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Summary

For the prediction of dispersion phenomena and of changes in the
morphology of an alluvial bottom, a detailed description of the
water flow is necessary. The flow in estuaries is a complicated
one, partly because of the time-dependence. To isolate this aspect
of tidal flow a simplifying one-dimensional (vertical) flow model

is used. This one—dimensional model is obtained by the neg8lect of
canvective derivatives of the longitudinal velocity and the use

of the rigid lid approximation, i.e. the replacement of the free
surface by a flat frictionless plate.' The ‘error introduced by these
approximations is not large for the flow in most tidal channels.
Convective derivatives are generally of minor importance. The rigid
1lid approximation is inaccurate for tidal waves with a large ratio

between wave height and water depth (e.g. > 1/10).

Tidal flow is usually described by simple eddy viscosity models

in which various simple distributions of the eddy viscosity are
prescribed. Recently models with an eddy viscosity depending on

_the turbulence energy, the k-model and the k-e-model, have gained

wide acceptance for all kinds of boundary layer flow. In this investi-
gation the k-model and the k—e-model are compared to an eddy viscosity
model with an appropriate distribution of the eddy viscosity and to
the mixing-length model for the case of steady and of time dependent
free surface flow. The time dependent free surface flows,considered,
represent flows in a tidal channel without a nett discharge over the
tidal period. The roughness values and the velocities are typical

for tidal channels.

The results of the various models differ hardly. The only appreciable
difference is around slack water, where all models used are, however,

less reliable. The close correspondence is explained by the short
adjustment times of the turbulence energy and its dissipation compared

to the tidal period and by the small relative roughness height. The flow
in a tidal channel can be considered as slowly varying, showing almost
logarithmic velocity profiles except around slack water. The hysteresis
effect of the shear stress with respect to the surface velocity calculated
with all these models is therefore small, in contradiction to the large

hysteresis effect as found in some of the prototype measurements,



In all models some constants or the distribution of a length scale or

an eddy viscosity have to be specified. In the k-e-model only constants
need to be specified. The physical bases of the k-model and certainly
of the k-e-model, however, are quite poor, throwing doubts on the
constancy of the constants and the usefulness of the values of the
constants beyond the direct situation of calibration. The k-e-model

is very sensitive to the values of most constants.

As the k-model and especially the k-e-model require much smaller
timesteps than a simple eddy viscosity model, the last model  should
be preferred whenever the specification of an eddy viscosity distribution

is possible.

The conclusions arrived at, are generally valid for flows in tidal
channels, as the considerations mentioned do not depend on the simpli-

fications used.

This research was subsidized by the directorate of the Deltadienst of

Rijkswaterstaat.
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i " Introduction

For many problems in estuaries such as the transport and dispersion of
pollutants, the behaviour of density differences and the changes in the
morphology of the channel bed as a response to the influence of large
hydraulic structures, a detailed knowledge of the water flow is indis-

pensable. This knowledge is e.g. needed to calibrate depth-averaged models.

Until recently two kind of models accounting for vertical transport of
momentum were in use, mixing length models and models using an eddy viscosity
concept. Generally a simple vertical distribution of the eddy viscosity

was chosen: a constant eddy viscosity; a combination of two different
constant eddy viscosities,one for the near bed region and one for the

remainder of the depth; etc. (see Knight, 1975).

In Booij (1981a) various models of this eddy viscosity type were compared.
The comparison was executed in a one-dimensional vertical flow model,

in which simple model the influence of tidal variation can be examined
without topographical effects (See chapter 2). The best agreement with

the measurements in tidal channels was obtained with an eddy viscosity

that varied parabolic over depth and proportional to the depth—averaged
velocity or the friction velocity. A good reproduction of the logarithmic
velocity profiles as measured in most tidal phases and of the variation of
velocity and shear stress with time were obtained. Only a hysteresis
effect of the shear stress with respect to the surface velocity, that shows

up in some measurements in tidal flow, did not reproduce.

Recently eddy viscosity models were developed that try to account for
transport of turbulence and for the transport of its length scale. The models
of this type, considered, are the k-model and the k-e=model. The
expectations of these models and especially of the k-e-model for flows in
rivers and estuaries are high (e.g. Rodi, 1980 and Delft Hydraulics
Laboratory, 1973). An often cited investigation of the usability of those
models for tidal channel flow was executed by Smith and Takhar (1979).

Quite serious objections can thEVei-bé—:g;§eg;against their treatment of the

k-model and the k-e-model. (see chapter 3 and 4).



In this investigation the mixing-length model, the k-model, the
k-e-model and the best simple eddy viscosity model are

compared. This comparison is executed in the same one-dimensional
flow model as used in Booij (1981a) for steady flow and flow in a
tidal channel (chapter 4). The characteristic roughness height is
given some typical values for tidal channels. Much attention
is given to the constants and the length scale distribution to be
specified in the various models (chapter 3). This also determines
to which extent calibration of a model by variation of the constants

as done by Smith and Takhar (1979) is allowed.
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2 Mathematical Description
2.1 One-Dimensional Model of the Flow in a Tidal Channel

The model of the flow in a tidal channel used in this report is the one-

dimensional model described in Booij (1981a).

A long-wave motion of small amplitude in a wide and straight open channel
of constant width and depth is considered. In the absence of Coriolis
accelerations and transverse oscillations, the motion is essentially two-
dimensional. To describe this motion a rectangular coordinate system
0x, Oz is used, where Ox is situated on the bottom and directed along the

channel and 0z is positive upwards (see fig. 1).

Following Proudman (1953) the shallow water equations are

T3z O M
h+g

3t , 3 -

5t * 32 [ uwdz =0 (2)
0

Du _ __ _ o1

Dt & 9z (3)

In formula (3)

9 d 3

—_—= —— + U + W— 4
ot 0x 9z ' (4)
is the Stokes derivative, u and w represent the ensemble-averaged
velocities in the x and z direction respectively, T is the horizontal
kinematic Reynolds shear stress, h is the mean free surface level and
z(x,t) its deplacement. The term s in equation (3) represents the

kinematic pressure gradient, corresponding with the free surface slope

s = gt (5)
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where g is the acceleration of gravity.

Replacing the Stokes derivative by the time derivative in equation (3)

gives
du _ 31 (6)
t 9z

The replacement of equation (3) by equation (6) corresponds to two

approximations

= The rigid 1id approximation. The free surface is represented by a
flat frictionless plate. The pressure gradient corresponding with
the free surface slope is maintained. This approximation is justified
in the case of small vertical velocities and low waves.

= Convection of the velocity is neglected.

The error introduced by these approximations is not large in most flows in
tidal channels (see Booij, 198la). The rigid lid approximation is not justified
in case of high tidal waves, causing large relative surface displacements,

e.g. 1z1/h>0.1, and in case of bores. Convection of the velocity is generally
of minor importance. The small flow velocities in the last few kilometers
before a closed end of a tidal channel, however, lead to very small shear

stresses. As a consequence convection can not be neglected there.

A one-dimensional model remains,if it is assumed that the Reynolds stress

can be expressed in variables at the same Xx.

The model described above requires much less computational

effort than the complete shallow water equations.

