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Abstract

Active Inference control is a novel control method based on the free energy principle, which
combines action, perception and learning [1][2]. The first Active Inference controller showed
promising results on a 7-DOF robot arm for a pick and placing task, however it took nearly
six seconds to converge which is too slow [2]. This thesis aims to reduce the convergence
time of an Active Inference controller. Therefore an Active Inference controller that is used
to control the velocity of a Jackal robot was developed. It was compared to the standard
differential drive Controller and it was found that the standard controller outperformed the
Active Inference controller on both rise and settling time.

A state space model was derived to obtain a better understanding of the Active Inference
controller, for this model the robot was modelled as a point mass. This assumption was
confirmed by a step response test of the robot, placing it both on the box and on the ground.
It was found that both behaved similar, and thus the wheel ground interactions and internal
dynamics of the robot did not affect the convergence time. The state space model was used
to find three methods to reduce the convergence time of the Active Inference controller. As
a first method the update frequency of the entire controller was increased, for the second
method only the update frequency of the inner belief update loop was increased. The last
method used an increased update frequency of the belief update loop and the parameters of
the system were tuned.

The methods were tested using step response tests and a square wave test, first in a simulated
Gazebo environment and later with the actual robot. It was found that the third method
reduced the converging time of the Active Inference controller, and reduced it from 0.88s to
0.51s. The improved controller was also tested against the differential drive controller out-
performed it. It was found that due to the increased update frequency the tuning parameters
could be changed to a wider range of values, this resulted in a shorter convergence time.
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2-2 Evolution of the joint states during the pick and place task [2]. . . . . . . . . . . 7

2-3 Evolution of the joint states during the pick and place task using the controller as
implemented by Baioumy et al. [3] . . . . . . . . . . . . . . . . . . . . . . . . . 7

3-1 The Jackal robot that was used for the experiments throughout this thesis. The
left figure shows the Jackal on the ground, the right figure shows the Jackal on the
box for the tests on the box. The jackal is connected to the PC using the yellow
LAN cable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3-2 The Jackal in the Gazebo environment. . . . . . . . . . . . . . . . . . . . . . . 11

3-3 An overview of all components involved and through what ROS topics they com-
municate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3-4 Step responses of the Jackal while using the original and the active inference
controller. It can be seen that in general the original controller outperforms the
active inference controller regarding rise and settling time. . . . . . . . . . . . . 17

3-5 Step response to 1 m/s of the Jackal for an Active Inference controller and for the
standard differential drive controller. In this case the Active Inference controller
converges and rises faster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



vi List of Figures

4-1 Results of a step response test to 0.5 m/s. The Jackal was for these tests once
placed on the ground and once placed on a box. The measured velocity is similar
for both cases, the drive commands are different. . . . . . . . . . . . . . . . . . 20

4-2 Results of the tests where the Active Inference controller is compared for the
response on the robot and as modelled by the state space model. During the tests
the parameter τ was changed to see whether the model behaved in similar fashion
as the actual response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4-3 Results of the tests where the Active Inference controller is compared for the
response on the robot and as modelled by the state space model. During the tests
the parameter κa was changed to see whether the model behaved in similar fashion
as the actual response. It can be seen that changing the parameter leads to similar
results in the model and on the robot. . . . . . . . . . . . . . . . . . . . . . . . 22

4-4 Step response of the state space model vs the actual response on the robot. In
this case the robot became unstable, while the response of the state space model
was stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4-5 Step response of the state space model for an Active Inference controller with
an update frequency of 10Hz. The believed velocity and action, in this case the
velocity output, are shown. It can be seen that the actions trail the beliefs, and
that the action start a time step later then the beliefs. . . . . . . . . . . . . . . 24

4-6 Overview of the Active Inference controller. The belief update loop is highlighted,
the frequency of this loop will be increased to try and reduce the convergence time. 26

5-1 This figure shows two graphs, 5-1a in which the results of a step response to 0.5
m/s for an Active Inference controller is compared to that of the robot. In this
case the update frequency was set at 1kHz and the parameters τ was set to 0.001
the other parameters were the same as the original controller. It can be seen that
the settling time is similar, although the rise towards this point is quite different.
In the second figure the same controller is tested at a frequency of 50Hz. It can be
seen that similarly to the robot, the simulated robot in gazebo became unstable
for this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5-2 Robot vs Gazebo, drive commands. It can be seen that the drive commands send
in real life are less smooth then in the simulation. The drive commands settle at
a higher values in the actual robot then in Gazebo, which implies that the physics
engine models friction different then it actually is. . . . . . . . . . . . . . . . . . 29

5-3 Results for a changing update frequency of the entire system for a step response
of 0.3 m/s. Changing the update frequency results in similar step responses. A
small difference can be observed as the 50Hz case starts with a bit of a delay. . . 30

5-4 Results for a changing update frequency of the entire system for a step response
of 0.5 m/s. Once again the step responses are similar for a changing update
frequency. The 1kHz case increases a bit in the later stage of the step response,
this appears to be measurement error as the drive commands keep constant. . . . 31

5-5 Results for a changing update frequency of the entire system for a step response
of 1 m/s. The step responses are similar, the drive commands for the 50Hz case
show that a these were a bit larger. . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



List of Figures vii

5-6 Believed velocities for the different step responses. It can be seen that these remain
similar for all the tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5-7 The update frequency of the belief update loop was changed, a step response to 0.3
m/s was performed. It can be seen that the step responses are similar, increasing
the update frequency does not help. . . . . . . . . . . . . . . . . . . . . . . . . 32

5-8 The update frequency of the belief update loop was changed, a step response to
0.5 m/s was performed. It can be seen that a changing update frequency does not
lead to a difference in the step response. . . . . . . . . . . . . . . . . . . . . . 33

5-9 The update frequency of the belief update loop was changed, a step response to
1 m/s was performed. In similar fashion as the previous step responses it can be
seen that changing the belief update frequency does not help the system converge
faster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5-10 Believed velocities for the different step responses. It can be seen that these remain
similar for all the tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5-11 Measured velocities for a changing τ . The 1kHz case remains stable for lower
values of τ compared to the 50Hz case. In the case of τ , decreasing the parameter
increases the control performance. . . . . . . . . . . . . . . . . . . . . . . . . . 34

5-12 Drive commands for a changing τ . It can be seen that decreasing τ makes the
drive commands converge faster, yet at the cost of a bit overshoot. . . . . . . . 35

5-13 Believed velocity for a changing τ parameter. It can be seen that decreasing τ
leads to a faster convergence, this is especially observable for τ = 0.001. . . . . 36

5-14 Measured velocities for a changing κµ. Increasing κµ decreases the settling time. 36

5-15 Drive commands, increasing kµ makes the drive command converge faster. . . . 37

5-16 Believed velocity for changing κµ. It can be seen that for the 50Hz case the beliefs
become less accurate. For the 1kHz case the beliefs remain fine. . . . . . . . . . 38

5-17 Measured velocities for a changing κa. Increasing κa leads to ringing and overshoot,
for a small increase to 10 it seems beneficial. . . . . . . . . . . . . . . . . . . . 38

5-18 Drive commands for a changing κa, similar behavior is observable as with the be-
liefs. The lower frequency suffers to ringing faster compared to the higher frequency. 39

5-19 Believed velocities, it can be seen that the beliefs remain smooth for the 1kHz
case. For the 50Hz case ringing occurs for the higher values of κa, this could lead
to instability for higher values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5-20 The measured velocity of the Jackal for the improved and standard Active Inference
controller. It can be seen that the improved controller converges faster and that
the rise time decreased as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5-21 figures 5-21a and 5-21 display the drive commands and believed velocity of the
Jackal for the standard and improved Active Inference controller respectively. It can
be seen that the drive commands for the improved controller converge faster, yet
have a bit more overshoot. The beliefs converge faster for the improved controller,
which causes the system to converge faster. . . . . . . . . . . . . . . . . . . . . 42

vii



viii List of Figures

5-22 Results of the square wave tests. The improved controller rises faster and has a bit
of overshoot. The original controller does not converge to the desired set point.
The goal was to see whether the system would remain stable and this is the case 44

