Plan Merging: Experimental results
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Abstract

In this paper we discuss the results of a plan merging algorithm. This
algorithm coordinates the plans of multiple, autonomous agents, each able
to independently find a plan. This algorithm is evaluated using realistic data
from a taxi company. We show that when we allow passengers to be a few
minutes later at their destination and share rides, we can obtain more than
5% reduction of the taxi driving distance. When we allow for a delay of 15
minutes (a common amount of time in subsidized transport) we can gain up
to 30%.

1 Introduction

Many planning and coordination problems can be modeled as a multi-agent plan-
ning problem, i.e., a (distributed) set of related Al-planning problems. For ex-
ample, the coordination of transport organizations, armies, production processes,
etc., to name just a few. One of the techniques to solve such multi-agent planning
problems is plan merging. Using this approach, we assume that each planner is
capable of finding a solution for its own planning problem, for example using a
refinement planning method [5]. When all agents have constructed their plans,
these plans are compared to see whether cooperation is beneficial. For example,
if during a plan two taxis bring someone from the train station to the hospital at
about the same time, these passengers can share a taxi.

This paper discusses the results of a plan merging approach using so-called
resource facts (part of our Action Resource Formalism [9, 10]). Such a resource
fact aggregates the attributes of exchangeable objects into a single predicate, fa-
cilitating the search for opportunities to cooperate.

In the next section we take a closer look at the plan merging problem and
its solution. Then, we present experimental results obtained from using this plan
merging algorithm on data on the operations of taxi company. We finish by dis-
cussing possible extensions to the plan merging algorithm and related work.

2 Plan merging

The principle idea behind plan merging is that agents can refrain from work (i.e.
they can remove actions from their plans) for which the results (i.e. the resources
deliverd by these actions) are readily available at (several) other agents. Given



some plan for an agent that satisfies its goals, this agent can often reduce more
costs by cooperating with other agents than by trying to optimize locally. In case
multiple agents have similar parts in their plans, this can be quite advantageous.
In this section we describe how this can be done by exchanging resource facts using
plan merging [10].

To facilitate the exchange of resource facts, we assume one of the agents, or a
trusted third party, acts as the auctioneer. The auctioneer announces when the
agents can start the plan merging, thereby announcing some minimum allowed cost
reduction value. All agents deposit requests with this auctioneer. Each request
corresponds with the removal of an action from an agent’s plan and contains a
set of resource facts the agent needs to remove the particular action. Further, the
request contains a cost reduction value defined by the difference in costs between
the old plan and the resulting plan if the exchange succeeds.

The (greedy) auctioneer deals with the request with the highest potential cost
reduction first. We assume all the agents honestly announce their cost reduction
values. Right before each auction round starts, the requesting agent (a;) is asked
for the specific set of resource facts that has to be replaced by resource facts of
other agents — this set is called the RequestSet. This set is not necessarily equal
to the set in the initial request, since other exchanges influence the availability of
resource facts for the agents.

To put up an auction for a request of an agent a;, the set of requested resource
facts is sent to each agent, except to a;. The agents return all their free resource
facts for which there is an equivalent one in the request set RequestSet, and include
the price of each of their offered resource facts. When all bids (collected in R') are
collected by the auctioneer, it selects for each requested resource fact the cheapest
bid.

If for each resource fact in RequestSet a replacement can be found, the auction-
eer tells the requesting agent a; that it may discard the corresponding action(s).
The replacing resource facts R" are marked as goals for the providing agents, and
become additional ‘initial’ resource facts for agent a;. Furthermore, we have to add
dependencies between these goals of the providing agents and the initial resource
facts for the requesting agent.

If an agent’s request succeeds, it discards the corresponding action in its plan,
together with a possible set of actions in front of this particular action that also
becomes obsolete. At the end of each successful exchange each involved agent has
to update the cost reduction values of all of their requests, because this value can
change as the agent can now have more or less resource facts available. One could
repeat this process until none of the auctions has been successful.