To solve equation (6),the shear stress T has to be related to the other
variables in this equation (the closure problem of turbulence.). Generally
T is related to the local mean velocity gradient by means of a (kinematic)

eddy viscosity, vt(z,t), defined by

“[‘:—\):'— (7)

Substitution in cquation (6) yields

Ju J Ju
—_—f(vcﬁ}f)'_b (8)

Various turbulence models involving different relations between the

eddy viscosity and other variables will be discussed in the next chapter.
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Henceforth an imposed harmonic pressure gradient is considered
s = =S cos wt (9)

S is the amplitude of the varying pressure gradient. Equation (8) now

reads
ou 9 ou
-a'—t' E (\)t -E) = S cos wt (10)

The resulting one-dimensional flow model is quite simple,but it allows the
performances of the various turbulence models to be compared for a flow
resembling the flow in a tidal channel with regard to the variation in

time and the bed roughness.

2.2 Normalization

The results of the computations using the various turbulence models are
given in a non-dimensional form. To this end vertical coordinates are
normalized with the flow depth, h. Time is scaled with the tidal period,
Tp’ and velocities are scaled with a friction velocity. A friction

velocity u, is defined by

u, = /¥6ﬂ (11)

where T is the bed shear stress.

The friction  velocity used to scdle the velocities, u is the -

xs’
friction velocity applying in a steady flow, with as a pressure gradient

S, the amplitude of the varying pressure gradient (see equation 9). A

simple momentum balance gives
u,_=vyt, = VSh (12)

where Tos is the bed shear stress in the steady flow situation.

The normalized quantities, denoted by the suffix +, read
+ z
z _E (13)

+_ b
bt =% (14)
P
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+ _u u
N (15)
xS v¥Sh
Vet (16)
t  /&R®

Equations (7) and (10) read in the normalized form

+
+ +
T = =-v 2 (17)
t +
0z
and
awt 9, o+ au +
R —E: - — (v —E—) = cos (21 t ) (18)
+°t +
ot 0z 9z
where
/h'
R=—— (19)
T VS
P

Substitution of equation (19) in equation (12) leads to an expression

for U depending on R instead of S

XS RT (20)

In all computations with the various turbulence models the same value for

R is used: R = 6.07 x 1073, With T = 4.41 x 10%s (12 hours and 25 minutes)
this value leads for different cha;nel depths to the friction velocities for
steady flow as given by table 1. In this table a depth-averaged velocity for
the steady flow, u, ,‘,is also given. This depth-averaged velocity
applies for C = 60 m%/s. C, the Chézy resistance coefficient depends

on the ratio of the depth-averaged velocity, U and the friction

velocity, u - It is defined by

,-.
o+
<

roi—

C = g (21)



v
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h u u
XS av,s
5 m 0.0187 m/s 0.358 m/s
10 m 0.0374 m/s 0.715 m/s
15 m 0.0560 m/s 1.073 m/s
20 m 0.0748 m/s 1.430 m/s

table 1

Flow situations with the same R and corresponding normalized boundary

(and initial) conditions yield the same normalized solution.

2.3 Logarithmic Velocity Profiles

As discussed in Booij (1981a)most measurements in tidal flows show almost
logarithmic velocity profiles, except at slack water (see Bowdén et al.,

1959).

A logarithmic velocity profile above a rough bed can be described by

zZ+z
Ly (22)

Yx
u(z) = . 1n (ZO

where z is the characteristic roughness height and k is the Von

Karman constant. Neglect of 2 compared to z and division of equation

(22) by u gives

u(z) 1 z
== 1n Q;-) (23)
* 0

or normalized

uwi(zh) 1 2"
- = 1n (== (24)
u z

*® 0
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The depth-average of equation (23) reads

Cav 1By ' (25)
Ux K n Zo

In tidal channels the relative characteristic roughness height éo/h is found

to be mostly between (see e.g. Sternberg, 1968, and Booij, 1981&)

- zg = 0.001 and = 0.0001 (26)

Equation (25) leads for these values of zg to

uav U;V
'u— = —+— = 14.8 to 20.5 (27)
= 'l.lx

The corresponding values of the Chézy resistance coefficient are
C =46 to 64 (28)

In the computations the values zg = 0.001 and 28 = 0.0001 are used.

In figure 2 the velocity profiles for both roughness values are given.

Logarithmic velocity profiles especially appear, at least to a good
approximation, in uniform and steady flows under influence of a free
surface slope. The shear stress profiles for these flows follow: from
equation (6). A kinematic pressure gradient S gives

T =T (1-%)=Sh(l-%) (29)

0

Equation (7), with the expression (23) substituted for u(z), then gives

the parabolic eddy viscosity distribution.

Ve = KU z(1 - %) (\’:= KU; 2'(1 - 27) ) (30)

with u in this steady flow given by



.
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u =u__ = V/Sh (31)

In tidal flow the term-accounting for the time dependence of u in the
momentum equation (equation(10) or (18)) is negligible at near
maximum velocities. In that part of the tidal period the first part
of equation (29) and equation (30) still apply. As the velocity and
the shear stress, however,do not have to be in phase with the pressure
gradient (see chapter 4 ), T and u_ may be smaller than the values
applying for steady flow at S the maximum pressure gradient, Sh and

YSh respectively.

At smaller velocities the time dependence of u may be important.

Equations (29) and (30) then donot have to hold good.

At the two roughness values, used, only the eddy viscosity near the
bed is really important for the depth-averaged velocity Uy The
velocity at z/h = 0.1 is in both cases already about 807 of Uy
Not too drastic changes in the eddy viscosity distribution farther

from the bed only result in minor changes in the velocity profile.

In chapter (4) some attention is given to the consequences of different for
R en z, on the results of the computations. Only cases without a nett
discharge over the tidal cycle are considered, because the tidal average

of the imposed pressure gradient is taken zero.
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3 Turbulence Models

3.1 Eddy Viscosity Models

All models considered in this report are of the eddy viscosity type.

The kinematic shear stress T is, following a suggestion by Boussinesq

(1877), equated to a product of the velocity gradient and a coefficient,

the so called kinematic eddy viscosity. On dimensional grounds the eddy

viscosity can be written as the product of a length scale, Lt’ and a

velocity scale, Vt'

v_ =1LV C\;: = 1]V} (32)

The models can be classified in two groups

- models in which the velocity scale is expressed in main flow
quantities. (The simple eddy viscosity models and the mixing-
length model)

= models in which the velocity scale is expressed in turbulence
quantities. (The k-model and the k-e-model). '

The length scale is often prescribed. In the k-e-model the length scale

is expressed in turbulence quantities.

3.1.1 Simple eddy viscosity models

In the simple eddy viscosity models Lt and Vt are expressed in main flow
quantities. Booij (198la)devotes much attention to this kind of models.
Models where Vt is the shear stress velocity u or the depth-averaged

velocity W and Lt is a parabolic function of z are preferred. In this

report is used

L, = xz(1 = 9 (L‘t’ - Kz*u-z*)*) (33)
and

3 + +
Ve = uy (vi=4dl) (34)

Using these values v behaves in accordance with formula (30). The model is

exact, when logarithmic velocity profiles and linear shear stress distributions



.

v i

apply. Results obtained with the model around slack water are less
reliable. Models of this kind lack general applicability and need
ad hoc adjustments of the viscosity  for different problems. (Launder

and Spalding, 1972).

3.1.2 Mixing-length model

Prandtl's (1925) mixing length hypothesis 1is based upon a description of the
transport of momentum in boundary layer flow across the main flow direction.

The used length and velocity scales are

+ +
L =1 Gr=1) (35)
and
3 + _ +|au”
u —
L= |2 (vt 1 = ) (36)

where lm the mixing-length must be specified Often a mixing-length is
used = that is proportional to z near the bed and is constant in the
upper part of the flow. This distribution originates from boundary
layer considerations without a free surface. The mixing length will

most likely decrease again near the free surface (Ellison, 1960).