5-23 Square wave 3, this is the largest square wave. It can be seen that the new improved
controller has some overshoot, the standard controller does not reach the desired
set point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5-24 In these figure the performance of the differential drive controller, which is the
standard implemented controller for the Jackal, is compared to that of the Active
Inference controller. It can be seen that the Active Inference controller is more
accurate, as the differential drive controller settles at a higher velocity, and it has
a shorter rise and settling time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B-1 Active inference control block diagram as it was introduced by the Jackal team . 53

D-1 Step response results for the unstable case of κµ=1 for an update frequency of
50Hz. It is observable that the measured velocity does not converge to the desired
point (0.5m/s) and the believed velocity becomes infinite. . . . . . . . . . . . . 57

D-2 Step response results for the unstable case of τ=0.001 for an update frequency of
50Hz. It is observable that the measured velocity and the believed velocity become
unstable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

viii



List of Tables

3-1 Settling time and rise time for different step responses. It can be seen that for
the 0.1 m/s and 0.5 m/s, the rise and settling times of the original controller are
lower. For the 1 m/s step the the settling times are similar, yet the rise time is
lower for the original controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5-1 Table that shows the settling and rise times for the different update frequencies of
the system. Three different step responses were performed, and the settling times
were measured from both the measured velocity and drive commands. It can be
seen that in general the resulting rise and settling times are quite similar. . . . . 30

5-2 The settling and rise times for different step responses are shown, for each step
response the update frequency of the belief update loop was changed between
50Hz, 100Hz and 1kHz. It can be seen that increasing the update frequency does
not necessarily decrease the settling or rise times, they remain similar. . . . . . . 32

5-3 Ranges of the parameters that were tested. . . . . . . . . . . . . . . . . . . . . 34
5-4 Table that shows the settling time and rise time while changing τ . It can be seen

that both the rise and settling times decrease with a decrease of τ . . . . . . . . . 35
5-5 Table that shows the settling time and rise time while changing κµ. It can be seen

that the rise time and settling times decrease with an increase of κµ. . . . . . . . 37
5-6 Table that shows the settling time and rise time while changing κa. The rise time

decreases with an increase of the learning rate. The settling time decreases at first,
but later ringing occurs which negatively affects the settling time. . . . . . . . . 39

5-7 Maximum values usable for the active inference controller. . . . . . . . . . . . . 41
5-8 Parameters used for the improved and standard Active Inference controller. . . . 41
5-9 Resulting step response times for the standard Active Inference controller and the

improved Active Inference controller. . . . . . . . . . . . . . . . . . . . . . . . . 41
5-10 Minimum and maximum values of the square wave inputs. . . . . . . . . . . . . 43

ix



x List of Tables

C-1 Parameters of the basic Active inference controller. . . . . . . . . . . . . . . . . 55

x



Table of Contents

Abstract iii

List of Figures viii

List of Tables x

1 Introduction 1
1-1 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Active Inference control 3
2-1 Overview of Active Inference control for robotics . . . . . . . . . . . . . . . . . . 3
2-2 The free energy principle for Active Inference control . . . . . . . . . . . . . . . 3
2-3 Generative model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2-3-1 Generative model of the desired states . . . . . . . . . . . . . . . . . . . 5
2-3-2 Generative model of the sensory data . . . . . . . . . . . . . . . . . . . 5

2-4 Generalized motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2-5 Update rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2-6 Convergence time of an Active Inference controller . . . . . . . . . . . . . . . . 7

3 Experimental setup 9
3-1 Jackal robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3-2 Gazebo simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3-3 Implemented active inference controller . . . . . . . . . . . . . . . . . . . . . . . 10

3-3-1 Overview of the active inference controller . . . . . . . . . . . . . . . . . 10
3-3-2 Generative model for the sensory data . . . . . . . . . . . . . . . . . . . 12
3-3-3 Free energy formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3-3-4 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3-4 differential drive control vs active inference control a step response analysis . . . 17

xi



xii Table of Contents

4 Active Inference control analysis 19
4-1 State space modeling of an Active Inference controller . . . . . . . . . . . . . . . 19

4-1-1 Assumptions for the state space Active Inference controller . . . . . . . . 19
4-1-2 Derivation of the state space Active Inference controller . . . . . . . . . . 20
4-1-3 Results of the state space Active Inference controller . . . . . . . . . . . 21
4-1-4 Limitations of the state space model . . . . . . . . . . . . . . . . . . . . 22
4-1-5 State space Active Inference step response . . . . . . . . . . . . . . . . . 23

4-2 Methods to decrease the convergence time of an Active Inference controller . . . 24
4-2-1 Increasing the update frequency of the entire controller . . . . . . . . . . 24
4-2-2 Increasing the belief update frequency . . . . . . . . . . . . . . . . . . . 25
4-2-3 Adapting the Active Inference controller to change the belief update frequency 25
4-2-4 Parameter tuning for the increased belief update frequency . . . . . . . . 25

5 Results 27
5-1 Robot versus Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5-2 Changing update frequency for the controller . . . . . . . . . . . . . . . . . . . 29
5-3 Increased update frequency for the belief update step . . . . . . . . . . . . . . . 32
5-4 Stability regions for different ranges of tuning parameters . . . . . . . . . . . . . 34

5-4-1 Tuning the temporal parameter . . . . . . . . . . . . . . . . . . . . . . . 34
5-4-2 Changing the learning rate for the belief update . . . . . . . . . . . . . . 36
5-4-3 Changing the learning rate of the action update . . . . . . . . . . . . . . 37
5-4-4 Effect of the increased update frequency . . . . . . . . . . . . . . . . . . 40
5-4-5 Ranges of the tuning parameter . . . . . . . . . . . . . . . . . . . . . . 40

5-5 Improved Active Inference controller vs standard Active Inference controller . . . 41
5-5-1 Step response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5-5-2 Square wave tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5-5-3 Improved Active Inference vs differential drive . . . . . . . . . . . . . . . 44

6 Conclusion and future work 47
6-1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A State space simulator 51

B Active inference controller block diagram 53

C Parameters of the Active Inference controller 55

D Unstable step response cases 57

xii



Introduction

Using inference mechanisms in the brain humans can easily adapt to changing or even new
circumstances, for robots this is more complicated. To solve this, bio-inspired design is used in
combination with techniques such as machine learning, predictive coding and neural networks
[4][5]. However, these methods still lack adaptation to completely new circumstances as they
are generally trained for specific data sets or situations. A novel method in robotics focuses on
Active Inference, which is a neuro-scientific theory that tries to explain the working principle
of the brain [6]. The theory if correctly adapted to robotics, could potentially lead to true
artificial intelligence.

Active Inference is based on the free energy principle and accounts for action, perception and
learning [1]. The theory is founded by the fact that all living organisms try to minimize the
free energy to be able to minimize surprise. The free energy is a measure of the difference
between the organisms internal model of the world and the observed real world. It can either
be minimized by adapting the internal model to the world (perception), or changing the
world to be more like the internal model (action) [6]. More information about the free energy
formula as used by Active Inference can be found in [6][7]. This novel way of combining
action and perception could be a powerful tool in robotics and therefore [8] explored the
implementation of an Active Inference controller. Founded by this research, [2] created an
Active Inference controller that controlled a robot arm.

In the previously created Active Inference controllers it was noted that it took approximately
seven seconds to pick up a bottle1, which is more than necessary [2]. This thesis aims to find
a method to decrease the convergence time of an Active Inference controller. Therefore in
collaboration with three other students an Active Inference velocity controller for a mobile
robot was created. The controller was compared to the original controller of the mobile
robot to compare the performance for a step response and it was found to be slower, which
understates the problem.

1This research will be analyzed in chapter 2
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2 Introduction

1-1 Research goal

In the previous section Active Inference control was introduced, it was noted that the con-
vergence time of an Active Inference controller is insufficient. This leads to the main research
question for this thesis: How can the response time of an Active Inference controller
be decreased, while remaining an accurate controller?

To be able to achieve this goal a list of sub goals was created:

• Develop an Active Inference velocity controller to control a Jackal robot2.

• Can a state space model be used to analyze and simulate an Active Inference controller?

• Can the Gazebo environment3 be used to simulate the Active Inference controller for a
Jackal robot?

• Does increasing the update frequency of the entire system, or a part of the system, have
an effect on the accurateness of the controller?

