations at a given grid cell C . Convergence of the UAVs
is achieved through the introduction of repulsive forces, resulting in spreading of the UAVs. This accom-
plishes that multiple UAVs do not simultaneously visit the same grid cells and prevents collisions. Again, the
pheromone level at a grid cell’s location is reset to zero once a node is visited by a UAV, such that other loca-
tions become the preferred new objective [32].

In addition to the work in [31], each UAV in [32] carries a sensor to detect phenomena. The authors mention
the need to scale grid cells and match their dimensions to the sensor’s footprint to minimise overlapping UAV
trajectories. Howden, D. et al. propose to dynamically adjust priority levels based on detected phenomena
[32]. Grid cells nearby detected phenomena are given higher priority priorityC . The resultant behaviour is
that the UAVs moving in the surrounding area adjust pheromone levels such that the fire front is drawn. Due
to the increased priority level, other UAVs also tend to converge to these locations, effectively resulting in
collaborative fire front tracking. The weights of this high level priority is to be tuned very carefully however,
because it prevents the UAVs from exploring other areas of the target area to detect other targets. In such a
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case, the UAVs discontinue searching for targets until the current target ceases to exist [32]. Such an approach
could be used to detect collaborating poachers that may be spread over a subsection of the target area, or to
find poachers once a trail is found by the UAVs.

2.1.2. Stochastic surveillance using Ant Colony Optimisation
Similar to the work in [31, 32], Bontzorlos, H. et al. also propose an ant colony optimisation method to solve
the persistent area surveillance problem [9]. The need for robust systems in terms of equipment failure is
emphasised, thus imposing indirect communication among UAVs in order to coordinate. This is justified
through the example of component failure in systems relying on central coordination which results in the
whole system failing to adapt. A system based on physical pheromones is proposed such that indirect com-
munications can be achieved in order to design fault tolerant systems. This allows for minimal hardware re-
quirements in terms of memory, since the physical pheromones act as a collective memory. The pheromones
contain information regarding the most recent visit of a certain location, as well as what UAV monitored
the location, along with the current distance of the previously visiting UAV from the location [9]. Given the
context of surveillance within this research, such physical pheromones are prone to errors. In dynamic en-
vironments where wildlife and intruders continuously scout the area, the pheromones may be moved which
results in inaccurate pheromone concentrations. Such a physical system is specially prone to intruders that
aim to sabotage the surveillance system in order to stay clear of local authorities. Besides, the environmental
factors may prove it difficult to sense pheromones dense nature. Nevertheless, this can be adapted to digital
pheromone maps similar to the proposed model in [6].

The simulation space is described by a graph G(V ,E) such that the environment is divided into a set of grid
cells V = vi j | i , j = 1,2, ...,n where a set of autonomous robots E = ei j | i , j = 1,2, ...,m monitors the space. The
target area is subdivided into two groups A and A′ such that monitored locations are grouped apart from loca-
tions that have not been covered by the UAVs. The objective of the UAVs is to maximise the coverage C of the
target space, which is defined as the percentage of locations that have been monitored within the entire tar-
get area. The UAVs pursue locations where pheromone concentrations are low and increase the pheromone
level after monitoring such a location. Minimum and maximum pheromone concentrations are introduced
as well, such that pheromone concentrations τ ∈ [0,1]. Upon monitoring a location, the pheromone levels
are incremented by a concentration of 1 unit, such that the maximum pheromone level is directly reached
and revisits are prohibited. This method is relaxed through the introduction of unique pheromone types for
each individual UAV, such that location (i , j ) can contain multiple types of pheromone. This relaxation also
allows for revisiting locations and UAVs are assumed to identify other UAVs based on deposited pheromones
[9].

Evaporation of pheromone levels is included through a steady decrease of α at each time step. Its value was
chosen to be a percentage of the deposited pheromone concentrations from UAVs, such that the resulting
relative change of concentration is much larger than 1 when a location is being monitored. Larger evapo-
ration rates were found to reduce the coverage performance as robots tend to remain in a given area and
continuously revisit a select number of locations [9]. This behaviour is also based on the implemented allow-
able range of the pheromone concentrations and the aim to move to lower pheromone level locations. Since
negative pheromone concentrations do not make sense physically, switching the UAV objective around could
results in better coverage. Such an alternative objective could be to pursue high pheromone concentrations
instead. This would require neglecting the maximum pheromone concentration such that UAVs notice rela-
tively large concentrations and remain from revisiting a select number of locations.

Motion planning of the robots, given the absence of locally accessible pheromone maps, involves detecting
pheromone concentrations of neighbouring locations D . Each robot is therefore capable of moving to one
such neighbouring location s at each time step, given its current location. Combining this knowledge with the
pheromone evaporation rate, the robots are also capable of computing the current distance of other robots
from the neighbouring locations based on the residual pheromone concentrations. Due to the limited field of
view and the lack of information regarding the other robot’s exact route, only the maximum distance can be
computed. Motion planning uses the pheromone type τ(i ) that has the largest concentration at a neighbour-
ing location i ∈ D . Stochastic path planning is implemented according to Equation 2.3, where the pheromone
type of the highest concentration for each neighbouring location is multiplied with a randomly drawn value
q ∈ [0.9,1]. A limitation here is the lack of information if another UAV has not visited a given location. In such
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a case it is impossible to calculate the maximum distance to that UAV due to the lack of pheromones, which
can result in multiple UAVs moving towards the same location simultaneously. This can be generalised as the
computed maximum range to other UAVs is not considered in decision making, thus not ensuring collision
avoidance.

s = ar g min
i∈D

(q ·τ(i )) (2.3)

2.1.3. Bayesian path planning to perform prioritised, stochastic surveillance
The surveillance problem is a topic within police patrol as well. Approaches to police patrols cover a great
variety of contexts and cultures, although one approach appears to be promising when considering effective-
ness. Hotspot, or place-based patrolling in which police officers randomly monitor has shown to be effective.
Designing patrol routes is also an important aspect besides the need to identify the location of high criminal
activity. Challenges in designing optimal patrol routes arise, specially when considering multiple agents in
environments with limited resources. These include the need to repetitively and regularly monitor locations
within the target area, while responding to emergency situations. This poses requirements w.r.t. the robust-
ness of the surveillance system such that its effectiveness does not degrade significantly when solving such
unexpected situations [17]. As identified in [31, 32], Chen, H. et al. also emphasise the importance of moni-
toring certain locations within the target area with different levels of priority [16]. In doing so, the system is to
ensure coverage of the entire target area while introducing stochastic patrol routes to prevent criminals from
predicting patrol behaviour. The problem is very similar to contexts where robots are used to monitor target
areas [17].

A routing strategy using heuristics and Bayesian techniques, based on the Bayesian Ant-based Patrol Strategy
(BAPS) is introduced. It aims to provide solutions in terms of efficiency, flexibility, unpredictability, scalability
and robustness. The model uses a simplified version of the real world by considering a road network in an
urban area to be the target area. Certain road segments are identified as hotspots through crime mapping,
such that an initial crime activity map is constructed. The n hotspots are denoted as the set H = h1,h2, ...,hn .
Robots each have full knowledge of the environment w.r.t. the priority locations and their pheromone levels,
such that a shortest path problem can be solved to construct a patrol route. BAPS employs pheromones
at target location and specifies the evaporation rates proportional to the importance of a hotspot. In this
approach, robots look to move towards locations with lower pheromone concentrations. When a hotspot hi

is visited by a robot at time t , the pheromone level is increased by an amount of pheromones PheDep (hi )
through Equation 2.4 [17].

Phe(hi , t ) = Phe(hi , t −1)+PheDep (hi ) (2.4)

The pheromone concentrations decay in an exponential manner as time progresses based on the decay rate
λ(hi ) ∈ (0,1), see Equation 2.5 [17]. These decay rates were used to prioritise in earlier work [16], where
its effectiveness was analysed as well. The simulations indeed showed reduced average idleness times for
locations with relatively higher weights, proving that prioritisation using pheromone levels can be an effective
means to steer surveillance in certain directions within the target area.

Phe(hi , t ) = Phe(hi , t0) ·λ(hi )t−t0 (2.5)

Stochastic patrol routes are implemented using Bayes theorem to compute the posterior probability of pa-
trolling a hotspot P (patr ol (hi ) |G(hi ),S(hi )) by applying the decision n independent times. The next hotspot
to be monitored hnext is the one with the highest posterior probability as defined by Equation 2.6, where nor-
malisation is omitted for simplification as it does not influence the results [17].

hnext = ar g max
hi

P (patr ol (hi ) |G(hi ),S(hi )) (2.6)

Where G(hi ) is defined as the gain of patrolling a hotspot and is computed according to Equation 2.7. It
is therefore inversely proportional to the product of the pheromones and the normalised distance from the
robot’s location p to the hotspot. Since robots want to move towards locations with low pheromone levels,
it can be seen that hotspots with a lower priority and a larger distance from the robot have lower gain. Nor-
malised distances are used to prevent local optima resulting in repeatedly patrolling a small set of hotspots.
The number of patrollers that is going to monitor a hotspot is denoted by S(hi ). After omitting terms and
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ignoring the normalisation factors for simplification without losing generalisation, the posterior probability
itself is computed according to Equation 2.8. In Equation 2.8, L and M can be adapted to tune the probability
values of zero gain and the gain saturation respectively, m is the number of robots patrolling. The approach
favours robots monitoring the same hotspots through the application of S(hi ) [17].

