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Temer si dee di sole quelle cose
c’hanno potenza di fare altrui male;
de l’altre no, ché non son paurose.

Of those things only should one be afraid
that have the power of doing injury;

not of the rest, for they should not be feared.

Beatrice, Inferno II, 88-90





Summary

Safe Online Robust Exploration for
Reinforcement Learning Control

of Unmanned Aerial Vehicles

Tommaso Mannucci

In recent years, the aviation domain is witnessing an unprecedented surge of
interest in unmanned aerial vehicles (UAVs). With the advancement of miniaturized
and low-cost hardware, ranging from circuits to sensors, UAVs are steadily becom-
ing cheaper to produce and are rapidly improving their performance and endurance.
As a result, “drones” have now entered the recreational market as affordable toys
and reliable working tools. Furthermore, various companies are investigating into
adopting drone fleets in the near future for cost-effective services, such as deliveries
and distribution.

Conversely, control design for UAVs still relies heavily on classic control tech-
niques, such as PIDs or robust controllers. Indeed, these controllers are reliable
with respect to model inaccuracies, which are very common in UAVs and in partic-
ular in micro air vehicles (MAVs). One practical drawback, however, is that these
techniques require considerable effort for gain tuning, testing, and modeling dur-
ing the design stage. The prospect of entirely autonomous UAV tasks, without the
supervision of a human operator, constitutes a further challenge for these classical
controls, and is likely to further and significantly increment the burden of control
design.

In this perspective, reinforcement learning (RL) has the potential to overcome
these difficulties. RL is a branch of machine learning that mimics animal learning:
an agent repeatedly interacts with its environment through actions, receiving each
time a reward. This indicates the immediate goodness of its choice, according to
a reward function provided by the designer. The agent goal is then to collect the
maximum amount of discounted reward, which constitutes an optimal policy. The
strength of this exploration procedure is that the agent can learn autonomously,
adaptively, and model-independently.

When performing RL exploration in the application of a flying vehicle, it is of
paramount importance that this exploration is performed safely. The agent must
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identify unsafe actions, e.g., those that might result in a collision, without actually
applying these actions. This is the challenge of safety. It would in principle be
possible to guarantee safety by learning in a safe or simulated replica of the actual
environment, in which unsafe actions are allowed; however, the policy learned this
way might not be safe within the actual environment, if there are discrepancies and
uncertainties in the replica. This constitutes the challenge of robustness. Further-
more, assuming the safety of an action can be evaluated online, this assessment
must be computationally simple enough for the agent to do the assessment while
controlling the UAV in real time. This is the challenge of online efficiency.

It is clear that these three cardinal challenges must be overcome before UAVs
and MAVs can thoroughly benefit from the advantages of RL. The goal of this dis-
sertation is to investigate these problems of online, safe, robust exploration for UAV
platforms, and to develop potential solutions in accordance with the properties of
adaptability, autonomy and model independence of RL.

Safety is the first and by far the most compelling challenge for the agent. To
simplify the problem, it is postulated that the unsafe actions are those that cause
the environment to transition to an element of the fatal state space, which is pos-
tulated to be unknown but time-invariant. In absence of an a-priori known safe
policy, or of a human teacher, two key capabilities are deemed necessary to avoid
fatal transitions. The first is risk perception, which takes the form of an additional
feedback from the environment to the agent, and that informs the agent whether or
not an element of the fatal state space is within a predetermined neighborhood of
the current state. The second is a bounding model which overestimates the future
transitions of the environment given the agent actions.

These two capabilities form the central strategy of the Safety Handling Explo-
ration with Risk Perception Algorithm (SHERPA), developed in this thesis. This
“safety filter” is placed between the agent and the environment. SHERPA allows
only actions guaranteed not to cause a fatal transition, and that can be followed by
a backup, i.e., a sequence of action that causes the environment to transition to
a safe neighborhood of a previously visited state. In case the action proposed by
the agent is refused by SHERPA, the agent is queried to propose a different one,
until either SHERPA approves, or a time limit is reached, at which point SHERPA
executes a pre-approved backup. By doing so, SHERPA provides the agent with a
safety assessment that is autonomous and based on online experience. SHERPA is
validated on a simplified quadrotor task, where it is found to be more effective than
a competitor method.

This dissertation further develops the SHERPA strategy into OptiSHERPA. This
successor algorithm turns safety assessment into an optimization problem, choosing
the safest action among a restricted set of candidates. Additionally, an evasion
metric is added so that, if risk is perceived, the agent adopts the action that is least
likely to cause a fatal transition. OptiSHERPA is tested in a control task for a fighter
aircraft with linearized model.

The second challenge of online efficiency is addressed in this dissertation by
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using graphs during safety assessment. For example, SHERPA utilizes the bound-
ing model dynamics to predict the state trajectory given a sequence of actions:
the faster the computation of these trajectories, the higher the number and the
feasibility of the assessments of proposed actions in real-time exploration.

The graph is generated prior to exploration according to three steps. First,
an arbitrary subset of the state space is selected as the operational envelope of
the agent. Second, the state space, the set of actions, and time are discretized.
Third, the bounding model is executed to create edges connecting the vertices of
the graph. The result is an hypergraph that overapproximates the bounding model
dynamics. The hypergraph is stored in the form of look-up matrices, replacing the
online computation of transitions with index checking, which has a lower complexity
than applying the dynamics of the bounding model itself. Furthermore, an oppor-
tune state discretization is introduced in the form of an evenly spaced tiling. As a
result, the graph generation is reduced in complexity and made feasible for online
exploration as well.

The graph formulation is implemented within the SHERPA strategy by defining
two graph-based safety metrics. These assign to each vertex of the graph a weight
that corresponds to its safety, according to the specific metric. Safety assessment
is then turned into an optimization problem as per the OptiSHERPA strategy. The
metrics are implemented in a simplified quadrotor simulation, as well as in aircraft
control via elevator deflection. The operative metric is found to be more effective
in tasks where the insurgence of risks can be more easily predicted, such as the
quadrotor task. For more complex ones, as the elevator deflection task, the proxim-
ity metric is found to be more effective by constraining the evolution of the system
with time.

Assuming the operational envelope does not contain fatal states, graph pruning
is introduced to perform safety assessment of the agent’s entire policy. Edges that
violate the envelope are removed from the graph, together with vertices that, as a
result, have no outbound edges. All policies that are compatible with the pruned
graph are therefore safe; however, the opposite is not true due to the uncertainty
of the graph. As with graph generation, and depending on the refining of the state
discretization, pruning can be made feasible for online exploration of envelopes that
are moderately time-varying, as simulated in several MAV corridor tasks.

Uncertainty in a replica of the environment results in the challenge of robust-
ness. The more the environment is uncertain, the more the available model must
overestimate the actual dynamics to still be bounding, and the more refined the
graph discretization must be to contain the overapproximation of trajectories. In
this thesis, this problem is mitigated by implementing Hierarchical Reinforcement
Learning (HRL). By abstracting the state space, by embedding design knowledge,
and by constraining the state of discoverable policy, HRL is found to contribute to
both the challenge of robustness and the challenge of safety. The novel combina-
tion of HRL methods for the scope of Safe Reinforcement Learning is presented as
Safe Hierarchical Reinforcement Learning (SHRL).

The SHRL method of Virtual Safety Training (VST) proposed in this thesis con-
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sists of three steps. First, the original state space is transformed, via an arbitrary
projection function, in such a way that at least one projected space is independent
to and/or relative from the others. This allows one to reduce the complexity and
the uncertainty of the environment. In the second step, a belief set representing
the possible projection of the fatal state space is adopted. Then, an initial policy for
the agent is learned off-line in the “virtual” projected learning space, once for each
belief of the set. The efficacy of this method is found to depend on the exhaus-
tiveness of the belief set and on the uncertainty in the projected bounding model.
Tested in an MAV goal finding task within a cluttered environment, the strategy is
found to be safer, even with an unsophisticated model and a simple belief set, than
a non-hierarchical policy learned within the actual environment.

As a second and final SHRL method, Vertex Classification (VC) is introduced.
This method integrates all previous contributions, such as safety optimization, graph
formulation of the dynamics, and state projection, in order to solve the problem of
safe exploration sequentially. First, an operational envelope for the projected state
space is defined, and a graph is created using the projected dynamics. Those
edges that lead to a violation of the envelope are ordered according to their level
of undesirability, which in turn is used to compute two sets of weights, the levels
and the coefficients, for each vertex and per each violation. Finally, by assigning
to each violation an intensity, the weights are used to estimate the safety of the
edges of the graph. The safest policy of VC, validated in the same MAV task as
VST, prevents all collisions when tested with different model realizations and with
different obstacle dispositions. Furthermore, it is found to share resemblances with
potential field methods, such as getting stuck in local minima between goal and
obstacles.

As a final consideration concerning the main objective of achieving safe, online,
robust RL exploration for UAVs, this dissertation contributes to the state-of-the-art
by providing several methods which mitigate each challenge individually, as well
as hybrid algorithms that address multiple challenges simultaneously. In order to
address these challenges, explicit and clear assumptions for the application of the
proposed methods are provided; these assumptions notwithstanding, the methods
are developed to adhere to the principles of autonomy, adaptability and model in-
dependence of RL, as much as the problem of safe exploration allows. Nonetheless,
several points of further development and improvement are put forward within this
dissertation addressing both the machine learning and the UAV operator communi-
ties.
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1
Introduction

1.1. Emergent automation in society, industry
and aerospace

Automation is widely accepted as one of the driving innovations in today’s techno-
logical growth of the aerospace sector. Generally speaking, an increase in automa-
tion is associated with a reduction in costs due to the replacement of both skilled
and unskilled labor, paired with an improvement of performance as well as working
conditions. These incentives have up to now encouraged an increase of automation
in all economic sectors. For example, several companies1 are currently discussing
and competing upon developing self-driving cars. This does not only represent a
goal for the automotive industry, but is a hot topic of public debate as well.

Aerospace is no exception to this trend. Since their first prototypical versions,
dating back to the first half of the 20th century, military unmanned aerial vehicles
(UAVs) boasted increasingly advanced sensory equipment and computing capabili-
ties, and became able to perform more and more complex tasks. Circuits, batteries
and sensors of recent years have increased in performance for a fraction of the
cost and of the weight. As a result, UAVs have entered into civil use after decades
of military exclusivity, and are now a growing sector in the recreational mass mar-
ket. Notable investments are being made as of today by major companies, such as
Amazon2 and Walmart3, to employ a fleet of UAVs for delivery and distribution. As
a result, it is widely accepted and foreseen that, regulatory issues aside, aerospace
as a whole will become more and more automated.
1McCurry, J., “Honda in talks over self-driving cars with Alphabet’s Waymo”, 2016, accessed
Feb. 2017, https://www.theguardian.com/technology/2016/dec/22/honda-in-talks-over-self-driving-
cars-with-alphabets-waymo
2Kharpal, A., “Amazon’s latest drone delivery idea involves parachuting parcels into your backyard”, 2017,
accessed Feb. 2017, http://www.cnbc.com/2017/02/17/amazons-latest-drone-delivery-idea-involves-
parachuting-parcels-into-your-backyard.html
3Abrams, R., “Walmart Looks to Drones to Speed Distribution”, 2016, accessed Feb. 2017,
https://www.nytimes.com/2016/06/03/business/walmart-looks-to-drones-to-speed-distribution.html
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2 1. Introduction

However, improving automation is by itself a challenge when confronted with
traditional control design in aerospace. Consider for example classical Proportional-
Integral-Derivative (PID) controllers, which even today are an important component
of many applications. PID controllers are rather easy to implement, and are rela-
tively robust to modeling error. Nonetheless, they require a significant effort when
tuning the gain values. Furthermore, a model should be provided to facilitate an ini-
tial, tentative tuning; however, UAVs often have nonlinear, unstable dynamics that
are difficult to model. In the extreme case of micro air vehicles (MAVs), modeling
procedures are still experimental and unstandardized [1–3].

Even though more advanced control has improved over traditional control tech-
niques, considerable design effort is still needed to meet specifications, in the form
of modeling, testing and performance assessment. For example, robust controllers
improve on PID controllers by addressing uncertainties in the original model, but
ultimately require from designers an amount of effort comparable to PID tuning.
Considerable amount of insight, tools, money and time is still a necessity for con-
trol design. As the market expectation for more complex, autonomous UAVs able
to perform multifaceted tasks grows, this burden is likely to increase in the years
to come. What if a method existed to obtain controllers able to perform complex
and diverse tasks with minimal effort from the designer?

1.2. Reinforcement learning
Machine learning methods, and in particular reinforcement learning (RL) [4], have
the potential to much better address the challenges of complex control tasks than
traditional control theory. RL is a bio-inspired decision making approach that mimics
animal learning. According to behavioral psychology, animals learn on the basis
of stimuli: after an animal makes a decision and interacts with its environment,
e.g., picks and eats a fruit, it immediately receives a corresponding reinforcement
stimulus, which conveys and represents the immediate benefit of that behavior,
e.g., feeling satiated after eating. If the result of the action is beneficial within a
situation, the corresponding behavior is reinforced, i.e., it can be observed to be
opted for more often; conversely, if the result is not beneficial, the animal will refrain
from following said behavior in the future. The more a behavior is reinforced this
way, the more it is likely to be beneficial for the animal (for that given situation),
and the more the animal consequently adopts it.

1.2.1. Working principle
RL can be used to discover policies for UAVs, in a learning process that is au-
tonomous, adaptive to environmental conditions, and that does not need a model
of the vehicle. Figure 1.1 gives a representation of the RL scheme. Here, the
agent represents the controller, i.e., the embodiment of the decisional process of
the UAV, and is equivalent to the animal itself. The environment represents the set
of all the relevant world features, according to the task settings and specifications.
It is equivalent to the actual natural environment of the animal, but it also includes
the internal conditions of the UAV, e.g., residual battery life. The state 𝑠 of the
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Figure 1.1: Working principle of RL. The agent interacts with the environment through actions. Subse-
quently, it observes the new state and the reward corresponding to the state transition.

environment is therefore the decision space of the agent. When the agent applies
an action 𝑎 to the environment, it either causes a transition from its current state
𝑠 to a different state 𝑠 , or the system does not change, i.e., 𝑠 = 𝑠 . In
both cases, the agent receives a reward 𝑟, a real valued signal which indicates the
immediate benefit of the transition, and which is equivalent to the aforementioned
reinforcement stimulus. High reward indicates that the transition is beneficial to
the agent. Conversely, low reward means that the transition is disadvantageous.
Rewards are sometimes replaced in the literature by costs, so that a high cost is
equivalent to a low reward, and vice versa. For finite, discrete environments, the
above mechanism of state-action-state transition and the corresponding reward as-
signment are modeled as a Markov decision process (MDP) (see Figure 1.2). The
Markov property of MDPs guarantees that state transitions and rewards depend
uniquely upon the current state and action.

As for a foraging animal the best behavior is the one that maximizes the positive
reinforcement, a policy 𝑎 = 𝜋(𝑠) is optimal if it maximizes the total discounted sum
of future rewards, or alternatively, if it minimizes the total discounted sum of future
costs. The discount factor 𝛾 ∈ (0, 1] determines how much future rewards can
affect current behavior. This sum is expressed implicitly in the value function

𝑉 (𝑠 ) = ∑𝛾 𝑟(𝑠 , 𝜋(𝑠 ), 𝑠 ), (1.1)

which essentially indicates how desirable the state 𝑠 is for the agent, according



1

4 1. Introduction

𝑠

𝑠

𝑠

𝑠

𝑎 , 𝑟 = 0

𝑎 , 𝑟 = 1 𝑎 , 𝑟 = 1

𝑎 , 𝑟 = 0

𝑎 , 𝑟 = 0

𝑎 , 𝑟 = 0

𝑎 , 𝑟 = 0.5

𝑎 , 𝑟 = −1

Figure 1.2: An example of a deterministic MDP with four states , , and and two actions and
. Values of reward range from to .

to policy 𝜋4. According to Bellman’s Principle of Optimality [5], the optimal value
𝑉∗(𝑠) of a state must follow the Bellman System of Equations:

∀𝑘, 𝑉∗(𝑠 ) = max 𝑟(𝑠 , 𝑎 , 𝑠 ) + 𝛾 𝑉∗(𝑠 ) (1.2)

A common approach to solve Eq. (1.2) during learning is to use temporal differ-
ence (TD) methods, which consist in subdividing the Bellman equivalence in multiple
updates as:

𝑉(𝑠 ) ← 𝑉(𝑠 ) + 𝛼(𝑟 + 𝛾 𝑉(𝑠 ) − 𝑉(𝑠 )), (1.3)

with a learning rate 𝛼 whose role is to facilitate convergence. Once the value
function converges, the optimal policy is simply to choose the action for which
𝑉(𝑠 ) is maximum. This thesis will focus mainly on the application of TD methods,
but other approaches to solve Eq. (1.2) exist, e.g., Dynamic Programming (DP) or
Monte Carlo methods (Figure 1.3).

A final distinction within RL exists between online and off-line learning. Off-line
learning implies that the agent owns an amount of information about the problem
MDP, i.e., a model of the environment and of the reward. In this case, it can ten-
tatively learn a policy without the strict need of interacting with the environment
and observe the reward. Conversely, learning is said to be online when the agent
has the necessity of interacting and observing the environment in order to learn
a policy. While this distinction is clear, RL algorithms are not stricly confined be-
tween learning off-line or online, but can transition from one to the other and even
alternate.

4In the event that either the state transition or the reward function are stochastic, the value of state
is defined as the expected value of the right-hand term of Eq. (1.1).
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1.2.2. General properties and advantages
RL possesses the three properties of autonomy, of adaptability, and of model-
independence. The first property, autonomy of learning, directly derives from the
reward function of Eq. (1.1). Differing from other machine learning methods, such
as supervised learning (see Figure 1.3), the main if not the only duty of the teacher
is to design the reward function, whose sum the agent will proceed to maximize.
Choosing a reward function for which the resulting behavior satisfies its intended
purpose requires expertise and insight; however, this methodology of learning is
extremely efficient when the final goal of the policy is known, for example rescuing
survivors of earthquakes, but there is no a-priori indication on how to achieve it,
e.g., the location of the victims is unknown.

The second property, adaptability, comes from updating the value function.
When the function has converged, the term that multiplies 𝛼, called the TD error,
will be approximately zero. If the environment changes, e.g., a goal is moved from
its original position, this change will be reflected in the reward function, so that the
TD error will no longer be equal to zero. Therefore, any meaningful change in the
environment will renew the optimization process, with the final result of adapting
the policy to the new environmental conditions.

The definition of optimal policy as the one for which 𝑉(𝑠 ) is maximum loses
its purpose if a model formulation of state transitions is not available, or is not
sufficiently predictive. As previously stated, this is the case for several UAVs and
MAVs for which obtaining a precise model of the dynamics is difficult or infeasible. A
fundamental step towards solving this inconvenience was the introduction ofmodel-
free algorithms, such as the very successful Q-learning [6]. These methods replace
𝑉(𝑠) with an action-value function 𝑄(𝑠, 𝑎) which maps state-action pairs to the
maximum possible return obtainable after taking action 𝑎 in state 𝑠. The revised
update rule

𝑄(𝑠 , 𝑎 ) ← 𝑄(𝑠 , 𝑎 ) + 𝛼 (𝑟 + 𝛾 max𝑄(𝑠 , 𝑎 ) − 𝑄(𝑠 , 𝑎 )) (1.4)

guarantees the aforementioned definition upon convergence. Several other model-
free methods are present in literature, such as SARSA [7].

The third property, model-independence, is exhibited by model-free RL meth-
ods. These methods can be applied when the vehicle dynamics are only approxi-
mately known, and even when they are entirely unknown. These methods do not
need to predict the successor state when taking a certain action; instead, they pro-
vide the optimality of the state-action pair itself. The optimal policy available to
the agent can therefore be learned regardless of prior model knowledge, and can
adapt to alterations in both the environment and the transition function. This is
especially useful in aerospace applications, where some dynamics and interactions
might be loosely modelled or not modelled altogether, e.g., aerodynamic couplings,
and where operating conditions change with time, e.g., due to fuel consumption.

Summarizing, RL methods can autonomously find optimal policies for complex
tasks, regardless of whether an initial policy is provided for the agent, and can
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Figure 1.3: Taxonomy of the different methodologies of Machine Learning, reinforcement learning, and
TD-methods.

accommodate uncertainties and changes in both the environment and the vehicle
itself.

1.3. Challenges of reinforcement learning for
UAVs

In Section 1.2, the main advantages and properties of RL methods have been illus-
trated, as well as the reasons why these methods are promising and appealing for
both future automation and the aerospace field. However, RL for UAVs and MAVs
comes with three main challenges that must be addressed in order to fully benefit
from these methods, as it will be explained in detail in this section.

Challenges

1. Safety: Online reinforcement learning, due to its inherent trial-and-
error nature, cannot be safely applied to real-life UAVs.

2. Robustness: Off-line reinforcement learning using a simulated, ar-
tificial or supervised environment is impractical and not robust with
respect to errors in replicas of the environment.

3. Online efficiency: Efficient and low-complexity control algorithms
are required to perform safe and online exploration with UAVs.
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1.3.1. The challenge of safety: infeasibility of blind search
for aerospace vehicles

The one caveat of the properties discussed in Section 1.2.2 is that significant inter-
action, in terms of state-action pairs performed by the agent, is necessary to reach
convergence of the algorithm. This is self-evident from Eq. (1.3), since 𝑉(𝑠 ) up-
dates for visited states only and in accordance with functions 𝑟 and 𝑉 which depend
on states-action-state trials 𝑠 , 𝑎 , 𝑠 . The impact that this requirement has on
the applicability of RL varies, but it is well known that, as the size of the learning
problem increases, the amount of interaction samples to convergence increases
exponentially: a problem which Bellman referred to as the curse of dimensionality
[5].

How to avoid the curse has been a primary focus since the early developments
of RL. Various strategies, such as TD(𝑛) methods, eligibility traces, tile coding,
Adaptive Dynamic Programming, among others, attempted to reduce the number
of necessary trials, both simulated and in real life, needed to obtain at least a
satisfactory policy. That notwithstanding, a RL agent needs to visit a significant
portion of the learning space before learning can be considered complete. At the
very beginning of this learning phase, called exploration, the agent often has no or
very limited knowledge of the task, and is forced to repeatedly try random actions,
in a process known as blind search [8], during which it will most likely perform
poorly.

When aerospace vehicles perform online exploration, an agent in blind search
exploration might not only have suboptimal performance, but can also risk dam-
aging the vehicle itself or its surroundings, due to unsafe tentative actions. This
discourages the use of RL for learning in real-life tasks. Safety considerations ap-
ply to other systems than RL UAV agents. E.g., in the aforementioned example of
self-driving cars, safety is a primary question and an open debate5 exists about the
participation of such vehicles in public traffic. For RL agents, this problem is even
more crucial because of the trial-and-error nature of the method.

In general, blind search exploration is detrimental and unsafe for all systems or
platforms that learn online, i.e., from real-life experience, and a) are fragile or vul-
nerable with respect to the intended operations, b) can harm persons and objects
nearby, c) are expensive or inconvenient to replace/repair. Typical aerospace vehi-
cles belong to all three categories, being at risk of collision and crashes, achieving
considerable velocities, having rotating parts, and being relatively expensive.

1.3.2. The challenge of robustness: detrimental effects of
direct learning in simulated, artificial or supervised
environments

Since online RL is not safe, it would be highly preferable to perform learning in an
off-line setting. The inevitable problem in this case is that a replica of the actual
environment must be provided to the agent. Two choices are possible: either letting
5Solon, O., “Why self-driving cars aren’t safe yet: rain, roadworks and other obstacles”, 2016, ac-
cessed Feb. 2017, https://www.theguardian.com/technology/2016/jul/05/tesla-crash-self-driving-car-
software-flaws
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the agent learn in a physical, but controlled and safe environment, or letting the
agent interact with a simulated approximation of the actual environment.

Artificial environments, such as a controlled lab, could be explicitly tailored to
make learning safer. However, doing so would reduce the benefits of RL as a learn-
ing method; moreover, it could introduce several learning biases in the final learned
policy. In order to secure the agent, a risk assessment must first be formulated;
then all possible dangers must be either removed from the environment, or the
agent must be supervised and stopped when approaching such dangers. In the
first case, a severe discrepancy is introduced between the real environment, where
ultimately the agent must perform, and the learning one. This “reality gap” not only
affects the agent’s performance, but also its safety. The same happens when the
agent learns under supervision, with the additional disadvantage that the learning
is effectively not autonomous but dependent on the supervisor himself. Further-
more, the presence of the supervisor can involuntarily become part of the agent’s
learning [9].

As an alternative, simulated environments can be considered autonomous and
therefore do not require the presence of a supervisor. During simulations, the
agent can safely attempt dangerous actions and directly learn from them without
any real risk. However, contrarily to a lab environment, learning in simulations also
requires a sufficiently accurate knowledge of the model of the vehicle. If the level
of accuracy is insufficient, the fidelity error can be considerable, and the learned
policy might be dangerous when applied to the real-life system. This is a serious
drawback since, as previously mentioned, obtaining high fidelity models for UAVs,
and especially for MAVs, is difficult. In conclusion, learning off-line as an alternative
to on-line learning is not an attractive option, since the resulting policy is unlikely
to be robust to the fidelity error in the environment (for labs) or in the model (for
simulations).

As a last remark, it must be noted that faithfully reproducing the task environ-
ment is not always an option: the environment might be partially unknown, or
might be evolving with time. In conclusion, profitable learning must inevitably hap-
pen online, in the real environment, so that the agent learns its actual task, as well
as the corresponding dangers.

1.3.3. The challenge of online efficiency: computational
limitations of UAV online learning

In a safe environment, there is no restriction to which actions the agent can attempt
when exploring either online or off-line. Indeed, even performing “bad” actions is
valuable, as it will hopefully teach the UAV not to perform such actions in the future.
This ceases to be true in case of dangerous environments, where the agent must
be prevented or greatly discouraged from attempting dangerous actions even once.
It is therefore clear that the decisional process of action selection of the agent must
include at least one validation step to ensure that it will not incur danger. Therefore,
regardless of how this validation is performed, unsafe environments tend to require
more cumbersome computation of actions.

Unfortunately, during online learning the time required for computation has an
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effect not only on performance, but also on safety. In many practical examples
considered in literature, computational complexity is not a major issue, and it is a
common assumption that the agent has enough time to observe the state, adapt
some inner logic, modify its policy, and apply the new corresponding action. Even
where computational complexity is relevant, as in planning algorithms [10], this is
usually for the sake of performance, rather than for safety; e.g., a wheeled robot
exploring a room can safely remain in position and do nothing while the appropriate
action is computed.

UAVs and MAVs operating in dangerous environments represent a very different
setting. First of all, these vehicles are highly dynamic and more prone to instability
and external disturbances. For example, a UAV must be able to counteract a gust
or a similar disturbance with an appropriate action, but at the same time verify
the overall safety of said action. Some UAVs, similarly to wheeled robots, are able
to remain in place by hovering, e.g., quadrotors. However, other UAVs, such as
those with fixed wings, cannot hover. Furthermore, UAVs that can hover require
dedicated controllers in order to do so, which in turn need a model, and which are
not easy to design in presence of disturbances, e.g., wind. Therefore, an airborne
agent’s policy must be more reactive to the insurgence of risks compared to that of
a ground agent. Furthermore, the stricter requirements on weight and endurance
that UAVs and MAVs possess when compared with other autonomous agents limit
the computational capabilities of these platforms. As a result, action computation
must be as simple as possible for UAV RL agents exploring online in dangerous
environments.

1.4. Research goal, methodology and scope
This section illustrates the objectives, the contributions and the limitations of the
dissertation.

1.4.1. Research objectives
Research objectives

The goal of this thesis is to investigate the problem of online, safe, robust
exploration for aerospace platforms, and to develop potential solutions to
the problem of unsafe blind search in accordance with the properties of
adaptability, autonomy and model independence of reinforcement learning.

In order to accomplish these objectives, the following research steps are taken:

• The first step is to assess how the properties of aerospace vehicles alter the
effectiveness of pre-existing safe exploration algorithms, and find any addi-
tional requirements (Chapter 1);

• The second step is to individuate a strategy that can address the challenge
of safety, in order for the agent to explore online. The strategy must be
compliant with the aforementioned requirements (Chapter 2);
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• The third step is to devise methods which are compatible with the previous
strategy and that have low computational complexity, in accordance to the
challenge of online efficiency (Chapter 3);

• The fourth step is to solve the challenge of robustness, so that the above
strategies are applicable even in the presence of uncertainties, errors and
missing information within the environment (Chapter 4);

• As a fifth step, the results obtained in the previous steps must be merged into
one or more unified methods that can address all of the above challenges
(Chapters 5 and 6).

1.4.2. Research contributions
Contributions

This research contributes with new exploration methodologies that result
in online reinforcement learning for UAVs and MAVs being safer and more
robust to model uncertainties in a computationally efficient way.

This research promotes the field of safe exploration for UAVs with the following
contributions:

• Two safety-filters are developed, the Safety Handling Exploration with Risk
Perception Algorithm (SHERPA) and its successor OptiSHERPA, that ad-
dress the challenge of safety and improve over existing algorithms by relax-
ing the conditions on the existence of a predefined backup policy by explicitly
accounting for the UAV dynamics and by estimating the dangerous states;

• Graph Pruning, a novel representation of the feasible policy set obtained by
enforcing a predefined operational envelope, which addresses the challenge
of online efficiency;

• A novel hierarchical method coined Virtual Safety Training (VST) that ad-
dresses the challenge of robustness by projecting the state space in order
to allow off-line learning in an abstracted and simplified environment.

Additional contributions are given by two hybrid methods:

• A graph-based method with safety metrics that combine the risk perception
of SHERPA with the computational efficiency of graph methods;

• Vertex Classification (VC), which combines risk perception, state projection
and graph representation of policies, which results in safe navigation for UAVs
by exhibiting potential field-like behavior.
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1.4.3. Scope and limitations
In order to reach the research objectives stated in Section 1.4.1, this dissertation
adopts the following assumptions and scope restrictions.

Convergence of learning: In RL, if the agent is prevented from exploring some
regions of the learning space, i.e., from attempting some state-action pairs, the
convergence and optimality of the learned policy can be affected. This is related to
the so-called exploration-exploitation dilemma [4, 11], which is the conflict between
exploiting the best known action or exploring new, possibly better actions. The goal
of the methods presented in this dissertation is to provide safety to the exploring
UAV agent, rather than proving convergence or optimality. It will be assumed that
the final learned policy might be suboptimal only in the event that learning the
optimal policy requires attempting possibly unsafe actions during learning.

Stability: Stability is a fundamental requirement in the fields of control and of
aerospace. In terms of RL agents, it is rare to see unstable converged policies, as
they result in behaviors that are penalized by the reward function. However, it is
possible that not yet converged policies might be unstable. In this dissertation, the
stability of converged or temporary policies is not directly discussed. Nonetheless,
it is assumed that RL exploration that might lead to instability of the vehicle will be
prevented, if this instability is a possible cause of danger.

Validation methodology: In engineering, using real-life testbeds proves the
validity of an algorithm for a specific application; however, it is common in RL liter-
ature to employ simulations, which allow for a better understanding of the agent’s
behavior under different learning approaches. This is due to the absence of factors
external to the learning process, such as noise or hardware malfunctions, and due
to the increased amount of learning episodes that can be performed. For these rea-
sons, as well as for reducing the complexity of the research, the methods presented
in this dissertation are investigated, tested and validated exclusively via simulations.

Targeted applications: This dissertation is aimed specifically to open-market
civil UAVs and MAVs. These benefit more from the research presented here than
military UAVs, which have considerable computational power, are more often than
not remotely operated by ground-crew, and of which high-fidelity models are usu-
ally developed. Additionally, while this dissertation contemplates dangerous envi-
ronments for RL agents, scenarios where the UAV is intentionally threatened, as it
would be the case for a military UAV, are not considered.

1.5. Related work
The working principles behind RL are extremely intuitive, and the field of application
is wide, due to the generality of the approach. Because of this, many researchers
have been attracted by RL, and numerous variations on the basic principle of rein-
forcement have been designed, with often very different research goals. The goal
of this section is to introduce the reader to some of the most relevant literature
and developments over the basic RL scheme, covering the three areas of safety of
exploration, online learning efficiency, and robustness.
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1.5.1. Safety in reinforcement learning
In the literature, a widely adopted approach to safety consists of assigning low
reward for undesired transitions, such that the most reliable policy maximises the
minimal sum of rewards in the presence of uncertainties and stochasticity. Safety
is therefore embedded into policy performance. This worst-case or minimax [12]
approach belongs to the optimisation criterion of safety [13]. Under this criterion,
assuming a sufficiently large penalty for unsafe transitions, the optimal policy is
also the safest. Methods for policy improvement with this approach have also been
designed [14]. Alternatively, by assigning low reward, the variance of the return
can be taken into account by adopting risk-sensitivity approaches [15–18].

Several techniques exist to implement both minimax and risk-sensitive meth-
ods (e.g., [19]); however, there are limitations as far as exploration is consid-
ered. Including safety as part of the reward can generate a conflict between purely
performance-based reward and safety-based reward if the penalty for unsafe tran-
sitions is not correctly assigned. Also, the optimisation criterion can be effective in
preventing harmful situations, but requires previous knowledge of the probability
of risk for the state-action space, which is in general the result of exploration itself.

A different solution is to include safety in the exploration process itself. Garcia
[13] refers to three different approaches: (i) “providing initial knowledge”, directing
the learning in its initial stage towards more profitable and safer regions of the state
space [20]; (ii) “deriving a policy from demonstrations” by means of Learning from
Demonstration [21]; and (iii) “providing teacher advice” by including an external
teacher that can interrupt exploration and provide expert knowledge, or that the
agent can consult when confronted with unexpected situations [22]. An alternative
implementation of this solution is risk-directed exploration. With this approach, the
agent’s choice of actions is aided by an appropriate risk metric [23] acting as an
exploration bonus towards the safer regions of the environment.

Among algorithms that directly avoid unsafe transitions, [24] relies on an a-priori
known safety function (acting as a go/no-go decision maker over feasible actions)
and a fixed backup policy valid in all states. A similar approach is taken in [25],
with the difference that the safety function is obtained through a “cautious simu-
lator”. The simulator must correctly label unsafe states, but is allowed to mislabel
safe states as unsafe: it is assumed that an experienced human operator can force
the system into a mislabeled safe state. In [26] a variable amount of perturbation
is introduced in a given safe but inefficient baseline controller, such that discov-
ery of new trajectories for task completion is possible, taking a certain amount of
risk. These techniques share the need of a guaranteed safe controller, simulator
or backup policy in order to prevent catastrophic exploration when facing critical
decisions. Moldovan and Abbeel [27] define safety in terms of ergodicity of the
exploration, and introduce an algorithm that relies on beliefs of the system, but not
on a predefined baseline policy or safe controller.

Summarizing, existing safe exploration algorithms share the need for a-priori in-
formation, which derives from the knowledge of which regions should or should not
be visited, from assuming specific properties of the environment, or from adopting
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a baseline safe policy. The methods proposed in this dissertation relax the above
assumptions, allowing the agent to discover safe regions and safe policies during
learning.

1.5.2. Online efficiency in reinforcement learning
Any algorithm that performs online learning faces two challenges. The main prob-
lem is that only a limited amount of training episodes can be produced when learning
online. Therefore, online algorithms strive to achieve maximum efficiency of learn-
ing with a limited amount of episodes, and direct exploration toward meaningful
areas of the learning space. The class of Adaptive Dynamic Programming6 (ADP)
methods [28], for example, employs Neural Networks (NN) to approximate the pol-
icy, the model, and, depending on the exact methodology applied, either the value
function, its derivatives with respect to states, or both. This methodology is quite
popular for solving control problems, since the more the NN approximates the true
model, and value, the more efficient policy improvement cycles become.

Another technique is fitted Q-iteration [29, 30]. The principle behind fitted Q-
iteration and similar algorithms is to exploit the data stemming from online inter-
action as efficiently as possible to facilitate convergence of the policy. Specifically,
these methods utilize as input the tuples {𝑠 , 𝑎 , 𝑠 , 𝑟} and submit these to regres-
sion algorithms to approximate the dependence of the instantaneous reward 𝑟 from
the state-action pairs (𝑠, 𝑎). This procedure allows to adopt very sparse collections
of data, which are used as a batch to obtain an estimate of the Q-value.

A different principle investigated in literature is to direct the exploration towards
states and actions that are more likely to improve the policy. One notable example
is R-max [31]. It follows the optimism in the face of uncertainty [32] criteria, which
can be summarized as assuming that unvisited state-action pairs are optimal. R-
max does so by appending a maximum reward to all such states, until a threshold
number of visits, which depends on the parameters of the problem, have been
produced. A method with a similar principle is Tabu Search [33], where exploration
is guided as to avoid recently tried actions, while at the same time encouraging the
agent towards promising regions of the state space.

Policy search [34–36] is an approach that exploits a policy parametrization in the
form 𝑎(𝑠) = 𝜋(𝑠; 𝜃). The fundamental idea of the approach is to search the best pol-
icy only among those obtainable with the 𝜃 parametrization. This greatly simplifies
the RL problem by substituting the original learning space, consisting of all possible
state-action pairs, with the reduced learning space spanned by parameters 𝜃. Fur-
thermore, policy search combines naturally with well known optimisation methods
such as gradient descent, which makes it computationally attractive. The main ob-
stacles to the implementation of this method are adopting a correct parametrization
of 𝜋 and solving the possibly nonlinear optimization problem, e.g., without getting
stuck in local minima. Bagnell and Schneider [37] show an application of policy
search to unmanned helicopter control.

As already mentioned, online efficiency encompasses a second aspect, which is

6Also referred to in literature as Approximate Dynamic Programming
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the computational cost of modifying, invoking, and applying the agent’s policy. A
few attempts have been performed to reduce this cost. Degris, Pilarksi and Sutton
[38] adapt previous actor-critic algorithms to continuous state and action in order to
obtain an incremental method with computational cost that is linear in the number
of policy parameters. Hanselmann, Noakes and Zaknich [39, 40] also investigate
actor-critic methods for continuous time applications.

Nonetheless, reducing the computational cost occupies a role of secondary im-
portance in literature when compared to accelerating the speed of learning. This
can be understood considering that faster learning results in better overall perfor-
mance and is therefore a prerequisite for implementation. However, as explained
in Section 1.3.3, the relevance of computational costs increases when safety of
exploration is considered.

1.5.3. Robustness in reinforcement learning
Robustness can be defined as the ability of a controller to perform optimally, or at
least adequately, when facing uncertainties. These uncertainties can be ascribed
to inaccurate reference models and/or from noise affecting the system. Model-
free algorithms represent one valid option to address uncertainties, as the learning
occurs without any explicit reference to a model. In that respect, the original Q-
learning algorithm is sufficient to guarantee robustness and model-independence.

From a pure optimal control perspective, stability and error minimization are the
main goals for increasing the robustness of a controller. Therefore, several efforts
have been produced to improve the performance of model-free algorithms. As an
example, Q-learning has been modified to solve the 𝐻 control problem [41], which
concerns the stability of the controlled system. Al-Tamimi, Lewis and Abu-Khalaf
[42] solve the problem for linear discrete-time zero-sum games. Kiumarsi, Lewis
and Jiang [43] improve upon this by reducing the necessary assumptions, again for
linear, discrete-time systems. Luo, Wu and Huang [44] extend the solution of 𝐻 to
nonlinear systems. Other results for model-free methods include Yang, Liu and Wei
[45], and Luo et al. [46], who develop data-based robust control for continuous
time systems. Worth mentioning is also the work of Jiang and Jiang [47, 48] who
extend the ADP framework into Robust Adaptive Dynamic Programming (RADP).

Arguably, a second interpretation of robustness can be found that is specific for
RL, and that somewhat differs from the above, rigorous one. In the most general
RL framework, a disembodied agent controls an indivisible and unspecified envi-
ronment. However, in UAV and MAV applications the agent is actually embodied in
a physical platform, which in turn interacts with a physical, mutable and possibly
unknown “world”. Moreover, this interaction is mediated by sensors and actuators
that are inevitably affected by noise and errors. With respect to the more canonic
uncertainty pertaining robust control, this represents a more specific source of er-
ror, deriving from the limited knowledge of the world that the agent operates within.
As a result, more specialized methods to solve this inconvenience have been devel-
oped.

Partially observable Markov decision processes [32] (POMDPs) improve the learn-
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ing of agents with limited information with respect to normal MDPs. Specifically,
POMDPs are utilized when the agent does not know the state, but only an observa-
tion of it. The state is then a probability distribution which depends on current as
well as past observations. Additionally, the environment itself, in terms of reward
and transition probabilities, can also be modeled as a distribution within the POMDP
framework, e.g., where some unmodeled dynamics are present. The agent must
act according to its own belief, i.e., depending on the likelihood of being in one
state (or in one world model) rather than in another, given its past observations.
Numerous RL tasks have been modeled as POMDPS, from abstract games [49] to
robotic path planning [50] and robotic competitions [51]. One key observation
is that, in order to maximize its expected return, the agent must refine its belief
through information gathering actions. In this regard, one class of methods worth
mentioning is that of Bayesian Reinforcement Learning (see, e.g., [52–54]), which
formalizes information gathering by adopting a Bayesian distribution of the beliefs.

Dynamic or non-stationary environments are a further challenge for learning
even when the state is entirely observable. Both state transitions and the corre-
sponding rewards can change over time in such an environment. RL is in itself
able to cope with these changes by re-learning its value or action-value function.
However, convergence might be an issue, i.e., the environment might change too
radically or too fast for the agent to successfully adapt. Dynamic environments
have been studied in settings as diverse as bandit problems [55], multi-agent RL
[56, 57], and robot navigation [58, 59]. In addition to POMDPs, multiple strategies
and algorithms have been adopted to solve these problems, such as Experience
Replay [60], fuzzy logic [61], Incremental Learning [62], intrinsically motivated RL
[63, 64] and Instantiated Information [65, 66]. Hierarchical Reinforcement Learn-
ing [67] (HRL) deserves a special mention. This branch of RL accelerates learning
by identifying temporally extended actions. These are essentially “skills” or “sub-
tasks” that the agent develops in order to sequentially solve its main task. The
validity of the individual skills usually persists even as the environment changes,
which mitigates the effects of learning in non-stationary environments.

Therefore, several methods exist to achieve robustness with respect to different
sources of uncertainty. However, previous research has in general overlooked the
implications of robustness for the problem of safety, focusing more on its benefits
for the performance.

In conclusion, the novelty of the methods proposed in this dissertation, with
respect to those illustrated in Section 1.5, consists of jointly addressing safety,
online efficiency and robustness of the exploration process, in addition to reducing
the a-priori information required from the designer in terms of dangerous states
and actions.

1.6. Outline of content
When not considering Chapter 1 (this introduction) and Chapter 7, this thesis is
divided in two parts. Part I, consisting of Chapters 2, 3 and 4, focuses on the three
UAV RL challenges introduced in Section 1.3 and elaborates three key approaches,
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each of which addresses a specific challenge: safety, online efficiency, and robust-
ness. Then, Part II introduces hybrid methods. While the methods of Part I solve
the RL challenges individually, the hybrid ones of Part II are combinations of key
approaches and can therefore address more challenges at the same time.

In Chapter 2, two important but marginally restrictive assumptions are made:
Risk Perception and Bounding Model. It is shown how these are sufficient to intro-
duce a new heuristic strategy for exploration that relies on the discovery of tempo-
rary safe policies, called backups. Two algorithms, SHERPA and OptiSHERPA, are
presented that act as safety-filters with respect to blind search actions, resorting to
backups when the agent’s proposed action is potentially dangerous. The algorithms
are shown to be effective but computationally demanding, which is not ideal, since
in the considered case the agent must learn online.

Chapter 3 addresses the limitation of online efficiency by introducing graph
structures, which more efficiently represent the uncertain bounding models, and
by precomputing safety assessments directly within graphs, simplifying the search
of online safe exploratory policies.

Chapter 4 addresses those cases where graph policies are not ideal due to the
uncertainties originating from the unsophisticated model, and to the discretization
necessary to generate a graph. Safe Reinforcement Learning is combined with the
notion of hierarchy into Safe Hierarchical Reinforcement Learning (SHRL). Utilizing
hierarchy is shown to yield a more robust exploration, offering efficient precompu-
tation, higher task flexibility and reduced learning time.

Chapter 5 illustrates a hybrid approach that combines the graph formulation of
Chapter 4 with the heuristic approach of Chapter 2 in the form of safety metrics.
Depending on the specific metric implemented, the approach is shown to increase
safety.

Chapter 6 presents an approach that integrates the risk perception and bounding
model of Chapter 2, the graph representation of the dynamics of Chapter 3, and the
state space hierarchical projection of Chapter 4. This unified approach is simulated
in an MAV exploration task and is shown to perform optimally with respect to both
safety and online efficiency under multiple operating conditions.

Chapter 7 summarizes the results and the findings of the previous chapters,
and shows how this dissertation provides UAV RL agents with several methods that
address the goal of safe, online, and robust exploration. Additionally, it proposes
several points of further development for the machine learning and the UAV operator
communities.

1.7. List of publications
This section lists the publication sources for each chapter:

• Chapter 2 is based on the following publication:

T. Mannucci, E. van Kampen, C. C. de Visser and Q. Chu, ”Safe Exploration
Algorithms for Reinforcement Learning Controllers”, in IEEE Transactions on
Neural Networks and Learning Systems, accepted and awaiting publication.
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• Chapter 3 is based on the following paper:

T. Mannucci, E. van Kampen, C. C. de Visser, and Q.Chu. ”Graph based dy-
namic policy for UAV navigation”, in Proceedings of the AIAA Guidance, Navi-
gation, and Control Conference, AIAA SciTech Forum 2016, San Diego, CA.

