
      

   

 

  

Semi-analytical solutions for 
buckling and post-buckling 
of composite plates 
Application to stiffened Panels 

 

 

E. Cabot Talens 



 

 

1 

  



 

2 

Semi-analytical solutions for 

buckling and post-buckling of 

composite plates 
Application to stiffened panels 

By 

E. Cabot Talens 

 

in partial fulfilment of the requirements for the degree of 

 

Master of Science 

in Aerospace Structures and Materials 

 

at the Delft University of Technology, 

to be defended publicly on Thursday August 25th, 2016 at 13:30 

 

Supervisors:   Prof. Dr. Christos Kassapoglou  TU Delft 

                                       Ing. B. Tijs            Fokker Aerostructures 

Thesis committee:  Dr. Julien van Campen               TU Delft 

Dr. Derek Gransden               TU Delft 

 

 

 

  

An electronic version of this thesis is available at http://repository.tudelft.nl/. 

 

 

 

 

 

 

http://repository.tudelft.nl/


 

 

3 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 



Acknowledgements

 

4 

Acknowledgements 

First of all I would like to thank both my supervisors, Christos Kassapoglou and Bas Tijs. 

It has been enriching having different supervisors from both TU Delft and Fokker 

Aerostructures. The fact that each of them have different backgrounds and points of view 

has helped me with my Thesis and I am grateful for their guidance. 

Besides my supervisors, several professors have kindly given me advice when problems 

aroused. I would like to thank Mostafa Abdalla for his invaluable input on buckling and 

numerical methods, Sonell Shroff for his advice with Abaqus and finally Chiara Bisagni, 

whose papers on semi-analytical methods for buckling and post-buckling have been a true 

inspiration. 

I would also like to thank Kemal Dahha, who was the first student to work in the stiffened 

panel project at Fokker, and has always been willing to give advice. 

I would finally like to mention my parents, without their support and values this work would 

not have been possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgements

 

 

5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract

 

6 

Abstract 

This MSc thesis addresses the study of buckling and post-buckling of composite plates 

with elastic restraints at the edges and under any combination of in-plane loading, aiming 

to solve the plate response in stiffened panel structures. 

The implemented solutions are based on thin plate theory for mid-plane symmetric plates. 

The governing equations are solved using a semi-analytical formulation (not closed form) 

to combine advantages from analytical and numerical analysis. This approach allows to 

solve most of the typical laminates used in aerospace applications while allowing an 

improved performance when compared to FE models. 

The developed formulation relies on eigenbeam functions to approximate the plate 

behaviour for any combination of arbitrary elastic restrains, with a minimum number of 

degrees of freedom. This approach has proved to be able to reproduce the buckling 

mode and load for buckling and the out-of-plane displacement for post-buckling. The 

results obtained have been verified against FE commercial software package Abaqus and 

good to excellent agreement has been achieved using a fraction of the computational 

power.  

The relation between the ideal torsional springs and stiffeners’ restrain is approximated in 

order to apply the developed formulations to more practical problems involving stiffened 

panels. Preliminary verifications show the validity of the proposed approaches and 

encourages the further development of the solution to achieve a more powerful stiffened 

panel formulation. 

Moreover, the developed approaches can be extended to solve other relevant stability 

phenomena such as global buckling or stiffener crippling. 

This work is part of a Fokker Aerostructures project to develop an analytical framework for 

analysis and design of composite stiffened panels with post-buckling capabilities. This 

framework will facilitate the preliminary design of composite stiffened structures and allow 

further optimization without requiring the prohibitive computational cost and complexity of 

finite element models.  
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1. Introduction 

1.1. Background and Motivation 

The use of fiber reinforced composites in structural design has become both an opportunity 

and a challenge. Such materials can provide improved performance with respect to metals 

because of their high specific strength and stiffness. Moreover, the capacity to distribute 

those properties in the different directions can be exploited to optimize the strength to 

specific load cases. However, this also means that the mathematic models necessary to 

describe the behaviour of such materials become more complex and challenging. This is 

the case when studying buckling and post-buckling of plates. The increasing mathematic 

complexity with the inclusion of new variables makes it difficult (or limits to very specific 

cases) obtaining analytic closed form solutions or semi-empiric fitted curves as in 

traditional structural design books for metallic structures [1, 2].  

The use of finite element methods (FEM) has been successfully applied in many cases 

due to its flexibility in allowing very general configurations and the accurate results given. 

However, the use of FEM requires a significant computational effort and time. This fact 

limits the usefulness of this tool during preliminary design, when it is especially important 

to be able to test different configurations and understand the dependency of the results 

with the different design parameters.  

The disadvantages or limitations that closed form solutions and FEM present has 

encouraged the development of alternative methods like semi-analytical procedures. Such 

methods have the advantages of less computational effort compared with FEM and the 

possibility to handle more general formulations as compared to closed-form solutions 

(specially in post-buckling, where closed-form solution are very limited). In conclusion, 

semi-analytical procedures can fill an intermediate gap between closed-form and FE 

solutions. 

Therefore, the interest (especially in the industry) to implement faster and simpler design 

procedures to be used in preliminary design for composite structures can be fulfilled by 

developing analytic (when possible) and/or semi-analytic procedures. 

This MSc thesis will address a thoughtful research on which is the state of the art in this 

field, finding out which are the most promising used methods, understanding their 

advantages and disadvantages and finally implementing or further developing the 

necessary formulations to solve buckling and post-buckling of thin composite plates.    

This thesis has been done in collaboration with Fokker Aerostructures to further develop 

the tools that Fokker has available to design composite structures.  

Current analytic procedures available at Fokker are limited to close form initial buckling for 

specially orthotropic materials. Post-buckling is mainly approached using complex FE 

models, limiting the possibility of performing design optimization. 
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This work forms part of a bigger project focused on obtaining approximate and fast 

solutions for all the failure modes of stiffened panels using an analytical approach. The 

resulting framework will allow design optimization during preliminary design. 

1.2. Research Question and Objectives 

The research questions and sub-questions proposed in this project are: 

 Which are the most important methods developed to analytically and semi-

analytically solve buckling of thin mid-plane symmetric plates under different 

boundary conditions and load combinations? 

o Which cases can be solved completely analytically (closed-form)? 

o Which degree of accuracy can be expected from semi-analytical methods in 

comparison with FEM? 

o How can stiffeners’ rotation restriction, produced on the plate’s edges, be 

translated into analytic and semi-analytic models? 

o Are the developed methods a good alternative to solve local buckling under 

different BC’s, load combinations and materials properties (based on 

verifications with FEM)? 

 Which are the most important methods currently used to semi-analytically solve 

post-buckling of thin orthotropic plates and which are their possibilities? 

o Which are the limitations of such methods estimating the displacement field of 

buckled plates? 

o Can further improvement be made in order to allow more flexibility in the 

treatment of post-buckling (allow different load combinations, elastically 

restrained boundary conditions, etc.)? 

 How can the previous be used to model the more complex behaviour of a 

composite stiffened panel? 

The objective of this project is the development and verification of a formulation able to 

solve buckling and post-buckling of thin mid-plane symmetric plates under uniaxial 

compression using BCs able to reproduce the behaviour imposed by stiffeners. In order to 

achieve this goal, the following sub-goals have been identified: 

 Undergo research in the methods used for buckling of plates and develop a 

solution procedure. 

 Verify the results obtained by such procedure with results obtained with FEM (and 

with test data if possible). With this verifications define and try to solve the possible 

limitations of the method. 

 Undergo research in the methods used for post-buckling of plates comparing the 

results obtained by different researchers and choose the most promising in terms 

of highest possibility to accept different parameters (different boundary condition, 

material complexity) and achievable accuracy. 

 Develop a procedure to calculate the out-of-plane displacement in the post-

buckling range.  
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 Verify the results obtained with FEM and define the limitations of the developed 

procedure. 

 Integrate the developed procedure in the analysis of stiffened panels. 

After the research performed, it has been noticed that some additional goals that were not 

included in the Thesis proposal could be included as well. This has allowed to further 

extend the scope with the following points:  

 Perform further calculations in the post-buckling range (such as in-plane load 

distribution, first ply failure, etc.) in order to assess plate strength. 

 Extend the formulation and verifications to coupe with combined loading. 

1.3. Theoretic Background 

This following section presents a brief introduction of the theoretic background on plate 

stability. The objective of this section is putting the topic in context and give useful 

references for further reading. 

1.3.1. Origins Plate Theory 

The governing equations of plates have been studied for a long time. The article [3] from 

Love (in 1887) is considered the first to present a complete theory on elastic thin shells 

[4], though previous works already existed. Since then, there has been a huge amount of 

research on this area of mechanics. 

One of the most important contributions to plate theory was done by Von Kármán [5]. Von 

Kármán’s theory introduces moderately large plate displacements, making it suitable to 

solve buckling phenomena. This new theory constitute the foundation for most of the 

methods used to solve buckling and post-buckling of thin plates.  

Both Love and Von Kármán theories share the Kirchhoff hypothesis [6]. Such assumptions 

allow a quick generalization of the 3 dimensions of the plate into a 2D body, helping in the 

simplification of the resulting governing equations. 

Von Kármán theory was originally introduced for isotropic plates, but was further 

developed for anisotropic bodies by authors such as Lekhnitskii [7] and Ambartsumyan 

[8]. 

Further developments of the Von Kármán equations have allowed to account for additional 

cases. The most important for this thesis would be the so called Marguerre-Von Kármán 

equations [9]. These modified governing equations allow the introduction of imperfections 

in the undeformed plate, necessary to evaluate the post-buckling behaviour of the plate. 

Its derivation can be consulted from multiple literature, being section 2.10 of Chia’s [10] a 

good source. 

1.3.2. Classical Laminate Plate Theory 

To cope with composite laminate plates it is necessary to model the material behaviour 

and introduce it in the formulation. The most extended model is the classical laminate plate 

theory or CLPT. This theory is based on the Kirchhoff hypothesis and the assumptions of 

perfect bonding between the layers to derivate the so called ABD matrix. This matrix 

determines all the relations between loads and moments with plate strains and curvatures. 
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 (1) 

The derivation of this relation is well known and can be consulted in several reference 

books. As an example, is remarked the chapter 3 of [11].  

In the used formulation of CLPT is included the first non-linear strain terms, accordingly to 

Von Kármán’s theory. 

1.3.3. Introduction to Stability 

In this section the topic of stability is briefly introduced. For a more detailed introduction 

see chapter 1 of Jones [12]. 

A system in equilibrium is defined as stable if a small perturbation produces only a small 

response, after which it return to its original state. A clear example of such system would 

be a ball placed in the bottom of a valley (see figure below). 

 

 

 

 

 

 

Figure 1: Stability examples  

On the other hand, a system in unstable equilibrium would react with a non-small response 

to a small perturbation and would not return to its original equilibrium position.  

In a structural element, the buckling load is the load (or load combination) for which the 

system changes from a stable to an unstable configuration. In plates, this instability means 

that the plate changes its original shape to another one which is also stable, known as 

buckled shape or mode. Due to the stable behaviour of plates under post-buckling, plate 

deformations are moderate and it is possible to achieve additional buckling modes if the 

load is kept increasing.  

The stability is typically assessed by the study of the second variation of the total potential 

energy of the system, as followed in Jones [12]. The main point is that when the second 

variation of the energy is equal to zero there is a point of neutral stability which is typically 

followed by a change from stable to unstable behaviour.  

An alternative procedure, the adjacent stable equilibrium path method can be used with 

the advantage that it works with the equilibrium equations (first variation of the energy) 

instead of the stability ones. Ashton and Whitney’s [13] develop the approach for plates in 

Stable UnstableNeutral
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the section 2.7. For mid-plane symmetric plates without out-of-plane loads, the plate 

before buckling remains undeformed, so the solution of the adjacent method is practically 

equivalent to the equilibrium equation.  

This conclusion is exposed in p.40 of Ashton [13]: “ Actually, the application of the theorem 

of stationary potential energy in the determination of buckling loads usually proceeds 

without explicitly considering the second variation of V and U. The criterion for the onset 

of instability is taken to be the existence of equilibrium solutions other than 𝑤 = 0 for zero 

applied transverse loading. When such solutions are possible (which occurs just at the 

point of instability) then it is found that an infinity of such non-trivial bent equilibrium 

configurations exists.” 

The equivalence of both approaches for the presented cases explains why many authors 

determine the stability from the equilibrium equations without further justification. 

1.4. Document Structure 

This Thesis is divided in 6 chapters. After the introduction, the second chapter introduces 

a Literature review on analytic and semi-analytic methods for buckling and post-buckling. 

Chapters 3 and 4 incorporate the main topics of the Thesis, presenting the development 

of the formulations for buckling and post-buckling, the final solutions obtained and the 

undergone verifications. The next chapter extends the analysis developed for plates to 

stiffened panels. Finally, chapter 6 gathers the final conclusions and recommendations. 
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2. Literature review 

This literature review covers different theories used in the study of plate stability, focusing 

on the objectives developed for this Thesis. First, brief introduction on the topic is 

presented. Then the state of the art procedures used to solve buckling and post-buckling 

of composite laminated plates are reviewed. Additional topics have been also been briefly 

developed at the end of this chapter. 

The purpose of this thesis is to study and develop analytical and semi-analytical solutions, 

so the further review will be limited to such cases when necessary. 

2.1. Introduction 

The determination of stability phenomena is of crucial importance in structural design due 

to multiple reasons. Some structural elements behave badly after their critical buckling 

load (first load for which the element equilibrium becomes unstable). For example, in 

beams, loads above buckling typically result in very large deformations which cause the 

immediate failure of the element. The reason of this phenomenon is that beams usually1 

have stable but close to neutral post-buckling behaviour. In such cases the stability 

analysis can typically be limited to the study of their critical buckling load as this value can 

be taken as the ultimate load of the element.  

However, the post-buckling behaviour in plates is more stable, resulting then in more 

moderate deformations and typically allowing important post-buckling capabilities after a 

load redistribution. In this case, the proper study of the stability will require a more 

advanced analysis including the non-linear behaviour after the critical buckling load. All 

the same, it is always a good idea to start solving first the buckling loads and modes and 

then progress to analyse the post-buckling behaviour. 

Most of the studied articles in buckling and also post-buckling are based on the Von 

Kármán governing equations for plates presented in [5]. As it has been already mentioned, 

those equations are built over the Kirchhoff hypothesis which assume that the mid-section 

of the plate can be used to describe the 3D state of the plate [6]. This provides a good 

approximation for thin plates and is a generalization of the work done by Euler and 

Bernoulli in beam theory (as shown in Timoshenko’s [14]2).The use of the Von Kármán 

equations simplify significantly the problem and allow an easier analytical approach. 

                                                

 

1 In their most simple configurations such as hinged-hinged ends. 
2 Euler and Bernoulli developed their theory around 1750. Timoshenko in his book explains this theory among 

others and further develops it. 
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2.1.1. Isotropic and anisotropic materials 

Before starting with the different procedures and solutions available in the literature, it is 

important to review the different models used to define the material behaviour. 

The fact that the resolution of Von Kármán equations is easier for isotropic materials 

(together with the fact that were originally derived for such materials) resulted in the first 

procedures and solutions being obtained for this more limited cases. Later, formulations 

were typically further developed to account for more complex material behaviour.  

The introduction of the fiber reinforced laminated composites are the most important 

example of materials with a more complex behaviour. However, solutions were also sought 

before to solve wood or wood laminated structures, as shown in Lekhnitskii [7]. It has 

already been commented in section 1.3.2 that composite laminates can be successfully 

modelled through the use of CLPT. 

It is useful to distinguish between different types of laminates depending on their degree 

of anisotropy and the resulting ABD matrix obtained from CLPT. This practice allows 

different degrees of complexity in the formulations. Apart from isotropic materials three 

different categories are distinguished in this Thesis (similarly to reference [15]). 

 Specially Orthotropic laminates: These laminates are characterized for their 

mid-plane symmetry altogether with no coupling between bending and twisting 

moments. In such cases all the terms in the 𝐵 matrix are always 0, as well as 

components  𝐷16 and  𝐷26. These laminates present orthotropic behavior in the 

principal directions, which simplifies the required formulation. However, only very 

specific layups present this behaviour. 

 Mid-plane symmetric laminates: This category includes all the laminates with a 

symmetric layup with resect to their mid-plane, therefore presenting 𝐵𝑖𝑗 = 0. 

Symmetric laminates are widely used because of the uncoupling between in-plane 

and out of plane forces and deformations.  

 General laminates: This category includes any possible laminate following the 

assumptions of CLPT. The different coupling existent make them very difficult to 

analyze and even to manufacture. Due to their most limited use and complexity, its 

formulation will not be included in the solution procedures presented in this Thesis. 

Chapters 2 and 3 of Whitney [15] give an idea of the degree of complexity reduced by 

limiting the formulation to mid-plane symmetric plates. In the Von Kármán equilibrium 

equation the in-plane and bending problems become uncoupled. Otherwise, with (𝐵𝑖𝑗 ≠ 0) 

the equilibrium equation is: 
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𝐷11

𝜕4𝑤

𝜕𝑥4
+ 4𝐷16

𝜕4𝑤

𝜕𝑥3𝜕𝑦
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 4𝐷26

𝜕4𝑤

𝜕𝑥𝜕𝑦3
+ 𝐷22

𝜕4𝑤

𝜕𝑦4

− 𝐵11
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𝜕𝑥3
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𝜕3𝑢𝑜
𝜕𝑥𝜕𝑦2

− 𝐵26
𝜕3𝑢𝑜
𝜕𝑦3

− 𝐵16
𝜕3𝑣𝑜
𝜕𝑥3

− (𝐵12 + 2𝐵66)
𝜕3𝑣𝑜
𝜕𝑥2𝜕𝑦

− 3𝐵26
𝜕3𝑣𝑜
𝜕𝑥𝜕𝑦2

− 𝐵22
𝜕3𝑣𝑜
𝜕𝑦3

= 𝑞 + 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
+2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦
 

(2) 

The main difficulties imposed by the formulation for general laminates are: 

 It is necessary to deal with more unknowns, u and v must be solved as well, so it 

is necessary to introduce functions to reproduce their behaviour and the extra 

degrees of freedom will have to be solved when the Galerkin or Ritz methods are 

applied.  

 Formulation becomes more extended. Transform the differential equations into 

ordinary equations does not only require a bigger system of equation (to cope with 

the new degrees of freedom) but also every equation has more terms with more 

integrations to be carried, resulting in significantly increased computation time 

 The approximation of the out-of-plane function for the different boundary conditions 

becomes more challenging due the coupling between in-plane and bending 

behaviour.  

2.2. Buckling 

This section reviews the State of the Art on buckling of plates. The solutions achieved by 

different authors have been classified depending on their form. In the first category, closed 

form solutions are considered. Those include the expressions which can be evaluated in 

a finite number of operations. In such solutions the dependency between the result and 

the variables is immediately clear. In the second category are included the semi-analytical 

solutions. Those solutions are developed from the analytical formulation of the problem, 

but their complexity makes it necessary to numerically evaluate some steps. The 

intermediate steps make it more difficult seeing the exact relation between the variables 

and the result. 

2.2.1. Closed form solutions 

Analytical approaches for buckling of thin plates have been widely studied by many 

different authors. Starting from Von Kármán equations, it has been possible to find closed 

form solutions for buckling under different conditions. However, not all closed form 

solutions have been obtained using the same method or have the same accuracy. 

2.2.1.1. Exact closed form solutions 

Those solutions are based on the use of expressions that exactly solve the governing 

equation of the problem, as well as the boundary conditions. Such solutions are difficult to 

find by, due to the relative complexity of the Von Kármán equations. The most important 

examples are the solutions for simply supported plates under uniaxial or biaxial loading for 

isotropic plates, as presented in Timoshenko’s [14], or specially orthotropic in Lekhnitskii 
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[7]. Those solutions are well known and have been presented in most of the literature that 

reviews the topic, for example [11, 12, 15]. 

It must be acknowledged that the exact solution of the governing equations does not mean 

the solution is perfect. Several assumptions have been done to develop such formulation 

(for example Kirchhoff hypothesis) so the Von Kármán equations are still an approximate 

model of the reality. 

2.2.1.2. Approximated closed form solutions 

Sometimes it is possible to find expressions that do not solve exactly the governing 

equation and the boundary conditions, but which are able to approximately solve them 

under different conditions. A great amount of literature can be found treating such solutions 

due to their usefulness in giving quick approximate solutions. Once again [7, 12, 14] gather 

several approximate solutions, including different boundary conditions (specially simply 

supported or clamped) and also shear loading. Whitney also gathers several approximate 

closed form solutions [15]. Among those it can be highlighted the solution for simply 

supported in two edges and elastically restrained in the other two, as it is a good 

approximation to solve buckling in stiffened panels. Kassapoglou also gathers several 

approximate solutions for different BCs combinations and different load combinations [11].  

There has also been extensive research on using semi-analytical approaches to find 

solutions for more general cases, but using one term approximation to achieve closed form 

solutions. This approach is followed by Kollar [16] using Ritz method.  

Bisagni and Vescovini also arrive to closed form solutions for buckling under uni-axial 

compressed plates with elastically restrained unloaded edges by different procedures 

such as Kantorovich, Ritz and Galerkin [17, 18].  

It is interesting to point out the range of accuracy obtained by the approximated close form 

solutions in comparison with FEM results. Kollar [16] claims that the maximum error 

obtained is below 8%. Bisagni and Vescovini find different accuracies depending on the 

methods and the formulations used. Using Galerkin in [18] the maximum error obtained 

ranges between 2 and 4 % depending on the BCs, while in [17] the error is higher, mainly 

because the verification is performed with a stiffened panel instead of an individual plate 

(below 8% for Kantorovich and 13% for Ritz). 

2.2.1.3. Fitted closed form solutions 

A third group of closed form solutions is based on the numerical fitting of a known set of 

solutions. This has been a typical approach in metals, where the isotropy of the material 

makes it easy to distinguish between different materials with a minimum set of variables 

(typically the Young modulus and Poisson). Books like Bruhn [19] and Niu [2, 20] use such 

approach and organize the solutions in design curves. Those curves are usually based on 

empirical data, however Paik [21] uses numerically obtained solutions to extend design 

curves to isotropic plates with elastically restrained edges. Such approach is an example 

of the suitability of closed form solutions even when some accuracy is lost during fitting. 

The higher number of variables in composite laminated plates limits the usefulness of such 

approach.  
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Unfortunately, closed form solutions are typically limited to isotropic or specially orthotropic 

plates, being difficult to find closed form solutions in the literature for mid-plane symmetric 

plates. Moreover, short plates under shear (or combined loading) are also difficult to come 

by. These are the main reasons that has motivated the further study of semi-analytical 

solutions. 

2.2.2. Semi-analytical solutions 

In this group have been included the solutions based on the analytical resolution of the 

Von Kármán governing equations, but where the use of series and their numerical 

evaluation have resulted in non-closed forms (such solutions are usually implemented in 

computer programs). 

Further works have been done in the study of local instability of beam’s flanges (or 

crippling). In those cases the flanges are modelled as plates with an elastically restrained 

edge at their connection with the rest of the beam. This approach is basically analogous 

to the one used in elastically restrained plates. An example of such approach is Bank’s 

[22] using Kantorovich method. This method is based on the Newton-Kantorovich theorem 

[23], an iterative convergent procedure to reach the desired solution. Additionally Qiao in 

[24] also studies similar cases but using the Ritz method instead. It is interesting how the 

torsional stiffness is calculated for different beam sections. However, despite the 

interesting points shown, a drawback of the given formulations by these articles is that 

they only contemplate uniaxial compression as it’s the typical load case in beams. 

Whitney in [15] develops the formulation for mid-plane symmetric plates under any 

constant in-plane load combinations for both Galerkin and Ritz methods. Such 

formulations allow the resolution of the problem for simply supported and clamped BCs, 

but can be extended to the intermediate cases (elastically restrained edges), as seen in 

Chen and Qiao [25] only for shear loads. The verification performed in this last work shows 

the potential of such methods. Using a maximum of 36 terms to approximate the out-of-

plane displacement, a maximum error below 2% is achieved (taking into account that 

laminates are not limited to specially orthotropic). 

The impossibility to find a completely developed formulation suitable for the requirements 

of this Thesis has motivated the development of a new one, mainly based on the work 

presented by the last two references. In chapter 3 the solution for Buckling is presented in 

detail. The different approaches used are developed together with an extended study of 

the validity of the obtained solutions. 

2.3. Post-buckling 

Post-buckling of plates has been studied extensively in the literature as it allows the design 

of structures with higher specific strength. An example of such a case are the so called 

Wagner beams. The flange of the Wagner beams consists of thin shear plates capable of 

holding integrity after buckling thanks to the vertical chords (a detailed explanation of 

Wagner beams is presented in chapter C.11 of Bruhn [19]). 

During post-buckling plates ideally show a linear behaviour until they reach the critical 

buckling load over which out-of-plane displacements appear and take important values, 

as presented in figure 2. 
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Figure 2: Typical out-of-plane displacement trend of a plate during post-buckling, figure 7.7 from [11] 

The literature studied focuses in the solutions developed for stiffened panels as the 

implementation of design tools for such panels is the main motivation of this Thesis. Once 

again the studied literature has been divided into closed form and semi analytical solutions.  

It should be kept in mind that buckling analysis is linear whereas post-buckling is 

fundamentally nonlinear. The load redistribution due to the new shape makes it necessary 

to solve also the compatibility equation (also called second Von Kármán equation) and 

introduce the Airy stress function. This second equation couples in-plane and out-of-plane 

behaviour.  

This coupling was avoided during linear buckling with the limitation to mid-plane symmetric 

plates, however, during post-buckling coupling is impossible to avoid due to the existence 

of the load redistribution. However, the required formulation is still way simpler than for 

arbitrarily laminated plates. 

The reason of the load redistribution during post-buckling is straightforward. The out-of-

plane displacement alters the local stiffness of the plate. The curvature in the plate reduces 

the capacity to transfer loads through the axial stiffness, therefore, part of the load starts 

to be transferred through the bending stiffness (which for thin plates takes lower values). 

For a square, simply supported plate, the deflection and curvature are more important at 

the center, while the edges remain straight. Therefore, the local stiffness at the edges is 

higher and the load is attracted to them. In the following figure, we have an example from 

Chapter 7 of Kassapoglou  [11] with an analytical solution of how this redistribution evolves 

with the PB ratio. 

 

Figure 3: Edge force redistribution during post-buckling, figure 7.8 from [11] 
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2.3.1. Closed form solutions 

The increasing complexity of post-buckling in comparison with buckling reduces the 

amount of closed form solutions available in the literature. Moreover, those (at the best 

knowledge of the author) are limited to approximate expressions, as exact solutions are 

not possible to come by.  

The studied available solutions are mainly based on one term approximations, which in 

some simplified cases has shown their ability to reproduce meaningful solutions. 

Kassapoglou in [11] (chapter 7) introduces a one term approximation for both the out of 

plane and the airy stress function to solve simply supported, square, specially orthotropic 

plates; achieving a closed form expression (see eq. 3) that has proved to work well under 

such conditions. 

 

𝑤11 =

√
  
  
  
  
  
  
  
 

16𝐴11𝐴22(𝐷11 + 2(𝐷12 + 2𝐷66) + 𝐷22)
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𝜋2

𝑎
(𝐷11 + 2(𝐷12 + 2𝐷66) + 𝐷22)

(1 +
𝐴12
𝐴11

)

− 1

]
 
 
 
 
 
 
 

 (3) 

Kassapoglou’s equation has been further developed in chapter 4 to account for any bi-

axial load combination and number of half-waves, and has been used to compare against 

FE and semi-analytical solutions. Therefore, more conclusions on its accuracy will be 

drawn in the chapter. However, it has not been possible to generalize such solution to 

different BCs. 

More complex post-buckling cases are approximately solved by Bisagni and Vescovini for 

uniaxial compression in [18] using the most relevant out of plane displacement term 

(obtained previously from the linear buckling analysis). Marguerre-Von Kármán equations 

[9] are used in order to allow initial imperfections and avoid numerical problems at the 

neighbourhood of the bifurcation point. The developed formulation made possible to solve 

plates with two elastically restrained edges to simulate the effect of stiffeners. The 

verification performed in this article shows the higher amount of variables to be considered. 

Out of plane displacement, axial stiffness and stress distribution are highlighted. Very good 

values are obtained in general (especially taking into account it is an approximate closed 

form solution), only surpassing 10% maximum error in the determination of the stresses. 

It must be remarked the fundamental difference between the two methods. Kassapoglou’s 

is based on the direct approximate resolution of the governing equations while Bisagni and 

Vescovini relay on the Galerkin method to numerically approximate the result. 

Closed form solutions also exist for post-buckling under shear for specially orthotropic 

plates with high aspect ratio, Mittelsted [26]. Due to the approximations made to obtain a 

closed form expression, the solutions obtained are only accurate for relatively low PB 

ratios. 



Literature review

 

 

31 

2.3.2. Semi-analytical solutions 

Post-buckling has been mainly studied through semi-analytical solutions, since closed 

form ones exist for very limited cases. The presented works use the Marguerre-Von 

Kármán equation due to the aforementioned reasons. 

Chia [10] presented in his book multiple semi-analytical solutions for isotropic and 

anisotropic plates (not limited to mid-plane symmetric laminates) in uniaxial and biaxial 

compression under different boundary conditions. The important amount of cases covered 

and methods used (Galerkin, Ritz, etc.) have influenced a great deal of further work, 

becoming a common reference on post-buckling of plates. 

For isotropic materials Byklum [27] developed a model for stiffened panels using Ritz and 

allowing combined loading. It is very interesting how the Airy stress function (𝜙) is 

approximated with a group of terms accounting for the constant in plane loads and a 

double cosine series that introduces the effect of the load redistributions. 

 
𝜙(𝑥, 𝑦) = −

𝑁𝑥𝑦
2

2
−
𝑁𝑦𝑥

2

2
− 𝑁𝑥𝑦𝑥𝑦 +∑∑𝑓𝑚𝑛 cos (

𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
)

2𝑁

0

2𝑀

0

 (4) 

Where 𝑓00 = 0. 

This Airy stress function presented is able to reproduce the stress distribution produced 

by loads applied with constant displacement (the edges are kept straight). Analogous Airy 

stress function has been used for laminated materials, in fact, the exposed Kassapoglou’s 

closed form solution for post-buckling (eq. 3) is based on the same Airy stress function but 

only taking the first two non-zero terms.  

This analysis was extended to mid-plane symmetric plates by Romeo and Frulla using the 

Galerkin method [28]. Similarly to Chia´s work, the Airy stress function is based on keeping 

the forces applied along the edges constant. The in-plane forces can be obtained deriving 

the Airy Stress function: 

 
𝑁𝑥(𝑥, 𝑦) =

𝜕2𝜙(𝑥, 𝑦)

𝜕𝑦2
, 𝑁𝑦(𝑥, 𝑦) =

𝜕2𝜙(𝑥, 𝑦)

𝜕𝑥2
,

𝑁𝑥𝑦(𝑥, 𝑦) = −
𝜕2𝜙(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
 

(5) 

The Airy stress function has then the following form: 

 
𝜙(𝑥, 𝑦) = −

𝑁𝑥𝑦
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2
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2
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𝑁

1

𝑀

1

 (6) 

To vanish the terms for load redistribution at the edges the chosen functions must verify: 

 𝑋𝑚(0) = 𝑋𝑚(𝑎) = 𝑌𝑛(0) = 𝑌𝑛(𝑏) = 0 ∀ 𝑚 𝑎𝑛𝑑 𝑛 

𝑋𝑚
′ (0) = 𝑋𝑚

′ (𝑎) = 𝑌𝑛
′(0) = 𝑌𝑛

′(𝑏) = 0 ∀ 𝑚 𝑎𝑛𝑑 𝑛 
(7) 
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The main problem of this approach is that if 𝑁𝑥, 𝑁𝑦 and 𝑁𝑥𝑦 are taken as constant values 

(which simplifies greatly the formulation and is typically the case) then the stress 

distribution is analogous to constant load application. However, in a stiffened panel the 

beam members keep approximately straight and distribute the load on the panels keeping 

constant displacement. 

Therefore, after realizing so, Romeo and Frulla modified their formulation in [29] and used 

the same approach as Byklum [27] for the Airy stress function (however, dropping the 

possibility of shear loading). The main difference with Byklum’s approach consists on the 

way the compatibility equation is solved. For isotropic or specially orthotropic laminates it 

is possible to explicitly solve the 𝑓𝑚𝑛 terms after substituting the out of plane displacement 

in the compatibility equation. However, Romeo and Frulla, by using Galerkin on the 

compatibility equation as well, are able to work with more complex out of plane 

displacement equations and introduce the possibility to work with any mid-plane symmetric 

laminate. 

Romeo and Frulla, due to the limited experimental results available, build a test set-up to 

verify their solution. Results are very interesting as they highlight the main problems and 

point out the possible source of errors. In article [28] they claim the results obtained are 

only accurate for small post-buckling ratios (up to 1.5) and suggest that mode changing 

and the fact that the machine uses displacement controlled loading (while the formulation 

used is based in constant applied load), are the main sources of error. In [29], the new 

formulation is compared with the old one (load controlled) and the experimental results, 

yielding better results. The main source of error is claimed to be the load redistribution 

caused by the stiffeners in the test.  

Shin [30] worked with simpler post-buckling cases (uniaxial compression and hinged BCs) 

for displacement applied load. However, it is interesting the use of truncated series to 

improve the computational efficiency of the method. Moreover, the problematic of mode 

changing is discussed. 

Bisagni and Vescovini also presented different works using semi-analytical solutions for 

elastically restrained plates on two edges using the Ritz method [31]. By not limiting the 

formulation to closed form solutions, they were able to extend the possibilities to combined 

loading and mid-plane symmetric laminates. Similarly to Byklum [27], the formulation is 

developed for stiffened panels and accounts for the compatibility of displacements 

between the different members of it. Moreover, an arc length solver is used for the 

nonlinear system of equations to be able to capture mode jumping. Verifications are 

performed with FEM and experimental results showing good agreement in the mode 

prediction and focusing in the remaining stiffness of the plates in a stiffened panel after 

buckling. 

A solution for plates under similar conditions is developed by Beerhorst in [32] when they 

can be considered infinitely long. Verifications shows good results but is pointed out the 

limitation of Von Kármán equation with thick laminates (when transverse shear cannot be 

neglected). 
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The modelling of the elastically restrained edges is usually done by approximating the 

stiffeners to a constant torsional stiffness introduced along the edge of the plate. For the 

idealized cases (torsional stiffness 0 or infinite) this becomes the well-known simply 

supported and clamped situations. However, the stiffener does not constantly restrain the 

torsion along the plate’s edge, and it also provides transverse stiffness. Therefore, 

Stamatelos in [33] introduces a more complex formulation to account for those extra 

effects (see figure 4). The differences introduced by using different models will be studied 

in Chapter 6.  

