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Abstract

Motion planning and decision-making for autonomous vehicles (AVs) are keys to the AV application
stack. In recent years, deep learning (DL) methods are widely studied in both academia and industry
to provide AVs’ motion planning and decision-making solutions due to their capacity to approximate
complex mapping between given input and output (e.g. from raw sensor input to steering actions for
wheels and throttle). However, these deep learning models are often criticised for issues such as
sample inefficiency and low generalisation to safety-critical traffic scenarios. To address these issues,
this work proposed to build a model-based multi-agent traffic simulator to efficiently train and validate
imitation learning models in critical scenarios with adversarial agents controlled by driver’s risk field
(DRF). We demonstrate that our approach helps to promote driving safety in critical scenarios and
outperforms Lyft Urban Driver (current state-of-the-art) even with >30 times less training resource.
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Learning from Demonstrations of Critical Driving
Behaviours Using Driver’s Risk Field

Yurui Du1,2, Flavia Sofia Acerbo2, Jens Kober1, Tong Duy Son2

Abstract—In recent years, imitation learning (IL) has been
widely used in industry as the core of autonomous vehicle
(AV) planning modules. However, previous work on IL planners
shows sample inefficiency and low generalisation in safety-critical
scenarios, on which they are rarely tested. As a result, IL planners
can reach a performance plateau where adding more training
data ceases to improve the learnt policy. First, our work presents
an IL model using spline coefficient parameterisation and offline
expert queries to enhance safety and training efficiency. Then,
we expose the weakness of the learnt IL policy by synthetically
generating critical scenarios through optimisation of parameters
of the driver’s risk field (DRF), a parametric human driving
behaviour model implemented in a multi-agent traffic simulator
based on the Lyft Prediction Dataset. To continuously improve
the learnt policy, we retrain the IL model with augmented data.
Thanks to the expressivity and interpretability of the DRF, the
desired driving behaviours can be encoded and aggregated to the
original training data. Our work constitutes a full development
cycle that can efficiently and continuously improve the learnt
IL policies in closed-loop. Finally, we show that our IL planner
developed with 30 times less training resource still has superior
performance compared to the previous state-of-the-art.

Index Terms—imitation learning, autonomous driving, critical
scenario generation, model-based multi-agent simulator

I. INTRODUCTION

Today, autonomous vehicles (AVs) worldwide are under-
going extensive road tests in the real world, and some have
already been put in active service. However, Level 4+ au-
tonomous driving still remains a significant challenge due to
the “long tail” of real-world driving events, meaning AVs
can be unsafe in rarely occurring traffic scenarios [1]. In
the AV application stack, the motion planning module is
the key to solving this bottleneck as it determines the AV’s
driving policy. In recent years, imitation learning (IL) has been
widely used as the core planner by learning from large-scale
driving datasets of expert demonstrations [2]–[6]. Academic
and industrial research has produced state-of-the-art IL-based
AV applications in various real-world traffic scenarios, such
as unsigned rural roads [2], highways [3], and urban driving
[4]–[6].

Despite the growing use of IL as the planner in AVs’
planning module, we observed that IL models often require
an excessive amount of training resource in order to achieve
capable, but sometimes unsafe driving behaviours [5], [6]. To
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enhance training efficiency and driving safety, we utilise the
spline parameterisation for the IL model’s predicted trajectory
as proposed by our previous work [7] and an offline expert
query approach for IL [6].

However, validation of IL models under simulated critical
traffic scenarios is largely missing in published research. Most
IL models are validated with log-replay data, where the traffic
agents’ trajectories are logged, and dynamics between traffic
agents are not considered. To address this problem, recent
research proposed various methods [8]–[11] to build reactive
simulations with traffic agents that respond to others. However,
these simulated traffic scenarios are close to the scenarios in
the training distribution. Therefore, they are not representative
of critical traffic scenarios. Critical scenarios can also be
manually designed by human experts, but this approach scales
poorly. For example [12], by assigning waypoints and multiple
available actions for each agent to choose from during the
rollout of their policies, the most adversarial configuration
can be found using search algorithms. However, the time
complexity of this approach grows exponentially with the
number of traffic agents, designed waypoints and actions. For
this reason, this approach is not scalable to generate highly
complex urban traffic scenarios with multiple traffic agents.
Furthermore, the diverse driving styles of traffic agents in the
real world are not considered. Therefore, the obtained critical
traffic scenarios cannot satisfactorily represent the diversity
and complexity of real-world driving.

To generate realistic, complex critical scenarios that can
help us discover weak driving policies in validation, we
utilise driver’s risk field (DRF) [13], a parametric model
that explains human driving behaviours using the driver’s
subjective perceived risk of the environment. Compared to
other driver models, DRF is a unified theory that models all
human driving behaviours, allowing us to represent different
driving behaviours by tuning very few parameters without
switching between different models. We use DRF as traffic
agents in a model-based multi-agent simulator based on the
Lyft Prediction Dataset. By optimising parameters of DRF,
critical traffic scenarios with realistic and diverse agents can
be generated on a large scale.

Another bottleneck for IL is that increasing size of dataset
does not necessarily improves IL models’ robustness and
safety [6]. This may indicate that IL models can reach a
performance plateau during training and stop learning from
normal traffic data. To continuously improve pre-trained IL
models, we present a novel and flexible data augmentation
method in which the DRF is exploited to encode desired



driving behaviours in the original training data to improve
poorly trained IL policies exposed in the validation results
from critical scenarios.

Our contributions are three-fold, as summarised in Fig. 1:
1) An IL method combining spline coefficient parameteri-

sation with the closed-loop offline expert query approach
for efficient training. We demonstrate its superior per-
formance over existing methods by validating it in large
urban driving datasets and our generated critical traffic
scenarios.

2) Scalable generation of realistic and critical traffic scenar-
ios in an interactive DRF-based traffic simulator to test
ego driving policies in validation.

3) A novel data augmentation method leveraging DRF and
original expert demonstrations based on validation results
from critical scenarios to continuously help our IL model
learn critical driving behaviours to enhance driving poli-
cies, which further improves its safety in both recorded
scenarios from logged data and our generated critical
scenarios.

II. RELATED WORKS

A. Imitation learning
Compared to optimisation-based motion planners, IL is most

attractive for its scalability to integrate new functionalities by
learning from expert demonstrations rather than optimising
human engineered objective functions. With the availability
of large-scale driving datasets, IL is becoming a popular
method for motion planning in AV industry. However, one
major challenge of IL is the distributional shift, which is often
caused by the compounding error in the sequential decision-
making process, such as motion planning for AVs. It leads the
ego vehicle to unfamiliar scenarios that are not included in
the training distribution. Eventually, the behaviour of the ego
vehicle becomes completely unpredictable and unsafe due to
large deviations from the demonstration.

In practice, many approaches have been proposed to mit-
igate the distributional shift and significantly improve IL
performance. While these approaches may seem very different,
they mostly mitigate the distributional shift by providing
corrective actions during training so the ego vehicles learns
to recover from earlier deviations in the sequential decision-
making process. One approach [5] is to leverage simple
behaviour cloning with data augmentation by adding perturba-
tion noise to provide more robust driving policies. Similarly,
another approach [3] tries to directly label perturbed camera
images with corrective actions to avoid drifting. However,
these approaches generally depend on empirical experiences
to engineer noise mechanisms before training. A more theoret-
ically satisfying approach is the dataset aggregation (DAgger)
[19], [6], which generates the training distribution of corrective
actions on the run and guarantees an ideal linear regret bound
to mitigate the distributional shift. However, it also exerts a
heavier computation burden. To improve training efficiency,
spline parameterisation, a powerful representation of predicted
trajectories for IL has been proposed [7].