• Chapter 4 is based on the following papers:

T. Mannucci and E. van Kampen, ”A hierarchical maze navigation algorithm
with Reinforcement Learning and mapping,” 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), Athens, Greece, 2016, pp. 1-8;

T. Mannucci, E. van Kampen, C. C. de Visser, and Q. Chu, ”Hierarchically
Structured Controllers for Safe UAV Reinforcement Learning Applications”, in
Proceedings of the AIAA Information Systems-AIAA Infotech, AIAA SciTech
Forum 2017, Grapevine, TX.

• Chapter 5 is based on the following paper:

T. Mannucci, E. van Kampen, C. C. de Visser, and Q. Chu. ”A novel approach
with safety metrics for real-time exploration of uncertain environments”, in
Proceedings of the AIAA Guidance, Navigation, and Control Conference, AIAA
SciTech Forum 2016, San Diego, CA.

• Chapter 6 is based on the following paper:
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T. Mannucci, E. van Kampen, C. C. de Visser, and Q. Chu, ”Safe and Au-
tonomous UAV Navigation using Graph Policies”, in Proceedings of the AIAA
Information Systems-AIAA Infotech, AIAA SciTech Forum 2017, Grapevine,
TX.
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2
Heuristic methods

As demonstrated in Chapter 1, safety is a primary concern when perform-
ing online exploration for UAV Reinforcement Learning agents. A preliminary
step to develop a new and effective safe exploration strategy to answer the
challenge of safety would be to formalize the risk posed by the environ-
ment for the agent. Chapter 2 serves therefore two purposes. The first is
to develop a mathematical representation of danger in the learning environ-
ment, and to integrate this within the Markov decision process framework.
The second purpose is to formulate an exploration strategy that, given the
integrated framework, can prevent dangers to the agent without resorting to
a-priori known safe policies.

This chapter is a copy of T. Mannucci, E. van Kampen, C. C. de Visser and Q. Chu, ”Safe Exploration Al-
gorithms for Reinforcement Learning Controllers”, in IEEE Transactions on Neural Networks and Learning
Systems, accepted and awaiting publication
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Abstract
Self-learning approaches, such as Reinforcement Learning, offer new possi-
bilities for autonomous control of uncertain or time-varying systems. How-
ever, exploring an unknown environment under limited prediction capabil-
ities is a challenge for a learning agent. If the environment is dangerous,
free exploration can result in physical damage or in an otherwise unaccept-
able behavior. With respect to existing methods, the main contribution of
this work is the definition of a new approach that does not require global
safety functions, nor specific formulations of the dynamics or of the environ-
ment, but relies on interval estimation of the dynamics of the agent during
the exploration phase, assuming a limited capability of the agent to perceive
the presence of incoming fatal states. Two algorithms are presented with
this approach. The first is the Safety Handling Exploration with Risk Percep-
tion Algorithm (SHERPA), which provides safety by individuating temporary
safety functions, called backups. SHERPA is shown in a simulated, simpli-
fied quadrotor task, for which dangerous states are avoided. The second
algorithm, denominated OptiSHERPA, can safely handle more dynamically
complex systems for which SHERPA is not sufficient through the use of safety
metrics. An application of OptiSHERPA is simulated on an aircraft altitude
control task.

2.1. Introduction
In engineering, classic control schemes such as PID still enjoy widespread use. This
can be partially explained by the amount of effort needed to provide affordable yet
efficient dynamic models of complex platforms. In the wake of this consideration,
special attention in the control community has been dedicated to control schemes
which require less precise knowledge of a model to achieve satisfactory perfor-
mances. Robust control[68] constitutes an example of controller design developed
to tolerate modeling error while guaranteeing a lower bound on performance. Adap-
tive control represents a promising field in developing new controllers with increased
performance and reduced model dependency[69, 70]. A model-free option amidst
adaptive control is Reinforcement Learning (RL).

Reinforcement Learning is a knowledge based control scheme that mimics ani-
mal development[71]. At any given moment, an animal receives an array of internal
and external stimuli that form its situation, with the behavior dictating the reaction
to each of them. Correct reactions generate a positive chemical discharge that re-
inforces the behavior whereas unsuccessful ones lead to anguish that disproves it.
This has an equivalent in Reinforcement Learning: stimuli constitute the plant or
system; the animal is the agent following a temporary behavior, i.e. a policy. Lastly,
the chemical reaction is represented by a numerical feedback called the reward.

From a theoretical point of view, RL has evolved in time to guarantee mini-
mal level of performance. Selected algorithms were proven to be Probably Ap-
proximately Correct (PAC)[72], and proofs of near-optimality and optimality for
both discrete and continuous[73] applications were found. RL has also proved
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its worth in combination with Neural Networks (NN) in the development of Neuro-
Dynamic Programming[74, 75], where the approximation power of NNs is utilized
to efficiently represent both the value and the policy, thus reducing the “curse of
dimensionality”[76]. In recent years, multiple successful applications[77–80], uti-
lize RL as a framework for learning, in particular model-free RL[81–83].

In model-free RL there is no need of a model of the plant: learning starts with
an exploratory phase, during which, rather than following the best policy based on
current knowledge, new actions are tried in order to find the most rewarding actions
and iteratively correcting its policy. The agent transitions gradually from exploring to
exploiting, i.e. performing actions suggested by its best policy. The transition must
be handled with care. Transitioning before the best policy is converged results in
sub-optimal behavior due to lack of knowledge of the environment, but transitioning
long after convergence unnecessarily delays the application of the best policy, thus
affecting performance. This conflict between gathering and use of knowledge is
called exploration-exploitation dilemma.

Whenever an agent attempts an inappropriate action, the consequent penalty
acts as a negative reinforcement, and the wrong behavior is progressively discour-
aged, until it is no longer adopted. This permits to accommodate unwanted, unsafe
actions within the canonical RL framework. However, consider an hostile environ-
ment where the consequences of wrong actions are not limited to “bad” perfor-
mance, but include long term effects that can’t be compensated by more profitable
exploitation later on. As one wrong action can result in unrecoverable effects, such
an environment poses a safety-exploration dilemma, especially for a model-free ap-
proach. The goal of this work is to avoid such occurrences during learning, thus
achieving safe exploration[84].

In the literature, a widely adopted approach to safety consists of assigning neg-
ative reward for undesired transitions, such that the most reliable policy maximises
the minimal sum of reward in the presence of uncertainties and stochasticity. Safety
is therefore embedded into policy performance. This worst-case or minimax [12]
approach belongs to the optimisation criterion of safety [13]. Under this criterion,
assuming a sufficiently large penalty for unsafe transitions, the optimal policy is also
the safest. Methods for policy improvement with this approach have also been de-
signed [14]. Alternatively, by assigning negative reward, the variance of the return
can be taken into account by adopting risk-sensitivity approaches [15–18]. Several
techniques exist to implement both minimax and risk-sensitive methods (see e.g.
[19]); however, there are limitations as far as exploration is considered. Including
safety as part of the reward can generate a conflict between purely performance-
based reward and safety-based reward if the penalty for unsafe transitions is not
correctly assigned. Also, the optimisation criterion can be effective in preventing
harmful situations, but requires previous knowledge of the probability of risk for the
state-action space, which is in general the result of exploration itself. A different so-
lution is to include safety in the exploration process itself. Garcia[13] differentiates
three different approaches: “providing initial knowledge”, directing the learning in
its initial stage towards more profitable and safer regions of the state space [20];
“deriving a policy from demonstrations” by means of Learning from Demonstration
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[21]; “providing teacher advice” by including an external teacher that can inter-
rupt exploration and provide expert knowledge, or that the agent can consult when
confronted with unexpected situations[22]. An alternative implementation of this
solution is risk-directed exploration. With this approach, the agent’s choice of ac-
tions is aided by an appropriate risk metric [23] acting as an exploration bonus
towards the safer regions of the environment.

Among algorithms that directly avoid unsafe transitions, [24] relies on an a-
priori known safety function (acting as a go/no-go decision maker over feasible
actions) and a fixed backup policy valid in all workspace. A similar approach is
taken in [25], with the difference that the safety function is obtained through a
“cautious simulator”. The simulator must correctly label unsafe states, but is allowed
to mislabel safe states as unsafe: it is assumed that an experienced human operator
can force the system into a mislabeled safe state. In [26] variable amount of
perturbation is introduced in a given safe but inefficient baseline controller, so that
discovery of new trajectories for task completion is possible, taking a certain amount
of risk. These techniques share the need of a guaranteed safe controller, simulators
or backup policy in order to prevent catastrophic exploration when facing critical
decisions. Moldovan and Abbeel[27] define safety in terms of ergodicity of the
exploration, and introduce an algorithm that relies on believes of the system, but
not on a predefined baseline policy or safe controller.

This paper adopts a different strategy for safe exploration that does not rely
on a-priori known safety functions, cautious simulators, or in an explicit ergodicity
of the system. Instead, a temporary safety function is generated at each time in
the form of backups. A backup is essentially an escape route: a control sequence
that can bring the system in a close neighborhood of a state that the agent already
visited in the past. By resorting to backups, this strategy eliminates the need for
the above prerequisites. This is particularly apt for RL tasks where the agent’s
knowledge is very limited, which makes these prerequisites more demanding.

Two algorithms implementing the strategy are presented in this paper, and com-
pared to similar preexisting ones. The first algorithm is the Safety Handling Explo-
ration with Risk Perception Algorithm (SHERPA). Given a user-defined exploratory
policy and an uncertain model of the system, SHERPA searches backups satisfying
a closeness condition. If the search fails, SHERPA replaces the policy action with
a safer alternative, effectively acting as a “filter” with respect to the exploratory
policy. SHERPA is effective in all those cases where backups can be found with
reasonable ease. For more challenging tasks, a second version called OptiSHERPA
is proposed which uses metrics to assess the safety of all available actions. Ad-
ditionally, OptiSHERPA includes a dedicated evasion strategy, that relies on the
current belief on the state space to minimize risks while at the same time avoiding
impending dangers. While the “filtering” effect of both algorithms could be applied
in diverse contexts, it is in RL that they prove more useful, due to the usual lack of
information about the task being performed.

For the most general scenario, coverage of the state space, and convergence
to the optimal policy cannot be guaranteed when using the proposed algorithms,
which promote safety of exploration more than its efficiency (e.g. does not follow
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the “optimism in the face of uncertainty”[32] criteria). However, the formulation
of the proposed algorithms is flexible enough to address these drawbacks without
major modifications, e.g. by relaxing the constraints for the individuation of a
backup.

Two applications of the algorithms are shown in the form of simulations. SHERPA
is applied to a simulated quadrotor UAV exploring an indoor environment. OptiSH-
ERPA is used to control the elevator deflection of a fighter aircraft exploring its
flight envelope. Both agents have a stochastic exploratory policy: the goal of the
algorithms is then to enforce safety during exploration.

2.2. Fundamentals
This section will expand the problem of safe exploration. First, a brief overview of
the fundamentals of RL will be provided. The motivation will be presented and the
problem statement will be formalized. Finally, the assumptions of this method will
be summarized.

2.2.1. Problem statement
Classic RL is defined on the Markov decision process (MDP) framework. An MDP
schematically represents a task for an agent in an environment, and consists of a
tuple of five elements: state, action, transition, reward and discount. Set 𝒮 contains
the states 𝑥𝑥𝑥 of the environment. Set 𝒜 is the set of actions 𝑢 that the agent can
select. 𝒟 is a mapping 𝒮 × 𝒜 × 𝒮 → [0, 1] that ∀𝑥𝑥𝑥, 𝑥𝑥𝑥 ∈ 𝒮 and ∀𝑢 ∈ 𝒜 assigns
to triplet (𝑥𝑥𝑥, 𝑢,𝑥𝑥𝑥 ) the probability of the environment transitioning from state 𝑥𝑥𝑥 to
state 𝑥𝑥𝑥 given action 𝑢. Function ℛ ∶ 𝒮 × 𝒮 → ℝ maps all transitions to a scalar 𝑟,
the reward, which indicates the immediate benefit of the transition with respect to
accomplishing the task. A policy 𝜋 ∶ 𝒮 × 𝒜 → [0, 1] is a mapping that ∀𝑥𝑥𝑥 assigns
a probability of selecting action 𝑢, describing the behavior of the agent. The goal
of the agent is to learn an optimal policy 𝜋∗ that maximizes the sum of expected
reward 𝐽 (𝑥𝑥𝑥) subjected to a discount 𝛾 which privileges short term reward. 𝐽 is the
value of 𝑥𝑥𝑥 with 𝜋.

Various algorithms [85] exist to solve this problem, all of which rely on the con-
cept of exploration. Exploration consists in performing different actions in different
states, observing the consequent reward, and using this knowledge to progres-
sively define a policy 𝜋 which maximizes the total expected reward. Under certain
conditions, exploration can eventually yield policy 𝜋∗ or its approximation [73].

A fatal occurrence is defined as an unacceptable condition for the agent; for
example if the agent is harmed, e.g. a crash or a failure, or if it cannot proceed
further in its task. Safe exploration consists in preventing fatal occurrences.

2.2.2. Definitions and assumptions
In order to define the approach to safe exploration, this section will introduce mul-
tiple assumptions: a framework on how to represent fatal occurrences in physical
agents; a limited prediction capability, denominated risk perception; and a model
for the computation of uncertain dynamics. The dynamics represented by 𝒟 define
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the set 𝒯 of feasible transitions 𝜏 = (𝑥𝑥𝑥, 𝑢,𝑥𝑥𝑥 ), 𝑥𝑥𝑥,𝑥𝑥𝑥 ∈ 𝒮, 𝑢 ∈ 𝒜. Let 𝒯 represent
the subset of those transitions generating fatal occurrences. The following will be
assumed:

Assumption 1 If ∃�̄� = (�̄̄��̄�𝑥, �̄�, 𝑥𝑥𝑥 ) ∈ 𝒯 , and ∃𝑥𝑥𝑥 ∈ 𝒮, ∃𝑢 ∈ 𝒜, ∃𝜏 = (𝑥𝑥𝑥, 𝑢,𝑥𝑥𝑥 ) ∈ 𝒯,
then 𝜏 ∈ 𝒯

This assumption is not new to the literature (e.g., see [86]) and can be considered
an extension of the Markov property to fatal occurrences: these are inherently
related to fatal states and not to actions. Any action leading to the same state or
condition would result in the same fatal occurrence. This allows to define the fatal
state space (FSS) as

Definition 1 ( atal state space) FSS = {𝑥𝑥𝑥 |∀𝑥𝑥𝑥 ∈ 𝒮, ∀𝑢 ∈ 𝒜, 𝜏 = (𝑥𝑥𝑥, 𝑢 ,𝑥𝑥𝑥 ) ∈
𝒯 }

and analogously the safe state space (SSS)) as

Definition 2 (Safe state space) SSS = 𝒮 ⧵ FSS.

Complex systems may present multiple modalities of fatal occurrences; these
will be informally defined as risks. It is reasonable to assume that only a subset
of state components will be involved for each risk. Given the state space 𝒮 ⊆ ℝ ,
define as the restricted state space (RSS) of a risk the space defined by those
components involved in the risk. Consider for example an aircraft for which two
risks are defined: hitting the ground and getting damaged by the aerodynamic
forces. The ground risk can be related to the position of the agent with respect to
the ground, whereas the aerodynamic risk can be related to wind speed, deflections,
and attitudes. Different features of the state vector are involved for each risk. The
first RSS is the space of all possible positions. The second RSS is the space of all
possible combinations of wind speed, deflections, and attitudes. It will be assumed
that the possible modes of fatal occurrence are known:

Assumption 2 For each risk, the agent has a-priori knowledge of the relative RSS.

Such a formulation arguably comes natural to a designer, since it expresses the
risks involved in the exploration, and is also very high-level, so that the designer
is not required to consider dangerous conditions but only those that are certainly
fatal. Those elements of an RSS that are also fatal form the a-priori unknown
restricted fatal state space (RFSS) (see Figure 2.1). Now that a structure for the
fatal occurrences is defined, Assumption 3 will introduce a mean of prevention of
risks, providing closure to the problem definition.

Assumption 3 (Ris perception) Let RSS be the restricted state space of the
𝑘 risk, 𝑘 ∈ {1, ⋯ ,𝑚}. Let 𝑥𝑥𝑥 be the projection of state 𝑥𝑥𝑥 ∈ 𝒮 to RSS , and
𝑓𝑓𝑓 ∈ RFSS the nearest fatal state to 𝑥𝑥𝑥 . Then ∀𝑘 ∈ {1, ⋯ ,𝑚}, ∃𝜖 ∈ ℝ such that
at each time-step, the value of the boolean function
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Figure 2.1: An agent exploring a state space (bold dotted rectangle) with two different . The
first cause of fatality is independent from the value of component , and an Euclidean distance is
provided for the risk perception. A second cause of fatality is dependent on both components of the
state so that an Euclidean distance in the whole state space is given. In ( ), is in reach;
in ( ), is in reach; in ( ), both s are in reach. In all three cases the agent receives an
identical warning.

‖𝑥𝑥𝑥 −𝑓𝑓𝑓 ‖ ≤ 𝜖 ∨ ⋯ ∨ ‖𝑥𝑥𝑥 −𝑓𝑓𝑓 ‖ ≤ 𝜖 (2.1)

is known, where ‖∗‖ is the canonical 2-norm of ∗.

The risk perception can be represented by a unknown mapping 𝑊 ∶ 𝒮 → {0, 1},
𝑊(𝑥𝑥𝑥) equal to 1 if Eq. (2.1) is true and 0 otherwise. Risk perception is a strong
assumption; however, the following should be considered. When performing explo-
ration in a dangerous environment, the agent cannot predict if the next state will be
fatal or not without any form of knowledge of the FSS. Risk perception constitutes
a plausible source of knowledge, arguably more valid than a-priori assumptions on
fatal states distributions. Being a form of local, sensor based knowledge, risk per-
ception allows to react to the insurgence of risks while retaining a sufficient level
of abstraction and generality.

Consider the continuous-time version of an MDP. Indicating by 𝜎𝜎𝜎(𝑥𝑥𝑥(𝑡 ), 𝑢(𝑡), 𝑡)
the state of the system at time 𝑡 > 𝑡 when applying generic action history 𝑢(𝑥𝑥𝑥(𝑡 ), 𝑡):

𝜎𝜎𝜎(𝑥𝑥𝑥(𝑡 ), 𝑢(𝑡), 𝑡) = 𝑥𝑥𝑥(𝑡 ) + ∫ �̇�𝑥𝑥(𝑥𝑥𝑥, 𝑢(𝜏))𝑑𝜏, (2.2)

the set 𝐿 of the lead-to-fatal (LTF) states is
Definition 3 ( ead-to-fatal states)

𝐿 = {𝑥𝑥𝑥 |∀𝑢(𝑥(𝑡 ), 𝑡) , ∃𝑡 ∶ 𝜎𝜎𝜎(𝑥(𝑡 ), 𝑢(𝑡), 𝑡) ∈ FSS}. (2.3)

LTF states are those that do not belong to the FSS, but evolve in the FSS with
probability one. They can be seen as an equivalent in the generalized states space
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of the inevitable collision states introduced in [87], and as the supercritical states
defined in [24] for a deterministic MDP.

In model-based RL, the controller has an adaptive model of the environment
that allows off-line training and on-line system identification. Instead, in model-
free RL (e.g., Q-learning [6]) there is no off-line training - the policy refinement
is based on on-line training and no model is generated. An intermediate position
between this two instances will be adopted in this work by introducing the following
definition:

Definition 4 ( ounding model) Given dynamics𝒟 yielding transition set 𝒯, model
Δ(𝑥𝑥𝑥, 𝑢) is bounding for 𝒟 if and only if:

∀𝜏 = {𝑥𝑥𝑥, 𝑢,𝑥𝑥𝑥 } ∈ 𝒯; 𝑥𝑥𝑥 ∈ Δ(𝑥𝑥𝑥, 𝑢) (2.4)

i.e. a model is bounding if it predicts at least all feasible transitions. Such a model is
not used to perform off-line policy improvements but only to predict the boundaries
of the dynamical evolution of the agent. It will be assumed that both real and
bounding models are continuous, deterministic, and time-invariant.

2.3. SHERPA
This section presents SHERPA. In order to properly explain the algorithm, Interval
Analysis (IA) will be briefly introduced as a mean of obtaining bounding models[88].
The mathematical framework will then be expanded and refined as well. The algo-
rithm will then be discussed in detail. Finally, the section will present an application.

2.3.1. Interval analysis
An interval [𝑥𝑥𝑥] = [𝑥𝑥𝑥, 𝑥𝑥𝑥] is the set {𝑥𝑥𝑥| 𝑥 ≤ 𝑥 ≤ 𝑥 , 𝑖 ≤ 𝑛}, 𝑥𝑥𝑥 = (𝑥 , ⋯ ,𝑥 ) ,
𝑥𝑥𝑥= (𝑥 , ⋯ , 𝑥 ) , 𝑥 , 𝑥 ∈ ℝ. If 𝑥𝑥𝑥 = −𝑥𝑥𝑥, [𝑥𝑥𝑥] is symmetric. In IA, the generic opera-
tor ∗ applied to intervals yields all feasible solutions of the same operation applied to
elements of the intervals: ∀𝑥𝑥𝑥 ∈ [𝑥𝑥𝑥], 𝑦𝑦𝑦 ∈ [𝑦𝑦𝑦], 𝑥𝑥𝑥 ∗𝑦𝑦𝑦 ∈ [𝑥𝑥𝑥] ∗ [𝑦𝑦𝑦]. Consider a parametric
formulation of 𝒟 as 𝒟(𝑥𝑥𝑥, 𝑢, 𝜌 , … , 𝜌 ), with parameters 𝜌 ∈ [𝜌 ] and [𝜌 ] known con-
fidence intervals. Following the above definition, [𝒟(𝑥𝑥𝑥, 𝑢)] = {𝒟(𝑥𝑥𝑥, 𝑢, 𝜌 , … , 𝜌 )|𝜌 ∈
[𝜌 ]} is the bounding model of 𝒟. For each 𝑥𝑥𝑥 and 𝑢, [𝒟(𝑥𝑥𝑥, 𝑢)] is also an interval.
This makes bounding models relatively simple and very economic in terms of data
representation. However, it has the disadvantage of overestimating the reachable
set of the states, due to an effect known as dependency problem, which propagates
uncertainty in states and parameters.

2.3.2. Background and algorithm description
The final goal of the agent is to select at each time 𝑡 a control 𝑢 that will keep the
system safe, i.e., will avoid the FSS. Safety of a control can be defined as follows:

Definition 5 Control 𝑢(𝑡), 𝑡 ∈ [𝑡 𝑡 ] is safe in state 𝑥𝑥𝑥(𝑡 ) if

𝜎𝜎𝜎(𝑥𝑥𝑥(𝑡 ), 𝑢, 𝑡) ∈ SSS , ∀𝑡 ∈ [𝑡 𝑡 ].
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Safe control 𝑢(𝑡) is feasible if ∀𝑡, 𝑢 ≤ 𝑢(𝑡) ≤ 𝑢, where 𝑢 and 𝑢 represent bound-
aries on control, e.g., saturation. If this condition is strictly satisfied, 𝑢(𝑡) is said to
be strictly feasible. However, multiple limitations such as inertia, control saturation
and holonomic constraints give rise to LTF states, which must also be avoided dur-
ing exploration, but are not perceivable. For a generic trajectory 𝜎𝜎𝜎(𝑥(𝑡 ),u, 𝑡), the
conditon of Eq. (2.3) cannot be verified in practice since it would require an infinite
time horizon. However, an exception occurs when a trajectory 𝜎𝜎𝜎 visits a state 𝑥𝑥𝑥(�̄�)
multiple times. Formally, given a safe and feasible control 𝑢(𝑡) with associated
trajectory 𝜎𝜎𝜎(𝑥𝑥𝑥(𝑡 ), 𝑢, 𝑡), 𝑡 ∈ [𝑡 , 𝑡 ] if

∃𝑡 , 𝑡 ∈ [𝑡 , 𝑡 ], 𝑡 ≠ 𝑡 ∶ 𝜎𝜎𝜎(𝑥𝑥𝑥(𝑡 ),u, 𝑡 ) = 𝜎𝜎𝜎 (𝑥𝑥𝑥(𝑡 ),u, 𝑡 ) (2.5)

then there exists a safe and feasible control 𝑢∗(𝑡) for 𝑡 ∈ [𝑡 ,∞). It can be seen from
Eq. (2.2) that Eq. (2.5) can be rewritten as 𝜎𝜎𝜎(𝑥𝑥𝑥(𝑡 ), 𝑢(𝑡−(𝑡 −𝑡 )), 𝑡 ) = 𝜎𝜎𝜎(𝑥𝑥𝑥(𝑡 ), 𝑢(𝑡−
(𝑡 − 𝑡 )), 𝑡 ). Then, ∀Δ𝑡 ≤ (𝑡 − 𝑡 ), 𝜎𝜎𝜎(𝑥𝑥𝑥(𝑡 ), 𝑢(𝑡 − (𝑡 − 𝑡 ) − (𝑡 − 𝑡 )), 𝑡 + Δ𝑡) =
𝜎𝜎𝜎(𝑥𝑥𝑥(𝑡 ), 𝑢(𝑡 − (𝑡 − 𝑡 )), 𝑡 + Δ𝑡). Since trajectory 𝜎𝜎𝜎(𝑥𝑥𝑥(𝑡 ), 𝑢(𝑡), 𝑡 + Δ𝑡) ∈ SSS , a
safe and feasible control exists at least for 𝑡 ∈ [𝑡 , 𝑡 + (𝑡 − 𝑡 )]. The above can
be repeated by replacing 𝑡 with 𝑡 and 𝑡 with 𝑡 + (𝑡 − 𝑡 ), guaranteeing a safe
control for 𝑡 ∈ [𝑡 , 𝑡 +2(𝑡 − 𝑡 )]. The procedure can be repeated indefinitely, thus
demonstrating the above. A particular occurrence of Eq. (2.5) consists in those
cases where the system is in equilibrium, i.e., �̇�𝑥𝑥 = 0. Then, define an ideal backup
from 𝑥𝑥𝑥 = 𝑥𝑥𝑥(𝑡 ) to 𝑥𝑥𝑥(�̄�) as follows:

Definition 6 A feasible, safe control action 𝑢 (𝑡) , 𝑡 ∈ [𝑡 , �̄� ] is an ideal bac up
from 𝑥𝑥𝑥 to 𝑥𝑥𝑥(�̄�) if

∃ 𝑡 < �̄� ∶ 𝑥𝑥𝑥(�̄�) = 𝑥𝑥𝑥(𝑡). (2.6)

An ideal backup guarantees safety; however, Eq. (2.6) cannot be verified when
taking into account the uncertainties of the bounding model, since it is not possible
to exactly predict the next state. The following assumption will be made:

Assumption 4 Let 𝑢(𝑡) be a strictly feasible safe control for 𝑥𝑥𝑥 = 𝑥𝑥𝑥(𝑡 ) and
𝑡 ∈ [𝑡 , �̄�]. Then ∀𝜖 > 0, ∃𝑀 ∈ ℝ and 𝑢∗(𝑡) a safe control for 𝑥𝑥𝑥: ‖𝑥𝑥𝑥 − 𝑥𝑥𝑥 ‖ < 𝜖
and 𝑡 ∈ [𝑡 , �̄�] such that

max ‖𝑢(𝑡) − 𝑢∗(𝑡)‖ ≤ 𝑀, lim
→
𝑀 = 0

i.e., in a neighborhood of a state with a strictly feasible safe control, a safe control
for any state of the neighborhood can be found by altering the safe control by a
finite amount that tends to zero as the neighborhood reduces in size1. A weaker
definition of a backup can then be introduced:

Definition 7 A feasible, safe control action 𝑢 (𝑡) , 𝑡 ∈ [𝑡 , �̄�] is a bac up from 𝑥𝑥𝑥
to 𝑥𝑥𝑥(�̄�) with reach 𝜖 if

∃ 𝑡 < �̄� ∶ ‖𝑥𝑥𝑥(�̄�) − 𝑥𝑥𝑥(𝑡)‖ ≤ 𝜖 (2.7)
1Intuitively, local Lipschitz continuity of ( , ) is required for Assumption 4 to hold. However, the
remainder of the paper will consider Assumption 4 as given.
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which in turn allows for the following theorem:

Theorem 1 Let 𝑥𝑥𝑥 = 𝑥𝑥𝑥(𝑡 ) ∈ SSS, let 𝑢 (𝑡) be a strictly feasible safe control for 𝑡 ∈
[𝑡 , 𝑡 ], and let 𝑢 (𝑡) be a strictly feasible ideal backup from 𝑥𝑥𝑥 to 𝑥𝑥𝑥 = 𝜎𝜎𝜎(𝑥𝑥𝑥 , 𝑢 , 𝑡 ).
Then ∃𝑢 a backup from 𝑥𝑥𝑥 to 𝑥𝑥𝑥 with reach 𝜖 > 0 and a control 𝑢∗(𝑡) for 𝑡 ≥ 𝑡
such that

𝑢(𝑡) = {𝑢 (𝑡) if 𝑡 ≤ 𝑡
𝑢∗(𝑡) otherwise

is a feasible safe control for 𝑡 ∈ [𝑡 ,∞).

Proof: the existence of the ideal backup 𝑢 (𝑡)means that the iterative control action
𝑢 (𝑡) = (𝑢 (𝑡), 𝑢 (𝑡), 𝑢 (𝑡), ⋯ ) is a strictly feasible safe control. The existence
of 𝑢 (𝑡) means that ∀𝜖 there exists a backup. Assumption 4 guarantees that there
exists a safe control 𝑢(𝑡) such that ∀𝑡 ‖𝑢(𝑡) − 𝑢 (𝑡)‖ ≤ 𝑀 after the application
of the backup. Since 𝑢 (𝑡) is strictly feasible, and since, for 𝜖 → 0, 𝑀 → 0 then
∃𝜖 s.t. 𝑢(𝑡) is also feasible. �

Theorem 1 is of limited practical use - since it relies on the existence of 𝑢 (𝑡) and
does not specify the actual value of 𝜖 - but formalizes the observation contained in
Eq. (2.5) in the presence of uncertainty. The equilibrium condition can be formalized
as follows:

Definition 8 State 𝑥𝑥𝑥 ∈ SSS is an equilibrium point for the system if ∃𝑢 = 𝑢(𝑡 )
s.t. d𝑥𝑥𝑥/d𝑡(𝑥𝑥𝑥 , 𝑢 ) = 0.

The definition of backup can be revised as

Definition 9 A feasible, safe control action 𝑢 (𝑡) , 𝑡 ∈ [𝑡 �̄�] is a bac up from 𝑥𝑥𝑥
to 𝑥𝑥𝑥(�̄�) with reach 𝜖 if ∃ 𝑡 < �̄� ∶ ‖𝑥𝑥𝑥(�̄�) − 𝑥𝑥𝑥(𝑡)‖ ≤ 𝜖, in which case is said to have
reach 𝜖, or if there exists an equilibrium point 𝑥𝑥𝑥 s.t. ‖𝑥𝑥𝑥(𝑡 ) − 𝑥𝑥𝑥 ‖ ≤ 𝛿.

2.3.3. Closeness condition
The goal of SHERPA is to find a feasible backup with a sufficiently small reach, i.e.
for which the system reaches a “close” neighborhood of a previously visited state;
therefore, a closeness condition must heuristically be introduced to implement the
method. Once again, IA offers a simple way of interpreting closeness between two
points. Before proceding further, it is convenient to slightly alter the definition of
backup to accommodate the use of intervals. Let the bounding model Δ of 𝒟 be its
IA extension [𝒟] with time-discrete formulation, so that [𝑥𝑥𝑥 ] = Δ([𝑥𝑥𝑥 ], 𝑢 ), and
let [𝜖] and [𝛿] be two 𝑛-dimensional symmetric intervals. Then, a backup can be
reformulated as follows:

Definition 10 Let then {𝑥𝑥𝑥 , ⋯ , 𝑥𝑥𝑥 } be the trajectory generated by control 𝑢 =
{𝑢 , ⋯ , 𝑢 }. Then 𝑢 is a bac up in interval form for [𝑥𝑥𝑥 ] if and only if:

∀𝑖 ∈ {1, 2,⋯ , 𝑚}, [𝑥𝑥𝑥 ] ⊂ SSS (2.8)
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Figure 2.2: An example of backup evaluation. Starting from position ( ) ( ), the agent has
followed its trajectory to current state . The three dashed lines represent the means of three proposed
interval backups from . The proposed backup generated by control is discarded since it violates
the known safe state space . The proposed backup generated by is also discarded since [ ]
does not satisfy the closeness condition with nearest explored state . Control generates a feasible
backup, since the associated trajectory lies entirely in the , and since [ ] respects the closeness
condition.

and :

∀𝑥𝑥𝑥 ∈ [𝑥𝑥𝑥 ], ∃𝑝 ≤ 𝑘 ∶ (𝑥𝑥𝑥 − 𝑥𝑥𝑥 ) ∈ [𝜖] (2.9)

in which case the backup has reaching interval [𝜖], or if it exists an equilibrium point
𝑥𝑥𝑥 s.t. :

∀𝑥𝑥𝑥 ∈ [𝑥𝑥𝑥 ], (𝑥𝑥𝑥 − 𝑥𝑥𝑥 ) ∈ [𝛿] (2.10)

in which case the backup has reaching interval [𝛿].

This definition replaces the reach with intervals [𝜖] and [𝛿]. Given two symmetric
threshold intervals [𝜖] and [𝛿] , a backup is effective if either [𝜖] ⊂ [𝜖] or
[𝛿] ⊂ [𝛿] . Figure 2.2 shows an example of backup evaluation. Length 𝑚 should
be chosen so that the size of intervals [𝑥𝑥𝑥 ] is comparable to risk perception
ranges 𝜖.

The choice of the threshold intervals is empirical in nature; however [𝜖] should
depend on the magnitude of the control. Given Assumption 4, lim

→
max ‖𝑢(𝑡 ) −

𝑢∗(𝑡 )‖ = 0, so that the smaller the threshold [𝜖] , the more likely the feasibility
of control 𝑢(𝑡 ). To account for this, an initial threshold interval [𝜖] is assigned
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to each new state 𝑥𝑥𝑥 . At each successive time-step, all the threshold intervals are
shrunk by a factor 𝜂:

𝜂 = (∏𝜂 ) ; 𝜂 = (1 −
|𝑢 (𝑡 ) − ⋅ (𝑢 + 𝑢 )|

⋅ (𝑢 − 𝑢 )
) (2.11)

with positive exponent 𝜆 < 1. The more the control action nears the boundaries
𝑢 and 𝑢, the smaller the 𝜂, and the more the shrinkage of [𝜖] . Exponent 𝜆 also
regulates shrinkage: the smaller 𝜆, the less previous explored states are penalized
with respect to recent ones. Values of 𝜆 and of [𝜖] are closely related; e.g., a
small 𝜆 should be paired with a small [𝜖] and a high 𝜆 with an increased [𝜖] .

2.3.4. SHERPA
In this section, the SHERPA algorithm (Figure 2.3) will be discussed in detail. At the
start of the exploration, the agent is in state 𝑥𝑥𝑥 . It is assumed that𝑊(𝑥𝑥𝑥 ) = 0. For
each proposed action 𝑢 generated by policy 𝜋, SHERPA computes the predicted
interval [𝑥𝑥𝑥 ] = Δ(𝑥𝑥𝑥 , 𝑢 ). If [𝑥𝑥𝑥 ] ∉ SSS(𝑡 ), a different action is proposed, or
the agent might encounter a fatal state. Otherwise, SHERPA checks the existence
of a backup for [𝑥𝑥𝑥 ]: a random finite control sequence 𝑢 is generated, and for
each step, its reach is checked as per Definition 10. If no backup is found after a
set number of iterations, the current action is discarded, and a different action is
proposed. In the new state 𝑥𝑥𝑥 , if𝑊(𝑥𝑥𝑥 ) = 0, then the SSS is augmented with all the
states currently in reach of the risk perception. The procedure is iterated during
the whole exploration. In theory, the agent has always a feasible control at its
disposal, eventually resorting to a backup, i.e., an iterative control, or a dynamical
equilibrium. If all proposed actions fail the previous checks, SHERPA will force
the agent to adopt the current backup. During backup execution, it will proceed
to individuate a safe control and a backup for the expected arrival interval. The
complexity of the algorithm depends on the number of visited states 𝑘, the number
of available actions 𝑛 , the maximum amount of iterations for action selections 𝑎
and for backup checking 𝑏 , and is equal to 𝑂(𝑎 ⋅max(min(𝑏 , 𝑛 ), 𝑘𝑛 )).

Other methods have proven their worth in preventing a controlled system from
reaching a set of unsafe states or configurations. Potential fields[89] were suc-
cessfully adapted for robotic navigation and path planning with lack of environ-
mental knowledge, e.g uncertainty in observed obstacles[90], in the number of
obstacles[91] and even in the entire environment[92]. However, these methods
are not equally adaptable when the uncertainty extends to the model dynamics,
and when holonomic and control constraints are considered, as in this paper. An
application of this is provided in the following as comparison with SHERPA. Lyapunov
Barrier Functions[93], Control Barrier Functions[94] and Control Lyapunov-Barrier
Functions[95] can provide control that is guaranteed to be safe. However, the
underlying assumptions on system structure, or on the barrier functions, can limit
their applicability, especially when considering model uncertainty.
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Figure 2.3: Flowchart summarizing the procedure of SHERPA. The policy action is checked for safety
and for backups; if the checks succeed, the action is taken and the new backup is stored in place of
the previous. If the iteration limit is reached without success, SHERPA recollects the previously stored
backup.
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2.3.5. Quadrotor task
In this section, a task is simulated for a two-dimensional quadrotor flying in a room.
The underlying RL agent adopts a fully random policy to explore. The goal is for
SHERPA to prevent collision and thus enable safe state exploration. The state vector
is (𝑥, �̇�, 𝑧, �̇�, 𝜃) , where 𝑥, 𝑧 and 𝜃 are the horizontal and vertical coordinate of
the quadrotor, and the pitch angle. The bounding model2 is

�̈� = − [𝑐][𝑚] | sin 𝜃| |�̇�| �̇� +
𝑇
[𝑚] sin 𝜃 ; �̇� = [𝑘]𝐼

�̈� = − [𝑐][𝑚] | cos 𝜃| |�̇�| �̇� +
𝑇
[𝑚] cos 𝜃 − 𝑔 (2.12)

where 𝑐 and [𝑐] is a damping coefficient; 𝑚 and [𝑚] is the mass of the quadrotor
; 𝑇 is the total thrust generated by the rotors; 𝑘 and [𝑘] is an efficiency factor for
torque impulse 𝐼 ; 𝑔 is the gravitational acceleration. Intervals [𝑐], [𝑚] and [𝑘] are

[𝑚] = [0.344 , 0.516] kg; [𝑐] = [0.72 , 1.08] × 10 ; [𝑘] = [0.8 , 1.2]

with control action bounded as 𝑇 ∈ [0 , 12.7] N and 𝐼 ∈ [−300∘ , 300∘] s . The
model of the quadrotor used for the computation of the real dynamics is obtained
from the bounding model by randomly selecting 𝑐, 𝑚 and 𝑘 from their intervals.

The quadrotor initially hovers at the middle of a room three meters wide and
two meters high. Colliding with the walls or with the floor/ceiling is a fatal oc-
currence, and the quadrotor perceives risk half a meter from the ceiling or floor,
or at one meter from a wall. The reach of the backup depends on [𝜖 ] =
([− , ]m; [− , ] ; [− , ]m; [− , ] ; [− , ] ). During exploration,
control is bounded between 10% and 90% of the original intervals: 𝑇 ∈ [1.3,
10.3] N and 𝐼 ∈ [−270∘, 270∘] s : this prevents factor 𝜂 of Eq. (2.11) to van-
ish. Coefficient 𝜆 is chosen as 0.5. As for [𝛿], taking into consideration the dy-
namics in Eq. (2.12), it is evident that the position (𝑥, 𝑦) of the quadrotor itself
does not influence the value of the derivatives. Therefore the interval [𝛿 ] =
([−∞, ∞]; [−1 , 1] ; [−∞, ∞]; [−1 , 1] ; [−45 , 45]∘) with equilibrium point �̇� = 0,
�̇� = 0 , 𝜃 = 0 is selected. SHERPA evaluates up to 10 actions per time-step, pro-
posed by the random policy. A maximum of 40 backup evaluations are performed,
for a maximum of 400 iterations per time-step. Initially, since the agent does not
perceive any risk, the SSS(𝑡 ) coincides with

([−1 , 1]m; [−∞ , ∞]; [− , ]m; [−∞ , ∞]; [−∞ , ∞])

and it is updated whenever 𝑊 = 0 as

SSS ∪ {𝒮(𝑥 , 𝑧 , �̇�, �̇�, 𝜃)| ‖𝑥(𝑡) − 𝑥 ‖ < 1 ∨ ‖𝑧(𝑡) − 𝑧 ‖ < }.
2It can be shown that, due to local Lipschitz continuity of Eq. (2.12)), Assumption 4 is valid for any
realization of the dynamics.
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Figure 2.4: The dots represent the quadrotor position in time. The solid rectangle represents the fatal
states that the agent must avoid. The dot-and-dashed line delimits the states where the agent does not
perceive risk. The dashed line represents the known at the end of each run.

A series of four runs of SHERPA is shown in Figure 2.4. The values of 𝑐, 𝑚 and
𝑘 are indicated in the captions. The dots indicate the position of the quadrotor at
different time-steps, starting in position (0, 4). The solid rectangle represents the
fatal states. The dash-dotted line represents the contour of the region where no
risk is individuated (𝑊(𝑥, 𝑦) = 0) and the SSS is therefore updated. The dashed
line represents the known SSS at the end of the run. In three out of four cases,
the quadrotor reaches the boundaries of the SSS, but manages to safely divert its
trajectory (Figure 2.4a and Figure 2.4b) or to wait in position until another path has
been found (Figure 2.4c).

In general, the agent chooses actions that result in safe trajectories, even with a
significant excursion in the value of parameters. Nonetheless, the random nature of
the underlying policy is still noticeable. If a different task were to be proposed (e.g.,
waypoint navigation), SHERPA could still be utilized to evaluate actions suggested
by a non exploratory, goal-oriented policy.

In order to highlight the novelty of the proposed approach, Figure 2.5 shows
an application of a different method, specifically the Basic Potential Field (BPF)
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Figure 2.5: The trajectory obtained when using the BPF to control a quadrotor. In a), with mass and
torque efficiency in almost nominal conditions, the trajectory is centered around the middle of the known

. In b), with increased mass and torque efficiency, the quadrotor flies predominantly in the lower
half of the room before colliding with the floor.

method[96] for collision avoidance. The BPF differs from other potential field meth-
ods such as [89] in that it generates a finite potential accounting for velocities and
maximum decelerations. In this application, the BPF repels the quadrotor from ex-
iting the known SSS. The rate at which the field reaches its maximum intensity is
given by its gain 𝐺 and by the worst-case maximum deceleration as given by the
uncertain model. The quadrotor in Figure 2.5a is in an almost nominal condition
of mass and torque effectiveness (as in Figure 2.4d). It can be seen how a BPF
with gain 𝐺 = 0.5 prevents collisions. The trajectory is centered around the mid-
dle of the known SSS, where the combined repulsive field, averaged between the
different velocities, has a minimum. This differs from the proposed approach, in
which the outer region of the SSS is not penalized with respect to its interior (see,
e.g., Figure 2.4a). Figure 2.5b shows the resulting trajectory when applying the
previous BPF to a quadrotor with increased mass and torque effectiveness, as in
Figure 2.4b. The figure shows how the quadrotor flies predominantly in the lower
half of the room, as a result of the increased mass of the quadrotor. The trajectory
violates the SSS, and even ends with a collision. This is due to the following. First,
the quadrotor is forced to continuously change its attitude so that resultant of the
forces complies with the direction indicated by the BPF. This essentially turns the
BPF into a reactive collision avoidance method. As a result of this, the effectiveness
of the method depends on the gain 𝐺, whose value determines the reactivity of the
field, as shown by the two different conditions of Figure 2.5a and Figure 2.5b. If 𝐺
is too low, the BPF is not sufficiently reactive; however, too high a gain can cause
instability and unwanted oscillations. This selection of 𝐺 is especially critical when
considering systems with model uncertainties. This constitutes another difference
with SHERPA, which takes into account all possible realizations of the model due to
its interval formulation.
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2.4. OptiSHERPA
2.4.1. Motivation and algorithm description
The previous section introduced SHERPA, which relies on an a-priori defined in-
terval to define closeness. This approach was shown to succeed in the quadrotor
application. However, this approach has two drawbacks. First, if the system is
not easily controllable, predicted arrival intervals might fail in satisfying the close-
ness condition. For these systems a safe backup could involve a complex trajectory
which would require a considerable amount of time to be followed. The trajectory
might also reach a portion of the state space outside of the risk perception range
of SHERPA, thus requiring a certain degree of “global” knowledge to be ensured
as safe. The confidence in state prediction and the current knowledge of the SSS
(provided by the risk perception) might not be sufficient to identify such a trajectory
as a backup. This would lead to situations where SHERPA is either unable to find a
suitable control, thus exhausting its backup and then rejecting all further actions,
or is forced to keep the system on hold in an equilibrium point.