The similarity hypothesis of Von Karman (1930) presents a method to calculate

a mixing-length.

1 = l ou/3dz ' (37)
" 32u/3 z2

Unfortunately the obtained mixing-length is not always in agreement
with measurements. Computational problems arise at inflexion points
of the velocity profile, so this hypothesis is not appropriate in tidal
flow. In a steady free surface flow in a channel this problem does not

‘arise. The similarity hypothesis leads to
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_ _z\? _ _ myd
1m-2.<h(| f\) {(1-q ?{)} (38)

and velocity profiles that deviate slightly from logarithmic profiles.

The Bakhmetev approximation of expression (38) (see fig. 3)
~ _z\4 + _  # &1
lm = kz (1 h) ( Hn =xz (1-z) .) (39)

leads to exact logarithmic velocity profiles. In the mixing-length
model ,used in this report,Vt and Lt are chosen according to the

equations (35), (36) and (39).

The mixing-length model is to be recommended for simple boundary layer
flows (Rodi, 19830). The model is less reliable at slack water, as the
mixing-length is probably not independent of the velocity profile.

A disadvantage of the mixing-length model is that turbulence
transport is left out of account. In problems with a considerable
turbulence transport, the turbulence level and in this connection

the momentum transport and the eddy viscosity can be influenced.

The mixing-length hypothesis is not appropriate in that case.
3.1.3 k-Model

The coefficient for eddy diffusion in a homogeneous flow field Dt can

be written (see Hinze, 1975)
D =V ul2 A (40)

where the velocity scale, V uéz , 1s the intensity of the z component,

ué, of the turbulent velocity and the length scale is the Lagrangian

integral length scale A . Prandtl (1945) and Kolmogorov (1942) proposed

Lt
a related expression for the eddy viscosity to be valid more generally

v, =C kL (41)
The velocity scale chosen 1is

v, = k' (42)
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where k is the mean kinematic turbulence kinetic energy

k= §(uj2 + up? + ui?) (43)

u; and ué are the other components of the turbulent velocities.

The length scale L is like A. and 1m a characteristic length scale

L
of the more energetic turbulent eddies. L is closely related to 1
and it is in this report identified with it. The'constant Cv depends

on the choice of L. (see page 26).

Determining the turbulence energy by a transport equation makes the

k-model more appropriate than the mixing-length model when turbulence

transport is considerable. The exact turbulence energy transport

equation, based upon the Navier-Stokes equation, reads, using the eddy viscosity

hypothesis (see equation 7),(Bradshaw et al.,1981; Launder and Spalding, 1972)

Ph: ﬂz_a_ 1, ! >'| _ ;12
Dt * vt(az) 9z (ugk * u3P ) VLF ( x.) (44)

where k' and p' are turbulent fluctuations of the kinematic turbulence energy
and pressure; xj are the three coordinates x, y and z, and v is the molecular
viscosity. In the k-model the diffusion is”assumed to be proportional to the
gradient of k, and the diffusion coefficient to be proportional to the eddy

viscosity with a constant factor l/ck

o v,
—  (uik' + up') = — (45)

=
zlx

The dissipation occurs predominantly in the smallest eddy sizes, but the
dissipation rate is controlled by the energy transfer from larger to
smaller eddies. This cascade process is supposed:to.be only dependent
on k and L. For dimensional consistency the dissipation term reads

ou! 3/2

i2 _ _k
IR TO% T (463
i,]
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The consideration above is only possible for large Reynolds numbers,

in order that a range of eddy sizes occurs, where the cascade process
takes place. Large Reynolds numbers are required too to get local
isotropy at the small eddy sizes. This iocal isotropy makes it possible
to express the dissipation as a single scalar quantity,c.An objection

that can be raised against expression (46) is, that the scale L and the

eddy sizes of the energy containing eddies, are above the cascade

range, for which range the argument given was valid.

Replacing again the Stokes derivative by the time derivative the
turbulence energy transport equation (44) becomes, after substituting
equations (45) and {45)
v 3/2
k
B 2 - 47)

P
?z (0 _E) B

ok _ Ju, 2
Fr Ve (az *

=~

The constants CD and % have to be chosen in such a way that the

measured energy profiles are reproduced best. (See 3.3).

To normalize equation (47) the turbulence energy is scaled by Sh
k = — (48)

Equation (47) and expression (41) read normalized

+
3k' 4+ du'y, .0 VUt ok’ 2
R att Vt (82+) T (ok 32+) N CD L (49)
and
+ . - +
0, = LV vkt L (50)

Drawbacks of the k-model are the weak basis on which equations (41),
(45) and (46) rest. A length scale distribution has still to be
specified. It is  risky to use the model for situations where

no reliable measurements are present. In this report such a situation

is the tidal phase around slack water.
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3.1.4 k—-e-model

In many flow problems the length scale distribution is hard to prescribe,
e.g. in tidal flow around slack water. To remove this difficulty several
transport equations for different combinations of k and L are proposed
(Launder and Spalding, 1972). Most succesfull up to now is the equation for
€ = CD k3n/L. In the k-e-model two equations, the transport equation

for k and €,are needed to calculate the eddy viscosity. In this model

the eddy viscosity is written

2
v, = €, % (51)
where
C, = C,Cp (52)

The velocity scale in the eddy viscosity is still /K. The length scale is

k3/2
L =¢C (53)
t D €
The k-equation becomes
3k _ ¢ k_z(ﬂ)2+il_?_(ﬁ3_k)_e '(54)
3t 1 e 3z L 3z & 9z
The e-equation used reads
C 2 2
de _ (U2 193 (K7 de, £ (55)
ot Cpe k(az/ * o 0z (c z) Cde k

Equation (55) is the equation generally used.(for this case the Stokes derivative
is again replaced by the time derivative.) This e-equation is related to an
exact equation based on the Navier-Stokes equatuon, but the assumptions in
equation (55) are so far-reaching that it is more appropriate to call equation
(55) an empirical equation (Bradshaw et al., 1981). The diffusion term in
particular represents a combination of different terms, which are not easily
simplified on theoretical grounds. So the following relation is assumed in which
the theoretical terms on the right side are related to a diffusion term in

analogy with the diffusion term in the k-equation (47).



.

...2]_
C . du'! du. Qu! ou'! du!  34p!
13 k%23 j 2 P
o %z (e— 251 zj k| 9 xl ax].. - ‘u;'] gx. ta( = 3 = 3%, ox (36)
€ i *k k9% j *x s

The diffusion term is again assumed to be proportional to the gradient

of €, with a diffusion coefficient that is proportional to the eddy
viscosity with a constant factor l/oe. The only justification stemms from
the various flow situations described reasonably well with the

k-s-model. (see Rodi, 1980)

To normalize the equations of the k-e-model € is scaled by /$3h

et = (57)

vYs3h

The normalized versions of equations (51), (54) and (55) read

ol
+
\)t " C] -—(.:—"’ (58)
+- +2 +, C +2 4+
3k’ _ . kK 3u 13 kK ok, _ 4
R TS ¢ 21?'(3;:) * Oy oz™ ( e” Bz+) € (59)
and
+ C +2 o+ +2
9€ + au 13 k €
= -
R 3t~ “pe GoF *’) O Bz“ = az+) Cae ¥ (609

The constants Cpe’ Cie and o, have to be specified by calibration in
situations where extra conditions concerning the dissipation can be
imposed.