B. Critical scenario generation

Prior to our work, critical scenario generation has been stud-
ied in [12], in which critical scenario generation is approached
by optimising a cost-to-go function that maximises the number
of collisions and minimises the distance between traffic agents.
However, the excessive manual labour required and the heavy
computation burden greatly impair its scalability. Other works
on traffic scenario generation and reactive simulation with
interactive agents mostly used generative methods such as
latent variable models [9], autoregressive models [10], and
generative adversarial imitation learning (GAIL) [8], in order
to capture the possibility of multiple futures. However, these
works mainly focused on generating similar traffic scenarios
or agents with similar driving policies as demonstrated in the
original dataset. Therefore, the generated scenarios are not
critical scenarios that are purposefully designed to challenge
weak driving policies in validation.

C. Realistic traffic agent modelling

The aforementioned critical scenario generation is imple-
mented in a model-based multi-agent traffic simulator for
better scalability. To incorporate traffic agents with realistic
human driving behaviours in a simulator, the choice of traffic
agent models is essential. Over the decades, numerous models
have been proposed to explain human driving behaviours,
which can be categorised into learning-based and knowledge-
based ones. For learning-based approaches, the driver model
relies on a large amount of data to learn policies that behave
like human driving. Some literature also refers to this kind of
models as non-parametric models because its model structure
is not fixed and should be determined from the data [14].
Whereas for the knowledge-based models, sometimes also
known as parametric models, the driver behaviour model is
often built from prior expert knowledge to capture human driv-
ing features. The prior expert knowledge is often formulated
in mathematically analytical forms, in which the parameters
can be identified by fitting the model to the given data.

Although learning-based models in theory can mimic any
human driving behaviour if given enough data, their non-
interpretable parameters make the decision-making process a
blackbox, which can be detrimental for safety-critical applica-
tions requiring traffic agents to reasonably interact with the ego
vehicle in a well-controlled manner. Another shortcoming of
learning-based models is that we cannot easily and intuitively
change their driving behaviours due to their non-interpretable
parameters. For example, if we need to model cautious and
sporty driving behaviours, a huge amount of data from cau-
tious and sporty drivers is required to train both models.
Moreover, as diverse behaviours for different traffic agents
need to be modelled individually to make realistic simulations,
it will be extremely expensive to train learning-based models
for all driving behaviours. For the reasons mentioned above,
learning-based models are not suitable for creating realistic
scenarios with many diverse traffic agents.

Compared to learning-based models, building knowledge-
based human driving behaviour models requires a considerably
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Fig. 1: Overview of our three-part work that respectively addresses a safe, efficient IL method, generation of critical scenarios
for validation, and data augmentation encoding desired driving behaviours via DRF. All three parts constitute a development
cycle that allows us to continuously improve IL policies in closed-loop.

smaller amount of parameters and these parameters often have
clear physical and mathematical meaning, making it easier to
interpret and control behaviours of the model. However, most
knowledge-based human behaviour driving models are highly
scene-specific, assuming the model works only for a specific
driving scenario, such as car following in free roads [15]
or multi-lane highways [16]. In addition, such models often
have strong built-in assumptions connecting certain driving
behaviours to specific driving scenarios. For example, time
to collision (TTC) is widely used to describe ego vehicle ap-
proaching obstacles [17]. Time headway (THW), on the other
hand, is specially put forward for car following [18]. These
fragmented methods to model driving different behaviours are
by nature flawed because real driving scenarios are highly
complex. Therefore, it is difficult to identify all possible traffic
scenarios and design smooth transitions for them.

For these reasons, the driver’s risk field (DRF) [13], a para-
metric human driving behaviour model, is especially suitable
for realistic agent modelling because:

1) It provides the driver’s subjective view of the driving risk
in any given scenario.

2) It can explain diverse driving behaviours with a unified
theory.

3) It has interpretable parameters tunable to mimic diverse
driving behaviours.

III. METHODS

In this section, we first specify the formulation of our IL
method for the ego vehicle. Then, the parametric modelling of
other traffic agents using DRF is discussed. We propose our
method to generate critical scenarios with DRF agents that act
adversarially to challenge the IL policy in validation. Finally,
we present a novel data augmentation method that encodes
demonstrations of critical driving behaviours to purposefully
improve weak IL policies exposed in critical scenarios.

A. Efficient IL with spline coefficient parameterisation and
closed-loop offline expert query

IL is a supervised learning method that aims to directly
mimic driving behaviours from expert demonstrations. In the
context of IL, the expert policy is defined as a∗t = π∗(st),
i.e., the mapping from an agent’s states to its actions. To
learn such a mapping, the naive IL is to collect a dataset
of state-action pairs D∗ = {(s1, a1)...(sn, an)} from expert
demonstrations and learn the policy directly via supervised
learning. The parameter of the policy network is denoted by
θ, which can be learnt by minimising the loss function L:

θ̂ = argmin
θ

∑
(si,ai)∈D∗

L(πθ(si), a
∗
i ) . (1)

In this work, L(πθ(si), a
∗
i ) = ||πθ(si) − a∗i ||1 is the L1

distance between the learner’s action πθ(si) and the expert
action a∗i .



To mitigate the distributional shift caused by the naive
IL from Eq. (1), we adopt a similar approach to the one
proposed in [6], which is itself very similar to DAgger [19],
but with better computational efficiency owing to the use
of an offline synthetic expert query rather than an active
expert policy to aggregate training datasets. This offline expert
query approach is achieved by a closed-loop training scheme.
Assuming that the dataset D∗ consists of N expert trajectories
and each trajectory τ has the length of T steps, namely
D∗ = {τi}Ni=1, τi = {(sj , aj)}Tj=1, we first sample the
ego vehicle’s current policy for K steps, which will lead the
ego vehicle to unfamiliar scenarios due to the distributional
shift. Then, the current policy is updated by minimising the
above loss function in the remaining T −K steps so the ego
vehicle learns how to recover from mistakes caused by the
distributional shift. The optimisation objective can be rewritten
as a discounted cumulative expected loss with a discount factor
of γ:

θ̂ = argmin
θ

Eτ∼π∗

T∑
t=K

γT−KL(πθ(st), a
∗
t ) . (2)

Similarly to [7], we use spline coefficients, also known
as control points, to parameterise trajectories in the dataset
D∗ instead of using discrete waypoints for more stable long-
horizon predictions and smoother trajectories. The details of
the spline parameterisation used in this work is provided in
Appendix C. We also show that this parameterisation greatly
improves the training efficiency in Sec. IV-C.

The states st and actions at of the original expert trajectories
are both denoted as a 3D vector (x, y, θ) in the SE2 space.
The corresponding spline coefficients in all three directions
can be expressed as a matrix A3×n. By replacing a∗t in Eq.
(2) with A∗

3×n, our objective function can be written as:

θ̂ = argmin
θ

Eτ∼π∗

T∑
t=K

γT−KL(πθ(st),A
∗
3×n) . (3)

B. Parametric agent modelling using DRF

The DRF model [13] builds the driver’s subjective view
of its surrounding environment as a 2D Gaussian distribution
along the predicted path. The perceived risk is derived from
DRF representing the driver’s subjective view of the driving
risk in traffic. It is a function of the ego vehicle’s current
velocity and steering angle Prisk(v, δ). Then, based on the
risk threshold theory, the future velocity and steering angle
are obtained by solving an optimisation problem to keep the
perceived risk below the assigned threshold. Please refer to
Appendix. A for detailed formulations of DRF, where typical
values of DRF parameters and principles of parameter tuning
for different driving behaviours are disclosed.