Figure 4: Torsional and transverse stiffness as introduced in Stamatelos [33] 

It is difficult to compare the accuracy gained by this approach as solutions are given for 

whole stiffened panels. 

Further improvement in the possibilities of the boundary conditions of elastically restrained 

plates is presented by Qiao in [34]. The developed formulation is based on the same 

approach as Romeo and Frulla’s [28]. However, by using a linear interpolation between 

the beam eigenfunctions for simply suported and clamped BCs, Qiao is able to solve the 

problem for the intermediate cases (torsional springs). The procedure is similar to the ones 

presented by Vescovini and Bisagni but allowing elastic restrains in all edges. Achieved 

solutions show almost perfect agreement with FEM using a fraction of computational 

power. 

The main limitation of the work presented is that, by using also the same approach for the 

Airy stress function as [28], the method is not able to account for the load redistribution 

introduced by the stiffeners when keeping the edges of the plate straight (load applied as 

constant displacement). It has been seen in the development of a post-buckling 

formulation (chapter 4) and verification presented in [29] that the approaches (using Airy 

stress function from eq. 4 or 6) give completely different results.  

A modified formulation is proposed in chapter 4, accounting for different loading 

possibilities (load and displacement controlled) aiming to cover all the possible cases 

covered by the developed buckling formulation (chapter 3). 

2.4. Plate Strength 

The possibilities of developing a plate strength analysis from the post-buckling results is 

of great interest. The resolution of the Airy stress function and the deformed shape can be 

used to obtain the stress and strain distribution for every ply of the laminate. First ply failure 

𝑘𝑡 𝑘𝜃 

0 𝑎 𝑎 0 
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analysis can be then developed in a straight forward way as presented, for example, in 

chapter 4 of [11]. 

Plate strength has been applied in semi-analytical post-buckling analysis before, such as 

Yang and Hayman [35]. In this publication progressive damage propagation is also studied 

(in addition to first ply failure), modifying either the stiffness of the whole damaged ply or 

only the region of the failure. Such approach is out of the scope of this Thesis but shows 

the possibilities of coupling plate stability with strength analysis. 

2.5. Stiffened Panel Integration 

Many of the reviewed solutions aim at solving stiffened panels also. It has been pointed 

out that the inclusion of more complex BCs, like torsion springs, appeared as a simple way 

to model stiffeners. Several of the articles reviewed [17, 27, 29, 31, 33] presented 

verifications against stiffened panels instead of only individual plates.  

Vescovini and Bisagni put special attention in the calculation of the remaining stiffness of 

the buckled plate in all the articles reviewed [17, 18, 31]. This variable is very important to 

recalculate the load distribution between the plates and the stiffeners once the plates have 

buckled. It has been seen that successive buckling modes reduce even more the stiffness 

of the plates.  

Most of the literature found describes the torsional restrain provided by the stiffeners as a 

function of their torsion stiffness GJ, therefore it has been necessary to research a 

convenient method to find this value for composite laminated beams. 

Vlasov [36] developed a theory for isotropic thin-walled beams, including open and closed 

sections. The theory was further extended to account for orthotropic beams by Ever [37]. 

Laminated composite beams with arbitrary lay-up where included by Kollar in [38]. This 

last work provides the additional level of generality required. Shear deformation and 

warping are neglected which can result in inaccurate results in some cases, as analysed 

by Pluzsik in [39]. Salim [40] included this phenomenon in his formulation, but the 

increasing complexity of the solution might not be attractive for the required application 

(no longer closed form).  

Stamatelos [33] accurately described the way to calculate the elastic restrain the stiffeners 

provide. He defined the elastic restrain against rotation as a function of torsional stiffness 

GJ of the adjacent stiffeners, and the transverse stiffness (out-of-plane) as a function of 

their bending stiffness EI with the following equations: 

 

𝑘𝑖1(𝑥) = {

48𝐸𝐼𝑧
𝑥3

,               𝑥 ≤
𝑎

2

 
48𝐸𝐼𝑧
(𝑎 − 𝑥)3

, 𝑥 >
𝑎

2

     𝑘𝑖2(𝑥) = {
−
2𝐺𝐼𝑝𝑥

𝑎
+ 𝐺𝐼𝑝, 𝑥 ≤

𝑎

2
2𝐺𝐼𝑝𝑥

𝑎
− 𝐺𝐼𝑝     , 𝑥 >

𝑎

2

            (8) 

Similar approaches were used in [21, 27]. 

Vescovini and Bisagni in [17] defined the restrain as De Saint Venant torsional bars using 

half the torsional stiffness GJ of the surrounding stiffener (half for every plate at each side). 

Paik [21] used also half GJ of the stiffener to represent that both plates at each side had 

to be restrained. Other alternatives to see how the torsional stiffness of the stiffener is 

distributed among the plates are based on more complex approaches where the stiffeners 
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are included (as beams instead of as boundary conditions). Then the elastic restrain is 

solved imposing the compatibility of displacements between the different members. 

The method developed in this report works with any arbitrary constant elastic torsional 

restrain along every edge of the plate, using a model developed for 1D beams. As in most 

of the literature found, the transverse stiffness is not taken into account assuming that the 

out-of-plane displacement is zero (corresponding to an infinite bending stiffness). Most of 

the authors take this assumption as valid without further considerations (as far as there is 

no instability of the stiffener), however it is evident that for stiffeners with bending stiffness 

tending to zero, this displacement cannot be neglected. Mittelstedt in [41] works with no 

out-of-place displacement at the edges, but defines a minimum bending stiffness EI for 

which this assumption is a good approximation. 

Most of the articles use constant torsional elastic restrains along the edge. De Saint 

Venant model has the important inconvenience of adding significant complexity on the 

boundary conditions. The moment generated by such restrain depends on a cross 

derivative of the out-of-plane function with the two in-plane directions, therefore coupling 

them. The solutions studied using this method [17] have coped with this problem by 

applying the restrain in only two edges, so the buckled shape in the perpendicular direction 

to the restrains is already known (more precisely, it has been already approximated with 

the coupling introduced by Saint Venant model neglected). The necessity of making 

approximations at some point and having elastic restrains in all 4 edges has motivated the 

generalized use of constant torsional springs along the edge.  

Despite being a commonly used model, authors have had difficulties to establish a good 

relation between the torsional stiffness of the stiffener and the boundary conditions 

modelled as constant torsional springs. Tarján in [42] works with both De Saint Venant 

beams and torsional springs using a semi-empirical formulation for the restrain. Linking 

both approaches is possible to get a relation between GJ and the torsional spring stiffness 

k. However, this approach has been shown to provide very limited accuracy. 

 1

1 +
10𝐷22
𝑘𝑥𝑏

=
1

1 + 0.61 (
𝐷22𝑏
𝐺𝐼𝑥

)
1.2 (9) 

Vescovini and Bisagni in [18] used the work developed by Mittelstedt [43] to establish the 

relation between GJ and k is defined for closed hat stiffeners. The usefulness of the 

method is limited since it was developed for a specific type of stiffener. Moreover, during 

the verifications performed by Mittelstedt, the method seems to over constrain the plate, 

resulting in not too accurate results. 

Shan [24] also indicated how the elastic restrains could be calculated, however, the article 

intends to describe the elastic restrains between the flanges of composite beams. He 

found that the restrain depends on the ratio between the buckling load of the restrained 

flange and the buckling load of the restraining flange. Is not really clear that the approach 

can be extrapolated to stiffened panels. 

Vescovini and Bisagni in [31] introduced a more complex method to link GJ and k for post-

buckling of plates. The proposed solution solves the linear buckling of a section of the 
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stiffened panel, including the stiffeners in the derivation of the total potential energy 

(modelling the stiffeners flanges with plates). The restrain between the different elements 

is imposed with the use of a penalty term that ensures the compatibility of displacements 

between the different elements. Finally, the post-buckling behaviour is solved for a model 

with constant torsional springs, where their value is obtained with an iterative calculation 

to match the buckling load of the first models. 

Since a solution with the desired accuracy has not been found in the literature, a new 

method will be developed based on matching the energy stored by the restrain provided 

by De Saint Venant bars and constant torsional springs. This method intends to be a 

simpler approach than the one shown in [31], however it uses the same assumption that 

the post-buckling solution given by De Saint Venant torsional bars and torsional springs 

are equivalent if both models have the same critical buckling load. 

2.6. Research conclusions 

During the literature research, different analytical solutions for buckling and post-buckling 

have been studied and their capabilities and limitations analyzed. It has been concluded 

that current closed form solutions are not able to cope with all the cases required due to 

the complexities introduced by including mid-plane symmetric laminates, elastic restrains 

and shear loading.  

Under such conditions, it has been seen that semi-analytical formulations present several 

advantages and that the work done by several authors can be used to build a new 

formulation that can adapt to the necessities expressed by Fokker for this project. 

The solution of plates have been typically linked to the solution of stiffened panels. 

However, there is no consensus on how the elasic restrain provided by stiffeners and 

frames should be imposed in the boundary conditions of the individual plates. 
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3. Buckling of plates 

This chapter presents the solution developed to solve buckling of thin rectangular mid-

plane symmetric plates. As it has been presented during the literature review, multiple 

closed-form solutions exist for linear buckling, especially when the plate is either isotropic 

or specially orthotropic. However, the objective of this thesis is to deal with more general 

configurations that are of interest in industry applications, including combined loading and 

elastically restrained boundary conditions.  

First, the semi-analytical model developed is described. Afterwards, a brief description of 

the FE model used to compare results is also presented. Finally, the agreement between 

both methods is studied in order to verify the accuracy of the semi-analytical solution. The 

limitations and conclusions reached are summarized in the last section. 

3.1. Semi-analytical model 

3.1.1. Introduction 

The objective of this thesis is to develop a proper general solution for buckling and post-

buckling of plates. It has already been mentioned, that it is intended to overcome the 

present limitations of existent closed form solutions in order to solve more complex 

problems. The main features of the proposed formulation are the possibility to work with 

multiple loading, the proper modelling of bending-twisting terms (mid-plane symmetric 

model) and the use of elastic torsional restrains along all the edge as boundary conditions. 

These last, ought to be able to reproduce any restrain between simply supported and 

clamped in order to model plates constrained by stiffeners, since plates usually appear as 

part of stiffened panels in common aerospace applications. 

The semi-analytical model section has been divided in three sub-sections. After the 

introduction, the energy formulation required to derive the stability equations is presented. 

Finally, the stability analysis and the proposed solutions are developed. 

3.1.1.1.  Assumptions 

First the assumptions for thin laminated anisotropic plates are introduced3: 

 The plate is built from arbitrary number of orthotropic layers perfectly bonded. 

 The thickness of the plate t  is much smaller than the other two dimensions. 

 Displacement  are moderate. 

 In-plane strains are small. 

 The first order non-linear terms involving products of stresses and plate slopes are 

reatained in the equations of motion.  

                                                

 

3 The assumptions are based on the section 2.1 of Whitney [15]. However, such assumptions are analogous 

to thin plate theory for laminated anisotropic plates. 
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 Plate follows Kirchhoff classical assumptions: 

o Transverse shear strains are negligible. 

o In-plane displacements u and v are linear functions of the out-of-plane 

coordinate z. 

 Transverse normal strain is negligible. 

 Transverse shear stresses vanish on the surfaces. 

 Plate has constant thickness. 

 Every layer follows Hooke’s Law and is orthotropic. 

 There are no body forces acting on the plate. 

 Rotatory inertia is negligible. 

Additional assumptions: 

 Only constant in-plane loads are considered. The formulation could be adapted to 

include non-constant in-plane loads, however, the integration of the terms in the 

Galerkin and Ritz methods would become more complex. 

 Plates are mid-plane symmetric. The lay-up of the plate is symmetric so all the 

terms of the B matrix are equal to zero. 

 Quasi-static loading. No dynamic effects are considered. 

 The plate has no imperfections (this assumption is discarded for post-buckling 

analysis). 

 Edges keep straight (this assumption is discarded for post-buckling analysis under 

constant applied loading). 

 The boundary conditions of the plate are idealized as a set of linear torsional 

springs along the edges. The torsion coefficient at every edge can vary from zero 

(simply support) to infinite (clamped). 

3.1.1.2. Sketch of the proposed model 

The following figure shows the proposed plate sketch for buckling and post-buckling. 
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Figure 5: Sketch of the plate geometry, boundary conditions and loads 
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The plate has a rectangular shape of dimensions a, b. The applied in-plane loads on the 

edges are constant. 𝑁𝑥 and 𝑁𝑦 are the axial loading (positive in compression) and 𝑁𝑥𝑦 is 

the shear loading. The boundary conditions consist on torsional springs of constant value 

𝑘𝑖 along the edge. Although, values are independent between edges, making it possible 

to reproduce fairly complex boundary conditions. Additionally, the out-of-plane 

displacement of the edges is restricted while leaving the in-plane free. 

3.1.2. Energy formulation  

Classical stability theory is based on the energy state of the system, therefore the more 

rigorous way to approach buckling is by determining the different terms that contribute to 

the energy of the plate and what their variations are.  

The required terms for buckling are the strain energy and the potential energy of the 

external loads, which give the total potential energy of the plate. 

The strain energy is calculated from the volume integral of the scalar product between 

stress and strain matrices. In laminated plates in plane stress it is taken advantage of the 

ABD matrix to simplify the expression to: 

 
𝑈 =

1

2
∬{𝐴11 (

𝜕𝑢𝑜
𝜕𝑥

)
2

+ 2𝐴12
𝜕𝑢𝑜
𝜕𝑥

𝜕𝑣𝑜
𝜕𝑦

+ 𝐴22 (
𝜕𝑣𝑜
𝜕𝑦

)
2

+ 2(𝐴16
𝜕𝑢𝑜
𝜕𝑥

+ 𝐴26
𝜕𝑣𝑜
𝜕𝑦

) (
𝜕𝑢𝑜
𝜕𝑦

+
𝜕𝑣𝑜
𝜕𝑥

) + 𝐴66 (
𝜕𝑢𝑜
𝜕𝑦

+
𝜕𝑣𝑜
𝜕𝑥

)
2

− 𝐵11
𝜕𝑢𝑜
𝜕𝑥

𝜕2𝑤

𝜕𝑥2
− 2𝐵12 (

𝜕𝑣𝑜
𝜕𝑦

𝜕2𝑤

𝜕𝑥2
+
𝜕𝑢𝑜
𝜕𝑥

𝜕2𝑤

𝜕𝑦2
) − 𝐵22

𝜕𝑣𝑜
𝜕𝑦

𝜕2𝑤

𝜕𝑦2

− 2𝐵16 [
𝜕2𝑤

𝜕𝑥2
(
𝜕𝑢𝑜
𝜕𝑦

+
𝜕𝑣𝑜
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) + 2
𝜕𝑢𝑜
𝜕𝑥

𝜕2𝑤

𝜕𝑥𝜕𝑦
]

− 2𝐵26 [
𝜕2𝑤

𝜕𝑦2
(
𝜕𝑢𝑜
𝜕𝑦

+
𝜕𝑣𝑜
𝜕𝑥

) + 2
𝜕𝑣𝑜
𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
]

− 4𝐵66
𝜕2𝑤

𝜕𝑥𝜕𝑦
(
𝜕𝑢𝑜
𝜕𝑦

+
𝜕𝑣𝑜
𝜕𝑥

) + 𝐷11 (
𝜕2𝑤

𝜕𝑥2
)

2

+ 2𝐷12
𝜕2𝑤

𝜕𝑥2
 𝜕2𝑤

𝜕𝑦2

+ 𝐷22 (
 𝜕2𝑤

𝜕𝑦2
)

2

+ 4(𝐷16
𝜕2𝑤

𝜕𝑥2
+ 𝐷26

 𝜕2𝑤

𝜕𝑦2
)
𝜕𝑤2

𝜕𝑥𝜕𝑦

+ 4𝐷66 ( 
𝜕𝑤2

𝜕𝑥𝜕𝑦
)

2

} 𝑑𝑥 𝑑𝑦  

(8) 

For mid-plane symmetric plates 𝐵𝑖𝑗 = 0, therefore in-plane and out-of-plane variables 

become uncoupled. The separated terms are identified as membrane and bending energy 

respectively. For pure bending problems, the membrane energy can be considered as an 

arbitrary constant that will cancel out when its variation is considered. 
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𝑈𝑏 =

1

2
∬{𝐷11 (

𝜕2𝑤

𝜕𝑥2
)

2

+ 2𝐷12
𝜕2𝑤

𝜕𝑥2
 𝜕2𝑤

𝜕𝑦2
+ 𝐷22 (

 𝜕2𝑤

𝜕𝑦2
)

2

+ 4(𝐷16
𝜕2𝑤

𝜕𝑥2
+ 𝐷26

 𝜕2𝑤

𝜕𝑦2
)
𝜕𝑤2

𝜕𝑥𝜕𝑦
+ 4𝐷66 ( 

𝜕𝑤2

𝜕𝑥𝜕𝑦
)

2

} 𝑑𝑥 𝑑𝑦  

(9) 

Under elastically restrained boundary conditions an additional term might need to be 

considered if the springs in the boundary conditions are considered as part of the system. 

 
𝑈𝑘 =

1

2
∫{𝑘1 (

𝜕𝑤

𝜕𝑥
)
2

|
𝑥=0

+ 𝑘2 (
𝜕𝑤

𝜕𝑥
)
2

|
𝑥=𝑎

}𝑑𝑦

+
1

2
∫{𝑘3 (

𝜕𝑤

𝜕𝑦
)
2

|
𝑦=0

+ 𝑘4 (
𝜕𝑤

𝜕𝑦
)
2

|
𝑦=𝑏

} 𝑑𝑥 

(10) 

Where 𝑘𝑖 is the linear torsion spring constant for the i-th edge. The different terms 

represent the elastic restrains introduced at every edge. 

Analogously, the potential energy of the elastic restrain can also be accounted as the 

energy introduced by applied bending moments at the edges. The sign change is due to 

the criteria for positive applied bending moment. 
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2
∫{�̅�𝑥

𝜕𝑤
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𝑥=0
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𝜕𝑤

𝜕𝑥
|
𝑥=𝑎

} 𝑑𝑦 +
1

2
∫{�̅�𝑦

𝜕𝑤

𝜕𝑦
|
𝑦=0

− �̅�𝑦

𝜕𝑤

𝜕𝑦
|
𝑦=𝑏

}𝑑𝑥 (11) 

The resulting strain energy and its variation are given by: 

 𝑈 = 𝑈𝑚 + 𝑈𝑏 + 𝑈𝑘 = 𝐶 + 𝑈𝑏 + 𝑈𝑘 → 𝛿𝑈 = 𝛿𝑈𝑏 + 𝛿𝑈𝑘 (12) 

The potential energy of the external forces can by subdivided in two main terms, the 

energy of the transverse loads W and the energy of the in-plane loads V. Only the last 

term is relevant as only in-plane loads are considered in this thesis (additionally, the 

second variation of W for plates is always 0, as stated in p.39 of Ashton [13], so the 

transverse load does not affect the linear buckling solution). 

 
𝑉 =

1

2
∬{−𝑁𝑥 (

𝜕𝑤

𝜕𝑥
)
2

−𝑁𝑦 (
𝜕𝑤

𝜕𝑦
)
2

+ 2𝑁𝑥𝑦
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
}𝑑𝑥 𝑑𝑦 (13) 

It should be pointed out that the axial loads are taken positive for compression. 

3.1.3. Stability of plates 

It has been seen in the introduction that stability is typically studied via the second variation 

of the total potential energy. However, the adjacent equilibrium method proposed an 

equivalent solution from the study of the equilibrium paths, determining that the existence 

of additional stable equilibrium paths is caused by the change of the stability behaviour. 

This method is outlined by Whitney in the section 2.7 of [15]. 
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Two different solution methods are proposed to solve the differential equations: 

 The Galerkin method is more general than Ritz and does not require the 

formulation of an energy principle. The method is based on minimizing the error of 

an approximate solution by orthogonalizing the residual with respect to a set of 

given functions. The method is intended to solve boundary value problems, but 

since the formulation used is equivalent to the equilibrium equations, the Galerkin 

approach is able to give proper solutions. 

 The Ritz method is a procedure to apply the principle of minimum potential energy, 

assuming that the desired extremal of a problem can be approximated by a linear 

combination of suitable functions. The solution obtained, returns the best 

combination of coefficients that approximate the exact solution, being therefore 

essential to have proper functions to represent the solution. 

Both Galerkin and Ritz methods allow for approximate solutions if the essential4 boundary 

conditions are satisfied. The accuracy and convergence of the solutions depends greatly 

on the choice of the set of functions. 

3.1.3.1. Adjacent equilibrium method 

In the adjacent equilibrium method it is sought a critical load which produces an 

infinitesimally small shift in the equilibrium position. Therefore the variables are rewritten 

as an initial pre-buckling displacement or load plus an increment. 

 

{
 

 
𝑢𝑜 = 𝑢𝑜

𝑖 + 𝜖𝑢𝑜
𝑣𝑜 = 𝑣𝑜

𝑖 + 𝜖𝑣𝑜
𝑤 = 𝑤𝑖 + 𝜖𝑤
𝑵 = 𝑵𝑖 + 𝜖𝑁

 (14) 

For flat symmetric plates (𝐵𝑖𝑗=0) the in-plane and bending behaviour uncouple, therefore: 

 𝑢𝑜 = 𝑣𝑜 = 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑥𝑦 = 0 (15) 

And there is no initial out-of-plane displacement prior to buckling: 

 𝑤𝑖 = 0 (16) 

These results make it unnecessary to distinguish between pre-buckling and equilibrium 

positions as given in p.38 of Whitney [15]. 

                                                

 

4 The boundary conditions (named also geometric boundary conditions) might be divided in two groups. The 

first one is the essential boundary conditions, where the solution of a differential equation is specified along 

the boundary of the domain (Dirichlet boundary condition). In the concerning case, these are the values of 

the out-of-plane displacement along the edges. The second group are the natural boundary conditions, which 

specify the value of some derivative along the boundary (Neumann boundary condition). In the concerning 

case, these make reference to the value of the bending moments along the edges. 
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(17) 

For the sake of notation’s simplicity the super index ‘i’ is not used in further developments 

of equation 17. Notice also that Whitney’s equation uses positive values for tensile axial 

stresses. 

3.1.3.2. The Galerkin method 

To apply the Galerkin method the equilibrium equations are calculated applying Hamilton’s 

principle for statics. 

 𝛿𝑈 + 𝛿𝑉 = 0 (18) 

The first variation of the energy has been fully developed for isotropic materials in the 

sections 3.2.2. and 3.2.3. of Jones [12]. A similar approach is used to develop the stability 

equations in this thesis, however, it involves less detail and has been adapted for mid-

plane symmetric plates. 
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𝜕𝑦2
)

+ 4 𝐷66 (2
𝜕2𝑤

𝜕𝑥𝜕𝑦

𝜕2𝜑

𝜕𝑥𝜕𝑦
))}𝑑𝑥𝑑𝑦

+
1

2
∫{[�̅�𝑥|𝑥=0 − �̅�𝑥|𝑥=𝑎]

𝜕𝜑

𝜕𝑥
} 𝑑𝑦

+
1

2
∫{[�̅�𝑦|𝑦=0 − �̅�𝑦|𝑦=𝑏]

𝜕𝜑

𝜕𝑦
} 𝑑𝑥

= ∫∫{[𝐷11
𝜕2𝑤

𝜕𝑥2
+ 𝐷12

𝜕2𝑤

𝜕𝑦2
+ 2𝐷16

𝜕2𝑤

𝜕𝑥𝜕𝑦
]
𝜕2𝜑

𝜕𝑥2

+ [𝐷12
𝜕2𝑤

𝜕𝑥2
+ 𝐷22

𝜕2𝑤

𝜕𝑦2
+ 2𝐷26

𝜕2𝑤

𝜕𝑥𝜕𝑦
]
𝜕2𝜑

𝜕𝑦2

+ [2𝐷16
𝜕2𝑤

𝜕𝑥2
+ 2𝐷26

𝜕2𝑤

𝜕𝑦2
+ 4𝐷66

𝜕2𝑤

𝜕𝑥𝜕𝑦
]
𝜕2𝜑

𝜕𝑥𝜕𝑦
}𝑑𝑥𝑑𝑦   

(19) 
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The first variation is defined as =
𝜕(𝑈(𝑤+𝛼𝜑)

𝜕𝛼
]
𝛼=0

 , where 𝜑 might be any function with Ϲ2 

continutiy vanishing at the ends. 

In order to take out the derivatives of 𝜑 it is necessary to use Green’s theorem to perform 

an integration by parts. 

 
∫∫𝜙

𝜕ψ

∂x
 dx dy = −∫∫ψ

𝜕𝜙

∂x
 dx dy + ∮𝜙ψdy (20) 

Apart from Green’s theorem, it is also convenient to make the following substitution on the 

linear boundary integrals to simplify the boundary conditions to be derived. 

 

{
  
 

  
 𝑀𝑥 = −𝐷11

𝜕2𝑤

𝜕𝑥2
− 2𝐷16

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷12

𝜕2𝑤

𝜕𝑦2

𝑀𝑦 = −𝐷12
𝜕2𝑤

𝜕𝑥2
− 2𝐷26

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷22

𝜕2𝑤

𝜕𝑦2

𝑀𝑥𝑦 = −𝐷16
𝜕2𝑤

𝜕𝑥2
− 2𝐷66

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷26

𝜕2𝑤

𝜕𝑦2

 (21) 

The result after applying Green’s theorem and substituting the boundary terms is: 

 

 

 

𝛿𝑈 = ∫∫{[𝐷11
𝜕4𝑤

𝜕𝑥4
+ 4𝐷16

𝜕4𝑤

𝜕𝑥3𝜕𝑦
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 4𝐷26

𝜕4𝑤

𝜕𝑥𝜕𝑦3

+ 𝐷22
𝜕4𝑤

𝜕𝑦4
] 𝜑} 𝑑𝑥 𝑑𝑦 − ∫{|[

𝜕𝑀𝑥

𝜕𝑥
+ 2

𝜕𝑀𝑥𝑦

𝜕𝑦
]𝜑 |

𝑥=0

}𝑑𝑦

+ ∫{|[
𝜕𝑀𝑥

𝜕𝑥
+ 2

𝜕𝑀𝑥𝑦

𝜕𝑦
]𝜑|

𝑥=𝑎

}𝑑𝑦

− ∫{|[
𝜕𝑀𝑦

𝜕𝑦
+ 2

𝜕𝑀𝑥𝑦

𝜕𝑥
]𝜑|

𝑦=0

} 𝑑𝑥

+ ∫{|[
𝜕𝑀𝑦

𝜕𝑦
+ 2

𝜕𝑀𝑥𝑦

𝜕𝑥
]𝜑|

𝑦=𝑏

} 𝑑𝑥 + ∫ |[𝑀𝑥 − �̅�𝑥] 
𝜕𝜑

𝜕𝑥
|
𝑥=0

𝑑𝑦 

− ∫ |[𝑀𝑥 − �̅�𝑥]
𝜕𝜑

𝜕𝑥
|
𝑥=𝑎

𝑑𝑦 −∫ |[𝑀𝑦 −  �̅�𝑦]
𝜕𝜑

𝜕𝑦
|
𝑦=0

𝑑𝑥 

+ ∫ |[𝑀𝑦 −  �̅�𝑦]
𝜕𝜑

𝜕𝑦
|
𝑦=𝑏

𝑑𝑥 − 2|𝑀𝑥𝑦𝜑|𝑥=0
𝑦=0

+ 2|𝑀𝑥𝑦𝜑|𝑥=𝑎
𝑦=0

− 2|𝑀𝑥𝑦𝜑|𝑥=𝑎
𝑦=𝑏

+ 2|𝑀𝑥𝑦𝜑|𝑥=0
𝑦=𝑏

 

(22) 
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𝛿𝑉 = ∫∫{− [−𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
] 𝜑} 𝑑𝑥 𝑑𝑦

− ∫{|[−𝑁𝑥
𝜕𝑤

𝜕𝑥
+ 2𝑁𝑥𝑦

𝜕𝑤

𝜕𝑦
]𝜑|

𝑥=0

}𝑑𝑦

+ ∫{|[−𝑁𝑥
𝜕𝑤

𝜕𝑥
+ 2𝑁𝑥𝑦

𝜕𝑤

𝜕𝑦
]𝜑|

𝑥=𝑎

}𝑑𝑦

− ∫{|[−𝑁𝑦
𝜕𝑤

𝜕𝑦
+ 2𝑁𝑥𝑦

𝜕𝑤

𝜕𝑥
]𝜑|

𝑦=0

}𝑑𝑥

+ ∫{|[−𝑁𝑦
𝜕𝑤

𝜕𝑦
+ 2𝑁𝑥𝑦

𝜕𝑤

𝜕𝑥
]𝜑|

𝑦=𝑏

}𝑑𝑥 

(23) 

The variation of the total potential energy is obtained adding both last terms 

 
𝛿Π =  𝛿𝑈 + 𝛿𝑉 = ∫∫{[𝐷11

𝜕4𝑤

𝜕𝑥4
+ 4𝐷16

𝜕4𝑤

𝜕𝑥3𝜕𝑦
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2

+ 4𝐷26
𝜕4𝑤

𝜕𝑥𝜕𝑦3
+𝐷22

𝜕4𝑤

𝜕𝑦4

− [−𝑁𝑥
𝜕2𝑤

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
]]𝜑} 𝑑𝑥 𝑑𝑦 

− ∫{|[
𝜕𝑀𝑥

𝜕𝑥
+ 2

𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑁𝑥

𝜕𝑤

𝜕𝑥
+ 2𝑁𝑥𝑦

𝜕𝑤

𝜕𝑦
]𝜑 |

𝑥=0

}𝑑𝑦

+ ∫{|[
𝜕𝑀𝑥

𝜕𝑥
+ 2

𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑁𝑥

𝜕𝑤

𝜕𝑥
+ 2𝑁𝑥𝑦

𝜕𝑤

𝜕𝑦
]𝜑|

𝑥=𝑎

}𝑑𝑦

− ∫{|[
𝜕𝑀𝑦

𝜕𝑦
+ 2

𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑁𝑦

𝜕𝑤

𝜕𝑦
+ 2𝑁𝑥𝑦

𝜕𝑤

𝜕𝑥
]𝜑|

𝑦=0

} 𝑑𝑥

+ ∫{|[
𝜕𝑀𝑦

𝜕𝑦
+ 2

𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑁𝑦

𝜕𝑤

𝜕𝑦
+ 2𝑁𝑥𝑦

𝜕𝑤

𝜕𝑥
]𝜑|

𝑦=𝑏

} 𝑑𝑥

+ ∫ |[𝑀𝑥 − �̅�𝑥]
𝜕𝜑

𝜕𝑥
|
𝑥=0

𝑑𝑦 

− ∫ |[𝑀𝑥 − �̅�𝑥]
𝜕𝜑

𝜕𝑥
|
𝑥=𝑎

𝑑𝑦 −∫ |[𝑀𝑦 −  �̅�𝑦]
𝜕𝜑

𝜕𝑦
|
𝑦=0

𝑑𝑥 

+ ∫ |[𝑀𝑦 −  �̅�𝑦]
𝜕𝜑

𝜕𝑦
|
𝑦=𝑏

𝑑𝑥 − 2|𝑀𝑥𝑦𝜑|𝑥=0
𝑦=0

+ 2|𝑀𝑥𝑦𝜑|𝑥=𝑎
𝑦=0

− 2|𝑀𝑥𝑦𝜑|𝑥=𝑎
𝑦=𝑏

+ 2|𝑀𝑥𝑦𝜑|𝑥=0
𝑦=𝑏

 

(24) 

The equilibrium equation is then given by the term inside the double integral (Euler 

equation) with all the surface and corner terms reflecting the required boundary conditions. 

Each term of the first variation ought to be zero to satisfy equilibrium and its boundary 

conditions. 
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However, the material complexity of mid-plane symmetric laminates (remember the 

presence of 𝐷16 and 𝐷26 terms for example) can make it impossible to exactly satisfy 

natural4 boundary conditions using the typical approach for shape functions (see eq. 28).  

In those cases, the moment applied (or given by the elastic restrain) is not the same as 

the moment corresponding due to plate deflection. The error between these two makes 

the following surface terms different to zero and therefore ought to be accounted for when 

applying the Galerkin method. 

 
∫ |[𝑀𝑥 − �̅�𝑥]

𝜕𝜑

𝜕𝑥
|
𝑥=0

𝑑𝑦 = ∫ |[𝐸1 ]
𝜕𝜑

𝜕𝑥
|
𝑥=0

𝑑𝑦  

∫|[𝑀𝑥 − �̅�𝑥]
𝜕𝜑

𝜕𝑥
|
𝑥=𝑎

𝑑𝑦 = ∫ |[𝐸2 ]
𝜕𝜑

𝜕𝑥
|
𝑥=1

𝑑𝑦  

∫|[𝑀𝑦 −  �̅�𝑦]
𝜕𝜑

𝜕𝑦
|
𝑦=0

𝑑𝑥 = ∫ |[𝐸3]
𝜕𝜑

𝜕𝑦
|
𝑦=0

𝑑𝑥  

∫|[𝑀𝑦 −  �̅�𝑦]
𝜕𝜑

𝜕𝑦
|
𝑦=𝑏

𝑑𝑥 = ∫ |[𝐸4]
𝜕𝜑

𝜕𝑦
|
𝑦=𝑏

𝑑𝑥 

(25) 

Note that the error between bending moments will depend on how the selected out-of-

plane functions can approximate the real result. For simplicity the 𝐸𝑖 coefficients will be 

used in the following equations to refer to this error. After removing all the boundary terms 

that ought to be 0, the resulting first variation is: 

 
𝛿Π =  𝛿𝑈 + 𝛿𝑉 = ∫∫{[𝐷11

𝜕4𝑤

𝜕𝑥4
+ 4𝐷16

𝜕4𝑤

𝜕𝑥3𝜕𝑦
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2

+ 4𝐷26
𝜕4𝑤

𝜕𝑥𝜕𝑦3
+𝐷22

𝜕4𝑤

𝜕𝑦4
+𝑁𝑥

𝜕2𝑤

𝜕𝑥2
− 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦

+ 𝑁𝑦
𝜕2𝑤

𝜕𝑦2
] 𝜑} 𝑑𝑥 𝑑𝑦 + ∫ |[𝐸1]

𝜕𝜑

𝜕𝑥
|
𝑥=0

𝑑𝑦 

− ∫ |[𝐸2]
𝜕𝜑

𝜕𝑥
|
𝑥=𝑎

𝑑𝑦 −∫ |[𝐸3]
𝜕𝜑

𝜕𝑦
|
𝑦=0

𝑑𝑥 

+ ∫ |[𝐸4]
𝜕𝜑

𝜕𝑦
|
𝑦=𝑏

𝑑𝑥 = 0 

(26) 

On the other hand, if the natural boundary conditions are exactly satisfied, the governing 

equation for stability reduces to the differential Euler equation. 

