Demountable Construction
Analysis of the behaviour of a
1:5 scale floor bay: Part 2
Series D: cyclic loading
appendice

Ir. J. Stroband/ing. J.J. Kolpa
DEMOUNTABLE CONSTRUCTION

Analysis of the behaviour of a 1:5 scale floor bay;
Part 2
Series D - cyclic loading
appendice

ir. J. Stroband
ing. J.J. Kolpa

Mailing address:
Delft University of Technology
Concrete Structures Group
Stevinlaboratory II
Stevinweg 1
2628 CN Delft
The Netherlands
APPENDICE

A. Diagrams accompanying chapter 3.
Fig. A1 Relationship between bending moment and tensile forces at grid line 7; test D 5.
Fig. A2 Relationship between bending moment and tensile forces at grid line 7; test D 105.
Fig. A3 Relationship between bending moment and tensile forces at grid line 7; test D 205.
Fig. A4 Tensile forces at grid line 7; tests D 5, D 105 and D 205.
Fig. AV Relationship between tensile forces and number of cycles at grid line 7.
Fig. A6 Relationship between bending moment and tensile forces at grid line 5; test D 5.
Fig. A7 Relationship between bending moment and tensile forces at grid line 5; test D 105.
Fig. A8 Relationship between bending moment and tensile forces at grid line 5; test D 205.
Fig. A9 Tensile forces at grid line 5; tests D 5, D 105 and D 205.
Fig. All Relationship between bending moment and tensile forces at grid line 11; test D 5.
Fig. A12 Relationship between bending moment and tensile forces at grid line 11; test D 105.
Fig. A13 Relationship between bending moment and tensile forces at grid line II; test D 205.
Fig. A14 Tensile forces at grid line 11; tests D 5, D 105 and D 205.
Fig. A15 Relationship between tensile forces and number of cycles at grid line 11; tests D 5, D 105 and D 205.
Fig. A16 Relationship between bending moment and tensile forces at grid line 2; test D 5.
Fig. A17 Relationship between bending moment and tensile forces at grid line 2; test D 105.
Fig. A18 Relationship between bending moment and tensile forces at grid line 2; test D 205.
Fig. A19 Tensile forces at grid line 2; tests D 5, D 105 and D 205.
Fig. A20 Relationship between tensile forces and number of cycles at grid line 2; tests D 5, D 105 and D 205.
Fig. A21 Relationship between shear forces and shear deformation at grid line 2; test D 5.
Fig. A22 Relationship between shear forces and shear deformation at grid line 2; test D 105.
Fig. A23 Relationship between shear forces and shear deformation at grid line 2; test D 205.
Fig. A26 Relationship between shear deformation and crack width at grid line 2; test D 5.
Figure 2: Relationship between shear deformation and crack width at grid.
Fig. A26 Relationship between shear deformation and crack width at grid line 2; test D 205.
Figure 2: Relationship between shear deformation and number of cycles at different grid endpoints.
Fig. A28 Relationship between shear forces and shear deformation at grid line 11; test D 5.
Fig. A25. Relationship between shear forces and shear deformation at grid line 11; test D105.
Fig. A30 Relationship between shear forces and shear deformation at grid line 11; test D 205.
Fig. A31 Relationship between shear deformation and crack width at grid line 11; test D 5.
Fig. A32: Relationship between shear deformation and crack width at grid line 11; test 0 105.
Fig. A33 Relationship between shear deformation and crack width at grid line 11; test D 205.
Fig. A34 Relationship between shear deformation and number of cycles at grid line 11; tests D 5, D 105 and D 205.
Fig. A35. Relationship between shear deformation and number of cycles at grid line B near grid line 11; test D 205.
Fig. A36 Relationship between shear deformation and number of cycles in the longitudinal joints between grid lines 1 and 2; tests D 5, D 105 and D 205.
Fig. A37 Relationship between shear deformation and crack width at grid line B near grid line 11; test D 205.
Fig. A33: Relationship between tensile force and crack width at grid line 7, test 0.5.
Fig. A39 Relationship between tensile forces and crack width at grid line 7; test D 105.
Fig. A10: Relationship between tensile forces and crack width at F1148.

Line 7: Test 0 205.
Fig. A41 Crack width at grid line 7; tests D 5, D 105 and D 205.
Fig. A42 Relationship between crack width and number of cycles at grid line 7; tests D 5, D 105 and D 205.
Fig. A3: Relationship between tensile forces and crack width at grid line 5; tests b, 5, b 105 and b 205.
Fig. A44 Relationship between crack width and shear forces at grid line 5; tests D 5, D 105 and D 205.
Fig. A45 Relationship between crack width and number of cycles at grid line 5; tests D 5, D 105 and D 205.
Fig. A46 Relationship between crack width and tensile forces at grid line 11; test D 5.
Fig. A7. Relationship between crack width and tensile forces at grid line 11, test D 105.
The relationship between crack width and tensile force at grid points 11A, 11B, 11C, and 11D is illustrated in the diagrams. The data collected during the test at 0.205 mm crack width is compared with the calculated values.
Fig. A49: Relationship between crack width and shear forces at grid line 11; test 0.5.
Fig. A50 Relationship between crack width and shear forces at grid line 11; test D 105.
Figure A51: Relationship between crack width and shear force at梁端。
Fig. A52 Crack width at grid line 11; tests D 5, D 105 and D 205.
Fig. A53 Relationship between crack width and number of cycles at grid line 11; tests D 5, D 105 and D 205.
Fig. A54: Relationship between tensile forces and crack width at grid line 2, test D 5.
Fig. A55 Relationship between tensile forces and crack width at grid line 2; test D 105.
Fig. A56: Relationship between tensile forces and crack width at grid line 2; test D 205.
Fig. A57
Relationship between crack width and shear forces at grid line 2, test D 5.
Fig. A58 Relationship between crack width and shear forces at grid line 2; test D 105.
Fig. A59 Relationship between crack width and shear forces at grid line 2; test D 205.
Fig. A60 Crack width at grid line 2; tests D 5, D 105 and D 205.
Fig. A61. Relationship between crack width and number of cycles at grid line 2; tests D 5, D 105 and D 205.

