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ABSTRACT In the paper we propose a reconfigurable graphene-based Spiking Neural Network (SNN)
architecture and a training methodology for initial synaptic weight values determination. The proposed
graphene-based platform is flexible, comprising a programmable synaptic array which can be configured
for different initial synaptic weights and plasticity functionalities and a spiking neuronal array, onto which
various neural network structures can be mapped according to the application requirements and constraints.
To demonstrate the validity of the synaptic weights training methodology and the suitability of the proposed
SNN architecture for practical utilization, we consider character recognition and edge detection applications.
In each case, the graphene-based platform is configured as per the application tailored SNN topology and
initial state and SPICE simulated to evaluate its reaction to the applied input stimuli. For the first application,
a 2-layer SNN is used to perform character recognition for 5 vowels. Our simulation indicates that the
graphene-based SNN can achieve comparable recognition accuracy with the one delivered by a functionally
equivalent Artificial Neural Network. Further, we reconfigure the architecture for a 3-layer SNN to perform
edge detection on 2 grayscale images. SPICE simulation results indicate that the edge extraction results
are close agreement with the one produced by classical edge detection operators. Our results suggest the
feasibility and flexibility of the proposed approach for various application purposes. Moreover, the utilized
graphene-based synapses and neurons operate at low supply voltage, consume low energy per spike, and
exhibit small footprints, which are desired properties for largescale energy-efficient implementations.

INDEX TERMS Spiking neural network, graphene, reconfigurable, character recognition, edge detection.

I. INTRODUCTION
Neuromorphic computing research [1], [2] is receiving
massive attention as it helps to investigate the essential
functionality underneath the human brain’s attractive
properties (e.g., robustness, highly parallel information
processing capabilities, energy effectiveness, handling
complex tasks suitability) and promote the design and
implementation of bio-inspired systems with brain-akin
computation abilities. Spiking Neural Networks (SNNs)
are of particular interest for neuromorphic designs, as they
capture biologically plausible neural network dynamics and
exhibit potential for increased energy efficiency desirable for
building large-scale computation systems [3], [4]. In an SNN,
spiking neurons are the fundamental information processing

units and synapses the junctions connecting them, and as such,
the key challenge for the realization of any brain-inspired
computation system is the design of artificial synapses and
neurons that are suitable for large scale implementations.

Nowadays, most neuromorphic systems, e.g., [5]–[7], are
implemented with CMOS technology by using complex
CMOS circuitry to mimic synapse and neuron functionalities.
These systems suffer from high energy consumption and lim-
ited scalability. More recently, various emerging technologies
are also utilized in neuromorphic systems, e.g., memristor [8]
and phase change memory [9], as they exhibit simple struc-
ture and electronic properties desirable for SNN emulation.
However, these technologies are mainly used to simplify the
designs of individual synapses and neurons [10]–[13], while

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 2, 2021 59

https://orcid.org/0000-0002-2597-7569
https://orcid.org/0000-0002-3813-2928
https://orcid.org/0000-0001-7132-2291
mailto:H.Wang-13@tudelft.nl


WANG ET AL.: A RECONFIGURABLE GRAPHENE-BASED SPIKING NEURAL NETWORK ARCHITECTURE

their usage in complete SNN hardware implementations still
require additional CMOS circuitry to enable the basic SNN
functionality [14]–[17], which is restricting their performance
for large-scale energy-efficient implementations.

Graphene is a promising post-Si candidate with outstanding
properties [18], [19], e.g., ballistic transport, ultimate thin-
ness, flexibility. Moreover, when compared with other emerg-
ing technologies, graphene is a biocompatible material, which
makes it favourable for graphene-based neuromorphic bio-
interfaces. Previous work demonstrated graphene’s suitability
for artificial synapse [20], [21], neuron [22], and SNN unit im-
plementations [23], thus a versatile, generic graphene-based
SNN architecture that can be reconfigured for various prac-
tical tasks, would facilitate the exploration of grahene-based
neuromorphic computing capabilities.

In this paper, we propose a reconfigurable graphene-based
SNN architecture and an associated training methodology for
initial synaptic weight values determination, which main fea-
tures can be summarized as: (i) area and energy efficiency
due to effective graphene-based implementation of neurons
and synapses, (ii) flexible support for SNN applications map-
ping due to FPGA-alike reconfiguration feature, and (iii)
training process simplicity due to Spike-Timing-Dependent
Plasticity (STDP) and Long-Term Plasticity (LTP) support.
Specifically, the reconfigurable SNN architecture comprises
a synaptic array (consisting of graphene-based programmable
synapses) and a neuronal array (consisting of graphene-based
spiking neurons), onto which various network structures can
be mapped for different application scenarios. Furthermore,
the synapses can be configured for different initial synaptic
weights and plasticity, e.g., Long-Term Potentiation (LTP)
and Long-Term Depression (LTD). To reconfigure the pro-
posed graphene-based platform for a practical application,
two ingredients are required: an SNN topology and an initial
SNN state, e.g., initial synaptic weights. The general flow
for using the proposed reconfigurable platform for real-life
scenarios is as follows: For a given application and SNN
topology, the SNN initial synaptic weight values are first de-
termined by means of the specific training method described
in Section III-B. Subsequently, the SNN topology is mapped
onto the graphene-based SNN architecture by establishing the
configuration of the programmable interconnect matrix, and
the synaptic array initial state (synaptic weight values and
plasticity types).