A second drawback of the closeness condition is that, acting as a yes-or-no filter,
it does not distinguish between control actions that are almost satisfactory and those
that are completely unacceptable. After resorting to a backup, and while trying to
find a new one from the arrival condition, SHERPA has only a limited amount of
iterations to find a new backup. In the event that this search is unsuccessful,
SHERPA is forced to take a possibly unsafe action.

For the above reasons, a second version of SHERPA named OptiSHERPA is pre-
sented. It differs from SHERPA in two ways. First, OptiSHERPA introduces metrics
for the selection of actions. A finite set of actions is evaluated at each time-step to-
gether with a feasible backup, and the best action is performed. The introduction of
metrics reduces the burden of on-line application by allowing OptiSHERPA to rank its
options and to take an informed decision if the available amount of on-line iterations
is depleted. A second difference lies in the strategy itself. With SHERPA, the gen-
eration of backups would keep the system safe, providing a possible escape route
at every time-step. With OptiSHERPA, when the agent does not perceive danger,
a distance metric is implemented with the goal of preventing potentially unsafe
behavior of the system, effectively constraining the dynamics similar to SHERPA.
When danger is detected, the agent examines its current belief in the state space
and actively avoids the regions of the state space that are least safe. This is done
via an evasion metric.

The remainder of this section is as follows. First, the metrics will be discussed
in detail. Second, the algorithm will be illustrated. Third, a simulated application to
an elevator control task will be shown.

2.4.2. Metrics
Distance metric
This metric allows to classify intervals based on distance so that, during the eval-
uation of backups, the one with “closest” reach can be selected. Indicating by ⊙
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the Schur product,

𝑑(𝑥𝑥𝑥, 𝐼) = ‖(𝑥𝑥𝑥 − 𝐼 + 𝐼2 ) ⊙𝑣𝑣𝑣 ‖ + 𝜌 ⋅ ‖(𝐼 − 𝐼2 ) ⊙𝑣𝑣𝑣 ‖ (2.13)

is a “distance”3 between 𝑥𝑥𝑥 and the center of the interval, rescaled by 𝑣𝑣𝑣 ∈ ℝ ,
plus a term proportional to the interval width weighted by a positive parameter
𝜌 < 1. This term allows to include the uncertainty in the interval as a penalizing
factor. A lower value of 𝜌 privileges intervals whose center are nearer regardless
of their width; conversely a higher value penalizes intervals whose center is nearer
but whose elements are more dispersed. Figure 2.6 shows this transition. Vector
𝑣𝑣𝑣 should be chosen so that, for any two excursions in state Δ𝑥𝑥𝑥 and Δ𝑥𝑥𝑥 , it is
‖Δ𝑥𝑥𝑥 ⊙𝑣𝑣𝑣 ‖ > ‖Δ𝑥𝑥𝑥 ⊙𝑣𝑣𝑣 ‖ iff excursion Δ𝑥𝑥𝑥 affects safety and controllability of the
system more than excursion Δ𝑥𝑥𝑥 . Thus, to components 𝑥 related to risks should
correspond an adequately big vector component 𝑣 . A second function of 𝑣𝑣𝑣 is
to normalize distances in 𝒮, since components 𝑥 might have different units of
measure. The magnitude of the control can also be accounted for by a similar
method as the one illustrated in Eq. (2.11). At each time-step compute 𝜂 so that
the metric distance between 𝑥𝑥𝑥 and interval 𝐼(𝑡 ) at time at time 𝑡 is:

𝑑 (𝑥𝑥𝑥, 𝐼(𝑡 ), 𝑡 ) = 𝑑(𝑥𝑥𝑥, 𝐼(𝑡 ))/∏𝜂(𝑡 ) (2.14)

In conclusion, when risk perception and trajectory prediction are suboptimal,
the distance metric selects an action whose predicted arrival states differ the least
from a known visited state.

Evasion metric
The evasion metric evaluates trajectories based on the current belief in the compo-
sition of the state space. Consider for example a state space partitioned in a safe
region 𝑅 , a fatal region 𝑅 , and an uncertain region 𝑅 . More regions could
be defined as long as they can be ordered from the safest to the most fatal. Each
control action sequence generates bounding trajectories 𝜏, which OptiSHERPA com-
putes as a succession of intervals in time. First, among all bounding trajectories,
discard those that at any given time will entirely be comprised in a fatal region: for
OptiSHERPA this is equivalent to generating one interval entirely composed of fatal
states. Second, discard those trajectories that do not end up in the safe region at
the end of the trajectory, unless no such trajectory exists. The remaining trajec-
tories are those that have the most probability of both avoiding fatal occurrences
and of restoring safety. Third, consider how the trajectories overlap the regions,
e.g. 𝑅 , 𝑅 , 𝑅 . Assuming that all trajectories in the bounding trajectory
are equally likely to occur, the bigger volume of the intersection with a fatal region,
3Eq. (2.13) is not rigorously a distance, as it is not defined on ℝ ×ℝ but on ℝ × 𝕀 , where 𝕀 is the
set of -dimensional intervals. However, if Eq. (2.13) is restricted to the subset of “crisp” intervals, it
is analogue to the Euclidean distance in ℝ , hence the denomination.
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Figure 2.6: The choice of affects the outcome of the metric when comparing different intervals. For
lower values of , interval is the nearest since its center is the nearest to . By gradually increasing
, . will select interval . Finally, for approaching , will be the nearest.

the higher the chance of a fatal occurrence when following the trajectory. Con-
sider then two trajectories with similarly sized intersection with the fatal region, but
one of which has a higher intersection with the uncertain region than the other.
Since part of the uncertain states could actually be fatal, it is preferable to follow
the second trajectory, reducing such a risk. This procedure can be summarized as
follows:

1. Define a hierarchy of regions 𝑅 where 𝑅 has a higher probability of containing
fatal states than 𝑅 , 𝑖 < 𝑗;

2. assign a weight 𝑤 > 0 to each region, so that if 𝑖 < 𝑗, 𝑤 > 𝑤 ;
3. remove from the set of feasible bounding trajectories 𝜏 those 𝜏 that intersect
a fatal region entirely;

4. remove from 𝜏 those 𝜏 that do not end up in the SSS, unless this depletes 𝜏;
5. for each 𝜏 ∈ 𝜏 compute the volume of the intersection 𝜌 with region 𝑅 ;
6. the optimal control sequence 𝑢∗ is the one generating 𝜏∗ = argmin

∈
∑𝜌 ⋅𝑤 ;

7. apply the first element of 𝑢∗;
8. if 𝑊 = 1, go to 1; otherwise exit.

Figure 2.7 provides an example of the above procedure. The result of applying
the evasion metric is that the agent will reach for a safe region where danger
is no longer perceived, while minimizing the probability of encountering a fatal
occurrence.
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Figure 2.7: 𝒮 comprises fatal region , unknown region , and safe region . All have a non-empty
intersection with . However, crosses in its entirety and is therefore the least safe; and
also cross the region, but has the minimal overlap with both and , and the biggest overlap with
: it is therefore the safest.

2.4.3. OptiSHERPA
Figure 2.8 shows schematically the implementation of OptiSHERPA. At the start
of the exploration, the agent is in state 𝑥𝑥𝑥 . It will be assumed that 𝑊(𝑥𝑥𝑥 ) = 0.
OptiSHERPA generates an array of control sequences, including 𝑢 given by the
policy. For each sequence, the algorithm checks if the corresponding trajectory 𝜏
is included in the SSS. Those 𝜏 for which this is not true are removed from the
array; the rest are evaluated with the distance metric. The control 𝑢 corresponding
to the optimal 𝜏 is selected, and the first action of 𝑢∗ is then applied. In the
new state 𝑥𝑥𝑥 , if 𝑊(𝑥𝑥𝑥 ) = 0, the SSS is augmented with all the states currently in
reach of the risk perception, and the process is repeated. If 𝑊(𝑥𝑥𝑥 ) ≠ 0, the SSS
is not modified, and the evasion metric is implemented. OptiSHERPA generates
an array of control sequences and corresponding 𝜏 as before. According to the
procedure of Section 2.4.2, an optimal control sequence 𝑢∗ is found, and its first
action is implemented. The evasion metric is used until 𝑊(𝑥𝑥𝑥(𝑡)) = 0, after which
the distance metric is reimplemented. This procedure is followed until the end of
exploration.

2.4.4. Elevator control task
Model
The goal of the application is to simulate on-line training for a RL agent on-board
of a fighter aircraft, which is constrained to fly in a range of ±40ft from starting
height. It is assumed that a stall occurs if the angle of attack 𝛼 < −15∘ or 𝛼 > 12∘.
Violating this envelope causes a fatal occurrence in this environment. A bounding
model of the aircraft is available as in Eq. (2.15) and Eq. (2.16):

ℎ̇ = 𝑉 ⋅ sin(𝜃 − 𝛼) (2.15)
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Figure 2.8: The architecture of OptiSHERPA. At each time-step, the algorithm receives information in
the form of current risk perception and suggested policy control . The bounding model is used to
predicted trajectories, which in turn are evaluated by implementing either the distance or the evasion
metric depending on current risk perception. Then the first action of ∗ is taken, which generates a new
state.

(
�̇�
�̇�
�̇�
) = [

0 0 1
0 𝑐 𝑐
0 𝑐 𝑐

] ⋅ (
𝜃
𝛼
𝑞
)

+ [
0
𝑐
𝑐

] ⋅ (𝛿 + Δ𝛿 ) + (
0
0
Δ�̇�

) (2.16)

with

𝑉 ∈ [450 550] ; 𝑐 ∈ [−0.70 − 0.58] ;
𝑐 ∈ [0.76 0.95] ; 𝑐 ∈ [−1.72 − 1.41] ;

𝑐 ∈ [−0.97 − 0.79] ; Δ𝛿 ∈ [−0.15∘ 0.15∘] ;
Δ�̇� ∈ [−0.5 0.5] 𝑐 = −1.4 ⋅ 10 ; 𝑐 = −0.1137

where 𝑉[ft/s] is the constant flight speed, height ℎ[ft] is the change in height,
𝜃[rad], 𝛼[rad] are changes of pitch angle and angle of attack, and 𝑞[rad/s] is the
pitch rate. Vector (ℎ, 𝜃, 𝛼, 𝑞) is the state of the system and 𝛿 [∘] is the elevator
deflection.

The intervals of Eq. (2.15) and Eq. (2.16) are obtained as follows. First, the
nonlinear dynamics are linearised at 15000 ft of height and 500 of speed. Then,
resulting coefficients 𝑐 , 𝑐 and 𝑐 , as well as speed 𝑉, are altered by ±10%,
whereas 𝑐 is reduced between 80% and 100% of the original value. Δ�̇� represents
uncertainty in pitch dynamics, and Δ𝛿 represents an error in effective deflection.
Finally, terms 𝑐 and 𝑐 are crisp elevator coefficients. Among all possible rep-
resentations of the dynamics, the one with coefficients:

𝑉 = 550 ; 𝑐 = −0.58 ; 𝑐 = 0.83 ;
𝑐 = −1.586 ; 𝑐 = −0.97 ; Δ�̇� = −0.5
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Figure 2.9: The change in flight height of the system equipped with the PD controller after a perturbation
in q. The final error in height is brought to zero.

is selected: cross terms 𝑐 and 𝑐 as the mean of their interval, and remaining
terms as one of their extrema. The deflection error Δ𝛿 is treated as noise.

A PD controller provides a baseline policy for the RL agent. Deflection 𝛿 is the
sum of a proportional and derivative term in 𝛾, of a proportional term in height ℎ,
and a proportional damping term in pitch rate:

�̄� = ⋅ ℎ + ⋅ ℎ̇ + 10 ⋅ (𝜃 − 𝛼) + 4 ⋅ (�̇� − �̇�) + ⋅ 𝑞
𝛿 = max(min(�̄� , 1∘), −1∘)

The controller is hand tuned to achieve a satisfactory performance in nominal con-
ditions. Figure 2.9 shows a stable and well damped response to a perturbation in 𝑞
of 0.5∘/s. The proportional term in ℎ brings the final error in altitude to zero. The
RL agent follows an 𝜖-greedy policy by selecting random actions 𝛿 ∈ [−1 ; 1] with
probability 𝜖 = 0.2, and 𝛿 = 𝛿 otherwise.

With the system differing from nominal conditions, and with the addition of
random deflections, the agent is not always able to abide to the constraints in
height and angle of attack. A dedicated SHERPA could facilitate the task. However,
with respect to the simple quadrotor model of the previous section, the aircraft
model represents an increased challenge for SHERPA. In particular, consider the
height dynamics represented by Eq. (2.15). Change in height is achieved via the
flight path angle 𝛾 = 𝜃 − 𝛼, and in turn �̇� = �̇� − �̇� ≅ 0.062 ⋅ 𝑞 + 0.56 ⋅ 𝛼, so that �̇�
and ℎ̇ are influenced by the angle of attack. This represents the direct correlation
between lift and flight path angle: 𝛼 must increase (decrease) in order to increase
(decrease) 𝛾. The dynamic in 𝛾 is considerably slower than the one in 𝜃, 𝛼 and 𝑞,
and the evolution in ℎ for two different control sequences can be appreciated only



2.4. OptiSHERPA

2

43

after a certain amount of time-steps. Meaningful variations in the flight height can
be observed only in further-time estimates, which are also the most uncertain. This
motivates the use of OptiSHERPA.

The algorithm is initialized with the knowledge of the two risks in ℎ and 𝛼, and
two corresponding risk perception ranges of 15ft and 5∘ respectively. Whenever
OptiSHERPA finds a range of height or angle of attack to be safe, it immediately
adds this range to its internal SSS. The SSS is then an interval bounded in ℎ and 𝛼
by the highest and lowest values obtained from risk perception, and unbounded in
𝜃 and 𝑞, which have no risk.

The agent generates one command sequence: either a full PD predicted se-
quence, or a random action plus the command predicted by the PD at later steps.
Each sequence has a duration of six time-steps of 0.2s. Then, if danger is per-
ceived, or if |𝛾| > 0.5∘, the agent enables OptiSHERPA. When enabled, the al-
gorithm generates multiple command sequences, each lasting six time-steps, in
the form 𝑢 = (𝑢 , 𝑢 , … , 𝑢 ), 𝑢 , 𝑢 ∈ {−0.75∘, −0.25∘, 0∘, 0.25∘, 0.75∘}. Com-
mand 𝑢 is the OptiSHERPA proposed action, and the constant 𝑢 acts as a backup.
This formulation of 𝑢 reduces the total number of metric evaluations from 5 to
25. The distance Eq. (2.14) is computed for all the above sequences, with 𝑣𝑣𝑣 =
[0.2(ft) , , , s] , 𝜌 = 0.5, 𝜆 = 0.1.

If danger is perceived, the evasion metric is implemented, and the state space
is partitioned into distinct regions, depending on the risk perception and the knowl-
edge of the SSS. If only one of either RFSS or RFSS is detected, the following are
defined:

• a “black” region 𝑅 comprising all states with fatal values of ℎ (or 𝛼);
• a “white” region 𝑅 comprising all states within risk perception of the nearest
fatal value;

• a “green” region 𝑅 equal to the SSS ⧵ 𝑅 ;

• a “grey” region 𝑅 equal to the remainder of 𝒮.
The white region is introduced in order to encourage the metric to move away from
those regions where risk is still perceived, thus exiting the evasion cycle. If both
ℎ and 𝛼 are perceived, then two regions are added: a “red” region 𝑅 comprising
the states that are fatal for one feature, but not for the other, and a “blue region”
𝑅 comprising those states within risk perception of the nearest fatal value of one
feature, but not of the other. Finally, to each region is assigned a weight

𝑤 = 2, 𝑤 = 0, 𝑤 = −0.1, 𝑤 = −0.2, 𝑤 = −1, 𝑤 = −2.

A total of 500 trials is performed from the starting perturbed condition ℎ = 𝛼 =
𝜃 = 0, 𝑞 = 0.5∘. Each trial has a duration of 600 timesteps, equivalent to 120s. In
each trial, both the “original” RL agent and the one augmented with SHERPA are
run at the same time. The added noise on the elevator deflection and the random
action were the same at all time for both the original and the augmented agent,
albeit SHERPA is allowed to dismiss the random action as previously exposed.
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Figure 2.10 shows a typical result for the task. The upper plot shows the two
trajectories with the application of OptiSHERPA and with the original agent. At the
start of the task, the original agent manages to keep deviations of 𝛾, 𝛼, and 𝑞 within
reasonable limits, thus satisfying the requirements for OptiSHERPA. However, the
effect of OptiSHERPA becomes noticeable when a risk in ℎ is perceived. In all those
instances, the algorithm finds a reactive solution in the first iterations, increasing
the pitch rate and the angle of attack. Then, in later iterations when recovery is
incipient, OptiSHERPA applies a deflection of opposite sign. The reason for this is
as follows. Both the flight path angle and the angle of attack have changed sign, so
that the bounding model predicts a recovery in flight height in near time. However,
the positive pitch angle could increase further the angle of attack. Since such levels
have not been experimented before, the evasion metric considers this a potentially
threatening situation. Thus, the best course of action for OptiSHERPA is to achieve
negative pitch rate to reduce 𝛼. Therefore, lift increases during the first iterations,
and reduces it after recovery is in progress. As for 𝑞, rapid changes are performed
during recoveries; when not in recovery, the agent keeps 𝑞 within acceptable limits.
By means of following the evasion metric, OptiSHERPA consistently recovers in a
more incisive and fast way than the equivalent PD action, and prevents violations
in height during the whole flight. Without this additional recovery capability, the
original RL agent violates the constraint in flight height in 53% of the trials. It is
necessary to consider, however, that the original controller is always adopting an
exploratory 𝜖-greedy policy. A direct comparison between the two should therefore
be avoided.

The angle of attack plays a crucial role in determining whether a recovery can be
achieved with the limited distance in feet allowed by the risk perception. Figure 2.11
shows one such case. Prior to the violation, a series of positive random deflections
reduce considerably the flight path angle, while at the same time decreasing the
angle of attack and generating negative pitch rate. As soon as the risk is perceived,
and OptiSHERPA is engaged with the evasion metric, the agent increases the pitch
rate and starts generating additional lift through 𝛼, but the violation still occurs.
Nonetheless, it can be seen how OptiSHERPA suggest the correct maximum deflec-
tion, and how the residual negative 𝛾 is reduced in the instants prior to violation.
Approximately 10% of the simulations incurred in such a violation for the agent
with OptiSHERPA. However, two considerations must be added. First, all violations
occurred following cumulative random deflections, giving rise to conditions from
which recovery was very difficult even with maximum deflection, and resulted in
minor violations (as in Figure 2.11). Second, all cases where violation occurred for
OptiSHERPA were either concurrent or preceded by a violation for the original RL
agent.

OptiSHERPA showed the correct behavior in case of imminent flight height vio-
lation, selecting strong deflections in the first iterations and subsequently reducing
the variation of angle of attack introduced. This resulted in quick and safe recov-
eries. For a fraction of the runs, the stochasticity in the agent action gave rise to
small flight height violations, although without any reduction in performance when
compared to the alternative original RL agent, which was equally affected.
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Figure 2.10: The top plot represents the trajectory with the original RL agent and with the addition of
OptiSHERPA. The plot represents deflection for the two different agents; OptiSHERPA selects
constant maximal deflections during recovery by optimising the evasion metric. The shows the
variations of and during flight with OptiSHERPA. The bottom plot shows pitch rate .
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Figure 2.11: A typical violation of the flight height constraints.
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2.5. Conclusions
This work presents a new approach for autonomous agents in dangerous environ-
ments. The presence of fatal and lead-to-fatal states constitutes the motivation
for the approach, with risk perception as its main assumption. The notions of safe
control and backup are introduced to present an algorithm for safe exploration:
SHERPA. By relying on a bounding model of the dynamics, SHERPA allows those
policy actions for which the system can be brought near a previously known state
by satisfying a closeness condition, thus promoting safety. SHERPA is tested in
one simulated quadrotor application, achieving safety. Subsequently, OptiSHERPA
is introduced in order to handle tasks for which either the risk perception or the
bounding model were insufficient for the original SHERPA. These limitations are ad-
dressed by adding metrics, which provide the agent with informed options, and by
explicitly including an evasion strategy in those cases where danger is imminent.
OptiSHERPA is tested on a second simulated task: maintaining straight flight for a
fighter aircraft exploring a strict envelope, with the addition of noise, uncertain dy-
namics and random exploratory actions. The application shows how the resulting
RL agent with OptiSHERPA manages reliable control, adopting a very reasonable
behavior during recoveries. The proposed approach constitutes a significant effort
into tackling the exploration problem for RL agents on a general level, while not fo-
cusing on a particular category of tasks. This is reflected in the absence, within the
algorithm, of a high-fidelity model for exploration. This strategy is therefore in line
with the model-free approach of Reinforcement Learning and of adaptive controllers
in general. Future development will include an investigation of: risk perception for
real-life scenarios by using sensor-information, methods for the autonomous and
possibly adaptive selection of the open parameters of the algorithms (such as 𝑚
and 𝑣 ) and representations of uncertainty not based on interval methods to reduce
computational complexity.



3
Graph methods

This chapter introduces graphs as an efficient representation of the uncertain
dynamics of the environment bounding model, presented in Chapter 2. The
advantage of replacing the model with an uncertain graph lies in reducing the
complexity required for computations, such as the backup search of Chapter
2. This addresses the challenge of online efficiency. Additionally, this
chapter introduces graph pruning, a method to perform safety assessments
of policies, given that a safe subset of the state space is available in the form
of an operational envelope.

47
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3.1. Introduction
Chapter 2 described a heuristic approach with the main goal of providing safety
during exploration. Two different algorithms based on this approach were devel-
oped with the objective of online exploration. The two algorithms select actions and
propagate a continuous state, continuous time bounding model in time to search
for backups.

However, numerous attempts might be necessary before a backup is found,
which is computationally demanding and challenges the online efficiency of the
agent. Chapter 3 aims to reduce the computational burden of reachability predic-
tions, specifically by investigating the use of graphs for the representation of the
environment dynamics. Due to their simplicity, these representations can be used
to reduce the amount of computations required.

A further approach employing graph representations, graph pruning, is intro-
duced in this chapter. This method enables the agent to check if its current policy
is feasible, i.e., if it guarantees respecting the operational envelope (OE) of the
task.

Section 3.2 introduces graphs, the concept of operational envelopes, and ex-
plains how to efficiently generate graphs online. Section 3.3 shows the graph
pruning method together with a simulated application to an MAV navigation task.
Section 3.4 concludes the chapter.

3.2. Graph representation of the environment dy-
namics

As introduced in Chapters 1 and 2, UAV RL agents necessitate of algorithms that,
in addition to being safe, are computationally simple and can be performed online.
This section presents a method to generate a graph representation of the system
dynamics that can be used to facilitate safety assessments.

3.2.1. Introduction to graphs
Graphs are simple and intuitive mathematical entities used in a plethora of applica-
tions. In a graph, the vertices (or nodes) represent different elements or conditions,
which are related to each other by edges (or arcs). If all vertices can eventually be
reached from any other starting vertex, the graph is connected.

The nature of the connection varies between graphs. A classic use of graphs
is representing rail connections. In Figure 3.1, vertices represent stations of South
Holland, while edges indicate direct routes between them, which constitutes the
relation represented in the graph. Even though the vertices of Figure 3.1 are ap-
proximately located as on a map, the shape and length of an edge and the positions
of vertices are irrelevant for the sake of establishing if they are connected. In an
undirected graph, if vertex 𝑣 is connected to vertex 𝑣 , then 𝑣 is connected to
𝑣 : the graph in Figure 3.1 is clearly undirected. In directed graphs, for which
the above does not apply, edges can be either inbound or outbound; this is repre-
sented graphically by adding arrows to edges. A directed graph is weakly connected
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Figure 3.1: Undirected graph illustrating train connections between 8 stations in the railway system of
South Holland.

if there is a path between any two vertices when the directed edges are replaced
with undirected ones. See [97] for a more in-depth treatise of graph theory.

Among the structures that can numerically represent a graph, adjacency matri-
ces are the most convenient for the applications of this chapter. These are square
matrices with as many rows as the number of vertices. Assuming these are or-
dered, each entry 𝐴 of the matrix contains a one if the 𝑗 vertex connects to the
𝑖 , and a zero otherwise. Therefore, the 𝑗 column indicates which vertices are
connected to the 𝑗 vertex; in general, the 𝑗 column of the matrix obtained by
raising the adjacency matrix to the power of 𝑛 ∈ ℕ indicates which vertices can be
reached from the 𝑗 vertex in exactly 𝑛 transitions.

3.2.2. Operational envelope
A common definition of flight envelope describes it as those combinations of speed
and load factor where the airplane can be safely controlled. Similarly to aircraft,
other machineries and systems operate within a prescribed range of measurable
conditions under which performance and safety can both be guaranteed. By anal-
ogy to the flight envelope, these constitute the operational envelope (OE) of the
system.

In a manned system, an expert can monitor the system and can prevent vio-
lations of the OE so that operations are safe and efficient; however, if the system
is unmanned, violations must be prevented automatically. Specifically, a RL policy
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that respects an OE is said to be feasible. It is important to notice that if the OE
changes, a previously feasible policy might not be feasible anymore.

Consider now the safe exploration problem of Chapter 2, in which the RL agent
must keep the system outside of an originally unknown FSS. Assuming that the
FSS is stationary, the agent makes an underestimation of the SSS by means of risk
perception, and selects actions so that the state is guaranteed to be safe. In this
case, the OE is therefore the current underestimate of the SSS. Since every new
estimate of the SSS will contain the previous as a subset, policies that are feasible
at any point in time remain so with respect to new OEs. However, new feasible
policies must still be found in flight in order to allow further exploration.

3.2.3. Graph generation: assumptions
The goal of this section is to illustrate how to rapidly generate a graph 𝒢 whose
vertices are states of the OE, and whose edges represent transitions between the
states.

Let 𝑥𝑥𝑥 ∈ 𝒮 ⊆ ℝ be the state of the system. The subset 𝒮 ⊆ 𝒮 is the OE of
the system and is assumed to be a finite, closed compact in the form

𝒮 = [𝑥 , 𝑥 ] × ⋯ × [𝑥 , 𝑥 ], (3.1)

i.e., the envelope is given by all possible combinations of the individual components
𝑥 of state 𝑥𝑥𝑥 ∈ 𝒮 within a given interval [𝑥 , 𝑥 ]. It will be shown later how this
assumption can be dropped.

As in chapter 2, given 𝒟 the true dynamics of the system, it will be assumed
that only a bounding model

�̂� ∶ {
�̇� ∈ �̂� (𝑥 , 𝑥 ,⋯ , 𝑥 , 𝑢)

⋮
�̇� ∈ �̂� (𝑥 , 𝑥 ,⋯ , 𝑥 , 𝑢)

(3.2)

is available: note the membership relational operator ∈ instead of the equivalence
symbol. Finally, it will be assumed as usual that the action set 𝒜 of the agent is
fixed, and does not depend on current state and time.

Given the above assumptions, three discretization steps are necessary to obtain
a directed graph whose vertices represent states of the system, and whose edges
represent transitions between states. The first discretization is the selection of
an appropriate tiling 𝒯. This is obtained through an equispaced partition of the
envelope 𝒮 as

[𝑥 , 𝑥 ] = [𝑥 , 𝑥 + Δ ] ∪ [𝑥 + Δ , 𝑥 + 2Δ ] ∪ ⋯ ∪ [𝑥 − Δ , 𝑥 ] (3.3)

where Δ is the tiling width for component 𝑥 (see Figure 3.2). Each tile 𝜏 is then
equal in size and equivalent to an interval of ℝ . The index of a tile is its “position”
i(𝜏) = (i , i , … , i ) within the tiling, so that
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(1, 1)

(2, 1)

(1, 2)

(10, 1)
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(3, 20)
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𝑥 = −5

𝑥 = 5

𝑥 = −1 𝑥 = 1
Figure 3.2: Tiling of the sample envelope ∈ [ , ], ∈ [ , ]. The tile with index i ( , ) is in
black.

𝑥𝑥𝑥 ∈ 𝜏 → 𝑥 ∈ [𝑥 + (i − 1)Δ , 𝑥 + i Δ ]. (3.4)

Each state belongs to one tile, with the exception of the zero-volume tiles contours.
In various applications where partitions are applied, the size and shape of the tiles
varies locally or even adaptively [98], or multiple tilings overlap as in tile coding
[71]. The reason to apply only one equispaced 𝒯 is that doing so greatly simplifies
generating the graph, as it will become evident in the remainder of this section.

As a second discretization, the action set 𝒜 is reduced to a “representative”
subset 𝒜 . To each pair (𝜏, 𝑢) of tiles and actions corresponds an edge in the
graph. Thus, limiting the number of actions reduces the complexity of the graph
and the number of computations needed to generate it.

The third and last discretization involves reducing the time-continuous dynamics
of 𝒟 to a discrete time equivalent:

�̂� ∶ {
Δ𝑥 ∈ �̂� (𝜏 ∈ 𝒯, 𝑢 ∈ 𝒜 , Δ𝑡)

⋮
Δ𝑥 ∈ �̂� (𝜏 ∈ 𝒯, 𝑢 ∈ 𝒜 , Δ𝑡),

(3.5)

where Δ𝑡 is the sampling time interval. The choice of which time interval to
adopt can have a considerable effect on the accuracy of the graph when compared
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to the time-continuous dynamics. It is here assumed that the discrete dynamics of
Eq. (3.5) are in interval form:

�̂� = [𝒟 , 𝒟 ], 𝑖 ∈ {1, … , 𝑛}. (3.6)

As an example of the above discretizations, consider the double integrator with
bounding model

�̂� ∶ { �̇� ∈ 𝜂 𝑥
�̇� ∈ −𝜂 𝑥 + 𝜂 𝑢 (3.7)

and with given envelope 𝒮 = [𝑥 , 𝑥 ] × [𝑥 , 𝑥 ] = [−5, 5] × [−1, 1] and action set
𝒜 = [−1, 1]. The uncertainty in the model is given by parameters 𝜂 = [0.9, 1.1],
𝜂 = [1, 1.2] and 𝜂 = [0.8, 1] . As a first step, an equispaced tiling with Δ = 0.5,
Δ = 0.1 is chosen. The tile with index i(𝑥) = (5, 17) is then the set

{(𝑥 , 𝑥 ) | 𝑥 ∈ [−3,−2.5] ; 𝑥 ∈ [0.6, 0.7]} . (3.8)

As a second step, a subset 𝒜 = {−1,− , 0, , 1} is adopted. Finally, a time
interval Δ𝑡 = 0.125 is chosen. The discretized bounding dynamics for this case
would then be

�̂� ∶ { Δ𝑥 ∈ (𝜂 [𝑥 + Δ (i (𝜏) − 1), 𝑥 + Δ i (𝜏)]) Δ𝑡
Δ𝑥 ∈ (−𝜂 [𝑥 + Δ (i (𝜏) − 1), 𝑥 + Δ i (𝜏)] + 𝜂 𝑢)Δ𝑡. (3.9)

3.2.4. Standard generation procedure
The graph 𝒢 can now be generated as |𝒜 | look-up matrices, indicating with
| ∗ | the number of elements in set ∗. The look-up matrices act as the adjacency
matrices of 𝒢. Given action 𝑢 ∈ 𝒜 , initialize a square matrix with

⋅ ⋅ … ⋅

rows, all of which are initially zeros. Consider then 𝜏 with index (i , i , … , i )
and compute the intervals 𝒟 (𝜏, 𝑢). Note that since each 𝜏 is a multidimensional
interval, one interval computation is sufficient for all states in 𝜏, which motivates
using rectangular tiles. However, this also means that additional uncertainty will be
added to the transitions.

The minimum and maximum increments 𝒟 and 𝒟 determine which vertices
are then reachable from 𝜏. Indicating respectively the floor and ceiling operations
with ⌊∗⌋ and ⌈∗⌉, 𝜏 will connect with all vertices with index range

((i + ⌊
𝒟
Δ ⌋) ∶ (i + ⌈𝒟Δ ⌉) ,… , (i + ⌊

𝒟
Δ ⌋) ∶ (i + ⌈𝒟Δ ⌉)) . (3.10)
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Algorithm 1 Graph generation

1: Initialize matrices, 𝒜 , 𝒯 ⊂ ℝ
2: 𝐴 ← 𝒜
3: while |𝐴| ≠ 0 do
4: 𝑢 ← first element of 𝐴
5: 𝑇 ← 𝒯
6: while |𝑇| ≠ 0 do
7: 𝜏 ← first element of 𝑇
8: for 𝑖 = {1, 2, … , 𝑛} do
9: compute ⌊

𝒟
⌋ and ⌈𝒟 ⌉

10: update current matrix
11: 𝑇 ← 𝑇 ⧵ {𝜏}
12: 𝐴 ← 𝐴 ⧵ {𝑢}

The corresponding entries in the matrix are then replaced with ones, indicating a
possible state transition. This last passage is made possible by the adoption of
an equispaced 𝒯: for a “rectangular” but unevenly spaced tiling, each connection
would need to be verified independently, increasing the amount of computations.

Algorithm 1 summarizes the procedure. Given 𝑛 = |𝒜 | and 𝑛 = |𝒯|,
the total complexity is then 𝒪(𝑛 ⋅ 𝑛 ⋅ 𝑛 ⋅ Δ), where Δ indicates the complexity of
computing ⌊

𝒟
⌋ and ⌈𝒟 ⌉. While 𝑛 and Δ depend on the environment, 𝑛 and 𝑛

are a designer choice and can be altered to reflect the computational power of the
UAV.

Consider again the double integrator example of Section 3.2.3. The graph 𝒢
corresponding to the dynamics of Eq. (3.9) is obtainable as follows. Given the
first action 𝑢 = −1, a 4-dimensional matrix is generated with a total of (20 ⋅ 20)
elements. These are initialized as zeros but later revised as soon as the transition
are verified. For example, consider the aforementioned tile 𝜏 with index i(𝜏) =
(5, 17). It is then Δ𝑥 ∈ ([0.9, 1.1] ⋅ [0.6, 0.7]) ⋅ 0.125 = [6.75, 9.625] ⋅ 10 and
Δ𝑥 ∈ ([−1.2, −1] ⋅ [0.6, 0.7] + [0.8, 1] ⋅ −1) ⋅ 0.125 = [−2.3, −1.75] ⋅ 10 . In terms

of indexes, this is equivalent to an increase in index i between ⌊ . ⋅
. ⌋ = 0

and ⌈ . ⋅
. ⌉ = 1, and in index i between ⌊ . ⋅

. ⌋ = −3 and ⌈ . ⋅
. ⌉ =

−1. Therefore, the zeros in the entries (5, 17, 5, 14), (5, 17, 5, 15), (5, 17, 5, 16),
(5, 17, 6, 14), (5, 17, 6, 15), (5, 17, 6, 16) of the look-up matrix are replaced by ones.

It should be noted that one or more indexes to be replaced, according to
Eq. (3.10), might be outside of the index range of the matrix. This means that
the corresponding action leads to a violation of the OE, since it would reach a state
outside of the envelope, and must therefore be prevented. In order to do so, no en-
tries are replaced for that specific (𝜏, 𝑢) pair. In graphical terms, this is equivalent
to not drawing the edge representing action 𝑢 from 𝜏.
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It is also necessary to notice that the look-up matrices indicate connections
but are not adjacency matrices themselves. Each entry of the adjacency matrices
represents one edge, i.e., one exact transitions between vertices, while entries of
the look-up matrices, taken individually, are not edges. In the previous example,
action 𝑢 = −1 in tile/vertex 𝜏 with index i = (5, 17), which in the adjacency matrix
would take an entry, is represented in the look-up matrices by six entries, indicating
a transition to multiple vertices. Therefore, the obtained 𝒢 is a hypergraph. In
graphical terms, this is equivalent to an edge separating into multiple arrows as
represented in Figure 3.4. Which transition occurs when that action is selected
from the agent in the actual environment depends on the true state and dynamics
at that time.

Transitions between two tiles 𝜏 and 𝜏 are therefore overapproximations of the
actual transitions between states. This has a precautionary goal: if taking ac-
tion 𝑢 in 𝑥𝑥𝑥 might cause a violation, the graph will prevent such action. However,
this also means that the dynamics, as represented by 𝒢, are artificially acceler-
ated. Consider once again the above example. Computing the interval dynamics as
given by Eq. (3.9) yields Δ𝑥 ∈ ([6.75, 9.625] ⋅ 10 , [−2.3, −1.75] ⋅ 10 ). The look-
up matrix for the same action indicates that transitions (5, 17, 5, 14), (5, 17, 5, 15),
(5, 17, 5, 16), (5, 17, 6, 14), (5, 17, 6, 15), (5, 17, 6, 16) are possible, which in terms of
components is equivalent to Δ𝑥 ∈ ([0, 1] ⋅ Δ , [−3,−1] ⋅ Δ ) = ([0, 0.5], [−0.3, −0.1]).
While Δ𝑥 is comparable between the two methods, Δ𝑥 as obtained with the graph
formulation is increased several times with respect to the interval one. This effect is
more pronounced for smaller Δ𝑡 and for more coarse 𝒯. Additionally, the difference
tends to accumulate with the increase of the time horizon in the state space tra-
jectory prediction. Figure 3.3 shows the predicted interval according to the graph
dynamics (dark grey) and according to the interval dynamics (light grey) for three
consecutive time-steps. It can be seen that, while the graph successfully over-
approximates the dynamics, it also artificially accelerates the dynamics in 𝑥 . A
trade-off in terms of computational complexity, sampling time, and fidelity to the
dynamics is therefore needed when designing the graph.

A final consideration concerns the assumption of Eq. (3.1) on the shape of the
OE: it is possible to drop this assumption by adopting the following. First, find the
least-volume set 𝒮 in the form of Eq. (3.1) containing the OE. Second, find the
index of those vertices 𝜏 ∶ 𝜏 ⧵ 𝒮 ≠ ∅. Since these are at least partially out of
the OE, actions that cause a transition to these are a possible violation. Therefore,
matrix entries are not updated for these actions, just as illustrated above.

3.2.5. Accelerated generation procedure
Under certain assumptions, the previous procedure can be further accelerated. In
Eq. (3.5), terms �̂� are functions of all components 𝑥 , 𝑥 , ⋯, 𝑥 of 𝑥𝑥𝑥. Let 𝑥
and 𝑥 , 𝑥 ≠ 𝑥 , be two arbitrary values of the 𝑗 component of 𝑥𝑥𝑥. Then the 𝑖
component 𝑥 of 𝑥𝑥𝑥 is said to be independent of 𝑥 if

�̂� (𝑥 , … , 𝑥 , … , 𝑢) = �̂� (𝑥 , … , 𝑥 , … , 𝑢). (3.11)

Considering again the example given by the dynamics of Eq. (3.7), it can be seen
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Figure 3.3: A comparison between the interval and the graph representation of the dynamics after three
time-steps. The graph-yielded trajectory (dark grey) bounds the one generated by the original interval
dynamics, at the cost of overestimating the dynamics of component .
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Figure 3.5: Envelope 𝒮 presents three projected envelopes 𝒮 (in pink), 𝒮 (in light blue) and 𝒮 𝒮.
Tile (in black) corresponds to projected tiles (in red) and (in blue).

then that component 𝑥 of 𝑥𝑥𝑥 is independent of component 𝑥 . Indicating by ind
the set of components from which 𝑥 is independent, define now the projected
envelope 𝒮 as

𝒮 =
×

∏
∉ind

[𝑥 , 𝑥 ] (3.12)

where the apex “×” indicates the set product. It is then

�̂� ∶ {
Δ𝑥 ∈ �̂� (𝒮 , 𝑢, Δ𝑡)

⋮
Δ𝑥 ∈ �̂� (𝒮 , 𝑢, Δ𝑡).

(3.13)

E.g., suppose that �̂� = �̂� (𝑥 , 𝑥 , 𝑥 , 𝑢, Δ𝑡). Then 𝒮 = [𝑥 , 𝑥 ] × [𝑥 , 𝑥 ] ×
[𝑥 , 𝑥 ]. An example of components that are independent of each other can be
obtained when separating the longitudinal and lateral dynamics of an aircraft.

The tile partition of Eq. (3.3) can be applied to projected envelopes as well,
obtaining equispaced projected tilings 𝒯 composed of “projected tiles” 𝜏 (see Fig-
ure 3.5). As a result, Eq. (3.13) permits a faster graph computation with respect to
the one previously illustrated. Algorithm 2 illustrates the procedure. Given action
𝑢 ∈ 𝒜 , for each projected tile 𝜏 of 𝒯 compute the minimum and maximum

advancement in index ⌊
𝒟
⌋ and ⌈𝒟 ⌉. This is equivalent to defining a “semigraph”

function

𝑔 ∶ 𝒮 ×𝒜 → ℕ (3.14)
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Algorithm 2 Graph generation with semi-graphs

1: Initialize matrices, 𝒜 , 𝒯 , 𝑖 = 1,… , 𝑛
2: 𝐴 ← 𝒜
3: while |𝐴| ≠ 0 do
4: 𝑢 ← first element of 𝐴
5: for 𝑖 = {1, 2, … , 𝑛} do
6: 𝑇 ← 𝒯
7: while |𝑇 | ≠ 0 do
8: 𝜏 ← first element of 𝑇
9: compute ⌊

𝒟
⌋ and ⌈𝒟 ⌉

10: for 𝑗 = {1, 2, … , |𝒯||𝒯 | } do
11: update current matrix
12: 𝑇 ← 𝑇 ⧵ {𝜏 }
13: 𝐴 ← 𝐴 ⧵ {𝑢}

which associates to each pair (𝜏 , 𝑢) the corresponding index increment. The ob-
tained increments are then applied to all tiles that “project” on 𝜏 .

Depending on Δ, the complexity of the procedure is either 𝒪(𝑛 ⋅ 𝑛 ⋅ 𝑛 ) or
𝒪(𝑛 ⋅ 𝑛 ⋅ 𝑛 ⋅ Δ), where 𝑛 indicates the average number of tiles in 𝒯 . It can
be seen that the complexity of this procedure is strictly not worse than the one
indicated by Algorithm 1, and can be significantly better depending on Δ and 𝑛 .

3.2.6. Graph representations in reinforcement learning
This conclusive section illustrates how the obtained graph formulation of the dy-
namics can be employed to increase the online efficiency of both model based and
safe RL methods.

A similarity can be drawn between a graph 𝒢 and a Markov decision process
(MDP), which constitutes the usual framework for RL1. Both mathematical struc-
tures indicate time-discrete transitions between a finite set of environment condi-
tions, caused by the implementation of one among a finite number of actions. In
addition to similarities, differences can be found as well. The vertices of 𝒢 do not
directly correspond to the states of the environment, but represent sets of states.
Furthermore, 𝒢 is an hypergraph which, due to accumulated uncertainties, overap-
proximates the dynamics. Conversely, an MDP indicates transitions between crisp
states, and these transitions, which can be stochastic, are not overapproximated.
As a result, a graph 𝒢, being similar but not identical to an MDP, cannot be used
in place of the latter for model based RL. However, the graph representation could
be utilized to obtain a stochastic approximation of the underlying MDP of the envi-
ronment.
1In the following, canonical Markov decision processes, which admit a finite number of discrete states
and actions, are considered. This framework can be adapted to accommodate continuous systems by
an appropriate state and action discretization.
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The most immediate contribution of the graph representation, however, comes
from its application to the challenge of safety, and specifically to the online compu-
tation of backups. In accordance to Section 2.3.3, two conditions must be satisfied
for a control sequence 𝑢(𝑘), 𝑢(𝑘 + 1), … , 𝑢(𝑘 + 𝑚 − 1) to be a backup:

1. [𝑥𝑥𝑥 ] ∈ SSS, 𝑗 = 0, 1, … ,𝑚;
2. ∀𝑥𝑥𝑥 ∈ [𝑥𝑥𝑥 ], ∃𝑥𝑥𝑥 s.t. (𝑥 − 𝑥𝑥𝑥 ) ∈ [𝜖], or ∃𝑥𝑥𝑥 s.t. (𝑥 − 𝑥𝑥𝑥 ) ∈ [𝛿].

Therefore, the agent must compute the intervals [𝑥𝑥𝑥 ], check if they are contained
within the known SSS, and evaluate whether or not they are in a given neighborhood
of at least one visited state 𝑥𝑥𝑥 or equilibrium point 𝑥𝑥𝑥 . Since multiple checks might
be required, this assessment can be computationally demanding.

Using a graph representation of the dynamics reduces this burden. Before ex-
ploration, the look-up matrices can be converted into look-up tables 𝒯 ×𝒜 → 𝒯
indicating for each vertex and action the corresponding edge transitions. Then, if
the environment is in state 𝑥𝑥𝑥(𝑘) an overapproximation of the interval containing
𝑥𝑥𝑥(𝑘 + 1) for action 𝑢(𝑘) can be obtained by consulting the corresponding look-up
table for 𝜏(𝑘) ∋ 𝑥𝑥𝑥(𝑘). The yielded vertices overapproximate the desired interval.
Furthermore, the look-up tables can be applied iteratively to further predict the
backup trajectory, given a backup sequence (𝑢(𝑘 + 1), … , 𝑢(𝑘 + 𝑚 − 1)). Addi-
tionally, the backup conditions can be conveniently expressed in terms of vertices
rather than states. At the start of exploration, given an initial SSS, it is relatively
straightforward to identify those vertices for which 𝜏 ∩ FSS = ∅. Similarly, it is pos-
sible to identify those vertices that are included within a neighborhood of an initial
set of visited and equilibrium states. These lists of vertices can be progressively
updated during exploration, as the SSS expands and new states are visited. Alter-
natively, the OE can be made to coincide with the known SSS, and a new graph can
be computed periodically as the SSS increases in size.