 
𝐷11

𝜕4𝑤

𝜕𝑥4
+ 4𝐷16

𝜕4𝑤

𝜕𝑥3𝜕𝑦
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 4𝐷26

𝜕4𝑤

𝜕𝑥𝜕𝑦3
+ 𝐷22

𝜕4𝑤

𝜕𝑦4

+𝑁𝑥
𝜕2𝑤

𝜕𝑥2
− 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
= 0 

(27) 

To apply the Galerkin method, the out-of-plane displacement must be represented by a 

linear combination of suitable functions.  
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𝑤 = ∑ ∑𝑤𝑚𝑛𝑋𝑚(𝑥)𝑌𝑛(𝑦)

𝑁

𝑛=1

𝑀

𝑚=1

 (28) 

The used linear combination is based on splitting the out-of-plane displacement in an 

amplitude term (𝑤𝑚𝑛), an x dependent term (𝑋𝑚) and a y dependent term (𝑌𝑛). The 

functions 𝑋𝑚 and 𝑌𝑛 represent ideally the buckled shape when the number of half-waves 

in x and y directions are m and n. However, except for ideal cases, it is required to use 

several terms to properly approximate the solution. 

Then, the equilibrium equation is multiplied by (preferably) orthogonal functions, in our 

case, 𝜑. 𝜑 is usually referred to as the characteristic or the virtual displacement function. 

Typical solutions relay on using the same form for both the out-of-plane and characteristic 

functions (but obviously without amplitude in this last one). This option is followed in this 

solution. 

 
𝜑 = ∑ ∑𝑋𝑚(𝑥)𝑌𝑛(𝑦)

𝑁

𝑛=1

𝑀

𝑚=1

 (29) 

Substituting the last two equations and replacing again the moments in 26, a system of 

equation is build: 

 

∫∫{∑∑𝑤𝑖𝑗 [𝐷11
𝜕4𝑋𝑖
𝜕𝑥4

𝑌𝑗 + 4𝐷16
𝜕3𝑋𝑖
𝜕𝑥3

𝜕𝑌𝑗

𝜕𝑦
 + 2(𝐷12 + 2𝐷66)

𝜕2𝑋𝑖
𝜕𝑥2

𝜕2𝑌𝑗

𝜕𝑦2

𝑁

𝑗=1

𝑀

𝑖=1

+ 4𝐷26
𝜕𝑋𝑖
𝜕𝑥

𝜕3𝑌𝑗

𝜕𝑦3
+ 𝐷22𝑋𝑖

𝜕4𝑌𝑗

𝜕𝑦4
+𝑁𝑥

𝜕2𝑋𝑖
𝜕𝑥2

𝑌𝑗 − 2𝑁𝑥𝑦
𝜕𝑋𝑖
𝜕𝑥

𝜕𝑌𝑗

𝜕𝑦

+ 𝑁𝑦𝑋𝑖
𝜕2𝑌𝑗

𝜕𝑦2
]∑∑𝑋𝑚𝑌𝑛

𝑁

𝑗=1

𝑀

𝑖=1

}𝑑𝑥 𝑑𝑦

− ∫{∑∑𝑤𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

|[𝐸1]|𝑥=0 ∑ ∑|
𝜕𝑋𝑚
𝜕𝑥

𝑌𝑛|

𝑁

𝑛=1

𝑀

𝑚=1 𝑥=0

}𝑑𝑦 

+ ∫{∑∑𝑤𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

|[𝐸2]|𝑥=𝑎 ∑ ∑|
𝜕𝑋𝑚
𝜕𝑥

𝑌𝑛|

𝑁

𝑛=1

𝑀

𝑚=1 𝑥=𝑎

}𝑑𝑦

−∫{∑∑𝑤𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

|[𝐸3]|𝑦=0 ∑ ∑|𝑋𝑚
𝜕𝑌𝑛
𝜕𝑦

|

𝑁

𝑛=1 𝑦=0

𝑀

𝑚=1

}𝑑𝑥 

+ ∫{∑∑𝑤𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

|𝐸4|𝑦=𝑏 ∑ ∑|𝑋𝑚
𝜕𝑌𝑛
𝜕𝑦

|

𝑁

𝑛=1 𝑦=𝑏

𝑀

𝑚=1

}𝑑𝑥 = 0 

(30) 

At this point is convenient to convert the equation to dimensionless variables: 
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𝑊 =

𝑤

ℎ
, 𝜉 =

𝑥

𝑎
, 𝜂 =

𝑦

𝑏
, 𝜆 =

𝑎

𝑏
, 𝑫∗ =

𝑫

𝐴22ℎ
2
  (31) 

The loads are also transformed to dimensionless units, but before a common factor is 

taken. In this approach, this factor (𝑁𝑜) is given the value of the maximum load applied 

and will account for the results of the eigenvalue problem.  

 
𝑁𝑜 = max(𝑵) , 𝑵𝒇 =

1

𝑁𝑜
𝑵,  𝑵∗ =

𝑏2

𝐴22ℎ
2
𝑵𝒇  (32) 

For a further simplification the following coefficients are introduced: 

 
𝑎1 =

4𝐷16
∗

𝐷11
∗ 𝜆, 𝑎2𝑎 =

2𝐷12
∗

𝐷11
∗ 𝜆2, 𝑎2𝑏 =

4𝐷66
∗

𝐷11
∗ 𝜆2, 𝑎2 = 𝑎2𝑎 + 𝑎2𝑏 ,

𝑎3 =
4𝐷26

∗

𝐷11
∗ 𝜆3, 𝑎4 =

𝐷22
∗

𝐷11
∗ 𝜆4 

(33) 

 
𝑐1 =

𝑁1
∗

𝐷11
∗ 𝜆2, 𝑐2 = −

2𝑁12
∗

𝐷11
∗ 𝜆3, 𝑐3 =

𝑁2
∗

𝐷11
∗ 𝜆4 (34) 

To avoid confusion, the shear load is non-dimensionalized in negative form to have the 

same sign as the other non-dimensionalized loads (remember that axial loads were flipped 

to have compression as positive). 

The resulting dimensionless equation is: 

 
∑∑𝑊𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

∑ ∑∫∫{[
𝜕4𝑋𝑖
𝜕𝜉4

𝑌𝑗 + 𝑎1
𝜕3𝑋𝑖
𝜕𝜉3

𝜕𝑌𝑗

𝜕𝜂
 + 𝑎2

𝜕2𝑋𝑖
𝜕𝜉2

𝜕2𝑌𝑗

𝜕𝜂2
+ 𝑎3

𝜕𝑋𝑖
𝜕𝜉

𝜕3𝑌𝑗

𝜕𝜂3

𝑁

𝑛=1

𝑀

𝑚=1

+ 𝑎4𝑋𝑖
𝜕4𝑌𝑗

𝜕𝜂4

+𝑁𝑜 (𝑐1
𝜕2𝑋𝑖
𝜕𝜉2

𝑌𝑗 + 𝑐2
𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
+ 𝑐3𝑋𝑖

𝜕2𝑌𝑗

𝜕𝜂2
)]𝑋𝑚𝑌𝑛}𝑑𝜉 𝑑𝜂   

+∑∑𝑊𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

∑ ∑∫{|[𝐸𝑖𝑗2
∗ ]|

𝜉=1
|
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛|
𝜉=1

𝑁

𝑛=1

𝑀

𝑚=1

− |[𝐸𝑖𝑗1
∗]|

𝜉=0
|
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛|
𝜉=0

}𝑑𝜂

+∑∑𝑤𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

∑ ∑∫{|[𝐸𝑖𝑗4
∗ ]|

𝜂=1
|𝑋𝑚

𝜕𝑌𝑛
𝜕𝜂

|
𝜂=1

𝑁

𝑛=1

𝑀

𝑚=1

− |[𝐸𝑖𝑗3
∗ ]|

𝜂=0
|𝑋𝑚

𝜕𝑌𝑛
𝜕𝜂

|
𝜂=0

 }  𝑑𝜉 = 0     

(35) 
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The dimensionless error between bending moments is defined in the section 3.1.3.4. as it 

is necessary to decide first on the linear set of functions to represent the out-of-plane 

shape. 

To arrive to the final eigenvalue problem it is necessary to perform a change of variable 

(to work with square matrices). Let: 

 𝑝 = (𝑖 − 1)𝑁 + 𝑗, 𝑞 =  (𝑚 − 1)𝑁 + 𝑛  (36) 

Then the system matrices to calculate the eigenvalue problem can be defined as: 

 
𝑲𝒑𝒒 = ∑∑∫∫{[

𝜕4𝑋𝑖
𝜕𝜉4

𝑌𝑗 + 𝑎1
𝜕3𝑋𝑖
𝜕𝜉3

𝜕𝑌𝑗

𝜕𝜂
 + 𝑎2

𝜕2𝑋𝑖
𝜕𝜉2

𝜕2𝑌𝑗

𝜕𝜂2
+ 𝑎3

𝜕𝑋𝑖
𝜕𝜉

𝜕3𝑌𝑗

𝜕𝜂3

𝑀𝑁

𝑞=1

𝑀𝑁

𝑝=1

+ 𝑎4𝑋𝑖
𝜕4𝑌𝑗

𝜕𝜂4
] 𝑋𝑚𝑌𝑛}𝑑𝜉 𝑑𝜂    

(37) 

 

𝑲𝑩𝒑𝒒 = ∑∑{∫{|[𝐸𝑖𝑗2
∗ ]|

𝜉=1
|
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛|
𝜉=1

− |[𝐸𝑖𝑗1
∗]|

𝜉=0

|
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛|

𝜉=0

}𝑑𝜂

𝑀𝑁

𝑞=1

𝑀𝑁

𝑝=1

+∫{|[𝐸𝑖𝑗4
∗ ]|

𝜂=1
|𝑋𝑚

𝜕𝑌𝑛
𝜕𝜂

|
𝜂=1

− |[𝐸𝑖𝑗3
∗ ]|

𝜂=0
|𝑋𝑚

𝜕𝑌𝑛
𝜕𝜂

|
𝜂=0

 } 𝑑𝜉      } 

(38) 

 
𝑹𝒑𝒒 = ∑∑{[−𝑐1

𝜕2𝑋𝑖
𝜕𝜉2

𝑌𝑗 − 𝑐2
𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
− 𝑐3𝑋𝑖

𝜕2𝑌𝑗

𝜕𝜂2
] 𝑋𝑚𝑌𝑛}

𝑀𝑁

𝑞=1

𝑀𝑁

𝑝=1

 (39) 

Arriving finally to the eigenvalue problem: 

 [𝑲𝒑𝒒 +𝑲𝑩𝒑𝒒
] {𝑾𝒑} − 𝑁𝑜[𝑹𝒑𝒒]{𝑾𝒑} = 0 → det [𝑲𝒑𝒒 +𝑲𝑩𝒑𝒒

−𝑁𝑜𝑹𝒑𝒒] = 0  (40) 

3.1.3.3. The Ritz method 

To examine which method is more accurate, the problem has also been solved using the 

Ritz method. The solution obtained requires more integration terms but shows also some 

advantages. The Ritz method only needs to satisfy the essential boundary conditions, the 

natural boundary conditions related to the moments at the edges can be agreed 

approximately. Therefore, there is no need to include additional boundary terms to correct 

the natural boundary conditions as in the Galerkin approach.  

The total potential energy is minimized with respect to the linear approximation of the 

assumed out-of-plane function which would give a minimum (the better the solution 

approximates to reality the closer it is to the minimum). 
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 𝜕Π

𝜕𝑤𝑚𝑛
= 0 (41) 

The previous expressions lead to for the M times N system of equations of the eigenvalue 

problem. The total potential energy has been calculated in the previous section as: 

 Π = 𝑈𝑏 + 𝑈𝑘 + 𝑉 + 𝐶

=
1

2
∬{𝐷11 (

𝜕2𝑤

𝜕𝑥2
)

2

+ 2𝐷12
𝜕2𝑤

𝜕𝑥2
 𝜕2𝑤

𝜕𝑦2
+ 𝐷22 (

 𝜕2𝑤

𝜕𝑦2
)

2

+ 4(𝐷16
𝜕2𝑤

𝜕𝑥2
+ 𝐷26

 𝜕2𝑤

𝜕𝑦2
)
𝜕𝑤2

𝜕𝑥𝜕𝑦
+ 4𝐷66 ( 

𝜕𝑤2

𝜕𝑥𝜕𝑦
)

2

} 𝑑𝑥 𝑑𝑦

+
1

2
∫{𝑘1 (

𝜕𝑤

𝜕𝑥
)
2

|
𝑥=0

+ 𝑘2 (
𝜕𝑤

𝜕𝑥
)
2

|
𝑥=𝑎

}𝑑𝑦

+
1

2
∫{𝑘3 (

𝜕𝑤

𝜕𝑦
)
2

|
𝑦=0

+ 𝑘4 (
𝜕𝑤

𝜕𝑦
)
2

|
𝑦=𝑏

} 𝑑𝑥

+
1

2
∬{−𝑁𝑥 (

𝜕𝑤

𝜕𝑥
)
2

−𝑁𝑦 (
𝜕𝑤

𝜕𝑦
)
2

+ 2𝑁𝑥𝑦
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
}𝑑𝑥 𝑑𝑦 + 𝐶  

(42) 

Then, it is necessary to substitute the same out-of-plane function (eq. 28) and minimize. 

Moreover, the same dimensionless procedure and coefficients, as in the Galerkin 

approach, have been applied (eq. 31-34) plus the non-dimensionalized torsional stiffness: 

 
𝑘1,2
∗ =

𝑘1,2𝑎

𝐷11
=

𝑘1,2𝑎

𝐷11
∗ 𝐴22ℎ

2
, 𝑘3,4

∗ =
𝑘3,4𝑏

𝐷22
=

𝑘3,4𝑏

𝐷22
∗ 𝐴22ℎ

2
  (43) 
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 ∂Π

∂Wmn
= 𝑊𝑚𝑛 {∬{

𝜕2𝑋𝑖
𝜕𝜉2

𝜕2𝑋𝑚
𝜕𝜉2

𝑌𝑗𝑌𝑛

+
𝑎1
2
[
𝜕2𝑋𝑖
𝜕𝜉2

𝜕𝑋𝑚
𝜕𝜉

𝑌𝑗
  𝜕𝑌𝑛
𝜕𝜂

+
𝜕𝑋𝑖
𝜕𝜉

𝜕2𝑋𝑚
𝜕𝜉2

 𝜕𝑌𝑗

𝜕𝜂
𝑌𝑛]

+
𝑎2𝑎
2
[
𝜕2𝑋𝑖
𝜕𝜉2

𝑋𝑚𝑌𝑗
  𝜕2𝑌𝑛
𝜕𝜂2

+ 𝑋𝑖
𝜕2𝑋𝑚
𝜕𝜉2

 𝜕𝑌𝑗
2

𝜕𝜂2
𝑌𝑛]

+ 𝑎2𝑏
𝜕𝑋𝑖
𝜕𝜉

𝜕𝑋𝑚
𝜕𝜉

 𝜕𝑌𝑗

𝜕𝜂

  𝜕𝑌𝑛
𝜕𝜂

+
𝑎3
2
[𝑋𝑖

𝜕𝑋𝑚
𝜕𝜉

 𝜕𝑌𝑗
2

𝜕𝜂2
  𝜕𝑌𝑛
𝜕𝜂

+
𝜕𝑋𝑖
𝜕𝜉

𝑋𝑚
 𝜕𝑌𝑗

𝜕𝜂

  𝜕2𝑌𝑛
𝜕𝜂2

]

+ 𝑎4𝑋𝑖𝑋𝑚
 𝜕𝑌𝑗

2

𝜕𝜂2
  𝜕2𝑌𝑛
𝜕𝜂2

−𝑁𝑜 (𝑐1
𝜕𝑋𝑖
𝜕𝜉

𝜕𝑋𝑚
𝜕𝜉

𝑌𝑗𝑌𝑛

+ 
𝑐2
2
[
𝜕𝑋𝑖
𝜕𝜉

𝑋𝑚𝑌𝑗
  𝜕𝑌𝑛
𝜕𝜂

+ 𝑋𝑖
𝜕𝑋𝑚
𝜕𝜉

 𝜕𝑌𝑗

𝜕𝜂
𝑌𝑛]+𝑐3𝑋𝑖𝑋𝑚

 𝜕𝑌𝑗

𝜕𝜂

  𝜕𝑌𝑛
𝜕𝜂

)}𝑑𝜉 𝑑𝜂

+ ∫{𝑘1
∗
𝜕𝑋𝑖
𝜕𝜉

𝜕𝑋𝑚
𝜕𝜉

𝑌𝑗𝑌𝑛|
𝜉=0

+ 𝑘2
∗
𝜕𝑋𝑖
𝜕𝜉

𝜕𝑋𝑚
𝜕𝜉

𝑌𝑗𝑌𝑛|
𝜉=1

}𝑑𝜂

+
𝜆4𝐷22

∗

𝐷11
∗ ∫{𝑘3

∗𝑋𝑖𝑋𝑚
 𝜕𝑌𝑗

𝜕𝜂

  𝜕𝑌𝑛
𝜕𝜂

|
𝜂=0

+ 𝑘4
∗𝑋𝑖𝑋𝑚

 𝜕𝑌𝑗

𝜕𝜂

  𝜕𝑌𝑛
𝜕𝜂

|
𝜂=1

} 𝑑𝜉}  

(44) 

The eigenvalue problem is built similarly as in Galerkin. 

Arriving finally to the eigenvalue problem: 

 𝑝 = (𝑖 − 1)𝑁 + 𝑗, 𝑞 =  (𝑚 − 1)𝑁 + 𝑛  (45) 
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𝑲𝒑𝒒 = ∑∑∫∫{

𝜕2𝑋𝑖
𝜕𝜉2

𝜕2𝑋𝑚
𝜕𝜉2

𝑌𝑗𝑌𝑛

𝑀𝑁

𝑞=1

𝑀𝑁

𝑝=1

+
𝑎1
2
[
𝜕2𝑋𝑖
𝜕𝜉2

𝜕𝑋𝑚
𝜕𝜉

𝑌𝑗
  𝜕𝑌𝑛
𝜕𝜂

+
𝜕𝑋𝑖
𝜕𝜉

𝜕2𝑋𝑚
𝜕𝜉2

 𝜕𝑌𝑗

𝜕𝜂
𝑌𝑛]

+
𝑎2𝑎
2
[
𝜕2𝑋𝑖
𝜕𝜉2

𝑋𝑚𝑌𝑗
  𝜕2𝑌𝑛
𝜕𝜂2

+ 𝑋𝑖
𝜕2𝑋𝑚
𝜕𝜉2

 𝜕𝑌𝑗
2

𝜕𝜂2
𝑌𝑛]

+ 𝑎2𝑏
𝜕𝑋𝑖
𝜕𝜉

𝜕𝑋𝑚
𝜕𝜉

 𝜕𝑌𝑗

𝜕𝜂

  𝜕𝑌𝑛
𝜕𝜂

+
𝑎3
2
[𝑋𝑖

𝜕𝑋𝑚
𝜕𝜉

 𝜕𝑌𝑗
2

𝜕𝜂2
  𝜕𝑌𝑛
𝜕𝜂

+
𝜕𝑋𝑖
𝜕𝜉

𝑋𝑚
 𝜕𝑌𝑗

𝜕𝜂

  𝜕2𝑌𝑛
𝜕𝜂2

]

+ 𝑎4𝑋𝑖𝑋𝑚
 𝜕𝑌𝑗

2

𝜕𝜂2
  𝜕2𝑌𝑛
𝜕𝜂2

}𝑑𝜉 𝑑𝜂    

(46) 

 
𝑲𝑩𝒑𝒒 = ∑∑{∫{𝑘1

∗
𝜕𝑋𝑖
𝜕𝜉

𝜕𝑋𝑚
𝜕𝜉

𝑌𝑗𝑌𝑛|
𝜉=0

+ 𝑘2
∗
𝜕𝑋𝑖
𝜕𝜉

𝜕𝑋𝑚
𝜕𝜉

𝑌𝑗𝑌𝑛|
𝜉=1

}𝑑𝜂

𝑀𝑁

𝑞=1

𝑀𝑁

𝑝=1

+
𝜆4𝐷22

∗

𝐷11
∗ ∫{𝑘3

∗𝑋𝑖𝑋𝑚
 𝜕𝑌𝑗

𝜕𝜂

  𝜕𝑌𝑛
𝜕𝜂

|
𝜂=0

+ 𝑘4
∗𝑋𝑖𝑋𝑚

 𝜕𝑌𝑗

𝜕𝜂

  𝜕𝑌𝑛
𝜕𝜂

|
𝜂=1

} 𝑑𝜉} 

(47) 

 
𝑹𝒑𝒒 =∑∑∫∫{𝑐1

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑋𝑚
𝜕𝜉

𝑌𝑗𝑌𝑛

𝑀𝑁

𝑞=1

𝑀𝑁

𝑝=1

+ 
𝑐2
2
[
𝜕𝑋𝑖
𝜕𝜉

𝑋𝑚𝑌𝑗
  𝜕𝑌𝑛
𝜕𝜂

+ 𝑋𝑖
𝜕𝑋𝑚
𝜕𝜉

 𝜕𝑌𝑗

𝜕𝜂
𝑌𝑛]+𝑐3𝑋𝑖𝑋𝑚

 𝜕𝑌𝑗

𝜕𝜂

  𝜕𝑌𝑛
𝜕𝜂

}𝑑𝜉𝑑𝜂 

(48) 

3.1.3.4. Mode Shape 

To solve the remaining eigenvalue problem it is necessary to define the linear combination 

to be used. It is very important that the function chosen is able to reproduce the real 

buckled shape as accurately as possible. The different solutions proposed in the studied 

literature have some points in common, all of them attempt to split the out-of-plane 

displacement in two independent terms in order to uncouple x and y directions. This 

simplifies greatly the formulation of the problem. This is the reason it has already been 

included in both proposed Galerkin and Ritz formulations, even when the exact shape 

function has been left out to have a more general solution. 

Another important fact is that the proposed solution needs to match the essential boundary 

conditions to guarantee the numerical methods will work. Under the assumptions exposed, 

this means that the out-of-plane displacement must be exactly zero at the edges. 

Some simple configurations have exact solutions, which is the case of specially 

orthotropic, simply supported plates under uniaxial or biaxial compression. Then the 

buckling shape of the different modes is simply given by the double sine function (using 

only the term that contains the required half-waves). 
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 𝑤 = 𝑤𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) (49) 

For such simple cases the solution of the differential governing equation can be solved 

exactly, arriving to well-known exact closed-form solutions. To be able to approximate 

more complex cases it is only possible to approximate the shape with a linear combination. 

If the set of functions is complete and satisfies the geometric, then the result will converge 

to the exact solution. Most popular sets of functions are based on orthogonalized 

polynomials or trigonometric functions. 

The chosen solution is based on the eigenbeam value functions restrained by two arbitrary 

torsional springs. Most solutions based on trigonometric functions rely on the linear 

combination of simply supported and clamped solutions to reproduce all the intermediate 

configurations. However, this does not allow for asymmetric boundary conditions, which 

will be needed in chapter 5.  

The eigenbeam value functions follow the following form: 

 𝑋𝑚 = 𝐶𝑚1
cosh(𝛼𝑚𝑥) + 𝐶𝑚2

sinh(𝛼𝑚𝑥) + 𝐶𝑚3
cos(𝛼𝑚𝑥) + 𝐶𝑚4

sin (𝛼𝑚𝑥) (50) 

By imposing the geometric boundary conditions it is possible to solve the shape mode 𝛼𝑚 

and find de dependencies between the 4 constants 𝐶𝑚𝑖
 leaving the solution as a function 

of the amplitude (shape is completely defined). To be able to impose the boundary 

conditions it is necessary to define the bending moments at the edges of the plate. From 

the ABD matrix: 

 {
𝑵
𝑴
} = [

𝑨 𝑩
𝑩 𝑫

] {
𝜺𝒐
𝜿
} (51) 

Under the assumption of symmetric lay-up, the moments uncouple from the strains. 

Substituting the curvatures by the correspondent derivatives of the out-of-plane 

displacements, the moments can be written as: 

 

{
  
 

  
 𝑀𝑥 = −𝐷11

𝜕2𝑤

𝜕𝑥2
− 2𝐷16

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷12

𝜕2𝑤

𝜕𝑦2

𝑀𝑦 = −𝐷12
𝜕2𝑤

𝜕𝑥2
− 2𝐷26

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷22

𝜕2𝑤

𝜕𝑦2

𝑀𝑥𝑦 = −𝐷16
𝜕2𝑤

𝜕𝑥2
− 2𝐷66

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷26

𝜕2𝑤

𝜕𝑦2

 (52) 

On the other hand, the use of torsional springs also relates the moments with the out-of-

plane displacements through the torsion spring constants: 
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{
 
 
 
 
 

 
 
 
 
   𝑀𝑥|𝑥=0 = −𝑘1

𝜕𝑤

𝜕𝑥
|
𝑥=0

= |−𝐷11
𝜕2𝑤

𝜕𝑥2
− 2𝐷16

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷12

𝜕2𝑤

𝜕𝑦2
|
𝑥=0

  𝑀𝑥|𝑥=𝑎 = 𝑘2
𝜕𝑤

𝜕𝑥
|
𝑥=𝑎

= |−𝐷11
𝜕2𝑤

𝜕𝑥2
− 2𝐷16

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷12

𝜕2𝑤

𝜕𝑦2
|
𝑥=𝑎

    

𝑀𝑦|𝑦=0 = −𝑘3
𝜕𝑤

𝜕𝑦
|
𝑦=0

= |−𝐷12
𝜕2𝑤

𝜕𝑥2
− 2𝐷26

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷22

𝜕2𝑤

𝜕𝑦2
|
𝑦=0

 𝑀𝑦|𝑦=𝑏
= 𝑘4

𝜕𝑤

𝜕𝑦
|
𝑦=𝑏

= |−𝐷12
𝜕2𝑤

𝜕𝑥2
− 2𝐷26

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷22

𝜕2𝑤

𝜕𝑦2
|
𝑦=𝑏

 (53) 

It is possible then to join the different equations together to find the out-of-plane function 

that fulfils the geometric boundary conditions. However, eq. 53 couples x and y directions, 

so further simplifications are required. 

The assumption that the edges keep straight after the deformation allows for the 

simplification of the derivative against the perpendicular direction to the edge (𝐷12 term). 

For specially orthotropic materials, that would already be enough, however, 𝐷16 and 𝐷26 

terms are still carrying the cross derivatives. Several authors [31, 34] working with torsional 

springs drop those terms in order to keep independent the X and Y directions. That means 

that the natural boundary conditions are only approximately satisfied. The possibility of 

this approximation has been already accounted for in both the Galerkin and Ritz 

formulations.  

The next step is matching the bending moments given by the torsional springs with the 

approximate bending moment (without cross derivatives): 

 

{
 
 

 
 −𝐷11

𝜕2𝑤

𝜕𝑥2
|
𝑥=0

= −𝑘1
𝜕𝑤

𝜕𝑥
|
𝑥=0

,            −𝐷11
𝜕2𝑤

𝜕𝑥2
|
𝑥=𝑎

= 𝑘2
𝜕𝑤

𝜕𝑥
|
𝑥=𝑎

     

−𝐷22
𝜕2𝑤

𝜕𝑦2
|
𝑦=0

= −𝑘3
𝜕𝑤

𝜕𝑦
|
𝑦=0

,            −𝐷22
𝜕2𝑤

𝜕𝑦2
|
𝑦=𝑏

= 𝑘4
𝜕𝑤

𝜕𝑦
|
𝑦=𝑏

 (54) 

It is convenient to work with dimensionless expression for both the boundary conditions 

and the eigenbeam value functions. After following the same criteria as previous sections 

the next results are obtained: 

 

{
 
 

 
 
𝜕2𝑊

𝜕𝜉2
|
𝜉=0

= 𝑘1
∗
𝜕𝑊

𝜕𝜉
|
𝜉=0

,           −
𝜕2𝑊

𝜕𝜉2
|
𝜉=1

= 𝑘2
∗
𝜕𝑊

𝜕𝜉
|
𝜉=1

     

𝜕2𝑊

𝜕𝜂2
|
𝜂=0

= 𝑘3
∗
𝜕𝑊

𝜕𝜂
|
𝜂=0

,            −
𝜕2𝑊

𝜕𝜂2
|
𝜂=1

= 𝑘4
∗
𝜕𝑊

𝜕𝜂
|
𝜂=1

 (55) 

And, 

 𝑋𝑚 = 𝐶𝑚1
cosh(𝛼𝑚𝜉) + 𝐶𝑚2

sinh(𝛼𝑚𝜉) + 𝐶𝑚3
cos(𝛼𝑚𝜉) + 𝐶𝑚4

sin (𝛼𝑚𝜉) (56) 

The out-of-plane displacement is then given by: 
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𝑊 = ∑ ∑𝑊𝑚𝑛𝑋𝑚𝑌𝑛

𝑁

𝑛=1

𝑀

𝑚=1

 (57) 

Notice that 𝑌𝑛 is analogous to 𝑋𝑚 but in y direction. Therefore, the procedure to define the 

different coefficients of the eigenbeam functions enforcing the essential and (approximate) 

natural boundary conditions is only developed for 𝑋𝑚.  

 

{
 
 
 

 
 
 

𝑋𝑚|𝜉=0 = 0 → 𝐶𝑚1
+ 𝐶𝑚3

= 0   

𝜕𝑋𝑚
𝜕𝜉

|
𝜉=0

=
1

𝑘1
∗

𝜕2𝑋𝑚
𝜕𝜉2

|
𝜉=0

→ 𝐶𝑚2
+ 𝐶𝑚4

=
𝛼𝑚
𝑘1
∗ (𝐶𝑚1

− 𝐶𝑚3
)

𝑋𝑚|𝜉=1 = 0 → 𝐶𝑚1
cosh(𝛼𝑚) + 𝐶𝑚2

sinh(𝛼𝑚) + 𝐶𝑚3
cos(𝛼𝑚) + 𝐶𝑚4

sin(𝛼𝑚) = 0 

𝜕𝑋𝑚
𝜕𝜉

|
𝜉=1

= −
1

𝑘2
∗

𝜕2𝑋𝑚
𝜕𝜉2

|
𝜉=1

→

 
(58

) 

𝐶𝑚1
sinh(𝛼𝑚) + 𝐶𝑚2

cosh(𝛼𝑚) − 𝐶𝑚3
sin(𝛼𝑚) + 𝐶𝑚4

cos(𝛼𝑚)

= −
𝛼𝑚
𝑘2
∗ [𝐶𝑚1

cosh(𝛼𝑚) + 𝐶𝑚2
sinh(𝛼𝑚) − 𝐶𝑚3

cos(𝛼𝑚) − 𝐶𝑚4
sin(𝛼𝑚)] 

The main problem of the proposed development is that the mode value 𝛼𝑚 must be solved 

numerically from the following non-linear equation: 

 
[sinh(𝛼𝑚) − 𝑠𝑖n(𝛼𝑚)] [𝑠𝑖𝑛ℎ (𝛼𝑚)+ 

2𝛼𝑚
 𝑘1
∗ cosh(𝛼𝑚)

+ sin(𝛼𝑚) +
𝛼𝑚
 𝑘2
∗ ( cosh(𝛼𝑚) +

2𝛼𝑚
 𝑘1
∗ sinh(𝛼𝑚) + cos(𝛼𝑚) )]

− [cos(𝛼𝑚) − cosh(𝛼𝑚) −
2𝛼𝑚
 𝑘1
∗ sinh(𝛼𝑚)] [cos(𝛼𝑚)

− cosh(𝛼𝑚) −
𝛼𝑚
 𝑘2
∗ (sinh(𝛼𝑚) + sin(𝛼𝑚))] = 0      

(59) 

The lowest 𝛼𝑚 value corresponds to the solution with only one half-wave. Successive 

solutions can be obtained by solving the following mode values. It is important to solve 𝛼𝑚 

up to a certain degree of accuracy to obtain proper results.  

The different 𝐶𝑚𝑖
 constants are calculated then from the 𝛼𝑚 numerical results.  

 

{
  
 

  
 𝐶𝑚1

= −
sinh(𝛼𝑚) − sin(𝛼𝑚)

cos(𝛼𝑚) − cosh(𝛼𝑚) −
2𝛼𝑚
 𝑘1
∗ sinh(𝛼𝑚)

𝐶𝑚4
= −𝛾𝑚𝐶𝑚4

𝐶𝑚2
= −(1 +

2𝛾𝑚𝛼𝑚
𝑘1
∗ )𝐶𝑚4

𝐶𝑚3
= 𝛾𝑚𝐶𝑚4

 (60) 

As it has been mentioned, one of the constants cannot be solved, otherwise the amplitude 

of the shape would have already been fixed. The dimensionless shape function is then 
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given for 𝐶𝑚4
= 1, using the undetermined  𝑊𝑚𝑛 coefficient to give the corresponding 

amplitude. 

 
𝑊 = ∑ ∑𝑊𝑚𝑛

𝑁

𝑛=1

𝑀

𝑚=1

𝑋𝑚𝑌𝑛

= ∑ ∑𝑊𝑚𝑛

𝑁

𝑛=1

𝑀

𝑚=1

[−𝛾𝑚 cosh(𝛼𝑚𝜉) − (1 +
2𝛾𝑚𝛼𝑚
𝑘1
∗ ) sinh(𝛼𝑚𝜉)

+ 𝛾𝑚 cos(𝛼𝑚𝜉) + sin (𝛼𝑚𝜉)] [−𝛾𝑛 cosh(𝛼𝑛𝜂)

− (1 +
2𝛾𝑛𝛼𝑛
𝑘3
∗ ) sinh(𝛼𝑛𝜂) + 𝛾𝑛 cos(𝛼𝑛𝜂) + sin (𝛼𝑛𝜂)] 

(61) 

Once the linear set of functions has been chosen and the required approximations for the 

natural boundary conditions are made, it is possible to determine the 𝐸𝑖 coefficients in 

Galerkin method.  