To investigate the versatility and suitability of the proposed
reconfigurable architecture for practical applications, we con-
sider 2 SNN topologies tailored for character recognition and
edge detection, map them on the proposed graphene neuro-
platform, and evaluate their performance by means of SPICE
simulations. For the first application, a 2-layer SNN consisting
of 30 neurons is utilized to recognize the vowel characters,
i.e., “A,” “E,” “I,” “O,” and “U” (and their variations), rep-
resented by 5× 5 black and white pixel matrices. The re-
sponse of the graphene-based SNN architecture, reconfigured
according to the considered SNN topology and different initial
synaptic weight values is evaluated for multiple input datasets

comprising the original characters and their variations, is
evaluated by means of SPICE simulations. The obtained re-
sults indicate that a recognition accuracy of up to 94.5% is
achieved, which is in line (maximum 7.8% deviation) with the
one obtained by means of Matlab simulation of a functionally
equivalent Artificial Neural Network (ANN).

For the second application, we consider a 3-layer SNN
consisting of 13 neurons for performing edge detection on 2
images, i.e., Lena and Cameraman. To this end, for each and
every image pixel, we should determine whether it belongs
to an edge or not and this can be done by sequentially an-
alyzing the pixel configuration of the 3× 3 grayscale pixel
matrix centered around it. To obtain the SNN initial synaptic
weights, we make use of a set of directional edge and non-
edge 3× 3 kernels. The graphene-based SNN architecture is
configured according to the SNN topology and initial state,
and then SPICE simulations of all possible 3× 3 pixel matrix
instances are performed to obtain the edge extracted output
image. Simulation results reveal that the graphene-based SNN
platform delivers comparable results when compared with to
one produced by classical edge detectors, i.e., Canny, Roberts,
Sobel, Prewitt [24], which suggests good perceptual edge ex-
tracted image quality. If Peak Signal-to-Noise Ratio (PSNR)
and Mean Squared Error (MSE) are utilized as evaluation
metrics the SNN approach delivers slightly worse PSNR and
MSE figures, i.e., 2.3% lower PSNR, and 3% higher MSE,
for Lena, while for the Cameraman it marginally outperforms
the classical edge detectors by 2.7% for PSNR and 2.9% for
MSE.

The simulation results demonstrate that the proposed SNN
platform is able to properly perform character recognition
and edge detection tasks, which suggests the feasibility and
flexibility of the proposed approach for various application
purposes. Moreover, the utilized graphene-based synapses and
neurons operate at low supply voltage (200 mV), consumes
low energy per spike for both neuron (43pJ and 5.2× 10−7pJ
at 200Hz and 20GHz spike frequency scale, respectively) and
synapse (5.1pJ and 6.0× 10−8pJ at 200Hz and 20GHz spike
frequency scale, respectively), and a graphene-based synapse
occupies an active area of ≈45nm2 (2 GNR devices) and a
neuron an active area of ≈176nm2 (6 GNR devices), which
are desired properties for large-scale energy-efficient imple-
mentations.

The remaining of this paper is organized as follows: In
Section II we describe the SNN functionality, the graphene-
based SNN unit, and present a general view of the simulation
framework. Section III introduces the proposed reconfigurable
graphene-based SNN architecture and the associated training
methodology for deriving the initial synaptic weight values.
Section IV presents the simulation results for character recog-
nition and edge detection applications, while Section V con-
cludes the paper.

II. BACKGROUND
In this section, we introduce the basic structure and function-
ality of a Spiking Neural Network (SNN), present the generic
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FIGURE 1. Spiking neural network illustration.

graphene-based SNN unit, which constitutes the fundamental
building block for our proposal, and conclude by providing a
brief account on the utilized graphene circuit SPICE simula-
tion framework.

A. SPIKING NEURAL NETWORKS
SNNs comprise of spiking neurons, as basic information pro-
cessing units and synapses, as junctions interconnecting the
neurons [3]. A distinctive characteristic of SNNs is that the
internal signal transmission is carried out via electric spikes.
Fig. 1 depicts a small SNN example consisting of 3 spiking
neurons (Ni, Nj , and Nk) that are connected via 2 synapses
(Synapseik and Synapsejk). Neuron Nk collects input spikes
(Si and S j) from the other neurons, and generates an output
spike Sk when the cumulated input reaches its firing thresh-
old. Immediately after the firing event, neuron Nk enters a
refractory period, during which it doesn’t react to incoming
spikes. There are various spiking neuron models to describe
a neuron’s functionality [25], [26], among which the standard
non-linear Leaky Integrate and Fire (LIF) is of particular in-
terest, as it captures the essential behavior of a spiking neuron
while having a relatively low complexity [3].

Synapses, while essentially known as signal transmission
media between adjacent neurons, assume a processing role
as well since their transmission efficiency (synaptic weight)
governed by the so-called Synaptic Plasticity (SP) process can
either enhance or inhibit the transmitted signals. SP is believed
to play a crucial role in human brain learning and memory
processes [27], [28] and Spike Timing Dependent Plasticity
(STDP) is the fundamental process that enables transmission
efficiency modulation based on the difference between the
arrival times at the synapse locus of the pre-synaptic and post-
synaptic spikes. Referring to Fig. 1 the synapse connecting
neurons Nj and Nk , receives 2 input spikes S j and Sk from the
2 neurons, and generates one output signal Sout

jk to be transmit-
ted to neuron Nk . Its transmission efficiency Wjk is potentiated
when the pre-synaptic spike S j precedes the arrival of the
post-synaptic spike Sk , and it is depressed when the incoming

spikes arrival order is reversed. Long term plasticity (Long
Term Potentiation - LTP and Long Term Depression - LTD)
can manifest when such modulatory synaptic activity occurs
over a longer period of time, inducing therefore a persistent
history dependent influence on the synaptic transmission effi-
ciency.