Therefore, backups can be validated more rapidly by adopting a graph represen-
tation. However, the fact that the collection of vertices obtained through 𝒢 over-
approximates the intervals [𝑥𝑥𝑥 ] has the unwanted effect of making the backup
conditions more stringent.

3.3. Graph pruning
The previous section introduced the concept of OE, presented a procedure to gener-
ate graph representations of the dynamics, and explained how these structures can
be used to ease the computational demands of safe RL and in particular of backup
searches. This section presents graph pruning, another method that can provide
safety of exploration for RL agents. This method achieves safety not through the
definition of a backup, but by a-priori constraining the set of eligible policies of the
RL agent.

3.3.1. Pruning the graph
As mentioned in Section 3.2.4, if an action 𝑢 in vertex 𝜏 determines a violation of
the envelope, the corresponding edge is not added to 𝒢, and the look-up matrix cor-
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Figure 3.6: An example of graph pruning. Initially one sink ( ) is found. As a consequence of the
removal of the inbound edges, another vertex ( ) becomes a sink. The subsequent removal of the
inbound split edge does not lead to the generation of new sinks.

responding to 𝑢 is not updated. By doing so, violating actions are directly excluded
from the graph. However, this is not sufficient to guarantee safety. For example, in
Figure 3.4, vertex 𝜏 has no outbound edges. In graph theory, these vertices 𝜏 are
indicated as sinks. These originate during graph generation if, ∀𝑢 ∈ 𝒜 , ∃𝑥𝑥𝑥 ∈ 𝜏
such that 𝑢 causes a violation of the OE, as is the case for action 𝑢 and 𝑢 in 𝜏 of
Figure 3.4. If the environment is in a sink, all the agent’s actions are then poten-
tially unfeasible. It is important to recall that, in the problem formulation, the agent
cannot refrain from taking actions, as even passive actions, e.g., “do nothing”, are
part of the set 𝒜. For this reason, the agent should prevent visiting sinks.

Consider now vertex 𝜏 with an outbound edge (𝜏, 𝑢 ) which is inbound to a
sink, and an edge (𝜏, 𝑢 ) that is not. Due to the overapproximating nature of 𝒢,
taking action 𝑢 does not mean that the environment will surely transition into a
sink vertex; however, if 𝑢 is performed, the environment is guaranteed not to
transition into a sink. Therefore, in order to prevent reaching a sink, it is sufficient
to prune, i.e., to remove from 𝒢, all edges that are inbound to a sink, as well as the
sink themselves. Referring to Definition 2.3, this is equivalent to guarantee that the
system will not enter an LTF state. Notice, however, that pruning might result in
new sinks being created. In turn this require additional pruning. These two steps -
sink detection and pruning - alternate until no new sinks are identified. The process
is illustrated in Figure 3.6.

The pruning and sink detection procedures are illustrated in Algorithm 3. Indi-
cating by T the look-up matrix corresponding to the 𝑗 action, vertex 𝜏 with index
i(𝜏) = (i , … , i ) is a sink if ∀𝑗 ∈ {1, … , |𝒜 |}, ∀𝜏 ∈ 𝒯,

T (i , … , i , i , … , i ) = 0 (3.15)

where i(𝜏 ) = (i , … , i ), so that T (i , … , i , i , … , i ) is the entry of T indicating
the connection between 𝜏 and 𝜏 . If 𝜏 is found to be a sink, the look-up matrices
must be appropriately pruned. This is done by replacing all entries T (… , i , … , i )
which connect any vertex to 𝜏 with zeros, ∀𝑗 ∈ {1,… , |𝒜 |}. At the end of the
process, when sink detection does not reveal any new sinks, the pruned graph 𝒢
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Algorithm 3 Graph pruning

1: Initialize look-up matrices T , 𝒯, 𝒜
2: sinks ← ∅
3: while graph is not pruned do
4: 𝑇 ← 𝒯⧵ sinks
5: while |𝑇| ≠ 0 do
6: 𝜏 ← first element of 𝑇
7: for 𝑗 = {1, 2, … , |𝒜 |} do
8: 𝑇 ← 𝒯
9: while |𝑇 | ≠ 0 do
10: 𝜏 ← first element of 𝑇
11: if edge between 𝜏 and 𝜏 then
12: 𝜏 is not a new sink
13: 𝑇 ← 𝑇 ⧵ {𝜏 }
14: if 𝜏 is a sink then
15: update matrices T
16: 𝑇 ← 𝑇 ⧵ {𝜏}
17: update sinks
18: if no new sinks then
19: graph is pruned

can be

• connected or weakly connected;

• not connected;

• the null graph, i.e., a graph with zero vertices.

In either of the first two cases, 𝒢 can be interpreted as a representation of all poli-
cies that are guaranteed to be safe, i.e., feasible with respect to the OE. Therefore,
𝒢 can be used to ensure that the current policy of the agent is safe, regardless of
how the policy is obtained or updated (e.g., policy search). A (stochastic) policy
𝜋 ∶ 𝒮 ×𝒜 → [0, 1], is feasible only if ∀𝑥𝑥𝑥 ∈ 𝒮 , 𝑥𝑥𝑥 ∈ 𝜏, 𝜋(𝑥𝑥𝑥, 𝑢) ≠ 0 means that
the edge (𝜏, 𝑢) is in 𝒢 . In the third case, 𝒢 cannot be used to guarantee that the
current policy is safe; however, this does not necessarily mean that a safe policy
does not exist. A refinement of either 𝒯 or 𝒜 , which reduces the overapproxi-
mation of the graph, might eventually lead to a solution.

3.3.2. Related work
To prevent the state of a controlled system from abandoning a region of the state
space is not a new problem in control theory; therefore, other approaches and
techniques exist in literature for achieving this objective. A purely mathematical
approach is the computation of invariant sets or viable sets, i.e., a set of states
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where the system can stay indefinitely. Feuer and Heymann [99] investigate prop-
erties of such sets for linear systems. Oishi et al. [100] apply Reachability Analysis
to determine the flight envelope of a jet aircraft, and for planar collision avoidance
between two aircraft. Both works offer an integral exhaustive approach to the prob-
lem. Alternatively, energy based approaches have been investigated. Khatib [89]
provides an application of Artificial Force Fields to manipulators and mobile robots.
With this method, applied control forces generate an appropriate potential field, so
that the system is forbidden from reaching undesirable states. Fraichard and Asama
[87] also consider the problem of collision avoidance for autonomous agents, rely-
ing on a sensor-based approach to achieve Safe Motion Planning. Gillula and Tomlin
[101] show an approach for UAVs with a combination of Reachability Analysis and
reinforcement learning that prevents the violation of safety constraints under noise
and a successful application [102] to a quadrotor. Kwatny and Allen [103] apply
the problem to the computation of the safe flight envelope for an impaired aircraft.
This is done by individuating its original trim points, and investigating how to switch
to a different trim point when the current one vanishes due to the occurrence of
impairment.

These approaches are either very specific, relying on particular features of the
system at hand, or computationally heavy. Graph pruning differs from the above
methodologies in that it is both computationally advantageous, since it employs
the graphical representation of the dynamics given by 𝒢, and applicable to different
vehicles and tasks, as long as the task and the desired conditions can be represented
as an OE.

3.3.3. Application to a UAV navigation task
In this section, the graph pruning method is applied in simulation to a UAV flying
inside a corridor. The goal of the agent is to advance towards the end of the corridor
while preventing a collision with the walls. In order to accomplish this goal:

1. an OE compatible with the task is defined;

2. given a bounding model of the environment, a graph 𝒢 is generated;

3. the pruned graph 𝒢 is obtained.

Afterwards, any arbitrary policy could be applied as long as it is compatible with the
graph; in this example, the policy consists in randomly selecting an action among
those allowed by 𝒢 .

As already stated, the first step is to define an OE as to avoid collisions while
navigating towards the exit of the corridor. Thus, the envelope will be defined with
respect to �̂� and �̂� , estimated distances respectively from the left and the right
wall, and to the estimated direction of the corridor �̂� (see Figure 3.7). A collision
occurs if either 𝑑 < 0 or 𝑑 < 0. The agent estimates the rate of change of the
two distances as

̂�̇� = − ̂�̇� ∈ �̂� ⋅ sin(𝜓 − �̂� ), (3.16)
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𝜓

𝑑
𝜓

𝑑

𝑥
𝑧

Figure 3.7: The corridor task, with distances and of the UAV from the walls, heading and
corridor direction . Coordinates and indicate absolute position.

where the first equivalence is due to assuming a constant width of the corridor,
and where �̂� is an estimate of the constant speed of the UAV and 𝜓 is the current
heading. The uncertain UAV dynamics given by

�̇� ∈ �̂� ⋅ sin(𝜓),
�̇� ∈ �̂� ⋅ cos(𝜓),
�̇� ∈ ̂�̇� ⋅ 𝑢

(3.17)

are assumed, where 𝑥 and 𝑧 identify the position of the UAV, and ̂�̇� is an interval
estimating the maximum turning rate of the UAV, which constitutes the agent control
action. The OE 𝒮 is then selected as

𝒮 = {𝑑 , 𝜓 | 𝑑 ∈ [0, 𝑤] , 𝜓 ∈ [�̂� − 20∘, �̂� + 20∘]} , (3.18)

with 𝑤 the width of the corridor, so that the bounding model of Eq. (3.2) for the
state 𝑥𝑥𝑥 = (𝑑 , 𝜓) is given by Eq. (3.16) and Eq. (3.17). The arbitrary constraint
𝜓 ∈ [�̂� −20∘, �̂� + 20∘] is introduced to guarantee that the UAV actually flies from
one end of the corridor to the other.

The turning rate and speed of the UAV are initialized to the agent as ̂�̇� = [5∘, 10∘]
and �̂� = [1, 1.5] . Width 𝑤 and estimated direction �̂� are provided to the agent,
defining the OE.

As a second step, the graph 𝒢 is generated: a tiling 𝒯 with Δ = and Δ =
∘
= 2∘ is selected; a subset 𝒜 = {−1, 0, 1} is chosen; finally, Δ𝑡 = 0.5s is

adopted. The hypergraph 𝒢 is then generated and pruned. If the pruning results
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Figure 3.8: A typical typical trajectory for the “wave” variant. The dot and the star represent the UAV
initial and final position. The UAV trajectory (dashed line) complies with the corridor walls (solid lines)
so that a collision is avoided.

in a null graph, the following strategy is proposed: rather than refining 𝒯 or 𝒜 ,
the speed is halved as

�̂� ← 0.5 ⋅ �̂�. (3.19)

This choice is motivated by assuming that reducing the speed also decreases the
difficulty of the task.

At the start of each simulation, 𝑉 and �̇� are assigned a randomly selected
value from the intervals �̂� and ̂�̇�. Simulations are initialized in a random state 𝑥𝑥𝑥 ,
with the condition that vertex 𝜏 ∋ 𝑥𝑥𝑥 is not a sink of 𝒢 . A stochastic policy is then
enforced by randomly selecting the action corresponding to one of the available
edges for the current vertex. A new state is then generated according to

�̇� = 𝑉 ⋅ sin(𝜓),
�̇� = �̇� ⋅ 𝑢,
�̇� = 𝑉 ⋅ sin(𝜓 − 𝜓 ).

(3.20)

Given the above initialization, this section presents three variants of the task.

Wave variant
In the first “wave” variant, the UAV follows a corridor of constant width 𝑤. The di-
rection of the corridor at the entrance, 𝜓 = 𝜓 , is assigned randomly and is initially
constant. The UAV is assigned an estimate �̂� equal to this value. Given the OE
indicated by 𝑤 and �̂� , 𝒢 is generated to be later used to obtain the aforementioned
stochastic policy. However, at each time-step, there is a 10% probability that the
direction of the corridor changes according to a random rate �̇� ∈ [−𝜋/2, 𝜋/2] s ,
with the constraint ‖𝜓 − 𝜓 ‖ ≤ 20∘. The estimate �̂� = 𝜓 is therefore inaccu-
rate during the flight; however, the UAV agent still identifies correctly the distance
from the wall 𝑑 .

Figure 3.8 shows a typical result for this variant. To generate the graph, up to
four subsequent graph generations are necessary, with each generation requiring
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Figure 3.9: A typical trajectory for the “quadrotor” variant. The dot represent the UAV initial position.
The UAV trajectory (dashed line) complies with the corridor walls (solid lines) so that a collision is
avoided, and reaches the final position represented by the star.

around a second2. The stochastic policy obtained from the pruned graph is collision-
free. Even as the corridor is the steepest, i.e., ‖𝜓 − 𝜓 ‖ = 20∘, the UAV flies very
near the walls but does not collide.

Quadrotor variant
In the second “quadrotor” variant, the corridor is divided in segments of varying
length, with direction and width determined randomly. Given the width 𝑤 and
direction 𝜓 of the first segment of corridor, the UAV agent generates and prunes
an initial graph, the policy of which is collision-free. However, the previous OE is
not valid in new segments, which have a different value of 𝑤 and 𝜓 . The graph
𝒢 and the corresponding policy are therefore not safe. In this task, it is assumed
that the UAV agent can notice this discrepancy, and then compute a new OE and a
new graph on the spot, if necessary adjusting its heading and velocity.

Figure 3.9 shows a typical execution of this variant. Adopting the appropriate OE
and reducing speed, the agent manages to avoid collision even for narrow sections,
e.g., the fourth, where the corridor is only 0.65m wide. Between two and four graph
generations, depending on the width of the corridor, are needed to obtain this policy.
However, in order to do so significant changes in flight direction are necessary, and
the obtained trajectory is not smooth. Therefore, it assumed that the agent controls
a UAV which can hover in place, e.g., a quadrotor or a flapping wing MAV.

Shrinking variant
The third “shrinking” variant involves those UAVs that are not able of hovering in
place, and for which there are time constraints on the computation of a new OE. In
this variant, the corridor is once again divided in segments of different width and
direction. For the first segment it is 𝑤 = 3m; for each segment thereafter, width
2on an Intel Core i5-3360M CPU, 2.80GH
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reduces as 𝑤| = 𝑤| − 0.5m; additionally, the direction of the segment changes
as 𝜓 | = 𝜓 | − 5∘. The agent uses these estimates to obtain an OE and a
graph, but as in the previous variant, a new envelope is needed for each segment.
Assuming that the UAV cannot hover in place and freely rotate, in this variant the
agent adopts a different procedure to reuse part of its previous knowledge.

Due to the shrinking of the corridor, some vertices of 𝒢 that were previously
feasible will now lead to collision. However, if these are pruned from the graph, a
new collision-free policy can be found. Therefore, at the start of a new segment the
graph is pruned again as described in Section 3.3.1, starting from these vertices.
In the meantime, the agent temporarily relies on the previous policy to generate
actions. The reason to adopt this solution is that, if the new environment (and
thus the new OE) is similar to the previous, pruning a second time is faster than
generating a new graph from the start. Additionally, while it cannot be guaranteed
that the in-pruning flight is collision-free, this is more likely the smaller the difference
between the previous and the new environment. As soon as 𝒢 is further pruned,
and assuming the result is not a null graph, this can be used to infer a policy which
is collision-free, but possibly inefficient. For this reason, given the new values of
𝜓 and 𝑤, an entirely new graph 𝒢 is still generated and pruned, from which a
final policy is then extracted.

Figure 3.10 represents the task in its “shrinking” variant. The segments of cor-
ridor change in width from an initial value of 3m to a final value of 0.5m. Results
show that in the last segments of the corridor it is difficult to obtain a feasible pol-
icy: the agent manages to do so in 61% of the runs. The percentage of success
increases to 85% if only the first four segments are considered. After generating
𝒢 , the agent locates the vertex containing its current state. If this has been
pruned, then there is no action available to the agent, and the policy cannot be
defined for the current state of the UAV. The agent therefore fails to guarantee
that the envelope will not be violated, although this not necessarily implies that a
collision is inevitable.

An explanation for the increased rate of failure can be found in the constant
reduction in width. Between the first and second segment of the corridor, the
relative reduction of width | |

| is 10%, quite moderate when compared to
the relative reduction between the third and fourth segments, equal to 33%, and
between the fourth and fifth, which is 50%. This stands as a confirmation that the
method is more efficient when the changes in environment are gradual.

3.4. Conclusions
This chapter investigates the use of graph representations to address the com-
putational complexity of backup generations, and more generally of reinforcement
learning agents in unsafe environments, for which the challenge of online efficiency
arises. Being simple mathematical entities that can be stored and manipulated with
ease, graphs accommodate the need for efficiency, and can be applied to differ-
ent environments. Additionally, the chapter presents procedures to compute and
modify these graphs online, due to their limited complexity.
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Figure 3.10: The UAV trajectory of a successful run of the “shrinking” variant of the task. The UAV starts
at the left end end of the corridor in the position indicated by the dot. The corridor shrinks of . and
bends of ∘ at every segment. The UAV moves from one segment to the next by relying on an further
pruned version of its previous graph, and afterwards computing a new graph for the new envelope.

Furthermore, the chapter introduces an approach that verifies if the RL agent
policy is provably feasible. This method relies on the concept of pruning, which
consists in eliminating those vertices that might lead to a violation. This is equivalent
to preventing the agent from visiting the Lead-to-Fatal states (Eq. (2.3)) of the
environment. The method is tested on a simulated UAV application. Simulation
results show that the method is effective in preventing collisions when the envelope
is stationary. When the envelope is dynamic, the approach can be applied on the
condition that the changes are gradual, so that the previous pruned graph is not
entirely invalidated.

The methods introduced in this chapter serve as a prerequisite for the methods
of Part II. Specifically, Chapter 5 illustrates how the look-up tables can be used to
compute and verify backups, similarly to the OptiSHERPA algorithm, but reducing
the effort of computing the interval dynamics. The Vertex Classification method of
Chapter 6 consists in assigning weights indicating safety to each vertex, which can
be used to evaluate the feasibility of a policy, similarly to graph pruning.



4
Hierarchical methods

This chapter investigates the advantages of hierarchically structured agents
for the sake of safe exploration. The chapter shows that hierarchy can mit-
igate the challenge of robustness in unsafe and uncertain environments,
by abstracting the state, by embedding design knowledge, and by restricting
the set of discoverable policies. Furthermore, the chapter presents a specific
method denominated Virtual Safety Training which allows the agent to
learn safe policies in a projected environment. This method is shown to be
successful in providing a safe initial policy for the agent and in reducing fatal
occurrences.

67
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4.1. Introduction
Chapter 3 presented an effective and generalized methodology to address the chal-
lenge of online efficiency, reducing the computational effort and simplifying backup
search and policy safety assessment. The method consists of reducing the opera-
tional envelope (OE) of the agent into a tiling, propagate a bounding model, and
using tiles as vertices of a graph.

Coarser tilings, whose refinement depends on the memory of the UAV, produce
more imprecise overapproximations of the bounding dynamics than more refined
ones. This can be problematic when applying graphs to state spaces that are high-
dimensional or extensive in size, and that are uncertain, in terms of dynamics and
safe states. In these cases, pruning is likely to result in a null graph, and backups
with more than a few time-steps tend to become imprecise and unreliable. Addi-
tionally, environments with uncertainties suffer from the challenge of robustness.
The more the environment dynamics are uncertain, the less model-based policies
are reliable. Also, the more the SSS is uncertain, the harder it is to define OEs.
Therefore, depending on the amount of uncertainty, the reduced computational
complexity of graph methods might come at the cost of safety.

This chapter confronts the above problems, and in particular the challenge of
robustness. Hierarchical Reinforcement Learning (HRL) is implemented to increase
safety of exploration, to mitigate the effects of environment uncertainty, and to
reduce the size and the dimensionality of the state space. This application of hi-
erarchy to safe exploration is introduced under the new field of Safe Hierarchical
Reinforcement Learning (SHRL). Additionally, an off-line learning procedure denom-
inated Virtual Safety Training (VST) is proposed, which constitutes the main contri-
bution of the chapter. By adopting HRL architectures, the agent can accommodate
more uncertain, higher dimensional environments, thus increasing robustness of
the learning process.

The chapter is structured as follows. Section 4.2 introduces HRL and examines
the properties of hierarchy within the field of SHRL. Section 4.3 presents VST as a
specific SHRL method, together with the necessary assumptions for its application.
Section 4.4 shows an application of VST to a classical, discrete state problem, where
an agent is tasked with finding a goal position in a maze environment. A more
complex MAV navigation task is discussed in Section 4.5. In this section, uncertain,
continuous dynamics and non-exhaustive beliefs are considered. Finally, Section 4.6
concludes the chapter.

4.2. Hierarchical Reinforcement Learning
This section introduces the central concept of temporally extended actions (TEAs)
for HRL, as well as a few notable HRL algorithms. Afterwards, the advantages of
HRL agents to safe exploration are presented.

4.2.1. Introduction to HRL
A well known issue with RL is that, at the start of learning, the policy is usually
inefficient since the agent’s knowledge of the environment is incomplete. Extensive
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exploration can be necessary before a task is correctly performed, depending on
its complexity: the curse of dimensionality dictates that learning times grow ex-
ponentially with the number of states, which poses a problem when considering
large and discrete, or continuous state spaces. This initial “blind search” can limit
the applicability of RL algorithms, for which keeping learning time to a minimum is
therefore a strong requisite.

HRL is among the methodologies adopted to reduce the curse of dimensionality
and the “blind search”. In classic or “flat” RL, the agent’s actions have a one-step
duration: after action 𝑢, the agent observes the new state, possibly updates its
value function, and immediately decides on a follow-up action. These one-step
actions are said to be primitive. HRL agents are different from flat RL agents in that
they are allowed to execute more than one primitive action between each decision
step. This sequence of primitives is a temporally extended action (TEA). Which and
how many primitives each TEA contains depends on initialization and termination
conditions that are specific to the actual HRL agent.

4.2.2. HRL properties: a gridworld example
A simple example will individuate the key properties of HRL and their differences
with flat agents. A RL agent is placed in the simple gridworld of Figure 4.1. The
primitive actions consist in moving to any of the four adjacent squares. The objec-
tive of the agent is to reach a goal position, randomly located in one of the four
corners of the grid, upon which a positive reward is assigned. Even if the actual
position of the goal is unknown, a flat RL controller can eventually discover the goal
and learn an optimal policy for this task. Consider now a HRL agent with the four
TEA “keep moving up”, “keep moving down”, “keep moving left” and “keep moving
right”. Each TEA moves the agent by reiterating the corresponding primitive ac-
tion, and terminates if either an obstacle, the target, or a border is reached. The
following observations can be made:

1. TEAs allow state abstraction. Consider again the gridworld of Figure 4.1,
and assume the goal is in the upper-right corner. An optimal TEA sequence
to solve this problem would be “keep moving right” then “keep moving up”,
regardless of the position of the agent, and of the size of the environment.
If the agent is repositioned in a different room, in a different position, it can
successfully reapply this policy again. The agent has therefore abstracted the
specific environment, i.e., the gridworld of Figure 4.1, and learned a policy
valid for similar ones, regardless of size and initial position. Conversely, a flat
policy learned in this specific gridworld would not be transferable to another
of different size.

2. TEAs efficiently embed design knowledge in the learning process. Assuming
an even initialization of 𝑉, the initial behavior of a flat agent with a random or
𝜖-greedy exploratory policy is a random walk, which can be quite suboptimal,
depending on the size of the grid. By adopting the above TEAs, a designer
can purposely avoid random walks. By doing so, the designer can use his or
her own knowledge of the agent and of the environment, i.e., that the goal is
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Figure 4.1: A simple gridworld where the agent
(the circle) can move to an adjacent square as
a primitive action. The four stars at the corner
represent possible target positions.

Figure 4.2: The policy of the flat agent reaches
the target (black star) optimally. This or any
other optimal policy cannot be discovered by
the HRL agent due to the presence of obstacles
(black squares).

in one of the corners, without explicitly assigning a policy to the agent, thus
allowing it to learn, e.g., in which corner is the goal. Similarly to optimistic
initialization, HRL and TEAs constitute a strategy to guide the learning process,
rather than hard-coded solutions to tasks.

3. TEAs constrain the set of discoverable policies. Considering each applied prim-
itive of an TEA separately as a single action, the HRL policy (which is a se-
quence of TEAs) can be transformed into one equivalent flat policy. It can be
seen immediately that only a subset of all possible policies can be obtained
with the given TEAs. For example, a flat policy as in Figure 4.2, where the
agent alternatively moves right and up until it reaches the target position,
cannot be described in terms of the “keep moving” TEAs, so it cannot be dis-
covered by the HRL agent. This can potentially make it impossible to discover
optimal policies, as is the case of Figure 4.2 after the introduction of obstacles
in the grid. Conversely, all HRL equivalent flat policies can be discovered by
the flat RL agent, as long as they involve the same primitives.

A further distinction is worth mentioning to fully understand the impact of TEAs
on the learning process. RL is based on, but not limited to, the Markov decision pro-
cess (MDP) formalism, for which the Markov property holds. Referring once more
to the previous example, the value of a state (i.e., a position in the gridworld) with
flat RL is function of the policy but not of previous history. The value of the same
state when HRL is considered depends instead in whether the agent is currently ex-
ecuting a TEA, and furthermore on the specific TEA being performed. HRL policies
are therefore non-Markovian, and TEAs are not compatible with MDPs. It is possi-
ble, however, to accommodate TEAs within a similar formalism, the Semi-Markov
decision process (SMDP). Avoiding unnecessary details, SMDPs can be described
as regular MDPs in which the time between one decision and the next is a random
variable [104]. Opportune methodologies exist to extend RL learning algorithms,
such as TD-methods, to SMDPs.
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4.2.3. Restricted literature
Due to its generality, diverse methods of implementing TEAs are possible, and mul-
tiple instances of HRL exist in the literature. Nonetheless, Barto and Mahadevan
[104] list three main approaches that will be here briefly summarized.

The options [105, 106] framework is the simplest implementation of the TEA
concept. In this approach, the agent retains all primitive actions 𝑢 ∈ 𝒜, but has also
access to a set of options 𝑜. These are defined as triplets ⟨ℐ, 𝜋 , 𝛽⟩. ℐ ⊂ 𝒮 represents
those states where the option is available, i.e., the initialization conditions; 𝜋 (𝑥𝑥𝑥, 𝑢)
is the fixed stochastic policy of the option giving the probability of action 𝑢 in 𝑥𝑥𝑥;
𝛽(𝑥𝑥𝑥) specifies the termination probability of 𝑜 when in 𝑥𝑥𝑥. The option framework
represent a natural extension of classical RL, as any primitive action 𝑢 can essentially
be seen as a “one-step” option with ℐ = 𝒮, 𝜋 (𝑥𝑥𝑥, 𝑢) = 1 and 𝛽(𝑥𝑥𝑥) = 1, ∀𝑥𝑥𝑥. The most
attractive feature of this HRL method is that, since the agent can directly execute
primitives in addition to TEAs, the set of discoverable policies is the same one of flat
RL. Although [105] introduced options as a-priori designed policies, further research
[107–109] has proposed methods to discover, update or integrate the option set
during learning.

Hierarchies of Abstract Machines (HAMs) [8] perform TEAs with the use of ma-
chines. Each contains a stochastic policy and a termination condition, similarly to
options, from which they nonetheless differ significantly for three reasons. First,
the agent initializes and switches between machines based on predefined fixed in-
terconnections: the machines and their interconnections define the HAM. Second,
the MDP-issued reward is used to update both in-machine policies and between-
machine transitions. Third, the learning space of the agent is the cross-product of
the MDP state space and the HAM state space, i.e., the agent policy depends also
on the internal machine state. In practice, each machine is an a-priori designed
combination of four possible machine states: action states execute a specific prim-
itive action; choice states select the next machine state within a fixed selection;
call states transition from the current machine to a different one; stop states in-
terrupt the current machine and return control to the caller (see Figure 4.3). The
HAMs architecture offers a tradeoff between embedded knowledge, obtained by
appropriately designing the machines, and autonomy of learning. It can be demon-
strated that, when considering the augmented learning space, classical RL learning
schemes such as Q-learning can be applied to HAMs with a few modifications.

MAXQ [110] is similar to HAMs in that the learning space of the agent is a-priori
constrained into a graph of subtasks, whose structure is defined by the designer.
Starting from the root, each subtask calls one of its own children subtasks according
to its policy, until a primitive (which are “one-step” special subtasks) is performed
and reward is obtained. Subtasks are similar to options in that they also have
initialization and termination conditions. The total discounted reward observed by
children during their execution is then also transferred to the parent. This, together
with a completion function, is used to update the value of the parent, in a recur-
sive manner. Two observation can be made. First, by adding the exact “stack” of
tasks and subtasks being executed to the MDP state, the resulting learning process
is Markovian. Second, MAXQ converges to a hierarchical policy that is recursively
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Figure 4.3: Example of machine architecture
(adapted from [8]) for obstacle negotiation.
The round states are action states, the square
is a stop state, and the diamond is a choice
state.
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Pickup Navigate Dropoff

Nord South East West

Figure 4.4: The MAXQ architecture for the taxi
problem (adapted from [110]). With the ex-
ception of Root, subtasks can either execute a
primitive or call one of their own subtasks. The
Navigate subtask is actually shared between
Get and Put.

optimal rather than hierarchically optimal, i.e., each subtask’s policy is individually
optimal, but the equivalent flat-policy is not optimal with respect to the set of dis-
coverable policies. Third, internal pseudo-rewards can be added to the “natural”
reward, but exclusively while learning the subtasks, in order to accelerate and guide
this process. As an example of MAXQ, [110] proposes the taxi problem (see Fig-
ure 4.4), where learning the Navigate subtask early on is beneficial for learning the
parent subtasks as well.

Feudal Reinforcement Learning [111] represents an extreme approach to hier-
archy, similar to layered control [112]. The agent is split in a top-down tree of
managers, rather than in a graph of subtasks or in a hierarchy of machines. The
higher the position of the manager, the more high level the domain of its policy,
and the more coarse its own state representation. With the exception of the “root”
manager at the first level and the bottom managers at the final level, each man-
ager has exactly one superior but possibly several subordinates. Similarly to MAXQ,
the superior/subordinate connections are fixed by the designer. Superiors assign
goals to their subordinates, and assign them reward when and if the goal they as-
signed them is reached. Feudal RL presents two important aspects. First, goals
and rewards are not shared between managers, so that an efficient subordinate
will receive positive reward from an inefficient superior assigning an incorrect goal.
Second, contrarily to HAMs and MAXQ, in Feudal RL only the lowest level managers
are allowed to execute primitives (Figure 4.5).

4.2.4. Safe Hierarchical Reinforcement Learning
This section investigates the application of HRL methods to Safe Reinforcement
Learning (SRL) [13], which constitutes the novel field of SHRL.

Policies learned via State abstraction are valid for different, similar environments.
Furthermore, abstraction makes the use of graph methods easier, as it reduces
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Environment

Root

Level 1

Level 2

Figure 4.5: An example of managerial architecture for Feudal RL with three levels. Each manager can
assign a task only to one of its subordinates, but only lowest-level managers (level 2) can actually
perform primitives.

the size of the learning space, lowering the necessary refinement of tilings, and
simplifying the definition of OEs. Therefore, state abstraction contributes to solving
the challenge of robustness.

There are diverse ways in which abstraction can be obtained. Consider for
example a classic sequential task as the one described in [113]. An agent is in
a dark, locked room. The room contains a glowing switch to turn on and off the
lights, and a second switch that opens the door to a second room, which contains
a “charger” state in which a specific charging action is positively reinforced. Before
the agent can charge itself, a number of intermediate sub-goals must be reached
as well. Certain state features are fundamental to reaching a specific subgoal (e.g.,
the light must be on for the second switch to be visible), but irrelevant for other
subgoals (e.g., in the charger state it is irrelevant whether the light is on or not).
Similarly, in the taxi problem of Figure 4.4, whether or not the taxi is carrying a
passenger is irrelevant to the agent for the sake of learning how to navigate from
one state to the other. If an HRL agent can abstract, i.e., generalize between
states that share relevance for the task, the complexity and dimensionality of the
learning space is effectively reduced. Additionally, if an option or subtask reduces
the learning space, those dynamics that involve only irrelevant states for a subtask
can be temporarily ignored for the sake of learning that specific subtask. This is in
the spirit of the “recursive optimality” of [110]. In the room environment, the agent
can “forget” its knowledge about turning on lights or pushing buttons as soon as
it opens the door. Similarly, in the MAXQ taxi problem, the agent does not need
to know hot to pick up a passenger while it navigates. In conclusion, this allows
to obtain more flexible policies and to generate lower-dimensional, more efficient
graphs, with a smaller subset 𝒜 and a more refined tiling, which reduces the
added uncertainty during propagation.

Embedding design knowledge and constraining the set of discoverable policies
are beneficial for the safety of exploration. Design knowledge can introduce reac-
tivity towards unsafe states. Consider for example the obstacle-negotiating set of
machines of Figure 4.3: the detection of an obstacle triggers a choice state into
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avoiding or circumnavigating the obstacle. Even if this cannot guarantee that the
obstacle will be avoided, it directs the agent toward learning a safe policy. By ap-
propriately assigning initialization and termination conditions, the same guidance
can be achieved with options, MAXQ and other HRL methods.

Constraining the set of discoverable policies can be an inconvenience of adopt-
ing HRL instead of a flat RL, since the optimal policy might not be among the set.
However, this constraint could in principle remove the unsafe policies from the dis-
coverable set. As an example of how this can be achieved, consider a Feudal RL
architecture, where only lowest-level managers are allowed to perform primitive
actions. In this case, it is sufficient to guarantee that the lowest-level managers’
policies are safe, regardless of the goal assigned by superiors, to guarantee that the
hierarchical policy is also safe. In practice, enforcing constraints that are favorable
to safety highly depends on the specific task.

Given the above considerations, HRL is shown to be beneficial to safety, in
addition to address the challenge of robustness as well as reducing the curse of
dimensionality and accelerating learning. In the following chapter, a specific SHRL
method denominated Virtual Safety Training (VST) is presented.

4.3. Virtual Safety Training
This section presents the VST strategy, which under given assumptions can provide
safety of exploration. When implementing VST there is no specific restriction in
terms of how hierarchy is structured, and in how TEAs are obtained. For the sake
of this chapter, machines, options, subtasks and any other similar structure are
referred to with the acronym MOS.

Consider a continuous bijective function 𝜇 ∶ 𝒮 → ∏×∈{ ,…, }𝒫 which assigns to
each 𝑥𝑥𝑥 ∈ 𝒮 a unique set of vectors {𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 }. Given the dynamics1 of 𝑥𝑥𝑥 and of
the vectors 𝑝𝑝𝑝 , and given 𝜇 ∶ 𝒮 → 𝒫 , it holds that

̇𝑝𝑝𝑝 = d𝜇 (𝑥𝑥𝑥)
d𝑡 = d𝜇 (𝑥𝑥𝑥)

d𝑥𝑥𝑥 ⋅ �̇�𝑥𝑥 =
d𝜇 (𝑥𝑥𝑥)
d𝑥𝑥𝑥 ⋅ 𝒟(𝜇 (𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 ), 𝑢) = 𝒟 (𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 , 𝑢), (4.1)

and given components (𝑝 , … , 𝑝 ) of 𝑝𝑝𝑝 , the notation

�̇� = 𝒟 (𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 , 𝑢), (4.2)

is used to indicate the derivative of component 𝑝 , 𝑎 ∈ {1,… , 𝑘 }. A function 𝜇
such that the above holds will be referred to as a state projection, of which 𝑝𝑝𝑝
are the projected states. Figure 4.6 shows an example of a state projection. The
concepts of safe state space, fatal state space, lead-to-fatal states are still valid in
the projected space. Specifically, given a projected state 𝑝𝑝𝑝 , it is possible to identify
the projected safe state space PSSS
1For ease of exposition, the state is assumed to be continuous: ̇ 𝒟( , ). However, the definitions
and results of this section can be extended to discrete state spaces as well.
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Figure 4.6: Example of projection function , which assigns to each state a tuple { , , }. Note
that the FSS, represented as the gray subset of 𝒮, has an equivalent in the three of the projected
spaces 𝒫 .

PSSS (𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 ,𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 ) = {𝑝𝑝𝑝 |𝜇 (𝑝𝑝𝑝) ∈ SSS} (4.3)

which represents the safe values of 𝑝𝑝𝑝 given the value of the remaining projected
states. The projected fatal state space PFSS is defined analogously. Recalling the
Definition 5 of safe control

𝜎𝜎𝜎(𝑥𝑥𝑥, 𝑢, 𝑡) ∈ SSS, ∀𝑡 ∈ [𝑡 , 𝑡 ], (4.4)

it is 𝜎𝜎𝜎(𝑥𝑥𝑥, 𝑢, 𝑡) = 𝜎𝜎𝜎(𝜇 (𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 ), 𝑢, 𝑡) and

𝜎𝜎𝜎 ∈ SSS ⇔ 𝑝𝑝𝑝 (𝑡) ∈ PSSS (𝑝𝑝𝑝 (𝑡), … ,𝑝𝑝𝑝 (𝑡),𝑝𝑝𝑝 (𝑡), … ,𝑝𝑝𝑝 (𝑡)). (4.5)

It is therefore possible to rewrite the safety problem in terms of one arbitrary 𝑝𝑝𝑝 .
However, some complications occur in this formulation. First, the SSS and therefore
PSSS are unknown. Then, if �̇�𝑝𝑝 ≠ 0, PSSS might vary with time. Apparently,
projecting the state has the only effect of complicating the problem. However,
specific hierarchical structures can be used to exploit systems that accommodate
certain assumptions, as described in the remainder of this section.

It was observed in the previous section how HRL can reduce the dimensionality
of the learning space. Consider once again the taxi problem example and assume
knowledge about relevant and irrelevant features is embedded in the HRL agent
structure. When the taxi is navigating, the position and destination of the passenger
has no influence on how the taxi moves. The state can be separated as

𝜇(𝑥𝑥𝑥) = {𝑝𝑝𝑝 , 𝑝𝑝𝑝 , 𝑝𝑝𝑝 } = {taxi, dest, pass}, (4.6)
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where taxi indicates the position of the taxi, and pass and dest indicate the
position of the passenger and his destination. It is evident that 𝒟 ( ( ), ) =
𝒟 ( ( ), ) = 0. The following definition generalizes the concept.

Definition 11 Let 𝜇 ∶ 𝒮 → ∏×∈{ ,…, }𝒫 be a state projection, and let 𝑝𝑝𝑝 =
(𝑝 ,… , 𝑝 ) ∈ 𝒫 ,𝑝𝑝𝑝 = (𝑝 ,… , 𝑝 ) ∈ 𝒫 , 𝑖, 𝑗 ∈ {1, … ,𝑚} be two projected states.
Then, component 𝑝 , 𝑎 ∈ {1, … , 𝑘 } is independent of 𝑝𝑝𝑝 if ∀𝑏 ∈ {1,… , 𝑘 }, it is
𝒟 = 0. If, ∀𝑎 ∈ {1,… , 𝑘 }, 𝑝 is independent of 𝑝𝑝𝑝 , 𝑝𝑝𝑝 is independent of 𝑝𝑝𝑝 .

If 𝑝𝑝𝑝 is independent of all 𝑝𝑝𝑝 , then transitions {𝑝𝑝𝑝 (𝑘), 𝑢, 𝑟, 𝑝𝑝𝑝 (𝑘 + 1)} can be effec-
tively modeled as an MDP. In HRL terms, projecting the state in such a way allows
to design a MOS whose initialization conditions, policy 𝜋 and termination conditions
are defined within 𝒫 alone.

A second notable simplification can be found by using a relative state repre-
sentation, e.g., 𝜇(𝑥𝑥𝑥) = {𝑝𝑝𝑝 ,𝑝𝑝𝑝 } = {𝑥𝑥𝑥 , 𝑥𝑥𝑥 }, 𝑥𝑥𝑥 = 𝑥𝑥𝑥 + 𝑥𝑥𝑥 , for which it holds
𝒟 ( ( ), ) = 0. Again, this can be generalized as the following.

Definition 12 Let 𝜇 ∶ 𝒮 → ∏×∈{ ,…, }𝒫 be a state projection, and let 𝑝𝑝𝑝 =
(𝑝 ,… , 𝑝 ) ∈ 𝒫 ,𝑝𝑝𝑝 = (𝑝 ,… , 𝑝 ) ∈ 𝒫 , 𝑖, 𝑗 ∈ {1, … ,𝑚} be two projected states.

Then, 𝑝𝑝𝑝 is relative to 𝑝𝑝𝑝 if ∀𝑏 ∈ {1,… , 𝑘 }, it is 𝒟 = 0.

A relative representation can be extremely useful for an HRL design. One advantage
is that the dynamics can be linearized or otherwise approximated around a nearby
state 𝑥𝑥𝑥 . 𝒟 can therefore have a much simpler structure than 𝒟. Furthermore,
when considering risk perception, the agent is likely to have information about the
safety of its surrounding. In terms of an HRL implementation, such a projection can
be used to devise a MOS whose initialization conditions, policy 𝜋 and termination
conditions are a function of 𝑝𝑝𝑝 = 𝑥𝑥𝑥 and of the value at the instant of projection
of 𝑝𝑝𝑝 = 𝑥𝑥𝑥 , since the reference value is constant during the execution of 𝜋 until
termination. It is assumed that the following assumption holds, such that �̇�𝑝𝑝 =
𝒟 (𝑝𝑝𝑝 ,𝑝𝑝𝑝 , 𝑢).

Assumption 5 There is at least one projection 𝜇 of 𝒮, with at least one projected
state 𝑝𝑝𝑝 such that, given any other projected state 𝑝𝑝𝑝 with 𝑗 ≠ 𝑖 and 𝑗 ∈ {1, … ,𝑚},
𝑝𝑝𝑝 is independent of 𝑝𝑝𝑝 , relative to 𝑝𝑝𝑝 , or both.

Chapter 2 introduced the concept of boundedness of an uncertain model �̂� with
respect to a “crisp” model 𝒟. It was shown how this can be the result of uncertainty
in the identification of the model parameters, or can derive from the estimating the
deterioration of a vehicle whose model was previously identified. Analogously, the
following is assumed:
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Assumption 6 Let 𝜇 be a state projection with a projected state 𝑝𝑝𝑝 for which
Assumption 5 holds. Then ∃ a function �̂� ⇒ ∀𝑥𝑥𝑥 ∈ 𝒮, ∀𝑢 ∈ 𝒜, 𝒟 (𝑝𝑝𝑝 ,𝑝𝑝𝑝 , 𝑢) ∈
�̂� (𝑝𝑝𝑝 ,𝑝𝑝𝑝 , 𝑢).

Combining Assumption 5 and Assumption 6 means that the agent can estimate the
transitions of 𝑝𝑝𝑝 according to a bounding model 𝒟 . However, PFSS and the reward
function ℛ might not depend uniquely on 𝑝𝑝𝑝 .

In terms of safe exploration, it would be appealing to apply a “safety filter”, such
as SHERPA, to the projected space 𝒫 so that 𝑝𝑝𝑝 (𝑡) ∈ PSSS , ∀𝑡 ∈ [𝑡,∞]. However,
the problem introduced and discussed in Chapter 2 assumes a static FSS, which
guarantees the validity of backups. If PFSS is a function of other projected states
𝑝𝑝𝑝 , it can change during the execution of the MOS. This increases the complexity
of applying a SHERPA-like filter. VST is attempted instead.

The strategy of VST can be defined as learning a “virtual” policy 𝜋 off-line such
that

𝜎𝜎𝜎(𝑝𝑝𝑝 , 𝜋 (𝑝𝑝𝑝 , PSSS ), 𝑡) ∈ PSSS , ∀𝑡 ∈ [𝑡 , 𝑡 ], ∀PSSS ∈ ℬ, (4.7)

where PSSS is the belief of the agent with respect to the projected safe state
space, and ℬ is the belief set. For each PSSS , policy 𝜋 is learned off-line with the
dynamics indicated by the bounding model, assigning negative reward when a fatal
transition is encountered.

In the most generic case, where PSSS is an unknown, time-varying set, defining
an exhaustive set ℬ, i.e., a set for which

∀𝑡, ∃PSSS ∈ ℬ ⇒ PSSS (𝑡) = PSSS , (4.8)

is likely to be intractable. However, some simplifications can be applied. First
of all, if SSS can be estimated (e.g., via risk perception), this restricts the set ℬ
to those compatible with this estimate. Additionally, if 𝑝𝑝𝑝 is relative, then PSSS
is constant during each execution of the policy, so that ℬ is not time-varying. A
further simplification comes from applying state abstraction to PFSS . Multiple states
𝑝𝑝𝑝 ∈ 𝒫 can be aggregated, so that PFSS can be approximated as a finite number
of fatal aggregated states.

Training is then performed in this “virtual”, projected, abstracted representation
of the state space. The better the belief set ℬ can approximate the PSSS , the safer
and more efficient the learned policy. In the event that the belief set is exhaustive,
𝜋 can guarantee safety.

Regardless of the completeness of ℬ and of the efficiency in approximating
PSSS , the agent must convert its current information on the environment, e.g.,
deriving from its risk perception, into the most similar belief among ℬ and subse-
quently apply the corresponding virtual policy 𝜋 .

A MOS policy obtained and designed as described above is oriented toward safe
exploration. However, if a MOS whose policy is not learned through VST executes
a primitive, the aforementioned benefit is lost. In order to avoid this occurrence,
the discoverable policies should be constrained in such a way that only VST-trained
MOS are allowed to perform primitives, at least while safe exploration is in progress.