G(hi ) = 1

Phe(hi , t ) ·Nor mDi st (p,hi )
(2.7)

P (patr ol (hi ) |G(hi ),S(hi )) = 1

M
· ln(

1

L
) ·e ln( 1

L )·G(hi )
M · 2m−1+S(hi )

2m −1
(2.8)

As seen in Equation 2.6 and similar to the work in [9], the BAPS model is a greedy strategy as it determines
the optimal choice of patrol target at each time step only. The advantage from this approach is that the
model is less computationally heavy relative to models searching for the global optimum solution. This also
allows for real time updates, thus being able to include the effects of a dynamic environment. The model
implements several techniques that allow distributed coordination, although the authors propose a control
centre to assign tasks and adapt to emergencies (see Figure 2.4), thus requiring continuous communications.
Although not explicitly mentioned, the approach could also include dynamic updating of the decay rates.
Such an approach would need some method to dynamically estimate these values however. Currently, the
model only uses predefined criminal activity to define the relative weights of hotspots [17].

Figure 2.4: BAPS flowchart [17]

2.1.4. Prioritised surveillance using adaptive task thresholds
This paper introduces a dynamic ant colony’s labour division (DACLD) model that incorporates self-organisation
and flexibility under dynamic environments. The model is based on the classic fixed response threshold
model (FRTM) and holds distributed characteristics. The objective is to maximise the total reward obtained
by attacking various targets [89].

The DACLD model is built upon the idea that individual agents can perform a variety of tasks, each task
having their own payout. Each swarm agent i has a stimulus value corresponding to a certain task, which
determines the response of an agent w.r.t that task. The agents also have a response threshold θi that corre-
sponds to a given task. Once this threshold is crossed by the stimulus of the respective task, the agent may
start the task in question depending on the transition probability. These stimuli of each task degrade and
increase over time (see Equation 2.9), therefore controlling what tasks are to be performed. The stimuli are
increased at each time step by a fixed amount δ. Simultaneously, the stimuli levels are reduced if agents are
performing a given task. This rate of stimuli reduction is proportional to the product of work efficiency φ and
the number of agents nact performing given task [89].

s(t +1) = s(t )+δ−φ ·nact (2.9)

The choice of performing a task is obtained from the probability of transitioning from an idle state to an active
task as computed from Equation 2.10. This depends on the stimuli level s and the stimuli threshold for the
given task [89].
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P (STi = 0 → STi = 1) = sn

sn +θn
i

(2.10)

Where n is a constant controlling the curve of the threshold function. The probability of an agent deciding
to quit from an active task is a predefined constant [89]. Given the context of this research, the tasks can be
translated to grid cells. This would simulate surveillance, although the probability of stopping a task is not
useful within such a context. Based on this approach the model does not support collision avoidance how-
ever. It does allow for distributed and flexible behaviour through the implementation of distributed stimuli
maps as suggested in [31]. Wu, H. et al. further extend upon Equations 2.9 and 2.10 by recognising the need
to incorporate more complex environments. This includes the need for differentiation among task types,
multiple agent states, operational constraints, heterogeneous agent capabilities and dynamically adjusted
thresholds based on gained experience. Thus presenting the Dynamic Ant Colony’s Labor Division model
[89].

The DACLD model implements a new stimuli, sk
j , update rule as expressed by Equation 2.11. A task k is either

surveillance or attack and j is a target (or grid cell). This stimuli update rule has not changed in essence as
it still incorporates a constant increase and a reduction for each agent i proportional to its work efficiency.
The stimuli thresholds θk

i j have become dynamic through implementation of learning and forgetting factors.

The learning rate ζk
i (t ) of agents combined with the successful completion of tasks reduces the response

threshold of tasks according to Equation 2.12, such that the swarm exerts emergent behaviour by gradually
improving the success rate of tasks. The learning factor is purely related to the accumulation of experience,
Nk , or the number of times task k has been performed in a time interval between t and T . In order to prevent
dividing by zero, the initial learning factor Stu ∈ (0,1) is implemented. A reduction of the learning factor
results in a lower task threshold as can be seen in Equation 2.13, where k = k∗ indicates that the same task is
to be performed sequentially in order to learn. If different tasks are performed sequentially, then the agent
can forget about a given task. Thus resulting in a higher threshold due to the multiplication of the threshold
with a forgetting factor φk

i > 1. The dynamic threshold is also updated by considering resource consumption
in a similar fashion, such that having zero resources available to perform a task results in an infinitely large
threshold level [89].

sk
j (t +1) = sk

j (t )+δk
j −

NU∑
i=1

[
∂k

i j · xk
i , j (t )

]
(2.11)

ζk
i (t ) =

{ 1
Nk (t−T ) ·Stu, Nk (t −T ) ̸= 0

Stu, Nk (t −T ) = 0
(2.12)

θk
i j (t +1) =

{
ζk

i ·θk
i j (t ), k = k∗

φk
i ·θk

i j (t ), k ̸= k∗ (2.13)

P
[
STi (t ) =α→ STi (t +T ) =β

]= P
[

xk
i , j (t ) = 1 → xk∗

i , j∗ (t +T ) = 1
]

=
[
S̃αβ

]n[
S̃αβ

]n + [
θ̃αβ

]n +ρ · [∆τi
(

j → j∗
)]n

(2.14)

State transition probability computations are adapted to account for the possibility of transitioning between
various possible states, see Equation 2.14. In doing so, the authors propose the use of a delay penalty co-
efficient ρ, such that state transition probabilities are reduced if the response time ∆τi

(
j → j∗

)
of a given

agent is relatively large. As seen, state transition probabilities are increased if the relative stimuli S̃ of a state β

over state α are large, whereas large relative thresholds θ̃ reduce the probability of transitioning. This implies
that each UAV only transitions to states that are relatively important to be performed, while taking the like-
lihood of successfully finishing the task into account. This method ensures efficient task solving by implicit
coordination and assigning UAVs to tasks of importance. Such an approach is therefore very useful when
heterogeneous UAVs are considered. Collaboration among agents is incorporated through communication
of the task thresholds. In case an agent is capable of performing a given task, the stimuli to other agents will
rapidly decrease. The inverse holds when the agent is unable to successfully finish a given task, thus drawing
other agents to this task such that it can be performed. Despite this mechanism, it does not ensure collision
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Figure 2.5: HAPF-ACO discretised mission area [97]

avoidance among UAVs. Performance of the DACLD model is compared to a Wolf Pack Algorithm and it is
shown that DACLD responds more quickly to unexpected threats. A limitation here is that knowledge of these
threats which includes their respective locations and interest values, is known on beforehand [89]. Its perfor-
mance in dynamic environments where targets can emerge and move through the environment without the
UAVs being aware of this, is questionable.

Although the communication protocol not being mentioned explicitly, the approach is relatively easy applied
in contexts with limited communication capabilities. Such an approach does introduce latencies since the
distance among UAVs may of of such extent that communications must wait until possible. The main con-
tributions of the paper are related to addressing the task allocation problem in dynamic environments, as
well as improving on the dynamic response threshold, dynamic environmental stimuli, multi-type tasks and
multi-state transition probabilities [89].

2.1.5. Hybrid swarm based surveillance
The proposed distributed surveillance model from Zhen, Z. et al. [97] combines artificial potential fields with
an ant colony optimisation method to persistently search for and attack intruders. The Hybrid Artificial Po-
tential Field and Ant Colony Optimisation (HAPF-ACO) algorithm utilises an APF map, as well as pheromone
maps. The APF consists of target attraction forces and repulsive forces, also enabling collision avoidance path
planning by introducing repulsive fields among UAVs. The target attraction forces are designed according to a
Target Probability Map (TPM), as discussed below. The UAV motion planning incorporates collision and ob-
stacle avoidance through the repulsive fields. Manoeuvrability constraints are considered through limitation
of the maximum turning angle ϕmax of the UAVs [97]. Figure 2.5 shows that the target area D of size Nx xNy is
discretised into equally sized Lx xLy grid cells. The UAV is capable of observing its direct environment within
a radius R from its own current location. Thus making it possible to detect the targets (visualised in red stars)
and threats (visualised by black circles) within the radius R. Considering the UAV’s maximum turning angle
ϕmax and its speed v such that the UAV can move forward exactly one grid cell, the possible UAV motions are
visualised by the grey grid cells. The approach therefore is not limited to rotary or fixed-wings UAVs and is
applicable in a broad scala of practical implementations.

The authors also emphasise the need to account for high communication hardware and bandwidth require-
ments to enable effective coordination among UAVs. The density of the swarm distribution greatly affects the
required communication bandwidth as this scales exponentially with the number of communicating neigh-
bours [27]. Besides incorporating a fully distributed approach, the cooperative radius r coor

i is introduced and
adjusted accordingly in order to circumvent this hardware requirement. Communication with other UAVs is
only possible if the euclidean distance is smaller than this cooperative radius, such that the set of interactive
neighbours is defined according to Equation 2.15 [97]:

N c
i = {

j | ∥∥xi −x j
∥∥≤ r coor

i , j ∈ {1,2, · · · , NV } , j ̸= i
}

(2.15)



100 2. Current state-of-the-art research

Where NV are the number of UAVs in the swarm. Using the set of coordinating neighbours N c
i of UAV i and

the expected number of neighbours Ntopo , the coordination range is adjusted to achieve a constant number
of neighbours (see Equation 2.16) [97].

ṙ coor
i = kad j ust ·Rsen · (1− ∣∣N c

i

∣∣/Ntopo
)

(2.16)

Where 0 < kad j ust < 1 is the adjusting rate and Rsen is the upper bound of the communication range. This
equation shows that if more neighbours are present than expected, the coordination range r coor

i is reduced
proportionally to kad j ust . In doing so, this method does not consider the different information that each
neighbours has to offer.