B. GRAPHENE-BASED SNN UNIT
The fundamental building block for our proposal in Section III
is the graphene-based device depicted in Fig. 2. It relies on a
Graphene NanoRibbon (GNR), which serves as a conduction
channel when the device is subjected to a drain-to-source
bias voltage Vd −Vs. The GNR device conduction profile is
determined by the nanoribbon geometry and contact topol-
ogy, while the actual conductance value is modulated by ex-
erting external voltages on the top and/or back gates [29].
Fig. 2 depicts a GNR topology example and a conductance
map example under variable back-gate and top gate voltages.
The conduction map determines the device behavior and ade-
quately tailored (e.g., topologically) GNR-based devices able
to provide a rich set of functionalities for the implementation
of Boolean gates [30] and neuronal/synaptic circuits [20],
[22] have been reported. Furthermore, besides the conduction
mechanism, it was experimentally observed that GNR-based
devices exhibit intrinsic interface charge trapping/detrapping
phenomena [31], i.e., depending on the applied gate voltage,
charges are trapped/released at the graphene-oxide interface.
As a result, the GNR conductance becomes dependent on
device history via cumulated interface charges, which renders
GNR-based devices appropriate for emulating neuron mem-
brane potential dynamics and synapse plasticity functionali-
ties [20], [22].

Fig. 3(a) schematically illustrates the graphene-based SNN
unit [23], which implements a LIF neuron and a synapse with
timing dependent plasticity via 4 pairs of GNR-based devices.
To enable the basic SNN unit behavior, different nonlinear
functionalities are required, and for every such functionality,
a GNR device with a different shape is specifically devised, as
discussed in [23].

The synapse core functionality is provided by Block 1,
which receives input spikes from both the pre-synaptic (Vspike)
and post synaptic (Vfeedback) neurons, and generates the post-
synaptic neuron input signal (Vin), with waveforms exempli-
fied in Fig. 3(b). Initial synaptic weight values can be set
through GNR1

up and GNR1
dn back-gate bias voltages, Vup and

Vdn, respectively. As for synaptic plasticity, the GNR1
up cu-

mulated trapped charges emulate long-term plasticity, while
pair-wise STDP modulates the synapse output signal Vin am-
plitude based on the timing difference between the pre-spike
Vspike and post-spike Vfeedback occurrences, as illustrated in
Fig. 3(b). Furthermore, by properly adjusting the back-gate
bias voltage Vup, the same synapse can exhibit both Long-
Term Potentiation (LTP) and Long-Term Depression (LTD),
e.g., 100 mV for LTP and −100 mV for LTD. The GNRdn
back-gate voltage controls the inhibitory synaptic ability, i.e.,
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FIGURE 2. Generic graphene-based device and conduction map example.

FIGURE 3. SNN unit: (a) circuit (b) basic operation.

0 mV for no inhibition and 180 mV for inhibiting all incoming
spikes.

The LIF neuron comprises the remaining blocks 2, 3 and
4. Block 2 receives Vin as input signal from the synapse and
is responsible for capturing the integrate-and-fire membrane
potential dynamics. Charges trapped into GNR2

up gate oxide

FIGURE 4. Multiple input synapse block.

can cause an equivalent voltage shift denoted as �V . When
Vin +�V reaches the firing threshold, block 2 signals a firing
event occurrence via the Vinternal signal. We note that block 2
suffices to emulate the spiking neuron’s dynamics. However,
since the neuron spike plays an important role for the STDP
process, Vinternal is further processed by block 3 in order to
send a post-spike back to the synapse to activate the pairwise
STDP plasticity. Furthermore, to enable direct cascading of
SNN units, Vinternal is also processed by block 4, which gen-
erates an output spike Vout that is compatible with the input
spike Vspike in terms of voltage range (20 mV to 180 mV) and
duration (2 ms). Note that the GNR topology details for all the
SNN circuit devices are presented in [23].

As the basic SNN unit includes one synapse it can get input
from one other neuron only while in practically relevant SNNs
a neuron can be connected to hundreds of other neurons. To
accommodate larger than one fan-in (i.e., n synapses con-
nected to the same neuron) situations, the synapse block can
be extended by replacing GNR1

up with n GNRs in parallel as
illustrated in Fig. 4 [23]. The synapses joint output voltage can
then be derived as:

Vin = VDD ·
G11

up + G12
up + · · · + G1n

up

G11
up + G12

up + · · · + G1n
up + G1

dn

, (1)

where G1n
up denotes the conductance of the nth GNRup.
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C. SIMULATION FRAMEWORK
A hybrid framework combining atomistic-level simulation for
graphene-based devices and circuit level SPICE simulation
in Cadence [32] is utilized to properly evaluate the proposed
reconfigurable graphene-based SNN architecture.