4

78 4. Hierarchical methods

This section has formalized the VST strategy, which is part of SHRL. Section 4.4
and Section 4.5 present two implementations of the strategy as two case studies for
the method. Specifically, in Section 4.4 VST is applied to a discrete problem, with a
deterministic transition model. In this case, an exhaustive belief set is created such
that, with the obtained policy 𝜋 , exploration is entirely safe. In Section 4.5, VST is
applied instead to a continuous application, where the UAV model is uncertain. In
this case, a more rough abstraction is performed to obtain a non-exhaustive belief
set ℬ.

4.4. VST with deterministic dynamics and exhaus-
tive belief set

In this task, the agent navigates a ground robot in an unknown maze, which is
surrounded by walls and presents obstacles, which are a source of possible collisions
and which can be detected at short range. The maze contains goal states, whose
location is unknown, and which the agent must find.

VST is applied in order to avoid collisions. In particular, the HRL structure used
here is inspired by the layered control philosophy of Brooks [112] and by the top-
down hierarchy of Feudal RL [111]. A state projection is applied for which a relative
and independent projected state exists, and a highly abstracted “lowest-level” MOS
is defined on that projected state. The simplicity of dynamics and the discreteness
of the environment allow an exhaustive belief set, so that the policy 𝜋 obtained
through VST might be sub-optimal, but is safe. Additionally, VST prevents blind-
search, and 𝜋 performs better than a simple, hard-coded obstacle evading policy.

4.4.1. Introduction to maze navigation and mapping
Indoor navigation is a field where both autonomous [114] and semi-autonomous
[115] platforms can benefit from the application of HRL. In particular, maze naviga-
tion exemplifies the advantages of abstraction during learning. Applying classical,
“flat” RL algorithms to mazes usually implies very long learning times, due to the
typically large state space of these tasks, and due to the difficulty of implementing
appropriate function approximators. However, the problem can be simplified by
abstraction. For example, an agent that has learned how to avoid one obstacle
could reapply this knowledge to avoid similar ones. Higher levels of abstractions
can be devised; e.g., if the agent has learned what constitutes a wall, it can learn
wall-following behavior, and remember which walls have been previously followed.
These and other relatively simple abstractions can be used to speed up learning;
however, the corresponding behavior very often originates from the designer itself.
For example, to implement wall or corridor following behaviors, the designer needs
to properly define which actions are more appropriate and devise an appropriate
reward. In this section, this behavior is discovered autonomously by the agent.

In addition to VST, the proposed HRL agent utilizes maps in order to decide
where to navigate. Mapping means using sensor readings to generate an inter-
nal representation of the environment. Typically, the agent starts exploring with a
small map of its immediate surroundings or with no map at all, but expands on this
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as more measurements are performed. Two main representations for maps exist.
As the name suggests, grid-based maps partition the environment into an evenly
spaced grid. In theory, each cell can be observed or unobserved, and observed
cells can be either empty or occupied. However, in order to cope with reading
errors, occupancy of a cell is often treated as a continuous value, e.g., as with ev-
idence grids [116]. If the value of occupancy of a cell is below a set threshold it
is considered empty, otherwise it is treated as full. Grid-based maps constitute a
quantitative representation for an environment, while topological maps are a qual-
itative one. These maps do not use grids but graphs: vertices represent locations,
such as rooms, corridors, or landmarks; edges indicate which locations are reach-
able from one another. Hybrid representations known as “grid-topological” [117]
have been attempted as well in the hope of combining the simple interpretation
and use of topological maps with the more precise nature of grids.

4.4.2. Abstraction and training description
This section explains the proposed approach. After briefly describing the agent, the
two main elements of the approach are illustrated: the hierarchical control for local
navigation, and the global exploration strategy, based on mapping and RL.

Agent description
The agent considered in this chapter represents a ground robot equipped with dis-
tance sensors. The robot is assumed to be able to travel at constant speed in the
direction it is facing, to brake with negligible braking distance, and to turn on the
spot. The discrete primitive actions of the agent are advancing one square, turning
(clockwise), or − (counterclockwise). The agent navigates with the aid of a

map, not provided beforehand but built online based on sensor readings. Three
close range distance sensors (e.g., sonars) are positioned at the front, right and
left of the robot, detecting the nearest obstacle within three squares of distance
in a straight line (see Figure 4.7). A compass detects which of the four cardinal
directions the agent is facing at each time. Assuming perfect readings of the sen-
sors, a map is built progressively which is consistent with the environment. It is
assumed that the robot performs perfect odometry, so that the agent knows its
position within the map at all times.

State projection
The original state 𝑥𝑥𝑥 of the agent in the flat MDP is given by the absolute position
𝑥 , 𝑥 and by the heading 𝜒 ∈ {−𝜋,− , 0, } of the robot. Even though the state
is discrete, the learning space can grow very fast by simply enlarging the maze.
In terms of safety, the FSS represents all positions 𝑥 , 𝑥 that are occupied by a
wall or an obstacle. Technically, the agent sensors are sufficient to avoid obstacles
if an hard-coded rule is applied, e.g., “when facing an obstacle, turn right”. This
limitation could be inserted in a MOS, e.g., in a machine. Using this or other simple
responses can prevent collisions but can also cause trajectory loops or similar other
complications that are difficult to prevent if the actual environment is not avail-
able. Therefore, the resulting policy might be safe, but at the cost of high initial
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Figure 4.7: An example of sensor reading. The circle represents the robot, the triangle its heading, and
the gray squares the obstacles. Sensors are positioned at the front, right, and left of the agent, and
detect obstacles in a straight line with a range of up to three squares.

inefficiencies.
In order to apply HRL and specifically VST, the following state projection is ap-

plied. First of all, the maze is subdivided into groups of 3-by-3 squares, called tiles.
Consider the tile containing the square currently occupied by the robot. Assigning
an arbitrary orientation 𝜒 to the tile, the position of the robot can be indicated
as its position 𝑝 within the tile, and the relative orientation 𝜒 of the robot with
respect to that of the tile. Therefore

{tile, 𝑝, 𝜒 } = 𝜇 (𝑥𝑥𝑥) (4.9)

is a bijective function, given a unique choice of tiles and an arbitrary orientation
𝜒 . The projected state 𝑝 is independent of and relative to tile, since the robot
dynamics are the same in all tiles. The first goal of the HRL design will be to
perform VST appropriately by learning a policy that, while within a tile, will avoid
collisions. This policy will then be inserted within a MOS in order to guarantee a
safe exploration.

Virtual Safety Training for local navigation
Once the tile state projection is applied, the agent learns a policy in the correspond-
ing projected virtual environment of Figure 4.8. This minigrid consists in a grid 𝒫 of
3-by-3 cells, plus an additional row of goal states 𝒫 . The objective of the agent
is to learn how to reach these states in the presence of obstacles. Therefore, the
orientation of the tile (which corresponds to the first three rows of the minigrid) is
the same as the direction to goal of the agent.

State abstraction reduces the learning space of the virtual policy. In this ap-
plication, the original agent can be abstracted into the trainee of Figure 4.8. The
trainee agent does not have an orientation, and can move in any of the four adja-
cent cells. Therefore, the state of the trainee is only its position 𝑝. During training,
the trainee is assumed to know the disposition of the obstacles inside the minigrid.
At least one of the cells must contain the trainee, so that a total of 2 −2 = 4088
obstacle placements 𝒪 are possible. Since fatal occurrences consist in colliding with
obstacles, obstacle placements form also the belief set ℬ, which is an exhaustive
representation of PFSS.
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Figure 4.8: In this sample episode, the environment contains four occupied squares, included a goal
state. The agent starts in and descends towards goal in six steps. As the agent performs a
deviation with action , the obtained trajectory is suboptimal.

The training is divided into episodes, at the start of which the trainee is po-
sitioned in a random, empty cell of 𝒫, and a compatible disposition of 𝒪 is se-
lected. The trainee can attempt moving to any adjacent cell by conventional ac-
tions 𝒜 = {up, down, right, left}. If the cell is empty, the trainee moves with
probability one and receives a reward of −1. Otherwise, the action is discarded for
this iteration. The trainee chooses a random action with probability 0.1, and other-
wise takes the action that, during the episode, has been selected the least amount
of times from its current position. An episode terminates as soon as the trainee
reaches a goal position 𝑝 ∈ 𝒫 , or if the 100 iteration is reached, including
discarded actions.

Given 𝑘 the number of moves in an episode, the trainee, initially in 𝑝 , performs
𝑘 trajectories {𝒪, 𝑝 , 𝑢 ∶ , 𝑅, 𝑝 }, 𝑖 < 𝑘. Each trajectory is a motion pattern starting
from position 𝑝 at timestep 𝑖, all terminating in 𝑝 at time 𝑘, after sequence of
actions 𝑢 ∶ . Each trajectory yields an undiscounted return 𝑅=𝑖−𝑘. If the episode
terminates before the 100 iteration, 𝑝 is always one of the goals 𝑝 . The trainee
can then use each trajectory as a TEA when in position 𝑝 to get to that goal,
given those same obstacles, with a return 𝑅. The same motion is also reused
whenever possible by applying appropriate transformations to the environment,
e.g., by mirroring the environment.

In case the iteration limit of 100 is reached, it is assumed that the goals can not
be physically reached, given obstacles 𝒪, from all cells visited during the episode.
These trajectories are also used to teach the trainee, with the following modifica-
tions. First, 𝑅 is replaced by −100 for all trajectories, as an indication that they
all fail in reaching the goals. Second, each trajectory is replaced by three trajecto-
ries with 𝑝 ∈ 𝒫 = {𝑝 , 𝑝 , 𝑝 }. Unsuccessful trajectories are then in the form:
{𝒪, 𝑝 , 𝑢 ∶ , −100, 𝑝 }, {𝒪, 𝑝 , 𝑢 ∶ , −100, 𝑝 } and {𝒪, 𝑝 , 𝑢 ∶ , −100, 𝑝 }.

Valid trajectories are stored in a table T ∶ 𝒪 × 𝒫 ×𝒫 ×𝒜 → ℝ that maps
the combination of environment, starting and ending positions, and action of each
trajectory to the return 𝑅. The 4088 ⋅ 9 ⋅ 3 ⋅ 4 entries of T are initially empty. At the
end of an episode, and once for each trajectory, the content of the corresponding
entry in T is compared to the new return 𝑅: if the entry is empty or has a lower
value, it is replaced by 𝑅. After convergence, T indicates if a goal can be reached
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Figure 4.9: Sample of maze navigation obtained through iteratively adopting the minigrid logic of T.

for given environment and position, and the number of moves necessary to do so
when starting with action 𝑢 .

Square navigation
The table T can then be used to navigate the agent within the maze, provided that:

• the agent has a belief of the surrounding obstacles;

• a direction to goal, coinciding with 𝜒 , is assigned.

Navigation is performed as follows. The agent places upon the map a minigrid
formed by the current tile and the three neighboring squares in the given direction
to goal. Each cells of the minigrid corresponds to a square of the maze. Setting
aside for the moment the presence of unobserved squares, assume that the agent
has a map providing an exact disposition of the obstacles, and therefore the nec-
essary belief for the agent. Then, according to the current position 𝑝 inside the
minigrid, T is consulted to obtain the optimal trainee action up, down, etc., which is
then “decomposed” into the equivalent primitive actions. Figure 4.9 illustrates an
example of navigation from state A1 to state A9. The agent is initially in A1, and is
instructed to go South. It positions the minigrid between A1 and D3, and reaches
goal D1. Then, it is commanded to proceed East, so it positions the minigrid in
D1-F4. This time multiple goals are available, and the agent ends in E4. Following
the same identical steps, it then continues East through D4-F7, and finally North
through A7-D9.

As it can be seen, shortest-path maze navigation can be obtained by iterating
the policy contained in T. However, determining which direction to goal is optimal
is not trivial. For example, the direct route between A1-A9 in figure Figure 4.9 is
blocked by an obstacle. The agent must understand the presence of the obstacle,
and then circumnavigate it, in order to avoid unnecessary or even unsafe actions
(e.g., collisions).

Tile navigation
Obstacle circumvention can be achieved by further abstracting the state of the
agent. The policy of T indicates which actions to apply in order to reach the goal



4.4. VST with deterministic dynamics and exhaustive belief set

4

83

(a) (b)

Figure 4.10: Transitions between tiles (a) are abstracted into a macrogrid (b), which allows to circumvent
obstacles.

cells in a given direction, and takes into account the presence of obstacles. In
principle, the same policy can be used for tiles as well, by replacing each primitive
action, e.g., North, with a TEA, e.g., “move one tile to the North”; this TEA can be
performed again with T applied to squares. In this way, tiles are abstracted into
cells of a macrogrid. However, one final consideration is needed in how to abstract
the presence of obstacles within the macrogrid representation.

An example will clarify how to do so. Figure 4.10a shows a portion of map and its
six constituent tiles A1, A2, B1, and so on. The macrogrid consists in a 4-by-3 grid
of cells, of which two types exist. Position cells A1, A2, B1 and B2 (Figure 4.10b)
represent the tiles with the same name. If the agent is in a tile, it is considered to be
inside the corresponding position cell. The remaining cells (with the exception of 𝛼I
and 𝛽I) are transition cells. If a transition cell is occupied, it is not possible to move
between the two adjacent position cells, i.e., the two adjacent tiles. For example, in
Figure 4.10, obstacles prevent paths A2-B2 and B1-C1, so 𝛼2 and 𝛽1 are occupied.
The occupancy of transition cells can be assessed by the agent by positioning a
minigrid on the map, so that the first three rows overlap one of the two tiles, and
then checking T to see if any goal can be reached. Finally, cells 𝛼I and 𝛽I represent
invalid transitions, and as such are always considered occupied. In this way, the
macrogrid cells are abstraction of the tiles, as well as of transitions between tiles.
The policy of T, defined for the microgrid, is also valid for the macrogrid, taking
into consideration the different transition and occupancy rules of cells. Therefore,
T can be used to navigate the robot between tiles as well.

Figure 4.11 shows an application of the combined hierarchical control when the
map contains unobserved squares. A grid of 3-by-2 tiles is then placed on the
map, so that the goal tiles are located in the direction to goal, which in this ex-
ample is East. The agent is initially in the top-right corner of tile A2. In order to
promote exploration, all transition cells of the macrogrid are initially considered to
be empty. Transitions between tiles are indicated by applying T to the macrogrid.
Then, a minigrid is positioned as to include the current tile and the three neighbor-
ing squares of the destination tile, which represent the goal cells. Table T is then
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(a) (b)

(c) (d)

Figure 4.11: In (a), the agent receives instructions South, East, East from the macrogrid MOS, to
which it cannot abide due to the presence of obstacles. A new path (North, East, East) is then issued
and executed, until in (b) the microgrid MOS indicates that the given instruction might lead to a collision
with unobserved obstacles. A third and final path is obtained by the macrogrid (South, East) which is
then carried on with success in (c) and (d).

consulted again to move between squares. Any unobserved square of the map is
represented inside the minigrid as an occupied cell, in order to prevent collisions
with unobserved obstacles. It can be that, due to the presence of occupied or
unobserved squares, the tile transition indicated by the macrogrid cannot be com-
pleted. The corresponding transition cell is marked as occupied, and the updated
macrogrid is consulted again to see if an alternative path is available. For example,
in Figure 4.11a, the initial suggested tile transitions to move East are South, East,
East. The South transition is immediate. However, when placing the minigrid for
the following move to East, the corresponding entry of T returns −100, meaning
that the tile transition is impossible. The corresponding transition cell is updated to
occupied, and the agent reroutes as North, East, East. The robot goes up one
tile to the original position (North), and then one tile right (East) in Figure 4.11b.
The final tile transition East is again denied, since the unobserved squares might
contain obstacles. The macrogrid then indicates South and East, which the agent
executes in Figure 4.11c and in Figure 4.11d.

Hierarchical policy structure
In terms of HRL nomenclature, “moving between tiles” and “moving between squares”
are two different MOS policies, combined in the feudal structure of Figure 4.5. In
order to navigate, each MOS needs an input from a superior assigning the direction
of motion, and a belief concerning the disposition of obstacles. Note that the two
beliefs utilized for tile and for square navigation are different: the macrogrid belief
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Figure 4.12: The HRL structure implementing the VST-trained policy of table T on two levels of abstrac-
tion.

is always initialized optimistically, i.e., with all transition cells as empty, and is up-
dated online with any new information obtained from applying T to the microgrid.
Conversely, the belief for the square navigation depends on the map of the agent,
and is initialized pessimistically by treating unobserved squares as occupied.

In theory, this abstracted, cascaded structure can be increased to progressively
higher levels: sectors of 2-by-2 tiles, as well as transitions between sectors, could
be abstracted as cells of a macrogrid. The policy of T, applied to these cells, would
indicate transitions between sectors. The corresponding action would then initialize
multiple “move between tiles” TEA, which in turn would multiple “move between
squares” TEA, which finally would be composed by primitives.

However, regardless of the level of abstraction, a root policy must always be
present to select a direction to goal for the first subordinate, e.g., a random policy.
Here, the hierarchical structure of control (Figure 4.12) is limited to a root policy with
two underlying levels of tile navigation (where tiles and connection between tiles are
abstracted into cells) and of square navigation (where the only abstraction concerns
the trainee agent). Rather than a random policy, the proposed root policy indicates
the direction of motion according to a map-based strategy, which is described in
the following section.

Exploration strategy
In addition to the local navigation policy given by T, a root policy must be defined or
learned in order to efficiently find the goal. This section illustrates how the current
map of the environment is used to select target sectors for the agent in order to
explore.

The strategy adopted for exploration is to individuate frontiers [118]. Frontiers
are those portions of the border of the current map that are not occupied by ob-
stacles, and that therefore do not prevent movement. The agent must cross a
frontier in order to move into unobserved areas of the map, explore the environ-
ment further, expand its map, and eventually find the goal. The frontier approach
is combined with RL in order to reduce unprofitable exploration. The procedure is
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Algorithm 4 Target sector selection

1: Initialize map, 𝜎 ∈ Σ
2: 𝑉 ← 0
3: while goal not found do
4: unexplored ← {𝜎 ∶< 50%𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑞𝑢𝑎𝑟𝑒𝑠}
5: elig ← {𝜎 ∶ 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 visited} ∩{¬visited∪unexplored}∩{𝜎 ∶ ∃ 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟}
6: trgt ← argmax ∈ elig𝑉(current, sect)
7: counter ← 2 ⋅ distance(current, trgt)
8: while trgt is not reached ∧ counter ≠ 0 do
9: 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 trgt
10: counter ← counter− 1
11: 𝑢𝑝𝑑𝑎𝑡𝑒 map
12: if trgt is reached then
13: 𝑟 ← −0.1
14: 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉(Σ, trgt)
15: otherwise
16: 𝑟 ← −1
17: 𝑢𝑝𝑑𝑎𝑡𝑒 𝑉(𝜎 , trgt)
18: 𝑢𝑝𝑑𝑎𝑡𝑒 Σ

summarized in Algorithm 4.
At the start of exploration, the agent has an initial map. The map is then parti-

tioned into groups of 6-by-6 squares, the sectors 𝜎∈Σ. If needed, additional unob-
served squares are added to the boundaries of the map until all sectors are exactly
6 squares of side. Initialize the value function 𝑉 ∶ Σ × Σ → ℝ as zeros. All sectors
that:

• are adjacent to a visited sector, i.e., a sector which contains at least a visited
square, and

• are not visited, or contain more than 50% unobserved squares, and

• are separated by a frontier from at least one of their neighbors

are eligible target sectors. Frontiers are defined as follows: if the agent can reach
the candidate sector starting from any side of one of the adjacent sectors, then a
frontier exists between the two sectors. Unobserved squares are assumed empty
for the sake of determining if a frontier exists. Figure 4.13 shows an example:
neighbor sector A does not have a frontier with the candidate, since the common
side cannot be reached due to occupied squares; on the contrary, neighbor B has
a frontier to the candidate.

The actual target among the eligible sectors is then selected according to value
function 𝑉:

trgt = argmaxelig𝑉(curr, elig). (4.10)
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Figure 4.13: An example of frontier evaluation. Black squares are those where the agent has observed
an obstacle, while the squares that the agent has observed as empty are in white. Gray squares are
then unobserved squares.

If more than one sector has the same value, the nearest one is selected. The use
of a value function to select actual targets is motivated by the fact that the agent
might not be able to reach the target sector in a reasonable amount of time, e.g.,
because the unobserved squares turn out to be occupied, or because the agent
needs to circumvent a wall in order to reach the target. Therefore, the agent is
given a counter as a time limit to reach the assigned target. The counter starts
equal to twice the distance, measured in sectors, between the agent and the target.
Each time that the agent is assigned a direction of motion (as in Figure 4.11),
the counter is reduced by one. If the agent moves to the target before the
counter reaches zero, it is assigned a reward 𝑟 = −0.1. Then ∀𝜎 ∈ Σ, 𝑉 is
updated accordingly as

𝑉(𝜎, trgt) = 𝑉(𝜎, trgt) + 0.2 ⋅ (𝑟 − 𝑉(𝜎, trgt)); (4.11)

otherwise, 𝑟 = −1 and, given 𝜎 the sectors visited during the trajectory to trgt,
it is

𝑉(𝜎 , trgt) = 𝑉(𝜎 , trgt) + 0.2 ⋅ (𝑟 − 𝑉(𝜎 , trgt)). (4.12)

Since the reward is always negative, initializing 𝑉 as zeros is optimistic. Therefore,
when a target sector is reached, it is unlikely to be selected again due to Eq. (4.11)
regardless of the current sector. Conversely, Eq. (4.12) penalizes the choice of
target only for those sectors for which a path is not found. Since the map is contin-
uously updated during navigation, the value function is expanded after each update
to include any new sector discovered.

4.4.3. The Parr-Russel maze task with VST-trained HRL agent
The HRL agent, with VST-learned MOS policies, is tested in a specific maze environ-
ment (Figure 4.14), originally devised by Parr and Russell [8] as a case study for the
HAM approach. The maze is a grid of 85 squares of side, of which approximately
3600 are visitable, while the rest are either occupied or not accessible. The maze
contains several identical obstacles that create multiple bottlenecks and cause the
agent to waste actions if it enters within the “u” shape of an obstacle. The agent
is initialized in the top-left corner of the map at a random cardinal orientation. The
task is to find the goal states, which are located at the opposite side of the maze,
in the least amount of time.
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Figure 4.14: The maze devised by Parr and Russell for HAM application (adapted from [8]).

The initial map is entirely composed of unobserved squares, except for the ini-
tial sensor readings. Therefore, the agent does not have any prior information on
the maze or on where the goal states are, and must explore the maze as fast and
efficiently as possible. In order to navigate, the table T is obtained by letting the
trainee agent learn in the minigrid environment for 120000 episodes. The hier-
archical control described in Section 4.4.2 is then implemented. For the first 100
time-steps, the agent adopts the following stochastic root policy: with probability
0.79, the agent advances in the direction of its current orientation; with probability
0.13 the agent turns counterclockwise; the rest of the times it turns clockwise. This
policy is the result of a semi-empirical selection among similar candidate policies,
evaluated in a simulated goal-finding task in multiple randomly cluttered environ-
ments. Albeit suboptimal, it provides an incentive to exploration compared to a
canonical random policy.

After the 100 time-step, the root policy is modified to take into account the
presence of the updated map. With probability 0.2, the agent follows the earlier
semi-empirical policy; otherwise, a target sector is identified according to Eq. (4.10).
When a target sector is assigned, the agent turns to face the cardinal direction that
will bring it closest to the target; e.g., if the target is located at North-North East,
the agent would turn to face North. It will then advance in that direction until
either its orientation is no longer the closest to target (in which case it will adjust
its orientation and continue advancing), until it completes the path (updating value
function 𝑉 with a success, and returning to the root policy), or until it fails to reach
the target before the counter runs out (in which case it updates 𝑉 with a failure,
and again returns to the root policy for a new target). The agent continues exploring
until it comes in sensor range of any goal state, which terminates the episode.
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4.4.4. Results and conclusions for the maze task
This section discusses the results of the maze task. First of all, during exploration
the agent never collides with obstacles or walls. This descends directly from the
implementation of the trainee policy, given by T, and applied to the minigrid. Dur-
ing training, actions that lead to collisions are discarded and not included in T, and
therefore are not attempted in the maze. It is worth noticing that, while the higher
level policies of the root and of the tile MOS are “optimistic”, it is sufficient to con-
strain the lowest level policy, i.e., the “pessimistic” MOS navigating within squares,
to obtain a safe hierarchical policy.

Nonetheless, the efficacy of this method is also a result of the absence of dis-
crepancies between the trainee dynamics and the actual dynamics of the robot.
Inevitable model discrepancies, as well as sensor noise and odometry errors, must
be taken into account when interpreting these results for online exploration. How-
ever, a few considerations can be done. First, if the errors in odometry and readings
can be estimated, the map can still be used to estimate which, among all obstacle
beliefs 𝒪, most likely corresponds to the true position of the robot and to the actual
obstacle disposition. Second, if a discrepancy between the trainee model transition
and the environment is observed, the agent can modify its T table accordingly, and
possibly return the discrepancy to the trainee agent for corrective learning. Finally,
even assuming the presence of discrepancies, following the trainee policy is in all
likelihood safer than blind search, since the trainee avoids those actions that are
certainly unsafe in both the virtual environment and the real one (e.g., moving into
a wall).

Other than increasing the safety of exploration, the use of the map-based policy
allows the agent to explore efficiently. Figure 4.15 shows the amount of steps to
goal and the number of observed squares for 30 sample episodes of the algorithm.
Each curve represents a different episode and terminates with a square. The num-
ber of primitive actions to goal has a mean value of 1917 (indicated by a vertical
line), but it varies from a few hundreds to more than five thousands. This is co-
herent with the experimental setup, since the agent does not know the location
of the goal, but only tries to maximize its exploration. Therefore, when the agent
explores in the goal direction by chance, the goal states can be found in as little as
620 timesteps. Conversely, if the agent explores away from the goal, completion
time can increase by several times.

To provide a reference, the algorithm is compared with two different hierarchical
approaches to the same problem: the original HAMs of Parr and Russel [8], and the
results of Zhou et al. [119]. Parr and Russel define a-priori a hierarchy of machines,
each representing a constraint on the space of possible policies, connected through
call, stop and choice states. The agent considered by Parr and Russel has a
different set of sensors: four short range “sonars” which detect obstacles in the
adjacent square, and a long range, high-directed sensor that can spot obstacles far
away. Another difference is that Parr and Russel’s agent does not perform mapping.
Under these conditions, the HAMQ-learning achieves an ideal performance after
270000 iterations.

In the work of Zhou et al., a flat Q-learning algorithm is compared to a hierar-
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Figure 4.15: The amount of exploration performed by the agent in the Parr-Russel maze with the frontier
approach. Each line represents one of different episodes, terminating with a square. The vertical line
represents the mean number of primitive actions to goal. The dashed line indicates the mean exploration
rate.

chical Q-Learning algorithm, using the same agent described in Section 4.4.2. The
higher level of hierarchy of this algorithm uses sensor readings to estimate the cur-
rent position of the agent with respect to an internal map, which is updated during
and after each episode. This constitutes a belief macro state, upon which a direction
command (e.g., North) is sent to the lower level controller, which navigates avoid-
ing obstacles. The initial performance of Q-learning and Hierarchical Q-learning is
approximately the same, with primitive actions in the order of 10 to find the goal,
which reduces drastically to around 5000 primitives for the hierarchical algorithm
after 30 episodes.

A direct comparison between the proposed algorithm and the two discussed
above should be avoided, due to the intrinsic differences between the three ap-
proaches in terms of goals and learning process. Nonetheless, it should be noted
that the proposed algorithm is able to achieve a comparable level of performance
during its first episode, without prior information on the specific environment, but
including off-line training. This proves the effectiveness of implementing VST and
state abstraction to obtain safety as well as an improved initial performance with
respect to canonical exploratory policies.

In the first 1000 time-steps of Figure 4.15, the exploration rate is very consistent,
with a mean of approximately two new observed squares per time-step. In order
to appreciate the result, consider that the maximum number of new squares per
time-step allowed by the sensor reading is of seven when advancing, and of three
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Figure 4.16: The amount of exploration performed by the agent in the Parr-Russel maze with the semi-
empirical policy.

when turning, in the event of completely unobstructed, unobserved surroundings.
Afterwards, a reduction in exploration can be observed, for which there are two
explanations. First, the agent often needs to relocate to another position of the map
in order to continue the exploration, navigating through already explored areas of
the maze as it does so. Second, the agent often attempts to explore the unobserved
states on the other side of walls, treating them as obstacles. These attempts are
eventually abandoned by implementing the value function; however they cause the
agent to spend actions that do not contribute to the exploration. These explain the
peculiar shape of the curves, in which steep rates of exploration are separated by
period with little or no new observations. Even when accounting for these effects,
the mean rate of exploration is 1.68 new squares per time-step (indicated by the
dashed line).

In order to evaluate the exploratory strategy adopted by the agent, Figure 4.16
shows the exploration rate when, instead of adopting the frontier approach, the
initial stochastic, semi-empirical root policy is adopted for the entire duration of the
task. Once again 30 different episodes are presented. It can be seen that the mean
amount of steps to completion is significantly higher, approximately 6400 steps, and
that the mean amount of new squares per time-step is also lower, equal to 0.62.

Finally, Figure 4.17a shows the final map and the trajectory of the agent after a
typical episode. The agent starts with 100 primitive actions suggested by the semi-
empirical stochastic root policy. As a result to this, the first “room” between the
starting position and the first bottleneck is only partially explored. Conversely, all
remaining areas through which the agent successively navigates are almost com-
pletely explored, see Figure 4.17b. The agent’s trajectory covers most of the open
areas, only occasionally repeating its steps. As an exception, the agent spends
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Figure 4.17: The final map (a) of the agent after one sample episode. The agent starts at an extremity
of the map, in the top-left corner, and follows the trajectory until it finds the goals. If the map is
compared to the entire maze (b) it can be seen that the agent explores efficiently its surroundings
during navigation.

a few timesteps in the proximity of the wall at the bottom-left of the maze. As
mentioned, this is due to the agent trying to access the area behind the wall itself,
which causes a small delay in exploration. Thus, the proposed algorithm, designed
to explore safely, also prevents the inefficiencies that RL and HRL tend to exhibit in
the initial phase of learning.

It is worth mentioning that the previous results concern independent episodes,
so that during each run, the agent creates a new map and a completely new value
function 𝑉. However, if the agent does have a previously generated map, it can use
this information to reach the goal in a lower amount of iterations. A value function
𝑉 ∶ Σ → ℝ is learned off-line based on the map, as available at the end of the
exploration. A flat RL agent is positioned at the start of an episode in the sector 𝜎
of the map containing the initial position of the robot. The flat agent is then allowed
to move directly from one sector to any of the four adjacent ones, as if they were
empty adjacent squares, but is not allowed to move into an unexplored sector of
the map. Apart from this limitation, the agent follows a random policy, receiving a
reward of −1 per move, until it reaches the goal sector, i.e., the one containing the
goal, upon which a reward of 100 is issued, and the episode terminates. The value
of sectors is updated as usual with the exception of the goal sector, whose value is
set as 100.

After a given number of episodes, the value 𝑉 is finalized and can be exploited.
Different implementations can be devised. One logical choice consists of using the
VST policy once more, so that each cell of the macrogrid corresponds to a sector.
Among the sectors corresponding to possible goal cells (Figure 4.18), the one with
the highest value is selected as an intermediate sector to the goal. A macrogrid



4.5. VST with non-exhaustive beliefs and uncertain dynamics

4

93

Figure 4.18: From the currently occupied sec-
tor (marked with a cross), the agent selects
the intermediate sector to goal among those
corresponding to the goal cells of a macrogrid
(shaded).

Time: 374

Figure 4.19: A sample follow-up episode with
the algorithm. Using the previously gained
map and the location of the goal, this can be
reached with less than primitive actions.

is positioned as to include the current sector and the intermediate one, as a goal
cell. The policy of T is then used to issue a direction to goal to the MOS, effectively
replacing the root policy. Figure 4.19 shows a follow-up episode, with the value
𝑉 derived from a previous map. In this case, less than 400 primitive actions are
needed to reach the goal again from the starting position of the robot. Therefore,
this HRL implementation not only results in safe and efficient exploration, but can
also use previous knowledge to further improve its policy.

In conclusion, the application of VST and abstraction to design an HRL agent
with a constrained, feudal MOS policy results in safe and efficient exploration of
the unknown but discrete maze environment. Furthermore, this policy has an ini-
tial performance that, albeit suboptimal, is not affected by the conventional “blind
search” phase, compares satisfactorily with similar HRL implementations, and can
reuse previous knowledge of the environment to accelerate the completion of the
task.

4.5. VST with non-exhaustive beliefs and uncer-
tain dynamics

The maze navigation of Section 4.4 illustrated how to implement SHRL, state ab-
straction and VST in a discrete environment. Even though the method could serve
as a basis for an actual robotic application, the discrete maze setting is more rem-
iniscent of a classic RL gridworld [71] than of a real-life UAV environment. Sec-
tion 4.5 presents a more realistic application of VST to a problem with a continuous
environment. In particular, a flight task is simulated where an MAV flies in an en-
vironment containing obstacles whose shape, disposition and number is unknown.
Additionally, the only dynamics available are those of an uncertain bounding model.
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Figure 4.20: Shape of elementary obstacles.
Figure 4.21: Example of a room environment for the
task.

This task represents therefore a harder challenge for the application of VST with
respect to the case of Section 4.4.

4.5.1. Task and MAV dynamics description
Task description
Similarly to the maze task, the MAV task consists of finding an unknown goal position
within an indoor environment containing obstacles. However, the environment of
this task differs from the Parr-Russel maze in that there is no predefined and discrete
grid of locations. Instead, every episode of the task is performed in a different room
environment. All rooms are approximately 20m by 20m in size and are delimited
by walls, but differ in that they contain different, complex obstacles. These are
obtained by sparsely and randomly positioning 30 elementary obstacles with the
shape of Figure 4.20. Elementary obstacles are flipped and rotated, so that they
overlap into formations as shown in Figure 4.21. Each room also contains one
randomly placed goal in an unknown but empty position.

A collision occurs whenever the MAV, which for simplicity is considered a 2D
point-mass, occupies the same position of an obstacle or a wall, which in this task
stands for a fatal occurrence. As in the maze task, the agent has sensors that can
localize nearby obstacles, which are used to prevent collisions; however, due to
constraints in terms of acceleration and turning rate of the MAV, this task’s environ-
ment contains LTF states, which were not present in the maze task. Each episode
then lasts until either a collision occurs, or until the agent is within 1m from the
goal.

MAV description
The bounding model of the MAV dynamics with state (𝑥 , 𝑥 , 𝜒, 𝑉) is
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�̇� ∈ �̂�𝑉 sin(𝜒) ; �̇� ∈ �̂�𝑉 cos(𝜒) ; �̇� ∈ �̂� ⋅ 𝑢 ;

�̇� ∈ {
max(0, �̂� ⋅ 𝑢 ) if 𝑉 = 𝑉
�̂� ⋅ 𝑢 if𝑉 ∈ (𝑉 , 𝑉)

min(0, �̂� ⋅ 𝑢 ) if 𝑉 = 𝑉,

(4.13)

where (𝑥 , 𝑥 ) is the absolute position of the MAV, 𝜒 is the heading, and 𝑉 is the
speed, which is comprised between 𝑉 = 0.1 and 𝑉 = 0.3 . The MAV actuation
allows a maximum yaw rate of 30 ∘ , and a maximum acceleration or deceleration
of ±0.3 .

The parameters �̂� = [0.9 , 1.1], �̂� = [17 ∘ , 30 ∘ ], �̂� = [0.1 , 0.3 ] are intervals,
so Eq. (4.13) is effectively a distribution of models. Each combination 𝜂 ∈ �̂�, 𝑞 ∈ �̂�
and 𝑎 ∈ �̂� is a realization of the bounding model.

Sensors onboard individuate obstacles at a distance of 1.5m and at an angle
comprised between −100∘ and 100∘ of the current orientation.

4.5.2. SHRL agent design for the MAV task
As Figure 4.22 shows, the SHRL agent for this task consists of two MOS: a su-
permanager (SupM) and a submanager (SubM). SupM is tasked with assigning a
temporary destination to SubM, among the unvisited portion of the room, while
SubM must bring the MAV closer to the destination, as well as avoid collisions.

The main motivation to separate the two managers is to constrain the overall
policy towards safety of exploration. This is done by applying VST to SubM, the
lowest-level MOS. This constrains the set of discoverable policies, similarly to what
presented in Section 4.4 for the maze task agent.

Additionally, this separation is motivated by the difference between the two
constituents of the environment: the room and the MAV itself. The objective of
SubM is to fly the MAV away from obstacles and towards a target heading: the
knowledge of the approximate dynamics of the MAV can be used to enforce this.
Conversely, SupM’s objective is unrelated to the disposition of the obstacles, as
it only concerns the position of the goal. Furthermore, while the policy of SubM
is constrained in order to achieve safety via SHRL, the policy of SupM is not, to
guarantee that the goal is eventually found.

SupM is a MOS with the objective of finding the position of the goal. The ini-
tialization condition of SupM is simply 𝐼 = 𝒮 (since SupM is the root). The policy
𝜋 is defined by a value function similar to the one applied in Section 4.4.2 for
the exploration strategy. The room is partitioned into a grid of 2m𝑥2m squares.
The value function 𝑉 ∶ grid → ℝ is initialized optimistically and used to assign
to SubM a square of grid as the direction to goal. The MOS terminates if either the
square indicated by 𝑉 is reached, or if a counter indicates that a set amount
of primitives has been executed. After termination, reward is assigned to update
𝑉 , as detailed in Section 4.5.4.
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Figure 4.22: The two level managerial architecture of the agent. SupM assigns the heading to SubM,
which in turn control the MAV with the aid of sensor information. The color association indicates the
focuses of the two managers: the room (i.e., the goal) for SupM, the MAV flight for SubM.

The MOS SubM is initialized exclusively when called by SupM. The policy 𝜋
has two additional inputs other than the state 𝑥𝑥𝑥 (Figure 4.22), i.e., the heading from
SupM and the “immediate” sensor reading at the time-step 𝑘 when the MOS is
initiated. These two elements constitute the belief of SubM. Then, SubM terminates
upon collision or when the MAV exits the portion of room that at time-step 𝑘 was
in range of the sensors.

4.5.3. VST for the MAV task
This section illustrates how VST is applied to the MAV task, including the necessary
assumptions.

State projection
The MOS policy 𝜋 = 𝜋 is learned during VST in order to minimize the risk of
collision. As a first step to apply VST, the state is projected according to a function
𝜇 ∶ 𝒮 → 𝒫 × 𝒫 in the form

𝜌 =‖ (𝑥 − 𝑥 | , 𝑥 − 𝑥 | ) ‖;

𝜃 = arctan (𝑥 − 𝑥 |
𝑥 − 𝑥 | ) − 𝜒| ;

𝜓 =𝜒 − 𝜒| − 𝜃,

(4.14)

with 𝑝𝑝𝑝 = (𝜌 , 𝜃 , 𝜓 , 𝑉) and 𝑝𝑝𝑝 = (𝑥 | , 𝑥 | , 𝜒| ). Terms 𝜌 and 𝜃 describe the
relative position of the MAV in cylindrical coordinates with respect to the reference
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(𝑥 | , 𝑥 | )
𝜌

𝜒|

𝜃

𝜓
𝑉

Figure 4.23: The change between the abso-
lute reference system ( , , ) of SupM and
the relative reference system ( , , ) of SubM
depends on the absolute position and orienta-
tion ( | , | , | ) at the time of subtask
assignment. Speed is the same in the two
systems.

goal
Figure 4.24: The sensory range is split into sec-
tors 1 to 5. In this example, sectors 1, 4 and
5 are blocked as they contain at least one ob-
stacle, and sector 2 is the target sector.

𝑥 | , 𝑥 | ; 𝜓 indicates the heading. Figure 4.23 shows this projection. It is important
to notice that the projected state 𝑝𝑝𝑝 is relative to and independent of 𝑝𝑝𝑝 .

Agent belief through sector state abstraction
The projected fatal states are all those tuples (𝜌 , 𝜃) for which a collision occurs,
given the obstacle disposition. In order to perform VST, a belief set of these obsta-
cles, as well as of the direction to goal, must be defined. Contrarily to the minigrid
environment of Section 4.4.2, it is infeasible to exhaust all possible dispositions of
obstacles within the sensor range, due to the continuity of the environment, and
due to the variability in shape of the obstacles. It is therefore not possible to obtain
an exhaustive belief set as in the maze environment.

However, a belief set ℬ which approximates the room environment is obtained
by abstracting the sensing range into sectors, as shown in Figure 4.24. Sectors are
numbered from one to five and are 40∘ wide. If the sensors detect an obstacle inside
a sector, then the sector is said to be blocked, otherwise it is empty. Additionally,
sectors convey the direction to goal assigned by SupM: the sector containing or
nearest to the assigned direction of flight is the target one. This target sector is
also part of the belief. The use of sectors as representatives of fatal states is a
rough abstraction of the presence of obstacles. However, reducing the complex
sensor range to a sector representation has the benefit of limiting the elements of
ℬ to a manageable amount. The goal of the policy 𝜋 , to be learned with VST, is
to avoid blocked sectors and to reach the target sector, if this can be done safely.

Virtual Safety Training
From the uncertain model of Eq. (4.13), a “projected model” �̂� is derived:



4

98 4. Hierarchical methods

Figure 4.25: The virtual environment (right) is composed by three sectors equivalent to those over which
policy is defined. Sectors that contain an obstacle are blocked, sectors containing the direction
of flying are target sectors. Restricting the virtual environment to only three sectors allows to reduce
the amount of possible subtasks, of which the figure on the left is only an example, to a only 24 cases.

�̇� ∈ �̂� 𝑉𝜌 sin𝜓 ; �̇� ∈ �̂�𝑉 cos𝜓 ; �̇� = {
max(0, �̂� ⋅ 𝑢 − �̇�) if 𝜓 = 𝜓
�̂� ⋅ 𝑢 − �̇� if𝜓 ∈ (𝜓 , 𝜓)

min(0, �̂� ⋅ 𝑢 − �̇�) if 𝜓 = 𝜓
;

�̇� = {
max(0, �̂� ⋅ 𝑢 ) if 𝑉 = 𝑉
�̂� ⋅ 𝑢 if𝑉 ∈ (𝑉 , 𝑉)

min(0, �̂� ⋅ 𝑢 ) if 𝑉 = 𝑉.

(4.15)

Notice that an additional state constraint 𝜓 ∈ [𝜓 , 𝜓] = [−90∘ , 90∘] is imposed.
This constraint on 𝜓 prevents the MAV from flying in circles indefinitely and forces
it to eventually exit the virtual environment.

In order to further reduce the learning space of 𝜋 , the virtual environment
is limited to only three sectors, corresponding to 3, 4 and 5 of Figure 4.24. The
motivation for this is that the model of Eq. (4.15), as well as the placement of the
sectors, are symmetrical with respect to the axis 𝜃 = 0. Therefore, a policy 𝜋
for the right side of the sensor range (sectors 3, 4 and 5) can also be applied to
the left side (sectors 1, 2 and 3) by inverting the yaw rate control 𝑢 . However, a
consequence of this is that the agent must be provided a criterion to choose which
of the two sides to fly in. With this choice in effect, the virtual environment is then
delimited by

𝜃 ∈ [𝜃 , 𝜃] = [−20∘ , 100∘], 𝜌 ∈ [𝜌 , 𝜌] = [0.1 , 1.5].

As a second simplification, the policy actions are reduced to 𝑢 , 𝑢 ∈ {−1; 0; 1}.
The belief set is then a combination (obs , obs , obs , goal) ∈ ℬ where obs is

true if the corresponding sector is blocked and false otherwise, and goal ∈ {3, 4, 5}
identifies the target sector. An example of the room environment and relative belief
is shown in Figure 4.25. The lower number of sectors allows to reduce the number
of elements in ℬ sectors from 5 ⋅ 2 = 160 to 3 ⋅ 2 = 24. Summarizing, the VST
policy is defined as
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𝜋 ∶ 𝒫 × ℬ → 𝒜 = {−1, 0, 1} × {−1, 0, 1}. (4.16)

Algorithm 5 shows the VST procedure for 𝜋 . Three look-up tables 𝑄 , 𝑄 ,
and Vis ∶ 𝒫 ×𝒜 → ℝ are initialized, with all entries equal to zero. 𝑄 and 𝑄 are
two state-action value functions indicating respectively the value towards reaching
the target sector and the value towards avoiding obstacles. 𝒫 is a discrete state
space obtained by partitioning the components of 𝒫 into intervals: [𝜃, 𝜃] and [𝜌, 𝜌]
are partitioned into nine intervals, [𝜓 , 𝜓] in seven interval, and [𝑉 , 𝑉] into four, for
a total of 54432 aggregated states. The table Vis is used to store the amount of
times that an aggregated state-action pair is visited during learning.

Since the model of Eq. (4.15) is not “crisp”, it cannot be directly utilized to
simulate trajectories; instead, a realization 𝜂, 𝑞, 𝑎 is randomly assigned from the
distributions of Eq. (4.15) at the start of each episode. Thus, the VST will yield the
policy 𝜋 that is optimal on average. Also, due to the episodic nature of learning,
a Monte Carlo method [4] is applied.