The objective of the UAV swarm is to maximise the sum U∗ of attack and search payouts (JT and JE respec-
tively), while adhering to manoeuvrability, collision avoidance, obstacle avoidance and range constraints.
The distributed swarm system characteristics force the decomposition of these objectives to local indicators
on a unique UAV level, see Equation 2.17 [97]:{

JT =∑NV
i=1µi JT i

JE =∑NV
i=1µi JEi

(2.17)

Where µi can be used to differentiate among UAV importance w.r.t. the mission objective.

Artificial Potential Field
TPMs are used to describe targets and to prioritise areas within the discretised target area D . Each UAV
considers its local TPM in its motion planning, based on the target existence probability p i

mn(k) ∈ [0,1] of
grid cell (m,n) as obtained by the i -th UAV at time k. Each UAV therefore has access to a unique TPM of the
target area stored in a local probability distribution matrix [97]:

TPMi (k) =
{

p i
mn(k) | m = 1,2, · · · , Nx ,n = 1,2, · · · , Ny

}
(2.18)

Detection of targets is possible within the radius R (see Figure 2.5) and this information is used to dynamically
update the TPM. This radius R is based on the sensor detection range. Uncertainty is introduced to model
erroneous sensor observations through the implementation of the probability of detection PD and the false
detection probability PF . The probability of detecting a target, given that the sensor field of view (FOV) covers
exactly one grid cell is obtained from Bayesian probability formulas in Equation 2.19 [97].

p i
mn(k +1) =


τp i

mn(k) (not detected)
PD ·p i

mn (k)

PF +(PD−PF )·p i
mn (k)

(detected and b(k) = 1)

(1−PD )·p i
mn (k)

1−PF +(PF −PD )·p i
mn (k)

(detected and b(k) = 0)

(2.19)

Where bk indicates the detection result. bk = 1 indicates that a target is present within the sensor detection
range. The attenuation coefficient τ ∈ [0,1] describes the dynamic environment w.r.t. the targets in grid cells
not being covered by the UAV at time k.

The real time TPM of a UAV i is used to generate the target attraction field that stimulates the UAV to move
toward the targets. The attraction force Fat t ,i is proportional to the target existence probability and obtained
from the gradient of the target attraction field according to Equation 2.20. Similarly, threat repulsive forces
F T

r ep,i can be used to move UAVs away from no-fly zones or other areas and/or obstacles. This approach is

also used to incorporate collision avoidance among neighbouring UAVs (See Equation 2.21) and is valuable
due to the distributed method presented. The collision avoidance mechanism can be tuned using the b and
c parameters which influence the magnitude and the rate of change of the repulsive field respectively. Due
to the limited range of communication, only neighbouring UAVs are considered as possible threats. The
magnitude of the repulsive forces mainly depends on position vector xi j of the j -th UAV w.r.t. the i -th UAV,
where x̂i j is the unit position vector [97].

Fat t ,i (Xi ) =∇Uat t ,i (Xi ) =∇kat t ·T P Mi (2.20)
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F V
r ep,i (Xi ) =−∇U V

r ep,i (Xi ) =
∑

j∈N c
i

b

c
· e

∥∥∥xi j

∥∥∥
c · x̂i j(

e
∥xi j ∥

c − e
∥xi j ∥mi n

c

)2 (2.21)

Ant Colony Optimisation
The model is a hybrid of artificial potential fields and ant colony optimisation. The pheromone maps used
by each UAV enable task cooperation among the UAVs in terms of persistent surveillance. The pheromone
update mechanisms to be integrated with the discussed artificial forces are provided below.

Each grid cell contains a certain concentration of pheromones, which indicate the attraction of the specific
grid cell to the UAV. Higher concentrations attract the UAVs. Together, the concentration values of all grid cells
at a certain time k in the target area D constitute the local pheromone structure τi (k) (see Equation 2.22) of
a given UAV i . The pheromone concentration levels are limited by an upper and a lower limit.

τi (k) = {τi
(x,y)(k) | x = 1,2, · · · , Nx , y = 1,2, · · · , Ny } (2.22)

The ACO aims to prevent excessive search of certain areas within the target area by implementing a update
mechanism that relies on historical state information from other UAVs. The communication range limits the
number of UAVs that can share information with each other, thus resulting in regional search coordination.
This is achieved through a given UAV i obtaining state information of other UAVs j at time k as stated in
Equation 2.23. The historical positions and motion direction data obtained by UAV i from UAV j that is part
of the neighbouring UAVs of UAV i is used to predict the state of the swarm at time k. Due to the limited
communication range and the target area’s dimensions, it is possible that the UAV may not have up to date
information of all UAVs. Thus emphasising the importance of predicting the swarm state to obtain accurate
pheromone levels. The pheromone levels are updated accordingly by considering the presence of the i -th
UAV itself and the neighbours, see Equation 2.24{

In f o(k) = {
In f o j ,i

(
k j , i

)
,V j ∈V

}
In f o j ,i

(
k j ,l

)= {
x j ,i

(
k j ,i

)
, y j ,i

(
k j ,i

)
,ψ j ,i

(
k j ,i

)} , k j ,i ≤ k (2.23)

{
τi

(x,y)(k +1) = τi
(x,y)(k)−∆τi

l (x,y)(k)

∆τi
l (x,y)(k) =∑

j∈N c
i
∆τ

(i , j )
l (x,y)(k)

(2.24)

∆τ
(i , j )
l (x,y)(k) =

 ∆τl0 ×
R4−d 4

(
(x,y),

(
x∗

j ,i (k),y∗
j ,i (k)

))
R4 , d

(
(x, y),

(
x∗

j ,i (k), y∗
j ,i (k)

))
≤ R

0, d
(
(x, y),

(
x∗

j ,i (k), y∗
j ,i (k)

))
> R

(2.25)

Persistent surveillance is implemented using the ACO algorithm by including a global pheromone update
rule defined in Equation 2.26. This is used to account for the possibilities of new targets appearing in areas
that have previously been searched. The rule can be tuned using the environmental uncertainty factor F
and also depends on the update step τg0 [97]. Larger values can be used in more dynamic environments
as this encourages UAVs to revisit grid cells. A limitation of the model is the use of a maximum pheromone
concentration. Such a maximum is required to be tuned in accordance with the coverage rate of the UAVs,
the dimensions of the environment and the pheromone update rate. If not done correctly, this may result
in various areas reaching the maximum level as the UAVs are not quick enough in covering the target area.
Thus, diminishing any prioritisation from a surveillance perspective through the fact that each area now has
the same pheromone concentration.

τi
(x,y)(k +1) = τi

(x,y)(k)+F ×∆τg0 (2.26)

Integration
The APF side of the algorithm mainly focuses on target and obstacle detection in order to find the intruders
and avoid collisions (among UAVs). This also incorporates the prioritisation of certain areas through the
use of target existence probabilities, although limited. The ACO features introduce the persistence property
required within this research’s context to account for the persistent attacks by poachers in national parks.
Integration of these two different aspects therefore determines the effort put into the various tasks such as
persistent surveillance and prioritisation among areas (including collision avoidance). This is achieved by
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formulating motion planning transition rules. One downside of integrating the APF with the ACO is the lack
of collision avoidance due to the UAV considering various features such that the repulsive force of a threat
is neglected. The state transition rule being used at a given location and time depends on the value of λ ·
F /Fmax . Where λ is the environmental perception factor, F and Fmax are the magnitude of the potential
field force of the current grid cell the UAV is located at and the maximum force within the detection range of
the UAV. This algorithm therefore adjusts its probability of choosing a transition rule according to the need
to act upon nearby threats. A deterministic transition rule that depends on the remaining range of the UAV
is used if a random number q is smaller than λ · F /Fmax , as shown in Equation 2.27. The transition rule
either minimises the change of heading or aims to minimise its movement such that the UAV maximises its
endurance, depending on the value of ω1 and ω2 and ω1+ω2 = 1. The UAV aims to minimise heading changes
only if the travelled distance is less than half its maximum range, i.e. ω1 = 1 [97].

s j =ω1 ×argmin
j∈Ω

{
θ j

}+ω2 ×argmin
j∈Ω

(∣∣Lmax −Lpast (k +1)−Dle f t (k +1)
∣∣) , q < λF

Fmax
(2.27)

The heuristic transition rule is formulated in Equation 2.28. This decision process either uses a stochastic
decision process or a heuristic optimisation step, depending on the random numbers q0 and q1 drawn from
a standard uniform distribution. If q1 ≤ q0, then the motion transition aims to optimise for optimal search
and to maximise endurance. Optimal search is defined as the maximum product of the pheromone con-
centration and the heuristic information ηi j when moving from grid cell si to s j . The heuristic information
contains the system performance in terms of coverage of the target area such that unsearched grid cells are
chosen with the highest probability. Stochastic decision making is enforced otherwise and according to the
transition probabilities obtained from Equation 2.29. The transition probabilities are computed for each grid
cell s j within the set of grid cell options Ω obtained by considering the UAV’s position, heading and maximum
turning angle [97].

s j =


ω1 ×argmax j∈Ω

{[
ταi j

]
×

[
η
β

i j

]}
+ω2 ×argmin j∈Ω

(∣∣Lmax −Lpast (k +1)−D left (k +1)
∣∣) , q1 ≤ q0

S, other

(2.28)

pi j (k) =


[
τi j (k)

]α×[
ηi j (k)

]β∑
s j ∈Ω

[
τi j (k)

]α×[
ηi j (k)

]β , s j ∈Ω

0, s j ∉Ω

(2.29)

It can be noted that these motion planning rules do not include the APF and the TPMs previously discussed.
Collision avoidance is therefore applied only when the benefit JT i at time k outweighs the benefit of search
benefit FEi [97]. Surveillance is therefore not explicitly prioritised, although this is achieved through the APF
indirectly.