 
𝐸1 = |𝑀𝑥 − �̅�𝑥|𝑥=0 = |−𝐷11

𝜕2𝑤

𝜕𝑥2
− 2𝐷16

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝐷12

𝜕2𝑤

𝜕𝑦2
− �̅�𝑥|

𝑥=0

= −2𝐷16
𝜕2𝑤

𝜕𝑥𝜕𝑦
|
𝑥=0

 

(62) 

The rest of the coefficients can be obtained following the same procedure. In 

dimensionless5 form, they all are: 

 
𝐸𝑖𝑗1

∗ =
𝑎1
2

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
|
𝜉=0

𝐸𝑖𝑗2
∗ =

𝑎1
2

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
|
𝜉=1

 

𝐸𝑖𝑗3
∗ =

𝑎3
2

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
|
𝜂=0

𝐸𝑖𝑗4
∗ =

𝑎3
2

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
|
𝜂=1

 

(63) 

Therefore, using the proposed solution to approximate the out-of-plane displacement, the 

boundary terms (eq.38) in Galerkin solution could be specified as: 

                                                

 

5 Apart from the non-dimensionalization, 𝐸𝑖𝑗𝑘
∗  also accounts for the set of linear functions that represent the 

out-of-plane displacement (therefore there is one term for each combination). Furthermore, the dimensionless 

amplitude of the out-of-plane displacement is taken out.  
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𝑲𝑩𝒑𝒒 = ∑∑{∫{
𝑎1
2

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
|
𝜉=1

|
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛|

𝜉=1

𝑀𝑁

𝑞=1

𝑀𝑁

𝑝=1

−
𝑎1
2

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
|
𝜉=0

|
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛|

𝜉=0

}𝑑𝜂

+ ∫{
𝑎3
2

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
|
𝜂=1

|𝑋𝑚
𝜕𝑌𝑛
𝜕𝜂

|

𝜂=1

−
𝑎3
2

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
|
𝜂=0

|𝑋𝑚
𝜕𝑌𝑛
𝜕𝜂

|

𝜂=0

 }𝑑𝜉      } 

(64) 

3.1.3.5. The Eigenvalue problem 

After developing both the Galerkin and Ritz solution methods and having approximated 

the buckled shape, it is necessary to build the system matrices and solve the generalized 

eigenvalue problem.  

A generalized eigenvalue problem is a system of equation that shows the following form: 

 (𝑨 − 𝜆𝑩)𝒗 = 0 (65) 

Where A and B are square matrices, 𝜆 is the eigenvalue and 𝑣 is the eigenvector. The 

objective is obtaining the different eigenvalues that allow non-trivial solutions of the system 

(therefore 𝒗 ≠ 0). 

3.1.3.5.1. Solving the system matrices 

Before solving the eigenvalue problem it is necessary to determine A and B. The different 

terms in the matrix are obtained from the multiplication of several coefficients with the 

results of integrals coming either from the energy minimization in the Ritz solution or the 

residual error minimization in the Galerkin solution. Depending on how that integral has 

been solved, two different methods are distinguished: 

 The first consists in solving analytically the required integrals. To obtain those the 

symbolic solver of Matlab has been used. 

 The second method consists in solving the integrals numerically. The best results 

in terms of performance and accuracy have been obtained using a Gauss 

Legendre algorithm. Different ones have also been tested, such as Romberg´s 

method, but have shown poorer time performance. 

The main advantage of using analytical integration is the speed at which all the integrals 

can be solved. However, an important problem has been encountered. The use of 

hyperbolic functions has resulted on the appearance of numerical problems such as 

catastrophic cancellation.  
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This problem is caused when two very similar numbers are subtracted. Due to the limited 

precision used by computers to store and operate on numbers, this can result in an 

important reduction in the number of accurate digits of the solution. A simplified example 

is presented: 

  𝑥1𝑟𝑒𝑎𝑙 = 205.3217, 𝑥1𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = 205.3 

𝑥2𝑟𝑒𝑎𝑙 = 205.3976, 𝑥2𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟
= 205.3 

(𝑥1 − 𝑥2)𝑟𝑒𝑎𝑙 = 0.0759, (𝑥1 − 𝑥2)𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = 0 

(66) 

For instance, if a computer can only store 4 meaningful digits, the result of the previous 

operation is very different from the real solution. Double float precision allows for much 

better accuracy in the storage of numbers, however, hyperbolic functions (sinh(x) and 

cosh(x)) tend to infinite when the absolute value of x gets bigger. This means that the 

individual integration of those functions can result in very big numbers.  

It is possible to avoid this numerical issue by using numerical integration instead. The main 

drawback then, is that it is necessary to execute the numeric algorithm for every 

integration, which reduces the performance in comparison with analytical solutions.  

In section 3.3 it is studied when those numerical issues arise and numerical integration is 

required. 

3.1.3.5.2. Solving the Eigenvalue problem 

Due to the size of the square system matrices (two times M by N), it is necessary to 

numerically evaluate the critical eigenvalues of the Eigenvalue problem. Multitude of 

algorithms are available for that purpose, but it is interesting to determine first the 

characteristics of the Eigenvalue system and what solutions are required in order to 

choose the best algorithm. 

The system matrices ought to be symmetric, therefore a solver for symmetric eigenvalue 

systems should be sufficient. However, it has been observed that due to numerical errors 

in the evaluation of the systems matrix terms, sometimes the matrices are not perfectly 

symmetric. In fact, the symmetry of the system is used to assess if catastrophic 

cancellation takes place when using analytical integration. Therefore, the adopted solution 

checks the degree of asymmetry and switches to numerical integration if necessary. 

Moreover, if there is only a small degree of asymmetry this is corrected by adding the 

matrix to its transpose and divided by two. This can speed up eigenvalue algorithm solvers. 

It is convenient to obtain not only the smallest (critical) eigenvalue, since the subsequent 

modes can also be interesting in plates. Moreover, the corresponding eigenvector can be 

used to plot the buckling solution and compare it with the solution obtained from other 

methods.  

The eig function of Matlab (Cholesky factorization and Schur decomposition) has been 

used as it easily returns all the eigenvalues and correspondent eigenvectors without an 

observed important difference in performance from other methods. 
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3.2. FE model 

The main verification of the solutions obtained by the proposed semi-analytical model has 

been done running equivalent models in FEM with the commercial software package 

ABAQUS. The FEM model is built from a script written in Python, which is able to 

automatically set the parameters of the model to the requested configuration. 

3.2.1. Model basics 

The model consists of a single rectangular flat plate, declared as a 3D deformable body to 

allow for the out-of-plane deformation during buckling. The thickness and properties are 

introduced by a composite lay-up definition and the corresponding material lamina 

properties. 

3.2.2. Mesh 

A structured mesh has been used. After some preliminary convergence studies it has been 

concluded that 20 elements should be used in the shorter edge, making sure that every 

half-wave has at least half this number of elements to be properly modeled (to stay on the 

safe side). The number of elements per edge is doubled when shear loading is present to 

cope with the more complex mode shapes. Two different mesh and element combinations 

are used. The first consists in rectangular S4R shell elements with reduced integration. 

Moreover, STRI3 elements have been used with its required triangular mesh. The 

advantage of using those elements is that Kirchhoff thin plate hypothesis is already 

imposed in the element formulation, neglecting transverse shear effects (thick plates).  

3.2.3. Boundary conditions and loads 

Several boundary conditions are applied to the FE model. First of all the out-of-plane 

displacement of all the edges is set to zero. To avoid free body translations the first corner 

has its translation fixed. Rotation is also limited by fixing the perpendicular movement of 

the other corner on the bottom edge. The in-plane displacement of the rest of the edges 

is completely free, so no zero in-plane displacement is imposed (only forces). These are 

shown in figure 6: 
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The elastic torsion restrain is modeled through the use of spring elements connected to 

ground. Those elements are present around all the edges connecting every node. Since 

they have discrete values per element it is necessary to convert their values: 

 
𝑘𝑖𝐹𝐸𝑀 =

𝑘𝑖 𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑖𝑑𝑒𝑖
𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑖

 (67) 

The load is applied uniformly distributed along the edges. The only difference is that the 

FE model is under simple shear instead of pure shear. Since the boundary conditions does 

not allow the rotation of the plate, it does not make any difference.  

The loads applied are normalized (as shown in the first two terms of eq. 32) in order to 

obtain the eigenvalue with the critical load. 

3.2.4. Analysis and results 

The buckling load is obtained through a linear buckling analysis (perturbation). Several 

buckling modes are required to be able to check successive modes, and also to discard 

negative eigenvalues when the plate is under shear. 

Apart from the eigenvalue, the out-of-plane displacements are also requested, so it is 

possible to check that the buckling mode is equivalent to the one obtained from the semi-

analytical model. The results obtained from Abaqus are then output in .txt files for further 

post-processing. 

3.3. Solution and verification 

Both the semi-analytical and FE models have been implemented, so they can be executed 

automatically from a Matlab program. This program can run though several configurations 

to compare the results given from the proposed semi-analytical model and FEM. 

Figure 6: Boundary conditions and loads FE model 
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Additionally, the results obtained have also been compared with closed-form solutions 

currently used by Fokker in preliminary design. These simpler closed form solutions are 

developed only for specially orthotropic laminates, ideal boundary conditions and up to 

dual load combinations. However, it is interesting to see how the proposed solution 

improves both the accuracy and possibilities of the current tools used for preliminary 

design. 

The semi-analytical model requires certain approximations to make the mathematical 

formulations manageable. Therefore, it has been found necessary to make a detailed 

verification in order to assess how well do the approximation work.   

The variables of the semi-analytical model are: 

 Geometry: the model geometry is controlled by modifying the length ‘a’, therefore 

changing the aspect ratio of the plate.  

 Lay-up and material: different lay-ups are tested to verify the results. Most of the 

solutions will focus on three main lay-ups: predominant 0s (541)6, predominant 45s 

(181) and quasi isotropic (343). These laminates have been selected based on the 

typical design space used by Fokker. Studying the following figure, it might be seen 

that the three laminates represent the vertices of the Fokker design space triangle: 

 

Figure 7: Fokker laminate design space 

 

The sequence of the main laminates is described on the following table.  

                                                

 

6 This number defines the number of plies with the three standard orientations. The first digit is the number 

of 0s, the second is the number of ±45s and the thirds is the number of 90s. Additionally, those lay-ups are 

symmetric and balanced. 
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Table 1: Fokker layups 

Laminate name Layup 

Predominant 0s (541) [0,45,0,90,0,-45,0,45,0,-45]s 

Predominant 45s (181) [45,-45,0,45,-45,90,45,-45,45,-45]s 

QI (343) [-45,0,0,45,90,90,-45,0,45,90]s 

Typical Fokker carbon fiber material properties are used. Additional lay-ups are 

used as well to cover other typical Fokker designs or to cope with special 

laminates.  

 Thickness: according to thin plate theory, the results are proportional to 𝑡3. 

However, if transverse shear is taken into account, thick plates do not follow this 

rule. Different thicknesses are tested in order to assess which are the maximum 

thicknesses for which thin plate theory still gives reliable results. 

 Boundary conditions: The proposed formulation allows to independently set 

every edge torsional restrain making it possible to have simply supported 

conditions, clamped or anything in between on any edge. Several configuration are 

tested to verify the validity of the proposed formulation. 

 Load: The semi-analytical solution allows for any combination of constant in-plane 

loads. Individual loads and combinations are used to verify the accuracy of each 

of them. 

Additionally, the number of terms, used to reproduce the out-of-plane shape in the semi-

analytical model, is very important. The performance of the method depends greatly on 

this number, so several tests are carried out to assess which are the minimum number 

required and the correspondent accuracy to be expected. 

The lamina properties used are the following: 

Table 2: Lamina properties 

Lamina properties 

Longitudinal Young modulus (𝐸𝑥) 135 GPa 

Transverse Young modulus (𝐸𝑦) 8.84 GPa 

Shear modulus (𝐺𝑥𝑦) 4.94 GPa 

Poisson coefficient (𝜈𝑥𝑦) 0.3 

3.3.1. Summary of results 

The results obtained from both the semi-analytical, Fokker closed form and FE models are 

saved into Excel documents. These documents gather the solutions of all the 

configurations tested and allow a fast visualization (through cell color) of the error in 
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between the different solutions. Due to the amount of solutions, it has been decided to 

include all the solutions in a digital annex and present the most important results grouped 

in figures. 

3.3.2. Convergence of semi-analytical model 

It is difficult to define an exact rule for the convergence of the semi-analytical model. 

Clearly, the number of functions necessary to have a proper solution depends on: 

 The number of half-waves (aspect ratio). It has been seen that every term in the 

linear set of functions, (which represents the out-of-plane displacement) is the 

solution estimated for its correspondent combination of half-waves. Therefore 

plates with a critical mode consisting in several waves would need more terms to 

be properly solved. 

 Loading. The chosen linear set of functions has two independent terms for the x 

and y directions. This is suitable to represent buckled shapes when there is axial 

loading. However, under shear, the waves have diagonal shape. Those shapes 

can only be created by the combination of different terms, making it necessary to 

use a higher number to obtain an accurate solution. 

 Laminate properties. The properties and material complexity have an important 

effect on the number of terms required. When laminates are specially orthotropic, 

the natural boundary conditions are perfectly satisfied and convergence is faster. 

It has been observed that non-balanced laminates are the ones presenting more 

problems. 

The following figures present convergence analysis of the semi-analytical model for 

different cases. Both are for plates with clamped boundary conditions (simply supported 

typically have faster convergence). Moreover, the predominant 45s laminate has been 

chosen because of the most important effect of 𝐷16 and 𝐷26 terms. For simplicity, 

symmetric7 number of terms are used. Other strategies could be considered to improve 

the performance, such as using more terms in one direction to cope with the aspect ratio, 

or using specific half-waves. 

The first figure studies the convergence under uniaxial compression for different aspect 

ratios.  

                                                

 

7 The same number of terms is used in both directions. Therefore using 16 terms means the use of 4 in each 

direction. 
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Figure 8: Convergence study uniaxial compression 

The second figure shows the convergence analysis under shear loading. 

 

Figure 9: Convergence study shear 

In uniaxial compression, it is clear that the main problem is having enough terms to capture 

the solution (plate with aspect ratio 1 buckles with one half-wave, so one term already 

gives a good approximation). As has been mentioned, shear presents more problems 

because the diagonal buckling shape cannot be properly approximated with one term (it 

is started with four). In the cases presented, convergence is obtained at 16 terms, except 

for a plate of aspect ratio 4 under shear, were 25 terms are required. 

3.3.3. Verification with FEM 

The main verification consists in a comparison between the solutions given by both semi-

analytical and FE models. Aside from the Excel files included in the annex, it has been 

decided to present several cases to demonstrate that the accuracy of the solutions can be 

easily assessed for a limited number of representative cases.  
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The fact that there are 5 different variables (aspect ratio, thickness, boundary conditions, 

load case and lay-up) that can take multiple values, makes the amount of possible cases 

difficult to present. The following cases have been chosen: 

Verifications will involve the three main lay-ups previously defined. Every one of them will 

be tested in uniaxial compression, shear and a combination of the previous two (one to 

one ratio). The verification of the selected load cases should give confidence in that any 

combination of compression and shear might be included in the design space. 

The geometry has been fixed, the length of the shorter side b is 100mm and the thickness 

of the laminate is 1mm (ensuring thin plate behaviour). 

The verification of the previous configuration include buckling load against aspect ratio 

curves for different boundary conditions (simply supported, constant elastic restrain of 

200N and clamped). This boundary conditions should guarantee that both ideal and 

intermediate cases can be solved with the developed formulation. The maximum aspect 

ratio tested is 4.6. From the verifications it can be observed that the results remain fairly 

constant for the higher aspect ratios, resulting less interesting to test much higher aspect 

ratios. The results obtained by the FE software package are introduced as discrete dots 

over the curves. All loads are given in N/m (in combined loading, the result given is for the 

Nx component). 

The results of the semi-analytical model are obtained using 36 terms and the Ritz method 

with numeric integration. In case of discrepancies between Ritz and Galerkin, these are 

outlined. 

3.3.3.1. Predominant 45s 

 

Figure 10: Verification predominant 45s under uniaxial compression 

The results show excellent agreement between the semi-analytical solution and FEM. The 
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seems clear that the problem is that more terms are required to properly predict the 
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high aspect ratio plates, very good results for the critical buckling load are obtained 

assuming a constant buckling value after 5-6 half-waves. For a more efficient calculation 

an infinite plate formulation could be developed. 

 

Figure 11: Verification predominant 45s under shear 

The agreement between FE and semi-analytical is also excellent for shear with a 

maximum error of 1.4%. Shear shows less spikes so it is more difficult to see the aspect 

ratio where there is a change in the number of half-waves. On the other hand, there 

appears to be less problems to solve the higher aspect ratios of the clamped solution. 

 

Figure 12: Verification predominant 45s under combined loading 
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3.3.3.2. Predominant 0s 

 

Figure 13: Verification predominant 0s under uniaxial compression 

The predominantly 0s laminate shows even a better agreement than previous cases with 

a maximum error of 1.3%. The reason is the lesser importance of 𝐷16 and 𝐷26 terms 

(laminate is more orthotropic) and also the fewer number of half-waves. Mittelstedt [44] 

uses the modified aspect ratio parameter to account for the effect of 𝐷11 and 𝐷22: 

 

𝛼 =
𝑎

𝑏
√
𝐷22
𝐷11

4

 (68) 

The modified aspect ratio parameter can be a good approach to avoid misestimating the 

number of terms required for the higher aspect ratios, however it must be remembered 

that other factors, such as loading and boundary conditions, are important as well. 

 

Figure 14: Verification predominant 0s under shear 

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.5 1.5 2.5 3.5 4.5 5.5

N
x 

cr
it

 [
N

/m
]

Aspect ratio

Verification uniaxial compression

SA SSSS

SA ki=200

SA CCCC

FE SSSS

FE ki=200

FE CCCC

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

0.5 1.5 2.5 3.5 4.5 5.5

N
xy

 c
ri

t 
[N

/m
]

Aspect ratio

Verification shear

SA SSSS

SA ki=200

SA CCCC

FE SSSS

FE ki=200

FE CCCC



Buckling of plates

 

68 

Shear also shows an excellent agreement with FEM results, with all the errors below 1%. 

 

Figure 15: Verification predominant 0s under combined loading 
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Figure 16: Verification QI under uniaxial compression 

As expected, there is an excellent agreement between the two models, with a maximum 
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Figure 17: Verification QI under shear 
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Figure 18: Verification QI under combined loading 

Combined loading shows again higher sensibility to the lack of terms for the clamped 

solution at the highest aspect ratio (error 2.8%). Despite this value the agreement between 

solutions is still very good (rest of errors below 1.1%). 

Again, there is no important differences between Galerkin and Ritz, so both methods might 

be used. 

3.3.4. Special cases 

Additional verifications have been performed to assess some special cases. 

3.3.4.1. Thickness verification 

The developed thin plate formulation is only valid when thickness is much smaller than the 

other dimensions. However, it is more difficult to specify a limit value above which thin 

plate theory is no longer valid. 

The following figures give the evolution of the error between results given by the semi-

analytical model and the FE results using shell elements. The buckling results for 

symmetric thin plate plates are proportional to the D matrix, and this is proportional to 𝑡3, 

therefore there is no need to calculate results for every thickness. The x axis shows the 

results as a function of 𝑡3/𝑏 in order to show this proportionality.  The FE results diverge 

from the semi-analytical when thickness is increased (the % error is included next to every 

data point).  

With these results it is possible to assess the limitations of thin plate theory and visualize 

the cases that will require a more advanced plate formulation. 

The thickness to side length ratios used in the figures are (from left to right) 1/100, 1/50, 

1/33 and 1/25. 
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Figure 19: Error due to thickness effects for an isotropic laminate 

For isotropic laminates, thickness effect are relevant for ratios below 1/50 or 1/33. Before 

that, errors are in the same order as calculated for the previous verifications. Compression 

is clearly less affected by thickness effects while shear gives a 6.2% error for a 1/25 ratio. 

 

Figure 20: Error due to thickness effects for a predominant 45s laminate 
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It must be taken into account that the aspect ratio, boundary conditions and lay-up affect 

the importance of thickness effects:  

 High aspect ratio plates show less thickness effects as the ratio between surface 

and thickness is higher in those cases. The results given (figures 18 and 19) are 

for the least favorable case (square plate).  

 The results given are for a clamped plate. This has shown to be the least favorable 

case among the ones tested. 

 The predominant 45s laminate has shown to be one of the most sensitive to 

thickness effects. So once again, the case presented is one the least favorable. 

3.4. Conclusions buckling 

The verifications performed show excellent agreement for typical laminates used at Fokker 

aerospace under the different conditions tested and using a much reduced number of 

degrees of freedom compared to FE. The different numeric methods used (Galerkin and 

Ritz) have provided almost identical results once the surface boundary terms are taken 

into account in the Galerkin method solution. Therefore, there are no clear reasons to 

conclude which method is recommended, further implementations of the formulation in 

high performance programs might be used to decide based on computational efficiency. 

The main limitation observed is the rigorous implication of thin plate theory assumptions 

for typical lamina properties. As commented by Whitney in section 10.1 of [15] the high 

ratio of in-plane Young modulus to transverse shear modulus can result in important 

divergences (unconservative) of the results for relatively thin plates. This tendency has 

been confirmed and more conservative margins are given to validate when thin plate 

theory is applicable for such materials. 

Moreover, it has been studied the different aspects that control the number of terms 

required to obtain accurate buckling solutions. The results obtained confirmed the 

conclusions reached during the convergence study and showed how some errors started 

to appear for higher aspect ratios for the cases determined as more critical. Therefore, the 

use of similar strategies might be used to determine the minimum number of terms when 

different plates are under study. Furthermore, more advanced automated approaches can 

be developed to avoid the necessity of performing preliminary convergence studies. 

Factors to be considered in future developments are the use of term that are more 

meaningful to the solution (using custom terms instead of a series ranging from one to M) 

and the use of dissimilar number of terms in each direction. Such developments would 

allow an optimization of the required time. 

On the same line, it has already been mentioned that the current approach cannot 

efficiently solve high aspect ratio plates due to the high amount of terms required. The 

advantage of such cases is that the buckling load quickly converges to a constant value 

when multiple half-waves are present. The studied solutions clearly showed this behaviour 

for aspect ratios around or over four. This fact can be exploited by using an infinite plate 

theory. Such simplified formulation would provide the constant value at which the solution 

converges using a reduced computational effort.  

Numerical problems have been identified in some cases when using analytical integration. 

The issue has been solved by using numerical integration algorithms instead but the 
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performance for such cases is reduced. Additional or alternative measures could be taken 

such as using different shape functions that might not show this sensitivity, for example 

using polynomials or linear interpolation between simply supported and clamped solutions. 

In conclusion, the developed formulation yields excellent results for the required design 

space, with the only limitation being that it is necessary to verify that the ratio thickness to 

side length allows the application of thin plate theory. The proposed 36 terms has shown 

to perfectly work up to aspect ratio 4 for any load case or boundary condition. Higher 

aspect ratios can be achieved as well by using more terms, however the results suggest 

that it can be useful to use infinite plate formulations to optimize the results of higher aspect 

ratios. The current Fokker analytical solutions (See Annex\Buckling\Verification1) are less 

accurate and valid for a much reduced design space (no elastic restrains). The results for 

axial loads are acceptable, with errors up to 5 %, but shear is poorly solved due to the 

neglected of 𝐷16 and 𝐷26 terms, with error on buckling load estimation above 20%. 
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4. Post-buckling of plates 

This chapter continues with the development of the post-buckling solution for plates. The 

implemented solution follows the same approach as buckling, aiming to solve a wide range 

of different configurations. The increasing complexity of the equations further encourages 

coming up with convenient approximations capable of reproducing the post-buckling 

phenomena. 

The structure of the chapter is very similar to the previous one. After developing the semi-

analytical solution, a brief explanation of the equivalent FE model is introduced. The last 

section gathers the solutions obtained by the semi-analytical solution and the comparison 

with FE results. 

4.1. Semi-analytical model 

4.1.1. Introduction 

The semi-analytical model for post-buckling is based on the same thin plate theory. 

Therefore the main assumptions used in the section 3.1.1.1 are the same. Minor changes 

are introduced in the additional assumptions to cope with the particularities of post-

buckling: 

 The plate is allowed to have imperfections. In fact the imperfection is necessary so 

non-trivial solutions are obtained when solving the equilibrium path. The 

imperfection can be introduced as a linear combination of buckling modes with an 

arbitrary amplitude. In order to simplify the imperfection it has been decided to use 

Qiao’s approach [34] to reduce the linear combination to a critical term using 

sinusoidal waves with the same number of half-waves as the first buckling mode. 

The formulation can be extended to use the arbitrary linear combinations if 

required. 

 In post-buckling it is impossible to keep both the edges straight and the applied 

load on the edge constant. Due to the out-of-plane deformation there is a 

redistribution of loads from the center of the plate to the edges. Therefore, two 

different options are given: 

o Keep the applied load constant: In this case the edges are no longer 

straight after buckling. 

o Keep the edges straight: In this case the load is applied as a constant 

displacement at the edges.  

4.1.2. Governing equations 

The introduction of imperfections in the plate and the fact that the force distribution inside 

the plate is no longer constant results on the use of non-linear partial differential equations. 

These new equations were derived by Marguerre [9] and are known as Von Kármán-

Marguerre equations. The equilibrium equation becomes: 
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𝜕𝑥2
+ 2
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= 0 

(69) 

Where 𝑤𝑜 is the plate initial imperfection. The non-constant value of 𝑁𝑥, 𝑁𝑦 and 𝑁𝑥𝑦 makes 

necessary to use also the compatibility equation in order to completely define the problem. 

According to Marguerre, the compatibility equation for imperfect plates is: 

 𝜕2휀𝑥
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𝜕𝑥𝜕𝑦

= 0 

(70) 

Where 휀0 is the plate strain at the mid-plane. To apply these equations to laminated plates 

it is necessary to introduce the ABD matrix, which for mid-plane symmetric plates can be 

simplified to: 

 𝑵 = 𝑨𝜺𝟎,      𝑴 = 𝑫𝜿 (71) 

Inverting the A matrix (𝒂 = 𝑨−1) and substituting the curvatures by the out-of-plate 

displacement derivatives the following relations are obtained. 
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 (73) 

The Marguerre equations for mid-plane symmetric plates are obtained substituting eq. 73 

and 72 into 68 and 69. Moreover, it is preferable to introduce the Airy stress function. The 

Airy stress function (𝜙) is a scalar potential function used to represent 2D stress fields (or 

force) which satisfies the equilibrium in the absence of body forces. It allows to combine 

the different forces or stresses into a single term. Then, the different forces are obtained 

from the derivatives of the Airy function. In the absence of distributed forces, the in-plane 

forces are: 

 
𝑁𝑥 =

𝜕2𝜙

𝜕𝑦2
,          𝑁𝑦 =

𝜕2𝜙

𝜕𝑥2
,          𝑁𝑥𝑦 = −

𝜕2𝜙

𝜕𝑥𝜕𝑦
   (74) 

Substituting also eq. 74 is obtained: 
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𝐷11

𝜕4𝑤

𝜕𝑥4
+ 4𝐷16

𝜕4𝑤

𝜕𝑥3𝜕𝑦
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 4𝐷26

𝜕4𝑤

𝜕𝑥𝜕𝑦3
+ 𝐷22

𝜕4𝑤

𝜕𝑦4

−
𝜕2𝜙

𝜕𝑦2
(
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤𝑜
𝜕𝑥2

) + 2
𝜕2𝜙

𝜕𝑥𝜕𝑦
(
𝜕2𝑤

𝜕𝑥𝜕𝑦
+
𝜕2𝑤𝑜
𝜕𝑥𝜕𝑦

)

−
𝜕2𝜙

𝜕𝑥2
(
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤𝑜
𝜕𝑦2

) = 0 

(75) 

 
𝑎22

𝜕4𝜙

𝜕𝑥4
− 2𝑎26

𝜕4𝜙

𝜕𝑥3𝜕𝑦
+ (𝑎66 + 2𝑎12)

𝜕4𝜙

𝜕𝑥2𝜕𝑦2
− 2𝑎16

𝜕4𝜙

𝜕𝑥𝜕𝑦3
+ 𝑎11

𝜕4𝜙

𝜕𝑦4

+
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
− (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

+
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤𝑜
𝜕𝑦2

+
𝜕2𝑤𝑜
𝜕𝑥2

𝜕2𝑤

𝜕𝑦2

− 2
𝜕2𝑤

𝜕𝑥𝜕𝑦

𝜕2𝑤𝑜
𝜕𝑥𝜕𝑦

= 0 

(76) 

The next step is to non-dimentionalize the previous equations and define several 

coefficients in order to simplify the notation. The dimensionless relations are: 

 
𝑊 =

𝑤

ℎ
,         𝑊𝑜 =

𝑤𝑜
ℎ
, 𝜉 =

𝑥

𝑎
, 𝜂 =

𝑦

𝑏
, 𝜆 =

𝑎

𝑏
, 𝑫∗ =

𝑫

𝐴22ℎ
2
 ,

𝒂∗ = 𝐴22𝑨
−𝟏 = 𝐴22𝒂,        𝐹 =

𝜙

𝐴22ℎ
2
 

(77) 

The coefficients used are: 

 
𝑎1 =

4𝐷16
∗

𝐷11
∗ 𝜆, 𝑎2𝑎 =

2𝐷12
∗

𝐷11
∗ 𝜆2, 𝑎2𝑏 =

4𝐷66
∗

𝐷11
∗ 𝜆2, 𝑎2 = 𝑎2𝑎 + 𝑎2𝑏 ,

𝑎3 =
4𝐷26

∗

𝐷11
∗ 𝜆3, 𝑎4 =

𝐷22
∗

𝐷11
∗ 𝜆4,           𝑎5 =

𝜆2

𝐷11
∗  

(78) 

𝑏1 = −2𝜆
 𝑎26
∗

𝑎22
∗  , 𝑏2 =

𝑎66
∗ + 2𝑎12

∗

𝑎22
∗ 𝜆2, 𝑏3 =

−2𝑎16
∗

𝑎22
∗ 𝜆3, 𝑏4 =

𝑎11
∗

𝑎22
∗ 𝜆4,

𝑏5 =
𝜆2

𝑎22
∗  

(79) 

Notice the difference between the plate length 𝑎, the compliance 𝒂 and the equilibrium 

coefficients 𝑎𝑖. 

Substituting eq. 77-79 into 75 and 76: 

 𝜕4𝑊

𝜕𝜉4
+ 𝑎1

𝜕4𝑊

𝜕𝜉3𝜕𝜂
+ 𝑎2

𝜕4𝑊

𝜕𝜉2𝜕𝜂2
+ 𝑎3

𝜕4𝑊

𝜕𝜉𝜕𝜂3
+ 𝑎4

𝜕4𝑊

𝜕𝜂4

− 𝑎5 [
𝜕2𝐹

𝜕𝜂2
(
𝜕2𝑊

𝜕𝜉2
+
𝜕2𝑊𝑜
𝜕𝜉2

) − 2
𝜕2𝐹

𝜕𝜉𝜕𝜂
(
𝜕2𝑊

𝜕𝜉𝜕𝜂
+
𝜕2𝑊𝑜
𝜕𝜉𝜕𝜂

)

+
𝜕2𝐹

𝜕𝜉2
(
𝜕2𝑊

𝜕𝜂2
+
𝜕2𝑊𝑜
𝜕𝜂2

)] = 0 

(80) 
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 𝜕4𝐹

𝜕𝜉4
+ 𝑏1

𝜕4𝐹

𝜕𝜉3𝜕𝜂
+ 𝑏2

𝜕4𝐹

𝜕𝜉2𝜕𝜂2
+ 𝑏3

𝜕4𝐹

𝜕𝜉𝜕𝜂3
+ 𝑏4

𝜕4𝐹

𝜕𝜂4

+ 𝑏5 [
𝜕2𝑊

𝜕𝜉2
𝜕2𝑊

𝜕𝜂2
− (

𝜕2𝑊

𝜕𝜉𝜕𝜂
)

2

+
𝜕2𝑊

𝜕𝜉2
𝜕2𝑊𝑜
𝜕𝜂2

+
𝜕2𝑊𝑜
𝜕𝜉2

𝜕2𝑊

𝜕𝜂2

− 2
𝜕2𝑊

𝜕𝜉𝜕𝜂

𝜕2𝑊𝑜
𝜕𝜉𝜕𝜂

] = 0 

(81) 

Different authors [17, 27] split the problem of solving the previous equations. First, the 

compatibility equation is used to directly solve the coefficients in the Airy Stress function. 

It is necessary to work with simple out-of-plane functions in order to make the calculations 

manageable. Therefore, this approach has been used mainly for simply supported 

specially orthotropic laminates. Since solutions are also available for clamped 

configurations, it is possible to interpolate solutions for elastically restrained plates. 

However, the use of eigenbeam value functions and a mid-plane symmetric formulation 

increase significantly the complexity of the calculations. Since it is no longer possible to 

exactly solve  for the Airy Stress function in the compatibility equation, it is decided to solve 

approximately both equilibrium and compatibility in one go using the Galerkin method8.  

4.1.3. The Galerkin method 

In order to apply the Galerkin method it is necessary to define both the out-of-plane 

displacement and the Airy Stress function: 

 
𝑊 = ∑ ∑𝑊𝑚𝑛𝑋𝑚(𝜉)𝑌𝑛(𝜂)

𝑁

𝑛=1

𝑀

𝑚=1

 (82) 

 

𝐹 = −𝑁𝑥
∗
𝜂2

2
− 𝑁𝑦

∗𝜆2
𝜉2

2
− 𝑁𝑥𝑦

∗  𝜆𝜉𝜂 +∑∑𝜒𝑝𝑞𝑋𝑝
𝑐(𝜉)𝑌𝑞

𝑐(𝜂)

𝑄

𝑞=1

𝑃

𝑝=1

  (83) 

The out-of-plane deformation follows the same generic form used in buckling. The Airy 

Stress function will be explained in detail in the next section, but the current form allows 

also for generic formulations, so the following formulation is still valid for the different cases 

implemented. 

Additionally, the imperfection is also introduced as a one term combination of X and Y 

functions. 