• Does increasing the update frequency of the system or part of the system affect the
tuning parameters of the Active Inference controller?

• What are the maximum values that can be used for the tuning parameters?

1-2 Structure of the thesis

This thesis is structured in the following way: In chapter 2 Active Inference control for
robotics will be discussed, followed by a short description of the convergence time problem of
an Active Inference controller. Chapter 3 introduces the Jackal Robot, Gazebo environment
and implemented Active Inference, finally the active inference controller will be compared
to the differential drive controller of the Jackal. In Chapter 4 a state space model of the
Active Inference controller will be derived. Based on the state space model different methods
to decrease the convergence time will be proposed. Chapter 5 will show the results from
the performed experiments followed by an analysis of these results. Lastly in chapter 6 the
answers on the research questions will be given and some future work will be discussed.

2The Jackal robot will be used throughout this thesis and will be introduced in chapter 3
3The Gazebo environment will be introduced in chapter 3
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Active Inference control

In this chapter Active Inference control for robotics will be introduced, starting with an
overview in section 2-1. Followed by the introduction of the free energy formula in section
2-2 and the generative models in section 2-3. Sections 2-4 and 2-5 will discuss the generalized
motions and update rules respectively. Lastly in section 2-6 the convergence time issue as
found in literature will be highlighted.

2-1 Overview of Active Inference control for robotics

A short introduction on Active Inference was given in the introduction, this section will
provide an overview of the Active Inference controller as implemented by Pezzato et al.
[2]. This controller was used to control a 7-DOF robot arm for a pick and place task, a
block diagram based on this control scheme can be found in figure 2-1. The closed loop
system consists of the plant and the controller, the output of the plant is generalized in the
generalization step where higher order derivatives of the measured states are estimated. The
generative model of the sensory data, which estimates the measured states, is compared to
the output of the plant to obtain an error term εy. In the free energy function a second error
term is used, εµ, which follows form the generative model of the desired states. This model
is used to evaluate the state dynamics, and to observe whether the desired state is reached.
In the update step one iteration of a gradient descent is used on the free energy formula to
compute the state update (belief update) and the action update. The belief update is used
to update the believed states, which are used in the previously described generative models.
The action update is used to update the control action update, which is used as input for the
plant. The belief and action update have to be integrated to obtain the actual beliefs and
actions, which is done using a forward Euler method.

2-2 The free energy principle for Active Inference control

This section aims to introduce the free energy formula (equation 2-1) for Active Inference
control, for a full derivation of this formula [2] can be used. The free energy (F) is a summation
of the error terms, εy and εµ which will be discussed later, up to the nth

d order of generalized
motions. The precision matrices, Σ−1

y(i) and Σ−1
µ(i) can be used to adjust the confidence of the

3



4 Active Inference control

Figure 2-1: The closed loop system of an Active Inference controller and plant is shown. The
Active Inference controller provides a control input, a, for the plant, this control input must be
sampled. The measurements (y) are the output of the plant these are generalized to obtain the
generalized measurements ỹ. The generative model of the sensory data is used to predict the
states (ŷ), these will be subtracted from ỹ to obtain the error term εy. In the generative model
of the sensory data an error term (εµ) that represents the difference between the desired state (or
beliefs) and the estimated state is calculated. This error term is multiplied by a scaling parameter
τ−1. The error terms are combined in the free energy formula and a gradient descent is used to
calculate the belief and action updates, µ̇ and ȧ respectively.

controller in either the estimated states (beliefs) or the measurements. K is a constant and
will be neglected for this analysis, as it does not affect the minimization of free energy.

F = −1
2

nd∑
i=0

[ε(i)
y Σ−1

y(i)ε
(i)
y + ε(i)

µ Σ−1
µ(i)ε

(i)
µ ] + K (2-1)

2-3 Generative model

The generative model in an Active Inference controller consists of two sub models, the gener-
ative model of the desired states that compares the estimated state to the desired state and
the generative model of the sensory data that is used to predict the new state. Both will be
discussed throughout this section.
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2-3 Generative model 5

2-3-1 Generative model of the desired states

The generative model of the state dynamics (equation 2-2), models the evolution of the states
(µ) towards the desired state (µd). Gaussian white (w) noise with a mean of zero and a
variance of Σ was introduced [7]. In the remainder of the thesis this variance will be called
Σµ to denote that it is the variance of the generative model of the desired states. Current
Active Inference controllers assume an attractor dynamics model (equation 2-3) for f(µ),
assuming that the states evolve towards the desired state [2][9][10]. The temporal parameter
τ−1 was introduced by Baioumy et al. to decrease the rise and convergence time of the
controller [11]. This parameter is in earlier implementations essentially set to 1, however
Baioumy found that decreasing this parameter sped up the controller.

µ′ = f(µ) + w (2-2)

f(µ) = τ−1(µd − µ) (2-3)

Substituting equation 2-3 into equation 2-2 results in the generative model for the state
dynamics (equation 2-4). From this equation a prediction error term εµ can be found, 2-5, for
a derivation see [7]. The error term contains information about the dynamics of the system,
if the derivatives of the beliefs are equal to the term τ−1(µd − µ) the system is converged and
the error term is zero. Interestingly, decreasing τ increases the value of the model f(µ) and
creates an inaccurate model. By increasing f(µ) the error term, εµ, will be increased as well.
This results in a larger contribution to the free energy formula which is counter-intuitive as
the goal is to minimize the free energy. However, the larger free energy will result in a larger
belief and control action step, which will help the system to converge faster.

µ′ = τ−1(µd − µ) + w (2-4)

εµ = µ′ − τ−1(µd − µ) (2-5)

2-3-2 Generative model of the sensory data

State estimation in Active Inference is performed using the generative model of the sensory
data as expressed in equation 2-6, z is Gaussian noise with a mean of zero and a variance
of (0, Σ), this variance will be denoted with Σy [7]. The model g(µ) is used to predict the
evolution of the sensory data and maps the believed variables to the measured variables. In
the first implementations g(µ) is chosen to be a linear mapping, this can however be changed
to a non linear mapping to obtain a more accurate model.

ŷ = g(µ) + z (2-6)

From equation 2-6 equation 2-7 can be found, with the prediction error εy [7]. This error
compares the measured states with the estimated, or believed, states if the error is zero the
both are equal.
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6 Active Inference control

εy = ŷ − g(µ) (2-7)

2-4 Generalized motions

Friston introduced generalized motions to describe the beliefs about the dynamics of the states
[12]. With the introduction of generalized motions, higher order derivatives of the states are
used which contain information about the state dynamics. For example if one would estimate
both the velocity, acceleration and jerk then jerk would give insights on the evolution of
the acceleration and acceleration on the evolution of velocity. Generalized motions will be
denoted by a tilde over a state, for example ỹ (equation 2-6) which is further specified in
equation 2-8 for one generalized order [2].

y = g(µ) + z

y′ = δg

δµ
µ′ + z′

ỹ =
[

y
y′

] (2-8)

Sensors measure specific quantities such as, acceleration or velocity, other quantities such as
jerk have to be estimated. A method was proposed by Heijne et al. [13], for this method the
time difference between two measurements h is used to estimate higher generalized orders.

2-5 Update rules

Active Inference minimizes the free energy by using two gradient descents, the first to update
the beliefs (equation 2-9) and the second to update the actions (equation 2-10) [6][14]. The
action update consists of two parts, δy

δã
and δF

δy , the former is the change in sensory input
with respect to the control action the latter the change of the free energy with respect to the
sensory input. In the earlier Active Inference implementations the former is approximated, in
chapter 3 this will be done for the implemented Active Inference controller [2]. Two scaling
parameters kµ and ka are introduced which can be used to change the step size [2][8].

˙̃µ = d

dt
µ̃ − kµ

δF

δµ̃
(2-9)

ȧ = −ka
δF

δã
= −ka

δy

δã

δF

δy
(2-10)

The calculated belief and action values have to be integrated to be able to use them as control
inputs, this is done using the Forward Euler method [2][3]. Equation 2-11 shows the general
formula that is used for the integration of the action step, the beliefs are integrated in a
similar fashion [15]. In the equation h is the time difference between the steps, which depends
on the update frequency of the system.