Finally, the authors consider a variety of possible options regarding available information of dynamic tar-
gets. Based on the available information including initial positions, movement directions, magnitude and
direction of speeds, the TPM’s target existence probabilities are continuously updated according to condi-
tional probability computations [97]. This approach does not consider other attributes about the targets’
behavioural characteristics and does not incorporate a feedback loop regarding these predictions. Section
2.3 elaborates on more advanced techniques that can be used to predict target locations.

2.1.6. Surveillance performance indicators
A number of performance indicators have been developed through continued research to persistent surveil-
lance. These are discussed below, since a subset is to be used for the to-be-performed sensitivity analysis as
discussed in Chapter 4. Most metrics used in persistent surveillance are based on some time based metric
such as age, idleness, latency or refresh time. Another approach is to optimise for visit frequency or to min-
imise the difference between the largest and lowest visit frequency. This last optimisation method is not of
interest in priority based surveillance however [57]. A number of other performance indicators are explained
below.

Global average idleness (GAI)
Persistent surveillance efficiency can be measured using the global average idleness performance indica-
tor computed according to Equation 2.30. Efficiency should be optimised such that the time lag between
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two consecutive visits to a given location is minimised. It is computed by summing the average idleness
AI dl (hi , t ) of all locations and dividing by the number of locations to obtain an overall average [17]. An alter-
native proposed in [13] is to measure the quadratic mean of the visit intervals (QMI).

G AI (t ) =
∑n

i=1 AI dl (hi , t )

n
(2.30)

Weighted global average idleness (WGAI)
The flexibility of a surveillance strategy is the ability to prioritise relatively important locations such that their
visiting frequency is increased. This can be measured using the WGAI, which is a weighted version of the GAI
indicator. The weights W (hi ) assigned to the idleness of a locations correspond to the priority which in turn
is dependent on the crime density level [17]. Rather than optimising for the WGAI, one can also optimise for
the weighted refresh time. This is simply the longest idleness at a given location, weighted by the location’s
priority level [62].

W G AI (t ) =
∑n

i=1 W (hi ) · AI dl (hi , t )∑n
i=1 W (hi )

(2.31)

Scalability of Team Size (ST)
The ST indicates how performance is influenced due to a change in the number of robots participating in the
persistent surveillance method. It is based on Balch’s speedup measure which is a ratio of the GAI obtained
using a single monitoring robots and a team of R robots. Since it is uncommon for a single patroller to moni-
tor a large area, as would be done using a team of robots, the metric is adjusted to incorporate for this effect.
The measure for scalability is therefore multiplied by a target area of size S that would be patrolled by the
single patroller, see Equation 2.32 [17].

ST (R) = S ·G AI (S)

R ·G AI (R)
(2.32)

Spatial Scalability (SS)
Similar to the ST metric for team scalability, a metric for spatial scalability was proposed in [17]. It is based
on the relative area covered by crime hotspots of a pre-defined crime density level L divided by the total area
to be monitored. Computation is performed according to Equation 2.33 and indicates the relative change in
GAI performance due to a change of hotspot density from the baseline level LB [17].

SS(Li ) = G AI (Li )−G AI (LB )

G AI (LB )
(2.33)

Average standard deviation of idleness (ASDI)
As mentioned, unpredictable monitoring strategies prevent intruders from easily learning and adapting to
the implemented surveillance strategies. It should therefore be difficult to predict when a location is going to
be monitored by law enforcement. Measuring this unpredictability can be achieved through computing the
standard deviation of idleness SD I for each location hi in the environment, after which an average can be
computed from Equation 2.34 [13, 17].

ASD I (t ) =
∑n

i=1 SD I (hi , t )

n
(2.34)

Robustness to fluctuating team sizes
During persistent surveillance it can occur that robots need to respond to some sort of emergency such as
recharging, such that the team size is changed online. The robustness of the surveillance method w.r.t. these
online fluctuations can be measured by comparing the GAI when all robots are participating in the surveil-
lance strategy with the GAI when a robot is active in an emergency. A relative idleness (RI) value is then
computed according to Equation 2.35 [17].

RIG AI =
G AIemer g enc y −G AI

G AI
(2.35)

When the surveillance context becomes multidimensional through the introduction of detecting intruders,
additional performance metrics can be defined. Such metrics can be cumulative based and include the tar-
get detection probability (PD) or the opposite, the probability of non-detection (PND). The expected, or the
mean, time between threat detection (MTD) is an interesting metric to tune the rate of re-visiting locations
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in the target area [27, 57, 66]. It is also possible to measure the number of detected events globally [13, 27], al-
though a hit rate per location is used frequently as well [60]. Another efficiency related performance indicator
is the catch per unit effort, defined as the number of detections of poaching activity divided by the amount of
distance travelled [18].

2.2. Modelling poacher behaviour
The previous section collaborated on the surveillance aspect from various approaches. When monitoring a
given target area, the objective is usually to identify unusual activity. Such two-sided search problems must
incorporate the evasive behaviour of the targets that are to be found [66], although full knowledge of the
dynamic target’s decision making is not available. The decision making of rational entities has been tack-
led through Game Theory in various applications, including the US Coast Guard, Los Angeles Airport and the
conservation of national parks [85]. To this end, allocation and optimisation of limited resources to effectively
design patrol strategies has been studied through the development of GSGs. Such approaches are based on
the repeated SSG in order to model the repeated attacks of intruders [23]. The need to consider multi-UAV
approaches has lead to the development of complex optimisation problems, deeming a bottom-up approach
to understanding the emergent combined behaviour of the poachers and the UAVs that easily incorporates
local spatial communication between agents less complex [2]. Nevertheless, the work performed in the field
of Game Theory has established models that effectively model the bounded human rationality in decision
making. The following sections therefore elaborate on developed models in order to identify relevant tech-
niques to model coordinating intruders.

2.2.1. Rationally bounded decision making
In 1995 the Quantal Response (QR) model was introduced by McKelvey, R. et al. [50] which uses standard sta-
tistical models for decision making of players. This model is an extension of well-developed and commonly
used models of choice that are used in biological, pharmacological and social sciences. The statistical ap-
proach shifted the process of decision making from being deterministic to being probabilistic by introducing
a quantal choice model. Better choices are more likely to occur relative to worse choices, but the best choice
is not made with certainty. The probabilities introduce uncertainty in decision making, which translates into
players not always deciding on the best strategy. The decision making is based on an individual’s relative
expected utility from a choice of strategy. These expected payoffs xi j for strategy j are assumed to be ob-
tained in an unbiased way by the individual i themselves. The probability σ of choosing a strategy j can be
computed using the logistic quantal response function in Equation 2.36 [50].

σi j (xi ) = eλxi j∑Ji
k=1 eλxi k

(2.36)

Where J i is the set of pure strategies of individual i . The behaviour of the individual can be tuned using the
estimated λ parameter, which defines the magnitude of erroneous decision making. A λ equal to 0 results in
continuous error making decisions, whereas an infinitely large λ results in no error making.

The model was tested in the context of game theory in order to model individual human behaviour and also
incorporated a learning aspect. Although not elaborated on in detail, it was stated to be based on the gain of
experience from observing the real payoffs of chosen strategies after performing them and comparing these
values to the expected payoffs [50].

The QR model was adjusted to incorporate bounded rationality, which means that a person may not be aware
of all its surroundings or may be influenced in it’s decision making by the interplay between emotion and
cognition [55]. The work of Nguyen, T. et al. [55] extend upon this and part from the discussed QR model,
despite its significant support from literature in modelling human decision making [55, 96]. The assumption
used in the QR model which states that human stochastic response is purely based on the expected payoff is
relaxed. Instead, a subjective utility function (SU) is proposed defining the SUQR model. This approach uses
a linear combination of the reward, penalty and the marginal coverage on target to compute the probability
σ of choosing a strategy j using Equation 2.37 [55].
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σ j = e
λÛ a

j∑
k eλÛ a

k

= e
λ
(
w1x j +w2Ra

j +w3P a
j

)
∑

k e
λ
(
w1xk+w2Ra

k +w3P a
k

) (2.37)

Where w1, w2, w3 are the weights of the marginal coverage on target x j , the reward R j and the penalty P j

respectively. This marginal coverage on target can be translated to the probability of a local authority being
on the target’s location the moment the intruder expects to be there. The superscript a refers to the attacker,
or the poacher in this case.

Compared to the classic utility function (Equation 2.36) as used by the QR model, the authors found that this
new approach more accurately predicts human decision making. The downside is that this model requires
the estimation of 3 parameters that determine the weights of the reward, penalty and the marginal coverage
respectively instead of requiring an estimation for λ only. The λ parameter is set to 1 in the proposed SUQR
model, as this does not lose generality. The authors also proposed including the reward and penalty of the
defender in the subjective utility function, thus requiring 5 parameters to be estimated. Although this ap-
proach did not improve the prediction of human decisions (see Table 2.1) and was further left unexplored in
the remainder of their work [55].