For the GNR device electronic transport properties cal-
culation we make use of: (i) the Tight-Binding Hamilto-
nian to model the external potentials and the interactions be-
tween Carbon atoms, (ii) the Non-Equilibrium Green Func-
tion (NEGF) to solve the Schrödinger equation, and (iii) the
Landauer-Büttiker formula to compute the graphene channel
current and conductance [33]. The GNR potential distribu-
tion profile is obtained by solving a 3D Poisson equation
self-consistently. Additionally, by calculating the equivalent
voltage shift induced by interface trapped charges we account
for the trapping/detrapping phenomena influence on the GNR
device operation [34].

For the graphene-based SNN circuit evaluation, a Verilog-A
GNR device simulation model [35] is employed. To enable
high accuracy and time effective SPICE simulation, we make
use of precomputed look-up tables containing atomistic level
GNR simulation data for the utilized graphene-based devices.
Additionally, we developed a Matlab simulation model to al-
low for the determination of the initial synaptic weight values
according to the training method described in Section III-B.
The obtained weights are subsequently converted into ap-
propriate bias values that are utilized to initialize the SNN
synaptic weights (via synapse GNRup back-gate voltage) in
the SPICE circuit model.

III. RECONFIGURABLE GRAPHENE-BASED SNN
ARCHITECTURE
In this section we present the proposed reconfigurable
graphene-based Spiking Neural Network (SNN) architecture,
explain the mapping methodology of a generic SNN structure
onto the proposed platform, and introduce a general training
method for the determination of the initial synaptic weight
values.

A. ARCHITECTURE OVERVIEW
Fig. 5 depicts a general overview of proposed reconfigurable
graphene-based SNN platform. It mainly comprises a neu-
ronal array, a synaptic array, and a peripheral Input/Output
(I/O) block, which allows for SNN’s communication with the
computation platform (application) it embeds it. Specifically,
the neuron array consists of N graphene-based spiking neu-
rons, that can have their output connected either to the I/O
block, when the neuron resides into the output SNN layer,
or to the synapse array, when connecting with other layer
neurons. The synapse array consists of N × N programmable
graphene-based synapses, that can enable a connection either
between neurons in different layers, or between the I/O block
and SNN input layer neurons. The platform reconfiguration
is enabled by means of: (i) a programmable switch matrix,
which allows for SNN topology mapping onto the neuronal

FIGURE 5. Reconfigurable graphene-based SNN platform.

and synaptic arrays and (ii) an initialization module that pro-
grams the initial SNN network state (e.g., synaptic weights,
plasticity types). The programmable switch matrix ensures
that the signal routing within the neuronal and synaptic arrays
is reflecting the desired SNN topology, by activating the ap-
propriate interconnect crossbar row/column connections. The
initialization module comprises a memory to store SNN’s
initial status data and a bias generator that decodes status
information into voltage/current values to map the initial SNN
status at electrical level. In particular, the memory module
stores the synaptic weight initial values and plasticity type
(e.g., LTP, LTD) for each SNN synapse while the bias gen-
erator converts these values into voltages to be applied to the
GNRup and GNRdn back-gates of the corresponding physical
synapse (as detailed in Section II-B).

B. ARCHITECTURE CONFIGURATION
To deploy a given application on the proposed reconfigurable
graphene-based SNN architecture we make use of the
following approach. First, we identify by means of state
of the art approaches, e.g., [36], [37] an appropriate SNN
topology for the considered application (e.g., number of
layers, inter-layer connectivity, number of neurons per layer,
synaptic plasticity types). Once the specific SNN topology is
available, the SNN platform is reconfigured accordingly via
the switch matrix. Subsequently, we identify an appropriate
initial status of the SNN synaptic components by means of
a training method able to determine suitable initial synaptic
weight values. Finally, the per synapse weight value and
plasticity type are transformed into bias voltages for the SNN
synaptic array, and at this point, the SNN architecture is fully
configured and ready to be utilized for the given application.
1) SNN Topology Mapping: To have a better inside on the
mapping process, let us consider a 2-layer SNN consisting of
3 neurons in layer 1 and 1 output neuron in layer-2 as depicted
Fig. 6. To structurally emulate this SNN on the proposed
platform the neuronal array is configured such that neurons
N1, N2, N3 map the SNN layer 1 neurons and neuron N4 maps
the SNN layer 2 neuron. The left most column of synapses
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FIGURE 6. SNN topology mapping example.

are utilized for receiving SNN input and transmitting it to the
layer 1 neurons. The layer 1 to layer 2 connectivity is enabled
by the row of synapses corresponding to the N4 neuron. N4

is also connected further to the I/O block for SNN output
readout.
2) SNN Initial Synaptic Weights Determination: For the iden-
tification of the initial synaptic weight values we propose
the general training flow summarized in Algorithm 1, which
assuming a given SNN topology and application specific input
patterns, aims to identify the best set of initial synaptic weight
values that can generate the desired SNN reaction for the
applied inputs, e.g., for classification tasks, different inputs
patterns should be discriminated by different output neurons.
The training process can be divided into two stages: (i) Stage 1
(steps (1) to (4) in Algorithm 1), which concerns with the
definition of the desired SNN reaction by labeling the output
neurons according to the input patterns they react or should
react to, and (ii) Stage 2 (steps (5) to (9) in Algorithm 1),
during which the synaptic weight values are computed via
an iterative process that minimizes the difference between the
obtained and the desired SNN reaction. The training according
to Algorithm 1 is carried out by means of Matlab.