C. Critical scenario generation

In this part, we detail how to generate critical traffic
scenarios with agents that follow DRF policies controlling
their velocity profiles along their original trajectories. The
agents are designed to react adversarially to the ego vehicle’s

driving policy by optimising the DRF parameters of agents.
The traffic scenarios are initialised based on real-world urban
driving data to improve the complexity and realism of the
generated scenarios.

We assume st = {xt, yt, θt} to be the state vector of the ego
vehicle’s pose at time t. This vector includes the 2D position
and orientation of the vehicle w.r.t. the ego-centric reference
frame at t = 0. Let Zt = {zit}Mi=1 be the state vector that
consists of the pose of all other M agent vehicles closest to
the ego vehicle, where zit is the state vector of the ith agent
vehicle’s pose. Let us assume that at = πθ(st) is the IL policy
of the ego vehicle and ui

t = πϕi(zit) is the parametric policy
of the ith agent parameterised by ϕi, and also the dynamics
model of the state of the ego vehicle st+1 = f(st, at) and
of the state of the agent zit+1 = h(zit, ut). We can obtain ϕi

for each agent’s parametric policy leading to critical traffic
scenarios by optimising the following objective:

Φ∗ = argmin
Φ

J(θ,Φ) , (4)

where Φ = {ϕ∗
i }Mi=1 and J(θ,Φ) is the cost-to-go function

computed from the scenario via unrolling all vehicles’ policies.
The cost is computed from the L1 distance between the ego
vehicle and other vehicles and the total number of accidents
(collisions, off-road incidents) to encourage the formation of
dense traffic and collisions:

J(θ,Φ) = Est,Zt

T∑
t=0

L1(st, Zt)− Laccidents . (5)

To ease the computation burden, we assume that each agent
can either drive aggressively or cautiously, with aggressive and
cautious driving behaviours represented by different values
of parameters of DRF. For every scenario, a total of M
agents are controlled by DRF, meaning that there are 2M

different combinations of agents’ parameters of DRFs that
lead to 2M possible futures. Therefore, the optimal parameter
combination corresponding to the most critical traffic sce-
narios can be obtained with an exhaustive search algorithm.
To scalably generate critical scenarios, Simcenter HEEDS, a
high-performance, global parameter optimization software, is
used to optimise the parameters of DRF. The algorithm of
generating critical scenarios is shown in Alg. 1.

D. Data augmentation for desired driving behaviours

Improving the performance of IL models for AVs is difficult,
as adding more training data does not guarantee better perfor-
mance. To address this problem, here we propose to augment
the expert demonstrations by altering the ego vehicle’s velocity
profiles of the expert trajectories with DRF. This method offers
great flexibility to encode the desired driving behaviours we
wish the IL model to learn. The DRF model ensures the
new learnt policy is still applicable to the previous dataset
because the DRF-augmented data distribution is similar to
human demonstrations.

Other data augmentation methods for IL planning models,
such as perturbing the original trajectory with noise [5],



Algorithm 1 Generate critical scenarios in a model-based
multi-agent simulator with DRF

1: θ ← θ0 // ego vehicle’s policy
2: for i = 1, ..., N do
3: // for each traffic scenario
4: // Φi are agents’ parameters of their DRF policies in

the ith scenario
5: // Exhaustively search 2M combinations of agents’ DRF

parameters {Φi
j}2

M

j=1 to get the optimal combination of
agents’ parameters leading to the critical sceanario

6: Φi∗ = argminΦj
J(θ,Φi

j)
7: // J is computed via Eq. (5) by unrolling agents’

policies
8: // Validate ego policy θ in scenario i with M DRF

agents parameterised by Φi∗
9: end for

10: return validation results from critical scenarios

or requiring an expert policy during training [7], although
they can significantly improve IL performance, they do not
guarantee further improvement by retraining with more data.
Furthermore, since they cannot be used to learn desired
driving behaviours that purposefully improve previous weak IL
policies, the performance usually worsens in critical scenarios
where other agents act adversarially. By comparison, our data
augmentation method encoding desired driving behaviours
can be used to continuously improve poorly trained policies
exposed in critical scenarios by learning from DRF-augmented
demonstrations.

We have noticed that our model suffers more from rear
collisions than from other kinds of violations. Most rear
collisions occurred due to the passiveness of the ego vehicle.
Passiveness is a common case of causal confusion [8] in IL. To
mitigate this problem, we use the DRF model with aggressive
parameters to augment the original expert demonstrations in
scenarios where the rear vehicle is approaching the ego vehicle
as shown in Alg. 2. Please note more flexible augmentation
can be achieved by specifying different DRFs and traffic
scenario conditions. In Sec. IV-E, we show that the IL model
retrained with the augmented data learns a more robust policy
and drives less passively, which reduces rear collisions in
validation with both recorded scenarios from the logged data
and our generated critical scenarios.

IV. EXPERIMENTS

In this section, we evaluate the three contributions of this
paper. In particular, we are interested in: the impact of spline
parameterisation on the training efficiency of IL models; the
ability of generated critical scenarios to help detect poorly
trained policies; and the ability of IL models to learn de-
sired driving behaviours via retraining with DRF-augmented
demonstrations.

These three aspects are evaluated in Sec. IV-C, IV-D and
IV-E, respectively. The details of the models and scenarios
used for validation are listed as follows:

Algorithm 2 Data augmentation encoding desired driving
behaviours with DRF

1: // Dataset D has N expert trajectories corresponding to
N scenarios, each trajectory consists of T steps.

2: D := {τi}Ni=1, τi = {(sj , aj)}Tj=1

3: // DRF with aggressive parameters
4: DRF ← DRFagg

5: for i = 1, ..., N do
6: // for each traffic scenario
7: if rear vehicle exists then
8: // Conditional data augmentation
9: for t = 1, ..., T − 1 do

10: // for each timestep
11: aDRF

t = DRF (st)
12: sDRF

t+1 = f(st, a
DRF
t ) // Update next state

13: st+1 = sDRF
t+1

14: end for
15: // Aggregate dataset D
16: D ← {(sDRF

j , aDRF
j )}Tj=1

17: end if
18: end for
19: // Retrain ego IL policy with aggregated dataset D

1) Data-efficient IL
Models: Our IL model trained 30h with original data with
1 NVIDIA RTX A4000 laptop GPU (our 30h IL model),
Lyft Urban Driver [6] trained 30h with original data with
32 Tesla V100 GPUs (Lyft Urban Driver).
Scenarios: 2500 log-replay scenarios.

2) Generation of critical traffic scenarios
Models: Our 30h model, Lyft Urban Driver.
Scenarios: 1250 log-replay scenarios, 1250 critical scenar-
ios.

3) Data augmentation for desired driving behaviours
Models: Our 30h model, our IL model trained 30h with
original data + 2h retraining with augmented data (our 30h
model + 2h retraining ), Lyft Urban Driver.
Scenarios: 1250 log-replay scenarios, 1250 critical scenar-
ios.