It was proposed to estimate the SUQR parameters using Maximum Likelihood Estimation, which was shown
to give a unique local maximum to compute the optimal weights. This requires knowledge regarding the
defender strategies and data covering human decisions in such situations in order to compute the weights.
Rather than computing the weights for each individual independently, Nguyen, T. et al. proposed to com-
pute the weights of the general population of intruding humans due to the lack of available data. This is a
relevant topic for this research as well, since knowledge on individual attackers may be marginal or unavail-
able. It was shown in [55] that the SUQR model outperforms QR in accurately predicting human decision
making while using limited data to estimate parameters [55, 85]. A test was performed to measure the pre-
diction accuracy of SUQR by comparing the predicted choice distribution to observations of players’ choices.
This prediction accuracy of SUQR using three parameters showed the best performance, as can be seen in
Table 2.1. A slightly modified Bayesian SUQR model was proposed by Yang, R. et al. that estimated a unique
weight vector for each individual intruder in order to account for heterogeneous intruder [93]. However, the
lack of knowledge regarding poachers and the lack of available data regarding their activities deems such an
approach inappropriate within the scope of this thesis.

Table 2.1: Comparison of prediction accuracy of QR and SUQR [55].

QR 3-parameter SUQR 5-parameter SUQR
8% 51% 44%

2.2.2. Adaptable decision making
A novel human decision making model was proposed by Gholami, S. et al. [28], although this work was lim-
ited to fully rational intruders [85]. This work was therefore extended upon by Wang, B. et al. by considering
the fact that intruders may not be perfectly rational in making their decisions. This is caused by the com-
plexity of the situation which would prevent humans from computing and comparing every action’s payoff,
thus using some heuristic approach to choose an action. This is true when criminals take action as well, since
many criminals usually act on real-time information only rather than observing the actions and/or strategy
of local authorities in order to find opportunity [96]. The proposed model builds on the previously discussed
SUQR model by also addressing adaptive decision making based on the intruder’s inclination I R

i in a repeated
SSG and allowing intruders to collaborate such that their payoff can be increased.

Intruders receive payoffs upon completion of a task, such as attacking a certain location in the environment
independently. However, the intruders also have the option to cooperate. The payoff is shared evenly in such
a case, but the total payoff is increased by a bonus reward ϵ that motivates intruders to cooperate. This bonus
reward is justified from the perspective that collaborating intruders can share information and smuggling
channels in order to commit further destructive crimes associated with poaching. Summarising, the intrud-
ers make two decision in this model. The first being what target to attack, and the second being whether to
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cooperate with another intruder. Collaboration is only established upon agreement from both parties how-
ever. Furthermore, the authors assume that intruders have non-overlapping subsets of targets such that the
probability of being caught at the same time is reduced. The payoffs of the attackers Ra therefore depend
both on success and on collaboration, as shown in Table 2.2 [85]. Success is achieved when a target is at-
tacked which is uncovered by a UAV, whereas the opposite holds for failure.

Table 2.2: Poacher payoffs are shared when collaborating [85].

Collaboration Status Each attacker’s payoff
asuccess

1 asuccess
2 (Ra

i +Ra
j +2ϵ)/2

asuccess
1 a f ai l ur e

2 (Ra
i +P a

j +ϵ)/2

a f ai l ur e
1 asuccess

2 (P a
i +Ra

j +ϵ)/2

a f ai l ur e
1 a f ai l ur e

2 (P a
i +P a

j )/2

Wang, B. et al. proposed the adaptive subjectivy utility function to incorporate adaptive decision making in
Equation 2.38 [85].

ASU R (xi ) =(
1−d · I R

i

)
ω1xi +

(
1+d · I R

i

)
ω2Ra

i + (
1+d · I R

i

)
ω3P a

i (2.38)

Where d is a parameter that addresses situations where not enough information is exposed to the attacker.
It is defined according to Equation 2.39, in which Nr is the total number of rounds played in the repeated
SSG and r is the current round. Due to the ABM model discretising time, this can be adapted by considering
the total simulation time and the time since the simulation started. The parameter therefore increases as
time passes, indicating that the intruders gain more information and experience. The inclination in Equation
2.38 is computed according to Equation 2.40, where C is a constant. av g r

i is the average payoff attackers

earn at target i per attack in round r , whereas av g al l
i is the overall average payoff of all targets the attackers

received in round r . R is the current round, such that the payoffs of all performed rounds are included in the
inclination. This definition of the inclination indicates that the inclination increases as more attackers earn a
payoff at a given target. It therefore motivates intruders to attack a target i based on historical performance
of other intruders [85].

d = 1

Nr − r
(2.39)

I R
i =

∑R
r=1(

av g r
i −av g r

al l
C ·Var(av g r

i −av g r
al l ) )

R
(2.40)

The probabilities of attacking a target are computed according to this adaptive subjective function in a similar
fashion compared to Equation 2.37.

2.2.3. Collaborative and opportunistic decision making
Based upon the model from Wang, B. et al. [85], Zhao, Y. et al. proposed the Collaborative Opportunistic
Security Game (COSG) model [96]. This approach divides the target area into cells of the same size (see
Figure 2.6) and discretises time such that transition matrices can be defined. Each cell is considered a target
and the intruder aims to commit opportunistic crimes in these cells. This opportunistic characteristic comes
from the behaviour of criminals where only live information is used to identify crime opportunities rather
than observing the strategy of the local authorities for a longer duration of time. The intruder therefore only
commits a crime if no local authority is present at the target location. In case intruders agreed to cooperate,
their total payoff is shared fifty-fifty, similar to the model proposed in [85]. Transition matrices are introduced
to model the motion and decision making of the intruders using a discrete-time discrete-space Markov chain.
This model does not incorporate the adaptive behaviour introduced by Wang, B. et al. however. The decisions
are purely based on the SU in Equation 2.37 while considering the option to collaborate via the attractiveness
of a choice computed from Equation 2.41 [96].
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Figure 2.6: Motion modelling using opportunistic adversary decision making limited to bounded rationality [96].

At t ( j ) = max
{

pnot collaborate
Ψ1

( j ), pcollaborate
Ψ̄1

( j )
}

(2.41)

The probability of an intruder Ψa choosing to move from a cell i to target cell j is denoted by pΨa (i , j ) and
is computed using Equation 2.42 by considering the attractiveness At t ( j ) of target j and the probability dis-
tribution cb,t ( j ) of the local authorities being present at the target location. The attractiveness is based on
the probability of choosing target j that is computed using the subjective utility function of the SUQR model
discussed previously [96], see Equation 2.43. This approach does not consider adaptable behaviour of the
intruders, as proposed by Wang, B. et al. in [85].

pΨ1 (i , j ) = max
{(

1− cb,t ( j )
)
· At t ( j )

}
(2.42)

pnot collaborate
Ψa

( j ) = eSU not collaborate( j )∑
I∈Ta eSU not collaborate(I )

(2.43)

2.2.4. Quantifying input for decision making models
Quantification of the rewards and penalties has not been discussed so far. This section aims to elaborate
on this aspect by introducing the wildlife dimension, since poachers aim to find animals to achieve their
objectives. Quantification of the rewards can therefore be achieved by considering the wildlife population
distribution, whereas other environmental factors such as slope can be used to quantify the penalties [55]. In
turn, the wildlife density depends on the type of animal species under consideration, its habitat, the presence
of communities, water sources and animal migration between these water sources [70].

Animal movement in agent-based models can be modelled using different options, depending on the scale
of migrations distance. Random walk theory is a basic model that knows a number of extensions, such as
correlated random walk and biased random walk. Whereas random walk theory assumes equal probabilities
of moving in any direction, correlated random walk involves a correlation between successive steps such that
a persistent direction of movement is realised. Biased random walk is similar since it involves a constant
bias that directs animal movement towards a preferred direction or location, such as a water source. Levy
flights can also be used when animals paths involve large spatial or temporal scales. Another direction is
behaviour-based movement models that use multiple stimuli to make multifaceted decision making. This
involves considering the internal state of the animal, as well as abiotic factors. Their disadvantage is the lack
of available empirical data to validate such models [51]. From a variety of approaches using artificial intelli-
gence and machine learning, it was found that random forests are most accurate at predicting habitat usage
by black rhinos [49]. These animals are a critically endangered species due to poaching and live in various
countries in Africa, including Namibia where the environment is located that is used in this research [49, 88].
Kidway, Z. et al. [42] show that no single model should be used for management in conservation settings,
since different model structures result in different population densities. Inaccurately modelling species pres-
ence and behaviour results in inappropriate conservation strategies as well [30, 49]. As such, the research
by Lush, L. et al. identified abiotic habitat variables that influence the presence of black rhinos. The most
important variables were found to be the density of vegetation and the browse availability [49]. Birth rates
and death rates also influence the population density, as shown in [19]. These variables, among others, need
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to be incorporated to accurately describe the wildlife population density and how this fluctuates over time
under influence of environmental factors and animal behaviour.

2.3. Learning techniques
The previous sections indicate the amount of work that has been put to solving the multi-agent surveillance
problem. The various approaches indicate the many challenges within this field of research [66]. A common
feature that each of the discussed surveillance model lack is the possibility and flexibility to adapt the surveil-
lance strategy according to the behaviour of dynamic targets. Such learning techniques can in turn be used
to predict criminal activity.

Wu, H. et al. proposed an adaptive decision making model (see Section 2.1.4) to select tasks based on expe-
rience regarding their payout [89]. The approach does not include other environmental features that could
influence these payouts, neither is it an approach focused on surveillance in a conservation context. Never-
theless, the approach connects with prioritised surveillance at a high level. Based on the fact that uniform
distributions of crime are far from reality, there is a need for efficient and effective allocation of resources and
prioritisation towards locations with high probability of criminal activity [15, 76]. This section connects with
prioritised surveillance by discussing work incorporating learning techniques that predict what action robots
should take given the circumstances. This is specially beneficial in complex security contexts where intruders
search for weaknesses in the defence. The flexibility to adapt to intruder behaviour could therefore improve
surveillance effectiveness since initial model parameters may not be and/or remain effective [78].