In Stage 1, we define the desired SNN output response, e.g.,
which neuron should react to which input pattern such that
all input patterns can be properly discriminated. To this end,
we first instantiate the synaptic weights with random values
(step (1)), apply the input patterns and obtain the SNN output
response (step (2)). We then match all output neurons to the
different SNN input patterns. Some neurons might already
appropriately fire for the assumed input patterns and thus
labeling them is straightforward, while others might not, case
in which we enforce a label assignation. Once every output
neuron has an assigned label (a designation for an SNN input
category), the SNN desired reaction has been defined (step
(4)).

In Stage 2, we update the synaptic weights repetitively until
the SNN exhibits the desired output neuronal reaction for
all input patterns. Specifically, the synaptic connections that
contribute towards the desired SNN reaction are potentiated,
while the connections that might trigger an undesired SNN
reaction are depressed. For the sake of simplicity let us assume
a 2 layer and 2 output SNN that has to classify input data
according to two patterns P1 and P2. After Stage 1 the output
neurons O1 and O2 are labeled as O1 should react to P1, and
O2 to P2 while the current SNN reaction is that both O1 and O2

react to P1, which is not the desired behaviour. To determine
which synaptic weights should be potentiated and which ones
should be depressed, we first determine the reaction of the
layer-1 neurons. In particular, we identify the set of input
neurons that are stimulated by P1 and P2, and denote them
by G1 and G2, respectively. Since O1 is already reacting only
to P1 as it should, we are interested in changing only the O2

reaction via synaptic weights modification. To this end, we
determine the difference set G = G2 − G1, which includes
all input neurons that are excited by P2 and not excited by
P1. Then, we: (i) potentiate the synaptic connections between
the neurons belonging to the difference set G and the output
neuron O2 (since we desire O2 to react for input pattern P2),
and (ii) depress all the synaptic connections between neu-
rons belonging to G and output neuron O1 (as O1 shouldn’t
react for input pattern P2). Fig. 7 illustrates an example for
the synaptic weights updating process. To ensure the desired
SNN reaction, i.e., O1 reacts for P1, and O2 for P2, (i) the
synapses between the input neurons excited solely by P2 and
output neuron O2 are potentiated (blue connections), and (ii)
synapses from the input neurons excited solely by P2 to output
neuron O1 are depressed (red connections).

We note that for larger SNN and problem size dimension-
ality, the weights update methodology described above can
be applied in a sequential pairwise manner. The synaptic
weights update is an iterative optimization process that ends
when the difference between the current and the desired SNN
output neuronal response is minimal. When completed, Stage
2 provides the set of initial synaptic weights values for the
considered SNN topology.

Having generated the set of initial synaptic weights, the
platform synapses GNR devices are biased, as described in
Section II, with back gate voltages afferent to these weights,
and at this point, the platform is fully configured.

IV. SIMULATION RESULTS
To demonstrate the suitability of proposed reconfigurable
graphene-based SNN architecture for various application sce-
narios, as well as the plausibility of the synaptic weights
training method, we consider two SNN topologies that are
particularly designed for character recognition and edge de-
tection, respectively, map them on the proposed reconfig-
urable graphene-based SNN architecture, and investigate their
run-time performance by means of SPICE simulation. In both
cases we make use of 2 ms input spike pulses varying from
20 mV to 180 mV and a supply voltage VDD = 200mV . We
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FIGURE 7. SNN synaptic weights training example.

Algorithm 1: Initial Synaptic Weight Values Determina-
tion.
Input: SNN topology & application specific input
patterns

Output: Initial synaptic weight values
1: Randomly instantiate the synaptic weight values for

the given SNN;
2: Apply input patterns to the SNN, and obtain the

initial SNN output response;
3: Current SNN output neuronal response← initial

SNN output neuronal response from (2);
4: Determine the desired SNN response (output

neurons labeling);
5: while current SNN output response �= SNN desired

output response do
6: Update the synaptic weights based on the current

and desired SNN output response (inhibit
connections that might trigger undesired SNN
reaction and enhance connections that help to
produce the desired reaction);

7: Apply input patterns to the SNN with updated
synaptic weights, obtain new SNN output
response;

8: Current SNN output response← new SNN
output response obtained from (7).

9: end while

note however that our proposal is general and can be adapted
to operate on different power supply values and input spike
formats.

A. CHARACTER RECOGNITION
For character recognition we rely on the 2-layer SNN com-
prising 30 neurons depicted in Fig. 8, intended to recognize
the vowel (and their variations) “A,” “E,” “I,” “O,” and “U”.
Each character is represented by a 5× 5 black and white pixel
matrix. The 25 neurons in layer 1 (L1) serve as input neurons
and each neuron corresponds to a pixel in the character matrix.
For a given input character, each L1 neuron receives input
spikes if its corresponding pixel is black and no spikes if the

FIGURE 8. SNN for character recognition.

pixel is white. The 5 neurons in layer 2 (L2) are output neu-
rons, each one being meant to recognize a different character.
In the considered SNN, we assume that the input pixels are fed
to the L1 neurons via LTP synapses with identical weights.
As concerns the L1 to L2 connectivity every L2 neuron is
connected with all the L1 neurons via LTP synapses with
synaptic weight values determined by means of the proposed
training method in Section III-B. When applying an input
character, we stimulate the input neurons corresponding to
the black pixels with identical 200Hz periodic input spike
trains and employ “time-to-first-spike” scheme to indicate the
recognition result, i.e., the output neuron that fires first is the
one that recognized the input character.