For a better benchmark to demonstrate the advantage of us-
ing the spline parameterisation to improve training efficiency,
our IL model is adapted from Lyft Urban Driver [6], the
original work that proposed the closed-loop IL with offline
expert query, by adding the spline parameterisation to it, with
more details explained in Appendix. B.

A. Data

We use the Lyft Prediction Dataset to train and validate our
IL models. This is an urban driving dataset with diverse and
complex traffic scenarios. Specifically, we use the 112h train-
ing dataset and randomly choose 2500 four-second scenarios
from the validation dataset for evaluation. Both training and
validation datasets are provided by Lyft.

Both log-replay and generated critical scenarios are used
in validation. In log-replay scenarios, the other agents are



TABLE I: Metrics for the baseline and our model from 2500
log-replay scenarios.

Models Collision Imitation Aggressive
drivingFront Rear Side Off-road

Urban Driver 1 3 0 4 140
Ours 0 2 0 0 109

following their original trajectories. While in critical ones, the
other agents are reactive and following the DRF policy, which
controls their velocity profiles along their original trajectories.

B. Metrics

We evaluate all models in closed-loop, meaning that the IL
policy takes full control throughout the entire duration of each
scenario. For each scenario, we check the following metrics to
keep track of the number of violations and events to compare
the performance of different IL models.

Safety metrics
· Collisions: Record this violation if the ego vehicle collides

with other traffic agents.
Imitation metrics
· Off-road events: Record this violation if the ego vehicle

deviates from its ground-truth trajectory by more than 4m in
the lateral direction.

Subjective risk metrics
· Aggressive driving: Record this event if the perceived risk

(as specified in Sec. III-B) of the ego vehicle is larger than
105. This is a comprehensive metric that large risk values can
mean a very close distance to other vehicles, which makes the
driver feel at risk.

C. Data efficient IL with spline coefficient parameterisation

In this experiment, we evaluate the impact of spline param-
eterisation on the training efficiency by comparing IL models
trained with the original training dataset. The baseline model
is Lyft Urban Driver, which is trained 30h with 32 Tesla V100
GPUs. Ours is also trained 30h, but with only 1 NVIDIA RTX
A4000 laptop GPU. In Table I, we show that even with >30
times less training resource, our model outperforms Urban
Driver in all metrics, indicating better performance in safety
and imitation. Also, our model has a less aggressive driving
style compared to Lyft Urban Driver.

Fig. 2 and Fig. 3 present more qualitative results that
compare the performance of our model and Lyft Urban Driver.
We show that our model drives safer and obeys traffic rules.

From Fig. 2, we observe that Lyft Urban Driver fails to
accelerate in time and does not react to the approaching vehicle
from behind, which leads to a rear collision. In comparison,
our model makes the correct decision to speed up and drives
through the intersection safely.

From Fig. 3, Lyft Urban Driver fails to stop at an intersec-
tion when the traffic light is red, leading to a front collision.
Whereas our model obeys traffic rules and stops in the same
scenario.

Fig. 2: Each row is a 4-second traffic scenario that consists of
five images consecutive in time displaying the rollout of the
entire scenario. Red rectangle is the ego vehicle controlled
by IL policies, and blue rectangles are other traffic agents
from Lyft data log. Top row: Lyft Urban Driver has from rear
collision due to passive driving behaviour at an intersection.
Bottom row: Our IL policy accelerates the ego vehicle in time
given the same scenario.

Fig. 3: Top row: Lyft Urban Driver runs red traffic light and
has front collision. Bottom row: Our IL model stops at red
light in the same scenario.

D. Critical traffic scenario generation

In this experiment, we compare our generated critical traffic
scenarios with reactive adversarial agents to original traffic
scenarios with log-replay agents by unrolling our ego IL
policy and Lyft Urban Driver in both kinds of scenarios and
comparing their performance. It is shown in TABLE II that
our generated critical scenarios are more challenging for the
IL models (both Lyft Urban Driver and ours) to handle, as the
number of collisions increases in critical scenarios.

Additionally, more aggressive driving is observed in crit-
ical scenarios. This is because the distance between agents
is smaller in critical scenarios. Therefore, the ego vehicle
subjectively “feels” more at risk driving in critical scenarios.

Fig. 4 qualitatively illustrates how our critical scenarios
expose the weakness of our IL policy. On the top row, we see
the ego vehicle drives passively and is not reactive enough to
the approaching rear vehicle but no violation is reported as no
collision occurs, making the problem difficult to be noticed.
This problem is often referred to as passiveness due to causal
confusion [20]. By comparison, our critical scenario easily



Fig. 4: Red rectangle is the ego vehicle controlled by our IL
policy, and blue rectangles are other traffic agents controlled
by DRFs leading to critical scenarios. Top row: Validation
of our IL model using original Lyft data log, where the ego
vehicle drives passively, leading to a near-collision scenario
but is not detected. Bottom row: Validation of our IL model
using our generated critical scenario, where the ego vehicle
has a rear collision due to passive driving.

TABLE II: Metrics for the baseline and our (retrained) model
from 1250 log-replay and critical scenarios.

Scenarios Models Collision Imitation Aggressive
drivingFront Rear Side Off-road

Log-replay
Urban Driver 0 1 0 0 71

Ours 0 1 0 0 56
Ours(Re) 0 1 0 0 100

Critical
Urban Driver 0 8 0 6 71

Ours 0 7 1 0 60
Ours(Re) 0 5 0 0 111

reveals the passiveness of our IL policy by a rear collision
with an aggressive rear agent.

For this particular case, some may argue that introducing
another metric that marks close distance between vehicles
below a set threshold as a violation can also help to expose
passiveness. However, this threshold is difficult to define
because close distance between vehicles is very common in
dense urban traffic, where lots of false positives are likely to
be reported. Therefore, we argue that our generated critical
scenarios make it easier to disclose weak driving policies.

E. Data augmentation for desired driving behaviours

From previous validation results from Fig. 4, we observed
passiveness and inaction to approaching rear vehicles from
our IL policy due to causal confusion. This is a common
mistake of IL models for autonomous driving [21]. To mitigate
passiveness of the ego vehicle, we retrain the IL model with
augmented data where the ego vehicle drives slightly faster
when the rear vehicles are approaching.

In this experiment, we aim to demonstrate the ability of
IL models to learn desire driving behaviours from DRF-
augmented demonstrations by comparing the performance of
our retrained IL model (30h training + 2h retraining), our IL
model (30h training), and Lyft Urban Driver in both log-replay
and critical traffic scenarios.

Fig. 5: Red rectangle is the ego vehicle controlled by our IL
policy, and blue rectangles are other traffic agents controlled
by DRFs leading to critical scenarios. Top row: Validation of
our IL model using the same critical scenario from Fig. 4,
where the ego vehicle has a rear collision due to passiveness
and inaction to the approaching rear vehicle. Bottom row:
Validation of our IL model retrained with augmented data
demonstrating less passive driving behaviours using the same
generated critical scenario, where the ego vehicle correctly
responds to the approaching rear vehicle and keeps safe
longitudinal distance due to reduced passiveness.

In TABLE II, we see that our retrained IL model performs
better in critical scenarios and equally in log-replay scenarios
regarding the collision and imitation metrics.