At the start of each “virtual” episode, the state of the environment and the belief
of the agent are drawn randomly from the candidate set

[−10∘ , 10∘] × [𝜌 , 𝜌 + 0.1m] × [−10∘ , 10∘] × [𝑉 , 𝑉] × ℬ, (4.17)

and the episode stops when the MAV leaves the environment, i.e., 𝜃 ∉ [𝜃 , 𝜃] or
𝜌 ∉ [𝜌 , 𝜌]. Note that due to the constraints on 𝜓, all simulations will be of finite
duration.

During VST, an 𝜖-greedy exploratory policy is applied, with 𝜖 = 0.8; for this
purpose, greediness is defined with respect to the state-action value function 𝑄 .
The first time an aggregated state-action pair is visited during an episode, it is
appended to a temporary list. Reward is then assigned to all the elements of
list depending on the termination condition. If the MAV exits through the arc
(𝜌 > 𝜌) of a blocked sector, tuples are assigned a penalty 𝑟 = −1 counting towards
the value function 𝑄 and a zero reward 𝑟 = 0 valid for 𝑄 . The penalty 𝑟 = −1 is
assigned even if the blocked sector is also the target sector. Instead, if the MAV exits
through the target sector, and this is not blocked, rewards 𝑟 = 10 and 𝑟 = 0 are
assigned. If the sector is neither blocked nor the target, zero rewards are assigned.
If 𝜃 ∉ [𝜃 ; 𝜃], 𝑟 = 0 and a penalty 𝑟 = −𝑛 are assigned, where 𝑛 is the number
of times-steps since the start of the episode. At the end of each simulation, the
value of all tuples in list is averaged based on the current total visits:

𝑄∗(list) =
𝑄∗ ⋅ (Vis(list) − 1) + 𝑟∗

Vis(list) . (4.18)

where 𝑄∗ stands for 𝑄 or 𝑄 with corresponding reward 𝑟 or 𝑟 . The temporary
list is then depleted, and a new episode is performed as described above.

VST must result in a policy that is safe. A state-action tuple that has led to a
collision should be avoided, if possible. This is reflected in the way that 𝑄 and 𝑄
are weighted to form a single state-action value function
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𝑄 = 𝑄 + 𝜔 ⋅ 𝑄 , (4.19)

where 𝜔 ≫ max(𝑄 ). Then, 𝜋 is chosen as the greedy policy with respect
to 𝑄. This choice optimizes performance for state-actions that are provably safe
(𝑄 (𝑝𝑝𝑝 ) = 0) and safety for state-actions that are potentially unsafe (𝑄 (𝑝𝑝𝑝 ) ≠ 0) .
In practical terms, adopting 𝜔 = 10 suffices for this application.

Algorithm 5 VST with Monte Carlo simulations

1: Initialize
2: 𝑄 ,𝑄 ← empty
3: Vis ← empty
4: while training do
5: 𝑝𝑝𝑝, belief, {𝑞, 𝑎, 𝜂} randomly initialized
6: list ← { }
7: while 𝑝𝑝𝑝 ∈ 𝒫 do
8: 𝑢 , 𝑢 ← 𝜖-greedy(𝑄 )
9: Vis(𝑝𝑝𝑝 , 𝑢 , 𝑢 ) ← Vis(𝑝𝑝𝑝 , 𝑢 , 𝑢 ) + 1
10: list ← list ∩ {𝑝𝑝𝑝 , 𝑢 , 𝑢 }
11: 𝑝𝑝𝑝 ← 𝑝𝑝𝑝 + Δ𝑝𝑝𝑝 (𝑝𝑝𝑝 , 𝑢 , 𝑢 )
12: 𝑟∗ ← reward
13: 𝑄∗(list) = ∗⋅(Vis(list) ) ∗

Vis(list)

Preliminary results of VST policy implementation
A total of 60000 virtual learning trials are performed requiring around 40 minutes
of computation2. The virtual policy 𝜋 is then utilized as the submanager policy
𝜋 . The value function 𝑉 is initialized as zeros, so that its policy is initially
random.

The combined SHRL agent is tested for several episodes with multiple instances
of the room environment. At the start of each episode, the MAV is placed inside the
room in a random empty position, with random speed 𝑉 ∈ [𝑉 , 𝑉]. A goal square
and a realization 𝜂, 𝑞, 𝑎 are also randomly assigned. If the target heading assigned
by SupM is within sectors 3, 4 or 5, then SubM flies the MAV in the right side of the
sensor range; otherwise, in the left side. When SubM terminates, it is initialized
again with an updated belief, unless SupM also terminates. In this case, first SupM
assigns a new heading, and then SubM receives the new belief.

Results of the test are as follows. First, the controller consistently avoids isolated
obstacles: as soon as one is detected, the MAV manages to modify its route in order
to avoid a collision. However, when navigating inside a more cluttered area, it can
happen that SubM terminates in close proximity a previously undetected obstacle.
The MAV is then likely to collide during the following execution of SubM. This is not

2on an Intel Core i5-3360M CPU, 2.80GHz
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surprising since 𝜋 does not discriminate between “near” and “far” obstacles, but
acts only according to its sector belief.

A second observation is that selecting which side to navigate based exclusively
on the location of the target is detrimental to both safety and performance. If
between the MAV and the target square there are numerous obstacles, it is not
only unsafe to navigate in that direction, but also inefficient, since 𝜋 repeatedly
performs evasive maneuvers. Deviating from the target flight direction would then
be beneficial, and would allow the agent to discover an easier path to the target
square.

As a final remark, the policy 𝜋 is found to almost exclusively select 𝑢 ∈
{−1, 0}, i.e., to either brake or maintain flight speed 𝑉. This is also to be expected
as, with the dynamics of Eq. (4.15), flying at a lower speed is generally safer as it
allows the MAV more time-steps to turn away from blocked sectors.

Two modifications are adopted based on the previous remarks. First, the ter-
mination condition of SubM is modified to include changes in belief. At each time-
step 𝑘, a new sensory information is acquired, as the MAV moves, and a new
obstacle belief b (𝑘) = {obs1(𝑘), obs2(𝑘), obs3(𝑘)} can be obtained. If for any
𝑘, b (𝑘) ≠ b (𝑘 − 1), then SubM is terminated. As can be seen from Fig-
ure 4.26, this allows the policy to react to newly observed obstacles; additionally,
it reduces the amount of unnecessary deviations resulting from obstacles that are
only marginally in range and can be avoided in a few time-steps.

As a second modification, the side of flight selected is changed to the one which
contains the least amount of blocked sectors, regardless of whether it contains
the target sector or not. In the event that the number of blocked sectors is the
same in the two sides, the one which contains the target sector is selected. It
can be argued that this is in line with the “safety first” concept of this managerial
architecture. Figure 4.26 presents an example of policy implementation. Whenever
the selected side does not contain the target sector, the middle sector of that side
(i.e., sectors 2 or 4 of Figure 4.24), is appointed as a temporary target sector for
the application of the policy.

The reward during training is altered to reflect this change in strategy. If 𝜃 > 𝜃,
a penalty 𝑟 = −𝑛 is assigned as before; however, if the termination condition is
𝜃 < 𝜃, the reward assigned is 𝑟 = −1. This alteration is introduced to penalize the
MAV if it flies into the discarded side of flight, which is likely to have more blocked
sectors, and thus to contain more obstacles.

An additional termination conditions is added as 𝜌 ≥ (𝜌 + 𝜌)/2; as a result,
SubM is called and reinitialized more often than in the test implementation. This
is done to reduce the amount of deviation of the MAV heading from the direction
to goal, as indicated by SupM, whenever the sectors of the side of flight does not
contain the target sector. Policy 𝜋 is learned a second time in VST, with this
new reward function. Section 4.5.4 shows the result of this second implementation
of the SHRL agent in the MAV task.

Figure 4.27 shows an example of policy implementation with the previous mod-
ifications. The asterisk at the bottom left of the figures represents the temporary
target square selected by SupM. In Figure 4.27a, the MAV (whose position is rep-
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(a) (b)

Figure 4.26: An example of policy implementation and termination condition. In (a), SubM flies the
MAV in the right side, as no obstacle is perceived: obs1 obs2 , obs3 . In (b), however, an
obstacle is detected, so that obs2 . SubM terminates, and is initialized again by SupM. Now the
MOS selects the left side, as it is free of obstacles.

resented by dots) has initially no obstacle in sensor range (delimited by the two
symmetrical lines at the side of the dot). The direction to goal is in the right side
of the range, but since an obstacle is detected, SubM flies the MAV in the left side
until the initial position of Figure 4.27b is reached, upon which SubM terminates.
Then, it selects the right side sectors as they are the nearest ones to the goal, and
successfully flies between the two obstacles.

4.5.4. Results of the MAV task
This section presents the behavior of the MAV SHRL agent during 100 episodes.
At the start of the first episode, the MOS SubM is initialized with 𝜋 = 𝜋 , and
with the initialization and termination conditions detailed in the previous section.
Conversely, the value function 𝑉 of SupM is initialized as zeros and updated
online during the execution of the task.

The results shown are relative to the room environment of Figure 4.28, and
an MAV model realization with 𝜂 = 1.09, 𝑞 = 29.04, 𝑎 = 0.203, but the results
generalize to all observed combinations of rooms and model realizations. Posi-
tion, orientation and speed of the MAV are initialized randomly at the start of each
episode, which terminates when the MAV is within 1m of the goal, or if a collision
occurs. The target is positioned greedily according to SupM’s value function.

The reward assigned to update 𝑉 is as follows. If the primitive actions’
counter, which starts at 500, runs out before the target square is reached, 𝑟 =
−2 is given, otherwise it is 𝑟 = −1. Also, when an episode ends, it is 𝑟 = 10 if
the goal is found or 𝑟 = −5 if a collision occurs. The following learning parameter
are arbitrarily adopted: rate 𝛼 = 0.4, discount 𝛾 = 0.8, and eligibility decay 𝜆 = 0.75.

Figure 4.28 presents the room environment, with the star indicating the goal,
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Figure 4.27: An example of obstacle avoidance inside the room environment. The dots represent MAV
positions at which sector selection is performed. SupM assigns the target square indicated by the
asterisk. In (a), SubM deviates from the heading assigned from SupM as it contains obstacles; after
these have been avoided (b), SubM terminates and is immediately re-executed by SupM with the same
goal. This time, SubM selects the right side of the range, thus flying nearer to the target.

and the 100 learning trajectories generated during the episodes. It can be seen that
𝜋 promotes safety, privileging portions of the room that are free of obstacles.
In particular, although several paths are available to reach the goal from any point,
most of them are rarely if ever taken since they are too narrow for the policy. This
happens regardless of the SupM positioning of the target square, exemplifying the
inherent robustness of the SHRL approach.

The agent manages to reach the goal in 52 out of the 100 episodes. In terms
of number of collisions per time-step, Figure 4.29 shows the ratio of collisions to
actions. It can be seen that collisions are in the order of one every 2000 steps,
equivalent to 400s. It can be seen that the collision rate does not decrease with
the episodes, as the SubM MOS is already defined at the start of the task. The
VST policy 𝜋 is therefore unable to prevent all collisions. However, trajectories are
shown to avoid densely cluttered areas of the room, as well as individual obstacles,
which can be considered a cautious behavior.

SupM is able to learn the position of the goal. This can be seen not only in
the trajectories of Figure 4.28, which tend to coil into a “ring” around the three
obstacles at the right of the goal, but also in the value function 𝑉 , that shows
higher value for the entries corresponding to the goal and to the nearby “ring”
location. Figure 4.30 shows four additional trajectories, obtained after the 100
learning episode. Each figure shows two trajectories, with the position of the MAV
indicated with triangles in one trajectory, and with dots in the other. From four
different initial states, and with four different model realizations, the MAV is directed
towards the learned goal position by SupM. Multiple deviations are necessary to
avoid the obstacles until a breach in the obstacles is found. Since the goal is in
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Figure 4.28: The trajectories of the 100 training
episodes of the SHRL algorithm. The circle around
the goal (represented by a star) indicates the dis-
tance that the MAV must reach to complete the task.
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Figure 4.29: The amount of collisions per
steps for the SHRL algorithm.

between obstacles, the MAV needs to turn before it can reach its target. It can
be seen that the SHRL agent generates consistent, risk-avoiding and goal-finding
trajectories, even with the aforementioned differences in initial state and model
realizations.

Result validation with flat RL agent
In this section, the results are compared to those of a flat RL agent. With respect
to the SHRL agent, the flat one is allowed to learn entirely with the actual room
environment and model realization. All episodes are performed with the obstacle
disposition shown in Figure 4.28. The same learning parameters of 𝛼, 𝛾 and 𝜆
are employed. Each episode terminates if the goal is reached. In the event of a
collision, the MAV is randomly repositioned in the room, and the episode continues.
During learning, a reward of 100 is assigned when finding the goal, and of −5 when
hitting an obstacle.

The learning space of the action-value function 𝑄 is the combination of the
original, non-projected state 𝑥𝑥𝑥 with the addition of the MAV sensor reading. In order
to accelerate and simplify learning, the learning space is reduced to a minimum.
First, speed 𝑉 is removed from the learning space on the basis that, as the SHRL
agent test demonstrated, the safest action consists in braking towards 𝑉, regardless
of the speed.

Second, 𝑥 and 𝑥 are partitioned into 20 equally wide intervals, and 𝜒 is par-
titioned into 8 intervals, each 45∘ wide, and aligned with the cardinal directions
North, North-East, and so on. The presence of obstacles in the environment is
abstracted through the 5 sectors of Figure 4.24. Sensor readings obs are then
included in the learning space of 𝑄 , for a total of 102400 states.

Third, for the first 1000 episodes, the agent learns a “reduced” action-value
function
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Figure 4.30: Four sample trajectories as generated by the SHRL agent after learning. In all trajectories,
the controller avoids obstacles, until he manages to get in between two of the obstacles. The MAV flies
then towards the bottom of the room in order to invert direction of flight.

𝑄 (𝑥 , 𝑥 , 𝜒, 𝑢 , 𝑢 ),

which is initialized as zeros and which does not depend on the sensors readings obs .
This reduces the number of discrete states to 3200, which accelerates learning.
This choice is validated by the fact that, since the obstacle disposition is fixed, the
sensors readings are in principle only functions of the absolute position and of the
heading. During learning, actions are selected 𝜖-greedily, with 𝜖 = 0.2.

After the 1000 episode, the values of 𝑄 are used to initialize the “expanded”
action-value function

𝑄 (𝑥 , 𝑥 , 𝜒, obs , 𝑢 , 𝑢 ),

which also depends on sensor readings. The reason to include obs in the learning
space is that, while two readings are the same for the same continuous absolute
position and heading, this is not true once the state is discretized. A total of 1250
additional learning episodes are performed for 𝑄 .

As a final measure towards accelerating learning, as proposed by Santamaria
and Sutton [120], a third action-value function

𝑄 (obs , 𝑢 , 𝑢 ),

is added to 𝑄 . 𝑄 is learned in the same way as the previous functions, except
that only the collision reward of −5 is assigned for learning. The reason to include
this second value function (initially zero) is to learn which actions are dangerous
from sensor information, e.g., turning towards obstacles. This knowledge is then
generalized over the whole learning space. Therefore, between the 1000 and the
2250 episode, the flat agent learns a combined policy 𝑄 = 𝑄 + 𝑄 ; an
𝜖−greedy policy, 𝜖 = 0.2, is followed with respect to 𝑄 .
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Figure 4.31: The trajectories of episodes after
learning of the flat RL algorithm. The circle around
the goal (represented by a star) indicates the dis-
tance that the MAV must reach to complete the task.
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Figure 4.32: The amount of collisions per
steps during 100 episodes for the flat RL
algorithm after learning.

Figure 4.31 shows 100 trajectories of the flat agent, performed after the 2250
learning episode, with a greedy policy with respect to 𝑄 . The room environment
and the model realization are the same as those of Figure 4.28 and Figure 4.29. With
respect to Figure 4.28, the agent performs shorter trajectories, heading directly
for the goal. This is not surprising, since the flat agent is already trained in that
same room environment. However, several collisions can be individuated in the
trajectories: out of 100 trajectories, only 13 reach the goal. The average number
of collisions per time-step is equal to 1.28 ⋅ 10 , which is sensibly higher than its
SHRL equivalent.

The higher number of collisions caused by the flat controller has two explana-
tions. First of all, the use of a tabular Q-function 𝑄 , whose refinement might not
be sufficient for such a task. While the use of a function approximator might reduce
this problem and make the function more efficient, it should be observed that the
discretization of 𝑄 is still more refined than that of 𝒫 adopted to learn 𝜋 ,
and than that of 𝑥 , 𝑥 adopted to learn 𝜋 . Furthermore, it can be seen from
Figure 4.31 that the MAV collides often with the obstacles surrounding the goal.
This can be interpreted as a proof that the conflict between 𝑄 , which learns to
direct the MAV towards the goal, and 𝑄 , which tends to avoid obstacles, is not
correctly addressed with the proposed flat implementation. Conversely, the SHRL
agent, due to its hierarchical structure, prevents this conflict by enforcing safety on
the MOS SubM.

Summarizing, the VST policy 𝜋 is not able to entirely avoid obstacles, as it is the
case in Section 4.4, due to the limitations in terms of belief set, and to the inaccura-
cies between the models used during training. However, the obtained trajectories
show that the agent adopts a cautious behavior, avoiding the most cluttered areas
of the room, and is ultimately able to discover the position of the goal within the
unknown, continuous environment. Furthermore, a flat RL agent, allowed to learn
for an extensive number of episodes within the “real-world” environment, and in-
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cluding the actual model realization, is evaluated in the same task and is found to
have a rate of collisions per step that is considerably higher than the VST-trained
SHRL agent.

4.6. Conclusions
This chapter focuses on the use of Hierarchical Reinforcement Learning (HRL) to
increase safety of exploration with respect to flat RL. The concept of temporally
extended actions (TEAs) is discussed, together with a brief description of the most
common formalisms of HRL in the literature: Hierarchy of Abstract Machines (HAM),
options, and MAXQ. After briefly discussing the basic properties of HRL, their appli-
cation to safe exploration is formalized as a new branch denominated Safe Hierar-
chical Reinforcement Learning (SHRL).

Afterward, the use of HRL methods for safety is exemplified by one specific
approach, i.e., Virtual Safety Training (VST). The state is projected through a pro-
jection function, and a hierarchical architecture is adopted using this projection to
learn the policy of the machine, option or subtask (MOS) that executes primitive
actions. Given certain assumptions, these policies can guarantee or increase safety
of exploration.

This approach is tested on two different scenarios. The first one is a maze
exploration task, which constitutes an example of an SRL problem with deterministic
dynamics and in a discrete environment. These simplifications result in a VST that
guarantees safety. The final SHRL policy, obtained by reiterating the low-level VST
policy on multiple levels of state abstraction, is not only safe, but it is shown to find
the goal in a lower amount of time-steps than similar algorithms.

In order to provide a more realistic example, VST is applied to an MAV task. The
MAV objective is to discover a goal position inside a 2D room environment which
contains obstacles. The position and shape of the obstacles, as well as the exact
dynamics of the MAV, are unknown. In order to accommodate these aspects, the
VST procedure includes state abstraction for the definition of the agent’s beliefs.
The results show that the VST-trained SHRL agent outperforms a more extensively
trained flat RL agent, reducing the number of collisions.

In conclusion, with respect to the other methods, such as graph pruning, the
introduction of hierarchical structures allows the designer to define agents that can
explore environments that are more uncertain and less structured. Therefore, it can
be argued that using SHRL methods is an effective way of increasing the robustness
of the agent with respect to flat RL.
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5
Safety metrics

This chapter addresses the challenges of safety and online efficiency, by
incorporating the graph representation of the bounding model dynamics of
Chapter 3 into the backup formulation of Chapter 2. It also defines two
graph-based safety metrics: the operational metric and the proximity met-
ric. These are used to assign weights to the vertices of the graph, which in
turn permits to assess the safety of the agent’s actions with a finite horizon
optimization akin to that of OptiSHERPA of Chapter 2. The two metrics are
shown to lead to varying degrees of success in preventing fatal occurrences,
depending on the complexity of the environment.
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5.1. Introduction
Chapter 2 presented OptiSHERPA, a heuristic method that optimizes a distance or
evasion metric, depending on the current state, on the known safe state space, and
on a list of previously visited states. This use of the metrics restricts the number of
admissible control sequences when searching for backups, and allows the agent to
classify actions in order of safety.

However, even though the number of admissible sequences is reduced, several
interval computations are needed in order to generate backups, which is unde-
sired for UAVs in accordance with the challenge of efficiency. This chapter shows
how a reduced computational burden for backups can be achieved by adopting
safety metrics, defined in terms of the graph representation of the environment
dynamics, which was introduced in Chapter 3 as a solution to the challenge of effi-
ciency. The metrics are tested on two applications in order to validate the metrics
in different environments.

The chapter is structured as follows. Section 5.2 summarizes the assumptions
and the procedures for the application of the safety metrics, which are illustrated in
detail in Section 5.3. The optimization algorithm is then introduced in Section 5.4
and applied to two diverse tasks in Section 5.5. Section 5.6 concludes.

5.2. Assumptions and graph generation
This section briefly provides the assumptions on the environment and on the model
necessary for using the safety metrics, as well as the procedure to generate the
graph. With respect to Chapter 3, this section considers environments with both
continuous and discrete states.

5.2.1. Assumptions
Let 𝑥𝑥𝑥 ∈ 𝒮 be the hybrid state of the environment in the form:

𝑥𝑥𝑥 = (𝑐 , … , 𝑐 , 𝑑 , … , 𝑑 ) (5.1)

with the generic continuous component 𝑐 ∈ [𝑐 , 𝑐 ] ⊂ ℝ and the discrete com-
ponents 𝑑 ∈ 𝐷 , where 𝐷 ⊂ ℝ is an ordered set. Let 𝒜 be the time-state-
independent set of available actions 𝑢 of the RL agent. The agent’s behavior is
described by policy 𝜋 ∶ 𝒮 ×𝒜 → [0, 1]. Let 𝒟 be the dynamics of the environment,
which are assumed to be a system of differential and/or difference equations as
indicated by

𝒟 ∶

⎧
⎪
⎪

⎨
⎪
⎪
⎩

�̇� = 𝒟 (𝑐 , … , 𝑐 , 𝑑 , … , 𝑑 , 𝑢)
⋮

�̇� = 𝒟 (𝑐 , … , 𝑐 , 𝑑 , … , 𝑑 , 𝑢)
Δ𝑑 = 𝒟 (𝑐 ,… , 𝑐 , 𝑑 , … , 𝑑 , 𝑢)

⋮
Δ𝑑 = 𝒟 (𝑐 , … , 𝑐 , 𝑑 , … , 𝑑 , 𝑢).

(5.2)
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As usual, the dynamics 𝒟 and the reward function ℛ ∶ 𝒮 × 𝒜 × 𝒮 → ℝ are not
explicitly known by the agent. However, it is be assumed that the agent possesses
a known bounding model of the form

�̂� ∶

⎧
⎪
⎪

⎨
⎪
⎪
⎩

�̇� ∈ �̂� (𝑐 , … , 𝑐 , 𝑑 , … , 𝑑 , 𝑢)
⋮

�̇� ∈ �̂� (𝑐 , … , 𝑐 , 𝑑 , … , 𝑑 , 𝑢)
Δ𝑑 ∈ �̂� (𝑐 , … , 𝑐 , 𝑑 , … , 𝑑 , 𝑢)

⋮
Δ𝑑 ∈ �̂� (𝑐 , … , 𝑐 , 𝑑 , … , 𝑑 , 𝑢).

(5.3)

Let FSS ⊂ 𝒮 be the unknown set of fatal states which the agent must avoid, and
let

𝑊(𝑥𝑥𝑥) = { 0 if 𝑁(𝑥𝑥𝑥) ∩ FSS = ∅1 else (5.4)

be thewarning function, where𝑁 is the set of those states 𝑥𝑥𝑥 = (𝑐 , … , 𝑐 , 𝑑 , … , 𝑑 )
which constitute a neighborhood of 𝑥𝑥𝑥 given fixed widths 𝑛 and 𝑛 :

𝑁(𝑥𝑥𝑥) = {𝑥𝑥𝑥 = (𝑐 , … , 𝑐 , 𝑑 , … , 𝑑 ) | ‖𝑐 − 𝑐 ‖ < 𝑛 , ‖𝑑 − 𝑑 ‖ < 𝑛 } , (5.5)

where ‖∗‖ is the absolute value of ∗, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. Since the FSS is
unknown, 𝑊 is not a-priori known: the agent receives the output of this function
only during exploration. Assuming that the FSS is constant with time, the agent can
thus estimate the fatal set during exploration by looking at the output of 𝑊, which
constitutes risk perception.

5.2.2. Graph generation
This subsection summarizes how to obtain a graph representation of the hybrid
dynamics of Eq. (5.3), as shown in Section 3.2.3. The state space 𝒮 is discretized
into a tiling 𝒯. The continuous components of 𝑥𝑥𝑥 are partitioned evenly as

[𝑐 , 𝑐 ] = [𝑐 , 𝑐 + Δ ] ∪ ⋯ ∪ [𝑐 − Δ , 𝑐 ]. (5.6)

This results in a continuous tiling of∏ elements. If the system includes dis-

crete components, this tiling does not yet entirely cover the state space. One copy
of the continuous tiling is generated for each combination of discrete components.
Therefore, the complete tiling 𝒯 numbers

∏∏
𝑐 − 𝑐
Δ |𝐷 | (5.7)
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𝑐1

𝑐1

𝑐2𝑐2
𝑐3

𝑐3

𝑑1 = 𝑑11 𝑑1 = 𝑑21 𝑑1 = 𝑑31𝑐1
𝑐2

𝑐3

Figure 5.1: A simple example of an even tiling of an hybrid system with 3 continuous components
( ∈ [ , ], ∈ [ , ], ∈ [ , ]) and one discrete component ∈ { , , }. Each
continuous component is partitioned in four intervals, for a total of ⋅ ⋅ ⋅ tiles.

tiles 𝜏, where |∗| is the number of elements in ∗. Each tile represents an interval of
values 𝑐 in the continuous components and a combination of values 𝑑 of discrete
ones. An example of tiling is given in Figure 5.1. Each tile 𝜏 and its elements are
uniquely indicated by the index i(𝜏), as mentioned in Section 3.2.3. For example,
the shaded tile of Figure 5.1 has index i(𝜏) = (4, 4, 1, 2) and is equivalent to the set

{ 𝑥𝑥𝑥 = (𝑐 , 𝑐 , 𝑐 , 𝑑 ) | 𝑐 ∈ [𝑐 − Δ , 𝑐 ] ,
𝑐 ∈ [𝑐 − Δ , 𝑐 ] , 𝑐 ∈ [𝑐 , 𝑐 + Δ ] , 𝑑 = 𝑑 }. (5.8)

As a second step, an arbitrary subset 𝒜 is extracted from the action set 𝒜
of which 𝒜 must be representative.

As a final step, the bounding model of Eq. (5.3) must be discretized in time.
Given a timestep Δ𝑡, it is straightforward to obtain a time-discrete equivalent of the
continuous dynamics of Eq. (5.3). The final formulation of the dynamics1 is then

1It will be assumed for simplicity that the timestep is a multiple of the sampling time of the discrete
transitions of components ( ), so that ( ) ( ), ∈ ℕ.
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�̂� ∶

⎧
⎪
⎪

⎨
⎪
⎪
⎩

Δ𝑐 ∈ �̂� (𝑐 , ⋯ , 𝑐 , 𝑑 , ⋯ , 𝑑 , 𝑢 ∈ 𝒜 , Δ𝑡)
⋮

Δ𝑐 ∈ �̂� (𝑐 , ⋯ , 𝑐 , 𝑑 , ⋯ , 𝑑 , 𝑢 ∈ 𝒜 , Δ𝑡)
Δ𝑑 ∈ �̂� (𝑐 , ⋯ , 𝑐 , 𝑑 , ⋯ , 𝑑 , 𝑢 ∈ 𝒜 , Δ𝑡)

⋮
Δ𝑑 ∈ �̂� (𝑐 , ⋯ , 𝑐 , 𝑑 (𝑘), ⋯ , 𝑑 (𝑘), 𝑢 ∈ 𝒜 , Δ𝑡).

(5.9)

Given the above formulation, the graph 𝒢 can finally be generated with the same
procedure introduced in Section 3.2.4.

5.3. Metrics
This section introduces two metrics: an operative metric (OM) that directly repre-
sents the information deriving from the warning function, and a proximity metric
(PM) that accounts for the degree of exploration of the system in near-time. Both
metrics are used by the agent to assign weights to the vertices of the graph 𝒢.
Given the weights, at each time-step the agent selects the safest action available by
solving a finite horizon optimization, akin to model predictive control (MPC) [121].

Each metric is extended to collections of vertices 𝐶. A collection is defined as
a subset of 𝒯 so that, if 𝜏 with index i(𝜏 ) = (i , … , i ) and 𝜏 with index
i(𝜏 ) = (i , … , i ) are both elements of 𝐶, all vertices 𝜏 for which

i ≤ i (𝜏) ≤ i , ∀𝑗 ∈ {1, … ,𝑚 + 𝑛} (5.10)

are also elements of 𝐶. A collection is a connected and convex set of tiles, with
respect to both continuous and discrete components of the state. It is worth men-
tioning that, since the dynamics of Eq. (5.9) yield intervals, the graph 𝒢 yields
collections of tiles.

Operative metric
The output of𝑊(𝑥𝑥𝑥) is used by the agent to avoid unsafe states. The goal of the OM
is to embed the information obtained by 𝑊 as weights 𝑞(𝜏) of vertices 𝜏 that can
approximate the FSS and that can be efficiently modified or recalled by the agent at
each time-step. Define four real valued quantities 𝑞 > 𝑞 ≫ 𝑞 ≫ 𝑞 . At
the moment of graph generation, all vertices are initialized with a weight equal to
𝑞 representing the notion that FSS is unknown at the start. At the start of each
timestep, the warning function is evaluated. Supposing that no risk is perceived,
i.e., 𝑊(𝑥𝑥𝑥) = 0, all tiles 𝜏 that entirely fall within the neighborhood 𝑁(𝑥𝑥𝑥) (Eq. (5.5))
contain only safe states. The weight of the corresponding vertices 𝑞(𝜏) is then
increased to 𝑞 , unless the weight is already higher. Conversely, those tiles that
are only partially in range, or not in range at all, might contain fatal states: the
weights of the corresponding vertices are then not altered. Additionally, the weight
of the current vertex corresponding to the currently occupied tile is increased to
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𝑐1

𝑐2

𝑊 = 0 𝑊 = 1

𝑐1

𝑐2

Figure 5.2: An example of update of weights for the OM. In the left figure, explored tiles, safe tiles
and uncertain tiles are indicated with increasingly darker color. No warning ( ) is perceived in this
state (represented by the black dot), but in the next state (black dot on the right) a warning is triggered

. The uncertain tiles now in range of risk perception (in black) are then labeled as fatal.

𝑞 . This is done to include in the metric information about previously visited
areas of 𝒮, in order to partially counteract the presence of LTF states (Eq. (2.3)).

However, if𝑊 = 1, at least one of the states currently in range of risk perception
is a fatal state. In order to be conservative, and guarantee an overapproximation
of the FSS, the weight of all vertices corresponding to unexplored tiles (i.e., which
have weight equal to 𝑞 ) that are at least partially in range are lowered to 𝑞 .
By adopting the above passages, all reliable information from the warning function
is transferred into the graph weights. Figure 5.2 provides an example of the appli-
cation of the OM. To conclude, the OM is extended to a collection 𝐶 by averaging
the value 𝑞(𝜏) of all 𝜏 in the collection:

𝑞(𝐶) =
∑ ∈ 𝑞(𝜏)
|𝐶| . (5.11)

In this case, value 𝑞(𝐶) indicates the average estimated danger of entering a state
in the collection.

Proximity metric
While the OM assigns weights primarily depending on the perceived risk, the prox-
imity metric (PM) is an equivalent of the distance metric of Section 2.4.2, when
considering tiles instead of states. The weights are therefore assigned depending
on distances to previously explored states.

Consider the continuous components of two states 𝑥𝑥𝑥 ∈ 𝜏 and 𝑥𝑥𝑥 ∈ 𝜏 , with
i(𝜏) = (i , … , i ), i(𝜏 ) = (i , … , i ). From the definition of index, the more
two values of the same component differ, the more the difference in index:
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𝑐 ≪ (≫) 𝑐 → i ≪ (≫) i , (5.12)

and conversely,

𝑐 ≈ 𝑐 → ‖i − i ‖ ≤ 1. (5.13)

Therefore, indexes can be used to indicate distances instead of the actual values of
the continuous components. Concerning the discrete components 𝑑 of the state,
it will be assumed that the absolute difference ‖𝑑 −𝑑 ‖ is equivalent to a distance
between two continuous component ‖𝑐 − 𝑐 ‖, 𝑐 = 𝑑 , 𝑐 = 𝑑 .

Given the above considerations, the distance dist(𝜏, 𝜏 ) between two tiles 𝜏 and
𝜏 is defined as

dist(𝜏, 𝜏 ) = ‖𝑣𝑣𝑣 ⊙ (i(𝜏) − i(𝜏) )‖ , (5.14)

where ‖ ∗ ‖ indicates the Euclidean norm of ∗, ⊙ indicates element-by-element
product and 𝑣𝑣𝑣 ∈ ℝ is a rescaling vector of positive gains (see Section 2.4.2).
When considering a system with only continuous components, this distance is the
tiling equivalent of computing the Eulerian distance between two states in a rescaled
state space. As for the discrete components of the state, this means that the
ordering and value of the discrete components 𝑑 allows to compare differences
in values 𝑑 to differences in the values of continuous components 𝑐 , in terms of
safety and controllability of the environment. The term 𝑣𝑣𝑣 acts as a rescaling vector
for the state space 𝒮: depending on the weights assigned, the same difference in
index of two components will have a different contribution to the metric. This can
be used to include previous knowledge into the definition of distance. More relevant
components of the state should be assigned a higher weight than less influential or
more easily controllable components.

Now that a distance is introduced, the metric can be properly discussed. At
anytime that a new tile is visited, the agent appends it to a list of explored tiles
𝒯 . Given this list, the proximity of a vertex/tile 𝜏 is

prox(𝜏) = − min
∈𝒯

dist(𝜏, 𝜏 ), (5.15)

which is the distance to the nearest tile containing an explored state, changed
in sign. It can be seen that, since the metric depends on 𝒯 , weights must be
recomputed when the list is updated.

The following extension is applied when considering a collection of states 𝐶.
First, the center 𝜏 of the collection is found. Then, the proximity of 𝐶 is equal to
the proximity of 𝜏 minus an additional uncertainty term:

prox(𝐶) = prox(𝜏 ) − 𝜌max
∈
dist(𝜏 , 𝜏 ) (5.16)

weighted with 𝜌 < 1. This additional term is proportional to the distance of 𝜏
from the furthest tile of the collection. Therefore, applying this metric not only
accounts for the mean distance between a tile and a collection, but also for the
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𝜏

𝜏’

𝜏”𝜏

𝑐

𝑐

Figure 5.3: An example of proximity computation for collection . The black tile is the center of the
collection. The tiles indicated by a cross contain a visited state. Among these, with the assigned weight
vector ( , ), is the nearest tile to . A term proportional to the distance between and is
then added to compute the proximity.

dispersion in the collection itself, equivalently to the distance metric of Section 2.4.2.
Figure 5.3 shows an example of an application of the metric. The state space has
two continuous components, 𝑐 and 𝑐 . The gray squares represent the collection
𝐶, with center 𝜏 . The cross marked tiles represent those 𝜏 ∈ 𝒯 containing a
visited state. With a weight vector 𝑣𝑣𝑣 = (2, 1), tile 𝜏 is the one with the lowest
distance of −4√2, higher than that of 𝜏 , which is equal to √65. Therefore 𝜏 is
the nearest tile under this metric even though 𝜏 is closer in index within the tiling.
Finally, a term proportional to the distance between 𝜏 and 𝜏 , the furthest tile of
the collection, is added to obtain the proximity of the whole collection.

5.4. Algorithm description
This section illustrates the algorithm for safe exploration which, as OptiSHERPA of
Section 2.4.3, consists in solving an optimization problem at each time-step. It is
assumed that in its initial state 𝑥𝑥𝑥 , 𝑊(𝑥𝑥𝑥 ) = 0, i.e., the agent does not perceive
risk. The goal of the algorithm is to indicate which action among the available set
𝒜 is the safest. In particular, commands 𝑎𝑎𝑎 of length 𝑘 and of the form

𝑎𝑎𝑎 = (𝑢(𝑡),⋯ , 𝑢(𝑡 + (𝑘 − 1) ⋅ Δ𝑡)) (5.17)

are considered. The graph 𝒢 is invoked to predict the collection of tiles 𝐶(𝑎𝑎𝑎) overes-
timating the state of the system after the application of command 𝑎𝑎𝑎. The resulting
𝐶(𝑎𝑎𝑎) is then evaluated with a safety metric. The safest command 𝑎𝑎𝑎∗ is the one for
which 𝐶(𝑎𝑎𝑎∗) maximizes a metric of choice.

In practice, rather than solving the problem in closed form, a finite set of can-
didate commands 𝐴 is examined, based on the following restrictions. A first one
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involves the length of the command. As explained in Section 3.2.4, due to the over-
approximating nature of 𝒢, there is a limit on how many steps ahead can efficiently
be predicted, with collections increasing in size, and being less and less predictive
with the increase in time-steps. Candidate commands are then restricted in length
so that 𝑘 ≤ 𝑘 . A lower constraint on the length of the command is also imposed:
1 ≤ 𝑘 ≤ 𝑘. A final selection is performed by considering candidates of the form

𝑢(𝑡) = 𝑢(𝑡 + Δ𝑡) = ⋯ = 𝑢(𝑡 + (𝑘 − 1) ⋅ Δ𝑡), (5.18)

i.e., constant commands. The reason for this choice comes from the previous as-
sumption that the action set 𝒜 is representative of the entire action set 𝒜.
Due to the limited amount of time-steps that can be accounted for via the graphi-
cal representation of the dynamics, it is then more meaningful to consider constant
commands that truly represent the effect of the individual actions, rather than com-
mands with mixed and possibly conflicting control actions. Additionally, this choice
drastically reduces the number of candidates to |𝐴| = |𝒜 | ⋅ (𝑘 − 𝑘 + 1).

Figure 5.4 summarizes the algorithm. The composing elements of the algorithm
are the graph 𝒢, a predefined set of action 𝒜 generating the set of candidates
commands 𝐴, a warning function 𝑊(𝑥𝑥𝑥) and an arbitrary safety metric. The system
is in state 𝑥𝑥𝑥(𝑡), which in the graph 𝒢 corresponds to current vertex 𝜏. By using the
adjacency matrices of 𝒢 the trajectory of the system under command 𝑎𝑎𝑎 ∈ 𝐴 can be
obtained, as well as the final collection of states 𝐶(𝑎𝑎𝑎). Collections 𝐶 are evaluated
by the metric for all candidate commands. The optimal command 𝑎𝑎𝑎∗ is selected,
and its first action 𝑢∗(𝑡) is performed in the system. The new state 𝑥𝑥𝑥(𝑡+Δ𝑡) is then
observed, and the metric is updated with the information derived from exploration
and from 𝑊. The process then repeats.

In addition to the above restrictions, two more checks are performed during
optimization. As indicated by the graph generation procedure, 𝒢 does not contain
outbound edges for which 𝑥𝑥𝑥(𝑡 + Δ𝑡) ∉ 𝒮. If the control action indicated by the
current command is one such action, it is temporarily removed from the set of can-
didates during that optimization process. Additionally, it is important for the validity
of the method to verify that all vertices 𝜏 in the trajectory are safe, according to the
current knowledge of the FSS. Commands for which this cannot be guaranteed are
also temporarily removed from 𝐴.

5.5. Applications
This section presents two simulated applications of the algorithm of Section 5.4.
The goal of the first task is to fly a quadrotor within a room without colliding with
its walls. The objective of the second task is to control an aircraft flying with a con-
straint on its altitude via elevator deflection. The RL agents assigned to these tasks,
which have very different dynamics and therefore represent different challenges,
are equipped with either the OM or the PM.
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Environment

𝒢

𝑊

𝒜Metric

𝑥

𝐶 𝐴

𝑢∗

Figure 5.4: The algorithm for action selection. Given current state , the corresponding tile in graph
𝒢 is found. Candidate commands yield a set of collections , which is evaluated under the current
metric, to find the optimal action ∗. In addition, the metric is updated with the visited state and with
information from the warning function .

5.5.1. Quadrotor navigation task
The goal of this simulated task is to fly a quadrotor for a set amount of time-steps
without colliding with the surrounding walls. The dynamics 𝒟 of the quadrotor are
represented by the hybrid system of Eq. (5.19):

�̇� = 𝑉 cos (𝜓); �̇� = 𝑉 sin (𝜓); �̇� = 𝜃 �̇� ;

�̇� = {
+�̇� if right
−�̇� if left
0 if neut

; Δ𝜃 = {
+1 if forw ∧ 𝜃 ≠ +1
−1 if back ∧ 𝜃 ≠ −1
0 if neut.

(5.19)

The state 𝑥𝑥𝑥 = (𝑥 , 𝑥 , 𝑉, 𝜓, 𝜃) contains the absolute position (𝑥 , 𝑥 ), the speed 𝑉,
and the heading 𝜓 of the quadrotor, while 𝜃 is a discrete component which repre-
sents the pitch configuration: forward (𝜃 = 1), backward (𝜃 = −1), or level (𝜃 = 0).
The finite set of actions 𝒜 comprises forw and back to alter the pitch, right and
left to steer, and the neutral action neut. Finally, the dynamics of Eq. (5.19)
depend on the values of two additional parameters: the mean acceleration �̇� and
the mean turning rate �̇� , which specify the quadrotor performance. In accor-
dance with the assumptions of Section 5.2.1, only the intervals ̂�̇� = [0.24, 0.6]
and ̂�̇� = [𝜋/4, 𝜋/3] s of these values are known to the agent. The uncertain
bounding model �̂� is then obtained by replacing �̇� and �̇� in Eq. (5.19) with these
intervals.

The graph 𝒢 is generated as follows. First, the unbounded state space 𝒮 is
restricted so that it conforms to the assumption of Eq. (5.1). Components 𝑐 = 𝑥
and 𝑐 = 𝑥 are physically bounded by the size of the square room: 𝑥 , 𝑥 ∈ [−5, 5]
m. The angle 𝜓 = 𝑐 is bounded between −𝜋 and 𝜋, and 𝑑 = 𝜃 is already restricted
in the formulation of the dynamics. Therefore, only the speed 𝑉 = 𝑐 needs to be
artificially restricted. In the present work it is 𝑉 ∈ [−1.2, 1.2] . Although any
arbitrary value could be selected, it was observed in simulations that this choice
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of 𝑉 results in a good trade-off between exploration and maneuverability. The
continuous components are then evenly divided into 20 intervals, resulting in a
finite tiling of 4.8 ⋅ 10 tiles. The action set 𝒜 = {forw,back,right,left,neut}
is already finite, so 𝒜 = 𝒜 is chosen. Finally, a time-step Δ𝑡 of 0.5s is adopted
to generate the graph. This choice of Δ𝑡 is motivated by the need of a sufficiently
long time-step to correctly represent the pitch configuration transition.

The function 𝑊, which simulates the presence of on-board sensors, outputs
a warning to the agent when the quadrotor is within 2.5m of a wall. For action
selection, candidate commands 𝑎𝑎𝑎 are chosen as constant commands with duration
comprised between 𝑘 = 3 and 𝑘 = 5 time-steps. The task fails if the quadro-
tor hits a wall, or if otherwise 𝑥𝑥𝑥 ∉ 𝒮, before the 300 time-step. Each episode is
initialized in a random state

𝑥 | = 0 ; 𝑥 | = 0 ; 𝑉| ∈ [0.4, 0.6] ; 𝜓| ∈ [−𝜋, 𝜋] ; 𝜃 = 0 (5.20)

and the actual model of the quadrotor is randomly assigned two values

�̇� ∈ ̂�̇� ; �̇� ∈ ̂�̇� (5.21)

among all the possible realizations of the dynamics represented by Eq. (5.19). In
the results to follow, three agents are compared, selecting actions according to the
OM, according to the PM, or according to a random policy.

Operative metric for quadrotor control
Parameters 𝑞 are initialized as 𝑞 = 1, 𝑞 = 0, 𝑞 = −100, 𝑞 = −10 : it
can be seen how the above initialization heavily penalizes uncertain and possibly
fatal tiles with respect to safe or explored tiles. A typical behavior resulting from
the application of the metric is shown in Figure 5.5. In the first instants of flight,
the quadrotor is far from the walls; the agent does not alter the pitch configuration,
but instead selects actions neut, right and left repeatedly to move around the
room at constant speed. After a few iterations, when the central region of the room
is explored, actions forw and back are selected as well: it can be noted in the
figure that the agent occasionally inverts the direction of flight. When the UAV is in
proximity of a wall, the agent adopts one of the following two behaviors. The first
behavior is simply to steer with a constant rate until the collision is avoided. The
second one, represented in Figure 5.5b, is to pitch backward, reduce the speed,
and eventually invert the direction of flight. Simulations show how applying the
OM results in a safe flight that avoids collisions and at the same time explores the
environment accordingly.