 𝑊 =𝑊𝑜𝑋𝑜𝑌𝑜 (84) 

                                                

 

8 Ritz method is also an option, but since both methods have given almost identical results for buckling (once 

the natural boundary conditions are corrected) it has been decided to develop only the first. 
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A double sine function (with the number of half-waves of the first buckling mode) is used 

to model the imperfection. Further shapes might also be used without modifying the 

formulation. If multiple combinations are required, then it would be possible to update the 

formulation and include an additional summatory for such terms. 

Instead of developing the Galerkin method from the variations of the total potential energy, 

it will be directly applied multiplying both the equilibrium and compatibility equations by 

trial functions in order to minimize the error. The procedure is similar to the one followed 

by Qiao in [34] and some of the nomenclature used is kept for convenience. 

4.1.3.1. Equilibrium equation 

Starting with the equilibrium equation, eq. 82 is substituted into 80 and multiplied by the 

trial function: 

 

∫∫{∑∑𝑊𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

[
𝜕4𝑋𝑖
𝜕𝜉4

𝑌𝑗 + 𝑎1
𝜕3𝑋𝑖
𝜕𝜉3

𝜕𝑌𝑗

𝜕𝜂
 + 𝑎2

𝜕2𝑋𝑖
𝜕𝜉2

𝜕2𝑌𝑗

𝜕𝜂2
+ 𝑎3

𝜕𝑋𝑖
𝜕𝜉

𝜕3𝑌𝑗

𝜕𝜂3

+ 𝑎4𝑋𝑖
𝜕4𝑌𝑗

𝜕𝜂4
]

− 𝑎5 [∑∑𝑊𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

{∑∑𝜒𝑝𝑞 [𝑋𝑝
𝑐
𝜕2𝑌𝑞

𝑐

𝜕𝜂2
𝜕2𝑋𝑖
𝜕𝜉2

𝑌𝑗

𝑄

𝑞=1

𝑃

𝑝=1

+
𝜕𝑋𝑝

𝑐

𝜕𝜉
𝑌𝑞
𝑐  𝑋𝑖

𝜕2𝑌𝑗

𝜕𝜂2
− 2

𝜕𝑋𝑝
𝑐

𝜕𝜉

𝜕𝑌𝑞
𝑐

𝜕𝜂

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
] − 𝑁𝑥

∗
𝜕2𝑋𝑖
𝜕𝜉2

𝑌𝑗

−𝑁𝑦
∗𝜆2𝑋𝑖

𝜕2𝑌𝑗

𝜕𝜂2
+ 2𝑁𝑥𝑦

∗ 𝜆
𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
}

+𝑊𝑜 {∑∑𝜒𝑝𝑞 [𝑋𝑝
𝑐
𝜕2𝑌𝑞

𝑐

𝜕𝜂2
𝜕2𝑋𝑜
𝜕𝜉2

𝑌𝑜 +
𝜕𝑋𝑝

𝑐

𝜕𝜉
𝑌𝑞
𝑐  𝑋𝑜

𝜕2𝑌𝑜
𝜕𝜂2

𝑄

𝑞=1

𝑃

𝑝=1

− 2
𝜕𝑋𝑝

𝑐

𝜕𝜉

𝜕𝑌𝑞
𝑐

𝜕𝜂

𝜕𝑋𝑜
𝜕𝜉

𝜕𝑌𝑜
𝜕𝜂

] − 𝑁𝑥
∗
𝜕2𝑋𝑜
𝜕𝜉2

𝑌𝑜 −𝑁𝑦
∗𝜆2𝑋𝑜

𝜕2𝑌𝑜
𝜕𝜂2

+ 2𝑁𝑥𝑦
∗ 𝜆

𝜕𝑋𝑜
𝜕𝜉

𝜕𝑌𝑜
𝜕𝜂

}]}𝑋𝑚𝑌𝑛 𝑑𝜉 𝑑𝜂 = 0  ∀ 𝑚, 𝑛 ∈ 𝑀,𝑁  

(85) 

The current solution does not account for the mismatch of the natural boundary conditions 

observed during the development of the equilibrium equation from the first variation of the 

total potential energy (chapter 3). If the effect of the imperfection is neglected then it is 

possible to add the same correction terms used in buckling.  
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∑∑𝑊𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

∫{|[𝐸𝑖𝑗2
∗ ]|

𝜉=1
|
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛|
𝜉=1

− |[𝐸𝑖𝑗1
∗]|

𝜉=0

|
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛|

𝜉=0

}𝑑𝜂

+∑∑𝑊𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

∫{|[𝐸𝑖𝑗4
∗ ]|

𝜂=1
|𝑋𝑚

𝜕𝑌𝑛
𝜕𝜂

|
𝜂=1

− |[𝐸𝑖𝑗3
∗ ]|

𝜂=0
|𝑋𝑚

𝜕𝑌𝑛
𝜕𝜂

|
𝜂=0

 }  𝑑𝜉      

(86) 

Where the E terms were given by eq. 25. 

The equilibrium equation is finally rewritten in matrix form for conciseness: 

 𝑽𝐸𝐿
𝑚𝑛𝚽+ 𝐕S

𝑚𝑛𝚽−𝚽𝑇𝑲𝐸𝑁𝐿
mn 𝚽− 𝐕ENLO

𝑚𝑛 𝚽− 𝑽𝐸𝐿𝑃
𝑚𝑛𝚽− 𝑐𝑜𝑛𝑚𝑛 = 0 (87) 

Where, 

 𝚽 = [𝑊11𝑊12…𝑊𝑚+(𝑛−1)𝑀…𝑊𝑀𝑁−1𝑊𝑀𝑁𝜒11𝜒12…𝜒𝑝+(𝑞−1)𝑃…𝜒𝑃𝑄−1𝜒𝑃𝑄]
𝑇
 (88) 

And the matrix terms are: 

 𝑽𝐸𝐿
𝑚𝑛 = [𝑽1𝐸𝐿

𝑚𝑛 𝑽2𝐸𝐿] →   𝑽1𝐸𝐿
𝑚𝑛 = [𝑑𝑖+(𝑗−1)𝑀

𝑚𝑛 ]
1 𝑥 𝑀𝑁

   &      𝑽2𝐸𝐿 = [0]1 𝑥 𝑃𝑄    

𝑑𝑖+(𝑗−1)𝑀
𝑚𝑛 = ∫ ∫ [

𝜕4𝑋𝑖
𝜕𝜉4

𝑌𝑗 + 𝑎1
𝜕3𝑋𝑖
𝜕𝜉3

𝜕𝑌𝑗

𝜕𝜂
 + 𝑎2

𝜕2𝑋𝑖
𝜕𝜉2

𝜕2𝑌𝑗

𝜕𝜂2
+ 𝑎3

𝜕𝑋𝑖
𝜕𝜉

𝜕3𝑌𝑗

𝜕𝜂3

1

0

1

0

+ 𝑎4𝑋𝑖
𝜕4𝑌𝑗

𝜕𝜂4
] 𝑋𝑚𝑌𝑛𝑑𝜉𝑑𝜂 

(89) 

 𝑽𝑆
𝑚𝑛 = [𝑽1𝑆

𝑚𝑛 𝑽2𝑆] →   𝑽1𝑆
𝑚𝑛 = [𝑧𝑖+(𝑗−1)𝑀

𝑚𝑛 ]
1 𝑥 𝑀𝑁

   &       𝑽2𝑆 = [0]1 𝑥 𝑃𝑄    

𝑧𝑖+(𝑗−1)𝑀
𝑚𝑛 =

𝑎1
2
∫ [

𝜕𝑌𝑗

𝜕𝜂
𝑌𝑛] 𝑑𝜂 [

𝜕𝑋𝑖
𝜕𝜉

|
𝜉=1

𝜕𝑋𝑚
𝜕𝜉

|
𝜉=1

−
𝜕𝑋𝑖
𝜕𝜉

|
𝜉=0

𝜕𝑋𝑚
𝜕𝜉

|
𝜉=0

]
1

0

+
𝑎3 

2
∫ [

𝜕𝑋𝑖
𝜕𝜉

𝑋𝑚] 𝑑𝜉 [
𝜕𝑌𝑗

𝜕𝜂
|
𝜂=1

𝜕𝑌𝑛
𝜕𝜂

|
𝜂=1

−
𝜕𝑌𝑗

𝜕𝜂
|
𝜂=0

𝜕𝑌𝑛
𝜕𝜂

|
𝜂=0

]
1

0

 

(90) 

 
𝑲𝐸𝑁𝐿
𝑚𝑛 = [

𝑲11𝐸𝑁𝐿 𝑲12𝐸𝑁𝐿

𝑲21
𝑚𝑛

𝐸𝑁𝐿
𝑲22𝐸𝑁𝐿

] →   𝑲11𝐸𝑁𝐿 = [0]𝑀𝑁𝑥 𝑀𝑁   &    𝑲12𝐸𝑁𝐿

= [0]𝑀𝑁 𝑥 𝑃𝑄     

&   𝑲21
𝑚𝑛

𝐸𝑁𝐿
= [𝑔𝑝+(𝑞−1)𝑃,   𝑖+(𝑗−1)𝑀

𝑚𝑛 ]
𝑃𝑄  𝑥 𝑀𝑁

   &    𝑲22𝐸𝑁𝐿 = [0]𝑃𝑄 𝑥 𝑃𝑄    

(91) 
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𝑔𝑝+(𝑞−1)𝑃,   𝑖+(𝑗−1)𝑀
𝑚𝑛

= 𝑎5∫ ∫ [𝑋𝑝
𝑐
𝜕2𝑌𝑞

𝑐

𝜕𝜂2
𝜕2𝑋𝑖
𝜕𝜉2

𝑌𝑗 +
𝜕𝑋𝑝

𝑐

𝜕𝜉
𝑌𝑞
𝑐  𝑋𝑖

𝜕2𝑌𝑗

𝜕𝜂2

1

0

1

0

− 2
𝜕𝑋𝑝

𝑐

𝜕𝜉

𝜕𝑌𝑞
𝑐

𝜕𝜂

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
]𝑋𝑚𝑌𝑛𝑑𝜉𝑑𝜂 

 𝑽𝐸𝑁𝐿𝑂
𝑚𝑛 = [𝑽1𝐸𝑁𝐿𝑂  𝑽2𝐸𝑁𝐿𝑂

𝑚𝑛
] →   𝑽1𝐸𝑁𝐿𝑂 = [0]1 𝑥 𝑀𝑁   &       𝑽2𝐸𝑁𝐿𝑂

𝑚𝑛

= [𝑙𝑖+(𝑗−1)𝑀
𝑚𝑛 ]

1 𝑥 𝑃𝑄
   

𝑙𝑝+(𝑞−1)𝑃
𝑚𝑛 = 𝑎5𝑊𝑜∫ ∫ [𝑋𝑝

𝑐
𝜕2𝑌𝑞

𝑐

𝜕𝜂2
𝜕2𝑋𝑜
𝜕𝜉2

𝑌𝑜 +
𝜕𝑋𝑝

𝑐

𝜕𝜉
𝑌𝑞
𝑐  𝑋𝑜

𝜕2𝑌𝑜
𝜕𝜂2

1

0

1

0

− 2
𝜕𝑋𝑝

𝑐

𝜕𝜉

𝜕𝑌𝑞
𝑐

𝜕𝜂

𝜕𝑋𝑜
𝜕𝜉

𝜕𝑌𝑜
𝜕𝜂

]𝑋𝑚𝑌𝑛𝑑𝜉𝑑𝜂 

(92) 

 𝑽𝐸𝐿𝑃
𝑚𝑛 = [𝑽1𝐸𝐿𝑃

𝑚𝑛  𝑽2𝐸𝐿𝑃] →   𝑽1𝐸𝐿𝑃
𝑚𝑛 = [𝑒𝑖+(𝑗−1)𝑀

𝑚𝑛 ]
1 𝑥 𝑀𝑁

   &      𝑽2𝐸𝐿𝑃

= [0]1 𝑥 𝑃𝑄     

𝑒𝑖+(𝑗−1)𝑀
𝑚𝑛 = 𝑎5∫ ∫ [−𝑁𝑥

∗
𝜕2𝑋𝑖
𝜕𝜉2

𝑌𝑗 −𝑁𝑦
∗𝜆2𝑋𝑖

𝜕2𝑌𝑗

𝜕𝜂2

1

0

1

0

+ 2𝑁𝑥𝑦
∗ 𝜆

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
]𝑋𝑚𝑌𝑛𝑑𝜉𝑑𝜂 

(93) 

 
𝑐𝑜𝑛𝑚𝑛 = 𝑎5𝑊𝑜∫ ∫ [−𝑁𝑥

∗
𝜕2𝑋𝑜
𝜕𝜉2

𝑌𝑜 −𝑁𝑦
∗𝜆2𝑋𝑜

𝜕2𝑌𝑜
𝜕𝜂2

1

0

1

0

+ 2𝑁𝑥𝑦
∗ 𝜆

𝜕𝑋𝑜
𝜕𝜉

𝜕𝑌𝑜
𝜕𝜂

]𝑋𝑚𝑌𝑛𝑑𝜉𝑑𝜂 

(94) 

The increasing complexity of the integrals to be performed (multiplication of up to three 

terms) makes it more convenient to use numerical integration to obtain the different matrix 

terms. 

4.1.3.2. Compatibility equation 

The same procedure is applied to the compatibility equation: 
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∫∫{∑∑𝜒𝑖𝑗

𝑄

𝑗=1

𝑃

𝑖=1

[
𝜕4𝑋𝑖

𝑐

𝜕𝜉4
𝑌𝑗
𝑐 + 𝑏1

𝜕3𝑋𝑖
𝑐

𝜕𝜉3
𝜕𝑌𝑗

𝑐

𝜕𝜂
 + 𝑏2

𝜕2𝑋𝑖
𝑐

𝜕𝜉2
𝜕2𝑌𝑗

𝑐

𝜕𝜂2
+ 𝑏3

𝜕𝑋𝑖
𝑐

𝜕𝜉

𝜕3𝑌𝑗
𝑐

𝜕𝜂3

+ 𝑏4𝑋𝑖
𝑐
𝜕4𝑌𝑗

𝑐

𝜕𝜂4
]

+ 𝑏5 [∑∑𝑊𝑚𝑛

𝑁

𝑗=1

𝑀

𝑖=1

{∑ ∑𝑊𝑖𝑗 [
𝜕2𝑋𝑚
𝜕𝜉2

𝑌𝑛𝑋𝑖
𝜕2𝑌𝑗

𝜕𝜂2

𝑁

𝑛=1

𝑀

𝑚=1

−
𝜕𝑋𝑚
𝜕𝜉

𝜕𝑌𝑛
𝜕𝜂

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
]

+𝑊𝑜 [
𝜕2𝑋𝑜
𝜕𝜉2

𝑌𝑜𝑋𝑚
𝜕2𝑌𝑛
𝜕𝜂2

+ 𝑋𝑜
𝜕2𝑌𝑜
𝜕𝜂2

𝜕2𝑋𝑚
𝜕𝜉2

𝑌𝑛

− 2
𝜕𝑋𝑜
𝜕𝜉

𝜕𝑌𝑜
𝜕𝜂

𝜕𝑋𝑚
𝜕𝜉

𝜕𝑌𝑛
𝜕𝜂

]}]}𝑋𝑝
𝑐  𝑌𝑞

𝑐 𝑑𝜉 𝑑𝜂 = 0  ∀ 𝑝, 𝑞 ∈ 𝑃, 𝑄  

(95) 

In matrix form: 

 𝑽𝐶𝐿
𝑝𝑞
𝚽−𝚽𝑇𝑲𝐶𝑁𝐿

𝑝𝑞
𝚽− 𝑽𝐶𝑁𝐿𝑂

𝑝𝑞
𝚽 = 0 (96) 

Where the various terms are: 

 𝑽𝐶𝐿
𝑝𝑞
= [𝑽1𝐶𝐿 𝑽2𝐶𝐿

𝑝𝑞
] →   𝑽1𝐶𝐿 = [0]1 𝑥 𝑀𝑁   &       𝑽2𝐶𝐿

𝑝𝑞 = [𝑞𝑖+(𝑗−1)𝑃
𝑝𝑞

]
1 𝑥 𝑃𝑄

   

𝑞𝑖+(𝑗−1)𝑃
𝑝𝑞

= ∫ ∫ [
𝜕4𝑋𝑖

𝑐

𝜕𝜉4
𝑌𝑗
𝑐 + 𝑏1

𝜕3𝑋𝑖
𝑐

𝜕𝜉3
𝜕𝑌𝑗

𝑐

𝜕𝜂
 + 𝑏2

𝜕2𝑋𝑖
𝑐

𝜕𝜉2
𝜕2𝑌𝑗

𝑐

𝜕𝜂2
+ 𝑏3

𝜕𝑋𝑖
𝑐

𝜕𝜉

𝜕3𝑌𝑗
𝑐

𝜕𝜂3

1

0

1

0

+ 𝑏4𝑋𝑖
𝑐
𝜕4𝑌𝑗

𝑐

𝜕𝜂4
] 𝑋𝑝

𝑐  𝑌𝑞
𝑐𝑑𝜉 𝑑𝜂 

(97) 

 
𝑲𝐶𝑁𝐿
𝑚𝑛 = [

𝑲11
𝑝𝑞

𝐶𝑁𝐿
 𝑲12𝐶𝑁𝐿

𝑲21𝐶𝑁𝐿 𝑲22𝐶𝑁𝐿

] →   𝑲11
𝑝𝑞

𝐶𝑁𝐿
= [ℎ𝑛+(𝑚−1)𝑀,   𝑖+(𝑗−1)𝑀

𝑝𝑞
]
𝑀𝑁𝑥 𝑀𝑁

    

   𝑲12𝐶𝑁𝐿 = [0]𝑀𝑁 𝑥 𝑃𝑄   &   𝑲21𝐶𝑁𝐿 = [0]𝑃𝑄 𝑥 𝑀𝑁   &    𝑲22𝐶𝑁𝐿 = [0]𝑃𝑄 𝑥 𝑃𝑄    

ℎ𝑛+(𝑚−1)𝑀,   𝑖+(𝑗−1)𝑀
𝑝𝑞

= 𝑏5∫ ∫ [
𝜕2𝑋𝑚
𝜕𝜉2

𝑌𝑛𝑋𝑖
𝜕2𝑌𝑗

𝜕𝜂2
−
𝜕𝑋𝑚
𝜕𝜉

𝜕𝑌𝑛
𝜕𝜂

𝜕𝑋𝑖
𝜕𝜉

𝜕𝑌𝑗

𝜕𝜂
]𝑋𝑝

𝑐  𝑌𝑞
𝑐𝑑𝜉𝑑𝜂

1

0

1

0

 

(98) 

 𝑽𝐶𝑁𝐿𝑂
𝑝𝑞

= [𝑽1𝐶𝑁𝐿𝑂 𝑽2𝐶𝑁𝐿𝑂
𝑝𝑞

] →   𝑽𝟏𝐶𝑁𝐿𝑂 = [0]1 𝑥 𝑀𝑁   &       𝑽2𝐶𝑁𝐿𝑂
𝑝𝑞

= [𝑠𝑖+(𝑗−1)𝑃
𝑝𝑞

]
1 𝑥 𝑃𝑄

   

(99) 
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𝑠𝑚+(𝑛−1)𝑃
𝑝𝑞

= 𝑏5𝑊𝑜∫ ∫ [
𝜕2𝑋𝑜
𝜕𝜉2

𝑌𝑜𝑋𝑚
𝜕2𝑌𝑛
𝜕𝜂2

+ 𝑋𝑜
𝜕2𝑌𝑜
𝜕𝜂2

𝜕2𝑋𝑚
𝜕𝜉2

𝑌𝑛

1

0

1

0

− 2
𝜕𝑋𝑜
𝜕𝜉

𝜕𝑌𝑜
𝜕𝜂

𝜕𝑋𝑚
𝜕𝜉

𝜕𝑌𝑛
𝜕𝜂

]𝑋𝑝
𝑐  𝑌𝑞

𝑐𝑑𝜉 𝑑𝜂 

Then, both equilibrium and compatibility equations are formulated in matrix form using the 

same independent variable Φ. 

4.1.4. Solving the non-linear system of equations 

The resulting nonlinear system of equations is solved using the Newton-Raphson method. 

This method has been chosen due to its simplicity, especially in its applications to systems 

of equations expressed in matrix form. The procedure followed is based on Qiao’s work 

[34]. 

However, Newton-Raphson can present limitations when compared to more advanced 

methods. For example, it has difficulties tracing the equilibrium path when the post-

buckling stiffness tends to zero or to negative values (snap through). This results in 

discrepancies in the resolution of cases with mode jumping. This phenomenon was not 

the focus of this Thesis, however for such phenomena it might be interesting to adopt more 

capable Arc length methods to solve the equilibrium path. 

The Newton-Raphson method for nonlinear system of equations is based on the following 

expression: 

 𝚽𝑛+1 = 𝚽𝑛 + Δ𝚽𝑛 = 𝚽𝑛 − 𝑱−𝟏𝒇 (100) 

Where 𝐽 is the Jacobian of the system to be solved and 𝑓 are the residues of the system. 

 
{
𝑔1
𝑚𝑛 = 𝑽𝐸𝐿

𝑚𝑛𝚽+ 𝐕S
𝑚𝑛𝚽−𝚽𝑇𝑲𝐸𝑁𝐿

mn 𝚽− 𝐕ENLO
𝑚𝑛 𝚽− 𝑽𝐸𝐿𝑃

𝑚𝑛𝚽− 𝑐𝑜𝑛𝑚𝑛

𝒈2
𝑝𝑞
= 𝑽𝐶𝐿

𝑝𝑞
𝚽−𝚽𝑇𝑲𝐶𝑁𝐿

𝑝𝑞
𝚽− 𝑽𝐶𝑁𝐿𝑂

𝑝𝑞
𝚽

 (101) 

 𝒇 = [𝑔1
11𝑔1

12…𝑔1
𝑚𝑛…𝑔1

𝑀𝑁−1𝑔1
𝑀𝑁𝑔2

11𝑔2
12…𝑔2

𝑝𝑞
…𝑔2

𝑃𝑄−1𝑔2
𝑃𝑄
]
𝑇
 (102) 

 

{
𝝍1
𝑚𝑛 = 𝑽𝐸𝐿

𝑚𝑛T + 𝐕S
𝑚𝑛𝑇 − (𝑲𝐸𝑁𝐿

mn T
+𝑲𝐸𝑁𝐿

mn )𝚽− 𝐕ENLO
𝑚𝑛 T

− 𝑽𝐸𝐿𝑃
𝑚𝑛 T

𝝍2
𝑝𝑞
= 𝑽𝐶𝐿

𝑝𝑞T
− (𝑲𝐶𝑁𝐿

𝑝𝑞 T
+𝑲𝐶𝑁𝐿

𝑝𝑞
)𝚽 − 𝑽𝐶𝑁𝐿𝑂

𝑝𝑞 T  (103) 

 𝑱 = [𝜓1
11𝜓1

12…𝜓1
𝑚𝑛…𝜓1

𝑀𝑁−1𝜓1
𝑀𝑁𝜓2

11𝜓1
12…𝜓2

𝑝𝑞
…𝜓2

𝑃𝑄−1𝜓2
𝑃𝑄
]
𝑇
 (104) 

For every load step chosen, eq. 100 is iterated until the convergence criterion is satisfied.  

 |Δ𝚽𝑛|

|𝚽𝑛+1|
≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (105) 

The initial guess for the first load step in a zero vector, while for the rest of load steps, the 

previous solution is taken. It can be seen that, during iterations, the matrix terms either 
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remain constant or are directly proportional to the load applied. Therefore, the expensive 

step of solving the matrix terms is only done once. Further details are given in section 

4.1.6. 

4.1.5. Airy stress function 

The solution obtained is based on a generic Airy Stress function. In it we can distinguish 

two parts: the first responds to the constant load distribution, given by the in-plane loads 

applied and is already known: 

 
𝐹𝑐 = −𝑁𝑥

∗
𝜂2

2
− 𝑁𝑦

∗𝜆2
𝜉2

2
− 𝑁𝑥𝑦

∗  𝜆𝜉𝜂  (106) 

The second corresponds to the load redistribution due to the out-of-plane deformation. 

This is modelled through a linear combination of function similarly what was done for the 

out of plane function: 

 

𝐹𝑟 = ∑∑𝜒𝑝𝑞𝑋𝑝
𝑐(𝜉)𝑌𝑞

𝑐(𝜂)

𝑄

𝑞=1

𝑃

𝑝=1

 (107) 

Remembering that: 

 𝐹 = 𝐹𝑐 + 𝐹𝑟 (108) 

Where P and Q, analogously to M and N in the out-of-plane shape, give the number of 

functions to represent the stress redistribution in each direction. 

Two different solutions are presented depending on how the load is applied to the plate.  

4.1.5.1. Constant load distribution 

The first solution is based on applying the in-plane loads as constant distributions along 

the edges. This solution has already been used by Romeo and Frulla [28] and Qiao [34]. 

Since the load at the edges has to match the constant load applied, the force redistribution 

terms must vanish at the edges: 

 

𝑁𝑥
∗
𝑟|𝜉=0,1

= ∑∑𝜒𝑝𝑞𝑋𝑝
𝑐(𝜉)|

𝜉=0,1

𝜕2𝑌𝑞
𝑐(𝜂)

𝜕𝜂2
= 0

𝑄

𝑞=1

𝑃

𝑝=1

 

𝑁𝑦
∗
𝑟
|
𝜂=0,1

= ∑∑𝜒𝑝𝑞
𝜕2𝑋𝑝

𝑐(𝜉)

𝜕𝜉2
𝑌𝑞
𝑐(𝜂)|

𝜂=0,1
= 0

𝑄

𝑞=1

𝑃

𝑝=1

 

𝑁𝑥𝑦
∗
𝑟
|
𝜉=0,1  𝜂=0,1

= ∑∑𝜒𝑝𝑞
𝜕𝑋𝑝

𝑐(𝜉)

𝜕𝜉
|
𝜉=0,1

 
𝜕𝑌𝑞

𝑐(𝜂)

𝜕𝜂
|
𝜂=0,1

= 0

𝑄

𝑞=1

𝑃

𝑝=1

 

(109) 

To ensure the previous boundary conditions are satisfied, the following terms must be 

zero: 
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𝑋𝑝
𝑐(𝜉)|

𝜉=0,1
= 
𝜕𝑋𝑝

𝑐(𝜉)

𝜕𝜉
|
𝜉=0,1

= 0 

𝑌𝑞
𝑐(𝜂)|

𝜂=0,1
= 
𝜕𝑌𝑞

𝑐(𝜂)

𝜕𝜂
|
𝜂=0,1

= 0    

(110) 

Such conditions have been fulfilled by choosing eigenbeam value functions to model the 

load redistribution. Then, the approach is completely analogous to the one followed to find 

the shape functions for clamped-clamped boundary conditions. Therefore, for more details 

review section 3.1.3.4. 

4.1.5.2. Constant displacement 

The main interest in developing a semi-analytical solution for composite plates is to 

implement a fast tool to solve stiffened panels. However, in stiffened panels the load is 

typically introduced as a constant displacement, due to the relatively high bending stiffness 

of the reinforcing beam members. 

Romeo and Frulla already realised that the constant load distribution was not consistent 

with test results involving stiffened plates. Therefore in [29] they switched to a new Airy 

Stress function able to represent the load redistribution for constant displacement. This 

new function is based on the exact solution of the compatibility equation for simply 

supported specially orthotropic plates under bi-axial loading using a linear combination 

dependent on the number of half-waves. 

 

𝐹𝑟 = ∑∑𝜒𝑝𝑞cos (2𝑝𝜋𝜉)cos (2𝑞𝜋𝜂)

𝑄

𝑞=1

𝑃

𝑝=1

,       𝜒11 = 0 (111) 

Since the function is obtained under some ideal conditions, in the rest of cases it can only 

work as an approximation. The main limitation of such function is related to the incapacity 

of solving the stress redistribution under shear loading.  

Shear loading was not a priority feature in the proposal of this Thesis but nevertheless it 

has been attempted to incorporate (really successfully in the case of buckling). Work is 

still required to properly capture the load redistribution under shear. However, the results 

presented in section 4.4.3 show that this function captures accurately predict out-of-plane 

displacements and maximum and minimum forces in the plate, therefore the approach is 

still of interest for such cases. Further analysis is performed in section 4.3. 

4.1.6. Algorithm flowchart 

The following chart is presented to further clarify the process followed to solve the post-

buckling problem. 
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Figure 21: Flowchart post-buckling plate solution 
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4.1.7. Post-process 

The post-buckling analysis involves more variables than buckling. In the latter, 

eigenvalues and eigenvectors were directly obtained and the only post-processing that 

might be required was transforming the eigenvector into the buckling shape. 

On the other hand, post-buckling seeks the solution of the equilibrium path of the plate, 

from zero load up to a specified post-buckling ratio. Moreover, variables like the in-plane 

force distribution and the in-plane displacements become relevant. 

4.1.7.1. Out-of-plane displacement 

The out-of-plane displacement is obtained through the first part of the Φ solution. This 

vector gives the amplitude for every combination of shape functions, so all of them are 

summed together multiplied by their amplitudes and evaluated at specific points (like a 

mesh) to obtain a 2D mapping of the out-of-plane displacement. This 2D distribution is 

stored for every load step so it is possible to reproduce an animation of the deformation 

taking every load step as a frame, or taking the maximum at every load step in order to 

create the curve of the maximum out-of-plane displacement against post-buckling ratio.  

4.1.7.2. In-plane force distribution 

The in-plane force distribution is obtained identically as the out-of-plane displacement, but 

from the second part of the Φ solution. The amplitudes are multiplied by the corresponding 

derivatives of the Airy Stress function to obtain the distribution of in-plane forces for the 

selected points (mesh). Aside from the 2D distribution at every load step, the maxima and 

minima of every in-plane force are stored to be able to plot them as curves against the 

post-buckling ratio. 

4.1.7.3. In-plane displacements 

The in-plane displacements are not solved in the governing equation of the plate. Going 

back to the assumptions, it was assumed it was possible to uncouple in-plane and out-of-

plane behaviour simplifying the solution process. However, once the out-of-plane 

displacement and the in-plane force distributions are solved, it is possible to explicitly 

derive the in-plane displacement from them. 

According to the plate theory used, the in-plane displacements depend on the mid-plane 

strain and out-of-plane displacements: 

 

{
  
 

  
 
𝜕𝑢

𝜕𝑥
= 휀𝑥

𝑜 −
1

2
(
𝜕𝑤

𝜕𝑥
)
2

𝜕𝑣

𝜕𝑦
= 휀𝑦

𝑜 −
1

2
(
𝜕𝑤

𝜕𝑦
)
2

γ = 휀𝑥𝑦
0 −

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

 (112) 

Moreover, for mid-plane symmetric plates, the mid-plane strain are only dependent on the 

in-plane force distribution (or Airy Stress function). 
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{
  
 

  
 휀𝑥

0 = 𝑎11
𝜕2𝜙

𝜕𝑦2
+ 𝑎12

𝜕2𝜙

𝜕𝑥2
− 𝑎16

𝜕2𝜙

𝜕𝑥𝜕𝑦

휀𝑦
0 = 𝑎12

𝜕2𝜙

𝜕𝑦2
+ 𝑎22

𝜕2𝜙

𝜕𝑥2
− 𝑎26

𝜕2𝜙

𝜕𝑥𝜕𝑦

휀𝑥𝑦
0 = 𝑎16

𝜕2𝜙

𝜕𝑦2
+ 𝑎26

𝜕2𝜙

𝜕𝑥2
− 𝑎66

𝜕2𝜙

𝜕𝑥𝜕𝑦

 (113) 

The displacement increments are obtained by integrating the result of substituting eq. 113 

into 112 over all the plate. For the x direction: 

 
∫∫

𝜕𝑢

𝜕𝑥
𝑑𝑥 𝑑𝑦 = ∫∫{𝑎11

𝜕2𝜙

𝜕𝑦2
+ 𝑎12

𝜕2𝜙

𝜕𝑥2
− 𝑎16

𝜕2𝜙

𝜕𝑥𝜕𝑦
−
1

2
(
𝜕𝑤

𝜕𝑥
)
2

}𝑑𝑥 𝑑𝑦 (114) 

 

Δ𝑢 =

∫∫{𝑎11
𝜕2𝜙
𝜕𝑦2

+ 𝑎12
𝜕2𝜙
𝜕𝑥2

− 𝑎16
𝜕2𝜙
𝜕𝑥𝜕𝑦

−
1
2 (
𝜕𝑤
𝜕𝑥
)
2

}𝑑𝑥 𝑑𝑦

𝑏
 

(115) 

It is clear then that the in-plane displacement can be obtained directly from the Airy Stress 

function and out-of-plane displacement. The result obtained is the average relative 

displacement between one edge and the other, which is especially suitable when solving 

post-buckling under applied displacement (keeping the edges straight). 

