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We present mathematical descriptions of optically stimulated luminescence �OSL� signals under linearly,
hyperbolically, exponentially, and reciprocally increasing stimulation intensity for a one-trap one-recom-
bination-center model assuming charge transfer governed by first-order kinetics. Depending on the stimulation
mode, the OSL signal can be monotonically increasing, monotonically decreasing, show a peak shape, or be
constant. The shape of the OSL signal is controlled by a stimulation-rate parameter �governed by the stimu-
lation mode� and a decay-rate parameter that is proportional to the photoionization cross section. We demon-
strate that the luminescence signal as a function of time under exponentially increasing-optical stimulation
�EM-OSL� shows the same evolution in time as the luminescence signal under hyperbolically increasing-
thermal stimulation �HM-TL�. This similarity allows a new interpretation of the I · t versus In t plot, where I is
the optically stimulated luminescence intensity and t is the time. For a phosphor with several optically active
traps, the OSL signal will contain several components. We show that the mathematical descriptions of the OSL
signals under all stimulation modes can be related to the description of the OSL signal derived with
continuous-wave �CW� stimulation. These so-called pseudo-OSL signals are helpful in a visualization of the
various components in the OSL signal, where different pseudo-OSL transformations can be used to amplify
different aspects. We demonstrate that the stimulation mode or pseudo-OSL transformation used has no effect
on the overlap of the different OSL components. This implies that for the separation of multiple OSL compo-
nents there is, in principle, no preference for a specific stimulation mode or pseudo-OSL transformation.
Finally, we present a transformation related to hyperbolically modulated OSL which does facilitate separation
of OSL components and may be of use for determining component specific photoionization cross sections or
trapped-charge concentrations.
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I. INTRODUCTION

During exposure of a semiconductor or insulator to ioniz-
ing radiation, electron-hole pairs are created. Some of these
are trapped in centers with energy levels in the band gap.
Upon stimulation with photons of appropriate energy, the
charge carriers can be delocalized and recombine at recom-
bination centers. This results in the emission of light, a phe-
nomenon called optically stimulated luminescence �OSL�.
Instead of photons, the charge carriers can also be freed from
their traps by heating the sample. In this case, the phenom-
enon is called thermoluminescence �TL�. The emitted light is
a measure of the absorbed dose deposited during excitation
of the sample, e.g., during the exposure to ionizing radiation.
Highly sensitive TL and OSL materials have been developed
for use in radiation dosimetry.1,2 OSL signals from natural
materials, in particular, quartz and feldspar minerals, are
widely used to determine the age of sediments3 and for ac-
cident dosimetry.4

OSL and TL techniques are also of great importance in
material science, in particular, in the study of persistent
luminescence5 and in the biomedical field6 where OSL is
used for imaging.7 Another application of stimulated lumi-
nescence is in the development of optical memories.8 Storing
data �“writing”� into an OSL material is accomplished
through trap filling with UV radiation and “readout” by mea-
suring the infrared stimulated luminescence.

Usually, the OSL signal is measured using continuous-
wave �CW� stimulation �CW-OSL�, where the luminescence

emission is recorded during stimulation with light of a cer-
tain wavelength and constant intensity. The monitored signal
typically decays until all accessible traps are emptied and the
luminescence ceases. In general, the shape of a CW-OSL
signal is a rather featureless decaying curve. In the past, sev-
eral attempts have been made to transform the signal into a
peak-shaped curve which gives a more pronounced visual-
ization of the components �corresponding to emission from
different trapping centers� in the signal. Randall and Wilkins9

suggested plotting I · t as a function of ln t, with I as the
intensity of the luminescent signal and t is the time. Although
they studied phosphorescence, the equations governing OSL
and phosphorescence are very similar10 and therefore rel-
evant to this study. Chen and Kristianpoller11 elaborated the
Randall-Wilkins transformation and showed the similarity of
the transformed signal to a thermoluminescence glow peak
measured under hyperbolic heating. Kitis et al.12 applied the
Randall-Wilkins transformation to CW-OSL decay curves
and pointed out that in the transformed curve, it is easier to
determine whether the trap is completely emptied. Moreover,
the position of the maximum in the curve provides direct
information on the decay constant.

In 1996 Bulur13 introduced a new method of measuring
OSL by ramping the stimulation intensity linearly in time,
producing a linearly modulated �LM� optically stimulated
luminescence �LM-OSL� signal. Later on, Bulur14 showed
that this LM-OSL signal can also be obtained from the CW-
OSL signal by a simple mathematical transformation. Such a
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signal not obtained by the modulation of the stimulation in-
tensity but through the transformation of the CW-OSL signal
is called a pseudo-OSL signal. Another approach was de-
scribed by Poolton et al.,15 who obtained a pseudo-LM-OSL
signal by ramping the sample period during CW stimulation.
Chen and Pagonis10 derived yet another pseudo-LM-OSL
signal for non-first-order kinetics in which the maximum is
proportional to the initial concentration of charge carriers,
which is—under appropriate conditions—proportional to the
absorbed dose.