To determine the weights of the L1 to L2 synapses, we
first randomly instantiate them for every synapse. Then, we
apply the 5 characters to the SNN one at a time and obtain
the initial recognition results depicted in Fig. 9(a). The Fig-
ure indicates that “E” and “U” are both recognized by the
same neuron Neuron1, while each of the other 3 characters
is recognized by a different unique output neuron. Based on
this initial recognition results, we determine the desired SNN
output neuronal response, i.e., characters “A,” “E,” “I,” “O,”
and “U” should be recognized by neurons Neuron2, Neuron1,
Neuron4, Neuron3, and Neuron5, respectively. Thus, we now
need to adjust synaptic weight values such that Neuron5 rec-
ognizes “U” instead of Neuron1 and preserve the SNN output
reaction for the other 4 characters. To achieve this we update
the synaptic weights of connections between input neurons
stimulated by “U” and not by “E,” and the output neuron
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FIGURE 9. SNN recognition reaction for original vowel characters.

Neuron1 and/or Neuron5 (depression and/or potentiation). Af-
ter we obtain the desired SNN output neuronal response and
so the initial values of the synaptic weights, we configure
the graphene-based SNN architecture and set the initial state
of the synaptic array. We do so, by adjusting the back-gate
bias voltage (Vup in each synapse block, as detailed in Sec-
tion II), which can take values between 0 mV and 200 mV
with a 10 mV resolution. The SNN reaction for each character
obtained by means of SPICE simulation of the configured
graphene-based architecture is depicted in Fig. 9(b), (c), (d),
(e), and (f), which clearly indicate that the obtained results are
in line with desired recognition behaviour. As can be seen in
Fig. 9(b)–(f), in all cases, initially, there are no firing events
for the output neurons. After some time, one L2 neuron fires
(a different one for every character) and other output neurons
may or may not fire afterwards. The reaction time for input
characters “A,” “E,” “I,” “O,” and “U” are 135 ms, 135 ms,
180 ms, 150 ms, and 150 ms, respectively. As expected, the
SNN exhibits longer reaction time for character “I” as it stim-
ulates less input neurons in L1 than the other characters.

The aforementioned simulation experiments utilized the 5
initial characters as input patterns. However, to get a more
comprehensive assessment of the character recognition ability
of the proposed graphene-based SNN, we extend the original
5 characters input patterns, with additional datasets containing
variations of the original characters, obtained by adding 1, 2,
or 3 extra pixels to the original characters, as exemplified in
Fig. 10 for “A”. Specifically, for each original character we

FIGURE 10. “A” variations with additional pixels.

TABLE I Extended Dataset Cardinalities

generate datasets corresponding to each types of considered
variation and Table I summarizes the dataset cardinality for
each character and variation type. To investigate the effect
of the initial synaptic weights values on the SNN recognition
performance we derive 4 different initial synaptic configura-
tions based on the following training sets: (S1) - the 5 original
characters, (S2) - (S1) and 15 variations (1 new pattern per
character for each variation type), (S3) - (S1) and 45 variations
(2 new patterns per character for each variation type), and (S4)
- (S1) and 75 variations (3 new patterns per character for each
variation type). For each obtained initial synaptic configura-
tion we instantiate the corresponding graphene-based SNN
architecture and evaluate its recognition performance on a test
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FIGURE 11. SNN vs. ANN character recognition performance.

dataset comprising all the character variations input patterns
not employed in the corresponding training set.

Furthermore, to put our results into proper perspective we
compare the obtained classification capabilities against the
ones of an Artificial Neural Network (ANN), paradigm that
is widely utilized for character recognition, trained (with the
gradient descent method) and evaluated on the same datasets.
The Matlab modelled ANN is a 3-layer feed forward net-
work, with 25 input neurons, a hidden layer with 5 neurons,
and an output layer with 5 neurons to indicate the recog-
nized character. The ANN and graphene-based SNN character
recognition performance is presented in Fig. 11. As can be
observed in the Figure the recognition ability of both ANN
and SNN improves for larger size training datasets, which is
expected, from ≈ 55% for training set S1 with cardinality
5, up to ≈ 95% for training set S4 that contains 80 input
patterns. Moreover, the SNN approach exhibits similar with
ANN recognition performance (max. 7.8% variation), even
outperforms ANN for the training set S3, while benefiting of
all spike and graphene induced energy consumption and area
advantages.

B. EDGE DETECTION
To further demonstrate the capabilities of the proposed recon-
figurable SNN architecture we consider the 3-layer SNN com-
prising 13 neurons depicted in Fig. 12(a) and employ it to per-
form edge detection on the celebrated Lena and Cameraman
images. To this end, for each and every image pixel, we should
determine whether it belongs to an edge or not and this can be
done by sequentially analyzing the pixel configuration of the
3× 3 grayscale pixel matrix centered around it. Each layer
1 (L1) neuron receives an input spike train which frequency
is determined by the grey levels of the 3× 3 matrix pixel it
connects with. We assume that: (i) the input patterns are fed
to the L1 neurons via LTP synapses with identical synaptic
weights, (ii) L1 and L2 neurons are fully connected via LTP
synapses with initial weight values determined based on a
set of directional filters that detect 3× 3 edge and non-edge
patterns, and (iii) for L2 to L3 connectivity, LTP synapses with
identical synaptic weights are utilized to connect Neuron1 and

Neuron2 to the output neuron, while an inhibitory connection
is in place between Neuron3 and the output neuron.