ãt = ãt−1 + h ∗ ˙̃a (2-11)
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2-6 Convergence time of an Active Inference controller 7

2-6 Convergence time of an Active Inference controller

The first implemented Active Inference controller was developed for a pick and place task for
a 7-DOF robot arm [2], figure 2-2 displays the results. For this experiment the robot arm
moved between two points, qa and qb defined below, it can be seen that it takes approximately
6 seconds to converge to the desired positions. Considering the fact that the positions are
relatively close to each other this takes too long.

• qa = [1, 0.5, 0, -2, 0, 2.5, 0] [rad]

• qb = [0, 0.2, 0, -1, 0, 1.2, 0] [rad]

Figure 2-2: Evolution of the joint states during the pick and place task [2].

Based on the work of Pezzato et al. [2] the work of Baioumy et al. was initiated [3]. They
introduced the temporal parameter to reduce the settling time of the robot arm and this
resulted in the results of figure 2-3. Note that slightly different positions were used however,
the same robot arm was used for a pick and placing task. It can be seen that the settling
time is reduced yet the accuracy decreased as ringing occurred in the system. The settling
time was decreased by 50%, however the system converged in approximately 3 seconds which
is still to slow. The increase of speed introduced speed both ringing and overshoot into the
system, which negatively affects the performance.

Figure 2-3: Evolution of the joint states during the pick and place task using the controller as
implemented by Baioumy et al. [3]

7
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Experimental setup

This chapter will elaborate on the experimental setup starting with a short introduction on
the used robot in section 3-1. This will be followed by an introduction of the simulation envi-
ronment, Gazebo, in section 3-2. An overview of the implemented active inference controller
will be given in section 3-3 and in section 3-4 this controller will be compared to the standard
controller of the Jackal.

3-1 Jackal robot

During this thesis a Jackal robot from the TU Delft cognitive robotics lab will be used. the
Jackal is a four wheeled skid steering autonomous robot developed by Clearpath. In figure
3-1 the Jackal is shown, both as it is placed on the ground and as placed on a box. To
communicate with the Jackal the ROS 11 environment is used, and the robot is connected to
a computer using a LAN cable. An extensive Github containing all information of the Jackal
and ROS can be found in2.

The linear and angular velocity of the Jackal is measured using the internal IMU and the
wheel encoders and is published at a frequency of 50 Hz. The Jackal currently makes use of
the standard differential drive controller and has a maximum forward and backward speed of
2.5 m/s. More information on the Jackal can be found on the website of clearpath.3

3-2 Gazebo simulation environment

The Gazebo environment will be used to simulate the Jackal in combination with the active
inference controller. In figure 3-2 a screenshot of the Jackal in the Gazebo environment can
be found. The Gazebo simulation makes use of the ODE physics engine and the model of the
Jackal was provided by Clearpath4. In the Gazebo environment step response tests will be
performed to see whether it can be used to simulate the Jackal.

1https://www.ros.org/
2https://github.com/jackal
3https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
4https://www.clearpathrobotics.com/assets/guides/kinetic/jackal/simulation.html
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(a) The Jackal robot (b) The Jackal robot as it is placed on a box

Figure 3-1: The Jackal robot that was used for the experiments throughout this thesis. The left
figure shows the Jackal on the ground, the right figure shows the Jackal on the box for the tests
on the box. The jackal is connected to the PC using the yellow LAN cable.

3-3 Implemented active inference controller

In collaboration with three other students an active inference controller that controlled the
velocity of the Jackal was developed. During this process I focused on section 3-3-3 and
later the implementation in C++ and the synchronization of the incoming data streams.
The following section were written in collaboration with the other students and presents an
overview of the controller and elaborates on the choice for the generative model of the sensory
data. The full code used for the controller can be found in the following Gitlab5.

3-3-1 Overview of the active inference controller

The controller for the Jackal robot needs to send and receive information to and from the
plant. This communication is handled by ROS, which is inherently present on the Jackal
robot. There are many topics available, but for the controller only a few are needed. An
overview is shown in Figure 3-3, the block diagram in the Active Inference controller part
can be found in appendix B. Sensory input from the wheel speeds are published on the
topic /joint_states, while the speed of the center of mass µ is published on /imu/data,
containing ẍ, ÿ and θ̇. The sensory data are read by a generalization node that calculates the
derivatives of the wheel speeds. These derivatives are then published on an intermediate topic:
/sensor_generalized. These generalized measurements, combined with the desired velocity of
the center of mass that is published on /jackal_AIC/set_point, are the actual input for the
Active Inference controller. The Active Inference controller calculates the action required
to bring down the Free Energy and publishes drive commands on /cmd_drive when using
the robot and /jackal_left_wheel/command and /jackal_right_wheel/command when using
Gazebo. These topics contain the velocities that the left- and right wheel of the Jackal should
have: ωL and ωR. Currently an internal lower-level controller transforms the drive commands
to actuator voltages.

5https://gitlab.tudelft.nl/active-inference-drive-control/active-inference-drive-control
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3-3 Implemented active inference controller 11

Figure 3-2: The Jackal in the Gazebo environment.

Figure 3-3: An overview of all components involved and through what ROS topics they commu-
nicate.

11



12 Experimental setup

3-3-2 Generative model for the sensory data

The generative model for the sensory data was discussed in section 2-3-2, this section will
focus on the choice of the model g(µ). For this model there can be chosen between a simple
kinematic mapping or a dynamic model. The kinematic mapping maps the desired body
velocity input by the user (linear and angular) to corresponding wheel speed inputs to the
wheels and is often preferred [16][17][18][19][20]. The dynamic model takes takes the forces
and accelerations on the vehicle into account. This will generally lead to an increase in control
performance because the vehicle is modeled on a deeper level. However, this type of modeling
requires an elaborate understanding on the ground-wheel interactions of the robot. As the
main goal of this implementation was to implement a first active inference controller for the
Jackal it was decided to keep the system as simple as possible, thus it was opted to use a
simple kinematics mapping. The extended differential drive model introduced by [16] was
used, as this is the simplest and most used kinematic mapping available, while still giving
sufficient performance:

µ =

ẋ
ẏ

θ̇

 = rα


1
2

1
2

0 0
−1

b̂
1
b̂


[

ωL

ωR

]
(3-1)

G = rα


1
2

1
2

0 0
−1

b̂
1
b̂

 (3-2)

Where α is a slip parameter and b̂ is the virtual width of the vehicle (as if it had two wheels),
these are both trained empirically and where found to be 1 and 0.5621 respectively. The radius
of the wheels, r, is 0.098. The generative model g(µ) maps the states to the measurements.
The used implementation has access to the gyroscope, wheel encoders and accelerometer. The
used model can be found in equation 3-3, where G−1 is the pseudo-inverse of the kinematic
mapping.

y =


θ̇

ωL

ωR

ẍ
ÿ

 =


0 0 1

G−1
11 G−1

12 G−1
13

G−1
21 G−1

22 G−1
23

0 0 0
0 0 0


ẋ

ẏ

θ̇

 (3-3)

3-3-3 Free energy formulation

This section will focus on the definition of the free energy formula (as introduced earlier in
equation 2-1) for the active inference velocity controller of the Jackal robot. In the previous
paragraph the generative model of the sensory data and of the state dynamics are defined.
The error terms, εy and εµ, can be derived based on the generative models shown before, these
can be found in equations 3-4 and 3-5. To find the first generalized order these equations are
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3-3 Implemented active inference controller 13

differentiated once to obtain equations 3-6 and 3-7. Note that in this example only the first
derivative is shown, in the actual application the derivatives can go up to the 5th order.

εy = y − g(µ) = y − Rµ =


θ̇

ωL

ωR

ẍ
ÿ

 −



0 0 1
1

rα 0 −b̂
2rα

1
rα 0 b̂

2rα
0 0 0
0 0 0


ẋ

ẏ

θ̇

 (3-4)

εµ = µ′ − f(µ) (3-5)

εy = ỹ − Rµ

ε′
y = ỹ′ − Rµ′

...
ε(5)

y = ỹ(5) − Rµ(5)

(3-6)

εµ = µ′ − f(µ) = µ′ − (µd − µ)τ−1

ε′
µ = µ′′ + µ′τ−1

...
ε(5)

µ = µ(6) + µ(5)τ−1

(3-7)

For readability, equations 3-6 and 3-7 can be written in matrix form (equation 3-8). Further-
more, the same can be done for the precision matrices, which is done in equation 3-9. Note
that in this case ε̃ and Π̃ consist of all generalized orders.