All these studies on stimulation modes and transforma-
tions aim to show the structure or a specific property of the
OSL signal with greater clarity. Several studies claimed that
one can resolve the contributions from the various traps more
clearly with LM-OSL than with CW-OSL measurements.16,17

Mishra et al.18 posed that with nonlinear light modulation,
there is also a better discrimination of the OSL components.
Such discrimination of the OSL components is of relevance
for studies of OSL materials as it would facilitate the quan-
tification of trap parameters �trap depth photoionization cross
section�. For OSL dating using quartz, it is of paramount
importance to isolate the fast OSL component from contri-
butions of other components to the OSL signal.19 The reason
for this is that the trap giving rise to the fast OSL component
is the only trap in natural quartz that is rapidly reset upon
light exposure and which is sufficiently stable to allow
charge to remain trapped over geological time scales. The
accuracy in the age determination would benefit greatly from
improved extraction of the fast-component quartz OSL signal
from the OSL contributions from other traps.

The relevance of component separation for OSL material
studies and for luminescence dating inspired us to investigate
a wide range of stimulation modes and mathematical trans-
formations in a systematic way. In particular, we address the
following questions: �i� is there an optical-stimulation mode
that produces the same development in time of the lumines-
cence intensity as the signal produced under thermal stimu-
lation? �ii� Is there a specific stimulation mode that deserves
preference for decomposing a multicomponent OSL signal?
�iii� Are there specific advantages in the use of a pseudo-OSL
signal?

First, we give the basic differential equation of the charge-
carrier traffic and the assumptions on which this equation
rests. From the differential equation follows the OSL signal
under constant stimulation. Then we derive equations de-
scribing the OSL signals under linearly, hyperbolically
�HM�, exponentially �EM�, and reciprocally modulated �RM�
stimulation intensity. For each of the stimulation modes, we
provide a pseudosignal, i.e., a transformation function that
relates the modulated signal to the CW-OSL signal. We then
use the derived equations to answer the research questions
specified above and discuss implications for material studies
and for luminescence dating.

II. DESCRIPTION OF THE OSL-SIGNAL

In this paper, a simplified model is used with only two
energy levels in the band gap of the phosphor. One is acting
as a trap where electrons are accumulated during exposure to

ionizing radiation and the other as a hole trap that acts as a
radiative recombination center. We assume that upon optical
stimulation, only the electrons are freed from their traps and
recombine with the holes with emission of light. If we as-
sume �i� first-order kinetics �i.e., no retrapping� and �ii� de-
trapping probability increases linearly with stimulation inten-
sity then the OSL signal IOSL�m−3 s−1� can be described by20

IOSL�t� = −
dn

dt
= n�t�������t� , �1�

with n�t�=trapped-electron concentration �m−3� at time t�s�,
����=photoionization cross section �m2� at stimulation
wavelength �, and ��t�=stimulation intensity at time t in
number of stimulation photons with wavelength � in m−2 s−1.
We now describe the OSL signal under different stimulation
modes.

A. CW-OSL

Under CW stimulation, the stimulation intensity ��t� is
constant

�CW�t� = �CW. �2�

We define the CW decay rate or detrapping parameter ��s−1�
as

� = ��CW. �3�

Using this parameter in solving Eq. �1� with ��t�=�CW gives

ICW�t� = n0� exp�− �t� , �4�

with n0 as the initial trapped electron concentration at t=0.
This is the well-known exponential decay with decay con-
stant �. For a system with several optically active traps �say
i� and assuming no interaction between them, the OSL signal
will be the sum of i exponentials,

ICW�t� = �
i

n0,i�i exp�− �it� . �5�

For the area under each component i, independent of the
decay rate, the following holds:

�
0

�

ICW,i�t�dt = n0,i. �6�

This provides a constraint for any transformation of ICW: for
any component, its time-integrated value should remain un-
altered.

B. OSL under modulated stimulation intensity

In this section, we consider the case in which the stimu-
lation intensity is not constant. Suppose that the stimulation
intensity can be written as

��t� = f�t��c, �7�

with f�t� as a function that describes the time dependence of
the intensity and �c as a constant intensity. Solving the dif-
ferential equation �1�, with Eq. �7� results in
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n�t� = n0 exp�− ��c�
0

t

f���d�� , �8�

with � as a dummy variable. Substituting Eq. �8� into Eq. �1�
results in

IOSL�t� = n0��cf�t�exp�− ��c�
0

t

f���d�� . �9�

If �c is taken equal to �CW, this signal can be written in
terms of the CW-OSL �Eq. �4��. Such a signal is termed as a
pseudo-OSL signal,

Ipseudo-OSL�t� = f�t�ICW�t�� , �10�

with

t� = �
0

t

f���d� . �11�

Equations �10� and �11� tell us that the intensity-modulated
OSL signal can be found by first applying a time transforma-
tion t→ t�. From the CW-OSL signal, the signal for t� is
determined and the result multiplied by f�t�. Equation �10�
shows that for any stimulation intensity function that can be
described by Eq. �7�, the intensity-modulated OSL signal can
be derived from the CW-OSL signal. This will be further
exemplified in the following sections.