Game Theory based attacker-defender Stackelberg games have been used extensively to predict intruder be-
haviour in green security contexts and adapt surveillance strategies accordingly. These approaches are based
on substantial knowledge of criminal behaviour and mechanisms in certain areas as identified in [91]. The
latest work is CAPTURE, providing anti-poaching strategies using environmental attributes to predict where
poachers will go. These attributes include wildlife densities, habitat, slope and various distances such as to
the closest river, road or village [56]. The most common metric for crime prediction is the hit rate [60]. Patrol
effort at locations can also influence intruder behaviour, meaning that time spent by law enforcement can
also be used to predict criminal activity [18]. These centralised solutions explicitly incorporate the intruder’s
model in the path planning solution, rendering these surveillance techniques difficult to generalise to online,
distributed environments [17, 29].

In multi-agent systems the agents are independent and have access to a sub part of the environment sur-
rounding its own current location. Multi-agent learning (MAL) therefore requires that each agent individually
incorporates a learning algorithm such that adaptive behaviour can be implemented. This is to prevent ini-
tial system configurations from remaining ineffective in dynamic environments. Joint adaptive behaviour is
then obtained through coordination among UAVs regarding their learning progress. This is usually achieved
through applying machine learning algorithms used in single agent systems to multi-agent systems, such that
MAL becomes an emergent property [41]. More specifically, it is achieved by communicating newly learned
rules or by exchanging new observations and adding these to the training data to update trained models
[73, 78, 94]. In [64], a Local Weighted Projection Regression (LWPR) method is proposed as a computationally
efficient and effective supervised algorithm to learn from a number of environmental features to find optimal
paths for a single robot. The LWPR is computationally efficient even in large dimensional spaces thus making
it possible to consider various environmental features that influence poacher behaviour. The approach is yet
to be introduced in a real-time learning environment and could be used to learn from adaptive poaching ac-
tivity due to its support for incremental learning [64, 84], which is achieved through continuously extending
the training data with newly made observations [13, 79]. Heuristics were proposed to increase the probability
of target detection in [67] as an approach to improve effectiveness of a persistent surveillance problem in
a single UAV setting. Deep reinforcement learning was proposed in [38] to improve surveillance strategies.
A neural network is trained using internal beliefs of wildfire locations and reward functions in a persistent
surveillance setting. The approach is shown to be useful in domains with real-time trajectory planning as
the model learns to adjust the heading based on locally made observations. Reinforcement learning has also
been used in discrete surveillance such that the time to cover a target area is minimised [90]. A distributed
deep Q-learning method is proposed in [83] that aims to find static targets using a swarm based approach as
quick as possible. These methods train the model using a training dataset, after which the robots can make
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Figure 2.7: Comparison of Bayesian Network and Regression models with respect to the interactions between variables [98]

individual decisions utilising established Q-value tables. A practical implementation utilising crime occur-
rence maps to predict crime and adjust ranger patrol routes accordingly is proposed in [18]. The authors also
emphasise the need to continuously update the patrol routes as the occurrence maps change over time under
influence of changed law enforcement strategy [18].

A learning approach based on Dynamic Bayesian Networks (DBN) is proposed by Zhang, C. et al. to ac-
count for adaptive intruder behaviour [94]. Patrol areas are assigned from a central perspective by learning
incrementally through adding new observations of adaptive opportunistic criminals to the training data and
updating the Bayesian Network [7, 94]. It has become popular to represent uncertain systems and due to its
ability to identify causal relationships (see Figure 2.7) and perform risk estimation analysis [7, 98]. Bayesian
Networks are graphically represented as directed acyclic graphs (DAG) containing interconnected nodes. The
nodes represent the random variables and their network defines the hierarchy of conditional independence.
The optimal DAG for a given dataset is obtained by optimising the likelihood of the model given the data [7].
Since the number of possible structures scales exponentially with the number of variables, it is computation-
ally expensive to find the most probable network. As such, algorithms have been developed to improve the
computational costs [7, 94]. Zong, F. et al. compared Bayesian Networks to Bayesian Regression and con-
cluded that the ability to define dependencies also resulted in better accuracy [98], although not always [7].
Besides, modelling poacher behaviour could benefit from causal relations among variables since many en-
vironmental attributes are not independent variables, which collides with assumptions on which regression
models are based [98].

Zhao, Y. et al. point out the difficulty of collecting criminal data required to train machine learning meth-
ods [96]. Low crime occurrence rates may even disrupt continuity or relevance among crimes such that the
observations become independent from each other, thus limiting the prediction accuracy [60]. Risk Terrain
modelling (RTM) is a method aiming to predict crime occurrences based solely on environmental attributes
rather than using historical data and has proven to be successful [15]. This introduces the need to identify
crime specific environmental attributes, since these can be different between countries and between differ-
ent types of criminal activity [14, 45]. RTM assumes that these features are persistent over time, similar to
regression techniques. Risks computed by RTM therefore remain for long time spans, leaving changing re-
lationships unaccounted for. It was shown that RTM did outperform other methods, among which Kernel
Density Estimation (KDE) [60]. This method builds on a retrospective approach that utilises past incident
locations to predict crime using kernels. Caplan, J. et al. proposed a Boolean integration of RTM and KDE ap-
proach to predict crime levels using measures of vulnerability and exposure. The Prediction Accuracy Index
was used to show superior performance when RTM and KDE were integrated [15].
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2.4. Research gap
Various different techniques have been developed to solve the persistent surveillance problem, slowly evolv-
ing from discrete single robot surveillance to distributed swarm based solutions that consider operational
constraints. Game Theory based approaches achieve optimal patrol routes through detailed poacher models
that rely on extensive knowledge of the poachers. In turn some work has been performed to design surveil-
lance models aiming to detect black-box intruders. Most of the research has focused on 2D problems, there-
fore leaving work to be done in the field of surveillance in 3D environments as well. Previously developed
approaches for surveillance do not necessarily remain effective as poachers adapt to their environment. In
fact, most surveillance approaches consider simple, non-adaptive targets. Within the context of this project,
the targets are the poachers and have their own unique objectives. The discussed models describing the de-
cision making of poachers rely on rewards and penalties, although these do not explicitly incorporate the
presence of wildlife populations to quantify these rewards and/or penalties. Machine learning techniques
have been applied to improve patrol routes and to optimise surveillance effectiveness, but without consider-
ation of the target’s objective [17, 44]. A set of performance indicators was identified from literature that can
measure the effectiveness of surveillance in terms of a number of dimensions. Since initially trained models
may not be effective due to the limited size of the training data set, continuously updating the training data
with new observations can be used to further optimise surveillance techniques and improve effectiveness
[18, 73].

These machine learning techniques have yet to be used for distributed multi-agent persistent surveillance
problems with dynamic targets. Reinforcement learning techniques are complex in nature and are diffi-
cult to optimise for designing cooperative surveillance in multi-UAV solutions [17]. Instead, mapping crime
hotspots has been an effective technique to fight criminal activity. Besides, there is an urgency to respond to
dynamic environments, which current approaches lack. This is caused by real world scenarios where crime
evolves under the changing behaviour of wildlife in dynamic environments and due to changing surveillance
strategies. These two effects influence criminal patterns [14], but none of the surveillance approaches con-
sider both aspects simultaneously. Additionally, since rangers are unable to patrol the entire area of protected
parks, their collected records regarding detected illegal activities is limited to about 60% of the total area. Un-
certainty in crime data is to be considered to correctly model poacher behaviour due to this inability to patrol
the vast areas completely and thoroughly [29].

The identified research gap is that distributed persistent surveillance models do not continuously learn and
adapt to intelligent and dynamic black-box intruders to prioritise their surveillance efforts while considering
uncertainty in poacher activity observations. In addition, there is a need to incorporate wildlife dynamics
and to extensively analyse adaptive surveillance performance in scenarios where intelligent dynamic targets
can adapt to changing surveillance strategies.
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Research proposal

This chapter extends upon the performed literature review and the research gap that was identified in Section
2.4. The research objective and its relevant research questions are defined below in accordance with the
problem context that was described in the Introduction, such that the objective of this research proposal is
clarified. The scope of this project is limited due to the time constraint of this project and is discussed in this
chapter as well.

3.1. Research objective
There is a need to achieve efficient surveillance in green security contexts. Context specific features such as
the vast target areas and lack of infrastructure demand for distributed and autonomous surveillance systems.
Persistent surveillance is also an important requirement. Moreover, due to the intelligence of poachers, the
persistent surveillance system needs to prioritise and adapt to changing poacher behaviour in order to re-
main effective over time. The research objective of this thesis is formulated accordingly to include all various
features of the subject. The objective is:

”To improve effectiveness of a distributed multiUAV approach to coordination of persis
tent surveillance that autonomously detects coordinating and adapting poachers in vast
target areas by implementing online machine learning based on observing poacher be
haviour.”