The reason for the significant increase in aggressive driving
from our retrained model is that the retrained model learns
more aggressive driving, so it will slightly pick up speed if
followed by a rear agent. Therefore, the distance between
itself and front vehicles is shorter, leading to higher subjective
perceived risk. However, no front collisions occur, indicating
that the ego vehicle learns to drive less passively to avoid rear
collisions without compromising other safety metrics. Also,
our retrained model performs well in both critical and log-
replay scenarios, meaning the policy learned via retraining is
robust enough to handle both normal and critical scenarios
with adversarial agents. More importantly, we show that
driving styles of IL models can be properly customised using
DRF without compromising driving safety.

Fig. 5 presents validation results comparing our IL model
before and after retraining with DRF-augmented data to al-
leviate passiveness. The shown traffic scenario is the same
as the one we generated from Fig. 4. On the top row, we
see that our IL model before retraining has a rear collision
due to passive driving. However, as shown in the bottom row,
our retrained model speeds up in time and safely passes the
intersection without noticeable sign of passiveness, indicating
it has learnt the desired driving policy that drives slightly more
aggressively if followed by a rear vehicle.

V. CONCLUSIONS

In this paper, we have demonstrated the potential of incorpo-
rating the DRF, a parametric human driving behaviour model,
in a multi-agent traffic simulator to build a full development



cycle that can continuously improve the performance of IL
models. With the expressivity and interpretability of the DRF,
we can generate critical scenarios with DRF-based agents
that are parameterised to act adversarially to the ego IL
policy. These generated critical scenarios are proven to be
more challenging for the ego IL policy to handle than the
recorded scenarios from the logged data. Moreover, weak
policies are more easily detected from the validation with
critical scenarios. To enhance the weak policy, we use DRF
to encode desired driving behaviours to augment the expert
demonstrations. By retraining the IL model with augmented
data, the IL model achieves safer driving. The IL policy
learnt via retraining is also more robust as it is applicable to
both critical scenarios with adversarial agents and recorded
scenarios from logged data. We also proposed to improve
(re)training efficiency by adding the spline parameterisation to
Lyft Urban Driver. We show that our model, even developed
with 30 times less training resource, outperforms Lyft Urban
Driver.
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APPENDIX A
DRF TRAFFIC AGENT MODELLING AND VALIDATION

Our DRF-based traffic agent model is adapted from [13]
with modifications to the mathematical formulation of DRF
and its corresponding controllers. In the next sections, we
present the modelling details of our DRF-based traffic agent
as well as validation results using the Lyft Prediction Dataset.

A. Formulation of DRF-based traffic agent models

The DRF-based traffic agent model consists of the subjec-
tive DRF map of the driver and the objective cost map of
the environment. The subjective DRF map of the driver is
modelled as a 2D Gaussian distribution along the predicted
trajectory during the period of look-ahead time tla of the ego
vehicle. The equations of the predicted path and the corre-
sponding Gaussian at each cross section along the predicted
path are defined as:

Rcar =
L

tan δ
, (6)

dla = vtla + ds , (7)



G(x, y) = a(s) exp

(
−
√

(x− xc)2 + (y − yc)2 −Rcar

2σ2

)
,

(8)

a(s) = p(s− dla)
2 , (9)

σi = (m+ ki|δ|)s+ c , i = 1(inner), 2(outer) . (10)

Rcar is the radius of the ego vehicle’s predicted trajectory
computed from the its wheel-base L and steering angle δ. dla
is the look-ahead distance computed from the vehicle velocity
v, look-ahead time tla, and the safety distance ds. Please note
that ds is not in the original formulation [13], and our reasons
to add ds is given in later parts of this appendix. Eq. (9)
and (10) computes the height and width of the 2D Gaussian
distribution as a function of the arc length s along the predicted
trajectory, with s = vt. The height of the DRF is modelled
as a parabola with the parameter p denoting the steepness of
the parabola. The width of the DRF is modelled to increase
linearly with s. c is the width of the DRF at the current
position of the ego vehicle (where s = 0), which is equal to
car width / 4 (±2σ covers 95% of Gaussian distribution). m
defines the slope of widening of the DRF. k1, k2 respectively
defines the inner and outer boundaries of the DRF, with its
width changing proportionally to the absolute value of the
steering angle. Intuitively, larger values of DRF parameters
p, ds, tla, c,m, k1, k2 increases the perceptive field of the DRF,
meaning that given the same traffic scenario, the driver with
larger values of parameters of the DRF perceives higher risk
compared to the driver with smaller parameter values.

The DRF-based traffic agent model consists of the subjec-
tive DRF map of the driver and the objective cost map of the
environment. The values of the Gaussian distribution G(x, y)
indicate the probability that the ego vehicle is in (x, y) in the
next step. The mathematical formulations of the DRF [13] are
given in Sec. III-B. The objective cost map of the environment
C(x, y) models the consequence of the ego vehicle being in
(x, y) at the next timestep. In our work, we assign penalties
of 2500 for obstacles in (x, y) and penalties of 500 for non-
drivable areas.

In short, the subjective DRF map of the driver quantified by
seven parameters (p, ds,m, c, tla, k1, k2) is only dependent on
the driver’s state of mind, not the environment. Whereas the
objective cost map of the environment is independent from
the subjective view of the driver and hence is the same for
everyone.

The perceived risk of the driver is the convolution product
of the subjective DRF map of the driver and the objective
cost map of the environment, as shown in Fig 6. In other
words, the perceived risk is computed by the consequence of
an event multiplying the probability of the event occurring, or
the occurring event’s expected consequence. As many potential
events can occur in the environment, the perceived risk is the
summation of all events’ expected consequence.

Fig. 6: An illustration of driver’s perceived risk from [13]. Top
row: qualitative formulation of the perceived risk. Bottom row:
quantification of the perceived risk

In [13], the perceived risk is derived as a function of
the current velocity and steering angle of the ego vehicle
Prisk(v, δ). Then, based on the risk threshold theory, the
future velocity and steering angle are optimised to keep the
perceived risk below the assigned threshold. We adopt similar
approaches to compute future actions of the DRF model.
However, the optimisation here is only used to compute the
next velocity of the ego vehicle and assume that it follows the
ground-truth trajectory, i.e., assuming steering angle is known.
We did such simplification for the following considerations:

1) Avoid high-level decisions: The Lyft Prediction Dataset
is an urban driving dataset with complex high-level
decisions such as go straight/turn left/turn right at an
intersection. These high-level decisions depend on global
route planning and cannot be modelled by DRF. There-
fore, assuming that ego vehicle follows the ground-truth
trajectory and only leaving the lower-level velocity for the
DRF model to control is a more reasonable approach.

2) Underdefinition for complex urban driving: The quanti-
fied DRF model and perceived risk theory are proposed to
explain human driving behaviours in an unlimited, natural
setting. In urban traffic, drivers are limited by many traffic
rules and conditions, such as red lights, one-way signs,
and different speed limit signs. Making DRF applicable to
urban traffic is a difficult task that requires incorporating
hard-coded rules with the existing DRF model, which is
not in the scope of this paper.