1. LM-OSL

We consider a linearly increasing stimulation intensity ac-
cording to

�LM�t� =
�P

P
t , �12�

with �P�m−2 s−1� as the intensity at the end of the stimulation
period P�s�. For this stimulation mode, we define the LM
decay-rate parameter ��s−1� as

� = ��P. �13�

The LM-OSL signal follows from Eq. �9� with f�t�= t / P,
�c=�P, and using Eq. �13�:

ILM�t� = n0
�

P
t exp�−

1

2

�

P
t2� . �14�

This signal has a peak shape with a maximum at tmax
=	P /� and Imax=n0

	� / �eP� �see Fig. 1�. The peak has an
asymmetric peak shape with a steeply rising left-hand side
and a relatively slowly decreasing right-hand side. We define
an asymmetry factor 	=
 /FWHM with 
= t2− tmax or the
high time half width, FWHM=the full width at half
maximum= t2− t1 with tmax, t1, and t2 as the maximum value
and the two half-intensity values of the peak, respectively. It
can be derived that FWHM=1.631 /	� / P and the asymme-
try factor 	=0.565.

Pseudo-LM-OSL. The pseudo-LM-OSL signal follows
from Eq. �10�:

Ipseudo-LM�t� =
1

P
tICW�t�� , �15�

with

t� =
1

2P
t2. �16�

In the determination of ICW� 1
2Pt2�, one should realize that in

most experiments the OSL signal is not measured continu-
ously but is digitized, i.e., recorded over finite time intervals
�channels�. For a specific time t= t1, in the middle of a chan-
nel there is—in general—no corresponding channel of which
the middle precisely corresponds to 1

2Pt1
2. To find ICW� 1

2Pt1
2�,

one has to logarithmically interpolate �or linear on ln ICW�
between the ICW signals of adjacent channels �the channels
closest to 1

2Pt1
2�.

Our transformation �Eq. �15�� differs from Bulur’s,14 who
proposed that Eq. �14� can be obtained by a conversion of
the ICW signal through a transformation of the time t into u
=	2tP with P�s� as the stimulation period. This leads to a
similar equation as Eq. �15� but now in the u domain,

Ipseudo-LM�u� =
1

P
uICW
 1

2P
u2� . �17�

The transformation proposed here �Eq. �15�� is found by in-
terpolation, whereas Bulur’s �Eq. �17�� transformation de-
pends on extrapolation. Figure 2 demonstrates that through
our interpolation approach, there are more points in the ris-
ing part of the fast component. Another advantage of Eq.
�15� is that the error propagation inherent to the transforma-
tion is reduced.

2. HM-OSL

We consider a hyperbolically increasing stimulation inten-
sity according to

FIG. 1. �Color online� Optically stimulated luminescence signal
�14� under linearly increasing intensity �12� with �=2 s−1, P
=8 s, and n0=100 m−3.
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�HM�t� =
�t

1 + �t
c�P, �18�

with ��s−1� as an HM stimulation-rate parameter and c as a
constant defined by c= �1+�P� /�P. The dimensionless con-
stant c has been chosen such that for any value of � at the
end of the stimulation period P�s�, the intensity is equal to
�P or �HM�P�=�P. Note that for small values of ���t�1�,
the stimulation function �HM�t� is almost linear in t �ap-
proaching LM-OSL�, while for large values of ���t
1� the
stimulation becomes a step function �approaching CW-OSL�
�see Fig. 3�. We define the HM decay-rate parameter ��s−1�
as

� = �c�P. �19�

The HM-OSL signal follows from Eq. �9� with f�t�=�t / �1
+�t�, �c=c�P, and using Eq. �19�:

IHM�t� = n0��t exp�
�

�
− 1�ln�1 + �t� − �t� . �20�

The function has an asymmetric peak shape with a fast-rising
left-hand side and a relatively slow decreasing right-hand
side �see Fig. 3�. The intensity reaches its maximum at

tmax =
1

	��
, �21�

with a value

Imax = n0
	�� exp�
�

�
− 1�ln
1 +	�

�
� −	�

�
� .

�22�

Pseudo-HM-OSL. The pseudo-LM-OSL signal follows
from Eq. �10�:

Ipseudo-HM�t� =
�t

1 + �t
ICW�t�� , �23�

with

t� = t −
1

�
ln�1 + �t� . �24�

Here we assume that c�P is equal to the intensity as in case
of CW-OSL, i.e., c�P=�CW. This rather complicated trans-
formation simplifies if we choose the stimulation-rate param-
eter � equal to the decay-rate parameter �. In that case, Eq.
�20� reduces to

IHM�t� = n0�2t exp�− �t� . �25�

If we assume again c�P=�CW which implies �=�, Eq. �25�
can be derived from the signal under continuous stimulation
�4� via

FIG. 2. �Color online� �a� Measured CW-OSL signal from a
sedimentary quartz sample NCL-2105096 �see Wallinga and Bos
�Ref. 26� for details�. The inset shows the signal on a lin-lin scale.
�b� Two pseudo-LM-OSL signals derived by the transformation of
the CW-OSL signal. The transformation proposed in this study �Eq.
�15�� is shown in red and the Bulur �Ref. 14� transformation �Eq.
�17�� in black. The readout period was too short to completely de-
plete the trap corresponding to the slow component so that only the
rising part of this component can be seen in the pseudo-OSL signal.
Note in the lower figure the difference in number of points on the
left-hand side of the peak maximum and the difference in noise in
the late part of the spectrum.