The empirical nature of the e-transport equation requires great care

in using the k-e-model for flow problems lacking a sufficient body

of empirical evidence.

3.2 Boundary Conditions

To solve the differential transport equations of the models introduced
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above, appropriate boundary conditions have to be imposed. For each

differential equation a boundary condition is specified near the

bed and one at the free surface

The lowermost grid point is chosen in the logarithmic part
of the velocity profile. Generally a logarithmic velocity
profile is assumed in the region 30 < z> < 100 where 2> is
a dimensionless wall distance (The law of the wall, see

Townsend, 1976)

x  Tx 61)

with v the kinematic molecular viscosity. The region in which

the velocity profiles are logarithmic in the problem considered

in this report,extends to much larger distances from the wall. Using
z¥ < 100 for the first grid point, corresponding with 2" < 0.0025
when using for U the values of table 1, would require much

larger computing times(see .4.2). The boundary condition for

the velocity used is chosen conform to equation (24)

u+ 3
u (z") = = %) o (62)
K ZO

In the transport equation (equation 49) for the turbulence
energy the terms accounting for the time dependence and for the
diffusion of k are negligible in the near-wall region, so that
local equilibrium prevails. Substitution of the expressions
(50), (52) and (17) in equation (49) gives the bed boundary
condition for the turbulence energy
K'zh = =t h (63)
/ET\ .
Usually the near-constancy of T near the wall is used to
approximate equation (63) by (see Rodi, 1980)

g S, T Bl (64)

Al
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When a linear stress profile can be assumed, use of the
normalized form of equation (29) yields the boundary condition
used in this report

2 -2Y (65)

k+(z+) _ —l—-u+
/e F
The same boundary condition for k applies in the k-e-model.

Instead of equations (49) and (50) equations (54) and (58) are

now used to derive the boundary condition .

The bed boundary condition for the dissipation follows from
the same neglect of the time dependence term and the diffusion

term in the transport equation for k (equation 54), giving

+
du
3z

et(z") = /cfk* (66)

With au+/az+ from equation (62) and substitution of equation

(64) the normally used bed boundary condition for the dissipation

results *5
u

+ o6 % 67)
e (2) =7
With equation (65) the boundary condition used in this report
follows

+3

$, + Ug (l-z+ (68)

e (z) =%

When no wind-induced shear stress is present at the free surface,
the free surface boundary condition used 1is a zero u-gradient,
so no momentum transport takes place across the free surface

regardless of the value of the viscosity.

+

du

(——:) + = 0 (69)
3z z =1

No turbulence energy transport across the free surface is
assumed. This leads to an analogous free surface condition

for the turbulence energy



5
+
ok
), =0 (70)
9z z =1
£33 An expression analogous to equations (69) and (70) is often

used for the free surface boundary condition for e too (sece

e.g. Smith and Takhar, 1979)
==z) = 0 (71)

There is, however, no reason to assume that no € can be transported
through the surface. In this report the expression for the
boundary condition at the surface corresponds with the boundary
condition at the bed in its dependence on the turbulence

energy (see Rodi, 1980)
3/2
e W+ )

CbsK

+
() + | = (72)

The purpose of this boundary condition is to limit the length

scale near the free surface. Cbe is a constant.

The differential equations of the various models are solved numerically by

means of a fully implicit finite difference method (see appendix).

To this end the depth is divided in cells around grid points, at which u, k and

€ are calculated (see appendix). Finite difference counterparts of the transport

equations can be derived by a discretization of these transport equations over

the cells. To keep the truncation errors caused by this discretization small, a

depth grid is used with the following properties (see fig. 4):

- the spacing between the grid points is small in regions where important
gradients occur (e.g. near the bed).

- the cell around the first grid point is small in comparison to the distance
between this first grid point and the bed.

- the grid is moderately non-.uniform. A non-uniform depth grid requires less
grid points and so less computing time but strongly non-uniform depth grids
cause considerable truncation errors.

The bed boundary value for the velocity is introduced by means of a momentum

balance equation for the cell around the first grid voint,

The time step has to be chosen small in most models for reasons of numerical

stability. Therefore the results of the computational generally do not depend

anymore on the time step used. (see chapter 4).
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3.3 Choice of the Constants

Various constants and in some models a length-scale distribution

have to be specified. The constants are determined from special flow
configurations, but some fine tuning according to the problem considered
is sometimes done (Launder and Spalding, 1972). In this report the
values as recommended by Launder and Spalding(1972) are used (see

table 2). The values chosen were the best overall values for a wide

range of boundary-layer flows

constant k-model k-e-model
C] 0.08 0.09
C = 1.45 x C.=0.130
pPe 1
Cde - O.]8/Cl = 2.0
Gk 1.0 1.0
o - 1.3
€
table 2

For the constant CbE appearing in the free surface boundary value for €
(equation 72) the value 0.07 is chosen (Hossain, 1980). The length
scale distribution used in the mixing-length model and in the k-model is

the Bakhmetev distribution (see equation 39).

The various models and the influence of a variation of their constants
are investigated first. This investigation is carried out for the case

of a steady channel flow with a free surface and a normalized roughness

length zg=0.001. The behaviour of the models in the case of a tidal flow

is mainly determined by the behaviour in the case of steady flow,as tidal flow
can be considered a slowly varying flow (see chapter 4). It was demonstrated
in chapter 2 that for ZS=O'001 the viscosity in the upper part of the flow

is hardly important. The viscosity profiles computed for this steady flow

are compared in fig. 5a. The differences appear mainly in the upper part

of the flow. Consequently the velocity profiles of the various models in

fig. 5b show only small differences.

Additional comments on the choice of the constants are given in 3.3.2 and

383
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3.3.1 Simple eddy viscosity model and mixing-length model

The eddy viscosity distribution prescribed in the simple eddy viscosity
(E-V) model is the parabolic distribution. In steady channel flow with
a free surface this distribution brings about a logarithmic velocity
profile (see 3.1). If in the mixing-length (M-L) model the Bakhmetev
distribution is chosen for the length scale, the same eddy viscosity

profile and so the same logarithmic velocity distribution appear (see 3.2).

Knowledge of the mixing-length and the viscosity profile near a free
surface is limited. The influence of distributions that differ. in the
upper part of the flow on the velocity profile is small. Deriving the

mixing length and the viscosity distributions in the upper part of the flow

is therefore hardly possible.The differences between computations with distribute

ions ‘that deviate-in -the upper nart”gf'the flow, however, are also small.
3.3.2 k-Model

In the equations of the k-model (equations 18, 49 and 50), the constants

C and the length scale distribufion have to be specified

C and o
v

D’ k

Near the bed local equilibrium of the turbulence prevails, so equation
(65) applies, C]
52). Measurements of the ratio: of the turbulent energy and the shear

}

of C] of about 0.08 (see Launder and Spalding, 1972). The values of Cv

in equation (65) is the product of Cv and CD (equation

stress in experiments near walls yield C] =0.25 to 0.3, suggesting a value
and CD depend on the choice of the length scale. When the Bakhmetev
distribution (equation 39) is used, at least neag Ehe bed, equations (39),

(30), (50) and (65) lead to Cv=C]£=O.53 and CD=C] =0.15.