ε̃ =
[

ε̃y

ε̃µ

]
(3-8)

Π̃ =
[
Σ̃y 0
0 Σ̃µ

]
(3-9)

The free energy formula was defined in equation 2-1, if one makes use of equations 3-8 and
3-9 the free energy function can be more compactly written to equation 3-10. Note that ε̃
contains all error terms and Π̃ all precision matrices.

F = 1
2 ε̃T Π̃ε̃ (3-10)

From the free energy formula the belief update can be found, the belief update is defined in
equation 3-11. In equation 3-12 this has been written out for 2 generalized orders.
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˙̃µ = Dµ̃ − kµ(δε̃µ

δµ̃

δF

δε̃µ
+ δε̃y

δµ̃

T δF

δε̃y
) (3-11)

 µ̇
µ̇′

µ̇′′

 =

0 I 0
0 0 I
0 0 0


 µ

µ′

µ′′

 − kµ(


I
τ 0 0
I I

τ 0
0 I I

τ


 Πµεµ

Πµ′εµ′

Πµ′′εµ′′

 −

RT 0 0
0 RT 0
0 0 RT


 Πyεy

Πy′εy′

Πy′′εy′′

) (3-12)

Lastly the action update is defined in equation 3-13. This has been written out for 2 gener-
alized orders of motion in equation 3-15. Note that the term δε̃o

δa is replaced by the forward
model (K) as defined in equation 3-14.

ȧ = −κa
δε̃y

δa

δF

δε̃y
(3-13)

K =

−rα
b̂

1 0 0 0
rα
b̂

0 1 0 0

 (3-14)

ȧ = −κa

K 0 0
0 K 0
0 0 K


 Πyεy

Πy′εy′

Πy′′εy′′

 (3-15)

The actual belief and action values are calculated using the forward euler method:

µk = µk−1 + hµ̇k (3-16)

3-3-4 Generalization

Active Inference requires the measurements to be generalized, the states of µ are generalized
by taking multiple derivatives. However, this is not as straight forward for generalizing mea-
surements, there is only a limited amount of derivatives sensors can measure. For example if
one has a position sensor, a velocity sensor and an acceleration sensor this would mean that
one can only measure up to an embedding order of two. If one needs higher order measure-
ments, these synthesized from the available measurements. To do so an estimation method
based off the Master’s thesis of I.L. Hijne [21] will be used. A robot receives measurement
samples in discrete time, which make it possible to use finite differences.

Finite differences

It is possible to extract higher order derivatives from a Taylor expansion. The Taylor expan-
sion computes signal yk+j from yk and a weighted sum of yk’s higher order derivatives and is
defined as:
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yk+j =
imax∑
i=0

(jh)i

i! y
(i)
k (3-17)

where (i) denotes the i-th order derivative of yk and h is an interval step that is sufficiently
small. Note that imax goes to infinity and j is used for looking j steps forward/backwards
and note that 00 = 1.

The goal here is to extract every order of derivatives up to a defined imax. So for the 1st
order we can write the Taylor expansion as:

yk−1 = yk − hy
(1)
k + O(h2)

y
(1)
k = 1

h
(yk − yk−1) + O(h) (3-18)

Here, O(hn) denotes the order of magnitude of the error terms. Similarly, we can do this
approximation for the second derivative by eliminating the terms until we only end with the
second order terms on the right side.

When

yk = yk

yk−1 = yk − hy
(1)
k + 1

2h2y
(2)
k + O(h3)

yk−2 = yk − 2hy
(1)
k + 2h2y

(2)
k + O(h3)

are combined linearly to eliminate all but the second order terms we find.

1
2yk − 1yk−1 + 1

2yk−2 = 1
2h2y

(2)
k + O(h3) (3-19)

This can then be solved for y
(2)
k :

y
(2)
k = 1

h2 (yk−2 − 2yk−1 + yk) + O(h) (3-20)

and has the coefficients c = [1, −2, 1].

The error term still scales linearly with the step h, this error term will be the same for
higher order derivatives as well. However, this error term can be reduced by taking more past
samples into consideration. For example if we took 4 past samples for calculating y

(2)
k , then

the error term scales quadratic with the interval step h: O(h2).

The problem turns into finding the appropriate coefficients of the linear combinations of
Taylor series. I.L. Hijne [21] tabulated these coefficient up to the 5th order derivative for an
accuracy of O(h). The coefficients for zero to higher order derivatives can be written in a
6 × 6 matrix and are shown in eq (3-21).
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Matrix forms

In Active Inference the generalized coordinates of the sensory input for an embedding order
p are:

ỹ = [y(0)
k , y

(1)
k , ..., y

(p)
k ]

We can approximate ỹ by using backwards differentiation of numerous previous samples of
y

(0)
k . This can be written as:

ỹ = Ey̌, y̌ = [yk−s, yk−s+1, ..., yk]

In this equation s is the amount of samples backwards. For p = 5, s = 5 and an error term
of O(h) the system of equations looks as follows:

y
(0)
k

y
(1)
k

y
(2)
k

y
(3)
k

y
(4)
k

y
(5)
k



=



0 0 0 0 0 1

0 0 0 0 − 1
h

1
h

0 0 0 1
h2 − 2

h2
1

h2

0 0 − 1
h3

3
h3 − 3

h3
1

h3

0 1
h4 − 4

h4
6

h4 − 4
h4

1
h4

− 1
h5

5
h5 − 10

h5
10
h5 − 5

h5
1

h5





yk−5

yk−4

yk−3

yk−2

yk−1

yk



(3-21)

This matrix does solve the problem and we get the generalized coordinates of the sensory
input with a constant h. However, to be able to implement this it is required to keep track
of old data samples, which causes the information to overlap. The equation can be rewritten
to only contain data of the samples of interest and previous samples plus its derivatives. A
special vector ˇ̃y can be constructed that contains the current sample and the previous sample
with higher order derivatives of the previous sample. This form is initialized with the higher
order derivatives at zero.

ỹ = Qˇ̃y, ˇ̃y = [yk, y⊤
k−1]⊤

y
(0)
k

y
(1)
k

y
(2)
k

y
(3)
k

y
(4)
k

y
(5)
k



=



1 0 0 0 0 0

1
h − 1

h 0 0 0 0

1
h2 − 1

h2 − 1
h 0 0 0

1
h3 − 1

h3 − 1
h2 − 1

h 0 0

1
h4 − 1

h4 − 1
h3 − 1

h2 − 1
h 0

1
h5 − 1

h5 − 1
h4 − 1

h3 − 1
h2 − 1

h





yk

y
(0)
k−1

y
(1)
k−1

y
(2)
k−1

y
(3)
k−1

y
(4)
k−1



(3-22)
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Implementation Summary

The form eq (3-22) is used in the Jackal robot. The sensor measurements are synchronized
so that h is the same for all measurements during a time step. Their derivatives are com-
puted based on eq (3-22). However instead of making one large matrix that matches the
size of ˇ̃y, it is more efficient to split this ˇ̃y into several single vectors of a measurement
y̌k,i = [yk,i, y

(0)
k−1,i, y

(1)
k−1,i, y

(2)
k−1,i, y

(3)
k−1,i, y

(4)
k−1,i], where each y̌k,i is a unique sensor measurement

denoted by i. Then use these smaller vectors and the 6×6 matrix Q to calculate its derivatives
as:

ỹk,i = Qy̌k,i y̌k,i = [yk,i, y
(0)
k−1,i, y

(1)
k−1,i, y

(2)
k−1,i, y

(3)
k−1,i, y

(4)
k−1,i]

This way Q only has to be calculated once and can be reused for every vector of y̌k,i.

3-4 differential drive control vs active inference control a step re-
sponse analysis

This thesis makes use of the controller described above, which controls the velocity of a Jackal
robot. This controller will therefore also be tested to see how it’s settling time is compared
with the standard (differential drive6) controller implemented in the Jackal, which is the goal
of the following experiment. Therefore three different step responses were performed, for each
experiment the jackal was driven on the ground. The resulting velocities for these steps can
be found in figures 3-4 and 3-5. In this experiment the basic active inference controller was
used, using the parameters as written in appendix C.