To determine the initial weight values for the synapses
connecting L1 and L2, we first assign them random values.
We use as SNN input patterns a series of edge and non-edge
patterns [37] formalized as 3× 3 grayscale pixels matrices, as
depicted in Fig. 12(b). To represent the 3 grey levels (white,
grey, black) in the considered edge and non-edge patterns, we
use input spike trains with 0Hz, 190Hz, and 200Hz frequency,
respectively. As desired SNN reaction, we would like the SNN
output neuron to fire when an edge pattern is applied as input,
and to not fire for non-edge input patterns. To induce the
desired SNN output reaction, we need to update the L1 to L2

synaptic weights. As can be observed in Fig. 12(b), the edge
patterns and non-edge patterns stimulate different numbers of
input neurons. Specifically, the edge patterns stimulate 3 or
6 input neurons while the non-edge patterns stimulate 0, 1,
8 or 9 input neurons. Thus, we expect the non-edge patterns
either to induce no firing event in L2 neurons, or to induce
firing events in more L2 neurons than the edge patterns do.
Therefore, we would like to take advantage of the L2 neurons
that are firing only for the non-edge patterns in order to induce
the desired SNN output neuron reaction. Since this reaction
for non-edge patterns is “do not fire,” we can exploit the
spiking of the neurons in L2 that are firing only for non-edge
patterns, in order to inhibit the SNN output neuron. In par-
ticular, we designate Neuron3 in L2 to fire only for non-edge
patterns. Thus, we depress all incoming synaptic connections
to Neuron3 and inhibit its outgoing connection to the SNN
output neuron. Since for this particular application, the initial
synaptic weights values for desired SNN reaction to edge
and non-edge patterns can be derived as previously described,
we don’t need to make use the methodology introduced in
Section III. After obtaining the initial synaptic weights, the
graphene-based SNN is configured accordingly, and the SNN
reaction to the 18 3× 3 edge and non-edge input patterns
evaluated by means of SPICE simulation. The SNN reaction
is summarized in Fig. 13(a) and, for exemplification purpose,
graphically presented in Fig. 13(b)–(e), for edge pattern 1,
edge pattern 5, non-edge pattern 2, and non-edge pattern 6,
respectively. We note that for edge patterns at least one L2

neuron is firing, which makes the SNN output neuron to fire
while for the non-edge patterns, there are no firing events
for the SNN output neuron, either because none of the L2

neurons fire, or because the inhibitory neuron Neuron3 fires
and suppresses all the other L2 to L3 firing activity.

To evaluate the edge detection ability of the obtained SNN,
we consider two grayscale images, i.e., Lena and Cameraman,
depicted in Fig. 14(a) and (c), and rely on SPICE simulation to
obtain the detection results. Prior to image processing they are
first quantized in order to reduce the number of gray levels.
Each pixel appurtenance or not to an edge is determined by
the SNN processing of the 3× 3 window centered in that pixel
and after all pixels are scanned the edge detection result forms
a black and white image, where black pixels belong to edges
and white pixels don’t.
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FIGURE 12. Edge detection SNN illustration, (a) SNN structure, (b) edge patterns and non-edge patterns.

FIGURE 13. SNN reaction for edge and non-edge input patterns.

To get inside on the way quantization affects the edge de-
tection performance, we perform edge detection on 4-, 8-, and
12-levels quantized images. We encode each grey level pixel
as a spike train with a different frequency ranging from 0Hz
(white) to 200Hz (black). Fig. 14(b) and (d) present the edge
extraction results for different quantization levels for Lena
and Cameraman, respectively. A visual inspection of Fig. 14
images reveals that 4 grey level quantization results in blurred
edge images, while 8- and 12-level quantization in clear and
sharp edges. Note that the image quality improvement be-
comes only marginal beyond a certain number of quantization
levels (e.g., the difference between 8-level and 12-level quan-
tized images generated edges are almost imperceptible).

To assess the quality of the SNN edge detection results
we compare them against the Matlab obtained results for 4

classical edge detection operators, i.e., Canny, Roberts, Sobel,
and Prewitt [38] applied directly on the original images (with-
out prior quantization), in terms of the Peak Signal-to-Noise
Ratio (PSNR) and the Mean Squared Error (MSE), which
measure the perceptual distortion between the original images
and the edge extracted counterparts [39]. We note that a higher
PSNR indicates a higher quality image, while a lower MSE
value promises a better image quality. Table II presents a com-
parative summary of the PSNR and MSE values computed for
the edge extracted images, obtained with the classical edge
detection algorithms and with the proposed graphene-based
SNN when using different quantization levels. By inspecting
the PSNR and MSE results for Lena image in Table II, we
note that the best performing edge detector is Roberts and that
the SNN counterpart exhibit only slightly worse performance:
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FIGURE 14. Edge detection results.