The distribution of the length.scale in the k-model is as poorly known as the
mixing-length. Because of the conceptual correspondence between the two
length scales, they are often taken to be identical. The value of O
originates from measurements of Hanjalic and Launder (1972) in an asym-
metric flow between two parallel planes with different roughness. The
diffusion term in the k-equation is more important in this flow configuration
than it is normally in wall boundary flows. The value obtained in this way

is 0, =1.0 (Launder and Spalding,1972).
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If local equilibrium of the turbulence would prevail at every depth, the
k-distribution would be linear according to equation (65). The diffusion
term in equation (49) brings about a transport upwards thrdugh the flow.
As a consequence the turbulence energy content in the lower half of the
flow is somewhat smaller and in the upper half larger than the linear
relation would predict (see fig. 6). Values of the turbulence energy
estimated from measurements of some turbulence intensities in free surface
flows (Atkins, 1980; Nakagawa et al., 1975) are comparable to the values
computed by means of the k-model up to the surface. Variation of the
constants Cl and O has only a small influence on the upper half of the
viscosity profile (fig. 7) and hardly any on the velocity profile (table 3).

The same applies for other choices of the length scale distribution.

+
(u)
zt=]
Oy =1; Cl = 0.08 16.98
o X 2 17.02
Cl x 4 17.02
table 3

The values of the constants used by Smith and Takhar (1979) in their k-model
computation of ‘long wave flow deviate from the values usually accepted:
C]=0.4 and Cv=]'78 (Smith and Takhar, 1978). The length scale adopted

by Smith and Takhar is approximately the mixing-length in the near-bed region.
Close to the surface a constant length scale is used. With these values of
C],
with the logarithmic profile as given by equation (30).

+ . . 2 : ;
Cv and L the viscosity near the bed is 2.4 times the value agreeing

Smith and Takhar have obviously used the constants of the k-model for

tuning the model, without giving due attention to all conditions that have

to be fullfilled.
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3.3.3 k-e-Model

In the equations of the k-e-model (equations 18, 58, 59 and 60) many constants

have to be specified ¢ and in the free surface

1? Cpe’ Cde’ %> %
boundary condition for € (equation 72): Cbe'
Local equilibrium near the bed gives again equation (63), and hence
C]=0.08. Experiments on the decay of turbulence behind a grid yield
Cda = 2.0.(See Launder and Spalding, 1972). To provide a value for
Cpe_equilibrium of the dissipation near the bed is considered. The
production of € in the e-transport equation (60) can be related to
the production of turbulence energy, which near the bed approximately

equals the energy dissipation

+ 2 +2 + 2 C + C +2
c k+(au+) -C k (au 3 ps_g_I - Cpe € (73)

PE 5, Vet e ¢ x ]

w;l

Substitution of equation (73) in the time-independent form of equation

(60) gives for near wall flow

+2 C +2 +
19 k o€
) Eme v — ( ) =0 (74)
S A T

.C
...
(Cl c

Rewriting of this equation by means of the expressions (65) and (68),

both applying for the near-wall region, yields

e, " % toe O bR

When the Reynolds analogy for the diffusion of momentum, turbulence
energy and dissipation, meaning 0= 1 and o= 1, is used, equation

(75) yields Cp€=0.]14.

The values of the constants determined above do not . have a firm
base, as the physical background of the k-e-model, including the
assumption of the Reynolds analogy, is limited. The values in table 2,
recommended by Launder and Spalding (1972) and used in this report,
provide good overall values for a wide range of boundary layer flows.
The constants, however, do not satisfy equation (75) any more. This

means that the diffusion of € is not correctly described in the e-
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transport equation. When the diffusion near the bed is correctly
treated, satisfying equation (75), then the diffusion farther from
the bed is not reproduced rightly. Using the values of table 2,
the contribution of the diffusion of ¢ is decreased, lessening €
and increasing L (fig. 8a) and Vi above the bed region. Actually
if one or more of the constants would vary over the depth a better

but less useful model would be obtained.

The necessary correction on the values of the constants that satisfy
equation (75) depends on the flow configuration. Much empirical
information is required for the tuning of the constants for a certain
probiem. The obtained values are not always useful in other
situations. Concerning the problem, considered in this report, a
calibration can be executed for steady flow. This calibration will
be satisfactory in tidal flow in the tidal phases where the velocity
profile is approximately logarithmic. In tidal phases where the
velocity profile is not logarithmic different tunings would possibly
have preference. Fér-this reason the computations are executed with

the broadly applicable values of table 2.

Small changes in the tuning can have important consequences as the
first two terms of equation(75) are much larger than the third term.
Small changes in C, or Cps result in relatively large changes of the

de
contribution of the diffusion term in the e-transport equation.

Variation of the free surface boundary condition of € has an
important influence on the length scale distribution in the upper
part of the flow (see fig. 8b). In case of a zero-gradient boundary
condition as used by e.g. Smith and Takhar (1979) the maximum length
scale and the maximum eddy viscosity lie at the surface. The de-
pendence of the turbulence energy and of the velocity at the surface
on the free surface boundary condition of e are appreciable in the
steady flow situation as considered in this chapter (see table 4).
Experimental information about the behaviour of the length scale and
other turbulence quantities is scarse. Relation (72) and the value

Cbs=0'07 are only tentative (Rodi, 1980).
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.. + +
boundary condition (k )z+=1 (u )z+=1
C, =0.35 0.358 17.34

be

Che = 0.07 0.528 17.27
E

Cpe = 0.014 0.853 16.99
€

(3e"/32") 4_ = 0 0.981 16.87

table 4
3.4 Comparison of the Turbulence Models

The performances of the various turbulence models, discussed above,

are compared for the steady free surface channel flow of (3.3).

The 4 ®wodels discussed (E-V, M-L, k-model and k-e-model) give
approximately the same velocity profiles (fig. 5b), corresponding

with approximately equal eddy viscosities in the lower half of the

flow (fig. 5a). Only the k-e-model gives somewhat smaller viscosities
in the lower half of the flow and somewhat higher velocities, while
tuning of this model for this exact problem is not executed. The

small difference between the k-profiles of the k-model and the k-e-model
computations is caused by the different values of Cl used. E.g. using
C]=0.09, the k-model yields the k-profile of the k-e-model..The simpie
eddy viscosity model and the mixing length model give identical-results when
the eddy yiscosity distribution is parabolic and the length-scale

has the Bakhmetev distribution. The k-model, using the Bakhmetev

length scale distribution shows only small deviations of the velocitye
near the surface and for 27=0.25. The deviations are caused by the
diffusion of turbulence energy. The k-e-model can be tuned to yield
the logarithmic profile of the E-V and the M-L models by changing

€
is important (see table 5).

o, Cde or Cpe: The influence of this tuning on the surface velocity
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model W@+
E.V-model ’ 17.14
—¥~model 16.98
k-e-model 0e =1.,2 17.07
o = 1.3 17.24
€
oé = 1.4 17.49
C = 1.39 16.98
pe
table 5

The k-e-model tuned with e.g. Cps=1'39 yields a length scale distribution
close to the Bakhmetev-distribution (fig. 8c). The eddy viscosity
distribution and the velocity distribution agree closely with the results

of the k-model.

<+
0
conceals possible differences between the various models, as the velocity

The small relative roughness z. in the considered flow configuration
distribution is determined mainly by the eddy viscosity near the bed in this
case. Diffusion of turbulence energy is hardly important near the bed and
the e-transport equation yields practically the Bakhmetev-distribution

near the bed, so the eddy viscosity is equal there in all models used.