FIG. 3. �Color online� Optically stimulated luminescence signal
�20� under hyperbolically increasing intensity �18� with �=�
=2 s−1, P=5 s, and n0=100 m−3. The increase in the stimulation
intensity with stimulation-rate parameter �=0.02 s−1, �=0.4 s−1,
and �=20 s−1 �dashed curves� are shown as well.
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Ipseudo-HM�t� = − t
dICW�t�

dt
. �26�

The intensity starts from zero at t=0 and exhibits a maxi-
mum at tmax=1 /�. The intensity at the maximum is Imax
=n0� /e, the FWHM=2.446 /� and the asymmetry 	=0.686.
It should be realized that Eq. �26� is only valid in case �
=� and cannot be measured for a multicomponent signal
since in a real experiment the stimulation-rate parameter can
be chosen to be equal to the decay rate of only one of the
components.

3. EM-OSL

We consider an exponentially increasing intensity accord-
ing to

�EM�t� = �0e�t, �27�

with �0�m−2 s−1� as the stimulation intensity at t=0 and
��s−1� as the EM stimulation-rate parameter. We define
��s−1� as the EM decay-rate parameter according to

� = ��0. �28�

The EM-OSL signal follows from Eq. �9� with f�t�
=exp��t�, �c=�0, and using Eq. �28�:

IEM�t� = n0� exp��t +
�

�

1 − exp��t��� . �29�

After some rearrangement, this equation can be written as

IEM�t� = Imax exp�1 + ��t − tmax� − e��t−tmax�� , �30�

with

tmax =
1

�
ln

�

�
, �31�

Imax = g
n0�

e
, �32�

where

g = exp
exp�− �tmax�� . �33�

The function has an asymmetric peak shape with a long
slowly rising left-hand side and a relatively rapidly falling
right-hand side �see Fig. 4�. The asymmetry 	=0.403 and the
FWHM=2.446 /�. Note that the FWHM is independent of �,
which implies that all OSL components have the same
FWHM. In contrast to LM- and HM-OSL, the intensity at
t=0 is not equal to zero. As long as �
� �as is the case in
the example of Fig. 4�, the OSL signal at t=0 is very small
compared to Imax and the factor g is very close to unity. If �
has a value of the same order as �, the intensity at t=0 is
significant compared to Imax �see solid curve in Fig. 5�. In
this case, the factor g strongly deviates from unity. It sug-
gests the presence of a virtual OSL signal for the time t�0.
If we set g=1 �see Fig. 5 dashed curve� the time-integrated
OSL signal, e.g., integrated from t=0 to t= +� will not be
equal to n0 �the constraint required by Eq. �6��. However, it
can be shown that the area under the whole dashed curve,

e.g., integrated from t=−� to t= +� is equal to n0. The fac-
tor g can therefore be interpreted as the factor that corrects or
compensates for the time-integrated virtual OSL signal. If
g=1 �which can be approximated very closely since � is an
experimental parameter� then the maximum of the HM-OSL
signal is also independent of the photoionization cross sec-
tion. This implies that for a multicomponent OSL signal at a
given EM intensity, all components only differ in the posi-
tion of the maximum determined by �i and in a vertical
scaling factor determined by n0,i.

Pseudo-EM-OSL. The pseudo-EM-OSL signal follows
from Eq. �10�:

Ipseudo-EM�t� = e�tICW�t�� , �34�

with

FIG. 4. �Color online� Optically stimulated luminescence signal
�29� under exponentially increasing intensity �27� with �=2 s−1,
�=6�10−4 s−1, and n0=100 m−3.

FIG. 5. �Color online� The blue solid curve shows the optically
stimulated luminescence signal under exponentially increasing in-
tensity �red solid curve� according to Eq. �30� with �=1 s−1, �
=0.607 s−1, and n0=100 m−3. In this case, tmax=0.5 s and g=1.8.
The area under the blue solid curve integrated from t=0 to t=� is
equal to n0. The blue dashed curve shows IEM-OSL according to Eq.
�30� with the same values for �, �, and n0 but now with Imax

=n0� /e, i.e., with the factor g=1. The shapes of the solid and
dashed blue curves are identical for t�0. They only differ by a
scaling factor g. The dashed blue curve represents a hypothetical
OSL signal for exponential stimulation intensity according to the
dashed red curve for t�0 and the solid red curve for t�0. It can be
shown that the area under the dashed blue curve integrated from t
=−� to t= +� is also equal to n0.
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t� =
1