(a) Step to 0.1 m/s (b) Step to 0.5 m/s

Figure 3-4: Step responses of the Jackal while using the original and the active inference con-
troller. It can be seen that in general the original controller outperforms the active inference
controller regarding rise and settling time.

6http://wiki.ros.org/diff_drive_controller
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Figure 3-5: Step response to 1 m/s of the Jackal for an Active Inference controller and for the
standard differential drive controller. In this case the Active Inference controller converges and
rises faster.

In tables 3-1a and 3-1b the settling time (tset) and rise time (trise) of the active inference
controller and original controller can be found. It can be seen that for all, but the 1 m/s
step responses, the original controller built in the Jackal outperforms the active inference
controller. The active inference controller does converge to the desired goals, whereas the
original controller settles at higher values. For this experiment the main goal was to observe
the settling and rise times of the controllers, thus it can be said that for those metrics the
original controller performs better. Note that later, tuning of the parameter τ lead to a
shorter rise time, however compared to the original controller it was still slower.

Table 3-1: Settling time and rise time for different step responses. It can be seen that for the
0.1 m/s and 0.5 m/s, the rise and settling times of the original controller are lower. For the 1
m/s step the the settling times are similar, yet the rise time is lower for the original controller.

(a) Active inference controller.

Step size [m/s] tset [s] trise [s]
0.1 0.67 0.30
0.5 0.87 0.49
1 1.01 0.45

(b) Jackal original controller.

Step size [m/s] tset [s] trise [s]
0.1 0.14 0.04
0.5 0.54 0.35
1 1.05 0.62
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Active Inference control analysis

This chapter will start with the derivation of a state space model of an Active Inference
controller in section 4-1. Based on this state space controller three possible methods to
decrease the settling time of the Active Inference controller will be shown in section 4-2.

4-1 State space modeling of an Active Inference controller

To get a better understanding of the Active Inference controller it was decided to build a
simplified state space model. This section will cover the assumptions and simplifications of
the model as well as the derivation of the state space model.

4-1-1 Assumptions for the state space Active Inference controller

A state space Active Inference controller was created to get a better understanding of the
fundamentals of the Active Inference controller. The goal was to understand how the conver-
gence time of an Active Inference controller can be decreased. It was decided to neglect the
wheel ground interactions and the internal dynamics of the robot (Jackal) such as friction
inside the robot. Therefore the robot is modelled as a point mass, making only the control
action of interest.

Jackal on ground vs on box experiment

To verify the assumption above a step response test was performed placing the Jackal both
on the ground and on a box. figure 4-1 shows the results of these tests, it can be seen that
the measured velocity is similar for both cases. A small difference between both can be seen
in the drive commands, figure 4-1b, it can be seen that the drive commands for the Jackal
on the ground converge to a higher value. This can be due to friction between the wheels
and the ground which could result in a higher value needed to converge to the same speed.
The difference between both cases is quite small, and the convergence time and rise time is
the same. Therefore it was decided that the assumption above can be made as the wheel
ground dynamics do not affect the step response. Based on this test it was also decided
that following tests can be performed by placing the Jackal on a box, as the step response
is not affected. It is more complicated to verify that the internal dynamics of the robot can

19



20 Active Inference control analysis

be neglected, however later in this chapter the state space model will be tested against the
Jackal to compare its behavior.

(a) Measured velocity of the Jackal for a step re-
sponse to 0.5 m/s. The Jackal was both placed on
a box and on the ground.

(b) Drive commands as computed by the Active
Inference controller, both for the jackal on the box
and on the ground

Figure 4-1: Results of a step response test to 0.5 m/s. The Jackal was for these tests once
placed on the ground and once placed on a box. The measured velocity is similar for both cases,
the drive commands are different.

4-1-2 Derivation of the state space Active Inference controller

If the dynamics of the controlled system are neglected the sensory model of the desired state
(g(µ)) is equal to 1. Furthermore the input of the plant is the same as the output of the
plant. Due to this simplification the prediction errors simplify to equations 4-1 and 4-2, the
prediction errors are written for 1 level of generalized order. As the plants input equals the
plants output it can be said that y = a, where y are the measurements and a are the control
actions.

ϵµ = µ̇ − τ−1(µdes − µ)
ϵµ̇ = µ̈ + µ̇τ−1 (4-1)

ϵy = y − µ = a − µ

ϵẏ = ȧ − µ̇
(4-2)

Using these prediction models the belief update, equation 4-3, can be rewritten towards
equation 4-4.

[
µ̇
µ̈

]
=

[
0 I
0 0

] [
µ
µ̇

]
− kµ(

[
I
τ 0
I I

τ

] [
Σ−1

µ εµ

Σ−1
µ̇ εµ̇

]
−

[
1 0
0 1

] [
Σ−1

y εy

Σ−1
ẏ εẏ

]
) (4-3)
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[
µ̇
µ̈

]
=

[
−kµΣµτ−2 − kµΣy 1 − kµΣµτ−1

−kµΣµτ−1 −kµΣµ − kµΣµ̇τ−2 − kµΣẏ

] [
µ
µ̇

]

+
[
kµΣy 0

0 kµΣẏ

] [
a
ȧ

]
+

[
kµΣµτ−2

kµΣµτ−1

]
µdes

(4-4)

Similarly the action update step, defined in equation 4-5 can be rewritten to equation 4-6.

[
ȧ
ä

]
=

[
−kaΣy(a − µ)
−kaΣy(ȧ − µ̇)

]
(4-5)

[
ȧ
ä

]
=

[
−kaΣy 0

0 −kaΣẏ

] [
a
a′

]
+

[
kaΣy 0

0 kaΣẏ

] [
µ
µ̇

]
(4-6)

For the state space Active Inference controller µ and a are used as state variables, using these
the state space Active Inference controller can be written (equation 4-7). Note that once
again this equation assumes one level of generalized orders.


µ̇
µ̈
ȧ
ä

 = A ∗


µ
µ̇
a
ȧ

 + B ∗ µdesired

y = C


µ
µ̇
a
ȧ


(4-7)

4-1-3 Results of the state space Active Inference controller

Previously a simplified state space Active Inference controller was described, a MATLAB
implementation can be found in appendix A. In this section the state space model is compared
to the actual robot to compare the performance. To compare the performance multiple step
responses were performed, during the test some of the parameter were changed. The goal of
the experiments is to see whether the settling time and rise time are comparable. In figure
4-2 the parameter τ is changed and the resulting responses for the state space model and the
actual response on the Jackal are plotted. It can be seen that changing τ results in a similar
change in response for the model and the controller. In figure 4-3 κa was changed, once again
the results are similar.
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22 Active Inference control analysis

(a) τ = 0.01 (b) τ = 1

Figure 4-2: Results of the tests where the Active Inference controller is compared for the response
on the robot and as modelled by the state space model. During the tests the parameter τ was
changed to see whether the model behaved in similar fashion as the actual response.

(a) κa = 1 (b) κa = 10

Figure 4-3: Results of the tests where the Active Inference controller is compared for the response
on the robot and as modelled by the state space model. During the tests the parameter κa was
changed to see whether the model behaved in similar fashion as the actual response. It can be
seen that changing the parameter leads to similar results in the model and on the robot.

4-1-4 Limitations of the state space model

The previous results imply that the state space model can be used to see how the Active
Inference controller would perform on the actual robot. However, it can be seen from the
graphs that the actual response on the robot is prone to noise which is not modeled by
the state space model. This could lead to inaccuracies for higher control gains, which is
illustrated in figure 4-4. In this case the response on the robot became unstable while the
state space model remains stable. The point of instability is different for the model and the
actual response, this makes it more complicated to use the model.
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4-1 State space modeling of an Active Inference controller 23

Figure 4-4: Step response of the state space model vs the actual response on the robot. In this
case the robot became unstable, while the response of the state space model was stable.