For steady flow configurations with a small relative roughness, e.g. flow in
rivers and channels, the k-e-model (and the k-model) seem to be usefull

only in some special cases all connected with non-logarithmic velocity
profiles. The determination of the length scale distribution is difficult
in density-layered flow, around dunes on the river bed and along steep
channel and river banks, especially when the channel is strongly curved.

The k-e-model can provide length scale distributions in those cases.

In density-layered flow the problem is more complex still, as the constants

in the k-model and the k-e-model depend on the density gradient. (See

KRodi, 1980y7_Conve¢tionreﬁ k and € is generally negligible in rivers, etc.

because of the short adjustment times of k and € (see chapter 4).
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In non-steddy flow configurations the k-model or the k-e-model may be the

suitable turbulence model if the term accounting for the time dependence

in the transport equation of k or e cannot be neglected. (see chapter 4).
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4, Tidal Flow

4.1 Computation of Tidal Flow with Different Turbulence Models

The four turbulence models of (3.1) are used to compute the velocities
and shear stresses in tidal flow in the situation of (2.2) (R=6.07x1073)
for 2 characteristic roughness heights zg=0.001 and z;=0.000].

Again for simplicity the one dimensional flow model of (2.1) is used.

The depth grid is given in fig. 4.

The development of the velocity profiles over the tidal cycle for
+
R

0.001, computed by means of the four turbulence models, are
presented in fig.l0. The tidal period is divided in 24 equal parts,

z
during about half an hour each. Zero is the mark of the phase of
maximum surface slope or maximum pressure gradient. The time step
used is 1/2400 tidal period as this was the largest time step allowed
by the k-e-model in this case. The velocities computed with the k-e-
model are generally 1% higher than those computed with the other
models. This difference is connected with the constants used in

the model. The shape of the profiles at near maximum velocities
closely follow the profiles computed in steady flow (fig. 5b).

The pressure gradient in the steady flow computation is taken equal
to the amplitude of the varying pressure gradient in tidal flow.

The maximum velocity in the tidal flow,however, is smaller than

the velocity in steady flow, as this maximum velocity takes place

about 50 minutes after the maximum pressure gradient.

The differences between the velocity profiles computed by means

of the various turbulence models are negligible. Even at slack

water the differences are small. They amount to time differences

of at most about 3 minutes or 1} degree. Also the time difference
between zero velocity near the bed and near the surface can differ

from model to model, but the differences between the models are at most

about 3 minutes.
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The differences between the velocity profiles are connected with the
differences in the eddy viscosity profiles in the various models.

These are given in figure 11. The profiles at maximum velocity again
closely resemble the viscosity profiles in case of steady flow

(see fig. 5a). Near slack water the viscosity profiles differ slightly,
bringing about differences of the velocity profiles too. As was
discussed in chapter 3 all 4 models may be less precise near slack
water. The dip at slack water in the viscosity profile computed

with the mixing length hypothesis is caused by a zero-velocity

gradient at that point.

The flow at the higher velocities approximates steady flow, as is
shown by the correspondences between the velocity profiles of steady
flow and tidal flow and between the eddy viscosity profiles of the
two flows. The shear stress profiles in fig. 12 satisfy for the
higher velocities alinear dependence on depth conforming to a steady
flow situation. Only the shear stress profiles computed with the
k-e-model are shown. The other models yield shear stress profiles

that differ only slightly at slack water.

In the momentum balance equation (18) the rate of change term can
be compared to the production term to examine if it can be neglected.
As R = 6x1073 and the maximum value of u’ is about 17, comparison
of the maximum value of the rate of change term and the maximum

value of the production term gives
3u+ +
(R =TF &ax: (cos 27t )max= 0.6 : 1 (76)

where the suffix max stands for the maximum value over the tidal
period. Near the bed u' is smaller and consequently the rate of
change term too. 3u+/8t+ and cos Zwt+ both vary over the tidal
cycle. At phases with ~ a high velocity, the production is high
too, while 3u+/8t+ is small. So at the higher velocities the rate
of change term can be neglected. At other phases this neglect

is not correct.
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An analogous consideration can be used for the rate of change
terms compared to the production terms in the transport equations

of k and ¢ (equation (49) or (59) and equation (60) respectively)

+ +
ok . T+2 . +2 I +3 1=z
R ot+ %ax ' (vé )max - O'za(uxznax(] z) 2.5(ux )max AR
= 0.1 z+ | (77)
and
& %
C +2 + (u e)
€ PE T € - + . ¥ max
(R 8t+)max C1 (v: E?Jmax = 0.07(e )max ' ]']__;x_
= 0.07 z+ | (78)

Strictly speaking equations (77) and (78) do not apply near the
surface. The approximation of k' used does not hold there. Near

the surface the rate of change term has to be compared rather with the
dissipation term in each equation. The result will not be much
different from equations (77) en (78). Comparison of

equations (76), (77) and (78) shows that the rate of change terms

in the transport equations of € and k can safely be neglected if the
corresponding term in the momentum balance equation is negligible. This
means that over a large part of the tidal cycle the almost logarith-
mic profiles of fig. 5, the k-distribution of fig. 6, etc. of the
steady flow are approximated. The magnitudes deviate, however, as

the pressure gradient varies, and its value differs mostly from the
pressure gradient assumed in steady flow. 1In fig. 13 the k-profiles
computed with the k-e-model are plotted. The k-profiles computed

with the k-model differ hardly.

The pressure gradient should have no influence on the length scale

distribution. The length scale profiles,indeed,vary hardly, except

for a short period around slack water (see fig. 14). Generally the
profile of the length scale in steady flow is followed. Figure 14

shows that except for the period around slack water, the k-model

and the k-e-model will give exactly the same results if the length
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scale distribution of the k-e-model for steady flow is used.

The basis for this behaviour of the k-e-model 1is the short adjustment
time of k and ¢ when k or ¢ have values that do not entirely agree
with the velocity gradient. If in equations (77) and (78) the t

is changed slightly, large values for 8k+/3t+ and Dc+/3t+ arise,

restoring the balance in a short time.

Computations with the other bed roughness zg=0.0001 yield similar
results. The relative importance of the eddy viscosity in the
upper part of the flow is somewhat smaller even. 3u+/82+ for
logarithmic velocity profiles does not depend on 2 SO for steady

flow the solutions with all four models are exactly the same as in
.
0

velocity is added. In the tidal phase around slack water, where

the case of z,=0.001 except for the velocities, to which a constant
logarithmic velocity distributions do not apply any more, differences
between the computations with the two roughness values occur in
several quantities, e.g. in the length scale. In fig. 15 some
results of the k-e-model for ZS=O'000] are plotted. Comparison

with figures 10 to 14 shows differences around slack water and in the

accelerating phase, due to the larger phase lag. Lt hardly differs.

. : + . ;
Occasional higher values of zy in tidal flow lead to larger differences
between the various models. The increased importance of the bed shear

stress results in smaller phase lags.

Smith and Takhar (1977, 1979) calculated a length scale distribution
using a k-e-model for a case of free surface channel flow under

long waves. The distribution calculated shows values near the

channel bed that are about three times as large as the value
theoretically derived, yielding much toohigh eddy viscositiegsee

fig. 16). This result casts serious doubts on their exact elaboration

of the k-e-model.

4.2 Time Step and Instability

The time step, At, needed in the various models to avoid instability
is very different. The models using more differential equations need
shorter time-steps to provide stability. As the computing time is
more or less proportional to the number of differential equations
used and inversely proportional to the time steps used, more

complex models will need much more computing time.
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In table 6 the minimum numbeér of time steps in a tidal cycle, N, as
needed in the various models in this investigation is given. Mostly

s # P ¥
the first grid point was at z =0.025.