�
�e�t − 1� . �35�

An interesting case appears if we apply a slightly different
time transformation t→ t�= �1 /��e�t. Then the transformed
signal becomes

Ipseudo-���t� = e�tICW�t��

= e�tn0� exp
−
�

�
e�t�

=
n0�

e
exp�1 + �
t −

1

�
ln �

��
− exp��
t −

1

�
ln �

���� . �36�

This signal is equivalent to Eq. �30� with tmax
= �1 /��ln�� /�� and Imax=n0� /e and g=1. With the transfor-
mation t→ t�, we again produce a pseudo-EM-OSL signal;
but to obtain the total OSL signal we have to integrate from
t=−� to t= +�. If we take the exponential stimulation rate to
be �=1 s−1, Eq. �36� can be written as

Ipseudo-EM�ln t� = tICW�t� . �37�

From Eq. �37� it follows that if we plot the product t · ICW as
a function of the natural logarithm of the time, the same
curve is obtained as under exponentially increasing intensity
with stimulation-rate parameter �=1 s−1.

4. RM-OSL

In the foregoing, we have seen that in a number of cases
an increasing stimulation intensity produces a peak-shaped
OSL curve. However, this is not necessarily the case for any
monotonically increasing stimulation intensity. We illustrate
this with a reciprocal stimulation function according to

�RM�t� =
1

1 − �t
�0, �38�

with �0�m−2 s−1� as the stimulation intensity at t=0 and
��s−1� as the RM stimulation-rate parameter �see Fig. 6�a��.
We define ��s−1� as the RM decay-rate parameter according
to

� = ��0. �39�

The charge-carrier concentration as a function of time fol-
lows from Eq. �8� with f�t�=1 / �1−�t�, �c=�0, and using Eq.
�39�:

n�t� = n0�1 − �t��/�. �40�

The RM-OSL signal follows from Eq. �9�:

IRM�t� = n0��1 − �t��/�−1. �41�

The behavior of the RM-OSL signal strongly depends on the
ratio � /�. If � /��1, the OSL signal is monotonically in-
creasing, while for � /��1 the signal is monotonously de-
creasing �see Fig. 6�b��. A special case occurs if � /�=1.
Then the increase in the OSL signal due to the increase in the

stimulation intensity is exactly compensated by the decrease
due to the trap emptying; in other words, the signal is con-
stant. If there is only one trap involved, the RM mode can be
used to test the assumptions on which Eq. �1� is based. By
varying the stimulation-rate parameter � from �� to ��, the
OSL signal must change from decreasing to an increasing
signal. For �=�, the OSL signal should be constant.

In a real experiment with an RM stimulation mode, one
should realize that it is not possible to fully empty the trap.
To fully empty the trap, i.e., n�t�=0, according to Eq. �40�
the increase in intensity must last up to t=1 /�. This means
according to Eq. �38�, an increase in the intensity to infinity.
In practice the RM-OSL signal will only be described by Eq.
�41� as long as the light source is able to produce an increase
in intensity dictated by Eq. �38�.

Pseudo-RM-OSL. The pseudo-RM-OSL signal follows
from Eq. �10�:

Ipseudo-RM�t� =
1

1 − �t
ICW�t�� , �42�

with

FIG. 6. �Color online� Reciprocally increasing intensity �38� for
various stimulation rates � in s−1 as indicated �upper figure� and the
corresponding simulated RM-OSL signal �lower figure� according
to Eq. �41� with n0=100 m−3 and �=1 s−1.
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t� =
1

�
ln

1

1 − �t
. �43�

If the stimulation-rate parameter � is equal to the decay-rate
parameter, the OSL signal will be constant. Another particu-
lar case occurs if � /�=2. Then the RM-OSL signal is a
straight line with a negative slope equal to 1

2n0�2.

III. DISCUSSION

In Table I the most important equations are summarized.
We have shown that depending on the stimulation mode, the
OSL signal can be monotonously increasing, monotonously
decreasing, shows a peak shape, or be constant. For all non-
constant stimulation modes investigated, we defined a
stimulation-rate parameter �1 / P, �, �, and �; column 2 in
Table I� which describes the rate �s−1� at which the stimula-
tion intensity increases. The value of this parameter can be
selected for an experiment. The resulting OSL signal de-
pends on the stimulation-rate parameter and on a decay-rate
or detrapping parameter �column 3 in Table I�. Note that in
case of a peak-shaped OSL signal, the position of the maxi-
mum is determined by either the product or the ratio of the
stimulation-rate and the decay-rate parameter �column 5 in
Table I�. The decay-rate parameter is proportional to the
photoionization cross section, which is a property of the par-
ticular defect within the material and depends on the stimu-
lation wavelength. In all cases, the trapped-charge concentra-
tion at t=0 �n0� assumed to be related to the absorbed dose is
a scaling factor �column 4 in Table I�.