As was identified in Chapter 2, effective allocation of resources is required to solve the problem of criminal
activity in the context of green security [15, 76]. The absence of digital infrastructure asks for a distributed
approach that depends on local communication to coordinate and prioritise surveillance efforts to areas with
high rates of criminal activity [97]. Furthermore, this work considers persistent surveillance since poachers
can enter the environment at any moment. Locations therefore need to be monitored continuously since it
cannot be assumed that poachers do not target areas that have previously been monitored. The surveillance
models described in detail in Section 2.1 meet this requirement through evaporating pheromone concen-
trations or through task thresholds [9, 17, 31, 32, 89, 97]. Analysing and measuring the effectiveness will be
achieved through ABM and according to a sensitivity analysis using a set of performance indicators obtained
from literature. By achieving this objective, this thesis will provide an approach to persistent surveillance co-
ordination that is capable of learning from intelligent, adaptive and coordinating poachers. The novelties of
this proposal are threefold. First, an approach to distributed multi-UAV coordination of prioritised and per-
sistent surveillance is proposed to detect poachers, while accounting for limitations due to uncertainty, range,
communication and kinematic constraints. These poachers can make intelligent decisions based on experi-
ence and wildlife dynamics and their population distribution. Second, the surveillance technique incorpo-
rates online machine learning through the use of Bayesian Networks such that surveillance effectiveness is
improved. Finally, the effectiveness in terms of performance indicators and the secondary effects resulting
from poachers adapting to learning surveillance is to be analysed extensively using a sensitivity analysis.
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3.2. Research questions
Based on the previously discussed aspects of the multi-UAV surveillance topic and the stated research objec-
tive, the following main research question was formulated:

”Howdoes a learningmultiUAVapproach to coordination of autonomouspersistent surveil
lance influence effectiveness of detecting coordinating and adapting intruders in vast tar
get areas?”

The effectiveness will be quantified according to performance indicators based on Section 2.1.6. Given the
context and the main research question, a set of sub questions can be defined as well. These are used to guide
this research and cover the different aspects of the problem. The sub questions are formulated below:

• What aspects of the environment that was developed in previous research can be incorporated in this
approach to agent based surveillance?

• What state-of-the-art technique accurately models a poacher’s adaptive decision making in which poach-
ers have the ability to coordinate?

• How can animal dynamics be modelled in a simplified manner such that it can be used as realistic input
for a poacher’s decision making?

• How to quantify rewards and penalties used for the decision making of poachers?

• How do model input parameters describing the poacher’s decision making, influence poacher’s behaviour?

• What set of model input parameters describing the poacher’s decision making, results in realistic poach-
ing behaviour?

• What state-of-the-art technique accurately models multi-UAV surveillance while accounting for con-
straints that are relevant in green security?

• What are the performance characteristics of the UAV to be used in the multi-agent based model?

• What performance indicators can be used to quantitatively analyse and compare effectiveness of multi-
UAV persistent surveillance models?

• How do model input parameters of the multi-UAV persistent surveillance model influence surveillance
effectiveness?

• What online machine learning technique can improve effectiveness of the multi-UAV persistent surveil-
lance model while accounting for uncertainty?

• How do model input parameters of the machine learning technique influence the effectiveness of a multi-
UAV persistent surveillance model?

• How does adaptive poacher behaviour influence effectiveness of a learning multi-UAV persistent surveil-
lance model?

3.3. Scope
This research is limited to some extent by the available project time frame of nine months. The research ob-
jective in Chapter 3 has also been narrowed down to perform detailed analysis of the proposed method to
identify an answer to the identified research gap. The additional simplifications discussed below reduce the
complexity of the model and the analysis, while improving the feasibility of this research project.

In order to perform extensive analysis of the model input parameters on surveillance effectiveness within the
nine month time frame and without having to account for interference from various sub-models, pursuit of
the intruders is left out. Once intruders are detected by a UAV it is assumed that the intruder is apprehended
immediately without being able to execute an escape plan. The reason to exclude local authorities, rangers
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within this context, from the model is closely related to the above. Despite the fact that UAVs are not physi-
cally capable of apprehending intruders, the presence of rangers could interfere with other model dynamics.
The need to account for interference from sub-models is therefore prevented, allowing for more straightfor-
ward and extensive analysis of surveillance effectiveness. The discussed HAPF-ACO model does consider
range constraints. As consequence, this aspect of UAV operations is not neglected, although the recharging
policy will be a simplified version of reality as well. The reason for this is the time frame that is available for
the literature review.

Despite the inherent 3-dimensional dynamics of UAV flight, literature has mainly focused on solving the
surveillance problem in a 2D context. Although some work towards surveillance has been done in 3-dimensional
space, this is not regarded as the next challenge within UAV surveillance [39, 57, 95]. Due to the absence of
high obstructions in national parks, this is not considered to influence results significantly. It is therefore as-
sumed that UAVs have built-in capability to adjust their flight altitude in order to prevent collisions if needed.

The targets discussed within the context of this research have the objective to poach wildlife, which will be
modelled in a simplified manner such that wildlife presence is considered. This added dimension will im-
prove the realism of the model output by quantifying the input of the decision making model used for the
poachers. The movement of wildlife will be considered, although re-population and the wildlife’s influence
on the habitat’s vegetation will be neglected. To further improve realism, this research project will consider
day and nighttime influences on detection probability, poaching activity and wildlife movement.

The remaining chapters further elaborate on how these various aspects are combined to provide answers to
the research questions.
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Building upon the stated research objective and research questions in Chapter 3, this Chapter continues by
defining the research steps and the research methodology.

ABM is at the basis of the to-be-developed model required to answer the research questions. This framework
consists of describing the static and dynamic properties of the environment, the agents, and the interactions
among and between the agents and the environment. It uses a bottom-up approach since the behaviour
of individual agents is described, from which emergent behaviour is analysed through simulation [51]. This
thesis is also an extension of existing work addressing anti-poacher surveillance through ABM, making it a
logical choice of framework.

The poachers that need to be detected by the UAVs are to be modelled first. Recent work in green security from
a Game Theory approach proposed the COSG model that can accurately model human decision making and
incorporates the possibility for collaboration among poachers. It considers bounded rational humans aiming
to exploit opportunities and accurately represents poacher decisions. The COSG model is based on the SUQR
model, but does not allow for adaptive behaviour [96]. By extending the COSG model through implementa-
tion of the ASU function (Equation 2.38) as replacement for the SU function, adaptive poacher behaviour can
be simulated. This is considered more realistic since poachers can use their past experience to improve their
tactics [56, 85]. These are to be quantified using wildlife population density dynamics and abiotic environ-
mental factors. The ASU function weights these rewards and penalties to compute probabilities of choosing
an action. Upon implementation of the ASU function in the COSG model, a set of parameters need to be
estimated such that realistic poacher and wildlife behaviour can be modelled. This will be achieved through
sensitivity analysis, because there is no historic data available. The results will be analysed using heat maps
such that realistic behaviour can be obtained from validation with expert knowledge of the environment.

Surveillance is to be achieved using a team of autonomous UAVs, since this type of law enforcement has
shown to be most effective [53]. The context of the problem has resulted in a set of requirements that the
surveillance system must adhere to in order to be considered relevant. Persistence of surveillance is required,
since the poachers can enter the environment at any moment. Locations therefore need to be monitored
continuously because we cannot assume that poachers do not target areas that have previously been moni-
tored. The surveillance models described in detail in Section 2.1 meet this requirement through evaporating
pheromone concentrations or through task thresholds [9, 17, 31, 32, 89, 97]. These evaporation rates can
be altered to match the importance of a given location, thus realising prioritised surveillance [17]. This is
preferred due to the vastness of the target area that is to be monitored effectively and also due to poacher
behaviour. Since wildlife is their ultimate target, it can be expected that some areas within the target area
are expected to experience more illegal activity. The ability of individual UAVs to store digital maps of the
environment also enables distributed coordination [31], where explicit local communication can be used to
synchronise and distribute information. Through updating these local maps, online adaptation to dynamic
environments is achieved and systems become robust to hardware failure [32]. Such an approach is relevant
due to the lack of digital infrastructure in vast target areas such as national parks. In this thesis a multi-
UAV persistent surveillance approach is proposed based on HAPF-ACO, since this model also incorporates
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stochastic revisit periods and uncertainty in observations, see 2.1.5 for details. Besides, this is the only per-
sistent surveillance model combining distributed coordination with range and kinematic constraints. The
approach combines ant colony optimisation and artificial potential fields. Artificial potential fields are used
to avoid collisions and other threats, but also to detect nearby targets. The ant colony optimisation aspect of
HAPF-ACO introduces persistent surveillance, although not prioritised [97]. This surveillance model is to be
extended to include prioritised surveillance based on the proposed methods in Sections 2.1.1 and 2.1.3.

Although the HAPF-ACO model incorporates a target existence probability map that is continuously being
updated, the update mechanism does require information regarding the target [97]. The possibility exists
that targets can enter the environment at any time, rendering this approach unrealistic. A Bayesian Network
learning technique is proposed to replace this update mechanism and to predict poacher activity such that
prioritised surveillance can be achieved. Due to its ability to find optimal dependence among variables using
DAGs it is more suitable than Bayesian Regression. An optimisation step is required to find the optimal DAG,
but this can be achieved through dynamic programming. It is therefore less time consuming than imple-
menting reinforcement learning based on neural networks to perform predictions. Finally, BNs are not fully
deterministic as it uses a probabilistic approach to machine learning, making it suitable to perform predic-
tions in uncertain environments [7, 98].

After implementing the models for the various agents within the ABM framework, the developed model is to
be used in simulations. These simulations will be used to measure a set of Key Performance Indicators (KPIs)
such that performance and effectiveness of the proposed model can be compared to the baseline model,
which is build upon the state-of-the-art HAPF-ACO model. Two models utilising BNs will be developed (see
Figure 4.1) that can be used to analyse the influence of adaptive poachers on surveillance performance. A
sensitivity analysis of the prioritised surveillance model parameters will be executed as well, such that in-
depth performance analysis can be performed. The results are to be used to verify the hypotheses stated
below and to identify correlations such that model behaviour can be explained. Finally, this will be used to
answer the research questions stated in Chapter 3.