The detailed structure of the DRF-based traffic agent model
is shown in Fig. 7. Fig. 7a presents the overall control structure
of the DRF-based traffic agent: The agent leverages the cost
map of the driving scenario, and the vehicle states (position:
xk, yk; heading: ϕk; and speed: vk) at the kth timestep
to generate the steering angle δk+1 and velocity vk+1 for
the (k + 1)th timestep. Fig. 7b shows the structure of the
DRF-based traffic agent model: The DRF block computes the
driver’s subjective view of the environment using the current
state of the ego vehicle. The perceived risk is computed from
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Fig. 7: The structure of the DRF-based traffic agent model adapted from [13].

the convolution product of the DRF and objective cost map.
The perceived risk and the state of the ego vehicle are inputs to
the risk-threshold controller in Fig. 7c. takes in the computed
perceived risk, and the ego vehicle states to generate the
velocity vk+1 for next timestep. The risk-threshold controller
tries to keep the perceived risk below the given risk threshold
Rt. At each time step k, It compares the input perceived risk
Rk to risk threshold Rt, and velocity vk to the assigned desired
velocity vdes. This results in four distinct cases of inequality
for the controller to operate on:

1) Rk < Rt and vk < vdes: This condition means that
the perceived risk is lower than the risk threshold and
the velocity is lower than the desired velocity. Therefore,
no special action is needed to keep the perceived risk
below the threshold and the ego vehicle should accelerate
to reach the desired velocity. In this work, a simple P-
controller is used with kv representing how aggressively
the driver accelerates. Hence, vk+1 = vk+kv(vdes−vk).

2) Rk > Rt and vk < vdes: In this case, the perceived
risk is higher than the risk threshold, while the desired

velocity is not achieved. Therefore, we need to check
if the perceived risk can be reduced to the threshold.
The check is carried out using fminbound to find a
velocity vop in (vk−amaxdt, vk+amaxdt) that can reduce
the perceived risk to the threshold, where amax is the
maximum acceleration of the vehicle ego and dt is the
duration of a timestep. In this work, amax = 4m/s2 and
dt = 0.1s. This search leads to two possible outcomes
for the controller to handle accordingly.

2a) If vop exists, the driver should try to reach vop. Hence,
vk+1 = vk + kv(vop − vk).

2b) If vop does not exist, the driver should decelerate to
the velocity vmin that minimises the perceived risk.
Hence, vk+1 = vk + kv(vmin − vk).

3) Rk < Rt and vk > vdes: In this case, the perceived risk
is safely below the threshold, but the velocity exceeds the
desired velocity. Therefore, the driver should slow down
to approach the desired velocity. vk+1 = vk + kv(vdes −
vk).

4) Rk > Rt and vk > vdes: In this case, both the perceived



risk and the velocity exceeds the assigned goal. Therefore,
the driver should slow down to the velocity vmin that
minimises the perceived risk. vk+1 = vk+kv(vmin−vk).

*

Fig. 8: The traffic scenario with the original DRF-based model
[13] (With its location marked by the red box in the centre,
please be aware the red box is not included in the actual
maps.) and other agents from the log-replay (yellow boxes).
Top row: The objective cost map the environment. Middle row:
The subjective DRF map of the DRF-based model. Bottom
row: The perceived risk map computed from the convolution
product of the objective cost map and the subjective DRF
map. Brighter colours indicate higher values in the maps while
darker colours denote lower values.

It is worth noting that the safety distance ds is added in
Eq. (7) so that the look-ahead distance dla = vtla + ds. The
rationale behind this change is given as follows: Let us assume
that the look-ahead distance is dla = vtla. When the ego
vehicle’s velocity v is approaching 0, the predicted trajectory
length s = vt, 0 < t < tla, along with look-ahead distance
dla = vtla would also approach 0. As a result, the height of
the DRF, a(s) = p(s−dla)2 would also be 0, meaning that the
subjective DRF map would consist of zeros and the perceived
risk computed from the convolution product of the subjective
DRF map and the objective environment cost map would also
be zero. In this sense, the driver cannot perceive the risk of the
environment. Therefore, the vehicle will start to accelerate and
will never be able to stop. This loophole can be detrimental
in scenarios where the ego vehicle must brake and stop to
avoid front collisions, as shown in Fig. 8. From the top row
showing the objective cost map of the environment, we see that
the DRF-based model (red box in the centre) approaches an
intersection, gradually decelerates but fails to stop and hits the
front vehicle. The reason for this rogue behaviour is presented
in the middle and bottom rows. The middle row shows the
subjective DRF map of the DRF-based model. From the first
to the fourth map, we see that the driver’s DRF diminishes
due to decreasing speed and becomes almost dormant. This
also explains changes in the perceived risk map shown in the
bottom row, where the driver approaches the front vehicle and
decelerates to keep the perceived risk below the threshold.

However, when its velocity reaches 0, no risk is perceived due
to the dormant subjective DRF map. Hence, the DRF-based
model would ”think” that it is safe to pick up speed again
according to the control mechanism we discussed in Fig. 7
and ends up colliding with the front vehicle.

By adding a safety distance ds to Eq. (7), the subjective
DRF map would never be dormant even if the velocity
becomes 0. Therefore, the driver would always be able to
perceive the risk in the environment. In Fig. 9, we show the
modified DRF-based model brakes and stops reasonably well
in the same scenario.

*

Fig. 9: The same traffic scenario as in Fig. 8 with our
modified DRF-based model. Top row: The objective cost map
the environment. Middle row: The subjective DRF map of
the DRF-based model. Bottom row: The perceived risk map
computed from the convolution product of the objective cost
map and the subjective DRF map. The modified DRF-based
model operates normally because the driver is able to perceive
the risk in the environment at low speeds.

B. Validation of DRF-based traffic agent models

Since that the DRF-based model has not been validated with
real urban driving data before, quantitative validation results
are presented in this section. We start by identifying typical
values for the parameters of the DRF-based model. Then, the
DRF-based model parameterise by the identified typical values
are validated with the Lyft Prediction Dataset. The process of
the identification and validation is shown in Fig. 10. Here, a
step-by-step explanation for this process is given as follows:

Step 1: 100 scenarios without intersections are selected
because high-level decision-making, such as turning
left/right, is not considered in the formulation of DRF.
We divided the selected scenarios into 10 identification
scenarios and 90 validation scenarios. As the DRF model’s
capability for basic manoeuvers such as lane keeping and
braking is extremely important to verify before using
it to develop the model-based multi-agent simulator, we
evaluate the DRF model in 100 lane-keeping and 100
braking scenarios, respectively.
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Fig. 10: The DRF parameters’ identification and validation process.

Step 2: Simcenter HEEDS, a industrial parameter optimisa-
tion software, is used to identify the typical values of DRF
parameters because it can efficiently search the parameter
space with the SHERPA algorithm. In each design, HEEDS
would parameterise the DRF model, except that we provide
the baseline values based on [13] for the first design.

Step 3: For each identification scenario, we run the DRF
model in closed-loop. Each scenario has a duration of 25
seconds, where the DRF model must make 250 consecutive
predictions regarding its future position.

Step 4: We concatenate all predictions that the DRF model
made in 10 identification scenarios. The average position
error (APE) is computed by comparing the predicted
positions to the ground-truth positions from the dataset.

Step 5: HEEDS would conduct 100 designs, i.e., for each
design, repeat Step 2 to Step 5 by parameterising the
DRF model with different parameters. Then, choose the
parameters from the design with the minimal APE as
the identified optimal parameters to best fit the driving
behaviours demonstrated in the Lyft Prediction Dataset.

Step 6: Parameterise the DRF model with the identified opti-
mal parameters for validation.