The non-dimensionalized solution is then: 

 

Δ𝑢∗ = −∫ ∫ {[
1

2

ℎ

𝑎
∑ ∑(𝑊𝑀𝑁

𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛)
2𝑁

𝑛=1

𝑀

𝑚=1

]
1

0

1

0

+ [−
ℎ

𝑏
𝜆𝑎11

∗ 𝑁𝑥
∗ −

ℎ

𝑎
𝜆2𝑎12

∗ 𝑁𝑦
∗  +

ℎ

𝑎
𝜆2𝑎16

∗ 𝑁𝑥𝑦
∗  ]

+ [∑∑𝜒𝑝𝑞 (
ℎ

𝑏
𝜆𝑎11

∗ 𝑋𝑝
𝑐
𝜕2𝑌𝑞

𝑐

𝜕𝜂2
+
ℎ

𝑎
𝜆2𝑎12

∗
 𝜕2𝑋𝑝

𝑐

𝜕𝜉2 
𝑌𝑞
𝑐

𝑄

𝑞=1

𝑃

𝑝=1

−
ℎ

𝑎
𝜆2𝑎16

∗
𝜕𝑋𝑝

𝑐

𝜕𝜉

𝜕𝑌𝑞
𝑐

𝜕𝜂
)]}𝑑𝜉𝑑𝜂 

(116) 
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Δ𝑣∗ = −∫ ∫ {[
1

2

ℎ

𝑏
∑ ∑(𝑊𝑀𝑁𝑋𝑚

𝜕𝑌𝑛
𝜕𝜂

)
2𝑁

𝑛=1

𝑀

𝑚=1

]
1

0

1

0

+ [−
ℎ

𝑏
𝑎12
∗ 𝑁𝑥

∗ −
ℎ

𝑎
𝜆𝑎22

∗ 𝑁𝑦
∗  +

ℎ

𝑎
𝜆𝑎26

∗ 𝑁𝑥𝑦
∗  ]

+ [∑∑𝜒𝑝𝑞 (
ℎ

𝑏
𝑎12
∗ 𝑋𝑝

𝑐
𝜕2𝑌𝑞

𝑐

𝜕𝜂2
+
ℎ

𝑎
𝑎22
∗
 𝜕2𝑋𝑝

𝑐

𝜕𝜉2 
𝑌𝑞
𝑐

𝑄

𝑞=1

𝑃

𝑝=1

−
ℎ

𝑎
𝑎26
∗
𝜕𝑋𝑝

𝑐

𝜕𝜉

𝜕𝑌𝑞
𝑐

𝜕𝜂
)]}𝑑𝜉𝑑𝜂 

(117) 

The in-plane rotation can only be obtained similarly: 

 

γ = −∫ ∫ {[
1

2

ℎ2

𝑎𝑏
∑ ∑𝑊𝑀𝑁

2
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛𝑋𝑚
𝜕𝑌𝑛
𝜕𝜂

𝑁

𝑛=1

𝑀

𝑚=1

]
1

0

1

0

+ [−
ℎ2

𝑏2
𝑎16
∗ 𝑁𝑥

∗ −
ℎ

𝑎2
𝜆2𝑎26

∗ 𝑁𝑦
∗  +

ℎ

𝑎𝑏
𝜆𝑎66

∗ 𝑁𝑥𝑦
∗  ]

+ [∑∑𝜒𝑝𝑞 (
ℎ2

𝑏2
𝑎16
∗ 𝑋𝑝

𝑐
𝜕2𝑌𝑞

𝑐

𝜕𝜂2
+
ℎ2

𝑎2
𝑎26
∗
 𝜕2𝑋𝑝

𝑐

𝜕𝜉2 
𝑌𝑞
𝑐

𝑄

𝑞=1

𝑃

𝑝=1

−
ℎ2

𝑎𝑏
𝑎66
∗
𝜕𝑋𝑝

𝑐

𝜕𝜉

𝜕𝑌𝑞
𝑐

𝜕𝜂
)]}𝑑𝜉𝑑𝜂 
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The non-dimensionalizations have been done following the same criteria as in previous 

chapters. Additionally, for the in-plane displacements: 

 
Δ𝑢∗ =

Δ𝑢

𝑎
,          Δ𝑣∗ =

Δ𝑣

𝑏
 (119) 

4.2. FE model 

The approach followed to verify the semi-analytical solution against a FE model in post-

buckling is basically the same as used in buckling. The same software package is used 

and also the process of building the FE model is automated by means of a Python script. 

The main changes applied are explained in the following subsections. 

4.2.1. Mesh 

The deformations on post-buckling adopt more complex shapes so the preliminary 

convergence studies have shown the necessity to increase the number of elements to 40 

(per short side) to stay on the safe side during the verifications.  
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4.2.2. Boundary conditions and loads 

The first difference with the buckling analysis is that post-buckling requires an imperfection 

to solve the proper equilibrium path. This imperfection should be equivalent to the one 

considered in the semi-analytical model in order to get comparable results. Therefore, it 

has been decided to execute in first step a buckling analysis (the same as presented in 

chapter 3), and use the buckling mode (deformation), multiplied by an amplitude factor, as 

the imperfection in the post-buckling solution. This approach requires modifying the 

keyword editor of the buckling and post-buckling models in order to generate and reload 

the .fil file with the buckling mode. One problem of this approach is that Abaqus applies 

the imperfection displacement gradually during the loading of the plate, while the semi-

analytical model accounts for an imperfection that is already present when the loading 

starts. This does not affect the validity of the results, but explains slight differences during 

the linear range (pre-buckling). 

The boundary conditions and loads depend on which post-buckling model is used. 

4.2.2.1. Constant load 

Constant load is the approach followed in all buckling analysis, therefore this means that 

it is not necessary to modify how the BCs are applied in the FE model with respect to the 

previous chapter. Mind that for buckling, apply the load constantly or through a constant 

applied displacement were equivalent cases since the stiffness of the plate before buckling 

is constant.  

4.2.2.2. Constant applied displacement 

On the other hand, if the edges are to be kept straight during post-buckling, it is necessary 

to introduce changes in the FE model, especially on the boundary conditions to impose 

this new loading case. 

The edges of the model are kept straight using equation constraints tying the degrees of 

freedom of all their nodes. The plate must be able to stretch and also allow simple shear 

deformations to test results under shear (or non-balanced laminates). The upper and lower 

edges are kept straight and horizontal by tying the vertical displacement of all the nodes 

of each edge. 

The side edges require a more complex approach as they must be kept straight but being 

allowed to rotate (cannot be kept vertical). In order to do that, the horizontal displacement 

of the inner nodes of the edge are expressed as a linear combination of the horizontal 

displacement of the two corners: 

 
𝑢𝑖 =

𝑛 − 𝑖

𝑛
𝑢0 +

𝑖

𝑛
𝑢𝑛 (120) 

Where 𝑛 is the number of elements in the side, 𝑢0 is the horizontal displacement of the 

bottom corner, 𝑢𝑖 is the horizontal displacement of the i-th node and 𝑢𝑛 is the horizontal 

displacement of the upper corner. 
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In this new model, the displacement is applied at the edges is constrained, so it does not 

make sense to keep applying the axial loads as distributed forces, as the edges will move 

together no matter how the load is applied. The following figure shows how the load 

application has been simplified.  

The applied concentrated forces are equivalent to applying constant displacement along 

the edge but allowing a higher degree of control on the loads applied in each side and 

especially simplifying the analysis for a specific post-buckling ratio (it is just necessary to 

multiply the buckling load by the desired ratio and apply it with the concentrated forces).  

4.2.3. Analysis and results 

The post-buckling solution is obtained using a non-linear static general analysis. The load 

applied in the model is the buckling load obtained from the semi-analytical solution 

multiplied by the post-buckling coefficient desired.  

The results requested are the ones already calculated by the semi-analytical model. The 

in-plane force distributions are explicitly requested in the field output (called section forces 

(SF) in Abaqus) and the results for every node and load step are stored in .txt files for the 

post-processing of the verification. The results of the out-of-plane displacement are 

exported in the same way, while the increment of in-plane displacements are obtained 

subtracting the results of opposite corners. 

4.3. Analytical model 

In addition to semi-analytical and FEM, an analytical solution has also been implemented 

in the verification. However, due to the increasing complexity of post-buckling, this solution 

can only cope with specially orthotropic laminates under bi-axial loading and applied 

displacement. 

 

Figure 22: Boundary conditions and load applied displacement FE model 
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The analytical solution is a modification from the one proposed by Kassapoglou in the 

section 7.1 of [11], which has already been shown during the literature study (eq. and 

figure 2 ). The new equation allows for bi-axial loading, buckling in different number of half-

waves and discards the fixed edges of the previous, in order to be applicable to the studied 

configurations. 

The solutions obtained are used mainly to highlight the limitations9 of the pure analytical 

approach in comparison to the semi-analytical. The results obtained are the out-of-plane 

(at the centre of the half-wave) and in-plane edge displacements. In-plane load distribution 

could also be obtained. The corresponding equations are: 

 

𝑤11 = 4√
−𝐷11 (

𝑚𝑜
𝑎
)
4
− 2(𝐷12 + 2𝐷66)

𝑚𝑜
2𝑛𝑜

2

𝑎2𝑏2
−𝐷22 (

𝑛𝑜
𝑏
)
4
+𝑁𝑥 (

𝑚𝑜

𝑎𝜋2
)
2
+𝑁𝑦 (

𝑛𝑜
𝑏𝜋2

)
2

(
𝑚𝑜
𝑎 )

4 𝐴11𝐴22 − 𝐴12
2

𝐴22
+ (

𝑛𝑜
𝑏
)
4 𝐴11𝐴22 − 𝐴12

2

𝐴11

 (121) 

 

Δ𝑢 = −
𝐴22

𝐴11𝐴22 − 𝐴12
2 𝑁𝑥𝑏𝜆 +

𝐴12

𝐴11𝐴22 − 𝐴12
2 𝑁𝑦𝑎 −

1

8
𝑤2

𝑚𝑜
2𝜋2

𝑎
 (122) 

 
Δ𝑣 = −

𝐴11

𝐴11𝐴22 − 𝐴12
2

𝑁𝑦𝑎

𝜆
 +

𝐴12

𝐴11𝐴22 − 𝐴12
2 𝑁𝑥𝑏 −

1

8
𝑤2

𝑛𝑜
2𝜋2

𝑏
 (123) 

Where 𝑚𝑜 and 𝑛𝑜 are the critical number of half-waves in x and y directions. 

4.4. Solution and verification 

Again, both semi-analytical and FE models have been developed to be automatically 

executed from a main Matlab program. The purpose of this program consists in solving 

both models for multiple configurations and post-process the results to facilitate the 

verification of the developed model and give confidence on the validity of its results. 

Moreover, the obtained results give a clear view of which are the limitations and the 

expected accuracy on different cases. It must be reminded that the use of more analytical 

approaches typically sacrifices accuracy (due to the necessity of applying more 

approximations) in order to obtain a better performance and therefore create solutions 

more suitable for preliminary design or optimization.  

The number of approximations required to create the semi-analytical model makes it 

necessary to conduct thoughtful verifications to prove solutions are still valid and 

investigate the accuracy that could be expected from the different configurations. The 

verification performed for post-buckling is based on the same configurations tested for 

buckling (using the same geometries, thicknesses, boundary conditions, loads and 

                                                

 

9 On the other hand, the analytical solution is in closed form and, as such, significantly faster than the semi-

analytical one. For a set of limited cases it can be a much better option, but not for stiffened panels. 
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laminates). The post-buckling solution requires additional variables compared to the ones 

presented in buckling in section 3.3. 

 PB coefficient: the post-buckling coefficient is the ratio between the applied load 

and the critical buckling one. Using the PB coefficient is an efficient way to 

introduce the loads in the model so different comparisons for different buckling 

loads can be compared. Most of the cases have been solved until PB coefficient 

equal to two, this allows for a good analysis of the non-linear effects that ocurr after 

buckling for values above what is found in typical aerospace applications. 

 Imperfection: To avoid obtaining the zero out-of-plane displacement equilibrium 

solution (unstable) it is necessary to introduce an initial imperfection in the plate. 

The higher the imperfection the more bending behaviour is obtained, while the 

smaller the more ideal buckling behaviour is achieved. Differente values have been 

tested in order to use the minimum that allows to capure post-buckling. The results 

obtained have encouraged using 1% of the thickness as an imperfection. 

 Load step: In the post-buckling analysis is necessary to select the intervals at 

which the intermediate solutions are sought. This number is important in the 

convergence of the solution and also in obtaining a good resolution in the solution 

curves. The Newton-Raphson iteration is not very computationally expensive, so 

increasing the step does not have a big impact in the performance. Typical values 

used are around 100 steps. 

 Newton-Raphson tolerance: Determines the maximum error allowed inside 

Newton-Raphson iterations. 

 Post-processing mesh: The solutions obtained in the semi-analytical model need 

to be evaluated in the 2D space of the plate. The number of points at which the 

solutions are evaluated can impact the performance. Values around 20 or 40 have 

proven to give enough accuracy. 

Additionally there is the number of terms to represent the linear combinations. Apart from 

the out-of-plane displacement (M x N), it is necessary to add the number of terms for the 

Airy Stress function (P x Q). The number of terms selected has an important effect on both 

the accuracy and the required time of the semi-analytical solution (See table 2 for 

execution time examples). Several combinations might be used to optimize the solutions.  

4.4.1. Solution format 

It has already been mentioned that the number of variables per case is higher than in 

buckling. This makes the verification process more complex and choosing the relevant 

information becomes more important. In section 4.1.7 was mentioned that the solutions 

obtained from the semi-analytical model are the out-of-plane displacement distribution, the 

averaged in-plane displacement and the three in-plane force distributions (X, Y and shear). 

4.4.1.1. Solution curves 

The first step to reduce the amount of data is simplifying the distributions into maximums 

and minimums. Then, it is possible to create curves against the post-buckling coefficient. 

However, simplifying to a maximum or minimum means losing a lot of information. To keep 

the most of it, the complete distribution solution is given at specific PB coefficients. 
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The following set of figures have been created to show the results. Every bullet introduces 

a figure description and an example for the case of a square simply supported isotropic 

plate under uniaxial compression. The thickness of the plate is 1 mm as in all the post-

buckling cases presented in this chapter to guarantee that thin plate theory is applicable:  

 Out-of-plane displacement: The first figure shows the evolution of the maximum 

(in absolute value) of the out-of-plane displacement for the different PB 

coefficients. The figure superposes the semi-analytical solution (blue), the FE 

solution (green) and the analytical if available (red). Results are given in meters. 

 

Figure 23: Example out-of-plane displacement 

 Avg Inplane displacements: The second figure presents the in-plane 

displacements (how much one edge moves with respect to the other). The figure 

follows the same colouring criteria but it has been divided into two sub-plots. The 

upper one shows the results in the x direction while the bottom one shows the 

results in y. It should be noticed that the slope of the curve gives the stiffness of 

the plate, which remains fairly constant before and after every mode change. 

Results are again given in meters. 
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Figure 24: Example averaged in-plane displacements 

 In-plane forces: The third figure plots the maximum and minimum in-plane force 

distribution at every load step. The different forces are plotted with different colours 

and line formats, following these criteria: the minimum of the semi-analytical is 

plotted with a continuous line, the maximum with a semi-continuous line and the 

FE solutions (both min and max) with discrete points (with ‘+’ symbol). Regarding 

the colours, the forces in x are plotted in red, the forces in y in blue and the shear 

forces in green. Results are given in Newtons divided by meters. 

 

Figure 25: Example max in-plane force distribution 

 In-plane force and out-of-plane displacement distributions: The 

corresponding figures contain 4 different subplots each. First one is the force 

distribution in x, the second the force distribution in y, the third the shear distribution 

and the last one is the out-of-plane displacement. Every figure shows the results 

through a 2D colour plot over all the plate geometry (the axis present the 

dimensions of the plate in meters), and the different values can be interpreted 

thanks to independent colour legends. 

Four figures are produced for every plate configuration. Two of them show the 

semi-analytical results, one at half the maximum PB coefficient and the other at 

the maximum. The other two show the FE results at the same load steps. The 

following figure presents as example the distributions for the semi-analytical 

solution at the last PB coefficient: 
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Figure 26: Example distributions (semi-analytical for PB coefficient 2) 

As can be seen from figures 23-25, both the analytical and semi-analytical solutions show 

excellent agreement with FE. Such results can be used as a benchmark before starting 

with more complex cases. 

To distinguish the verification of different plate configurations, a 5 digit code has been 

implemented. It accounts for the aspect ratio, plate thickness, boundary condition, load 

case and laminate lay-up. The code is presented in the Appendix A.  

4.4.1.2. Solution tables 

Apart from the individual figures it makes sense to have the solution error of many different 

configurations side by side, so it is possible to better assess the accuracy of the semi-

analytical solution in a general way. The solution tables follow the same exact format as 

the ones presented in the buckling chapter. However, they contain more information using 

Excel files (See Annex\PBuckling). 

The solutions covered are a simplification of the figures, the results included are: the out-

of-plane displacement, u and v in-plane displacements, in-plane force absolute maximums 

and pre and post-buckling stiffnesses in x and y. This makes up to 8 variables. The 

solutions are taken at half the maximum PB coefficient and the maximum, which makes 

16 different results per case, organized in different sheets.  

Two different files are created. The first one contains the FE solutions. The second 

contains the error in % between SA and FE results.  

The tables group big amounts of data, but using color scales it is possible to quickly asses 

the differences in accuracy of the different variables, and which plate configurations give 

lower accuracy. 

4.4.2. Convergence study 

The number of terms required to properly solve post-buckling depends mainly on the plate 

configuration. Therefore, it is difficult to perform a convergence study when the results 

would depend on every case. Therefore, it has been decided to establish a reference 

configuration for which the convergence study is performed.  
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The convergence study is also important to understand the significance of the number of 

terms in both the out-of-plane and Airy Stress function. In an ideal convergence study, the 

most complex configuration (the one that should require more terms) would be tested to 

guarantee the proper behaviour of the rest. However, the additional limitations of cases 

involving shear can make it difficult to assess the importance of the different terms, as the 

exact convergence is not guaranteed. 

Therefore, it has been decided to start with the convergence study of a rectangular plate 

(aspect ratio 3) with elastic restrains under uniaxial compression with predominant 45s 

layup. This case includes most of the difficulties for a good convergence, but at the same 

time the fact that it is under compression gives confidence that convergence will be 

achieved.  

4.4.2.1. Convergence uniaxial compression 

Initial tests suggest 3 or more terms are required as the plate buckled in three half-waves 

under those conditions. Different combinations for both out-of-plane deflection and Airy 

Stress function are studied: 

4.4.2.1.1. Convergence out-of-plane displacement 

During the out-of-plane displacement convergence study, the terms of the Airy Stress 

function are kept constant to 6x6 (6 terms in the x direction and 6 in the y) while the 

deflection terms are modified to assess their effect. The following figures show the 

evolution of the out-of-plane displacement for 4x4 (a), 6x6 (b) and 8x8 terms (c). 

 

Figure 27: Convergence study out-of-plane displacement under uniaxial compression 

The trends clearly show the improvement of the solution by choosing more terms. As 

expected 4x4 terms is already able to reproduce the proper behaviour, although the 

accuracy at the beginning and end of the curve is not excellent. 6x6 terms achieves a 

closer solution especially at higher PB ratios and 8x8 improves the solution near the 

buckling point, giving a perfect agreement through all the ratios. 

Clearly, the number of terms to be used will depend on the required accuracy. Using more 

terms increases the amount of time required, so both accuracy and speed must be 

balanced. 

4.4.2.1.2. Convergence Airy Stress function 

For the convergence study of the Airy Stress function, the out-of-plane terms are fixed to 

6x6 and 4x4 (a), 6x6 (b) and 8x8 terms (c) in the Airy Stress function are tested. Results 

are shown in figure 27: 

(a) (b) (c) 
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Figure 28: Convergence study Airy Stress function under uniaxial compression 

 The 4x4 case, surprisingly shows better behaviour than 6x6 for the beginning of the curve 

(near buckling) but shows mode change for PB ratio 1.6 which makes difficult reaching 

further conclusions. 8x8 terms is comparable to the last figure obtained for the out-of-plane 

convergence, so it is difficult to assess which terms are more important. 

If the in-plane forces are compared, the use of 6x6 for the displacement and 6x6 terms for 

the Airy Stress function increases the accuracy of the results over poorer number of terms. 

Further additional terms almost do not have any effect in the solutions, as shown by figure 

29. 

 

Figure 29: Convergence of the in-plane forces for 6x6-6x6 terms (a) and 8x8-8x8 terms (b) under uniaxial 
compression 

4.4.2.1.3. Conclusions convergence uniaxial compression 

From the results obtained it can be concluded that all the combinations are able to predict 

the post-buckling behaviour. 4x4 terms for the Airy Stress function is the worst case due 

to the mode change, additional tests suggest that using fewer terms make the solutions 

more sensitive to mode change. 8x8 terms can slightly improve the behaviour for the out-

of-plane displacement, but barely have any effect on the force prediction. Considering also 

the computational time, is concluded that in this case 6x6-6x610 terms is the most balanced 

solution. 

                                                

 

10 This expression is used to show the number of terms used for each expression. First two number are the 

terms for the out-of-plane displacement and the last two, the terms for the Airy Stress function. The total 

number of terms is the multiplication of the first two plus the multiplication of the lasts. 

(a) (b) (c) 

(a) (b) 
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4.4.2.2. Convergence combined loading 

Combined loading has proven to be the most difficult case to solve, due to the higher 

complexity of the out-of-plane displacement shape and force distributions. The 

convergence study under combined loading is especially interesting as it should show the 

limitations of the formulation for the most difficult of the cases under study. In this case, 

the boundary conditions selected are clamped. 

The following figures shows the results for the out-of-plane displacement and forces for 

4x4-4x4 (a), 6x6-6x6 (b) and 8x8-8x8 terms (c): 

 

Figure 30: Convergence of the out-of-plane displacement under combined loading 

The differences for the out-of-plane displacement are not significant. Some improvement 

is observed from 4 to 6 terms (per direction and function) in the mid zone of the curve. The 

most interesting fact is that all solutions present some error, suggesting that the current 

linear combinations are not able to perfectly reproduce the post-buckling behaviour 

irrespective of the number of terms. However, the behaviour is approximated in all cases 

and the error is not big (around 8% at PB ratio two) taking into account the complexity of 

the case. 

For the same cases but comparing the in-plane forces: 

 

Figure 31: Convergence of the in-plane forces under combined loading 

The forces are also difficult to compare, as there isn’t a clear convergent behaviour. The 

force in X and shear present better result when less terms are used, while the force in Y 

is the other way around. In all the cases, the behaviour is properly approximated, but it 

seems that the current functions used cannot perfectly solve the case, regardless of the 

number of terms. 

4.4.2.3. Conclusions convergence 

The convergence study under compression showed a tendency to converge with the 

number of terms. The use of 6x6-6x6 terms is recommended as the best balance between 

(a) (b) (c) 

(a) (b) (c) 
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accuracy and computational time. On the other hand, it is difficult to extract conclusions 

from the combined loading case, as there is no clear convergent behaviour. For the rest 

of comparisons with FE has been decided to use 6x6-6x6 terms. 

The following table introduces an approximate guideline of the required time for the 

resolution of post-buckling for different number of terms. 

Table 3: Time performance of the SA solution for different number of terms 

Number of terms Approximate execution time 

4x4-4x4 10 s 

6x6-6x6 90 s 

8x8-8x8 9 min 

However, it must be taken into account that the code implemented can be further 

optimized. For example Qiao [34] using a similar approach and 5x5-5x5 terms states that 

the semi-analytical solution requires about 5.5 seconds to complete, being 16 times faster 

than FEM.  

4.4.3. Verification with FEM 

The main verification consists in a compilation of different solution figures. All the 

configurations selected include the out-of-plane displacement curve, as it is the main 

solution variable. Moreover, additional solutions are distributed among the different 

configurations in order to show representative results without involving hundreds of 

figures. 

The verifications include combinations of boundary conditions, load combinations and 

laminates used during the buckling verification. However, not all the possible 

configurations are presented in this report, since that would mean having too many figures 

without giving relevant additional information. 

The geometry of the plates is the same used in buckling. Most of the results are for square 

plates, but some results for rectangular (aspect ratio 3) plates are presented as well, to 

show the capabilities of the method. 

The results of the semi-analytical model are obtained using 6x6 terms for the out-of-plane 

displacement and 6x6 terms for the Airy Stress function. Galerkin method for applied 

displacement is used if it is not specified otherwise. 

4.4.3.1. Predominant 45s 

The predominant 45s laminates is the more difficult laminate tested. As has already been 

discussed, the presence of 𝐷16 and 𝐷26 complicate the solution of the natural boundary 

condition and additionally make the buckling and deformation patterns more complex 

(introducing rotation of the deflection patter even under uniaxial compression).  
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4.4.3.1.1. Compression 

The following results correspond to a square plate under simply supported boundary 

conditions. As has already been mentioned, the thickness is 0.1 mm and the short side of 

the plate 0.1m. 

 

Figure 32: Out-of-plane displacement square simply supported plate under uniaxial compression 
(Predominant 45s)  

The agreement between the different solutions is excellent. Even the analytical solution is 

able to make a good prediction without accounting for the bending-twisting terms. 

In the semi-analytical and FE solutions it is possible to see that there is some out-of-plane 

displacement before buckling due to the imperfection. This imperfection introduces a more 

bending like behaviour. 

 

Figure 33: Max stresses square simply supported plate under uniaxial compression (Predominant 45s)   

There is a good agreement between all the predicted maximum stresses. The plot also 

allows to see the load redistribution the plate suffers after the buckling load. 
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Figure 34: In-plane displacements square simply supported plate under uniaxial compression (Predominant 
45s) 

In-plane displacements are in perfect agreement for all the solutions. It is really clear how 

there are two different slopes (which represent the stiffness of the plate) before and after 

buckling. The v displacement is driven first by the Poisson effect (plate extends in the 

direction perpendicular to compression) and then by the shrinking produced by the out-of-

plane displacement.  

4.4.3.1.2. Shear 

The next results are for a square clamped plate under shear loading. 

 

Figure 35: Out-of-plane displacement square clamped plate under shear (Predominant 45s) 

Out-of-plane displacement is in very good agreement. The small differences between both 

curves seem to be driven by a minor discrepancy on the buckling load (FE solution starts 

to deflect earlier). However, the general behaviour and values are really well captured by 

the semi-analytical solution.  
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Figure 36: In-plane force and out-of-plane distributions square clamped plate under shear (Predominant 
45s). FEM solution on the left, semi-analytical on the right 

This figure shows the aforementioned limitations to reproduce the in-plane force 

distributions when diagonal buckling shapes are present, due to the symmetry of the 

functions that represent this redistribution. The diagonal behaviour is caused by the 

diagonal shape of the buckled shape, this is characteristic in shear loading or in 45s 

dominated laminates. Despite the incapacity to properly predict the redistribution, the 

maximum and minimum values are approximately matched. 

The out-of-plane displacement is able to reproduce the diagonal behaviour and both are 

in perfect agreement.  

4.4.3.1.3. Combined loading 

The next results are for a square constant elastically restrained (200N as in buckling 

verification) plate under combined loading. 

 

Figure 37: Out-of-plane displacement square elastically restrained plate under combined loading 
(Predominant 45s) 

The results show very good agreement for the initial post-buckling behaviour but with some 

over prediction of the out-of-plane displacement for PB coefficient above 1.3-1.4. The 

discrepancies are probably caused by the difficulty to approximate both the complex shape 

and force distributions as a results of the combined loading and the high PB coefficient. 
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The following figure shows the result for the same plate configuration but rectangular 

(aspect ratio three), instead of square, to show the influence of the aspect ratio in the 

verification.  

First results showed mode changing around PB ratio 1.6. To cope with this, the initial 

imperfection for this case has been increased from 1 to 2% of the thickness, resulting in: 

 

Figure 38: Out-of-plane displacement rectangular elastically restrained plate under combined loading 
(Predominant 45s) 

The results for the higher aspect ratio plate are very similar. The out-of-plane displacement 

is almost the same and the discrepancies observed in the last verification are still there. 

The main difference is that the discrepacies start already at PB coefficient 1.1-1.2. 

 

Figure 39: Max stresses rectangular elastically restrained plate under combined loading (Predominant 45s) 

The maximum in-plane forces show better agreement in the x direction, but some 

underestimations of shear and tensile forces in y. 
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4.4.3.2. Predominant 0s 

The predominant 0s laminate have a behaviour closer to a specially orthotropic material 

due to the use of fewer ±45 layers. Therefore, the results are expected to be in better 

agreement than in the previous section with the predominant 45s.  

4.4.3.2.1. Compression 

The following results correspond to a square plate under clamped boundary conditions. 

 

Figure 40: Out-of-plane displacement square clamped plate under uniaxial compression (Predominant 0s) 

The results are in excellent agreement through the entire range of PB coefficients. Just 

notice that there is no analytical solution because the boundary conditions are not simply 

supported. 

4.4.3.2.2. Shear 

The next results are for a square plate under elastically restrained conditions. 

 

Figure 41: Out-of-plane displacement square elastically restrained plate under shear (Predominant 0s) 

The out-of-plane displacement of the elastically restrained plate under shear are also in 

excellent agreement. There are small discrepancies as the semi-analytical solution shows 
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a more perfect buckling as if the imperfection was somehow smaller than in the FE case. 

However this just affect the very beginning of the curve. 

Once again, the same case is verified but for a rectangular plate (aspect ratio 3) to check 

that the results are still valid for rectangular plates. 

 

Figure 42: Out-of-plane displacement rectangular elastically restrained plate under shear (Predominant 0s) 

The agreement is once again excellent, as for the square plate. There seems to be a small 

spike on the semi-analytical solution for PB coefficient around 1.25, which is probably 

caused by some convergence issue in the Newton Raphson algorithm. However, the 

deviation is minimum (almost imperceptible). 

4.4.3.2.3. Combined loading 

The next results are for a square simply supported plate under combined loading. 

 

Figure 43: Out-of-plane displacement square simply supported plate under combined loading (Predominant 
0s) 

The results for the combined loading are very similar to the ones obtained for the 

predominant 45s despite the different lay-up and boundary conditions. The agreement for 
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the lower PB coefficients is excellent but some over estimation of the displacement is 

obtained for the higher ones. Nevertheless the differences do not seem too important as 

they are conservative and around 6% at the most unfavourable point. 

4.4.3.3. Quasi isotropic 

The quasi isotropic laminate has the same number of ±45s as the predominant 0s, but 

with the same number of 0s and 90s. It is not clear that the results should be better for this 

laminate as it will tend to buckle on more half-waves than the predominant 0s while having 

comparable 𝐷16 and 𝐷26 terms. 

4.4.3.3.1. Compression 

The following results correspond to a square plate under elastically restrained boundary 

conditions. 

 

Figure 44: Out-of-plane displacement square elastically restrained plate under uniaxial compression (Quasi 
isotropic) 

The results show excellent agreement between FE and semi-analytical solution. 

4.4.3.3.2. Shear 

The next results are for a square plate under simply supported boundary conditions. 
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Figure 45: Out-of-plane displacement square simply supported plate under shear (Quasi isotropic) 

There is a very a good agreement for this case. The solution is almost identical to the ones 

obtained for the predominant 0s. It seems that the semi-analytical solution behaves like if 

it has a smaller initial imperfection, but immediately the out-of-plane solutions match. This 

behaviour is probably produced by the different way to introduce the initial imperfection in 

both models. To simplify the formulation, the semi-analytical model only accounts for the 

most critical combination of half-waves while the FE model uses the exact buckling shape 

as imperfection. Since in shear, the buckling solution requires multiple combinations, 

making the introduced imperfection not as critical.  

 

Figure 46: In-plane displacements square simply supported plate under shear (Quasi isotropic) 

The in-plane displacements under shear are in excellent agreement. It should be noticed 

that the post-buckling behaviour is not as linear as in compression cases and also the fact 

that there is no shrinking or Poisson effects before the buckling load is reached. 

4.4.3.3.3. Combined loading 

The next results are for a clamped rectangular plate (aspect ratio three) under combined 

loading. 
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Figure 47: Out-of-plane displacement rectangular clamped plate under combined loading (Quasi isotropic) 

The different boundary conditions and aspect ratios seems to not affect the results under 

combined loading. Once again the agreement is excellent at the beginning of the post-

buckling behaviour, but the out-of-plane displacement is over estimated for the higher PB 

coefficient. 

 

Figure 48: In-plane force and out-of-plane distributions rectangular clamped plate under combined loading 
(Quasi isotropic). FEM solution on the left, semi-analytical on the right 

The in-plane force distributions show clear discrepancies between FE and semi-analytical 

solutions. The maximum and minimum values are approximately captured, but the 

distributions are not due to the aforementioned reasons. Those discrepancies seem 

especially important for the y direction and shear. However, the results given by the semi-

analytical solution can prove to be a useful approximation of the plate strength. 

4.4.4. Special Cases 

Apart from the already reviewed verifications there are some additional interesting cases. 

The following ones are presented. 

4.4.4.1. Constant loading 

It has been mentioned that in typical applications is more common to have constant 

displacement, rather than constant load distribution. Therefore, the verification has 
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focused on those cases. However, it is still interesting to show that the alternative case 

can also be solved in case some applications require to solve such case. Actually, constant 

loading have some advantages on the capacity to deal with in-plane force distributions 

under shear forces. Figure 49 presents the out-of-plane displacement under shear for a 

predominant 45s rectangular plate elastically restrained. 

 

Figure 49: Out-of-plane displacement rectangular elastically restrained plate under constantly distributed 
combined loading (Predominant 45s) 

The out-of-plane displacement shows perfect agreement in this example.  

 

Figure 50: In-plane force and out-of-plane distributions rectangular elastically restrained plate under 
constantly distributed combined loading (Predominant 45s). FEM solution on the left, semi-analytical on the 

right 

It is also possible to see that the Airy Stress function for constantly applied load is more 

versatile and is able to adapt better than in constant displacement to the in-plane diagonal 

force distributions.  

4.4.4.2. Mode jumping 

Mode jumping was a phenomenon that was not initially accounted for in this project. This 

explains the use of certain algorithms and approaches which do no facilitate its 

appearance in the results. However, during the verification of the results, it has been seen 

that mode jumping was taking place and it limited the capacity of performing reliable 

verifications.  
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Next figure shows out-of-plane displacement comparison where semi-analytical solution 

presents mode jumping from two to three half-waves for a rectangular (aspect ratio three) 

predominant 0s plate, simply supported under combined loading: 

 

Figure 51: Out-of-plane displacement with mode jumping in the SA solution 

The out-of-plane curve has been complemented with the complete shapes for FE and SA 

models at PB ratios one and two, so it can be seen how the different mode affects the 

verification. 

Additionally, the incapability to reproduce the shape during mode changing might 

contribute to the overestimation of the maximum out-of-plane displacement.  

 

Figure 52: 3D out-of-plane shape 

The 3D out-of-plane figure shows how the third wave presents higher amplitude than the 

rest. It is believed that during the appearance of the new half-way the linear combination 

of functions that represent the shape struggles to model the additional complexities of a 

diagonal pattern and the mode change. If mode shape capabilities are added in the future, 

it would be interesting to investigate how the buckled shape functions can approximate 

such transitions. 

This problem also appears in the reproduction of the force distributions. The symmetries 

of the derivatives of the Airy Stress function make it impossible to reproduce the additional 

complexities derived from mode jump transitions. The current approach used, solving both 
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compatibility and equilibrium equation allows to approximate the solutions but they are still 

restricted by the combination of functions chosen to represent the results. 

 

Figure 53: Mode shape transition. Out-of-plane (left) and Force in y distribution (right) 

Figure 53 shows the already commented asymmetrical out-of-plane displacement, with 

greater displacements on the right side. The in-plane force distribution in y direction would 

be expected to reflect the influence of the irregular shape. However the symmetries of the 

chosen Airy Stress function limits the results to a too regular distribution. The limitations 

of the in-plane force distributions, regardless the mode changing, are further developed in 

the next section. 

In conclusion, mode jumping alters the solution, making it difficult to compare SA and FE 

models. It is necessary to further understand the phenomenon in order to know how it 

takes place in real structures and how it can be properly incorporated to both FE and SA 

models. The results studied show that bigger initial imperfections delay or neglect mode 

jumping in the SA model. Moreover, the number of steps used in Newton-Raphson can 

also affect mode jumping. 