A. Optically stimulated luminescence versus
thermoluminescence

OSL and TL differ in the type of energy by which the
trapped-charge carriers are freed from their trapping centers.
In case of TL, heat is transferred to the sample; in case of
OSL the sample is exposed to photons of a specific energy. In
the simple one-trap one-recombination-center case, with no
retrapping �first-order kinetics� the luminescence intensity
can be described by a generalized form of Eq. �1�,

I�t� = −
dn

dt
= pn , �44�

with p as the probability per unit time that charge carriers
escape from their trap. In case of thermal stimulation, this
probability is given by Arrhenius’ relation

pTL�t� = s exp
−
E

kT�t�
� , �45�

with s�s−1� as the frequency factor, E �eV� as the trap depth,
k �eV/K� as Boltzmann’s constant, and T �K� as the absolute
temperature. Under hyperbolic heating,21 the temperature in-
creases according to

1

T
=

1

T0
− bt , �46�

with T0 as the temperature at t=0 and b �K−1 s−1� as a
heating-rate constant. Strictly speaking Eq. �46� is a recipro-
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cal function,22 but in the literature this heating mode is re-
ferred to as hyperbolic heating.20,23–25 If we substitute Eq.
�46� into Eq. �45�, we arrive with a function that can be
written as

pTL�t� = ��e��t, �47�

with ��=s exp�−E /kT0� and ��=Eb /k.
In the case of optical stimulation, the probability per unit

time that trapped-charge carriers escape from their trap under
exponentially modulated stimulation is given by

pOSL�t� = ��EM�t� = �e�t. �48�

Mathematically speaking, Eqs. �47� and �48� are identical
and so are the solutions for OSL and TL of Eq. �44�. This
implies that Eq. �29� can also be used to describe the TL
under hyperbolic heating but with the replacement of the
parameters � and � with �� and ��, respectively. This allows
us to interpret the virtual OSL signal �the apparent OSL sig-
nal for t�0� as similar to the TL signal for T�T0.

From Eqs. �47� and �48�, we infer that the luminescence
signal as a function of time under exponentially increasing
optical stimulation �EM-OSL� shows the same evolution in
time as the luminescence signal under hyperbolically in-
creasing thermal stimulation �HM-TL�. This similarity al-
lows another interpretation of the t · I vs ln t plot often used
in phosphorescence and OSL. In their original paper, Randall
and Wilkins9 interpreted the peak-shaped curve to resemble a
TL glow curve. The expression for the pseudo-EM-OSL sig-
nal �Eq. �37�� shows that the transformed curve can also be
interpreted as resembling an OSL signal obtained under an
exponentially increasing stimulation intensity.

B. Effect of stimulation mode on overlap of the components

Usually an OSL material contains several traps with dif-
ferent photoionization cross sections resulting in an OSL sig-
nal with several overlapping components. In this section, we
investigate the effect of stimulation mode on the overlap of
OSL contributions from individual components. The OSL
intensity ratio at time t of two components 1 and 2 with
photoionization cross sections �1 and �2 and initial trapped-
charge concentrations n0,1 and n0,2 follows from Eq. �1�:

IOSL,1�t�
IOSL,2�t�

=
n1�t�
n2�t�

�1

�2
. �49�

With the aid of Eq. �9� and using Eq. �7�, we find for this
ratio

IOSL,1�t�
IOSL,2�t�

=
n0,1

n0,2

�1

�2
exp���2 − �1��

0

t

����d�� . �50�

From Eq. �50� we see that the ratio of intensities of two OSL
components depends on �i� the ratio of initial trapped-charge-
carrier concentrations, �ii� the ratio of the photoionization
cross sections �at wavelength ��, and �iii� the time-integrated
stimulation intensity, which is proportional to the cumulative
stimulation energy.

It is important to note that the ratio is independent of the
way the photons are distributed in time during the stimula-

tion period. The stimulation mode ��t� may be different; but
as long as the time-integrated number of photons is the same
�i.e., the total amount of energy the sample is exposed to�
then the ratio of the components remains unaltered. Experi-
mental evidence for this finding for OSL of sedimentary
quartz is given by Wallinga et al.26 Claims for an improved
discrimination of the components using LM-OSL or nonlin-
ear stimulation are therefore not justified in cases where the
stimulation is performed at a fixed wavelength. We note that
for non-first-order kinetics, a similar derivation can be given
resulting in an expression where again ��t� only occurs un-
der the integral sign. So for non-first-order kinetics, the ratio
remains unaltered as well.

C. Effect of transformations on overlap of the components

A pure pseudo-OSL signal mimics precisely the OSL sig-
nal measured under a specific stimulation mode. Since the
overlap of the components in a measured OSL signal will not
be altered by applying another stimulation mode, as shown
in Sec. III B, the same applies to pseudo-OSL signals.