Model Ist grid point N(minimum for stability)
E-V 28 = 0.025 always stable

M-L zs = 0.025 360

k-model 26 = 0.025 . 96 to 240
k-model za = 0.1 96

k-c-model 26 = 0.025 2400

k-e-model 28 = 0.1 720

table 6

The E-V-model was stable for all time steps used (down to N=6). The
velocity profiles remained good down to N=6 except for minor effects
near slack water, but the precision of the time-dependence was about
proportional to At. The error in the time-dependence is dependent

on the exact elaboration @f the E-V-model. 1In this investigation it was
about 1/10 At. A minimum number of N=12 to 48 is recommended

depending on the precision wanted. The k-model was just stable

at N=96, but on this verge of stability serious deviations near

the ‘bed occurred.

The k-model and the k-e-model generally get instable when the time
step is so large that near the bed the dissipation or the turbulence
energy becomes negative. A measure of the verge of instability is

the reproduction time of the turbulence energy or of the dissipation,

defined by the minimum ratio of the quantity considered and its production.

The reproduction time of a quantity is the time needed by the
production terms to produce the same amount of the quantity as

is present. So in a steady state the quantity is completely
replaced in this reproduction time on an average. The normalized

reproduction time of € and k can be estimated at (see equations

77 and 78).
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k production k¥ min +2 , +'min
T /\)t
; 2" 3 +
~ C. 2 & 2
C] R K(F)min 8.0 x 10 Zmin (79)
and
+ * C] k+R 3 +
= € = = =
Te « (R production 5+)min C ( +2 +-)min 25 = 10 “min (80)
pe T /vt

where the suffix min means the minimum value over depth and tidal cycle.

For z+ = 0.025 this amounts to T; = 2,0 x 10-4 and T: = 1.4 x 10-4
or Tk ~ 9 sec and Te ~ 6 sec. Values of N = 5000 and N = 7000

would result for the k-model and the k-e-model respectively.

When equilibrium between production and dissipation is approximated

much lower values for N are allowed (see table 6), especially for the
k-model. When, on the other hand, the initial values are not chosen
very carefully, then the calculated values of the minimum number of steps

are approximately needed.

The reproduction times of ¢ and k are proportional to 2", Taking the
bed-most grid point at z+=0.l, lowers the number of steps needed in

the k-e-model, but not considerébly in the k-model (See table 6).

Using then a logarithmic depth-grid in the k-e-model (see fig. 4)
diminishes the viscosity in the upper half of the flow by about 107.

This has barely consequences for the velocity profile. To keep

computing time lower a linear grid may be used (see fig. 4). The
viscosity profiles in that case are severely affected, having consequences
for the velocity profiles in the lower part of the flow (see fig.17).

The bed shear stress computed is about 107 smaller, using this grid

configuration.

The velocity profiles around slack water are influenced by the depth
orid as the logarithmic part of the profiles at slack water, used
in the boundary conditions, may not extend to the level of the grid

point nearest to the bed.
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The many time steps needed will severely limit the applicability

of the k-e-model for flows in estuaries, rivers, channels, etc.

4.3 Discussion of Some Results

4.3.1 Comparison with the results of Smith and Takhar

Smith and Takhar (1977, 1979) use the k-e-model to calculate the
length scale and compare it to the length scale assumed in their
k-model. They are content with the similarity of the two profiles,
though the ratio near the wall is 4 to 1, with important consequences
for the eddy viscosity there (see fig.16). The k-e-model in this
investigation on the other hand yields a length scale distribution

that approximates the Bakhmetev distribution, used in the k-model.

Rodi (1980) mentions the k-model as the optimum model in Fidal flow.

The .computations on which this opinion is based are the k-model
computations by Smith and Takhar (1979). Smith and Takhar compare

their results, however, with results from two simple eddy viscosity
models of Johns (1966) with improbable eddy viscosity distributions

i.e. a constant eddy viscosity and a parabolic eddy viscosity with

the vertex at the free surface. These models yield velocity distributions
that compare badly to the logarithmic distribution found by Johns (1966).
The simple eddy viscosity model of this investigation, using a parabolic
eddy viscosity with the vertex at half-depth, leads also to the
logarithmic velocity profiles. As the velocity profiles over the

tidal cycle can hardly be distinguished from the velocity profiles
computed with the k-model, the simple eddy viscosity model is gemerally

to be preferred, considering the computation time needed.

Another point in favour of the k-model as mentioned by Smith and
Takhar is the good reproduction of the phase and amplitude of the
surface velocity. The k-model and the other models discussed in this
report can however, hardly improve a simple depth-integrated model in

this respect.
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The depth-average of equation (6) reads

5t ° T h s

This can be rewritten by substitution of expression (9) and

equation (11) into

du u [u |
=i X _¥'- 5 cos wt (82)

3t T h

The friction velocity u_ can be expressed in the depth-averaged

velocity U s by

_ 1
ux = —B- uav (83)
where B is (see equations 25 and 21)
1 h. C
B = ¢ (ln) - 1} = (84)
0 g
Equation (82) in normalized form is written
au;v 1 + + +
R oo 4 37 Yav Iuavl = cos(2nt ) (85)

The solution of equation (85) is compared to the depth-averaged
velocity computed with the E-V-model in fig. 18g~.t+=0 is the phase
of maximum pressure gradient.

The phase of the surface velocity hardly deviates from the phase of
the depth-averaged velocity as can be inferred from fig. 18b, The-
depth-averaged velocity appears to be equal to the velocity at
z+=0.368 = 1/e, eﬁen around slack water. The bed shear stress from.
the E-V-model and from the solution of equation (85) are compared

in fig. 18c.
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Equation (85) shows that the phase and the amplitude of the depth-
averaged velocity,and so of the surface velocity too, depend only on
B, with R given. So reproduction of these quantities is a weak

criterion to evaluate the performance of a certain model.

The phase lag of the velocity with respect to the pressure gradient is
smaller when the shear stress term in equation(85)is more important.
Small values of B (large roughness values) or small values of R (correspon-

ding with large pressure gradients and flow velocities) give small phase lags.

The depth grid has to be chosen with care, otherwise computational errors
can be introduced. This possibly accounts for the non linear shear
stress distribution mentioned by Smith and Dyer (1979), and for the
deviation of 1, from a quadratic £riction as found by Johns (1978)

0
who used a k-model to calculate the flow in a tidal channel.

4.3.2 Phase lag of the shear stress

Not many reliable measurements of the shear stress distribution

over the tidal cycle have been executed. Some measurements of tidal
flow in estuaries (Gordon, 1975) and the measurements of Anwar and
Atkins (1980) in a flume seem to point to an important phase lag

of the shear stress with respect to the surface velocity, the so
called hysteresis effect. The measurements executed till now do

not provide conclusive evidence of the phenomenon. The measurements

of Gordon and of Anwar (see Booij, 1981b)show toomany inconsistencies.

E.g., some measurements reveal an appreciable hysteresis of the turbulence

energy, and others do not. (Compare Anwar and Atkins (1980 and 1982)).

The various models used in this investigation all yield virtually the
same small hysteresis effect. (See fig. 19 for the k-model) This was
already expected, (see Booij, 198la) because of the short reproduction

times of k and €.