The plan-merging algorithm is an any-time algorithm, because it can be stopped
at any moment. If the algorithm is stopped, it still returns an improved set of agent
plans, because this algorithm used a greedy policy, i.e., dealing with the requests
with the largest potential cost reduction first. Algorithm 1 can be shown to have
a worst-case time complexity of O(n?) where n is the number of actions of the
plans of all agents involved in plan merging [10]. In this paper, we focus on the
experimental results of the plan merging algorithm and give only a short introduc-
tion to the formalism and the plan merging algorithm itself. For a more elaborate



discussion of both the formal and practical analysis of this algorithm we refer to
the thesis by De Weerdt [9].

Algorithm 1 PLAN_MERGING(A)

1. auctioneer broadcasts minimum allowed cost reduction.
2. auctioneer retrieves requests with their cost reduction from all agents A.
3. while some requests left do
3.1. get the request with the highest cost reduction.
3.2. ask the requesting agent a; for the required resource facts RequestSet.
3.3. for each agent a; € A\ {a;} do
3.3.1. ask aj for free res. facts equivalent to RequestSet.
3.3.2. add these resource facts to R'.
3.4. if R' D RequestSet then
3.4.1. let R" C R' be the cheapest set that satisfies RequestSet.
3.4.2. add for each r € RequestSet the corresponding dependency to R".
3.4.3. remove as much actions as possible from a;.
3.4.4. for each involved agent, update the cost reduction of all requests.

3 Experimental results

3.1 Research questions and set-up

After a formal analysis of the plan-merging algorithm, two questions remained
which we tried to answer by doing experiments.

e We know that the worst-case time complexity is O(n?). We are also inter-
ested in the constant term of the average time complexity, e.g., how long
does it take to merge the plans of a whole day for a moderately sized taxi
company.

e In the previous section, we claimed that single-agent plans can be further
optimized by cooperating with other agents using this algorithm. We would
like to verify this claim experimentally.

The tests are performed by merging the plans of taxis in a taxi company. From
taxi company Zeevang in Purmerend we received information on rides of about 35
taxis exactly as they were planned in January and February 2002. This information
includes a taxi number, (start and end) data and time, number of passengers and
the origin and the destination location of each order. From this information we
reconstruct the plan for each of the taxis, and try to find improvements over these
plans as created by the dispatcher using the plan merging algorithm.

We assume that picking up a passenger along an already planned route has
no long-term effects on the plan of a taxi. Furthermore, we assume that in this
domain the costs of a plan equals the distance driven by the taxis. Consequently,



Table 1: The standard deviation of the fits in Figure 1 and 2.

At | run-time fit stdd. reduction fit stdd.
3 0.310 12.6
6 0.468 21.0

15 0.517 30.9

our goal is to reduce this distance by exchanging orders among taxis (agents).
Therefore, one of the resource facts describes a passenger and its attributes (the
destination, their preferred pickup time, etc). The most important resource fact,
however, describes the ride of a taxi and models the posibility for passengers to
travel from one location to another. This is the only type of resource fact that is
exchanged between taxis.

When a customer is transported by taxi A instead of by taxi B the additional
distance and time needed by taxi A is estimated using the Euclidean distance
and an analysis of all drives as extracted from the data set. An exchange is only
allowed if the passenger’s estimated arrival time is not increased by more than At
minutes and the detour length of taxi A is less than the distance reduction of the
other. Therefore, in this domain we define resource facts equivalent when their
time attributes differ at most At minutes.

3.2 Results

First we analyze the running time of plan merging. We expect the worst-case
running time to be O(n?) where n is the number of actions. To test this hypothesis,
we run the algorithm with a fixed At of 3, 6, and 15 minutes and a fixed day on
a number of plans varying from 2 to 35. Each test is performed 20 times on a
randomly selected set of taxis. For each run we store the total number of actions
of all involved plans and the run time on a 1GHz Pentium processor. The results
of these runs can easily be fitted with a quadratic function (about 4 - 10~5n?), as
can be seen in Figure 1. The standard error of these fits is very small, as can be
seen in the first column of Table 1.