4.4.4.3. In-plane force distribution under shear 

It has already been commented the limitations of the current Airy Stress function for 

constant displacement to capture the in-plane force redistributions during shear loading. 

This limitations are based on the symmetry of the function cos(2𝑚𝑥) which makes 

impossible the appearance of diagonal shape distributions for the in-plane force 

distributions in the x and y directions.  

It is clear that the solutions might be improved by the use of a more advanced linear 

combination of terms in the Airy Stress function. Preliminary studies on the conditions that 

such functions should follow suggested the use of the terms with the form sin (2𝑚𝑥) as 

they are able to introduce asymmetry in the distribution without modifying the equilibrium 

of the plate. The following figure shows some promising results of how the 

reimplementation of the Airy Stress function can improve the current solutions: 

 

Figure 54: In-plane force and out-of-plane distributions square clamped plate under shear (Predominant 
45s). FEM solution on the left, modified semi-analytical on the right 
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With the modified Airy Stress function the in-plane force distribution pattern improves 

significantly. If both figures are compared plot by plot, the results are quite similar. Shear 

seems like the only case where the improvement is more limited.  

The next figure is the solution using the regular Airy Stress function. There it is possible to 

appreciate how the patterns are less accurate. 

 

Figure 55: In-plane force and out-of-plane distributions square clamped plate under shear (Predominant 
45s).  

The new in-plane force distributions are more accurately estimated, capturing the twist 

produced by the diagonal buckling wave. However, the general solution does not really 

improve (max out-of-plane displacement or max in-plane forces) and the extra terms 

required reduce significantly the performance. Due to the previous reasons, it has been 

decided to neglect this approach in most verifications, but further study on alternative Airy 

functions can result on an improved solution. 

4.5. Conclusions post-buckling 

The verifications show excellent to reasonable agreement between semi-analytical and 

FE solutions for a wide range of aspect ratios, laminate layups, loads and boundary 

conditions. Results are focused on the prediction of the out-of-plane displacement, but in-

plane displacements and in-plane force distributions are also considered, which multiplies 

the possibilities of the obtained solution. The amount of variables treated and the necessity 

to present their evolution for the different PB ratios has forced the rationalization of the 

number of cases presented in the verification. However, the skipped cases and others are 

included in the annex at (Annex\PBuckling). 

Different formulations are presented depending on how the load is applied. Initial work was 

based on constant load application, but further study encouraged the development of a 

constant displacement solution. This last case is more representative of the solution of the 

individual plates in stiffened panels, where the reinforcing members limit the in-plane 

deflection of the plate. Therefore, taking into account the final objectives of this project, 

the verification has focused on the final case.  

It has been observed that the accuracy of the solution depends mainly on the complexity 

introduced by the material. The introduction of many 45s and the resulting coupling terms 

limit the accuracy, especially for high PB ratios. On the other hand, isotropic materials 

show excellent agreement as shown in section 4.4.1.1 where the different types of figures 

are presented. Besides, load cases with shear loading (especially when combined with 
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axial ones) introduce further complexity and affect the accuracy. Whereas, the accuracy 

does not seem affected by the different boundary conditions presented in the verification11. 

Mode jumping seems to be an important topic that was not considered in the initial stages 

of the project. The limitations of the approaches used for both SA and FE to deal with 

mode jumping introduce uncertainty during the verification because they are capable of 

accounting for it in very few cases, making it very difficult to compare identical cases when 

one of the models predicts mode jumping while the other doesn’t. Moreover, the 

appearance of this phenomenon modifies the in-plane force distribution, changes the post-

buckling stiffness of the plate and obviously alters the out-of-plane response. Therefore, it 

is considered that in future developments it would be interesting to further study it and use 

strategies in order to be able to deal with it (for example, using more powerful non-linear 

solvers such as the ones based on the arc length method). 

The solution for the force distribution under shear is limited by the current election of the 

Airy Stress function. This had been developed initially for specially orthotropic plates under 

axial loading, and the symmetry that presents makes it unable to capture the effects that 

diagonal waves have on the force distribution. Anyway, the force predictions (especially 

maximum values) give a reasonable approximation for preliminary design or optimization 

purposes. More detailed solutions can be obtained (as partially shown in section 4.4.3.3) 

by developing a more capable form for the Airy Stress function. 

In conclusion, the resolution of the post-buckling behaviour for composite plates presents 

important challenges. However, the developed formulation is able to return good results 

under a wide range of conditions which makes the approach suitable for more advanced 

applications such as stiffened panel solvers.  

 

 

 

 

 

 

 

 

 

 

 

                                                

 

11 Additional verifications presented in the digital annex do show negative effects on the accuracy for 

asymmetrically elastic restrained plates.  
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5. Stiffened panel integration 

5.1. Introduction 

The main objectives of this Thesis are the development of solutions for both buckling and 

post-buckling of composite plates with boundary conditions able to reproduce the restrain 

of real stiffeners. Therefore, several algorithms have been developed and their capacity to 

solve an important range of cases has been demonstrated. However, the final purpose of 

Fokker Aerostructures is to develop a procedure able to cope with stiffened panels. 

Therefore, creating a link between the individual elements and the realistic stiffened 

structure providing a complete analysis procedure.  

The stiffened panel12 geometry is presented in the following figure. The different elements 

are presented in different colors: yellow for the stiffeners, green for the frames and red for 

the skin.  

 

Figure 56: Stiffened panel sketch 

This chapter introduces the developed formulations implemented for the stiffened panel 

solver. First of all, the main individual modules and their formulations are introduced. 

These are the 1D beam model, the GJ-k relation and the load redistribution. Once the 

different modules have been explained, the stiffened panel formulation is presented. The 

chapter finishes with a preliminary verification of the implemented program in Matlab (with 

a graphical user interface GUI) against FEM results, in order to show the possibilities of 

the solver developed for stiffened panels.  

                                                

 

12 Notice the difference between plate and panel. The first is used to describe each of the individual portion 

of skin surrounded by stiffeners and frames, while the second is a reference to the whole structure including 

skin, stiffeners and frames. 
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5.2. 1D beam model 

The first step to develop a stiffened panel solution is being able to determine the behaviour 

of the stiffeners and frames. The model has to be able to solve mainly the axial stiffness 

of a beam (to solve the redistribution of loads between plates and beams) and its torsional 

stiffness (in order to estimate the torsion elastic restrain). Therefore, a 1D beam model is 

sufficient to cope with the requirements, as long as instability phenomena are not taken 

into account.  

The 1D theory is required to solve beams with different open and closed sections and 

different composite lay-ups while keeping a good accuracy and a straightforward 

formulation. Due to time limitations, it was decided to make a quick research of the 

available theories and developed procedures, as exposed during the Literature review (in 

section 2.5). After studying some different options it was decided to implement Kollar and 

Pluzsik 1D beam theory [38] due to its capacity to work with arbitrary lay-up while keeping 

a closed form solution (for further details see the reference). Moreover, the use of an 

already developed theory which has undergone verification was very attractive as it 

permitted to focus the time on the development of the stiffened panel formulation. 

Kollar’s and Pluzsik’s theory models the beam behaviour with the following 4 by 4 stiffness 

matrix: 

 

{

𝑁𝑥
𝑀𝑦

𝑀𝑧

𝑇𝑆𝑉
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 (124) 

The main terms for the stiffened panel resolution are the axial stiffness of the beam 𝑃11 

(usually named EA) and the torsional stiffness 𝑃44, which is typically referred as GJ. The 

bending stiffness 𝑃22 (commonly known as 𝐸𝐼) is also of interest as their value determines 

if the assumption of straight edges is accurate. Additionally, the other bending stiffness 

𝑃33 restrains the out-of-plane displacement when the panel buckles. It has already been 

commented that Mittelstedt [41] determined the minimum bending stiffness for several 

cases. 

5.3. Determination of the GJ-k relation 

5.3.1. Introduction 

The torsional stiffness of beams is typically modelled using one-dimensional Saint-Venant 

torsion theory. According to this model, the torsion moment is proportional to the first 

derivative of the beam’s twist angle with respect to the longitudinal direction. 

 
𝑇 = 𝐺𝐽

𝑑𝜃

𝑑𝑧
  (125) 
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This approach has been used in some plate formulations to more accurately introduce the 

elastic restrain of stiffeners [17]. However, working with the derivative of the angle implies 

a rather complex distribution of the applied moment in the edge, and therefore a complex 

approach to apply the boundary conditions. In this Thesis, a simpler approach is used 

based on torsional springs like many other authors in the literature [28, 29, 31, 34].  

 𝑇 = 𝑘𝜃 (126) 

This approach is very convenient because the elastic restrain along the edge is constant, 

making easier to solve the corresponding boundary conditions. However, when modeling 

a stiffener, the equivalent k caused by the beam torsional rigidity GJ must be calculated. 

5.3.2. Effective GJ 

The restrain provided by stiffeners or frames has to be distributed to the adjacent plates. 

When it is an internal member, two plates are restrained by the same beam element. The 

approach used in literature [17, 21] assumes that the distribution is evenly distributed to 

each plate so the effective GJ seen by each plate is one half of the original. The same 

approach is used in this Thesis. 

This means that in a stiffened panel, the different plates can have different boundary 

conditions depending on their position with respect to the panel. In regularly stiffened 

panels (constant spacing and equal stiffeners or frames) four different sets of boundary 

conditions are possible. 

5.3.3. New GJ method 

During the Literature study (section 2.5) it was already mentioned that the different 

methods found in the literature to cope with this problem were not found satisfactory due 

to different reasons (lack of accuracy, not applicable to all required cases, excessive 

complexity), therefore it was decided to develop a new approach suitable for the case at 

hand. 

The new proposed solution is based on directly finding the relation between GJ and k such 

as the energy stored by either elastic restrain in every edge is the same, therefore giving 

the same buckling load. To find this relation, the following formulation is developed. 

The restrain energy with torsional springs is: 
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(127) 

The restrain energy with De Saint Venant torsion bars is: 
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𝑈𝑆𝑉 =

1

2
∫{𝐺𝐽1 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

|

𝑥=0

+ 𝐺𝐽2 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

|

𝑥=𝑎

} 𝑑𝑦

+
1

2
∫{𝐺𝐽3 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

|

𝑦=0

+ 𝐺𝐽4 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

|

𝑦=𝑏

}𝑑𝑥 

(128) 

Then the energy is compared edge by edge: 

 
𝑈𝑘1 = 𝑈𝑆𝑉1 → 

1

2
∫{𝑘1 (

𝜕𝑤

𝜕𝑥
)
2

|
𝑥=0

}𝑑𝑦 =
1

2
∫{𝐺𝐽1 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

|

𝑥=0

} 𝑑𝑦 (129) 

The variables k and GJ are constants so they can be taken outside the integrals. To 

simplify the next calculations, the equation is transformed to dimensionless variables using 

the following relations: 

 𝑊 =
𝑤

ℎ
,    𝜉 =

𝑥

𝑎
,    𝜂 =

𝑦

𝑏
,    𝜆 =

𝑎

𝑏
, 

  𝑘1,2
∗ =

𝑘1,2𝑎

𝐷11
∗ 𝐴22ℎ

2
,     𝑘3,4

∗ =
𝑘3,4𝑏

𝐷22
∗ 𝐴22ℎ

2
,  

    𝐺𝐽1,2
∗ =

𝐺𝐽1,2
𝐷11
∗ 𝐴22ℎ

2𝑎
,     𝐺𝐽3,4

∗ =
𝐺𝐽3,4

𝐺𝐽22
∗ 𝐴22ℎ

2𝑏
   

(130) 

Substituting them in equation 129 and using the out-of-plane shape presented in eq. 82: 

 1

2
𝑘1
∗
 𝐷11

∗ 𝐴22ℎ
2

𝑎
 ∫ {(

ℎ

𝑎
)
2

∑ (𝑊𝑚𝑛
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛)
2

|
𝜉=0

𝑀𝑁

𝑚,𝑛=1

} 𝑏𝑑𝜂

=
1

2
𝐺𝐽1

∗𝐷11
∗ 𝐴22ℎ

2𝑎∫{(
ℎ

𝑎𝑏
)
2

∑ (𝑊𝑚𝑛
𝜕𝑋𝑚
𝜕𝜉

𝜕𝑌𝑛
𝜕𝜂

 )
2

|
𝜉=0

𝑀𝑁

𝑚,𝑛=1

} 𝑏𝑑𝜂 

(131) 

After the proper simplifications: 

 

𝑘1
∗ = 𝐺𝐽1

∗𝜆2

∫ {∑ (𝑊𝑚𝑛
𝜕𝑋𝑚
𝜕𝜉

𝜕𝑌𝑛
𝜕𝜂

 )
2

|
𝜉=0

𝑀𝑁
𝑚,𝑛=1 } 𝑑𝜂

∫ {∑ (𝑊𝑚𝑛
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛)
2

|
𝜉=0

𝑀𝑁
𝑚,𝑛=1 } 𝑑𝜂

 (132) 

 

The previous expressions have been converted from dimensionless variables and 

extended to all four edges: 
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𝑘1,2 =
𝐺𝐽1,2𝜆

2

𝑎2

∫ {∑ (𝑊𝑚𝑛
𝜕𝑋𝑚
𝜕𝜉

𝜕𝑌𝑛
𝜕𝜂

 )
2

|
𝜉=0

𝑀𝑁
𝑚,𝑛=1 } 𝑑𝜂

∫ {∑ (𝑊𝑚𝑛
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛)
2

|
𝜉=0

𝑀𝑁
𝑚,𝑛=1 } 𝑑𝜂

 

𝑘3,4 =
𝐺𝐽3,4
𝜆2𝑏2

∫ {∑ (𝑊𝑚𝑛
𝜕𝑋𝑚
𝜕𝜉

𝜕𝑌𝑛
𝜕𝜂

 )
2

|
𝜉=0

𝑀𝑁
𝑚,𝑛=1 } 𝑑𝜂

∫ {∑ (𝑊𝑚𝑛
𝜕𝑋𝑚
𝜕𝜉

𝑌𝑛)
2

|
𝜉=0

𝑀𝑁
𝑚,𝑛=1 } 𝑑𝜂

 

(133) 

Equation 133 presents an obvious problem. The relation requires to know beforehand the 

buckled shape solution13, but this solution depends on the torsional restrain k. To cope 

with this problem, an iterative algorithm is implemented. The initial guess is obtained 

assuming the plate has buckled in square sinusoidal half-waves (number proportional to 

the aspect ratio). The following flow chart should clarify the behaviour of the algorithm: 

                                                

 

13 The amplitudes of the buckling solution cannot be solved during the linear buckling analysis. However, 

those can be non-dimensionalized and use the eigenvector solution as the dimensionless amplitudes. 
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5.3.4. Verification of obtained GJ-k relations 

This new method has shown to give accurate results plus a stable and fast convergence. 

The accuracy of the new method has been evaluated in two steps. The first consisted in 

comparing the closed form solution for buckling given by Bisagni in [17] with the one 

provided with the developed semi-analytical model for buckling. Bisagni’s solution is based 

on a simpler formulation for De Saint Venant torsion bars, so it is possible to directly 

compare the method with a closed form solution depending on GJ. 

Recalculate 𝑘𝑖 

using eq. 133 

Final 𝑘𝑖 solution 

Start 

Load stiffener 

and frame 

properties  

Load plate 

properties 

 

Estimate 𝑘𝑜𝑖  

Solve linear 

buckling 

Update  

𝑘𝑜𝑖 = 𝑘𝑖 
Converged? 

Solve GJ 

from 1D 

beam model 

Yes 

No 

Figure 57: Flowchart GJ-k algorithm 
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The verification is limited to the cases covered by Bisagni’s closed form solution: uniaxial 

compression with the loading edges simply-supported and the others elastically restrained 

by the same value. Therefore, in order to execute the verification, several lay-ups are 

tested for different GJ values ranging from virtually simply-supported to clamped 

conditions. Then the difference between the buckling loads predicted by both methods are 

plotted in semilogarithmic scale. 

The first thing to consider, is that when GJ is either very small or very big, the boundary 

conditions are virtually simply supported or clamped, and the accuracy of the GJ-k relation 

is no longer important (both GJ and k will be close to zero or infinite). Those regions give 

constant solutions and therefore the error there is constant.  

 

Figure 58: Verification GJ-k algorithm for square plates 

The 6% maximum difference between solutions for virtually clamped conditions seems 

quite significant, but it does not indicate an error on the GJ-k relation proposed. For 

sufficiently big GJ (not matter the inaccuracies of the GJ-k relation) the correspondent k 

will represent a fully clamped case (that is the reason for the big range of GJ values tested). 

The clamped solutions for plates (see section 3.3) were accurately solved by the proposed 

formulation which indicates that the error source is the closed form solution used [17]. A 

6% error in the closed form solution can seem too big, but it must be reminded the 

complexity of the involved equations and the amount of approximations required to have 

a manageable closed form expression. For example, Bisagni’s expression is limited to 

specially orthotropic laminates, while the tests involves mid-plane symmetric laminates. 

Therefore, the accuracy of the closed form solution limits somehow the conclusions that 

can be obtained from the comparison. However, the fact that the intermediate solutions 

are in smooth transition between the fixed errors for simply supported and clamped 

conditions gives confidence that GJ-k relation is a good approach. 

The next verification deals with the same case but with rectangular plates (aspect ratio 3): 
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Figure 59: Verification GJ-k algorithm for rectangular plates 

The difference for the ideally clamped case is again quite important. However, the 

verifications performed in chapter 3 should guarantee that the error source is again due to 

the limitations of the closed from solution.  

On the other hand, the transition between both values is not as smooth as in square plates. 

The origin of the spikes have been found to be differences in the mode jumping between 

both solutions. Anyway, the jump in the predictions are around 3% maximum, which seems 

a reasonable error for the GJ-k algorithm when dealing with mode changing. 

The current results show that the algorithm results might be okay, but the limitations in the 

closed form solution limits the conclusions that can be drawn. Final verifications of the 

developed algorithm with FE are required. The verifications have been performed using 

the whole stiffened panel in section 5.7. 

5.4. Load redistribution  

All the analytical and semi-analytical solutions for post-buckled stiffened panels found in 

the literature were limited to panels with stiffener members only in the longitudinal 

direction. This is a special case in stiffened panels, as they are usually stiffened in both 

direction by stiffeners (longitudinal) and frames (transversal) as shown by figure 54. The 

developed solution intends to solve this more general configuration, which obviously 

increases the complexity of the problem.  

Panels stiffened only by longitudinal members have the following advantages: 

 There is no load coupling (a panel under uniaxial compression have its individual 

plates or bays under the same load type as the stiffened panel). 

 Post-buckling stiffness can be reduced to one term only and be easily calculated 

from the in-plane displacements. 

 The load redistribution can be solved once for pre-buckling and once for post-

buckling, since the ratio of load shared by skin and stiffeners is almost constant for 

each. 
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The introduction of transverse members no longer allows for the previous simplifications. 

The complexity of the case has been dealt with the following strategies: 

5.4.1. Step by step strain compatibility 

When the load is increased in a bi-stiffened panel, the strain compatibility might force a 

new redistribution of loads which at the same time might affect the stiffness of the plates 

and hence the load redistribution itself. Therefore, it is clear that some iterative or step by 

step strategy might be required to solve the problem. 

The proposed solution uses a step by step strategy, taking advantage of how the post-

buckling solution is obtained. For every new load, the new redistribution is solved using 

the previous results of the plates’ stiffness. 

The load redistribution is recalculated for every load step through the strain compatibility 

of the different members, which means that both the plate and the stiffeners must have 

the same strain in the x direction, and the frames in the y direction. 

The main assumption to be able to use this approach is that the load is applied as a 

constant displacement along all the edges (including stiffeners and frames). This way, it 

can be considered that the different members are loaded in their neutral axis, even if the 

global neutral axis moves due to the post-buckling of the skin. With this approach, the 

problem is reduced to two dimensions and global bending can be neglected.  

To apply this approach it is necessary to calculate the stiffness of the panel as the 

combination of the stiffness of the different elements: 

 𝑲𝑝𝑎𝑛𝑒𝑙 = 𝑲𝑝𝑙𝑎𝑡𝑒𝑠 +𝑲𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟𝑠 +𝑲𝑓𝑟𝑎𝑚𝑒𝑠 (134) 

The stiffness of the beam members (stiffeners and frames) is reduced to a 1D axial term. 

The axial stiffness takes a constant value (no instabilities allowed) calculated through the 

1D beam model. It is necessary to account for the number of members in each direction 

for the global stiffness.  

 
𝑲𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟𝑠 = (

𝐸𝐴𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟𝑠 · 𝑛𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟𝑠 0 0

0 0 0
0 0 0

) 

𝑲𝑓𝑟𝑎𝑚𝑒𝑠 = (
0 0 0
0 𝐸𝐴𝑓𝑟𝑎𝑚𝑒𝑠 · 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 0

0 0 0

) 

(135) 

The stiffness of the plates requires a more complex approach, as its value might change 

due to post-buckling behaviour. The details of how it is solved are developed in the next 

section. 

From the stiffness of the panel it is possible to calculate the global strains caused by every 

load increment. 

 Δ𝜺𝑝𝑎𝑛𝑒𝑙 = 𝑲𝑝𝑎𝑛𝑒𝑙
−1 Δ𝑵 (136) 

Where Δ𝑁 is the load increment at panel level. Then the load redistribution for every 

member is solved. 
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{

Δ𝑵𝑝𝑙𝑎𝑡𝑒𝑠 = 𝑲𝑝𝑙𝑎𝑡𝑒𝑠Δ𝜺𝑝𝑎𝑛𝑒𝑙
Δ𝑵𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟𝑠 = 𝑲𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟𝑠Δ𝜺𝑝𝑎𝑛𝑒𝑙
Δ𝑵𝑓𝑟𝑎𝑚𝑒𝑠 = 𝑲𝑓𝑟𝑎𝑚𝑒𝑠Δ𝜺𝑝𝑎𝑛𝑒𝑙

 (137) 

Finally, the post-buckling behaviour of the plate for the new load step can be solved, and 

its post-buckling stiffness calculated to solve the next step. By using a sufficient number 

of steps, the solution obtained is able to reproduce the real behaviour of the stiffened plate. 

5.4.2. Plate stiffness 

The main difficulty to solve the load redistribution is obtaining an accurate solution for the 

plate stiffness, especially during post-buckling. Different methods are used depending on 

the load level in an attempt to overcome their limitations. 

5.4.2.1. Pre-buckling stiffness 

Before buckling, the stiffness of the plate can be considered to be constant as long as the 

effect of the imperfection is neglected, which is a reasonable assumption for the cases 

tested. The stiffness is given by the A term from the ABD matrix. This 3 by 3 matrix allows 

to account for the coupling of all the forces and strains, hence permitting a good resolution 

of the Poisson effects introduced in the panel. 

5.4.2.2. Post-buckling stiffness 

Once the panel is on the post-buckling range, the stiffness of the plate drops significantly, 

driven by the out-of-plane deformation. Typical methods to find the new stiffness are based 

on the in-plane displacement of the plate. However, this method does not allow a proper 

resolution of the 3 by 3 stiffness matrix, as the three different force components can be 

related to the three displacement components (including twisting) to create a system of 

three equations and therefore being able to solve a maximum of three independent terms 

from the stiffness matrix.  

This limitation has been dealt by diagonalizing the stiffness matrix, so only three stiffness 

terms are required. This of course, limits the possibility of capturing the coupling between 

directions. This effect is especially important before buckling because Poisson effects can 

modify importantly the buckling load of a plate. However, once the plate has buckled, it is 

not critical to account which load term is responsible for each strain as long as the load 

redistribution towards the beams is properly captured. 

To solve the post-buckled stiffness matrix, the strain increments in the plate are calculated 

from the increment in in-plane displacements and rotation per load step. 

 

{
 
 

 
 Δ휀𝑥 =

Δ𝑢

𝑎

Δ휀𝑦 =
Δ𝑢

𝑏
Δ휀𝑥𝑦 = Δ𝛾

 (138) 
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Then, the stiffness components are solved from the in-plane load increments in the plate 

related to the strains:  

 

𝑲𝑝𝑙𝑎𝑡𝑒𝑠 =

(

 
 
 
 

Δ𝑁𝑥
Δ휀𝑥

0 0

0
Δ𝑁𝑦

Δ휀𝑦
0

0 0
Δ𝑁𝑥𝑦

Δ𝛾 )

 
 
 
 

 (139) 

What might cause problems using this approach, is that when some of the loads in the 

plate are missing, the strains in that direction are no longer accounted for. For example, a 

plate under shear would suffer in-plane displacement u and v. However, using a 

diagonalized stiffness matrix, the load redistribution in the plate will show 0 axial strains. 

This problem has been approximately solved by moving those neglected stiffness terms 

from the diagonal and accounting them as coupling stiffness terms, ensuring they are 

taken into account. The following equation shows the example for the post-buckling 

stiffness to be used in pure shear: 

 

𝑲𝑝𝑙𝑎𝑡𝑒𝑠 =

(

 
 
 
 

0 0
Δ𝑁𝑥𝑦

Δ휀𝑥

0 0
Δ𝑁𝑥𝑦

Δ휀𝑦
Δ𝑁𝑥𝑦

Δ휀𝑥

Δ𝑁𝑥𝑦

Δ휀𝑦

Δ𝑁𝑥𝑦
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 (140) 

5.5. Stiffened panel solution 

The main parts of the solution of the stiffened panel have been discussed. This section 

exposes the global solution process, the different assumptions made and presents an 

overview of the limitations derived by the formulation. 

5.5.1. The included configurations 

The configurations included in the solution have been limited. It must be taken into account 

that the program developed is still a preliminary version of the tool that Fokker 

Aerostructures has in mind for stiffened panels. The main guidelines are: 

 The load redistribution accounts for stiffened panels where the stiffeners and their 

spacing are constant. The same is stated for the frames. 

 The load is applied as a contant displacement in both the skin and stiffening 

members. That means that load is always applied in the neutral axis of the panel 

regardless of wheter it is working in post-buckling range (in such case the neutral 

axis change its position).  

 It has been seen that the boundary conditions of each plate depend on its position 

and there can be up to 4 different boundary sets (due to the effective GJ as 

explained in section 5.3.2). This differences are taken into account to estimate the 
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buckling load of the panel, however the panel is solved using the post-buckling 

response of the most critical plate (due to the effective GJ this is the one not sharing 

any outer border, if possible). This reduces by 4 the required time to solve post-

buckling while being a good approximation in most of the cases and conservative 

for the rest. 

 The post-buckling solution of the plates is based on constant displacement. It is 

assumed that stiffeners and frames are stiff enough so they keep roughly straight 

in post-buckling (they also are not allowed to undergo any instability). 

 While the axial loading is distributed among plates and beams (according to their 

stiffness) the shear load is assumed to be resisted only by the plates. This is a 

typical conservative approach that simplifies the resolution of such cases. 

However, the redistribution of load to the beams of post-buckled plates under shear 

is included using the stiffness presented in eq. 140. 

5.5.2. Solution procedure 

The solution of stiffened panels is first presented with the help of a flowchart. Afterwards, 

the main steps are further explained. 

5.5.2.1. Flowchart: 
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5.5.2.2. Algorithm explanation 

The details of the stiffened panel are introduced by the means of a graphical user interface 

GUI (See figure 59). The data is divided into geometry, material properties, load case, 

analysis and solver. The semi-analytical solution is solved then following the steps outlined 

in the flowchart.   

Yes 

No 
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Figure 60: Flowchart stiffened panel solution 
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First of all, the 1D beam theory is used to model the axial and torsional stiffness of 

stiffeners and frames. From the last, the relation GJ-k is solved using the iterative algorithm 

introduced in section 5.3. Once the boundary conditions have been properly solved, the 

buckling load of the skin is solved taking into account the load redistribution during pre-

buckling. However, remembering the concept of the effective GJ, there are up to 4 plate 

configurations (with different buckling loads) so two strategies are possible: 

 Using the most critical value as initial buckling of the panel. 

 Average the initial buckling load proportionally to the different plate solutions 

The difference between buckling loads in the same panel are typically very small when the 

boundary condition is closer to simply supported or clamped conditions. However, in the 

case of intermediate values, the differences can be significant. The first FE verifications 

have shown better agreement using the second solution, however the first approach 

should not be discarded completely as it can be useful for further approaches and has the 

advantage of being more conservative. 

The post-buckling solution is obtained for the most critical plate (inner one) loading step 

by step with the constant displacement algorithm. However, between load steps, it is 

necessary to recalculate the load that goes into the skin using strain compatibility as 

explained in section 5.4.1. Finally the main results for the complete solution are 

automatically plotted in the GUI for an easy assessment. 

5.6. FE Model 

The FE model follows the same guidelines as in post-buckling of plates. The main 

differences are obviously the inclusion of stiffeners and frames, modelled with shell 

elements, and the fact that the FE model is not automatically generated with a Python 

script. This makes more difficult to perform more systematic verifications as in chapters 3 

and 4.  

The load is applied keeping the edges straight, including stiffeners and frames. This way, 

the load is automatically redistributed as if applied in the neutral axis, and there is no 

additional bending in the panel. The initial imperfection for post-buckling is again obtained 

from the previously calculated local buckling, through the use of the keyword editor. 

The post-processing of the results has been done manually with the post-processing 

module provided in Abaqus software. 

5.7. Solution and verification 

The verification has been done comparing the semi-analytical and FE solutions for several 

relevant cases. The development of the stiffened panel solution is still somehow 

preliminary, with several typical features not yet included in the solution algorithm. 

Therefore, the verification will be limited to cases satisfying the following conditions: 

 Edge stiffeners: The current solutions verifications are limited to edge stiffeners 

(rectangular section). This stiffener can be placed either over the skin (named 

unsymmetric) or crossing the skin with half flange at each side (named symmetric). 

More complex stiffener are contemplated (including closed section) but is still 

necessary to develop strategies to account for the interaction of the stiffener 
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flanges attached to the skin and redefinining the effective length of the plate (with 

hat stiffeners the distance between the centerline of the stiffeners is obviously not 

the best approach, further studies are required to decide the best option).  

Moreover, it has been found that T stiffeners, despite not having a relevant 

interaction with the skin, they do present interaction with the frames, resulting in a 

stiffer solution than expected. Such, cases might be solved with the current solution 

due to the conservativeness of the case, but it is recommended to further develop 

the formulation to account for such interactions, probably implementing them in the 

GJ-k relation. 

 Compression and shear:  It is always a good practice to start with the simpler 

cases and validate them before jumping to more complex ones. Therefore, 

verifications start with uniaxial and biaxial compression. Finally, shear is studied 

for buckling, but the verification is not extended to post-buckling. 

 Local buckling: Some of the proposed configurations might present global 

buckling, where skin and stiffeners buckle together before local. However, such 

possibility was not a phenomenon to be developed in this Thesis, therefore global 

buckling will be ignored and taken the most critical local buckling solution instead. 

 Mode jumping: It has been found that some panel configurations present mode 

jumping or different buckling modes for different plates. Such cases, will have to 

be discarded as the current solution was not developed to cope properly with more 

jumping. This result further encourages the further development of the formulation 

to become fully compatible with mode jumping. 

To verify both the load redistribution and the capability of GJ-k algorithm, the verification 

covers a unique panel configuration where the stiffener and frame flange thickness are 

changed in order to model different boundary conditions, ranging from almost simply 

supported to clamped, and also different skin to stiffeners/frames load ratios. 

Finally, the verification is divided into two different parts. The first one tests the agreement 

between both models regarding the initial local buckling load and mode. The second part, 

involves the post-buckling solution variables: out-of-plane displacement, in-plane 

displacement and in-plane forces. 

𝐿𝑒𝑓𝑓2
 

𝐿𝑒𝑓𝑓1
 

𝐿 

Figure 62: Possible plate lengths for hat stiffeners 
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5.7.1. Buckling verification 

The results of the verification are summarized in tables. The tables contain information on 

the case number, the buckling load given by the semi-analytical model, FE model using 

symmetric stiffeners/frames and FE model with unsymmetric stiffeners/frames (in the SA 

model both configuration give identical results). Besides the buckling loads, the error 

between the semi analytical and the two FEM solution is given as a percentage. The mode 

column verifies if the predicted mode shapes from the SA and FE solutions are the same. 

The last column gives the values for the dimensionless torsional spring stiffness k for the 

stiffener and frame of the center plate (taking into account the effective GJ).  

The semi-analytical solution does not distinguish between symmetrically or 

unsymmetrically stiffened plates because the load is always applied keeping the 

displacement of skin and stiffeners/frames constant, and also because the GJ in 1D beam 

theory does not depend on any offset. However, it has been observed that the FE solution 

for edge stiffeners does depend on the symmetry. Therefore, both solutions are given to 

compare the accuracy between the semi-analytical solution and both cases. 

The different cases are obtained by modifying the thickness of the stiffener and frame 

flanges, while keeping the height constant to 25 mm. The following table gathers the 

different cases tested: 

Table 4: Case number description 

Case number 
Skin thickness 

[mm] 

Stiffener thickness 

[mm] 

Frame thickness 

[mm] 

1 2 1 1 

2 2 1 2 

3 2 1 4 

4 2 1 8 

5 2 1 16 

6 2 2 16 

7 2 4 16 

8 2 8 16 

9 2 16 16 

10 2 32 32 

The panel configurations studied have 4 stiffeners and 4 frames, allowing then for all the 

possible configuration of boundary conditions (accounting for the effective GJ) while 

limiting the complexity of the case. The selected edge stiffeners have always the same 

height, 25 mm. 
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5.7.1.1. Uniaxial compression 

The uniaxial compression configuration has been analyzed for a rectangular panel (1.5 x 

1 m) with QI layup for the skin, stiffeners and frames (see table 1 for the layup details). 

The following figure shows the buckled stiffened panel in the FE module. 

 

Figure 63: Stiffened panel under uniaxial compression. Buckled solution symmetric FE model. 

The results obtained are: 

Table 5: Results buckling stiffened panel under uniaxial compression 

Case 
Buckling 

SA [N] 

Buck. FE 

sym. [N] 

Buck. FE 

unsym. [N] 

Error 

sym. 