Proximity metric for quadrotor control
The rescaling vector 𝑣𝑣𝑣 is selected as

𝑣𝑣𝑣 = (𝑣 | 𝑣 | 𝑣 | 𝑣 | 𝑣 | ) = (5, 5, 2, 1, 1) (5.22)

in accordance with the principle that lower weights should be assigned to those
components of the state that are immediately accessible from the controller, in this
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Figure 5.5: Two sample trajectories with the operative metric. The dot represents the starting position
of the quadrotor, while the diamond is the end of the trajectory. The bold lines delimit the room. The
trajectory in the left figure (a) shows both inversions of pitch and turns performed at constant speed.
In the right figure (b) an inversion of direction of flight (indicated by a circle) is performed in order to
avoid a collision.

case 𝜓 and 𝜃. Increasingly higher gains are assigned to 𝑉 and to 𝑥 and 𝑥 , so that
the agent is more cautious with respect to alteration in those components, which
are harder to control. A value of 0.3 is given to the parameter weight 𝜌 of Eq. (5.16).
The results show two different behaviors depending on the initial trajectory of the
system. The size of the room and the turning rate �̇� are sufficient for the UAV to
make a complete turn if the agent applies a constant right or left action. The
tiles containing positions 𝑥 and 𝑦 during this maneuver are then added to the list
𝒯 of visited tiles, together with the corresponding heading. The PM indicates that
the command for which the collection 𝐶 is the closest is to keep turning. As a result,
the UAV keeps turning indefinitely, see Figure 5.6a. This behavior and the resulting
constant maneuver are safe; however, the agent does not explore its environment
further. This is the result of the concept behind the metric, with the agent trying to
replicate already encountered conditions.

A different behavior can be observed in Figure 5.6b. The agent pitches back-
ward, reducing the flight speed almost to zero, and then selects repeatedly the
neutral action neut. The quadrotor then drifts with constant speed and heading,
until it comes in the proximity of a wall. The agent then pitches backward in or-
der to brake. Depending on the initial speed 𝑉 and on the acceleration �̇� , this
is likely to result in a collision. However, if the UAV does not collide, it drifts in
the opposite direction, with the agent adopting the neut action. As before, the
tiles 𝜏 which contain the position, heading, and speed during these drifts are added
to 𝒯 . Therefore, the PM instructs the agent to pitch forward again as soon as
the UAV approaches the initial drifting position. From this point onward, the UAV
repeats these two drifting trajectories.
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Figure 5.6: The two maneuvers exhibited by the agent adopting the proximity metric. In the left figure
(a) the agent enters a safe maneuver by performing a constant turn. On the right (b) the quadrotor
pitches forward and backward until the end of the trial. In both cases, very limited exploration is
achieved.

Comparing the different agents, the mean duration of the task observed with a
random policy is of 19.3 iterations, equivalent to 9.65s. The agent equipped with the
OM achieves completion of the task at every run. With the PM, the agent completes
the task on 44% of the runs, with minimum duration of 34 iterations and an average
duration of 161.

5.5.2. Elevator control task
In this task, the agents controls the elevator 𝛿 of an aircraft to prevent it from
stalling and from leaving an initially unknown altitude range for a set number of
time-steps. The nominal longitudinal dynamics of the aircraft are

⎛

⎝

ℎ̇
�̇�
�̇�
�̇�

⎞

⎠

= 𝐴(
ℎ
𝜃
𝛼
𝑞
) + 𝐵 𝛿 ; 𝐴 =

⎡
⎢
⎢
⎣

0 300 −300 0
0 0 0 1
0 0 −0.64 0.938
0 0 −1.568 −0.879

⎤
⎥
⎥
⎦
; 𝐵 =

⎡
⎢
⎢
⎣

0
0
𝐵
𝐵

⎤
⎥
⎥
⎦

(5.23)
where the speed 𝑉 is assumed constant and equal to 300 , and where

𝐵 = −1.4 ⋅ 10 ; 𝐵 = −0.1137. (5.24)

The state of the aircraft is 𝑥𝑥𝑥 = (ℎ, 𝜃, 𝛼, 𝑞), where ℎ[ft] is the deviation from initial
altitude, 𝜃[rad] is the pitch angle, 𝛼[rad] is the angle of attack, and 𝑞[rad s ] is
the pitch rate. The agent action 𝑢 is the elevator deflection 𝛿 ∈ [−4∘, 4∘] = 𝒜.
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It is assumed that the actual dynamics of the aircraft differ from the nominal
model, e.g., due to deteriorations of the control surfaces or to inaccuracies in the
model identification. However, a bounding model is provided to the agent by re-
placing the nominal control matrix 𝐵 with

�̂� = [1.05 ⋅ 𝐵 , 0.95 ⋅ 𝐵 ]. (5.25)

The goal of the agent is to prevent the aircraft from leaving an altitude range of
[−80, 80]ft from the initial altitude. Additionally, a second risk is represented by a
stall, which for simplicity is assumed occurring outside of a range 𝛼 ∈ [−15∘, 12∘].
Neither ranges of ℎ or 𝛼 are initially known to the agent; however, a function 𝑊
issues a warning when 𝑥𝑥𝑥 reaches within 30ft or = 6∘ of the boundaries of the
above ranges.

From Eq. (5.23) it can be seen that the main effect of control action 𝛿 is a pitch
acceleration �̇�. The dynamic of 𝛼 is loosely affected by the instantaneous deflection
𝛿 due to the relatively small coefficient 𝐵 , but is instead dominated by the values
of 𝑞 and 𝛼. Furthermore, the altitude rate ℎ̇ depends on the angle 𝛾 = 𝜃−𝛼, whose
derivative can be written as

�̇� = �̇� − �̇� ≅ 0.062 ⋅ 𝑞 + 0.64 ⋅ 𝛼. (5.26)

In conclusion, ℎ̇ depends on 𝛾, which is mainly controlled through 𝛼. In turn, 𝛼
is dominated by 𝑞, which is controllable through elevator deflection 𝛿 . Therefore,
this task is an example of low-level control in the presence of cascaded dynamics.

While ℎ and 𝛼 are bounded by these ranges, 𝜃 and 𝑞 are arbitrarily limited re-
spectively to [−𝜋/4, 𝜋/4] and [−𝜋/2, 𝜋/2]s 1. As a next step, the hypergraph
𝒢 is generated. A tiling with 25 tiles per component is applied, for a total of
25 = 390625 vertices. The action subset is restricted to the four different de-
flections 𝛿 ∈ 𝒜 = {−4∘, −2∘, 2∘, 4∘}. The time-step Δ𝑡 is chosen as 0.1s.
Candidate commands 𝑎𝑎𝑎 are limited to a length between 𝑘 = 3 and 𝑘 = 5
time-steps. The task fails if the constraints on ℎ or 𝛼 are violated, or otherwise if
𝜃 ∉ [−𝜋/4, 𝜋/4] or 𝑞 ∉ [−𝜋/2, 𝜋/2]s , before the 600 iteration. Each episode
is initialized from starting conditions:

ℎ = 0 ; 𝜃 = 0 ; 𝛼 = 0 ; 𝑞 = 0 (5.27)

and the actual dynamics of the aircraft are simulated by replacing 𝐵 with a control
matrix 𝐵 ∈ �̂�, selected randomly at the start of the episode. Three agents, one
equipped with the OM, one with the PM, and one with a random policy, are tested
and compared.

Operative metric for elevator control
The values 𝑞 have been initialized as 𝑞 = 1, 𝑞 = 0, 𝑞 = −100, 𝑞 =
−10 , as in the previous task. In Figure 5.7, a typical behavior for the controller with
the OM is showed. Initially, the agent succeeds in keeping the flight path angle 𝛾
sufficiently small. However, as altitude decreases, the agent does not compensate
for the altitude loss, because in near-time the predicted states are safe. This is



5.5. Applications

5

125

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

�80

�60

�40

�20

0

Elevator control with Operative Metric

A
lt
it
u

d
e

 d
e

v
ia

ti
o

n
 h

 [
ft

]

Distance travelled [ft]

2 4 6 8 10 12 14 16

�4

�2

0

F
lig

h
t 

p
a

th
 

a
n

g
le

 
γ

[�
]

2 4 6 8 10 12 14 16
�4

�2

0

D
e

v
ia

ti
o

n
 o

f 
a

n
g

le
 

o
f 

a
tt

a
c
k
 
α

[�
]

2 4 6 8 10 12 14 16
�5

0

5

E
le

v
a

to
r 

d
e

fl
e

c
ti
o

n
 
δ

e
[�

]

time [s]

Figure 5.7: A typical behavior for the agent adopting the OM in the elevator control task. The altitude
deviation with respect to distance traveled is shown in the first plot. The second plot shows the change
of flight path angle with respect to time, while the third plot shows the deviation of angle of attack
with time. The fourth plot shows the elevator deviation.

due to the limited scope of the uncertain predictions. As the system approaches
the unsafe boundaries of the altitude range, the commands with the most duration
among the candidates (i.e., five time-steps) become unsafe. The agent then adopts
commands of shorter duration as feasible candidates. As the boundaries become
nearer, the set of feasible commands restricts even more, to commands with a
duration of three time-steps. Eventually, all near-time predictions become unsafe
(at approximately 13.5 seconds in Figure 5.7). In this event, the metric does not
provide any useful information on the commands; the agents then adopts random
actions which rapidly lead to a failure of the task.

Proximity metric for elevator control
The gain vector 𝑣𝑣𝑣 is selected as

𝑣𝑣𝑣 = (𝑣 | 𝑣 | 𝑣 | 𝑣 | ) = (6, 4, 2, 1), (5.28)

where it can be seen that higher gains are assigned to those components that
require more time to be affected by changes in 𝛿 . A typical trajectory for the agent
with the PM is shown in Figure 5.8. The aircraft starts pitching down, and gradually
loses altitude. As can be seen in the top of the figure, after a few seconds 𝛾 is held
almost constant by the controller. This is the result of the formulation of the PM: the
agent starts with no visited states, but as soon as either a positive or negative flight
path angle is experienced, the agent tries to keep the system in this flight condition.
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Figure 5.8: A typical behavior for the controller with the PM. The first plot shows the altitude deviation
. The second plot shows the change of flight path angle with respect to time, while the third plot
shows the deviation of angle of attack with time. The fourth plot shows the elevator deviation. In
this example, the agent does not manage to satisfy the altitude constraint.

Although this effect is mitigated by the higher weight 𝑣 | on the altitude, the aircraft
does not regain level flight. At around 27s, the aircraft reaches the boundaries of
the region identified as safe. As with the OM, in Figure 5.8 commands become
progressively less safe with the duration. The metric then selects commands with
shorter durations, and eventually fails. The agent’s policy becomes random, which
leads to a violation of the constraints.

Figure 5.9 shows a different behavior with the same agent. During this run
the controller manages to keep the flight path angle in [−1∘, 1∘], alternating level
flight and mild descent/ascension. This results in a safe flight and in a successful
completion of the task; however, only a limited exploration of the environment is
achieved during the task, as with the maneuvers of the previous task. As a final
comparison, the mean duration of the task observed by randomly selecting actions
for the elevator control task is of 60 iterations, equivalent to 6s. With the OM,
the controller achieves completion of the task 15.7% of the runs, with a minimum
duration of 58 iterations, and a mean duration of 154. With the PM, the controller
manages completion of the task in 22% of the runs, with a minimum duration of
129 iterations, and a mean duration of 350 iterations.



5.6. Conclusions and future work

5

127

0 2 4 6 8 10 12 14 16 18

x 10
4

�40

�20

0

20

Elevator control with Proximity Metric

A
lt
it
u

d
e

 
d

e
v
ia

ti
o

n
 h

 [
ft

]

Distance travelled [ft]

5 10 15 20 25 30 35 40 45 50 55 60
�1

0

1

F
lig

h
t 

p
a

th
 

a
n

g
le

 
γ

[�
]

5 10 15 20 25 30 35 40 45 50 55 60

�1

0

1

D
e

v
ia

ti
o

n
 o

f 
a

n
g

le
 

o
f 

a
tt

a
c
k
 
α

[�
]

5 10 15 20 25 30 35 40 45 50 55 60
�5

0

5

E
le

v
a

to
r 

d
e

fl
e

c
ti
o

n
 
δ

e
[�

]

time [s]

Figure 5.9: A different episode with the application of the PM. The agent manages to maintain a suffi-
ciently reduced flight path angle and therefore to achieve safe flight. However, this results in limited
exploration of the environment during the task.

5.6. Conclusions and future work
This chapter introduces a new hybrid approach for the exploration of uncertain
environments. The approach revolves around three main elements. The first is the
presence of a warning function through which the agent can individuate the fatal
states in the environment. The second is an hypergraph representing the uncertain
model of the dynamics of the environment. The state space is partitioned via tiling,
possibly requiring restricting the space to a bounded subset. A finite representative
subset is extracted from among all possible actions available to the agent. The
graph can then be generated. The third constituent of the method is a safety metric,
which evaluates candidate commands of the agent at every time-step. Solving this
optimization problem, which is computationally efficient due to graph formulation
of the dynamics, selects the action ultimately performed.

Two metrics are proposed: an Operative Metric (OM) assigning values to ver-
tices depending on the current belief of safety, and a Proximity Metric (PM) com-
puting distances between vertices of the graph and previously visited states. Both
approaches are tested on two different simulated applications: a quadrotor navi-
gation task, for a hybrid, high-level control, and an elevator deflection task, for a
low-level control. In the quadrotor task, the OM is found to be effective in achieving
safe exploration, avoiding collisions in all runs and exploring the room environment.
Conversely, the PM results either in episodes with collisions, or in constant maneu-
vers with very limited exploration. In the elevator task, the OM is able to enforce
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safety only for the first instants of flight. The PM performs better by limiting the
rate of altitude loss, achieving longer duration of the task.

The results appropriately show the characteristics of the metrics. As expected,
the effects of implementing the PM are shown to be analogous to those obtainable
by implementing the distance metric with OptiSHERPA: the evolution of the system
is restricted, which increases safety but can significantly reduce exploration. The
elevator deflection task shows that the PM by itself is not always able to prevent fatal
occurrences. In this respect, the addition of a dedicated risk-evasion metric as the
one adopted with OptiSHERPA (Section 2.4.2) could be beneficial. Concerning the
OM, the results show that the metric is more successful in high-level control tasks,
where the prediction horizon is sufficient to account for the problem constraints,
such as the holonomic constraints of the quadrotor task. Additionally, in this cases
the OM performs better that the PM, which can get stuck in constant maneuvers.



6
Vertex Classification

This chapter introduces the Vertex Classification hybrid method, which
simultaneously addresses the challenges of safety, online efficiency and
robustness. The method consists of assigning levels and coefficients to
vertices, which are then used to assess the safety of actions. The method
combines the assumptions in terms of bounding model and risk perception
of Chapter 2, the graph formulation of Chapter 3 and the state projection
of Chapter 4. The safest policy, implemented in a simulated MAV task, is
found to share similarities with potential-based methods, and also entirely
prevents any fatal occurrence.

129
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6.1. Introduction
Chapter 3 introduced the use of graphs in RL for the purpose of increasing the
online efficiency of safe exploration algorithms. Additionally, Chapter 3 introduced
graph pruning, a procedure to check whether or not a given policy is guaranteed
to be feasible, and thus safe, during the entire learning.

However, the more the environment increases in size, dimensionality and un-
certainty, the more these methods are difficult to apply. In this chapter, the hierar-
chical projection of Chapter 4 is applied in order to simplify the graph formulation.
Furthermore, Vertex Classification is introduced, a new algorithm for safety assess-
ment, which is less conservative and less sensitive to the discretization parameters
than the pruning method.

Section 6.2 shows the motivations to apply state projection to operational en-
velopes. Section 6.3 introduces the Vertex Classification method. Section 6.4 shows
how to apply Vertex Classification to an MAV task.

6.2. State projection for graph methods
This section presents the motivation for applying state projection, as introduced in
Section 4.3, to graph methods with operational envelopes (OE). A practical example
is provided to clarify the state projection procedure. Finally, this section summarizes
the necessary assumptions for the remainder of the chapter.

6.2.1. Motivation for state projection
Given state 𝑥𝑥𝑥 = (𝑥 , ⋯ , 𝑥 ) ∈ 𝒮 and action 𝑢 ∈ 𝒜, the “original” problem considered
in this section is to check if a policy 𝜋 ∶ 𝒮 → 𝒜 is feasible, i.e., if given a known
OE 𝒮 ⊂ 𝒮, and the unknown but bounded dynamics 𝒟 ∈ �̂� of the environment,
it is 𝑥𝑥𝑥(𝑡) ∈ 𝒮 , ∀𝑡. Chapter 3 addresses this problem through the use of a pruned
graph 𝒢 .

However, this can be difficult to apply. Consider for example an OE that is
either high dimensional, extensive in size, or both. In this case, the graph 𝒢 over-
estimates 𝒟 considerably, since the total number of tiles 𝜏 ∈ 𝒯 is limited by the
agent memory and power, and since less refined tilings 𝒯 result in less precise es-
timations. A second inconvenience arises if the environment is partially unknown,
which complicates the formulation of an OE, and thus the adoption of pruning or
of any similar graph-based method. If the current state 𝑥𝑥𝑥 belongs to a known set
𝒮 , the method can be used by adopting 𝒮 as a temporary OE, and trying to
expand that set during exploration; however, each modification of the OE would
require another computation of the hypergraph 𝒢, as illustrated in Section 3.3.3.
Furthermore, if the agent does not succeed in expanding the OE, it might linger
within its restricted OE indefinitely, which is safe but also inefficient.

An answer to these concerns was presented in Chapter 4 by means of hierarchy
and of state projection. Consider the bijective projection function
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𝑥

𝑥
𝑉

𝜒

Figure 6.1: The corridor is divided into segments with constant curvature. The original state is composed
of absolute position and , of heading , and of speed .

𝜇 ∶ 𝒮 →
×

∑
∈{ ,…, }

𝒫 , (6.1)

where 𝒫 are projected state spaces, and

𝜇 (𝑥𝑥𝑥) = 𝑝𝑝𝑝 ∈ 𝒫 , (6.2)

are the projected state vectors with projected dynamics

�̇�𝑝𝑝 = 𝒟 (𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 , 𝑢). (6.3)

It follows that 𝒮 can also be projected as 𝜇(𝒮 ) = {𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 |𝜇 (𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 ) ∈
𝒮 }. Define then the projected envelope 𝒫 as the set

𝒫 (𝑝𝑝𝑝 ) = {𝑝𝑝𝑝 |𝜇 (𝑝𝑝𝑝 ,… ,𝑝𝑝𝑝 ) ∈ 𝒮 }, (6.4)

where 𝑝𝑝𝑝 indicates all projected states other than 𝑝𝑝𝑝 . Therefore, the original
problem of guaranteeing 𝑥𝑥𝑥 ∈ 𝒮 is equivalent to the one expressed by

𝑝𝑝𝑝 ∈ 𝒫 . (6.5)

It is assumed here that the elements of the projected space 𝒫 have components
that are relative to or independent of the remaining projected states. Thus, accord-
ing to Definition 11 and Definition 12, it is

�̇�𝑝𝑝 = 𝒟 (𝑝𝑝𝑝 ,𝑝𝑝𝑝 | , 𝑢), (6.6)

indicating with 𝑝𝑝𝑝 | an arbitrary set of initial values for the states 𝑝𝑝𝑝 , with re-
spect to which the components of 𝑝𝑝𝑝 are relative to or independent of. With this
assumption, it is possible to compute �̇�𝑝𝑝 in order to satisfy Eq. (6.5). Nonetheless, it
should be noted that, unless 𝑝𝑝𝑝 is relative to all 𝑝𝑝𝑝 , 𝒫 might change with time.
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6.2.2. An example of state projection for UAV tasks
Consider now the task depicted in Figure 6.1, similar to the one of Section 3.3.3,
and consisting of flying through a corridor with piecewise constant curvatures. The
state is 𝑥𝑥𝑥 = (𝑥 , 𝑥 , 𝜒, 𝑉), with 𝑥 and 𝑥 the absolute position of the UAV, 𝜒 the
heading, and 𝑉 the speed. The control vector is (𝑢 , 𝑢 ) = (�̇�, �̇�). The envelope
for this task can be informally expressed as those (𝑥 , 𝑥 , 𝜓) for which the UAV is
not in collision and flies towards the end of the corridor. Solving this problem with
a graph-approach can be quite challenging. First of all, it can be difficult to find
a partition of 𝑥 , 𝑥 that correctly discretizes the corridor, depending on its length
and shape, without excessively increasing the refinement of the tiling, and thus its
memory and computation requirement. Moreover, if the agent does not know the
exact geometry of the corridor, the envelope must approximate the local envelope
and try to subsequently expand it with exploration.

Consider now the generic segment of the corridor, with constant curvature, and
the projection function 𝜇(𝑥𝑥𝑥) ∶ 𝒮 → 𝒫 × 𝒫 with projected states

𝑝𝑝𝑝 = (𝑥 | , 𝑥 | , 𝜒| , 𝑟 ) ∈ 𝒫 ; 𝑝𝑝𝑝 = (𝜌, 𝜃, 𝜓, 𝑉) ∈ 𝒫 . (6.7)

The first state 𝑝𝑝𝑝 identifies the geometry of the segment, and consists of the position
(𝑥 | , 𝑥 | ) of the midline of the corridor (the dashed line in Figure 6.2) at the start
of the segment, of the direction of the midline 𝜒| in that same position, and of
the curvature 𝑟 . The components of the second projected state 𝑝𝑝𝑝 are instead the
cylindrical coordinates 𝜌 and 𝜃 with respect to the center of curvature (𝑐 , 𝑐 ), the
heading 𝜓 of the UAV with respect to the tangent to the midline, and the speed 𝑉.
Notice that the center (𝑐 , 𝑐 ) is uniquely defined once the components of 𝑝𝑝𝑝 are
given. The components 𝜌, 𝜃, 𝜓, and 𝑉 of 𝑝𝑝𝑝 are relative to those of 𝑝𝑝𝑝 , since

𝒟 = 0, (6.8)

while the last component 𝑉 of 𝑝𝑝𝑝 is also independent of 𝑝𝑝𝑝 :

𝜕�̇�
𝜕𝑝𝑝𝑝 = 0. (6.9)

Adopting the projection 𝜇 for each segment of the corridor, the envelope can
now be defined as

𝒫 (𝑝𝑝𝑝 ,𝑤) = {𝑝𝑝𝑝 | ‖𝜌 − 𝑟 ‖ < 𝑤
2 , ‖𝜓‖ <

𝜋
2 }, (6.10)

where𝑤 is the width of the corridor. Due to Eq. (6.8) and Eq. (6.9), given the current
value of 𝑝𝑝𝑝 , and by estimating the width 𝑤, it is possible to sequentially solve the
problem in the sole projected state 𝑝𝑝𝑝 . Assuming lower and upper bounds [𝑟 , 𝑟 ]
for the curvature and [𝑤,𝑤] for the width, adopting a reasonable tiling 𝒯 for the
projected state 𝑝𝑝𝑝 is simpler than doing the same for the original state 𝑥𝑥𝑥, also due
to the difference in size between the two spaces 𝒮 and 𝒫 . This greatly simplifies
the application of graph based methods. As an extreme case, the problem could be
a-priori solved for a number of envelope beliefs 𝒫 (�̂� , �̂�), where �̂� ∈ [𝑟 , 𝑟 ]
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𝑥
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(𝑐 , 𝑐 )

(𝑥 | , 𝑥 | )

𝜒|
𝑟

𝜌

𝜃

𝜓
𝑉

Figure 6.2: The original state ( , , , ) ∈ 𝒮 is decomposed as the two projected states
( | , | , | , ) and ( , , , ).

and �̂� ∈ [𝑤,𝑤] are estimates of the actual curvature and width of the different
segments of the corridor.

6.2.3. Assumptions
Section 6.2.2 shows how applying graph based methods is simpler if there exists
a state projection with a state 𝑝𝑝𝑝 which is relative or independent of the others.
It is assumed that the projected envelope 𝒫 = 𝒫 of the projected state 𝑝𝑝𝑝 =
(𝑝 ,… , 𝑝 ) is in the form

𝒫 = [𝑝 , 𝑝 ] × ⋯ × [𝑝 , 𝑝 ], (6.11)

and that a bounding model of dynamics 𝒟 exists, so that

�̂� ∶ {
�̇� ∈ �̂� (𝑝 , … , 𝑝 , 𝑢)

⋮
�̇� ∈ �̂� (𝑝 , … , 𝑝 , 𝑢),

(6.12)

similarly to what assumed in Section 3.2.3. 𝒫 is partitioned into a tiling 𝒯 with
tiles 𝜏 (Figure 6.3). A subset of action 𝒜 and a time interval Δ𝑡 are selected
as well, in order to generate a graph 𝒢, in accordance with the procedures of
Section 3.2.4 and Section 3.2.5 (Figure 6.4). In the event that 𝑝𝑝𝑝 (𝑡 + Δ𝑡) = 𝑝𝑝𝑝 (𝑡) +
Δ𝑝𝑝𝑝 is not contained in 𝒫 , the edge is not added to the graph. Instead, these
combinations (𝜏, 𝑢) are stored in a list of critical transitions. Table 6.1 illustrates the
differences between the following state representations: the “original” state 𝒮, the
projected state 𝒫 , and the graph 𝒢.
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𝒫𝜏

Figure 6.3: A sample tiling 𝒯 partitioning of a
3-dimensional projected state space 𝒫 . One
tile is shaded.

𝜏 𝑢

Figure 6.4: An example of the uncertain tran-
sitions represented by the edges of 𝒢.

Original Projected Graph-Tiling
State 𝑥𝑥𝑥 ∈ 𝒮 𝑝𝑝𝑝 ∈ 𝒫 𝜏 ∈ 𝒯
Action 𝑢 ∈ 𝒜 𝑢 ∈ 𝒜 𝑢 ∈ 𝒜
Continuity yes yes no
Projection no yes yes

Table 6.1: Characteristics and properties of the three different state representations.

6.3. The Vertex Classification method
This section explains how to use the graph formulation to perform Vertex Classifi-
cation (VC), which is a method to quantitatively estimate the safety of the states
of 𝒫 . This estimate can then be used to evaluate a given policy in combination
with the graph 𝒢.

6.3.1. Desirability of transitions
The graph 𝒢 provides an overestimation of all transitions of 𝑝𝑝𝑝 within 𝒫 , with the
exception of critical transitions. Depending on which of the constraints of Eq. (6.11)
is violated, it is possible to distinguish between desired and undesired critical tran-
sitions. Consider the corridor example of Section 6.2.2 with 𝑝𝑝𝑝 = (𝜌, 𝜃, 𝜓, 𝑉) and
envelope

𝒫 = [𝑟 − 𝑤2 , 𝑟 + 𝑤2 ] × [0, 𝜃 ] × [−𝜋2 ,
𝜋
2 ] × [𝑉, 𝑉], (6.13)

where 𝜃 is the value of 𝜃 at the end of the segment of corridor and [𝑉, 𝑉], 𝑉 ≥ 0
is an arbitrary constraint on 𝑉 in order to comply with Eq. (6.11). Violating the
constraint in 𝜌 must be avoided as it results in a collision: all such edges are added
to a list 𝑈 of undesired critical transitions. Conversely, violating only the constraint
𝜃 < 𝜃 means that the UAV has managed to traverse the current sector into the
new one, coming closer to the end of the corridor. Therefore, these desired critical
transitions are gathered in a list 𝐷. The remaining critical transitions are assumed
to be neither desired or undesired and are therefore ascribed to a neutral set 𝑁.

For the general case, the designer must provide the agent with a desirability
criteria, so that critical transitions can be grouped into sets with equal desirability.
For the remainder of the chapter, it will be assumed that at least the two afore-
mentioned sets 𝑈 and 𝑁, and possibly one or more sets 𝐷 , are identified. This
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specification is a primary concern of the method, as the goal of VC is promoting
desired transitions and preventing undesired ones.

6.3.2. Vertex level and coefficient assignments
Vertex Classification entails assigning to each vertex two values: its level and its
coefficient, which will quantify the safety of the vertex itself. This method is shown
in Algorithm 6, where 𝑙 and 𝑐 indicate levels and coefficients of vertices. Consider
the set 𝑈 ∈ 𝒯 × 𝒜 , and assign level 0 to each vertex 𝜏 ∶ ∀𝑢, (𝜏, 𝑢) ∈ 𝑈. These
are the most unsafe vertices. Assign then level 1 to each vertex not already of
level 0 that is connected by any edge to a level 0 vertex. These are vertices that
could provoke an undesired transition in at least two time intervals. The procedure
is repeated, increasing level by one at each iteration, until all vertices have been
assigned a level. This will be a first indication of the safety of the vertex itself,
representing the minimal amount of time-steps that can be guaranteed before a
critical transition occurs. To save computation time, it is possible to terminate the
labeling at any iteration by assigning a maximum level 𝑙 to all remaining vertices.

Coefficients are then assigned according to levels. As a start, assign a coefficient
of 1 to each level 0 vertex. Then, coefficients for level 1 are assigned as follows.
Select a level 1 vertex and consider its connected vertices. Sum the coefficients of
all level 0 vertices among these, then divide it by the total number of connected
vertices. For level 0 vertices, this is equivalent to assigning the ratio between the
number of level 0 connected vertices and the total number of connected vertices.
It follows that for two vertices of equivalent level, the one with lower coefficient
is on average the furthest from an undesired transition. Assigning of coefficients
for vertices of higher level is performed in the same way, summing the coefficients
of vertices with the lowest level, and dividing it by the total number of connected
vertices. Figure 6.5 shows an example of level and coefficient computation.

In the event that one or more sets of desired transitions, indicated by 𝐷 , are
considered, the same procedure can be applied for each set to identify one or more
additional series of levels and coefficients. In this case, the lower the level and the
higher the coefficient, the nearer to desired transitions. Finally, neutral transitions
are not considered for the assignment of coefficients and levels.

6.3.3. Action selection
After classification, each vertex is labeled with a level and a coefficient that describe
its safety. This information can be used to assess the safety of an action, and thus
of a policy. In the event that two sets 𝑈 and 𝑁 are given, the safety s(𝜏, 𝑢) of edge
(𝜏, 𝑢) is given by

s(𝜏, 𝑢) = −
∑ ∈𝒢( , ) 𝑐(𝜏 ) ⋅ 𝜔 ( )

|𝒢(𝜏, 𝑢)| , (6.14)

where 𝑙 indicates the maximum level among all vertices, and where |𝒢(𝜏, 𝑢)|
indicates the number of vertices 𝜏 connected to 𝜏 through edge (𝜏, 𝑢). The param-
eter 𝜔 > 1 is used to modulate the conservativeness of actions: the greater the
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𝑈 𝑈 𝑈

Levels 𝑙

𝑈 𝑈 𝑈

Coefficients 𝑐

Figure 6.5: An example of computation of levels and coefficients. Levels are assigned progressively,
starting from vertices for which all transitions are undesired (top). Coefficients are assigned depending
on levels of connected vertices, and the higher the coefficient, the nearer undesired transitions. For
example, among the vertices, it can be seen how the vertex with is safer than the one with

and definitely safer than the one with .

Algorithm 6 Vertex Classification
1: Initialize
2: 𝒢, 𝑈, 𝒯, 𝒜 , max_iterations
3: lbl ← 0
4: set ← {𝜏|∀𝑢, (𝜏, 𝑢) ∈ 𝑈}
5: 𝑙(set) ← 0
6: labeled ← set

7: while lbl ≤ max_iterations ∧ labeled ≠ 𝒯 do
8: set ← 𝒢 (set, 𝒜 ) ⧵ labeled
9: lbl ← lbl+ 1
10: 𝑙(set) ← lbl

11: labeled ← labeled ∪ set

12: set ← {𝜏|𝑙(𝜏) = 0}
13: 𝑐(set) ← 1
14: lbl ← 1
15: for 𝑗 = {1, … ,max(𝑙(𝒯))} do
16: prv_set ← set

17: set ← {𝜏|𝑙(𝜏) = 𝑗}
18: for 𝜏 ∈ set do
19: 𝒢 ← 𝒢(𝜏,𝒜 ) ∩ prv_set
20: 𝑐(𝜏) ← ∑ (𝒢 )

|𝒢( ,𝒜 )|
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𝜏 𝑢

𝑙 = 2, 𝑐 =
𝑙 = 1, 𝑐 = 1

𝑙 = 2, 𝑐 =
𝑙 = 1, 𝑐 =

Figure 6.6: An example of safety computation for an edge ( , ) with four vertices. Given potential
and maximum level , the safety of action in is equal to .

value, the more the risk of decreasing a level is penalized, and therefore the lower
the safety of that action. If one or more sets of desired transitions 𝐷 are present
as well, it is

s(𝜏, 𝑢) =
∑ ∈𝒢( , ) (∑ 𝑐 (𝜏 ) ⋅ 𝜔 ( )) − 𝑐 (𝜏 ) ⋅ 𝜔 ( )

|𝒢(𝜏, 𝑢)| . (6.15)

Terms 𝑙 indicate the maximum level of vertices with respect to sets 𝐷 . Notice
that each set 𝑈,𝐷 has its own parameter 𝜔. Figure 6.6 provides an example of
safety computation as in Eq. (6.14). Edge (𝜏, 𝑢) connects to four vertices, with
levels 𝑙 equal to 2, 1, 2, 1 and coefficients 𝑐 equal to , 1, and . Assuming 𝜔 = 3
and a maximum level 𝑙 = 4, it is then

𝑠(𝜏, 𝑢) = −14 ⋅ (
1
2 ⋅ 3 + 1 ⋅ 3 + 23 ⋅ 3 + 13 ⋅ 3 ) = −938 . (6.16)

Looking at the different contributions, it can be seen that the transition to the black
vertex in Figure 6.6, with 𝑙 = 1 and 𝑐 = 1, is decisive for 𝑠(𝜏, 𝑢), accounting for
58% of the calculated value. This is in accordance with the definition of safety,
since from that vertex a critical transition would certainly follow, at the next time-
step (see Figure 6.5).

Computing safety s(𝜏, 𝑢) as in Eq. (6.16) can be used to evaluate the safety of
policies as well. For example, the agent can compare two policies based on the
average or on the worst-case safety of their edges. Otherwise, s could be used
to negate actions with safety inferior to an arbitrary threshold, or as an additional
weighting term for action-state values in more conventional algorithms, such as
Q-learning [6].

Comparing VC with the pruning approach of Chapter 3, several differences
emerge. First, pruning is more preventive with respect to undesired transitions,
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as it directly removes edges (actions) from the graph. As a result, however, prun-
ing does not guarantee to find feasible policies; also, if feasible policies are found,
these can be very conservative and restrictive towards the agent. Another im-
provement of VC is that, when pruning is adopted, much attention must be taken
in selecting the refinements Δ and the timestep Δ𝑡 used to discretize the dynamics,
since these parameters influence how the graph representation artificially acceler-
ates the dynamics of the system, as illustrated in Section 3.2.4. Since pruning is
a conservative process, the more the dynamics are accelerated, the more a graph
will be pruned starting from the same sinks. VC is less sensitive to this effect, since
actions are not directly removed from the action set.

The safety estimates s(𝜏, 𝑢) can be used to define a safest policy

𝜋 (𝜏) = argmax ∈𝒜 s(𝜏, 𝑢), (6.17)

which selects actions in order to minimize the chance of undesired transitions, from
which agent is repelled, and increase that of desired ones, which conversely attract
the agent. As it will be shown in Section 6.4.6, this effect of the policy on the MAV
agent resembles that of a potential field [89]. For this reason, 𝜔 are said to be the
intensities of the policy. The analogy with the field can also be of use to interpret
and set these parameters.

6.4. Vertex Classification for the MAV task
This section introduces the application of VC to an MAV task derived from the one of
Section 4.5.1, which constitutes a case study for the method. The state projection
adopted, the resulting agent implementation, and the interpretation of the levels
and of the coefficients are discussed here.

6.4.1. Task description
First, the MAV task is briefly summarized. Given state 𝑥𝑥𝑥 ∈ 𝒮 consisting of absolute
position 𝑥 , 𝑥 , heading 𝜒 and speed 𝑉, the available bounding model �̂� is

�̇� = �̂�𝑉 ⋅ cos(𝜒) ; �̇� = �̂�𝑉 ⋅ sin(𝜒) ; �̇� = �̂� ⋅ 𝑢 ;

�̇� = {
max(0, �̂� ⋅ 𝑢 ) if 𝑉 = 𝑉
�̂� ⋅ 𝑢 if 𝑉 ∈ (𝑉 , 𝑉)

min(0, �̂� ⋅ 𝑢 ) if 𝑉 = 𝑉
.

(6.18)

with 𝑉 = 0.1 and 𝑉 = 0.3 , (𝑢 , 𝑢 ) ∈ [−1 , 1], �̂� = [𝑞, 𝑞] = [17, 30] ∘ and
�̂� = [𝑎, 𝑎] = [0.1, 0.3] , �̂� = [𝜂, 𝜂] = [0.9, 1.1].

The task is performed in the walled room environment, already presented in
Section 4.5.1 (see Figure 6.7 and Figure 6.8). The MAV sensors detect obstacles
within 1.5m at an angle between −100∘ and 100∘ from the MAV facing. Contrary
to the same task in Section 4.5.1, here the MAV does not have to learn the position
of the goal; the direction to the goal 𝜒 is assumed to be known to the agent at
all times. The task of the MAV is
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Figure 6.7: Shape of elementary obstacles.
Figure 6.8: Example of a room environment for the
task.

1. to avoid collisions (safety constraint);

2. in the absence of obstacle, to fly towards the goal position (performance
constraint).

The VC method is applied to obtain a policy which satisfies the safety constraint. In
absence of impeding obstacles, the requirement of moving towards the goal is satis-
fied by opportunely selecting the projected envelope, as explained in Section 6.4.7.

6.4.2. Envelope definition and state projection
The OE corresponding to the task is formulated as

𝒮 = {𝑥𝑥𝑥| 𝑥 , 𝑥 ∈ [−8 , 8], 𝑉 ∈ [𝑉 , 𝑉], (𝑥 , 𝑥 ) ∉ obs}, (6.19)

where obs represents impassable locations such as walls and obstacles. The con-
dition on 𝑥 , 𝑥 represents the safety constraint.

The difficulty of partitioning the envelope derives once again from the limited
knowledge of the environment, in this case because obs is unknown. However,
the state projection of Section 4.3 can simplify the above task. The projection
𝜇(𝒮) = 𝒫 × 𝒫 , with

𝑝𝑝𝑝 = (𝑥 |c, 𝑥 |c, 𝜒| ) ∈ 𝒫 ; 𝑝𝑝𝑝 = (𝜌, 𝜃, 𝜓, 𝑉) ∈ 𝒫 , (6.20)

is a coordinate change from the absolute state (𝑥 , 𝑥 , 𝜒) to a relative state deter-
mined by 𝒫 with respect to a reference given by 𝒫 :

𝜌 =‖ (𝑥 − 𝑥 | , 𝑥 − 𝑥 | ) ‖;

𝜃 = arctan (𝑥 − 𝑥 |
𝑥 − 𝑥 | ) − 𝜒| ;

𝜓 =𝜒 − 𝜒| − 𝜃,

(6.21)
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(𝑥 | , 𝑥 | )

𝜌

𝜒|

𝜃

𝜓
𝑉

Figure 6.9: The new state description (𝒮) 𝒫 × 𝒫 , with ( | , | , ) and ( , , , ).

already applied in Section 4.14. Figure 6.9 shows this state projection: components
𝜃 ∈ [−100∘ , 100∘] and 𝜌 ∈ [0.1m , 1.5m] give the relative position in cylindrical co-
ordinates. As before, relative orientation 𝜓 ∈ [−𝜋, 𝜋] defines the heading together
with 𝜃. 𝑉 ∈ [𝑉, 𝑉] is again the absolute speed. As it can be seen, the components
of 𝑝𝑝𝑝 are either relative to or independent of 𝑝𝑝𝑝 . The projected OE, 𝒫 , is

𝒫 = 𝒫 = [0.1m , 1.5m] × [−100∘ , 100∘] × [−𝜋2 ,
𝜋
2 ] × [𝑉, 𝑉]. (6.22)

It must be noted that the constraint 𝜓 ∈ [− , ] is introduced arbitrarily to force the
MAV to eventually leave the envelope, possibly towards the goal. This constraint is
reproduced during flight by imposing 𝜓 = ± → 𝑢 ≠ ±1.

This particular projection is used to solve the original problem iteratively, as in
the previous corridor example. The underlying strategy consists in observing the
obstacles in proximity of the MAV and avoiding them while still flying towards the
goal; this is repeated until the goal is reached. This choice is motivated by the
presence of sensors which provide information on nearby obstacles.

6.4.3. Graph generation for the projected state
In order to apply VC, the envelope and the graph 𝒢 are necessary. As done in
Section 4.5.3, the projected envelope is split into a left side 𝜃 ∈ [−100∘ , 20∘] and
a right side 𝜃 ∈ [−20∘ , 100∘], due to the symmetry of the envelope and of the
dynamics.

The graph is then generated for the right side, i.e., 𝜃 ∈ [−20∘ , 100∘] of the
envelope. The obtained graph is valid in the left side as well, given that the correct
symmetry between tiles is applied. The following tiling, with 12 intervals for 𝜃 ∈
[−20∘ , 100∘], 12 for 𝜌 ∈ [0.1m , 1.5m], 7 for 𝜓 ∈ [− , ], and 4 for 𝑉, is applied:
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𝒯 = {[−20∘ , −10∘] , ⋯ , [90∘ , 100∘]}×

× {[0.1m , 0.1m + 1.4m12 ] , ⋯ , [1.5m − 1.4m12 , 1.5m]}×

× {[−𝜋2 , −
𝜋
2 +

𝜋
7 ] , ⋯ , [𝜋2 −

𝜋
7 ,

𝜋
2 ]}×

× {[0.1ms , 0.15
m
s ] , ⋯ , [0.25ms , 0.3

m
s ]}.

(6.23)

Proceeding with the discretization, control action is reduced to𝒜 = {(𝑢 , 𝑢 )|𝑢 ∈
{−1; 0; 1}, 𝑢 ∈ {−1; 0; 1}}, and Δ𝑡 = 0.2s is selected.

6.4.4. Obstacle individuation and beliefs
It is assumed that the obstacles can be perceived or at least estimated by the agent
through its sensors. With this information, two possible approaches are available.
One approach consists of generating the graph and solving the projected envelope
problem using the in-flight sensor readings. By detecting or estimating the ob-
stacles, the “occupied” tiles 𝜏 of 𝒯 are detected. Then, those edges (𝜏, 𝑢) that
transition to 𝜏 are assigned to the list of undesired transitions 𝑈 upon which VC
is performed. The refinement of the tiling compatible with this approach depends
on how fast the agent can compute the VC weights online. The second approach
is to pre-compute the VC weights for a limited amount of envelopes, i.e., of beliefs,
and then adopt the weights of the belief that resembles current sensor readings
the most.

Both approaches present strengths and drawbacks. Assuming that the sensor
information is reliable, the first strategy reduces the number of occupied tiles 𝜏 to
a minimum and is therefore less restrictive and more precise in the weight assign-
ment. However, if the refinement of the tiling itself is low, because of the necessity
of computing the weights online, this advantage can be lost. The major drawback
of the second approach lies in its beliefs. The more these are representative and
comprehensive, the more effective will be the approach. In this chapter, VC is
applied according to the second approach.

In order to create the set of beliefs, sensor information is approximated as the
five sectors of Section 4.5.3; these are 40∘ wide each, so that the two sides, left and
right, contain respectively the 1 , 2 , 3 sectors and the 3 , 4 and 5 sectors
of Figure 6.10. Blocked sectors might contain obstacles, empty sectors cannot. The
sector within which lies the direction to goal is the goal sector. This provides a total
of 3 ⋅ 2 = 24 beliefs, in terms of blocked and goal sectors.

6.4.5. Transition desirability for MAV task
This section individuates the desirability of the different transitions of the envelope.
One possible critical transition of 𝒫 is for 𝜌 > 1.5m. If, at the moment of crit-
ical transition, 𝜃 lies in a blocked sector, this transition is undesired: (𝜏, 𝑢) ∈ 𝑈.
Otherwise, if 𝜃 lies in an open sector, it is (𝜏, 𝑢) ∈ 𝐷 . If 𝜃 lies in the goal sector,
and this is not blocked, (𝜏, 𝑢) is also added to a second list of desired transitions
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Figure 6.10: The sensed region is split into sectors numbered from to . In this example, sectors ,
and are blocked as they contain obstacles. Between the two sides, i.e., sectors ( , , ) and ( , , ),

the agent selects the right one to navigate, since it contains the least amount of blocked sectors. In
addition it also contains the direction to goal .

𝐷 . If a critical transition occurs for 𝜃 < −20∘, and if 𝜌 ≥ 0.8m, this edge is also
added to 𝑈. Note that the MAV is not be considered to violate the envelope if it
enters or flies within a blocked sector, even though this might contain an obstacle
and therefore lead to a collision. Whether a sector is blocked or not is relevant only
if the constraint on 𝜌 is violated. This is apparently in contrast with the definition
of critical transition, since collisions can happen inside a blocked sector, and not
only at the border. However, a few considerations apply. First, the tiles within
a blocked sector are penalized with the suggested implementation as well, since
they are more likely to lead to an undesired transition, as it is reflected in their
levels and coefficients. Second, consider the alternative solution of indicating every
transition to a blocked sector as critical. If VC is applied under this condition, the
tiles belonging to a blocked sector would receive level 𝑙 = 0 and coefficient 𝑐 = 1.
This would effectively indicate that all vertices of that sector are equally dangerous
for the agent. This is not beneficial for assessing which action is the safest, in the
event that the agent enters a blocked sector. Instead, with the chosen conditions,
the agent receives information from the levels and coefficients of the reachable tiles
on how to re-enter a free sector.