4-1-5 State space Active Inference step response

In figure 4-5 a step response to 1 m/s as calculated by the state space model is shown. The
update frequency for this system has been set relatively low at 10Hz. There are two points of
interest in this graph, firstly it can be seen that the actions starts after a time step, dt (1/f),
after the beliefs. This is due to the control layout as for the first step the action will always
remain zero, unless a constant would be introduced. Secondly, the action trails the beliefs,
this is counter-intuitive as this means that a wrong state estimation leads to an action in
the right direction. In essence, the believed velocity first converges which leads to a correct
response from the action. To speed up the Active Inference controller it could be beneficial
to decrease the convergence time of the beliefs and thereby of the actions as well. This idea
will be explored in the following chapters.
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24 Active Inference control analysis

Figure 4-5: Step response of the state space model for an Active Inference controller with an
update frequency of 10Hz. The believed velocity and action, in this case the velocity output, are
shown. It can be seen that the actions trail the beliefs, and that the action start a time step later
then the beliefs.

4-2 Methods to decrease the convergence time of an Active Infer-
ence controller

The previous sections introduced a state space Active Inference controller. Based on this
controller different methods to decrease the convergence time of an Active Inference controller
were found. This section will introduce the methods and elaborate on the expected behavior.

4-2-1 Increasing the update frequency of the entire controller

The first method uses the update frequency of the entire controller to decrease the convergence
time. In the previous sections it was found that the actions follow the beliefs. This implies
that a faster belief convergence results in a faster control action convergence. Increasing the
update frequency of the entire system, means that the beliefs and actions are calculated at a
higher frequency.

Expected behavior

Increasing the update frequency of the entire system, increases the frequency of the belief
update step and the action update step. By increasing the update frequency the actions and
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4-2 Methods to decrease the convergence time of an Active Inference controller 25

beliefs will be calculated at a higher frequency. Therefore it is expected that both converge
faster, which should help the system converge faster.

4-2-2 Increasing the belief update frequency

In the previous sections it was found that the action trails the beliefs, which implies that
a faster believe convergence leads to a faster action convergence. The second method to
accomplish this is by increasing the update frequency of the belief update step. In the
previous section the update frequency of the entire controller was increased, however it seems
that increasing the update frequency of the beliefs should be enough.

Expected behavior

The Active Inference controller consists of two loops, the belief update loop which estimates
the believes and the action update loop that calculates the action updates. If the belief update
frequency is increased the belief update (equation 2-9), the beliefs (µ) and the prediction errors
(εy and εµ) will be calculated at a higher frequency. The free energy is minimized for each
update step, i.e. the prediction errors are minimized, implying that the believed measurements
converge towards the actual measurement. Due to a more accurate belief update the action
update becomes more accurate, which should result in a faster convergence. All in all, it is
expected that increasing the belief update frequency leads to a faster converging of the beliefs.
During the state space analysis it was found that the action follow the beliefs and thus the
actions should converge faster.

4-2-3 Adapting the Active Inference controller to change the belief update fre-
quency

To decrease the convergence time it was opted to increase the update frequency of the belief
update loop. In figure 4-6 the belief update loop is highlighted. The frequency of this loop will
be increased and subsequently the frequency of the believed measurements (ŷ) is increased.
The frequency of the generalized measurements (ỹ) will not be changed and in the free energy
formula the old measurement will be reused. To conclude, the update step of the believes and
actions will be calculated at their respective frequencies. This changes lead to a novel Active
Inference controller which code can be found in 1.

4-2-4 Parameter tuning for the increased belief update frequency

The last method that will be explored combines the approach of the previous section with
parameter tuning. For an Active Inference controller different tuning parameters are available,
namely τ , κa, κy and the values in the precision matrices. In this thesis only the parameters
τ , κa and κy will be tuned to show the working principle of the method.

1https://gitlab.tudelft.nl/active-inference-drive-control/active-inference-drive-control/
-/tree/double_loop
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26 Active Inference control analysis

Figure 4-6: Overview of the Active Inference controller. The belief update loop is highlighted,
the frequency of this loop will be increased to try and reduce the convergence time.

Expected behavior

If the update frequency of the beliefs is increased, a more accurate belief estimation is ex-
pected. The forward Euler method is used to integrate the belief (µ̇) and action (ȧ) updates as
was shown in equation 2-11. In this method the time step h is used, if the update frequency of
the system is changed this time step changes as well. Increasing the update frequency means
that the time step h decreases, the impact of µ̇ and ȧ on µ and a will therefore decrease. This
would mean that a larger range of tuning parameters can be used, since the update steps can
be larger without causing instability.
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Results

This thesis aims to decrease the convergence time of an Active Inference controller. The
first tests that were performed tested the robot versus the simulated robot in Gazebo, these
results will be shown in section 5-1. Previously three methods that potentially decrease the
convergence time of the controller where discussed. In this chapter the results will be shown
and discussed. Starting with the results of the changing update frequency for the entire
controller in section 5-2. Followed by the results of a changing belief update frequency in
section 5-3 and concluded with the parameter tuning in section 5-4. The chapter will be
concluded in section 5-5-3 with a comparison of the improved Active Inference controller
versus the differential drive controller.

Definitions and control setup

Throughout this section the settling time and rise time will be used, for the settling time
a 5% interval was used meaning that the system needed to converge within 5 % of its final
value. For the rise time the 10% to 90% rise time is used, which is the time to rise from 10%
of the set point to 90%. For most of the experiments the measured velocity, believed velocity
and drive commands will be reported. The drive commands are the control actions in this
case. The parameters used in the experiments are always as reported in appendix C unless
stated otherwise.

5-1 Robot versus Gazebo

The first experiments conducted where both on the robot and in the simulation environment
Gazebo. It was decided to start with 2 step response tests, one of an unstable system and
one of a stable system. The goal of these experiments was to find out whether the responses
would be similar for the robot and the simulated robot in Gazebo. If the results are similar
the Gazebo environment can be used, this would make testing easier.

figure 5-1 shows the results of a step response to 0.5 m/s for an Active Inference controller (τ
= 0.001, fupdate = 1kHz), and for an unstable controller (τ=0.001, fupdate = 50Hz). figure
5-1a displays the Active Inference controller and it can be seen that its settling time is similar
for both the simulation and the actual controller. However, in the simulated case there is no
overshoot which is present in the actual robot. It can also be seen that the actual robot is
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subjected to noise whereas the simulated robot is not. The noise poses an extra challenge for
the controller, as the measurements are affected by it. This could cause the error values εy

and εµ) to be higher, which in its turn can affect the belief and action updates.

figure 5-2 shows the drive commands for this step response, it can be seen that the drive
commands settle on a higher value for the actual robot. The drive commands in the Gazebo
environment are smoother than the actual robot which can be explained by the noise in the
system. There are two possibilities that explain the difference in steady state value for the
drive commands, firstly this could be due to the physics engine of Gazebo and secondly this
could be due to the model of the Jackal. The physics engine models the friction between the
ground and the wheels, if this is different than the actual case this results in a difference in
value. The second, models the dynamics in the robot if these are different this can result in
a different value.

The second figure, 5-1b, shows the measured velocity for the unstable controller. The step
response is both for the simulation and the robot unstable. There is a difference in response
between the two, the Gazebo simulation became immediately unstable and switched between
the maximum velocities of the robot (-2.5 m/s and 2.5 m/s). The actual robot on the other
hand started ringing around its initial position and later around -1.5 m/s.

The goal of these experiments was to see whether Gazebo can be used instead of the actual
robot. It can be said that there is a difference between the two, however the settling time
is similar. Therefore Gazebo can be used to gain information about the effect of changing
parameters on the settling time of the system. The overshoot on the actual robot could lead
to instability or a delay in settling time which is why usage of the actual robot is preferred.

(a) Stable 1kHz (b) Unstable 50Hz.

Figure 5-1: This figure shows two graphs, 5-1a in which the results of a step response to 0.5
m/s for an Active Inference controller is compared to that of the robot. In this case the update
frequency was set at 1kHz and the parameters τ was set to 0.001 the other parameters were
the same as the original controller. It can be seen that the settling time is similar, although the
rise towards this point is quite different. In the second figure the same controller is tested at
a frequency of 50Hz. It can be seen that similarly to the robot, the simulated robot in gazebo
became unstable for this case.
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5-2 Changing update frequency for the controller 29

Figure 5-2: Robot vs Gazebo, drive commands. It can be seen that the drive commands send in
real life are less smooth then in the simulation. The drive commands settle at a higher values in
the actual robot then in Gazebo, which implies that the physics engine models friction different
then it actually is.