TABLE III: Identified parameters of the DRF-based model

Identified DRF Parameters
p m tla ds c k1 k2

0.06 0.001 4 12 0.5 0 1.12
Identified Risk-Threshold Controller Parameters

kv vdes Rt

0.025 13.5 9000

Step 7: For each of the 90 validation scenarios, we run the
DRF in closed-loop and evaluate its performance.

Step 8: The performance for every validation scenario is eval-
uated by comparing the predicted velocity profile to the
ground-truth velocity profile. Other metrics such as APE
and the perceived risk is also evaluated.

The identified parameters for the lane-keeping and braking
scenarios are presented in TABLE. III.

More quantitative results from the identification and val-
idation of DRF parameters in lane-keeping scenarios are
presented in Fig. 11. Fig. 11 shows the overall performance
of the DRF model parameterised by the identified optimal
parameters. From Fig. 11a, we observe that the velocity
profiles given by the DRF mostly fit the ground-truth velocity
profiles. It is worth noting that the numbered scenarios are not



necessarily connected in time and space. Therefore, the DRF
model is initialised at the start of every individual scenario.
We can also see the driver’s perceived risk at every scenario
in the bottom row of Fig. 11a and Fig. 11b. Only very few
spikes of the perceived risk are observed, indicating the DRF
model can quickly keep the perceived risk below the assigned
threshold to achieve safe driving. Here, we provide a detailed
analysis of scenario 30 in Fig. 11a, in which there are large
changes in velocity and a large perceived risk appears.

As can be seen in Fig. 12b, the perceived risk is very high
(approximately 25000, compared to the risk threshold of 9000)
throughout almost the entire journey, indicating a very high
risk of collision. The high perceived risk makes sense, as we
can see from Fig. 12a that the DRF model is driving in a
relatively dense urban traffic scenario with leading vehicles in
front of it. This means that the driver should be more cautious
while driving.

It is also interesting to see a change in velocity profile
(decelerate-accelerate-decelerate) in Fig. 12b. The first decel-
eration stage occurs because the DRF model is too close to the
leading vehicle at the beginning, so it decelerates to reduce the
perceived risk. Note how the trend of the velocity profile fits
the perceived risk in order to keep the perceived risk below
a threshold of 9000. When the distance between the leading
vehicle becomes larger, the DRF model perceives less risk and
picks up speed again. At this stage, there are many oscillations
in both the velocity and perceived risk profile, indicating that
the DRF model is concentrating on the motion of the leading
vehicle and ready to take actions to prevent collisions. This
explains the accelerating stage where the DRF model picks up
speed but remains highly cautious to keep a safe distance and
velocity. This intention is shown in the oscillating perceived
risk profile, meaning that the DRF model makes frequent and
minor adjustments to the vehicle to maintain this safety-critical
state of car-following. Then the leading car stops near an
intersection. The ego vehicle brakes to avoid collision when
the distance from the leading vehicle becomes smaller than
the safety distance.

The average position error (APE) and the final position error
(FPE) computed from 12c are 5.66m and 3.34m, respectively.
Though the APE and FPE shows that the DRF model still
needs improving to more realistically model human driving
behaviours, the overall performance still matches our intuition
and the perceived risk truthfully represents the actual driving
risk. Considering the complexity of this urban driving sce-
nario, the DRF model exhibiting human-like driving behaviour
demonstrates its ability to mimic human driving in dense urban
traffic.

Fig. 13 shows the overall performance of the DRF model
parameterised by the optimal parameters identified in the brak-
ing scenarios. From Fig. 13a, we observe that the DRF model
often continues to slowly speed up when the ground-truth
velocity profiles begins to decelerate and the DRF model gives
many hard braking behaviours. We can also see the driver’s
perceived risk is really high for most scenarios, indicating that
the distance between vehicles is really small, so the driver

feels at risk. Moreover, the perceived risk is observed to rise
quickly before abruptly drops in almost every scenario. We can
deduce that the DRF model first approaches the front vehicle
before quickly applying hard brakes to keep the perceived risk
below the assigned threshold to achieve safe driving. Here, we
provide a detailed analysis of scenario 0 in Fig. 13a, in which
large changes in both velocity and perceived risk are observed.

As can be seen in Fig. 14b, the perceived risk is low most
of the time until the last 30m. This fits our observation from
the objective map in Fig. 14a, where the DRF model does not
see any leading vehicle most of the time. However, it hard
brakes near the end where it detects very high risk as the lead
vehicle stops at an intersection. With an APE of 5.68m and an
FPE of only 0.39m computed from Fig. 14c, the DRF model
shows its ability to ensure safety in braking scenarios.

This scenario shows that the DRF model cannot capture the
gradual braking manoeuvres of the human driver (transition
from mild braking in the beginning to harder braking in the
end). The human driver in the ground truth data in Fig. 14b
can start the decelerating process even approximately 150m
from the stopping location, while the DRF model can only
perform hard braking in the final 25m. This deficiency of the
DRF model can be traced back to its mathematical formulation
where it is unable to detect obstacles 50m away from it
because the subjective DRF map diminishes exponentially
with longer distance away from it, as can be seen in Eq. (8).
Therefore, we argue that the formulation of the DRF should be
further improved to properly model urban driving behaviours.

Based on the validation results, we can conclude that the
identified parameters can provide capable performance in
basic urban traffic despite some deficiencies in its theoretical
formulation. Here, other values for the parameters representing
different driving behaviours other than the one demonstrated
by the Lyft Prediction Dataset are also intuitively proposed.
Instead of presenting specific values of the parameters, a
connection between the values and represented driving styles
is proposed so that interested readers can intuitively tune the
DRF parameters to model different driving styles.

1) p (steepness of the parabola defining the height of the
DRF): Larger p leads to larger values of G(x, y) in
the subjective DRF map modelled as a 2d Gaussian
distribution, which represents that the driver deems the
probability of the event happening at location (x, y) is
higher. To put it more bluntly, the driver with higher p
scares easily and drives cautiously.

2) ds (safety distance): Larger ds makes the driver to keep
larger distance away from other vehicles and leads to
cautious driving behaviours.

3) m (slope of widening): Larger m increase the width of the
driver’s perceptive field, meaning the driver takes a wider
view of the road, representing more cautious driving.

4) c (width of the DRF at the ego vehicle’s current position):
Similar to m, larger c increases width of the perceptive
field and leads to more cautious driving.

5) tla (look-ahead time): larger tla means the driver has
better sight and can perceive risk at longer distances.
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(a) Quantitative results for lane keeping: 10 identification scenarios and 40 validation scenarios (part 1).
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(b) Quantitative results for lane keeping: the remaining 50 validation scenarios (part 2).

Fig. 11: Quantitative results of the identification and validation of DRF parameters in lane-keeping scenarios.



(a) Traffic scenario 16 in Fig. 11a with a duration of 25 seconds. Ten figures are sequential in the order first from left to right, then from top
to bottom. The red box in the center marks the DRF model’s position, with the green box marking its corresponding ground-truth position.
The yellow boxes are other traffic agents from the logged data.
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(b) The DRF model’s velocity-longitudinal distance and per-
ceived risk.
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(c) The y-x world coordinates of the DRF model’s trajectory
and position error.

Fig. 12: Detailed qualitative and quantitative results of validating the DRF model with scenario 30 in Fig. 11a.

6) k1, k2 (Gain of DRF’s inner and outer boundaries while
turning): These two parameters qualify the curve cutting
feature of the DRF model and are less related to driving
styles.