6.4.6. Vertex Classification
As a last step, VC is applied, once for each belief, as described in Algorithm 6,
setting the maximum number of levels for all sets to nine: 𝑙 = 𝑙 = 𝑙 = 9.
Each unoptimized VC for the case study requires between 10 and 15 minutes1.
Intensities 𝜔 and 𝜔 are empirically selected respectively as 9 and 8.9. Repulsive
intensity 𝜔 is chosen marginally higher than 𝜔 to ensure the MAV is repelled

1on an Intel Core i5-3360M CPU, 2.80GHz
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from blocked sectors even when these are adjacent to attractive, empty sectors, in
accordance with the field analogy. Intensity 𝜔 is then selected as 5: this results
in a moderate attraction on the MAV towards the goal direction.

The safest policy, obtained with these weights according to Eq. (6.17) is tested
for the 24 sector combinations, and for 27 dynamics realizations. These are ob-
tained by exhausting the combinations between

(𝑞 ∈ {𝑞,
𝑞 + 𝑞
2 , 𝑞} , 𝑎 ∈ {𝑎, 𝑎 + 𝑎2 , 𝑎} , 𝜂 ∈ {𝜂,

𝜂 + 𝜂
2 , 𝜂}) . (6.24)

The simulations are initialized with 𝜃 = 0∘, 𝜌 = 0.1, 𝜓 = 0∘, while the speed is
randomly initialized as 𝑉 ∈ [𝑉, 𝑉]. Results are presented in Figure 6.11, showing
four beliefs with less than two blocked sectors, and in Figure 6.12, with two or more
blocked sectors. Blocked and empty sectors are indicated as such, and sectors
containing or nearest to 𝜒 are indicated as TARGET.

The agent’s safest policy 𝜋 results predominantly in transitions to target when
less than two sectors are blocked, with the exception of Figure 6.11c. In this
case, the agent attraction towards the target sector is counteracted by the nearby
undesired transition of the blocked sector, as well as by the undesired transition 𝜃 <
−20∘. As a result, only one realization reaches the target, while the others deviate
towards an empty set. A similar behavior can be observed in Figure 6.12, where the
beliefs with more than one blocked sector are showed. It can be seen that, in these
cases, the policy results in undesired transitions as well: nine in Figure 6.12a, and
three in Figure 6.12c. Regardless of the specific amount of sectors, the behavior of
the agent following 𝜋 is as if the sets 𝐷 and 𝑈 emanate potentials: the agent is
attracted to empty sectors, and specifically to the target sector, while at the same
time being repelled by the blocked ones.

6.4.7. Implementation of state projection
This section presents the implementation of the safest policy for the MAV task,
derived from the implementation of Section 4.5.3. At the start of each episode,
the MAV and the goal are positioned at opposite corners of a randomly generated
room. Speed and heading of the MAV are initialized randomly: 𝑉 ∈ [0.1 , 0.3 ],
𝜒 ∈ [−𝜋 , 𝜋]. Then, a model realization 𝒟: (𝜂 ∈ �̂�, 𝑞 ∈ �̂�, 𝑎 ∈ �̂�) is randomly
selected, representing the actual dynamics of the MAV.

The agent controls the MAV according to 𝜋 . However, as is the case in Sec-
tion 4.5.3, this policy is defined only for three sectors. Therefore, before applying
𝜋 , the agent chooses the side of flight: either the right-side (sectors 3, 4, 5, see
Figure 6.10) or the left-side (sectors 1, 2, 3). As in Section 4.5.3, the decisive factor
in this application is the amount of blocked sectors: the selected side is the one
which contains the least amount of blocked sectors. In the event that the two sides
contain the same number of blocked sectors, the chosen side is the one containing
the goal direction 𝜒 .

Once the side of flight is selected, the state is projected according to Eq. (6.20),
and Eq. (6.21) is adopted. Indicating as 𝑥 (𝑘 ), 𝑥 (𝑘 ) and 𝜒(𝑘 ) the absolute
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Figure 6.11: The four beliefs with the least amount of blocked sectors. It can be seen that the MAV is
able to avoid undesired transitions. The repulsive/attractive nature of the sectors can be observed.

position and heading of the MAV at time of projection 𝑘 , 𝑝𝑝𝑝 ∈ 𝒫 is chosen as

𝑥 | = 𝑥 (𝑘 ) − 0.1 cos 𝜒 ; 𝑥 | = 𝑥 (𝑘 ) − sin 𝜒 ; 𝜒 = 𝜒(𝑘 ). (6.25)

In this way, every time that the state is projected, the agent is initially in 𝑝𝑝𝑝 (𝑘 ) =
(0∘, 0.1m, 0∘, 𝑉). This corresponds to the initial condition of the test trajectories of
Section 6.4.6.

The sensor information, in terms of blocked and goal sectors, at the time of pro-
jection determines the belief of the agent. It then implements the policy obtained
through VC for the current belief as its safest policy. In the event that the direction
to goal is not contained in the side of flight, the goal sector is selected as either
sector 2 or 4, depending on the side. The action (𝑢 , 𝑢 ) = 𝜋 (𝜏) is then applied,
according to current scenario, for the duration of a timestep Δ𝑡 = 0.2s, observing
the constraint on 𝑢 so that 𝜓 ∈ [− , ]. In the event that the left side is selected,
since 𝜋 is defined only for the three sectors of the right side, the projected state
is mirrored: 𝜃 ← −𝜃, 𝜓 ← −𝜓. The corresponding action 𝜋 (𝜏) is mirrored as well:
𝑢 ← −𝑢 .

As detailed in Section 4.5.3, the sensor information that the MAV obtains in flight
is used to force a new projection as the observed environment changes, e.g., as
new obstacles are detected. At each timestep, the status of the three sectors in
the side of flight is compared with that of the previous. If the belief of the agent
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Figure 6.12: The four beliefs with the most amount of blocked sectors. It can be seen that some
undesired transitions occur: 8 out of 27 transitions of scenario (a), and 3 out of 27 of scenario (c).

is the same, i.e., if sectors that were previously blocked or goal sectors are still so,
the state is not projected, and agent continues to follow its policy 𝜋 . Conversely,
if the belief changes, the previous policy is discarded, a new side of flight is se-
lected, the reference {𝑥 | , 𝑥 | , 𝜒| } is replaced, and a new safest policy is derived.
Figure 6.13 shows an example. The state is projected again whenever 𝜌 ≥ ,
as in Section 4.5.3. This is done to smoothen the MAV trajectory and to facilitate
heading changes. The episode ends if the MAV either collides with an obstacle or
a wall, or if it reaches within 1m from the goal.

6.4.8. Results with VC safest policy
This section presents the experimental results obtained through simulations of VC
applied to the MAV task. Figure 6.14 shows typical results when implementing
𝜋 . It can be seen how the MAV manages to avoid obstacles, and how the attrac-
tive/repulsive effect of sectors is conserved when the agent is in the room environ-
ment, resulting in a reactive behavior. It can also be noted how the MAV repeatedly
performs small turns even in absence of nearby obstacles. This is in accordance
with the trajectories of Figure 6.11 and Figure 6.12.

Figure 6.15 shows the presence of local minima, a phenomenon typical of path
planning with artificial force field (AFF) methods [89]. In AFF methods, local minima
are the result of the attractive force of the goal balancing the repulsive forces of
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(a) (b)

Figure 6.13: An example of the policy update procedure. In (a), the MAV agent selects the three sectors
on the right, as no obstacle is perceived. In (b), however, an obstacle in the middle sector, previously
free, is detected. Previous policy is then discarded and projection , is updated. Now the MAV
agent switches to the left side, as it is free of obstacles.
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Figure 6.14: Two sample trajectories for the MAV inside the unknown room environment. The dot
represents the starting position of the MAV, while the star is the goal. In both cases the MAV reaches
the goal.
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Figure 6.15: In these examples, the MAV does not reach the goal as if caught in a potential local
minimum.

the obstacles, therefore interrupting motion or causing oscillations. Here, these
occurrences are not due to the presence of opposing forces, but consist of a dynamic
process of diversion from the goal given by the obstacles, and successive attraction
due to the goal. As a result the MAV continuously turns towards the goal, and then
away from it. Solving this problem is beyond the immediate scope of this chapter;
the only observation that will be made here is that this kind of occurrences confirms
the analogy between VC and AFF approaches.

Lastly, a different setting is simulated in order to confirm the independence
of the method from the specific environment, and from the specific realization
𝒟 = (𝜂, 𝑞, 𝑎). In this setting, the MAV and the goal are initially positioned in
two arbitrary locations of a randomly generated room environment, and control
is performed as before. However, every ten state projections, the goal is randomly
repositioned, and the current model realization is replaced by a new random tuple
(𝜂, 𝑞, 𝑎). The experiment is repeated for multiple episodes, with a maximum of 500
state projection per episode; after five episodes, a new room environment is gener-
ated, and a new episode starts as described above. A total of 1.06 ⋅ 10 time-steps
are simulated this way, equal to approximately six hours of flight. In spite of the
differences in environment, initialization, and model realization, no collisions have
been observed. Two sample trajectories obtained during the experiment are shown
in Figure 6.16. As it can be seen, the behavior of the MAV is in accordance with the
one previously shown.

6.5. Conclusions
This chapter presents how to use the state projection of Chapter 4 in order to sim-
plify the application of the graph methods of Chapter 3. The operational envelope
(OE), necessary to build a graph, is replaced by a projected envelope, which can
be of lower dimensionality, easier to define in terms of projected states, or both.
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Figure 6.16: Two extracts from the second experimental runs. The dot and the diamond represent initial
and final positions. It can be seen how replacing the realization of the model does not substantially alter
the behavior of the controlled MAV.

A practical example is provided, showing how a UAV navigation problem can be
solved sequentially by iteratively projecting the state.

Furthermore, this chapter introduces Vertex Classification (VC), a method to
evaluate policies similar to graph pruning. VC assigns levels and coefficients to the
vertices of the graph, which can then be used to estimate and assess the safety
of actions, as well as of policies. When compared to pruning, VC is less restrictive
towards the obtainable feasible policies, and is less sensitive to the choice in the
discretization parameters adopted during graph generation.

The chapter presents then an application of VC to an MAV navigation task, similar
to the one of Section 4.5.1. The MAV must navigate within a room, which presents
obstacles, and reach a given goal position. The case study shows encouraging
and attractive results. The agent, adopting the safest policy of VC, achieves safe
flight without collisions, regardless of its simplified beliefs, of the variability of its
environment, and of the uncertainty in its prediction model. In particular, applying
the safest policy yielded by VC results in trajectories that are analogous to those
obtainable by subjecting the MAV to a potential field with repulsive obstacles and
attractive goals. Summarizing, VC can prevent undesired transitions, including fatal
occurrences, in highly uncertain environments and in presence of limited sensor
information. Furthermore, the use of graph methods to discretize and represent
policies makes it a viable approach for UAVs with limited computational capabilities.
Therefore, VC appears as a possible method to address all three challenges of
Safety, Robustness, and Online efficiency.



7
Discussion and conclusions

This chapter summarizes the content of the entire dissertation, and discusses
how the methods proposed in the previous chapters address the three main
challenges of safety, of online efficiency, and of robustness. Then, the
main findings and the final conclusions derived from this research on safe,
online, robust RL exploration for UAV agents are presented. Finally, the chap-
ter suggests several fields of continuation and improvement on the topic.
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7.1. Discussion
This dissertation began with stating the three challenges of applying RL techniques
to online exploration for UAVs. The challenge of safety consists in avoiding harm to
the UAV or to the environment during trial-and-error online exploration. The agent
has only a limited time to evaluate the safety of its own actions during real-life,
online tasks, which constitutes the challenge of online efficiency. The challenge
of robustness means that learning in a safer replica of the environment, either
supervised or simulated, is not always reliable due to the discrepancy between the
true environment and the replica. The goal of this thesis is then summarized as
follows:

To investigate the problem of online, safe, robust exploration for aerospace
platforms, and to develop potential solutions to the problem of unsafe blind
search in accordance with the properties of adaptability, autonomy and
model independence of reinforcement learning.

The objective of this thesis is achieved in two parts. In Part I, three different
key approaches are developed. The Heuristicmethods of Chapter 2 address directly
the challenge of safety. The Graph methods of Chapter 3 mitigate the challenge
of online efficiency. The Hierarchical methods of Chapter 4 provide an answer to
the challenge of robustness. In Part II, two hybrid methods are devised that aim
at combining the three key approaches. The safety metrics of Chapter 5 merge
the graph-based policies of Chapter 3 with the risk perception and the metrics
of Chapter 2. Vertex Classification, presented in Chapter 6, adds the hierarchical
state projection of Chapter 4 to risk perception and graph-based policies, therefore
combining all three key approaches.

7.1.1. Addressing the challenge of safety
Arguably, learning from experience is the most prominent feature of RL. This allows
agents to learn optimal and non-trivial policies autonomously, i.e., without guidance
from a human operator, and regardless of whether a model of the environment is
provided. The inherent consequence of this approach, however, is that the agent
must attempt suboptimal actions at least once in order to learn that these should be
avoided. This is unacceptable when suboptimality entails actions that can damage
the UAV or its surroundings. In order to avoid these fatal occurrences during online
exploration, the agent must be able to assess the safety of each of its actions. This
is the challenge of safety.

Chapter 2 investigates how this assessment can be made by UAV agents. The
presence of two prerequisites is assumed. The first prerequisite is risk perception
in order to discover the set of fatal states, on the assumption that this is time-
invariant. The second prerequisite is a bounding model which can predict, albeit as
an overapproximation, how the state of the environment will change. Suggestions
on how to fulfill these two prerequisites for a UAV agent are presented.

The Safety Handling Exploration with Risk Perception Algorithm (SHERPA) prop-
agates a given command, i.e., a sequence of actions, and observes the resulting
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trajectory overapproximation given by the bounding model. The agent first verifies
that this is entirely within the safe region of the state space, as provided by the
risk perception. Then, it checks whether the endpoint of the trajectory is within a
predetermined distance from any previously visited state, or from any equilibrium
point. If the command satisfies these two conditions, i.e., it is a backup, the agent
is guaranteed not to cause a fatal occurrence during the trajectory; additionally, the
more the endpoint is closer to a visited state, the more the agent is likely to find safe
actions during the following iteration. The algorithm is validated in simulation on
a simplified quadrotor task, and compared to a potential-based method. SHERPA
is found to result in a safer and more reasonable behavior than the one obtained
with the potential-based method, as well as to be more robust to differences in the
UAV model uncertain parameters.

Therefore, SHERPA provides the agent with an assessment procedure to deter-
mine the safety of actions, thus answering the challenge of safety. SHERPA does
not require the presence of an external operator or of a previously defined safe pol-
icy, and it does not require the agent to be reinitialized episodically, using samples
of the state trajectory instead. Furthermore, SHERPA can be utilized in combination
with any exploratory policy (e.g., with policy search). As a result, SHERPA increases
the safety of exploration without penalizing the autonomy and the adaptability of
RL methods.

While SHERPA addresses the challenge of safety, the same cannot be said for the
challenge of online efficiency. Depending on the complexity of the environment’s
dynamics, backup assessment can be computationally intensive and potentially un-
feasible for UAV applications. This is partially mitigated by OptiSHERPA, also intro-
duced in Chapter 2. This successor algorithm reformulates the safety assessment
as a receding horizon optimization, with the addition of the distance and evasion
metrics. OptiSHERPA selects, among a finite set of candidates, the action which
optimizes its metric. This algorithm is implemented in simulation on a linearized
model of a fighter aircraft. The algorithm is found to constrain the evolution of the
system from the equilibrium when implementing the distance metric, and to avoid
unsafe regions of the state space when implementing the evasion metric.

7.1.2. Addressing the challenge of online efficiency
Online computational efficiency is an often overlooked requirement of RL algo-
rithms, in favor of other indicators that quantify the optimality of learning, such
as convergence time or state space coverage. This tendency can be traced back to
earlier applications of the method, e.g., gridworlds [71] and games [122], as well as
in many widespread testbeds, such as the Mountain Car problem [123]. However,
computational efficiency acquires a primary role in online safe exploration. Before
an action can be attempted, the agent must assess its safety, e.g., by looking for
backups. If the assessment procedure is not sufficiently fast, the agent might not
be able to control the system in real-time, or might have to attempt unscrutinized
and possibly fatal actions. This constitutes the challenge of online efficiency.

Chapter 3 addresses this challenge by introducing a graph representation of
the bounding model dynamics. An operational envelope (OE) is predefined which
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represents the desired conditions of the environment. Then, three discretizations
are applied in terms of state, of actions, and of time, to obtain the hypergraph in
the form of look-up matrices. These allow to overapproximate the reachable set of
the environment in a computationally efficient way.

The trajectory predictions needed for safety assessment, e.g., the interval prop-
agations required for backups searches, can be replaced by checking an index of
the look-up matrices, which is computationally less intensive. Furthermore, the
proposed equispaced tiling adopted for the state discretization significantly reduces
the complexity of the graph generation, which is also scalable with the tiling re-
finement. This allows one to extend the method to OEs that are obtained online,
in addition to those that are known a-priori, by adopting a sufficiently coarse re-
finement. The caveat in this case is that the more a tiling is coarse, the less the
obtained trajectory approximations are reliable. Given the above considerations,
graph methods are found to mitigate the challenge of online efficiency.

Concerning the challenge of safety, Chapter 3 introduces also graph pruning,
which is a further approach for safety assessment. This method identifies and
prunes the sinks of the graph, i.e., those vertices that are bound to violate the OE.
The pruned graph, which does not contain sinks, can be used to assess the safety
of actions, in the event that the OE is a subset of the safe state space. Furthermore,
this assessment can be extended to whole policies as well.

Graph pruning is tested in simulation on three variants of a simplified UAV nav-
igation task. These confirm that, when the envelope is time-invariant, the method
is reliable and actions are safe. In the third variant, however, the UAV presents
an envelope that changes during online exploration. As soon as a new envelope is
assigned, the previous graph is pruned further to assess safety in the new environ-
ment. Afterwards, a new graph is generated and pruned. Both these procedures
are shown to be applicable to online exploration when the change in the environ-
ment, and thus in the envelope, is sudden but moderate.

7.1.3. Addressing the challenge of robustness
Learning a task off-line in a replica of the environment constitutes an alternative to
online learning in the actual environment. This alternative can be considered to be
safe if the replica is either a simulation or a real-life artificial or supervised environ-
ment modified to prevent dangers. However, policies learned within replicas are
likely to suffer from the “reality gap”, i.e., to be inefficient or unsafe due to the differ-
ences between the replica and the real environment. This constitutes the challenge
of robustness, and can result from modeling uncertainties, from misrepresentation
of the environment, or from both.

Chapter 4 starts with an investigation of how to apply temporally extended
actions (TEAs) for safe exploration, and introduces the field of Safe Hierarchical
Reinforcement Learning (SHRL). TEAs permit state abstraction, which results in
policies that are more robust to uncertainties in the environment, addressing the
challenge of robustness. Additionally, they allow to embed designer’s knowledge
and to restrict the set of discoverable policies, which contributes to mitigate the
challenge of safety. The main contribution of Chapter 4 consists in the Virtual
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Safety Training (VST) strategy. This method allows to train HRL agents off-line in
the presence of uncertainties on the environment as well as in the model. First,
state projection is applied to obtain one projected state that is independent of or
relative to the remaining ones. Then, a belief set is created to approximate the
projected fatal state space. Learning can then be performed off-line.

The strategy is applied to two very different test cases. The first one is a sim-
ulated goal-finding task. The discrete environment consists of a ground robot with
deterministic dynamics placed within a maze. Due to the deterministic dynamics,
and to the discreteness of the environment, which allows an exhaustive belief set,
the policy learned during VST is found to be entirely safe, in addition to enhance ex-
ploration with respect to other HRL algorithms. The second test case also consists
in a goal-finding task within a cluttered environment. A non-exhaustive belief set
is obtained by abstracting the sensor reading through sectors, while the uncertain
dynamics are taken into account by learning a weighted action-value function via
Monte Carlo simulations. Even though collisions are observed, the resulting SHRL
agent is found to adopt cautious behavior, avoiding densely cluttered areas, and to
outperform a flat agent with more extensive and informative exploration.

By applying VST, the SHRL agent learns off-line policies for one or more of its
constituent machine, option or subtask (MOS), after which it explores the previ-
ously unknown actual environment, in order to learn a hierarchically optimal policy.
Depending on the accuracy of the MOS belief set, and on the uncertainty of the
training model, it is observed that the UAV agent performs online exploration that
is safe, or at least safer than an equivalent flat policy. Thus VST, as part of SHRL,
addresses the challenge of robustness.

7.1.4. Addressing multiple challenges: hybrid methods
While the key methods of Part I are found to address the challenges of safety,
online efficiency and robustness, the hybrid methods of Part II merge the individual
contributions of the key methods.

The first method, introduced in Chapter 5, rests on three elements: a warning
function, a graph representation of the dynamics, and one or more safety metrics.
The warning function, which is a form of risk perception, and the graph formulation
derive respectively from Chapters 2 and 3, while the safety metrics represent an
original contribution of the chapter. These are designed to accommodate the tile
discretization of the state and the trajectory prediction via graphs. The operative
metric (OM) assigns weights to tiles depending on the return of the warning function
and on whether they have been visited. The proximity metric (PM) can instead be
seen as a tile equivalent of the distance metric of Chapter 2. The action of the
agent is selected via a receding horizon optimization, where the optimality is given
by either the OM or the PM.

Two tasks are simulated to test the metrics. The first task consists of flying a
UAV in an indoor environment with no obstacles for a set amount of time. The agent
utilizing the OM manages to complete all simulations without colliding, while at the
same time exploring the room. Depending on the initial conditions, the agent with
the PM is found to execute iterative maneuvers, e.g., constant turns, which are safe
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but constrain the exploration. In the majority of episodes, however, the PM does
not manage to prevent collisions in this task. The second task entails controlling a
fighter aircraft, whose model is linearized, via elevator deflection. The PM is found
again to constrain the evolution of the system by keeping the flight angle angle
approximately zero, which results in longer episode durations when compared to
the OM. Summarizing, the OM is observed to be safer when the prediction horizon
is sufficient enough to account for the insurgence of risks; otherwise, the restriction
imposed by the PM is found to provide safer exploration.

The use of safety metrics combines the contributions of Chapters 2 and 3. The
use of a warning function (which is a form of risk perception) provides a way to
identify and avoid fatal states. Additionally, the PM increases safety of exploration
in the presence of lead-to-fatal states, similarly to the distance metric of Chapter 2.
The metrics contribute thus to address the challenge of safety. Due to the similarity
between the two elevator deflection tasks of Chapters 2 and 5, it is possible that
the introduction of a reactive safety metric, akin to the evasion metric of Chapter 2,
might reduce fatal occurrences. Additionally, the graph formulation of the dynamics
and of the metrics, inherited from Chapter 3, guarantees a low and a-priori known
computational complexity of the action selection, thus addressing the challenge of
online efficiency.

Chapter 6 introduces Vertex Classification (VC), a hybrid method which takes
contributions from all key approaches. In order to apply VC, several steps are
necessary. First, the state is projected into a representation that is independent
of or relative to the other projected states, as detailed in Chapter 4. Then, a
subset of the projected space is selected as the OE of the agent, and is partitioned
into a tiling in order to obtain a graph representation of the projected dynamics,
in accordance with Chapter 3. During graph generation, actions that violate the
envelope constraints are identified as critical transitions, and classified in terms of
desirability. Desired transitions are those that contribute to reach the goal of the
task, e.g., to reach a goal destination for the agent, while undesired transitions are
those that increase the chance of a fatal occurrence, according to risk perception
of Chapter 2. Then, vertices are assigned a level and a coefficient. After assigning
an intensity to each critical transition, levels and coefficients can be combined into
a final weight quantifying the safety of state-action couples.

VC has major resemblances with its predecessor method, graph pruning, in that
it can be used to evaluate RL policies, e.g., by preventing actions whose safety is
below a given threshold. However, it is less sensitive to discretization parameters.
Additionally, VC always individuates a safest policy. The method is applied in simu-
lation to an MAV navigation task, essentially the same presented in Chapter 4. The
sector abstraction is applied again in order to define the desirability of critical tran-
sitions. All episodes generated by the safest policy are found to be collision free,
regardless of environment, state initialization and model realization. Analogies are
observed between the behavior of the agent implementing the safest policy and
what could be expected from the presence of a potential field exerting forces on
the MAV. For example, it is observed that the agent can get stuck in what appear
to be local minima, due to the attraction of the goal and to the repulsion of the
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obstacles.
Results show that VC is a possible solution to the three challenges of safety,

of robustness, and of online efficiency. Fatal occurrences, observed through risk
perception and accounted for in the belief set, are avoided through the repulsive
forces generated by undesired transitions, thus addressing the challenge of safety
during online exploration. State projection is able to account for the uncertainty in
the environment and in the model, as shown by different episodes of the MAV task,
therefore answering the challenge of robustness. Finally, the graph formulation of
the dynamics, and the assignment of weights to vertices, allows to assess safety
for the current policy without propagating the dynamics online. Due to its low
computational complexity, VC can account for the challenge of online efficiency as
well.

7.2. Final conclusions
With respect to the goal of safe, online, robust RL exploration, and to the three
main challenges to the goal, the following conclusions are drawn based on the
methodologies and on the results of this dissertation.

On the challenge of safety
1. In order to prevent fatal occurrences, an agent must be able to perceive
whether or not a neighborhood of the current state of the environment inter-
sects the fatal state space.

2. In order to prevent fatal occurrences, an agent must be able to predict or
overestimate the state trajectory corresponding to a given action sequence.

3. Safe policies can be discovered autonomously and online by the agent in the
form of backups, in absence of a-priori known ones.

4. Utilizing a receding horizon optimization to define the policy of the agent, with
a metric penalizing deviation from visited states, has the effect of constraining
the evolution of the environment.

On the challenge of online efficiency

5. Precomputing an overapproximation of state transitions within a graph for-
mulation makes safety assessment feasible for online exploration.

6. A policy compatible with a pruned graph is guaranteed to be feasible with
respect to the given operational envelope, in the event that this envelope is
time-invariant.

On the challenge of robustness

7. Safe policies learned off-line through state abstraction are likely to be safe
when applied to uncertain environments, as long as the uncertainty is also
accounted for in the abstraction.
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8. Policies of machines, options or subtasks, that are learned off-line in a pro-
jected state space and via state abstraction, prevent initial blind search for a
Hierarchical Reinforcement Learning agent.

9. Safe online exploration is possible, if primitive actions are executed only by
a machine, option or subtask for which a safe policy is learned off-line, de-
pending on the exhaustiveness of the belief set and on the uncertainty of the
model.

On safe online robust exploration

10. An unmanned aerial vehicle reinforcement learning agent can avoid unsafe
blind search in unknown fatal environments, by initializing its policy off-line
via state projection and state abstraction, in combination with a computa-
tionally efficient representation of the environment and a belief set of fatal
occurrences based on risk perception.

7.3. Recommendations and future work
This section presents recommendations for the UAV and machine learning commu-
nities on future work concerning safe exploration for UAVs, in light of the limitations
and simplifications adopted throughout this dissertation. Finally, the societal impact
of this dissertation is briefly discussed.

For the UAV community
All the methods presented in this dissertation are tested and validated exclusively
through simulations. As a result, sensor noise and environmental effects are not
considered. Modeling such additional elements and in general improving the quality
of the validation models would constitute a step towards a more realistic implemen-
tation of the methods, as would be an application of these on real-life UAVs.

The theoretical background of this dissertation entails a general and compre-
hensive definition of fatal occurrences. These consist of those state transitions that
affect negatively the exploration, and that cannot be compensated by any amount of
later reward. However, in the presented applications, fatal occurrences are almost
consistently limited to collisions. While these are arguably the main safety-critical
concerns of a UAV agent, other safety or mission-critical occurrences, such as bat-
tery depletion or intrusion in restricted airspace, could be devised when considering
more complex UAV tasks. The investigation of these occurrences would benefit the
applicability of the proposed methods.

As a related topic, how to obtain risk perception depends on the specific fatal
occurrences of a given task; suggestions are presented in Chapter 2. In the event
that fatal occurrences are limited to collisions, risk perception can be provided by
proximity sensors, such as sonars. However, more complex occurrences would
require more refined sensors, or combinations of sensors, in order to obtain risk
perception. Addressing this necessity, by investigating such sensors and sensor
combinations, would also contribute to the applicability of the method.
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For the machine learning community
Several methods presented in this dissertation alter or constrain the policy of the
UAV agent. For example, SHERPA acts as a filter on the exploratory action, while
VC assigns a degree of safety to actions depending on the predicted vertex tran-
sition. These restrictions are not integrated within the RL framework. While this
is partly a design choice, in order to avoid conflicting rewards, it also makes it dif-
ficult to validate the convergence and optimality of the learned policy. Also, this
dissertation does not examine how a policy learned with one of the proposed meth-
ods can be used independently after convergence. Investigating how to guarantee
convergence and independence of the agent’s policy appears as a promising and
multidisciplinary topic that could improve the impact of this dissertation’s methods.

One of the core methodologies of this dissertation is Interval Analysis [88] (IA).
With this method, uncertainties can be represented, propagated and estimated in
a simple, efficient, and reliable way. However, IA does not yield probabilities for
specific state transitions within the overestimation of the state trajectory, i.e., all
the estimated trajectories are considered equiprobable. Furthermore, the depen-
dency problem means that predicted trajectories tend to overapproximate the ac-
tual trajectories more poorly with the increase of integration time. Considering the
limitations above, an investigation of different representations and propagation of
uncertainties is likely to improve the applicability of the proposed methods. Finally,
a different uncertainty representation could increase the efficacy of these methods
with respect to the challenge of robustness.

Societal impact of this dissertation
Automation constitutes a driving innovation in aerospace. In particular, UAVs are
foreseen to play an important role in future airspace, and to be increasingly em-
ployed in several applications, from surveillance to deliveries. However, automa-
tion for UAVs also represents a challenge for the aerospace community, because
of the effort required to design autonomous controllers, and due to the difficulty in
obtaining high-fidelity models of these platforms. Among other machine learning
methods, RL can be instrumental in overcoming this challenge, making it possible
to discover optimal policies in an autonomous, adaptable and robust way.

However, RL does not come without its own challenges when UAV applications
are considered: its trial-and-error nature must be accounted for when considering
environments in which exploration might cause damage to the UAV, to its surround-
ings, or to bystanders. In this dissertation, the challenges of safety, of online effi-
ciency, and of robustness are individuated and addressed with multiple approaches,
in order to increase the applicability of RL in online tasks. Thus, the proposed meth-
ods constitute a step towards enabling the use of RL agents for UAVs, and therefore
to make aerospace safer, more autonomous, and more efficient.
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Samenvatting

Safe Online Robust Exploration for
Reinforcement Learning Control

of Unmanned Aerial Vehicles

Tommaso Mannucci

De luchtvaart is recentelijk getuige geweest van een ongekende toename in
de interesse voor onbemande luchtvaartuigen (UAVs). Met de ontwikkelingen op
het gebied van miniaturisatie en goedkope hardware, variërend van printplaten tot
sensoren, wordt de productie van UAVs steeds goedkoper en worden prestaties en
vliegtijd van UAVs almaar groter. Als gevolg hiervan hebben “drones” hun intree
gemaakt in de hobby-markt als een betaalbaar speelgoed en betrouwbaar werktuig.
Bovendien doen verschillende bedrijven onderzoek naar het inzetten van UAVs voor
kosteneffectieve diensten, zoals distributie en bezorging.

Daarentegen zijn regelsystemen voor UAVs nog steeds gebaseerd op de klassieke
regeltheorie, zoals PID’s en robuuste regeltheorie. Deze regelsystemen zijn be-
trouwbaar bij modelonzekerheden, welke vrij gebruikelijk zijn bij UAVs en in het bi-
jzonder bij micro onbemande luchtvaartuigen (MAVs). Echter, een praktisch nadeel
van deze technieken is dat het afstemmen, testen en modeleren tijdens de on-
twerpfase veel tijd in beslag nemen. Het vooruitzicht op geheel autonome UAV
taken, zonder supervisie van een menselijke piloot, behelst een uitdaging voor deze
klassieke regelsystemen en zal het ontwerp van het regelsysteem waarschijnlijk sig-
nificant vermoeilijken.

Vanuit dit oogpunt heeft reinforcement learning (RL) de potentie om deze uitdagin-
gen aan te kunnen. RL is een type kunstmatige intelligentie die biologische leer-
processen nabootst: een RL-entiteit heeft interactie met zijn omgeving door het
uitvoeren van acties, waarna een beloning ontvangen wordt. Dit geeft een direct
terugkoppeling over hoe goed de actie was, op basis van de door de ontwerper
gegeven beloningsfunctie. Het doel van de RL-entiteit is om de toekomstige verdis-
conteerde beloning te maximaliseren, wat resulteert in een optimaal beleid. De
kracht van deze exploratie-procedure is dat de RL-entiteit autonoom en onafhanke-
lijk van een model kan leren.

Voor luchtvaarttoepassingen is het cruciaal dat deze RL-exploratie veilig is. De
RL-entiteit moet onveilige acties, zoals bijvoorbeeld de acties die resulteren in een
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botsing, kunnen identificeren zonder dat deze acties daadwerkelijk uitgevoerd wor-
den. Dit is de Uitdaging van veiligheid. Het is in principe mogelijk om veiligheid
te garanderen door te leren in een veilige of gesimuleerde replica van de daad-
werkelijke omgeving, waarin onveilige acties toegestaan zijn; echter, het beleid
dat op deze wijze aangeleerd wordt kan onveilig zijn in de echte omgeving als er
onzekerheden of verschillen zitten in de replica van de omgeving. Dit vormt de
uitdaging van robuustheid. Als gegeven is dat de veiligheid van een actie online
gëevalueerd kan worden, dan moet deze evaluatie niet teveel rekenkracht vereisen,
zodat de agent dit tijdens het aansturen van de UAV kan doen. Dit is de uitdaging
van rekenkracht.

Het is duidelijk dat deze drie uitdagingen overkomen moeten worden voordat
UAVs en MAVs volledig voordeel kunnen hebben van RL. Het doel van dit proef-
schrift is om deze problemen omtrent de veiligheid, robuustheid en rekenkracht
van online RL-exploratie voor UAVs te onderzoeken en om mogelijke oplossingen te
ontwikkelen in overeenstemming met de RL-eigenschappen van aanpasbaarheid,
autonomie en modelonafhankelijkheid.

Veiligheid is de eerste en met afstand de meest dwingende uitdaging voor een
RL-entiteit. Om het probleem te versimpelen wordt gesteld dat onveilige acties
die acties zijn die ervoor zorgen dat de omgeving overgaat in een element van de
set van fatale toestanden, welke onbekend maar tijd-invariant wordt verondersteld.
In afwezigheid van een vooraf bekend veilig beleid, of van een menselijke leraar,
zijn er twee competenties vereist om fatale transities te voorkomen. De eerste is
perceptie van risico, die de vorm aanneemt van een extra terugkoppelingssignaal
van de omgeving naar de RL-entiteit en welke de RL-entiteit informeert of er een
element van de set van fatale toestanden binnen een vooraf gedefinieerde afstand
van de huidige toestand is. De tweede is de beschikbaarheid van een begrenzend
model welke een conservatieve schatting maakt van de toekomstige overgang van
de omgeving gegeven de acties van de RL-entiteit.

Deze twee competenties vormen de centrale strategie achter het Veilige Explo-
ratie door Perceptie van Risico (SHERPA) algoritme dat ontwikkeld is in dit proef-
schrift. Dit is een “veiligheidsfilter” dat tussen de RL-entiteit en de omgeving wordt
geplaatst. SHERPA staat alleen acties toe die gegarandeerd niet leiden tot fatale
transities en die opgevolgd kunnen worden door back-up, een set van acties die
transities naar veilige toestanden waarborgen in de buurt van voorheen bezochte
toestanden. In het geval dat de actie die de RL-entiteit voorstelt geweigerd wordt
door SHERPA, wordt de RL-entiteit gevraagd een nieuwe actie aan te dragen, net
zolang tot SHERPA de actie goedkeurt of totdat een tijdslimiet overschreden is,
waarop SHERPA de vooraf goedgekeurde back-up uit zal voeren. Hiermee biedt
SHERPA de RL-entiteit een autonome veiligheidsbeoordeling gebaseerd op online
ervaring. SHERPA is gevalideerd op een versimpeld quadrotor vliegtaak, waaruit
blijkt dat SHERPA effectiever is dan een concurrerende methode.

Dit proefschrift ontwikkelt de SHERPA strategie tevens verder uit tot OptiSH-
ERPA. Dit algoritme zet de veiligheidsbeoordeling om in een optimalisatieprobleem
door het selecteren van de veiligste actie uit een beperkte set van kandidaten.
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Bovendien wordt een ontwijk-maat toegevoegd, zodat de RL-entiteit de actie kan
kiezen die het minst aannemelijk is om tot een fatale transitie te leiden. OptiSHERPA
is getest in een besturingstaak van een lineair model van een gevechtsvliegtuig.

De tweede uitdaging van rekenkracht wordt geadresseerd in dit proefschrift
door het gebruik van grafen tijdens de veiligheidsbeoordeling. SHERPA gebruikt als
voorbeeld een begrenzend model van de dynamica om de toekomstige toestanden
na een reeks acties te voorspellen: hoe sneller de berekening van deze voorspelling,
hoe hoger het aantal beoordelingen van acties dat gemaakt kan worden tijdens de
online exploratie.

De graaf wordt in drie stappen gegenereerd, voorafgaand aan de exploratie.
Eerst wordt een willekeurige subset van de set van mogelijke toestanden gese-
lecteerd als de operationele set van de RL-entiteit. Daarna worden de set van toes-
tanden, de set van acties en de tijd gediscretiseerd. Tot slot wordt het begrenzende
model uitgevoerd om de zijden te genereren die de knopen van de graaf verbinden.
Het resultaat is een hypegraaf die een overschatting is van het begrenzende model.
De hypergraaf wordt opgeslagen als een matrix, zodat het online berekenen van de
transities vervangen wordt door een indexeringsoperatie, wat minder rekenkracht
vereist dan het toepassen van het begrenzend model. Bovendien wordt een gun-
stige toestandsdiscretisatie geïntroduceerd in de vorm van tegels die op gelijke
afstand van elkaar staan. Het resultaat in dat het genereren van de graaf in com-
plexiteit vermindert waardoor het gebruikt van worde voor online exploratie.

De graafformulering is geïmplementeerd binnen de SHERPA strategie door mid-
del van twee graaf-gerelateerde veiligheidsmetrieken. Deze kennen aan iedere
knoop van de graaf een gewicht toe, welke volgens de gegeven veiligheidsme-
triek correspondeert met de veiligheid van die knoop. De veiligheidsbeoordeling
wordt hierdoor omgezet in een optimalisatie probleem, zoals ook gebeurt bij de
OptiSHERPA strategie. De metrieken zijn geïmplementeerd voor zowel een sim-
pel quadrotorsysteem als voor een vliegtuigbesturingstaak door middel van het
hoogteroer. De operationele metriek is effectiever in taken waar risico’s makkelijker
voorspeld kunnen worden, zoals in de quadrotor taak. Voor complexere taken, zoals
de hoogteroer taak, is de nabijheids metriek effectiever doordat het de evolutie van
het systeem over de tijd beperkt.

Als aangenomen wordt dat de operationele set geen fatale toestanden bevat,
dan kan de veiligheidsbeoordeling van het gehele beleid uitgevoerd worden door
verwijderen van knopen in de graaf (snoeien). Zijden die de operationele set schen-
den worden verwijderd uit de graaf, samen met de knopen die, als resultaat van
het verwijderen van deze zijden, geen uitgaande zijden meer hebben. Alle belei-
dsstrategiëen die verenigbaar zijn met de gesnoeide graaf zijn daarmee automa-
tisch veilig; echter, het tegenovergestelde is niet waar vanwege de onzekerheid in
de graaf. Snoeien kan geschikt gemaakt worden voor online exploratie van opera-
tionele sets die langzaam variëren in de tijd, zoals wordt nagebootst in een aantal
taken waarin een MAV door een gang vliegt.

Onzekerheid in een model van de omgeving resulteert in de uitdaging van robu-
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ustheid. Hoe onzekerder de omgeving is, hoe meer het beschikbare model de
werkelijke dynamica moet overschatten om nog steeds een begrenzend model te
vormen en hoe fijner de resolutie van de discretisatie van de graaf moet zijn om
de overschatting van het afgelegde pad te bevatten. In dit proefschrift wordt dit
probleem gemitigeerd door implementatie van Hierarchical Reinforcement Learning
(HRL). Door abstractie van de toestandsruimte, door het toevoegen van ontwerp-
kennis en door het beperken van de ruimte van ontdekbare beleidsstrategiëen kan
HRL bijdragen aan zowel de uitdaging van robuustheid als aan de uitdaging van
veiligheid. De innovatieve combinatie van HRL methodes met betrekking tot vei-
ligheid van RL wordt gepresenteerd als Safe Hierarchical Reinforcement Learning
(SHRL).

In dit proefschrift wordt Virtuele Veiligheidstraining (VST) voorgesteld als SHRL
methode en deze bestaat uit drie stappen. Als eerste wordt de originele toestand-
sruimte getransformeerd, via een willekeurige projectie functie, op een manier dat
ten minste een geprojecteerde toestandsvariabele onafhankelijk is van en/of relatief
is ten opzichte van de andere toestandsvariabelen. Dit maakt het mogelijk om de
complexiteit en de onzekerheid van de omgeving te verminderen. Als tweede stap
wordt een belief set geïntroduceerd, die de mogelijke projectie van de fatale toes-
tandsruimte weergeeft. Daarna wordt in de virtuele geprojecteerde leerruimte een
initieel beleid geleerd voor ieder element van de belief set. De doeltreffendheid van
deze methode hangt af van de volledigheid van de belief set en van de onzekerheid
in het geprojecteerde begrenzende model. Uit experimenten met een MAV die een
doel moet vinden in een rommelige omgeving blijkt dat deze strategie veiliger is,
zelfs met een simpele belief set en een ongeavanceerd model.

Als tweede en laatste SHRL methode wordt Knoop-Classificatie (VC) geïntro-
duceerd. Deze methode integreert alle voorgaande bijdrages, zoals veiligheidsop-
timalisatie, graafformulering van de dynamica en projectie van de toestandsvari-
abelen, om zo sequentieel het probleem van veilige exploratie op te lossen. Eerst
wordt een operationele set voor de geprojecteerde toestandsruimte gedefinieerd en
wordt een graaf gecreëerd van de geprojecteerde dynamica. De zijdes die leiden
tot een schending van de operationele set worden geordend op volgorde van het
niveau van onwenselijkheid, wat vervolgens gebruikt wordt om voor elke knoop en
voor iedere schending twee sets van gewichten te berekenen, de niveaus en de co-
efficiënten. Tot slot worden deze gewichten gebruikt om de veiligheid van de zijdes
in de graaf te schatten door aan iedere schending een intensiteit toe te kennen.
Het veiligste beleid van VC, gevalideerd in dezelfde twee MAV taken, voorkomt alle
botsingen wanneer getest met verschillende modelrealisaties en met verschillende
indelingen van obstakels. Bovendien is er een gelijkenis met potentiaalveld meth-
odes, bijvoorbeeld in het vast komen te zitten in lokale minima tussen het doel en
de obstakels.

Als een laatste beschouwing betreffende het hoofddoel, het ontwikkelen van
veilige, online en robuuste RL exploratiemethodes voor UAVs, draagt dit proef-
schrift bij aan de huidige stand van de wetenschap door zowel het leveren van
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meerdere methodes die iedere uitdaging afzonderlijk mitigeren, als door het lev-
eren van hybride algoritmes, die meerdere uitdagingen tegelijkertijd aanpakken.
Expliciete en heldere aannames voor toepassing van de voorgestelde methodes zijn
gegeven; naast deze aannames zijn de methodes ontwikkeld in overeenstemming
met de principes van autonomie, aanpassingsvermogen en modelonafhankelijkheid
binnen RL, voor zover het probleem van veilige exploratie dit toestaat. Desondanks
worden in dit proefschrift verschillende punten voor verdere ontwikkeling en ver-
betering aangedragen, gericht tot zowel de machine learning als de UAV-operator
gemeenschap.





Nomenclature

List of symbols
𝑥𝑥𝑥 State
𝒮 State set
𝑢 Action
𝒜 Action set
𝑟, ℛ Reward and reward Function
𝒟 Transition function
�̂� Bounding model
𝛾 discount factor
𝑉, 𝑄 Value and action-value function
𝜋 Policy
𝜎 State trajectory
[∗] Interval of ∗
𝜏 Transition, interval trajectory, tile
i Tile index
𝒢 Hypergraph
𝜇 Projection function
𝑝𝑝𝑝 𝑖 projected state

Abbreviations
RL Reinforcement learning
SRL Safe reinforcement learning
HRL Hierarchical reinforcement learning
MDP Markov decision process
SMDP Semi-Markov decision process
POMDP Partial observable Markov decision process
OE Operational envelope
SSS, FSS Safe and fatal state space
PSSS , PFSS Projected safe and fatal state space of 𝑝𝑝𝑝
TEA Temporally extended action
MOS Machine, option or subtask
OM Operative metric
PM Proximity metric
AFF Artificial force field
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