CRACK WIDTH AT GRID LINE 2 (x10E-3 MM)

CRACK WIDTH AT GRID LINE 2 (x10E-3 MM)

CRACK WIDTH AT GRID LINE 2 (x10E-3 MM)
Fig. A62 Relationship between the total horizontal load and lateral deflection of the floor bay in D7; test D 5.
Fig. A63 Deflection and increasing of deflection of the floor bay by $Q=12$ kN; test D 5.
Fig. A64 Relationship between the total horizontal load and lateral deflection of the floor bay in D7; test D 105.
Fig. A65 Deflection and increasing of deflection of the floor bay by \(Q = 12 \) kN; test D 105.
Fig. A66 Relationship between the total horizontal load and lateral deflection of the floor bay in D7; test D 205.
Fig. A67 Deflection and increasing of deflection of the floor bay by $Q=12$ kN; test D 205.
deformation in the transverse joints by $Q=12$ kN and $Q=-12$ kN; tests D 5, D 105 and D 205.
Fig. A69 Deformation of the end of the floor bay at grid line 1 by a total load of Q = 12 kN and Q = 12 kN; tests D 5, D 105 and D 205.
Stevin-reports published by the division of concrete structures:

<table>
<thead>
<tr>
<th>SR</th>
<th>Title</th>
<th>Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Bruggeling, A.S.G. "De constructieve beïnvloeding van de tijdsafhankelijke doorbuiging van betonbalken"</td>
<td>1974</td>
<td>Out of print.</td>
</tr>
</tbody>
</table>
A74

(5-77-21)

(5-77-2)

SR - 21 Corrosie van wapening in beton; Proefresultaten (1977).
(5-78-2)

(5-77-6)

(5-78-6)

(5-78-9)

(5-78-11)

(5-79-1)

(5-79-30)

(5-79-3)

(5-79-10)

SR - 31 Gremmen, C. "Beton met grof grind als toeslagmateriaal".
(5-79-5)

(5-78-10)

(5-80-2)

(5-80-3)

SR - 35 Vos, E., Reinhardt, H.W. "Bond resistance of deformed bars, plain bars and strands under impact loading" (1980).
(5-80-6)

(5-80-9)
SR - 43 Zielinski, A.J. "Experiments on mortar under single and repeated uniaxial impact tensile loading" (1981). (5-81-3)
SR - 44 Cornelissen, H.A.W., Timmers, G. "Fatigue of plain concrete in uniaxial tension and in alternating tension-compression - experiment and results" (1981). (5-81-7)
SR - 45 Stroband, J., Kolpa, J.J. "The behaviour of reinforced concrete column-to-beam joints. Part 2: Corner joints subjected to positive moments. (5-81-5)
SR - 48 Zielinski, A.J. Behaviour of concrete at high rates of tensile loading. A theoretical and experimental approach. (5-83-5)
SR - 49 Uijl, J.A. den "Tensile stresses in the transmission zones of hollow-core slabs prestressed with pretensioned strands" (1983). (5-83-10)
SR - 50 Cornelissen, H.A.W. "Constant-amplitude tests on plain concrete in uniaxial tension and tension-compression" (1984). (5-84-1)
SR - 52 Zorn, N.F. "Cracking and induced steel stresses of reinforced and prestressed piles during driving" (1984). (5-84-6)
(5-84-14)
(5-85-1)
(5-85-2)
(5-85-8)
(5-85-5)
(5-85-6)
(5-85-7)
(5-85-13)
(5-85-12)
(5-85-14)
SR - 67 Ir. A.F. Pruijssers "Shear resistance of beams based on the effective shear depth" (1986).
(5-86-1)
(5-86-03/revised)
(5-86-11)
(5-86-5)
(25-87-2)
SR - 73 Stroband, J., Kolpa, J.J. "Demountable construction". Analysis of the behaviour of a 1:5 scale floor bay; Part 2, Serie D; cyclic loading; experiments (1987).
(25-87-21)

SR - 74 Stroband, J., Kolpa, J.J. "Demountable construction". Analysis of the behaviour of a 1:5 scale floor bay; Part 2, Serie D; cyclic loading; appendice (1987).
(25-87-22)
Uitleenstrookje
Loan slip

Verlengen/inleveren uiterlijk op:
Renew/return at the least on:

Vervaldatum
Expiry Date

01 Aug. 2006

Verlengen
Tot en met de vervaldatum kunt u informatie-
media (mits deze niet gereserveerd zijn)
as volgt verlengen:
• online in de Bibliotheekcatalogus
 (kies ‘User Account’)
• bij de Informatiebalie
• per e-mail of telefoon
Voor nadere informatie kunt u de helpfunctie
in de Bibliotheekcatalogus raadplegen.

To Renew
Up to and including the expiry date you can
renew information media (provided these
have not been reserved):
• online through the Library Catalogue
 (choose ‘User Account’)
• at the Information desk
• by e-mail or telephone
Please look under the help button in the
Library Catalogue for additional information.

T +31 (0)15 27 85678
E info@library.tudelft.nl
I www.library.tudelft.nl

TU Delft
Bibliotheek