In this section, we investigate whether improved compo-
nent separation can be obtained through the application of
Eq. �26� to a multicomponent OSL signal. In Sec. II B 2, we
discussed that this equation only provides a pseudo-HM sig-
nal when a single trap contributes to the OSL signal. Here we
consider the OSL intensity ratio of two components 1 and 2
with decay rates �1 and �2 and initial electron concentrations
n0,1 and n0,2, respectively. Under CW stimulation, this ratio
becomes


 I1�t�
I2�t�

�
CW

=
n0,1�1 exp�− �1t�
n0,2�2 exp�− �2t�

. �51�

For the transformed CW-OSL signal according to Eq. �26�,
this ratio becomes


 I1�t�
I2�t�

�
diff

=
n0,1�1

2 exp�− �1t�
n0,2�2

2 exp�− �2t�
. �52�

The difference between the initial and transformed intensity
ratios is a factor �1 /�2; thus the transformation according
Eq. �26� to a multicomponent OSL signal was successful in
enlarging the component separation. We note that the
strength of this approach depends on the difference in photo-
ionization cross section of the traps involved. The larger the
difference between �1 and �2, the greater the increase in
component separation through transformation.

The improved peak separation is a consequence of the
property that the derivative of an exponential is again an
exponential. Further separation can be obtained by repeated
differentiation. This brings us to define

Idiff,k�t� �
�− 1�k

k!
tkdkICW�t�

dtk , �53�

with k as a positive integer. The factor 1 /k! in this equation
has been included in the realization that according to Eq. �6�
for each component i, the time-integrated signal should be
equal to the initial concentration of trapped-charge carriers,
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�
0

�

Idiff,k,i�t�dt = n0,i. �54�

Equation �54� can be derived using the equality27

�
0

�

tke−�tdt =
k!

�k+1 . �55�

For a single component the intensity Idiff,k�t� shows a peak
shape with a maximum at tmax=k /�. The intensity at the
maximum is Imax= 
kk /k!�� 
n0� /ek� and the FWHM is pro-
portional in a first-order approximation to 	k /�. From these
expressions, we see that the relative peak width
�FWHM / tmax��1 /	k, and thus decreases with increasing k.
This means that for each further differentiation, the overlap
of the OSL components decreases and the peaks become
more separated. This effect is illustrated in Fig. 7 in which
ICW and Idiff,k are calculated for a three component OSL sig-
nal with decay constants differing by a factor of 10. Besides
the improved separation, the application of Eq. �53� to a
measured CW-OSL signal also results in the automatic re-
moval of the background since under CW stimulation the
background is constant and the derivative of a constant is
zero.

We would like to re-emphasize that for a multicomponent
signal, the intensity described by Eq. �53� cannot be mea-
sured under hyperbolically modulated stimulation or any
other stimulation mode. So it is not a pseudo-OSL signal, but
a theoretical function with applications for analysis of a mul-
ticomponent CW-OSL signal. Analysis of a multiple expo-
nential function by differentiation has been applied before.
Okushi and Tokumaru,28 for example, used an equation simi-
lar to Eq. �26� for the determination of deep-level parameters
in semiconductors. In a separate paper, we have investigated
the application of this analysis method to experimental data
on sedimentary quartz.29

D. Effect of stimulation mode on the pattern of a
multicomponent OSL signal

The stimulation mode has no effect on the overlap of the
different components but does influence the time interval in
which a component is readout. The result is that the pattern
of a multicomponent OSL signal, i.e., the ratios of Imax of the
various components, depends strongly on the stimulation
mode. This is illustrated in Fig. 8. Figure 8�a� shows a simu-
lated CW-OSL signal with the parameters values shown in
Table II. The decay rates are taken from Jain et al.30 and are
characteristic for the different components in the OSL signal
of natural quartz under blue light �470 nm� stimulation. With
the same parameters, we calculated the OSL signal for stimu-
lation under exponentially increasing intensity �Fig. 8�b��,
hyperbolically increasing intensity �Fig. 8�c��, and linearly
increasing intensity �Fig 8�d��. Under EM-OSL, the readout
interval is equal for all components and the areas of various
components can be compared directly. Components with
equal n0 show equal Imax and also equal areas in a I vs t plot.
So it can immediately be seen that the slow components are
much more strongly represented than the fast/medium com-

ponents. This cannot be so easily read from the CW-OSL
signal on a ICW vs ln t plot. The HM-OSL signal �Fig. 8�c��
emphasizes the fast/medium components, while in the LM-
OSL signal �Fig. 8�d�� both fast/medium and slow compo-
nents are clearly noticeable. This is a consequence of the fact

FIG. 7. �Color online� �a� Simulated CW-OSL signal with three
components ��1=2 s−1, n0,1=100 m−3; �2=0.2 s−1, n0,2=200
m−3; and �3=0.02 s−1, n0,3=500 m−3� and the transformed OSL
signal according to Eq. �53� for �b� k=1, �c� k=2, and �d� k=3.
Note that the peaks become more separated for repeated differen-
tiation �higher k�. As a result, the overlap between the first and
second components is reduced and the overlap of the first and third
components becomes negligible.
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that Imax under HM-OSL is proportional to ��=��, while un-
der LM-OSL the maximum intensity is proportional to 	�.
The LM-OSL signal suggests that the fast/medium compo-
nents are more strongly represented, but here the areas �in a
I vs ln t plot� cannot be compared directly.