An attempt has been made to reproduce measurcments of Anwar and Atkins
(1980) with the k-model. The variation with time of the surface

velocity could approximately be matched by imposing an appropriate
pressure gradient see fig. 20a. The smooth bed of the flume was
represented by means of a properly varying roughness height. Most aspects
of the flow reproduced well, but the hysteresis effect was much smaller

than the effect mentioned by Anwar and Atkins (1980) (see fig. 20b).
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If more reliable measurements confirm the hysteresis effects, then the
models of the eddy viscosity type, as used in this investigation, will

have to be adjusted or replaced by more realistic models.
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Conclusions

Measurements of steady free surface channel flow yield almost logarithmic
velocity profiles. The computations for steady flow in the one-dimensional flow
model with the four models used, k-e-model, k-model, mixing-length model
and simple eddy viscosity model, all reproduce these profiles good if they
are properly tuned. The k-ege-model and the k-model yield small deviations
of the logarithmic profile, but these deviations are smaller than the
uncertainty from the measurements. In tidal flow the models give nearly
the same almost logarithmic velocity profiles exept for a period around
slack water, which is in agreement with most measurements. Around slack
water the models give somewhat different profiles. All four models
however, are less reliable around slack water. The phase lag of the
velocities with respect to the free surface slope reproduces well

in all models, but this is not surprising as a depth-averaged model leads

already to the same phase lag. No model yields a hysteresis effect of the shear *

stress with respect to the velocity as mentioned by some investigators.

The agreement of the models is not really surprising as only the viscosity
in the lower part of the flow is important for the vglocity"profile at
the small roughness heights used. The variation of the tidal flow is

so slow that the rate of change of k and ¢ may be neglected in their
transport equations except around slack water. Larger differences

between the different models are only to be expected if these rate of
change terms are important, or if the diffusion of k plays an important

role.

Considering the agreement of the results of the various models, generally
the simple eddy viscosity model should be preferred as the computing

time needed is the shortest by far. The usefulness of the k—e-model is
small as it is already unstable for quite small time steps. Choosing

the first grid point farther from the bed improves the possible time step,
but at a fractional depth of 0.1 still 720 time steps in a tidal cycle
are needed. This choice of the first grid point, however, influences the
results of the viscosity and therefore of the velocity and the shear

stress around slack water. The depth grid has to be chosen with care,
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to give the best results. The often used equidistant spacing can

give considerable errors.

The physical base of the k-model and especially of the k-e-model is quite
weak. The constants used in the model should actually vary over the depth
or over the tidal phase. The calibration of the k-model and especially

of the k-e-model in the situation of the almost steady flow around
maxumum velocity can give wrong results around slack water. In the
k-e-model the calibration chosen does not fulfill the required conditions

near the bed but gives good overall results.

The boundary conditions at the free surface are poorly known. In this
investigation the boundary condition of Hossain is adopted, as the boundary
condition most often applied, taking the e-gradient zero, gives wrong
results. The results of the k-e-model, however, are strongly dependent

on the choice of the constants and boundary conditionms.

In rivers and estuaries the k-e-model seems not appropriate because of

the short time step needed. If the specification of the length scale

is difficult, the k-e—can be used to determine the behaviour of the

length scale and so of the viscosity, but large computations can then

be best executed with a simple eddy viscosity model using the eddy viscosity

specified in this way.

The computations in this investigation are limited to flows in tidal channels,
for which the one dimensional flow model can be used. This model is not
appropriate for very high tidal waves (e.g. 1z1/h>0.1) and near closed ends
of tidal channels, where convective derivatives can be important. The
computations are executed for tidal flows without a nett discharge over the
tidal period at some roughness values and velocities, typical for tidal
channels. The conclusions, arrived at, however, are generally valid for

flows in tidal channels.
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Notation page
C resistance coefficient of Chézy 11
C] constant in the k-model and k-eg-model 20
C,»Cp constants in the k-model 17/18
Cps’cde constants in the k-e-model 20
Cbe constant in the free surface boundary condition of ¢ 24
Dt turbulence diffusion coefficient 17
g acceleration due to gravity 8
h mean free surface level 8
k kinematic turbulence kinetic energy 17
lm mixing-length 16
L length-scale in the k-model and in the k-g-model 17
Lt length-scale in the viscosity 15
N number of time steps in a tidal cycle 37
0x,0z coordinate axes 8
P kinematic pressure 18
R constant appearing in the normalized rate of change terms 1!
s pressure gradient connected with a surface élope 8
S amplitude of s 10
t time 8
At time step 36
Tp tidal period 10
Ty reproduction time of k 38
T; reproduction time of € 38
u longitudinal velocity 8
u éziction velocity 10
u friction velocity in steady flow 10
u, depth-averaged velocity 11
Yot depth-averaged velocity in steady flow 11
ui component of the turbulent velocity (i=1,2,3) 17
Vt velocity scale in the viscosity 15
w vertical velocity - 8
X longitudinal coordinate -8
X j-th coordinate (j=1,2,3) 18
z height above the bed 8
2* non-dimensional height used for the law of the wall 22
Z characteristic roughness height 12



+ (suffix)
' (suffix)
max (suffix)

min(suffix)
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ratio of B and u

dissipation rate of turbulence energy
displacement of the surface level
Von Karman's constant
Lagrangian.integral length scale
kinematic viscosity

kinematic eddy viscosity

constant in the k-model

constant in the e-model

kinematic Reynolds shear stress
bed shear stress

bed shear stress in steady flow

tidal wave frequency

normalized
turbulent component

the maximum value over the tidal period

40
19

8
12
17
18

9
18
20

8
10
10
10

10
17
34

the minimum value over the tidal period and over the depth 38
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Appendix

Computational Procedure

The transport equations of u, k and €

Ty

in the finite difference form are

derived by a discretization of the

equations over cells around the grid B
points. wu, k and € are calculated at
the grid points. The transports of u,
k and € by diffusion are computed at 1

Cell

the cell boundaries, which are situated

halfway between the grid points. As an A

example the expression for the shear 2

stress at A in the k-model is elaborated 11

(see equations 7 and 41)

T(a) = -v _(A) (%‘ZE)A_, ¢, VEORED | () u(D)-u(I-1) 8

2 z(I)-z(I-1)

In this expression the value of k at A is replaced by the average of the

values of k at the grid points around A.

The rates of production and destruction of u, k and € within the cells
are calculated at the grid points. In most cases this calculation

is straightforward. The expressions for the production of k and €,
however, contain velocity gradients. Therefore the rate of production
of k (and an analogous part of the expression for the rate of production
of €) is replaced by a mean value of the rates of production of k at

the cell boundaries.
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{u(D)-u(1-1)}> {u(I+1)-u(D)}
Z{I}=z{T1=19 z (I+1)-z (1)

z(If1) - z(I-1)

v, (4) + v, (B)

(I) = -(87)

kprod

Each finite difference counterpart of a transport equation is solved
by means of a fully implicit banded matrix procedure (IMSL LEQTIB).
The finite difference equation to be solved in this procedure is
linearized by treating the production terms, the destruction terms
and the diffusion coefficients as known quantities, calculated from

the previous step.

The bed boundary value for the velocity is introduced by means of a
momentum balance equation for a cell around the

first grid point. The cell boundary at C is

chosen at the same distance of the first grid

point as the boundary at D. For the shear )

stress at C an expression of the following

form is used (o)

Cell 1

7(C) -ux|ux|(l—z+(C)) -

2 (1-2" (C))
z(1)
lnz(—zg—)

= Ju(1) Ju(1) (88)

In this expression for |u(l)| the value
calculated at the previous step is used,to

linearize the finite difference equation.