Next we are interested in the improvement of the plans. For each run we also
store the total distance driven by the taxis, before and after the plan merging
algorithm. In Figure 2 the difference between these values is plotted against the
number of actions. As can be seen, more relaxed time constraints on the arrival
time of the passengers lead to more improvement. Furthermore, the total im-
provement seems linear in the number of actions. The standard deviation of this
fit is shown in the last column of Table 1. The relative improvement in drive
distance (in percentage) is given in Table 2. The main disadvantage of reducing
the distance driven by the taxis is that the passengers need more time to get to
their destinations. Table 2 also shows the increase in passenger travel time (in
percentage).
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Figure 1: The run time versus the number of actions for three different values for

At.

Table 2: The standard deviation of the decrease of the drive distance
increase of the passenger travel time.

and the

At | reduction distance (%) stdd. | increase time (%) stdd.
3 3.32 2.06 2.60 1.85
6 8.41 4.12 7.06 3.94

15 18.0 7.62 164  7.26




1200

1000

800

600

400

distance reduction (km)

200

0 200 400 600 800 1000 1200
number of actions (n)

Figure 2: The improvement in drive distance versus the number of actions for
three different values of At.

4 Discussion and related work

Plan merging is a method for coordinating plans of autonomous agents. For this
algorithm we assume that each agent is able to construct a plan for its own problem
and we try to obtain a more efficient solution by merging these plans. Experimental
evidence is gained by running this algorithm on data from a taxi-company. The
results show that this technique is both efficient and effective. The run time is
quadratic in the size of all input plans. It takes less than a minute to improve
the plan of a whole day of a taxi company consisting of 35 taxis (1200 actions).
Within this time the distance driven by the taxis is reduced significantly. When
passengers are allowed to arrive within an interval of 3 minutes from their desired
arrival time the total distance can be about 5 percent improved over the schedule
created by the dispatcher of the taxi company. Moreover, when passengers are
allowed to arrive within an interval of 15 minutes, as is the current agreement
for most Dutch low-budget elderly transportation services (Vervoer op Maat), the
improvement can be up to 30 percent.

Although the plan merging algorithm and the used action resource formalism
have already been published [8, 10], in this paper we (finally) show that they are
powerful enough to describe and coordinate multi-agent plans. A disadvantage
of plan merging is that it cannot be used in situations where an agent needs
to cooperate with others to construct a plan. The plan merging scheme can be
extended to a multi-agent planning method by (i) allowing agents to be able to
request services from other agents and include the results in their plans, or (ii) by



allowing agents to be able to offer services to other agents and, upon a request,
add these to their plans. Exchanging services enables agents to not only offer
resource facts that are already in its plan (and unused), but also to adapt its plan
to produce resource facts that are desired by other agents. Such extensions should
lead to a distributed algorithm where self-interested agents create plans including
coordinated (efficient and conflict-free) actions.

Most solutions to multi-agent planning problems (i) cooperatively create plans
for all agents without dealing with the self-interestedness of agents, called cooper-
ative distributed planning [2], such as PGP [1, 3], (¥) focus on task allocation [6]
and conflict resolution before planning [4, 11], or (%) conflict resolution after plan-
ning [7]. An extension of the plan merging algorithm should integrate coordination
and conflict resolution in the planning phase, while maintaining the autonomous
and self-interested aspects of agents.

We expect that such a coordinated planning algorithm yields even better results
than the current plan merging algorithm, since opportunities to cooperate can be
better utilized. Both the basic algorithm and the extensions use a resource fact
oriented view on the world, and can be combined with most existing planning
techniques. Such a general approach to coordinating plans of multiple agents can
be used to solve many practical coordination problems, such as hospital scheduling,
coordinating the transportation of goods or people, and managing the planning of
joint forces on a mission of the UN.

To be able to use the proposed methods on integrating planning and coordi-
nation in these situations, still much work need to be done. Firstly, we need an
adequate way to reward agents that offer services and share resource facts. Sec-
ondly, we need to know how to deal with agents that cannot or do not fulfill their
contracts. Furthermore, we should test the developed algorithms in more realistic
environments and improve them with (maybe even domain-dependent) heuristics.
In addition, we need to look at a more dynamic (continual) version of the proposed
algorithm where planning, replanning and execution are integrated. Finally, such
approaches cannot be used in open multi-agent environments (e.g., the Internet)
before a way is devised to deal with different ontologies (i.e., what are the resource
facts in this domain), and a standard for agent communication and negotiation is
chosen.
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