From the CW-OSL signal shown in Fig. 8�a�, we derived
the transformed OSL signal according to Eq. �53� with k=1.

The result is shown in Fig. 9. It can be seen that for this
transformation the components are more resolved. In particu-
lar, the fast and medium components are more separated and
the contribution of the slow 3 component under the fast com-
ponent is negligible.

FIG. 8. �Color online� �a� Simulated CW-OSL signal using Eq. �5� with decay rates of the components which are characteristic for natural
quartz under blue LED �470 nm� stimulation during 5000 s �based on Jain et al. �Ref. 30��. �b� EM-OSL signal calculated with Eq. �29�, with
�=2.0�10−4 s−1 and P=2.09�105 s; the insert shows the EM-OSL signal in the time region between 1.2�105 s and 1.8�105 s on
another scale, �c� HM-OSL signal calculated with Eq. �20�, with �=1 s−1 and P=5008 s and �d� LM-OSL signal calculated with Eq. �14�,
with P=10 000 s. The values for the decay rates and n0,i are taken from Table II. The maximum stimulation intensity and the time-integrated
number of stimulation photons are equal for all stimulation modes. Where possible the five OSL components �F=fast, M =medium, S1
=slow1, S2=slow2, and S3=slow3� are indicated. Although the pattern of the OSL signals is different, the overlap of the components is
equal for all stimulation modes. Advantages of the different representations are discussed in the main text.

TABLE II. Parameters values for the components in the OSL
signal of natural quartz under blue light �470 nm� stimulation at
125 °C. The decay rates are characteristic; the values for n0 vary
from sample to sample �from Jain et al. �Ref. 30��.

Component

Decay rate
�s−1�

n0

�arb. units��=�=� �

Fast 2.5 1.60�10−18 5100

Medium 0.62 3.97�10−19 1800

Slow 1 0.15 9.60�10−20 900

Slow 2 0.023 1.47�10−20 1400

Slow 3 0.0022 1.41�10−21 4�105

Slow 4 0.0003 1.90�10−22 1�105

FIG. 9. �Color online� Simulated OSL signal obtained by the
transformation of the CW-OSL signal from Fig. 8�a� using Eq. �53�
with k=1. Note the difference between this figure and Fig. 8�c�.
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E. Practical considerations on stimulation mode of preference

From the viewpoint of separation of the components,
there is no preference for a specific stimulation mode. We
suggest that CW-OSL should be the method of choice for
experimental work: first because CW-OSL is the quickest
stimulation mode for readout, second because it gives the
highest signal-to-noise ratio �compare the signals in Fig. 8�,
and third because the background due to the leakage of
stimulation light will be constant during the stimulation pe-
riod. However, when studying an �ultra�fast component, in-
strumental limitations may make CW-OSL less suitable.
Firstly, the sampling rate should be high enough to monitor
rapid OSL decays. Reducing the stimulation power may help
to solve this issue but may result in long stimulation times to
remove slow OSL components. Secondly, the OSL instru-
ment may not be capable of realizing a stimulation intensity
change which is a step function, i.e., steep and without un-
dershoot or overshoot �e.g., Ankjaergaard et al.31�. In such
cases, HM-OSL provides a good alternative since a hyper-
bolically increasing intensity starts from zero and is therefore
easier to realize while the readout time is only marginally
longer than for CW stimulation.

IV. CONCLUSIONS

Depending on the distribution of stimulation intensity
through time �the stimulation mode�, the OSL signal can be
monotonously increasing, monotonously decreasing, show a
peak shape, or be constant. The shape of the OSL signal is
determined by the stimulation-rate parameter �the rate at
which the stimulation intensity increases� and the decay-rate
parameter �determined by the photoionization cross section
at a given wavelength of stimulation�. We showed that the
luminescence signal as function of time under EM-OSL

shows the same evolution in time as the luminescence signal
under HM-TL. In the case of a multicomponent OSL signal,
the overlap of the components is identical for any stimulation
mode. This implies that for the separation and identification
of the different OSL components there is, in principle, no
preference for a specific stimulation mode.

Intensity-modulated OSL signals can be derived from the
CW-OSL signal by a time transformation if the stimulation
intensity can be described by the product of a time-
dependent function and a constant intensity. Such a trans-
formed signal �termed as a pseudo-OSL signal� does not con-
tain more physical information than the CW-OSL signal
from which it is derived. However, the transformation of a
multicomponent CW-OSL curve into a pseudo-OSL curve
can be beneficial in visualizing different aspects of the signal
since the stimulation mode does influence the time interval in
which a component is readout, resulting in different patterns
of multicomponent OSL signals. Different transformations
highlight different properties and thereby have different ap-
plications.

The pseudo-HM-OSL signal for a single exponential can
be found by taking the product t ·dICW /dt, but this function
provides no pseudo-HM-OSL signal for multiple exponen-
tials. Application of this transformation to a multicomponent
CW-OSL signal leads to an improved separation of compo-
nents with different photoionization cross section. This fea-
ture may be of use for investigating trap properties and for
isolating the fast OSL component of quartz for dating appli-
cations.
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