Error 

unsym. 
Mode   𝒌∗ 

1 14286.1 14583 14564 -2.0% -1.9% yes 0.034 / 0.065  

2 14403 14781 14751 -2.6% -2.4% yes 0.034 / 0.523  

3 15689 15972 15672 -1.8% 0.1% yes 0.035 / 4.211 

4 17016.7 17066 16547 -0.3% 2.8% yes 0.04 / 34.15 

5 16630.7 16730 16390 -0.6% 1.5% yes 0.042 / 274.6 

6 17887.2 17988 17747 -0.6% 0.8% yes 0.341 / 274.8 

7 22820.2 23108 22164 -1.2% 3.0% yes 2.81 / 278.8 

8 37687.9 
34614 / 

37658 

31805 / 

36291 

8.9 / 

0.1% 

18.5 / 

3.8% 
no 81.3 / 328.9 

9 49429.8 49138 
46770 / 

48104 
0.6% 

5.7 / 

2.8% 

yes / 

no 
653 / 341.1 

10 69720.9 70277 
68665 / 

69788 
-0.8% 

1.5 /          

-0.1% 

yes / 

no 
5261 / 2745 
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The proposed semi-analytical solution shows excellent agreement in most of the cases, 

with some exceptions when the mode shape is not properly predicted. In such cases, it is 

found that the FE solution with the same shape as predicted by the SA model does present 

good to excellent agreement (see the second solution separated by a slash). The 

discrepancies suggest the GJ-k relation is properly predicted, but near the mode shape 

change there might be some effect (interaction between plates) that affects the result. It 

might be necessary to further study such phenomenon. 

It is also interesting the differences between symmetric and un-symmetric (conventional 

blade stiffeners) FE models, which are significant in some cases. A possible cause of the 

differences might be the limitations of the 1D beam theory for thin edge stiffeners 

(proposed model does not account for warping). More conventional stiffening members 

should not suffer as much for this problem, however, skin-stiffener interactions are still to 

be developed (current results would be conservative). 

Finally, notice that the last column verifies that the different stiffeners and frames allow for 

different elastic restrains ranging from nearly simply-supported to nearly clamped 

solutions. The dimensionless k value depends on multiple factors (like the buckling shape), 

which explains that the same stiffener geometry can have different values in different 

cases. 

5.7.1.2. Bi-axial compression 

The bi-axially compressed configuration (𝑃𝑥 = 𝑃𝑦), has been performed for a square 

stiffened panel (1 x 1 m) with predominant 45s layup for the skin, stiffener and frames (see 

table 1 for the layup details). The results obtained are the following. 

Table 6: Results buckling stiffened panel under bi-axial compression 

Case 
Buckling 

SA [N] 

Buck. FE 

sym. [N] 

Buck. FE 

unsym. [N] 

Error 

sym. 

Error 

unsym. 
Mode   𝒌∗ 

1 8021.3 8101.2 8130.2 -1.0% -1.3% yes 0.121 / 0.09  

2 8522 8713.7 8676.8 -2.2% -1.8% yes 0.121 / 0.732  

3 10845.7 10947 10396 -0.9% 4.3% yes 0.125 / 5.869 

4 14209.5 13843 12743 2.6% 11.5% yes 0.142 / 47.17 

5 15621.2 15450 14613 1.1% 6.9% yes 0.15 / 377.9 

6 16388 16301 15414 0.5% 6.3% yes 1.2 / 379.2 

7 18931.4 18612 17548 1.7% 7.9% yes 9.67 / 403.1 

8 21879.4 21305 20307 2.7% 7.7% yes 78.45 / 459 

9 24129.4 23717 22998 1.7% 4.9% yes 629.4 / 477.4 

10 30727.7 30817 30555 -0.3% 0.6% yes 5073 / 3842 
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The results show important differences between the symmetrical and unsymmetrical FE 

models. The correlation of the semi-analytical results with the first is very good, while the 

correlation with the second shows some poor (unconservative) results for the central cases 

(nearly simply supported and clamped conditions work well). 

In this configuration, with square plates and bi-axial loading, there has not been any 

problem with the mode shape as all the models predicted 1 half-wave in all the cases. This 

has resulted in more reliable results in comparison with the first configuration. 

Once again, it can be concluded that the GJ-k relation seems to work with symmetric 

stiffened models, but some unaccounted effects will need to be studied in the case of un-

symmetric stiffeners. 

5.7.1.3.  Shear  

The last studied configuration is rectangular (3 x 1 m) stiffened panel with different layups 

(the skin with predominant 0s, and the stiffeners and frames with predominant 45s). The 

results obtained are the following. 

Table 7: Results buckling stiffened panel under shear 

Case 
Buckling 

SA [N] 

Buck. FE 

sym. [N] 

Buck. FE 

unsym. [N] 

Error 

sym. 

Error 

unsym. 
Mode   𝒌∗ 

1 754.4 755.65 777.3 -0.2% -2.9% yes/par14 7.265 / 21.6  

2 759.52 766 783.6 -0.8% -3.1% yes/par 7.421 / 180.9  

3 761.1 776.1 785.6 -1.9% -3.1% par 7.498 / 1461 

4 761.36 781.4 786.6 -2.6% -3.2% par 7.51 / 1.2e4 

5 761.39 782.9 787.2 -2.7% -3.3% par 7.511 / 9.4e4 

6 902.23 941 937.3 -4.1% -3.7% par 73.18 / 1e5 

7 933.35 979.3 977.4 -4.7% -4.5% par 612.5 / 1e6 

8 936.8 986.2 985.1 -5.0% -4.9% yes 5819 / 1.1e6 

9 937.2 990.6 989.6 -5.4% -5.3% yes 4.7e5 / 1.1e6 

10 937.2 994.95 993.6 -5.8% -5.7% yes 3.7e6 / 8.6e6 

This case presents the highest complexity due to the highest aspect ratio, the higher 

complexity of shear loading and the laminate mismatch between stiffeners/frames and 

                                                

 

14 Par means that the agreement is partial because the different plates show different buckling shapes. 
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skin. Shear has been seen to be more sensitive to global buckling, so in order to compare 

local buckling results, the skin thickness has been reduced to 0.5mm in all the cases. The 

result is higher dimensionless spring stiffnesses (see last column of table 6). 

The results show that there is a growing error from 0 to 6% between analytical predictions 

and FE solutions. This result was expected as the SA model does not account for the extra 

shear stiffness that the stiffener/frame grid contributes to the panel, which is obviously 

bigger for the more massive stiffeners/frames. Despite the differences, the results are still 

interesting because correlation is very good for intermediate stiffeners/frames, the 

maximum errors are not excessive and in all the cases the error are conservative. 

The differences between symmetric and un-symmetric stiffeners are not as important as 

in axial loading configurations. Moreover, the SA model is able to properly predict the 

mode shape in most of the cases. The first cases show two half-waves and the last three, 

showing again the aforementioned tendency of nearly clamped plates to buckle in more 

half-waves. However, the transition in FE is not direct and some cases show different 

buckling shapes combining 2 and 3 half-waves in the different plates of the stiffened panel. 

Those cases have been marked with ‘par’ to indicate that the agreement is partial.  

The use of stiffeners/frames with higher transversal inertia should result in somehow 

poorer results due to the bigger influence of the stiffener/frame grid in the global stiffness. 

However, results should still be conservative. If a higher accuracy is required, additional 

consideration would be required to account for the extra stiffness. On the other hand, the 

use of stiffeners/frames with higher transversal inertia might also result in better 

predictions of the mode shape, since there would be less interaction between the different 

plates and the assumptions of straight edges would be more accurately satisfied. 

5.7.2. Post-buckling verification 

The post-buckling verification involves comparing more variables, as it has been seen in 

chapter 4. Therefore, due to the great amount of information to analyse, only some of the 

cases used for buckling are extended to the post-buckling verification. Those cases are 

randomly chosen to try to cover as many different conditions as possible.  

The first step to properly solve post-buckling is having a good buckling estimation. 

Otherwise, all post-buckling curves would be shifted. Therefore, the cases chosen are 

verified against the symmetrically stiffened FE models (the ones showing better 

agreement with SA in buckling). 

5.7.2.1. Uniaxial compression 

Two different cases are verified for post-buckling behaviour under uniaxial compression. 

The cases conditions are taken from the buckling verification (see table 4 for the case 

description and table 5 for the buckling results). 

5.7.2.1.1. Case 4 

Case 4 consists in very weak stiffeners (1mm) and intermediate size frames (8mm). Such 

weak stiffeners encourage that the critical buckling solution of the panel is not the local 

plate buckling but a general buckling mode with 3 half-waves across the panel. Anyway, 

the current analysis focuses on the local buckling only. 
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The FE solution shows divergence at a post-buckling ratio of 1.71, therefore, this is the 

studied range of solutions. Notice that the post-buckling ratio refers to the panel buckling 

load and due to the loss of stiffness during post-buckling, this ratio is different in the 

individual plates. 

The following figure shows the results predicted by the semi-analytical model for each 

individual plate. The out-of-plane displacement is given in m, the in-plane force in N/m and 

the in-plane displacement in m. The colour convention is the same as shown in section 

4.4.1.1 for post-buckling. 

 

Figure 64: Summary semi-analytical post-buckling solution 1 

The FE solution predicts also a regular post-buckled solution with similar buckle 

amplitudes for each independent plate. The following table shows the maximum values 

obtained at the highest post-buckling ratio (in-plane forces are characterized by the 

maximum and the minimum, separated by a slash). See that units have been changed to 

N/mm for convenience. 

Table 8: Summary stiffened panel verification 1 

 

Out-of-plane 

displacement 

[mm] 

In-plane 

force X 

[N/mm] 

In-plane 

force Y 

[N/mm] 

In-plane 

force XY 

[N/mm] 

In-plane 

displacement 

X [mm] 

SA 

model 
2.48 -22.9/-32.56 

10.27/-

6.51 

0.98 / -

0.98 
-0.134 

FE 

model 
2.37 -22.7/-31.72 9.04/-6.15 

1.32 / -

1.06 
-0.148 

Error [%] 4.6% 0.6/2.6% 13.6/5.9% 
-25.8/-7.5 

% 
-9.5% 

The results show good agreement between solutions despite the high PB ratio (typical 

aerospace application use lower values). It is especially interesting the accuracy to predict 

the in-plane forces in the x direction, since these are the ones taking higher values under 

uniaxial compression. The in-plane displacement in y has been neglected as it takes very 

small values under uniaxial compression. 
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It could have been expected to obtain somehow better prediction of the out-of-plane 

displacement taking into account the good correlation of the buckling load (-0.3%) and the 

stresses. Despite the 4.6% error in the maximum value, the trend is properly captured. 

The following figure shows the FE solution curve. 

 

Figure 65: FE out-of-plane displacement curve 

5.7.2.1.2. Case 10 

Case 10 is a heavily reinforced panel, so the boundary conditions of individual plates are 

close to clamped and most of the load goes through the stiffeners. The boundary 

conditions force the plates to buckle with two half-waves. 

The FE solution has not had any convergence problem until the target PB ratio 2, so all 

this range is studied. The following figure presents the SA solution for each individual plate: 

 

Figure 66: Summary SA post-buckling solution 2 

Again, the comparison with FE is presented in a table: 

Table 9: Summary stiffened panel verification 2 

 

Out-of-plane 

displacement 

[mm] 

In-plane 

force X 

[N/mm] 

In-plane 

force Y 

[N/mm] 

In-plane 

force XY 

[N/mm] 

In-plane 

displacement 

X [mm] 

SA 

model 
2.79 

-19.04/-

66.23 

12.65/-

14.71 
5.61/-5.61 -0.263 

FE 

model 
2.84 

-21.29/-

62.11 

11.28/-

11.02 
5.72/-4.75 -0.261 

Error [%] -1.8% -10.6/6.6% 12.1/33.5% -1.9/18.1% 0.8% 
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The results show excellent agreement regarding the displacements but being less 

accurate with the force predictions. Such results are coherent with the forces obtained 

from the second derivatives of the Airy Stress function. 

There has been an attempt to increase the number of Airy Stress terms (from 16 to 36) 

but no significant improvement was achieved predicting the in-plane forces. 

Despite such inaccuracies on the maximum values, the SA solution is able to capture the 

force redistributions. The following figures present the solutions obtained by SA and FE 

models at PB ratio two.  

 

Figure 67: Force redistribution SA solution 

 

Figure 68: Force redistribution FE solution 

The redistribution patterns predicted by both methods are almost identical for all three 

different forces. This result gives confidence in the ability of the SA solution to predict the 

force redistributions in stiffened panels.  

5.7.2.2. Bi-axial compression 

Two different cases are tested under bi-axial compression. Again the case description can 

be consulted from table 4 while the buckling loads were presented in table 6. 

5.7.2.2.1. Case 2 

Case 2 consists in a stiffened panel with slim stiffeners and frames. Therefore, the 

boundary conditions are close to simply supported and most of the load is carried by the 

skin.  

The verification has been performed until a PB ratio 2. The prediction of the local buckling 

for this case was not as good as previous cases (-2.2%). The following figure presents the 

SA solution. 



Stiffened panel integration

 

138 

 

Figure 69: Summary SA post-buckling solution 3 

The stiffened panel is loaded in both axial directions, and stiffeners and frames are similar, 

therefore the solutions in x and y directions are similar. The comparison with FE is 

presented in the following table: 

Table 10: Summary stiffened panel verification 3 

 

Out-of-plane 

displacement 

[mm] 

In-plane 

force X 

[N/mm] 

In-plane 

force Y 

[N/mm] 

In-plane 

force XY 

[N/mm] 

In-plane 

displacement 

X and Y [mm] 

SA 

model 
4.33 -0.538/-32.6 -1.14/-31.7 1.8/-1.8 -0.121/-0.105 

FE 

model 
4.49 -1.44/-35.75 0.278/-36 1.38/-2.52 -0.109/-0.101 

Error [%] -3.6% -62.6/-8.8% 
-510.1/-

11.9% 

30.4/-

28.6% 
11/3.6% 

The results show good agreement with the out-of-plane displacement, but in-plane 

displacements and forces present regular to very bad results. However, there is an 

explanation for the biggest errors. The maximum values for both forces in X and Y are 

close to zero, so when calculating the relative errors between both results, small 

discrepancies can give important errors. If the errors is calculated in relation to the 

maximum absolute stress then more coherent results are obtained (-2.52/-3.94% instead 

of -62.6/-510.1%).  

Moreover, it is interesting that the shear force distribution is overestimated by a 30% for 

the maximum and underestimated by another 30% for the minimum. The reason for this 

offset in the solution is the aforementioned symmetry of shear redistribution, which results 

in a symmetric distribution of the shear around 0. However, in cases where 𝐷16 and 𝐷26 

are important (note that the laminate is predominant 45s), this distribution is not symmetric. 

The FE out-of-plane solution of the inner plate shows the effect of the 45s to make the 

buckled shape more diagonal. 
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Figure 70: FE out-of-plane solution verification 3 

Besides, the figure shows the maximum out-of-plane displacement for the central plate. 

Note that this value is closer (+2.8% error) to the SA solution and different from the one 

presented in the FE in the summary table. The reason is that SA solution assumes that 

the global behaviour of the panel can be solved from the solution of one plate, using the 

most critical. However, plates are not identical, and some variations are normal (note that 

the boundary conditions are not identical for every plate). The results given in the summary 

table are the maximums found in the whole panel, therefore, providing a conservative 

approach. 

5.7.2.2.2. Case 7 

Case 7 consists in high stiffness frames while stiffeners take medium values. The case 

then resembles plates clamped on the longitudinal direction while elastically restrained in 

the transversal one. 

The verification has been performed again until a PB ratio 2. The prediction of the local 

buckling for this case was better than in the previous one (1.7%). The following figure 

presents the SA solution. 

 

Figure 71: Summary SA post-buckling solution 4 
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The new solution presents more differences between x and y directions because of the 

differences between stiffeners and frames. The comparison with FE is presented in the 

following table: 

Table 11: Summary stiffened panel verification 4 

 

Out-of-plane 

displacement 

[mm] 

In-plane 

force X 

[N/mm] 

In-plane 

force Y 

[N/mm] 

In-plane 

force XY 

[N/mm] 

In-plane 

displacement 

X and Y[mm] 

SA 

model 
4.61 

-11.39/-

55.69 
2.59/-42.87 6.99/-6.99 -0.172/-0.097 

FE 

model 
4.58 

-10.83/-

50.12 
0.014/39.28 8.85/-8.71 -0.168/-0.093 

Error [%] 0.7% 5.2/11.1% 1.8e4/9.1% 
-21.0/-

19.7% 
2.4/4% 

The results show excellent agreement regarding all displacements. Forces present worse 

results, in line with what has been seen and is expected for such cases (around 10%). The 

relative error for the maximum forces in y direction is very big again due to the proximity 

of the results to zero. This situation is similar to the previous case, and has already been 

mentioned how to cope with that. It is interesting to notice that the results for the force 

distributions are conservative, except for shear. 

5.8. Conclusions stiffened panels 

The solution presented for stiffened panels shows how the developed formulations for 

buckling and post-buckling can be used to create powerful tools to solve complex 

structures in real aerospace applications. The solution proposed is still somehow 

preliminary and should be considered as a proof of the new approaches used and the 

future possibilities of the analytical framework for composites design that Fokker 

Aerostructures is developing. 

The implemented formulation can give good to excellent agreement predicting initial local 

buckling of stiffened panels. It has been seen that the solution is still limited to some 

simplistic structural approaches like using edge stiffeners or regularly stiffened panels. 

Besides, it has shown some issues with non-symmetric stiffened panels or predicting the 

buckling load when there is a change in the number of half-waves.  

Regarding the solution for the post-buckling behaviour, it has been shown that the cases 

where the buckling load is properly predicted, it can handle post-buckling with good 

agreement with all displacement variables and good approximate results of the force 

distributions.  

The verification approach is not as systematic as in buckling and post-buckling of plates 

due to the lower degree of maturity of the solution. The limitations of the PB solution have 

been outlined during the chapter, but they are summarized now in the following points: 
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 The interaction between skin and stiffeners/frames for typical sections, such as hat 

stiffeners, have not been developed yet. Therefore, effective plate lengths are not 

considered and overconservative solutions might be obtained when using the 

current formulation. Therefore, to have a more meaningful verification, this has 

been limited to edge stiffeners. 

 The buckling load needs to be properly calculated in order to solve post-buckling, 

therefore the limitations found for the buckling verification can be automatically 

extended to post-buckling. The inaccuracies seen in shear buckling and the lack 

of extra time are the main reasons the verification has not been extended to post-

buckling for that case. 

 The semi-analyitcal approach to solve post-buckling of plates does not work well 

with mode jumping. After the experiences gained, this phenomenon seems to be 

more important than it was foreseen. Post-buckling solution of stiffened panels is 

obiously limited by the capabilities of the plate solution. For example, in the first 

post-buckled case it was not possible to get results over PB ratio 1.7 due to 

convergence problems in the FE solution. 

 The buckling solution is able to account for having different buckling loads for the 

different plates. However, to simplify the procedure, the post-buckling solution is 

based on the most critical plate. This approach seems to have worked well for the 

current cases, but it should be taken into account in future developments. 

Despite the limitations, the encouraging results obtained prove the validity of the 

developed approaches for both stiffeners elastic restrains and load redistribution, and 

encourage the further development of the semi-analytical solution presented in this Thesis. 

Current cases studied show very accurate buckling predictions, especially for symmetric 

cases with errors around 1-2% for axial loading. Moreover, out-of-plane displacement in 

post-buckling is predicted with an error below 5% for all the cases and the in-plane forces 

show good agreement in general. Therefore, the results are quite satisfactory for the first 

solutions of the new developed formulation. Further improvements should increase their 

accuracy and applicability to more complex cases. 

Further conclusions and recommendations can be found in the last chapter. 
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6. Final conclusions and 

recommendations 

This chapter reviews the work done during this thesis and the general conclusions 

reached. Furthermore, the final recommendations are presented, taking into account that 

this Thesis is part of a larger project.  

6.1. Thesis review  

The main objectives of this thesis included the development of a formulation able to solve 

buckling and post-buckling of plates in order to predict the behaviour of stiffened panels 

after local buckling. The main interest was that the formulation should be able to account 

for the elastic restrain provided by the stiffeners/frames in order to obtain good predictions 

of the stiffened panel behaviour. An additional interesting feature was the possibility to 

solve any mid-plane symmetric laminate as specially orthotropic models were not able to 

reproduce the behaviour of the typical laminates used by Fokker Aerostructures in 

common applications.  

The main authors in the field were studied in order to gain insight of the current state of 

the art. Then, it was determined that the researched formulations for buckling were not 

sufficient to deal with all the configurations required and an alternative solution was 

proposed following the work developed by different authors. The special conditions made 

necessary to adopt a semi-analytical formulation to solve buckling when most of the 

authors opt for more straight forward closed form solutions.  

A post-buckling formulation was developed based on the work of Qiao in [34] using the 

expressions for the out-of-plane displacements implemented during the buckling solution. 

Further modifications were required in order to model the behaviour of the plate with 

constant edge displacement, assumption that better approaches the behaviour of plates 

in stiffened panel configurations.  

The agreement of the proposed formulations were validated through an extensive 

verification against FEM. The accuracy of the presented SA solution was determined for 

the different cases under interest and the encountered limitations were resolved when 

possible and detailed when not. 

During the last part of the project, the developed solutions were incorporated into a more 

extensive formulation to cope with stiffened plates. The studied literature on the field did 

not give satisfying solutions on how the torsional stiffness provided by the stiffeners could 

be converted into equivalent boundary conditions. A new procedure was developed in 

order to solve the relation between GJ and the constant elastic restrain 𝑘𝑖. The formulation 

also features a method to solve the load redistribution based on strain compatibility for 

panels stiffened in both directions, a common situation which is not examined extensively 

in literature. 
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The developed solution for stiffened panel works well but it is not able to cope with some 

special conditions. However, encouraging results were obtained proving the capabilities 

of modelling the elastic restrain provided by stiffeners and obtaining accurate buckling and 

post-buckling results using an analytical approach. 

6.2. Conclusions 

The formulation developed for linear buckling has given the most accurate results when 

compared to FE. Solutions can be obtained for all the cases suggested as long as the 

number of terms is sufficient (and the computational capacity is available). Some problems 

regarding the numerical approach have been addressed, such as catastrophic 

cancellation when using analytical integration, or imposing the natural boundary conditions 

in the Galerkin method. The only limitation left was the high influence of transverse shear 

in moderately thin laminates. However, this limitation is intrinsic of the thin plate theory 

used and authors have already discussed why typical fibre reinforced materials are 

especially sensitive.  

The post-buckling solution requires a more complex approach due to the non-linearity of 

the post-buckling phenomenon, the more complex out-of-plane shape and the fact that in-

plane forces are not constant and the redistribution needs to be solved as well. Therefore, 

the accuracy and robustness of the results is below what was achieved in buckling. The 

main limitations found are: 

 The Airy Stress function for applied displacement is originally developed for 

specially orthotropic plates under axial loads. It is possible to solve also shear and 

non specially orthotropic plates by using a series expansion of the original terms. 

However, it has been detected that some effects such as diagonal redistribution 

(due to diagonal buckling shape) cannot be taken into account by the current 

method no matter how many terms are used.  

 The current formulation was not developed taking mode jumping into 

consideration, which complicates the verification of results when it does take place. 

Mode jumping is a complex and challenging phenomenon depending on many 

variables such as plate imperfection, boundary conditions, etc. Its proper prediction 

is out of the scope of this Thesis. 

Despite the limitations, the verifications showed that the current solution is able to 

approximately solve post-buckling for many cases, providing excellent agreement with FE 

when the limiting conditions are not present. 

The solution presented for stiffened panels in based on the developed formulations for 

plates, therefore the conclusions reached for the plates are also applicable. Despite the 

necessity to include additional assumptions, the formulation developed has been able to 

successfully cope with the main difficulties in a stiffened panel: the resolution of the elastic 

restrain imposed in the plate by the stiffeners/frames and the load redistribution between 

all the elements. 

In conclusion, the various formulations developed have proven their capacity to solve 

buckling and post-buckling of plates and stiffened panels through semi-analytical 

procedures, delivering accurate solutions when compared to FEM and with a reduced 
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computational cost, though further optimization of the methods is still possible. The 

limitations of the current solutions have been detailed in order to understand the real 

possibilities. 

6.3. Recommendations 

A series of recommendations are made either to improve the current formulation or to 

further extend it. Moreover, some recommendations focus in the development of the 

complete project of creating an analytical framework for stiffened panels of which this 

Thesis is only a part. 

6.3.1. Buckling 

The conclusions already outlined that the objectives for buckling were satisfied. Some 

additional recommendations are issued for the sake of the performance optimization of 

the solution. The current formulation implementation has focused in its easy incorporation 

to a verification procedure, however it is expected that the formulation will be transferred 

to another program language to incorporate it to the final analytical framework tool.  

For high performance algorithms, it has been seen that using analytical integration of the 

different matrix terms results in very good performance. Due to catastrophic cancellation 

of the hyperbolic terms, this has been seen to cause problems when using more than 5 

terms per side. Possible solutions to improve the performance are: 

 Restrict the analysis to 5 or less terms so analytical integration works fine with the 

current solution. This option is valid for plates with small aspect ratios. 

 It might be possible to get rid of the catastrophic cancellation by using a different 

mode shape form. Trigonometric functions have been traditionally used especially 

because sines were able to exactly solve ideal cases, but several authors have 

successfully used orthogonalized polynomials, which are easier to either integrate 

analytically or numerically using exact gauss integration.  This possibility could be 

studied to check if it can increase performance. 

 The mode shape solution relies on the resolution of the eigenbeam value functions 

for the given boundary conditions. During this process, it is necessary to solve a 

non-linear equation in order to obtain the mode values for each term. Other authors 

like Bisagni and Qiao [31, 34] prefer to use linear interpolations of the simply 

supported and clamped solutions to simplify the solution (though limiting the 

formulation to symmetric two by two boundary conditions). This approach might be 

less sensitive to catastrophic cancellation. 

During the Thesis it has also been discussed the possibility to develop a formulation for 

infinite plate. This would dramatically increase the performance for the more 

computationally demanding cases where plates have large aspect ratios.   

Another additional possibility would be extending the formulation to shallow shells 

(including curvature in the plates). 

6.3.2. Post-buckling 

Post-buckling involved a more complex formulation which also allows for further 

improvements. Some of the recommendations remarked for buckling are also applicable 
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to post-buckling. Different mode shapes might be used to increase the performance or to 

capture more localized effects on the post-buckled solutions. The development of an 

infinite plate formulation for post-buckling is also really interesting as it would boost the 

performance for high aspect ratios. In the case of including shells, it would be necessary 

to adapt the formulation and check that the assumptions and approximations used are still 

valid for this more complex case. 

During the conclusions, two main limitations have been outlined for post-buckling of plates, 

in order to cope with them, the following possibilities could be studied: 

 The current Airy Stress function for constant displacement was developed for 

specially orthotropic plates under axial loading. The use of series, allows for 

reasonable approximations when those conditions are not meet, but it usually 

requires a certain number of terms and the results are not perfect. Further 

improvement might be obtained by developing a new Airy Stress function 

formulation able to cope with those cases. A preliminary new solution was given to 

prove the idea, and the results showed that it is able to better reproduce the in-

plane force distributions though at a significant computational cost.  

 Mode change has proven to be an important phenomenon in post-buckling of 

plates. The current method struggles to approximate the behaviour mainly due to 

the use of Newton-Raphson algorithm. Several works have shown that Arc-length 

methods are more suited to reproduce the behaviour during mode change due to 

their ability to work with near zero or negative stiffness. The incorporation of mode 

change capabilities would also require a study of how this phenomenon takes 

place, which are the most important variables and how the numerical analysis 

correlates with experimental tests. 

6.3.3. Stiffened panel 

The stiffened panel solution is still to be further developed to be able to cope with all the 

cases treated in buckling and post-buckling of plates. Moreover, more complex stiffened 

panel configurations are still to be included. Therefore, the recommendations presented 

for stiffened panels are of special importance. 

The improvement of both buckling and post-buckling solutions for plates would obviously 

affect the solution for stiffened panels, so the previous recommendations are also 

applicable.  

As seen during the verification, the stiffened panel solution has not been fully developed 

for all the cases, so there are several important recommendations that can be presented. 

 The load redistribution between the different elements has been achieved by 

applying a strain compatibility between all of them. This method has proved to work 

well, but there have been difficulties to evaluate the post-buckling stiffness of the 

plates. The plate stiffness is ideally given as a 3 by 3 matrix that relates the different 

displacements with the different loads. During post-buckling, the stiffness is 

typically calculated from the in-plane displacement derived from the out-of-plane 

displacement and in-plane forces, however this relation does not allow to calculate 

a 3 by 3 matrix due to the lack of independent equations. The proposed 
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diagonalized method allows for a straightforward calculation, but the simplification 

might result in additional errors when working with more complex cases. Steen in 

[45] introduces a formulation able to solve the post-buckling stiffness matrix by 

using plate shortening instead of load control. A similar method could be developed 

if the previous finally does not meet the requirements. 

 The current stiffened plate formulation has focused on the simplified case of blade 

stiffeners and does not account for the interference between stiffener and skin for 

the most typical composite sections such as hat stiffeners. It is recommended to 

include those by establishing effective plate widths taking into account the 

transverse size of the section. Different approaches exist on the literature so 

verification would be required to test them and adopt the most accurate or 

conservative. 

 Once the stiffened plate formulation has reached the required maturity is would be 

useful to develop a more systematic approach to verify different cases and 

configurations, such as done for buckling and post-buckling of plates. 

 The current buckling solution accounts for the different boundary conditions of the 

different plates and the resulting different buckling loads. However, the post-

buckling formulation does not account for those differences and obtains the panel 

solution assuming the most critical plate behaviour. It might be interesting to adapt 

the formulation to account for independent plate solutions which should represent 

an improvement for situations when different buckling wave patterns are present 

or when mode change might appear at buckling onset in some plates. 

 If the previous point is adopted, then the formulation could be extended to arbitrarily 

stiffened plates (different spacing and sections for stiffeners/frames) instead of the 

current approach limited to regularly stiffened panels(same spacing and sections 

for stiffeners/frames). However, it should be decided if it is an interesting feature 

for common applications. 

6.3.4. Analytical framework for stiffened panels 

As it has been explained, this Thesis is part of a bigger project supported by Fokker 

Aerostructures to develop an Analytical framework able to predict the behaviour of 

stiffened panels made of composite laminates. Such tool should be able to give fast 

approximations of the panel strength in order to improve the preliminary design and 

optimization of such structures. 

The solutions obtained from this thesis can be used to calculate important failure modes 

in stiffened panels.  

 Post-buckling plate strength: The current solution does not include plate 

strength analysis for post-buckling, however, the resolution of the in-plane forces 

and out-of-plane displacement give all the required variables to solve the mid-plane 

strain and curvatures of the laminate. Then, different failure analysis methods 

might be used to assess material failure. 

 Skin-stiffener separation: The post-buckling solution is the first step in order to 

solve the skin-stiffener separation in stiffened panels, as it is necessary to know 

the out-of-plane displacement and force distributions in order to solve the different 

stresses involved in skin-stiffener separation. 
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Additionally, some of the remaining modules of the analytical framework can be directly 

derived from the formulations implemented during this Thesis. 

 Global buckling: The solution given for local buckling of plates can be adapted to 

cope with global buckling by smearing the properties of stiffeners and frames in 

the skin.  

 Crippling: It has been mentioned the possibility to implement an infinite plate 

formulation to optimize the solution for high aspect ratios. Infinite plate formulations 

are also used to solve local buckling of the beam flanges which is an important 

failure mode in stiffened panels. A crippling solution would also require to 

implement free edge boundary conditions and to adapt the elastic restrains for 

beam flanges. 
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Appendix A 

Design code for post-buckling figures 

As it has been mentioned, the different verification figures contain a 5 digits code in order 

to easily distinguish the different cases. All the introduced figures in this Thesis have been 

previously detailed in addition to the mentioned code. 

 Aspect ratio (i): The first digit makes reference to the aspect ratio of the plate. 

One means square plate while the rest of aspect ratios follow the rule 𝐴𝑅 = 2𝑖 − 1. 

The short side is always constant and has a value of 0.1 m. 

 Thickness ratio (j): The thickness is given as the thickness to width (short side) 

ratio following the expression 
𝑡

𝑏
=

𝑗

100
. This means that for 𝑗 = 1 the thickness is 1 

mm. Then thickness is not mentioned it is always assumed the thinnest 

configuration (to avoid thin plate theory limitations). 

 Boundary condition (k): The boundary conditions are independently defined at 

every edge by the torsional spring stiffness (in N). The following rule is followed: 

Table 12: Boundary condition code values 

k value Spring stiffness per edge [N] 

1 [0,0,0,0]   -> Simply supported 

2 [inf,inf,inf,inf] -> Clamped 

3 [200,200,200,200] -> Elastically restrained 

 Load combination (i): The loads are defined as Nx, Ny and Nxy respectively (in 

normalized form). The following table contains the different cases: 

Table 13: Load code values 

i value In-plane loads [N/m] 

1 [1,0,0]   -> Uniaxial compression 

2 [0,0,1] -> Shear 

3 [1,0,1] -> Combined loading 

 Laminate (m): The laminate layups have been detailed in table 1. 𝑚 = 1 

corresponds to the predominant 45s, 𝑚 = 2 to the predominant 0s and 𝑚 = 3 to 

the QI laminate. 
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Glossary 

Acronyms  

FE/FEM Finite element/Finite element method 

CLPT Classical laminate plate theory 

BC Boundary condition 

QI Quasi isotropic 

SF Section forces 

PB Post-buckling 

SA Semi-analytical 

AR Aspect ratio 

 

Main symbols 

A,B,D  Terms of the ABD matrix 

a Compliance of A 

u,v,w Plate displacements. u and v are the in-plane and w the out-of-plane 

𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦 In-plane forces per unit length  

a,b Plate length and width distances 

𝑃𝑥 , 𝑃𝑦, 𝑃𝑥𝑦 In-plane forces 

𝜙 Airy stress function 

X, Y Shape functions to reproduce out-of-plane displacement and force distribution 

k Torsion spring stiffness imposed as a boundary condition 

GJ Stiffener torsional stiffness  

𝛱 Total potential energy 
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𝜖   Infinitessimal increment 

𝛿 First variation of a functional 

𝜑 Characteristis displacement function 

𝑀𝑥 ,𝑀𝑦,𝑀𝑥𝑦 In-plane moments 

�̅�𝑥 , �̅�𝑦, �̅�𝑥𝑦 Applied edge in-plane moments 

E Natural boundary error term 

M, N Number of terms displacement shape function 

P, Q Number of terms Airy stress function 

C Amplitude coefficient of the shape function 

𝜶 Mode coefficient of the shape function 

𝜺𝟎 Mid-plane plate strains  

𝜿 Plate curvatures 

AR Aspect ratio of the plate 

K Stiffness matrix 
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