TABLE II Edge Detection Results Quantitative Evaluation

(i) 7.5%, 2.8%, and 2.3% lower PSNR values and (ii) 10%,
3.7%, and 3% higher MSE values, for the SNN with 4, 8,
and 12 gray levels, respectively. Looking at the SNN results,
we note that in general the finer the gray level quantization
the better the edge image quality, which is in agreement with
the visual perception one gets when inspecting Fig. 14(b).
For the Cameraman image, the SNN detector outperforms the
classical counterparts, with Roberts fairing the best among the
classical detectors. In particular, when comparing to Roberts
figures, the SNN provides (i) 2.7%, 0.1%, and 2.3% higher
PSNR values and (ii) 2.9%, 0.1%, and 2.6% lower MSE
values for the SNN with 4, 8, and 12 gray levels, respectively.
To conclude, the edge detection simulation results indicate
that the graphene-based SNN platform delivers comparable
performance with classical edge detectors for the considered
Lena and Cameraman images, while providing all the benefits
of SNN base processing paradigm.

C. AREA AND ENERGY EVALUATION
While an accurate evaluation of the area and energy con-
sumption of our proposal is not possible at this stage of de-
velopment it is of interest to get some inside on those two

FIGURE 15. SNN unit energy consumption vs. input spike train frequency.

aspects. As it concerns the SNN unit area, a graphene-based
synapse occupies an active area of ≈45nm 2 (2 GNR devices)
and a neuron requires an active area of ≈176nm2 (6 GNR
devices) [23]. To evaluate the energy consumption and get
sight into energy expenditures at different time scales, we con-
sidered an SNN unit and apply rectangular spikes with 40%
duty cycle as input, while varying the input spike frequency
within the range of 200Hz to 20GHz. We then measure the
energy required by the SNN unit neuron to generate a spike
and by the SNN unit synapse to perform plasticity modulation
and spike transmission. The obtained results graphically pre-
sented in Fig. 15 indicate ≈8 orders of magnitude decrease in
energy consumption per spike for both the neuron (from 43pJ
at 200Hz to 5.2× 10−7 pJ at 20GHz) and the synapse (from
5.1pJ at 200Hz to 6.0× 10−8pJ at 20GHz).
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TABLE III Area and Energy Consumption for Biological and State-of-The-Art Artificial Neurons

*Experimental results from fabricated devices.

TABLE IV Area and Energy Consumption for Biological and State-of-The-Art Artificial Synapses

*Experimental results from fabricated devices.

Further, to have a better view on the potential of using the
proposed graphene-based SNN architecture for large-scale en-
ergy efficient implementations, we summarize in Table III and
IV the area and energy consumption figures for biological and
state-of-the-art artificial neurons and synapses, respectively.
We note that, the graphene-based SNN unit (neuron+synapse)
can potentially save at least ≈2 orders of magnitude area
estate when compared with both neurons and synapses state-
of-the-art implementations.

From the energy standpoint, the proposed SNN unit can
consume up to 1 order of magnitude more than state-of-the-art
counterparts if operated with spike pulse width in the order
of, e.g., μs due to leakage but can achieve up to 4 orders of
magnitude energy savings if operated with short spike pulse
width in the order of, e.g., ps. For the presented applications,
we considered a biologically plausible time scale, i.e., ms,
and, as such, we obtained an average energy consumption for
the entire SNN architecture neuronal and synaptic arrays of
1.98× 104pJ per character for the vowels recognition appli-
cation, and of 1.21× 104pJ and 1.39× 104pJ per edge pixel
and non-edge pixel, respectively, for the edge detection appli-
cation.

Note that the proposed SNN unit is generic thus it is by
no means restricted to the considered design constraints. The
SNN architecture can be tailored to function under differ-
ent spike width scales by considering different trapping/de-
trapping time constant values for the GNRs of the neuronal
and synaptic array devices. Thus, we can target both bio-
logical, which require low input frequency and a specific
voltage ranges, and fast processing scenarios for which a ns
timing scale operation would be more appropriate from the

computation speed point of view. To accommodate different
application targets, the SNN architecture neuronal and synap-
tic arrays can be partitioned into different frequency islands,
i.e., for each frequency island the neurons and synapses GNRs
are designed with trapping mechanisms that match the island
time scale. At run-time, depending on the application con-
straints, one can map the SNN topology either to the higher
frequency islands for fast non-cortical processing, or to the
lower frequency ones for bio-mimetic processing.

V. CONCLUSION
In this paper, we proposed a reconfigurable graphene-based
Spiking Neural Network (SNN) architecture and a training
methodology for obtaining the initial SNN synaptic weight
values. The proposed architecture supports artificial synapses
with programmable plasticity and reconfigurable connectiv-
ity between the neuronal and synaptic arrays. To investigate
the versatility and suitability of the proposed architecture to
accommodate and evaluate the behaviour of different SNN
topologies we considered 2 SNN applications particularly
designed for character recognition and edge detection. We
mapped on the generic graphene-based platform a 2-layer
SNN tailored for vowel characters recognition and demon-
strated by mens of SPICE simulations that it can achieve up
to 94.5% recognition accuracy for the considered training and
evaluation datasets, which is very close to the one achieved
by a functionally equivalent ANN counterpart. Further, we
mapped and evaluated a 3-layer SNN to perform edge de-
tection on Lena and Cameraman images and demonstrated
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that the edge detection result quality matches and even out-
perform the one obtained with classical edge detection op-
erators. In summary, the proposed reconfigurable graphene
SNN architecture exhibits: (i) area and energy efficiency due
to effective graphene-based implementation of neurons and
synapses, (ii) flexible support for SNN applications mapping
due to FPGA-alike reconfiguration feature, and (iii) training
process simplicity due to Spike-Timing-Dependent Plasticity
(STDP) and Long-Term Plasticity (LTP) support.
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