Figure 4.1: Workflow of the experiment setup describing the involved models.

The basis for distributed persistent surveillance is the HAPF-ACO model, implemented in the baseline model
in Figure 4.1. The autonomous UAVs are moving according to this algorithm in order to detect poachers,
that are being modelled using the Game Theory based COSG model. This model is adjusted to incorporate
adaptive poacher behaviour, using the Adaptive Subjective Utility (ASU) function. The baseline model is
used to perform sensitivity analysis of the poacher and wildlife models such that realistic behaviour can be
achieved through validation with expert knowledge. By performing simulations with this baseline model
that incorporates realistic model input parameters, training data is to be obtained from the UAVs that detect
poacher activity and store these observations. This data is used to optimise a BN such that poacher activity
can be predicted. This BN is then continuously being updated through online learning in Model 1 and 2,
which also incorporate the proposed prioritised HAPF-ACO. The difference between Model 1 and 2 is that
Model 2 does not include the ASU, such that adaptive poacher behaviour is excluded. This allows for analysis
of distributed, online machine learning in adaptive environments without accounting for secondary effects
from adaptive poachers w.r.t. learning surveillance. Model 1 is used to simulate and analyse the proposed
model that aims to improve effectiveness of online learning in complex dynamic environments compared to
the baseline model. It will also be used in a sensitivity analysis to identify correlations between model input
parameters and model performance in terms of KPIs based on Section 2.1.6.
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4.1. Simulation setup
This section elaborates on the used software frameworks that are the basis of the model.

This research is using an ABM approach that requires software in order to implement models and obtain
simulation results to test the hypotheses discussed in the following section. Two software packages offering a
framework for agent-based, bottom-up programming that extensively support ABM are NetLogo 1 and Mesa
2. Both of these frameworks were introduced during the master courses related to ABM. Although NetLogo
provides a relatively simple user experience, Mesa is Python based and therefore benefits from the exten-
sive Python community. The Python based Mesa package will be the foundation of the model since Python
is commonly used in the industry [65]. The various aspects of the research objective require a variety of
modelling techniques to be used. Python also allows the model to be adapted when new, state-of-the-art
techniques that are still to be introduced and would be able to extend the scope and overcome limitations of
current techniques. Python, combined with the Mesa framework, is also the preferred software framework
since most programming experience has been obtained through use of these frameworks.

The available hardware that is to be used to perform the simulations consists of, at the time of writing, a
desktop with an i7-3770 CPU @3.4GHz and 8GB RAM. A laptop with lower specifications will be used mainly
for development and analysis purposes. This enables simultaneous development and simulation execution.
Since large environments combined with small time steps require long simulation runs in order to perform
simulations, this setup improves the feasibility of the project.

4.2. Hypotheses
The adaptive behaviour of intelligent poachers allows them to evade areas where the rate of success is lower.
This effectively means that poachers adapt to surveillance from law enforcement and try to achieve their
goals in a different way. The result is that surveillance systems that are effective initially, will fall short as time
progresses. Distributed online machine learning using Bayesian Networks is proposed to overcome this. A
Bayesian Network machine learning technique is proposed in an online, distributed learning environment
to improve effectiveness by predicting poacher activity. It is expected that incremental learning to predict
poacher activity will improve the effectiveness of detecting coordinating and adaptive poachers using a pri-
oritised HAPF-ACO surveillance model. It is therefore hypothesised that the effectiveness of the prioritised
HAPF-ACO model that utilises online learning through Bayesian Networks will remain effective, whereas the
baseline, the HAPF-ACO model, will degrade over time as the poachers adapt their behaviour. The discussed
simulation setup will test these hypotheses by generating data describing the models’ effectiveness, which is
further discussed in Chapter 5.

1NetLogo Documentation: https://ccl.northwestern.edu/netlogo/docs/
2Mesa Documentation: https://mesa.readthedocs.io/en/master/

https://ccl.northwestern.edu/netlogo/docs/
https://mesa.readthedocs.io/en/master/




5
Results, outcome and relevance

This chapter briefly summarises what can be expected from this project.

5.1. Results and relevance
The results of this thesis incorporate a number of milestones. First, a multi-agent based model along with
documentation regarding its use is expected to be finished by the mid-term meeting. A modular model de-
sign allows for simple on/off toggling of various model attributes and performing simulations in different
scenarios. This also enhances the adaptability of the model to future extensions and/or improvements such
that the model can be used as a platform to explore possible recommendations from this research or else-
where. Along with the finalised model, a mid-term report and presentation will be provided that summarise
the performed work.

The developed model is to be used to simulate the interactions of the agents as discussed in Chapter 4. These
simulations generate datasets describing the behaviour and performance of the implemented techniques as
result of a set of input parameters. Sensitivity analyses are performed to identify quantitative relations be-
tween input and output by considering a set of performance indicators based on the literature in Section
2.1.6. The simulations are also used as a means to compare the baseline model to the performance of the
prioritised surveillance coordination approach in model 1 and to identify explanations for behavioural char-
acteristics. Providing answers to the research questions defined in Chapter 3 is achieved through considering
the determined relationships and emergent behaviour of the model. The data analysis of these results is to
be incorporated in the paper and the thesis report.

The model will be a novel ABM approach to wildlife conservation in national parks. Its modular design aids in
designing optimal techniques for various environments in a systematic, cost-effective and controlled man-
ner. It also addresses the uncovered topic of machine learning which can be used to adapt the surveillance
strategy and to predict poacher activity in a context where autonomous, distributed and persistent surveil-
lance are modelled to detect intelligent humans in a green security context. The performed research and the
findings will be presented during the graduation defence.

5.2. Validation and verification
In order to determine whether the to-be-developed simulation model represents realistic scenarios at an ac-
ceptable level, validation steps are required. Although the model environment is based on expert knowledge,
assumptions and the absence of data regarding model input and output requires cross-validation with ex-
pert knowledge to accurately describe poacher and wildlife dynamics. What-if analyses includes considering
model output when subjected to extreme inputs and can be used to verify consistent model performance.
Since the model consists of four main aspects, the intruders’ behavioural model, the wildlife’s motion, the
surveillance model and the machine learning model, the validation is required to be performed at each of
these aspects individually. This consists of carefully calibrating parameters such that realistic model be-
haviour can be obtained. The to-be-developed model will also be compared to the state-of-the-art HAPF-
ACO model using a set of KPIs to measure the detection effectiveness. As part of the parameter estimation
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and sensitivity analysis, the simulations are to be performed in multitude to show that the model is capable
of reproducing similar model output. This can also be visualised using the coefficient of variation.

Finally, verification of the computerised multi-agent based model is performed by critically analysing the
programming implementation to ensure correctness at the model definition level. This also involves exten-
sive testing and debugging where required.



6
Planning

The contents of this Chapter briefly mention the milestones of this thesis, which have previously been dis-
cussed in Chapter 5, and relates these to the time frame. A Gantt Chart is displayed in Appendix 8 visualising
the workload and transitions among the various project aspects. The various tasks are subdivided into three
phases; literature review, initial phase and the final phase.

The results of the literature review include this report, the research proposal, and is finalised in the kick-off
presentation. A three month long initial phase is started afterwards, during which the main effort is put into
developing and implementing the model and simulation setup (discussed in Chapter 4) such that simulations
and validation with expert knowledge can be performed. The initial phase is concluded in January 2021 with
the mid-term meeting. By this time the developed model is to be presented along with an updated project
planning, as mentioned in Chapter 5. Although simulations and data analysis are to be initiated prior to the
mid-term meeting, most of the remaining work regarding this aspect is performed during the final phase.
Writing of the paper and the thesis report is done in accordance with the simulations and the data analysis,
from which the results are to be presented in May 2021.
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7
Conclusion

Ongoing poacher activity threatens iconic animal species. UAVs have found many applications in green se-
curity, although an extensive literature review identified open research opportunities. The identified research
gap is that distributed persistent surveillance models do not continuously learn and adapt to intelligent and
dynamic black-box intruders to prioritise their surveillance efforts while considering uncertainty in poacher
activity observations. In addition, there is a need to incorporate wildlife dynamics and to extensively anal-
yse adaptive surveillance performance in scenarios where intelligent dynamic targets can adapt to changing
surveillance strategies. This research gap was transformed into the following research question:

”Howdoes a learningmultiUAVapproach to coordination of autonomouspersistent surveil
lance influence effectiveness of detecting coordinating and adapting intruders in vast tar
get areas?”

The literature review identified several relevant models that will be used to achieve the research objective
and provide answers to this question. The proposed model is a novel and relevant approach to anti-poaching
strategies and adds to the body of research by filling the research gap. It can also serve as a platform for
future research. The proposed model utilises the swarm based HAPF-ACO persistent surveillance model
and extends it by incorporating prioritised surveillance through predicting poaching activity. This will be
achieved through online machine learning from observing poacher behaviour and building Bayesian Net-
works in order to improve surveillance effectiveness in response to adapting poachers. These poachers will
be modelled according to the COSG model and extending it by incorporating the ASU function, whose inputs
will be quantified from wildlife population distributions and environmental factors. Implementation will be
achieved in the Python based Mesa framework that is used for ABM. Expert knowledge will be used to vali-
date simulated poacher behaviour, after which a sensitivity analysis is used to identify correlations such that
model behaviour can be explained. Thanks to gained experience w.r.t. the mentioned frameworks in master
courses, this research project is assumed to be feasible within the available time frame of nine months.
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