The risk-threshold controller is also related to the DRF
model’s driving styles:

1) Rt (risk threshold): The lower risk threshold requires
more effort from the driver to keep the perceived risk
below the threshold. Therefore, lower Rt means more
cautious driving styles.

2) kt (Gain of the velocity P-controller): Lower gain means
slower acceleration and deceleration, corresponding to
cautious driving.

3) vdes (Desired velocity of the driver): Intuitively, lower
desired speed leads to more cautious driving.

APPENDIX B
IL MODEL ARCHITECTURE AND CLOSED-LOOP TRAINING

Our IL model is adapted from Lyft Urban Driver [6], whose
architecture is shown in Fig. 15. Here, we provide an intuitive
explanation for the network architecture.

The bird’s-eye-view image on the left qualitatively illus-
trates the traffic scenario that the ego vehicle is in. The input of
the network can be extracted from this traffic scenario, which
can be categorised into vehicle objects (ego vehicle, agent
vehicles) and static objects (lanes, crosswalks). Each object
is vectorised before entering the first fully connected layer,
where all objects are embedded into a 128-dimensional space.
Then, a sinusoidal positional embedding is added to all objects
to encode sequential information of all objects. This positional
embedding is essential for the multi-head attention (MHA)
layer to learn the relationship between objects. Before MHA,
there are three PointNet layers with each layer composed of
two multilayer perceptrons (MLPs) to learn a descriptor for
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(a) Quantitative results for braking: 10 identification scenarios and 40 validation scenarios (part 1).
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(b) Quantitative results for braking: the remaining 50 validation scenarios (part 2).

Fig. 13: Quantitative results from the identification and validation of DRF parameters in braking scenarios.



(a) Traffic scenario 1 in Fig. 13a with a duration of 25 seconds. Ten figures are sequential in the order first from left to right, then from top
to bottom. The red box in the center marks the DRF model’s position, with the green box marking its corresponding ground-truth position.
The yellow boxes are other traffic agents from the logged data.

0 50 100 150 200 250
Longitudinal distance (m)

0

2

4

6

8

10

12

14

Ve
lo

cit
y 

(m
/s

)

groundtruth
prediction
Perceived risk

0

5000

10000

15000

20000

25000

30000

35000

Pe
rc

ei
ve

d 
ris

k

(b) The DRF model’s velocity-longitudinal distance and per-
ceived risk.
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(c) The y-x world coordinates of the DRF model’s trajectory and
position error.

Fig. 14: Detailed qualitative and quantitative results of the validation of the DRF model with scenario 0 in Fig. 13a.

each object. The next part is a scaled dot-product attention
layer with eight heads. The descriptor of the ego vehicle is
used as query, while all descriptors are used as both keys
and values. It’s worth noting that a global type embedding
for all objectives is also added as a key so MHA can be
configured to attend based on types of objects. The final fully
connected layer projects the output of MHA to the desired
feature dimension. In the original work, the final output is
the next pose of the ego vehicle. Whereas in our case, the
final output is the spline coefficients parameterising the future
trajectory. In other words, the only difference between Lyft
Urban Driver and our network is the feature dimension of the
final output, which leads to a slight difference in closed-loop
training as shown in Fig. 16.

The choices of K, the length of policy sampling per
scenario, and T , the entire length of each scenario, are most
important for the stability and performance of the closed-loop
training. The ablation study of [6] proposed that larger K

improves performance. This conclusion is only partially true
from our experience. Here, we provide a simple qualitative
analysis. Since the first K steps would lead the ego vehicle
to deviate from demonstrations due to the distributional shift
and the last T − K steps are meant for the ego vehicle to
learn to recover from previous deviations, the values of T and
K need to be jointly selected to achieve a good performance.
Our proposed guidelines for selecting T and K are:

1) K should not be either too small or too large. If K ap-
proached 0, the closed-loop training scheme would recede
to the pure closed-loop training scheme without synthetic
expert query, which suffers greatly from the distributional
shift. On the other hand, if K approached T , the deviation
from demonstrations will be too large for the remaining
T − K steps to possibly recover from. Therefore, our
recommendation is to start with K ≈ 0.5T .

2) T should not be either too small or too large. If T
approached 0, the closed-loop training scheme would



Fig. 15: Architecture of Lyft Urban Driver [6]

IL Model

For t = 1 to T

Ego, agents,
lanes, traffic

Predicted (x, y, theta)Target (x, y, theta)
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Next position

Update ego 
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For t = K to T

Update weights

For t = 1 to T

(a) The closed-loop training scheme of Lyft Urban Driver.

IL Model

For t = 1 to T

Ego, agents,
lanes, traffic

Predicted spline 
coefficients

Target spline
coefficients

L1 Loss

Next position

Update ego 
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For t = K to T

Update weights

For t = 1 to T

(b) The closed-loop training scheme of our IL model.

Fig. 16: Comparison of closed-loop training schemes of Lyft Urban Driver and our IL model

recede to the naive IL with open-loop training. However,
large T would affect the training efficiency and increase
the computation burden. Therefore, our recommendation
is to start with T ≈ 20 and T can be slightly increased
if the training resource is sufficient.

In this work, we use K = 10 and T = 20.

APPENDIX C
SPLINE PARAMETERISATION FOR PREDICTED

TRAJECTORIES

A spline is defined piecewise by smooth polynomial func-
tions. A trajectory can be approximated by a spline s(u) as
a linear combination of B-splines basis functions Bi(u) with
spline coefficients αi:

s(u) =
n∑

i=1

αiBi,d(u) . (11)



Eq. (11) presents three essential components that parame-
terise B-splines, namely the degree of basis functions d, the
number of control points or coefficients n, and the knot vector
U = {ui}mi=1 containing m knots, with each ui corresponding
to the knot point s(ui) on the B-spline. These values have a
relationship of m = n+ d+ 1. In other words, one value can
be determined if given the other two.

Here we detail the parameterisation used in this work. First,
we choose to parameterise the future trajectory of the next two
timesteps, with each timestep having a duration of 0.1 second.
We decide that n = 3 so we have one control point for each
timestep (including one control point at the beginning). The
future trajectory is only 0.2 second long so that it can be
sufficiently parameterised by quadratic splines (d = 2). Thus,
the knot vector has m = 6 knots. To get smoother B-splines
close to the control polygon defined by the control points,
we use the clamped B-spline that is tangential to the control
polygon at both ends. This requires that the knot vector’s first
and last d+1 elements are the same. Therefore, we determine
that the knot vector U = {0, 0, 0, 0.2, 0.2, 0.2}.

APPENDIX D
SUPPLEMENTARY RESULTS FROM SEC. IV-C

In this appendix, we provide more qualitative and quantita-
tive results to boost the conclusion from Sec. IV-C that our IL
model has better training efficiency and learns safer driving
compared to Lyft Urban Driver.
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Fig. 17: Quantitative result comparing Lyft Urban Driver to
our model with the same training resource

In Fig. 17, we validate Lyft Urban Driver and our model
in 250 log-replay scenarios. Both models are trained 30h
with 1 NVIDIA RTX A4000 laptop GPU. Our model quickly
learns from expert demonstrations with decreasing number of
violations in validation. However, when trained with the same
weak computing resource, no improvement is observed from
Lyft Urban Driver. This result further proves the supremacy of
the training efficiency of our model over Lyft Urban Driver.