5-2 Changing update frequency for the controller

In chapter 4 three methods that aimed to decrease the settling time of the Active Inference
controller were introduced. This section will show the results of the first method: increasing
the update frequency of the entire control system. In chapter 3 it was mentioned that the
velocity is measured at a frequency of 50Hz, it was therefore decided to use this as the
lowest value for the update frequency. To observe whether changing the frequency helps, it
was decided to increase the frequency to 100Hz and 1kHz. The former was chosen as it is
twice the measurement frequency, the latter as it is reasonably higher than the measurement
frequency. It is decided to perform three different step response, the first to 0.3 m/s the
second to 0.5 m/s and the last to 1 m/s.

figure 5-3, 5-4 and 5-5 show both the measured velocities and drive commands for the step
response to 0.3 m/s, 0.5 m/s and 1 m/s respectively. Additionally in table 5-1 the measured
settling and rise times for the different step responses are reported. It can be seen that
changing the update frequency did not result in shorter rise or settling times. The drive
commands remain similar for all frequencies, although the 50Hz case does seem to have a bit
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more overshoot compared to the others. The believed velocities are reported in figure 5-6,
and these are similar for all cases as well.

The differences in rise and settling times found in the table seem negligible as there is quite
some noise in the system. A closer look at the update scheme of the controller explains the
results, the integration scheme to find the actual control action a and belief µ. To find these
values a Forward Euler method was used which results in equation 5-1 and 5-2. By changing
the update frequency, the time step (h) is changed and the controller essentially takes smaller
steps. Due to this changing the update frequency does not affect the rise or settling time.

at = at−1 + hȧt (5-1)

µt = µt−1 + hµ̇t (5-2)

Table 5-1: Table that shows the settling and rise times for the different update frequencies of
the system. Three different step responses were performed, and the settling times were measured
from both the measured velocity and drive commands. It can be seen that in general the resulting
rise and settling times are quite similar.

f = 50Hz f = 100Hz f = 1kHz
Step size [m/s] tset [s] trise [s] tset [s] trise [s] tset [s] trise [s]
0.3 0.84 0.37 0.77 0.40 0.81 0.40
0.5 0.76 0.32 0.8 0.55 0.84 0.39
1 0.83 0.40 0.77 0.46 0.81 0.44

(a) Measured wheel velocity (b) Drive commands.

Figure 5-3: Results for a changing update frequency of the entire system for a step response of
0.3 m/s. Changing the update frequency results in similar step responses. A small difference can
be observed as the 50Hz case starts with a bit of a delay.
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(a) Measured wheel velocity (b) Drive commands.

Figure 5-4: Results for a changing update frequency of the entire system for a step response of
0.5 m/s. Once again the step responses are similar for a changing update frequency. The 1kHz
case increases a bit in the later stage of the step response, this appears to be measurement error
as the drive commands keep constant.

(a) Measured wheel velocity (b) Drive commands.

Figure 5-5: Results for a changing update frequency of the entire system for a step response of
1 m/s. The step responses are similar, the drive commands for the 50Hz case show that a these
were a bit larger.

(a) Beliefs step 0.3 m/s (b) Beliefs step 0.5 m/s. (c) Beliefs step 1m/s.

Figure 5-6: Believed velocities for the different step responses. It can be seen that these remain
similar for all the tests.
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5-3 Increased update frequency for the belief update step

The second method that will be explored to decrease the settling time is changing the update
frequency of the belief update step. For these experiments the same update frequencies (50Hz,
100Hz and 1kHz) as in the previous section were used, however this time the action update
was kept constant at 50Hz. figures 5-7 till ?? show the results of the step responses tests to
0.3 m/s, 0.5m/s and 1m/s respectively. In table 5-2 the resulting settling and rise times are
shown, it can be seen that these remain similar for a changing update frequency. In figure 5-10
the believed velocities are shown, these are similar for all frequencies. This can be explained
in a similar fashion as the previous section, however this time the focus is on equation 5-2 as
only that time step changes. The principle is the same, as due to the integration scheme the
system will not converge faster.

Table 5-2: The settling and rise times for different step responses are shown, for each step
response the update frequency of the belief update loop was changed between 50Hz, 100Hz and
1kHz. It can be seen that increasing the update frequency does not necessarily decrease the
settling or rise times, they remain similar.

f = 50Hz f = 100Hz f = 1kHz
Step size [m/s] tset [s] trise [s] tset [s] trise [s] tset [s] trise [s]
0.3 0.77 0.40 0.73 0.43 0.73 0.40
0.5 0.75 0.40 0.77 0.45 0.79 0.43
1 0.79 0.39 0.76 0.39 0.80 0.46

(a) Measured wheel velocity (b) Drive commands.

Figure 5-7: The update frequency of the belief update loop was changed, a step response to
0.3 m/s was performed. It can be seen that the step responses are similar, increasing the update
frequency does not help.
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(a) Measured wheel velocity (b) Drive commands.

Figure 5-8: The update frequency of the belief update loop was changed, a step response to
0.5 m/s was performed. It can be seen that a changing update frequency does not lead to a
difference in the step response.

(a) Measured wheel velocity (b) Drive commands.

Figure 5-9: The update frequency of the belief update loop was changed, a step response to 1
m/s was performed. In similar fashion as the previous step responses it can be seen that changing
the belief update frequency does not help the system converge faster.

(a) Beliefs step 0.3 m/s (b) Beliefs step 0.5 m/s. (c) Beliefs step 1m/s.

Figure 5-10: Believed velocities for the different step responses. It can be seen that these remain
similar for all the tests.
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5-4 Stability regions for different ranges of tuning parameters

The last explored method is a combination of the previous method, increasing the update
frequency of the belief update step and tuning of the parameters. In the previous experiment
it was observed that changing the update frequency made it possible to use a wider spectrum
of values for the tuning parameters. In this thesis the effect of three tuning parameters τ , κµ

and κa, will be explored. The parameters were changed into different values, these can be
found in tableC-1.

Table 5-3: Ranges of the parameters that were tested.

Parameter Values
τ [0.03, 0.01, 0.001]
κµ [0.01, 0.05, 0.1, 1]
κa [8, 10, 15, 20]

5-4-1 Tuning the temporal parameter

In figure 5-11 the measured velocity and in figure 5-12 the drive commands for changing
τ was shown for both a belief update frequency of 50 Hz and 1kHz. The resulting graph
for τ = 0.001 using a belief update frequency of 50Hz is not reported in this graph as the
system became unstable, it can be found in appendix D. It can be observed that the rise and
convergence time decrease with a decrease of the parameter τ . This difference can be seen in
the measured velocity, but more clearly in the drive commands. This is emphasized in table
5-4 where the convergence and rise times can be found.

(a) Belief update frequency of 50Hz. (b) Belief update frequency of 1kHz.

Figure 5-11: Measured velocities for a changing τ . The 1kHz case remains stable for lower
values of τ compared to the 50Hz case. In the case of τ , decreasing the parameter increases the
control performance.
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(a) Belief update frequency of 50Hz. (b) Belief update frequency of 1kHz.

Figure 5-12: Drive commands for a changing τ . It can be seen that decreasing τ makes the
drive commands converge faster, yet at the cost of a bit overshoot.

Table 5-4: Table that shows the settling time and rise time while changing τ . It can be seen
that both the rise and settling times decrease with a decrease of τ .

f = 50Hz f = 1kHz
τ tset [s] trise [s] tset [s] trise [s]
0.03 0.88 0.36 0.81 0.39
0.01 0.75 0.30 0.75 0.26
0.001 - - 0.67 0.19

The believed velocity for this experiment can be found in figure 5-13. Decreasing the param-
eter τ leads to faster convergence of the believed velocity. This behavior can be explained by
looking at equation 5-3, the definition of the belief update, which was derived in chapter 3.
Decreasing τ leads to an increase of the second term both due to the 1/τ in the matrix as the
τ in the error term εµ. Increasing τ introduces a larger bias to εµ, which results in a faster
convergence towards the desired state. Essentially, the beliefs will converge faster due to a
lower value of τ and subsequently the entire system will converge faster.
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(a) Belief update frequency of 50Hz. (b) Belief update frequency of 1kHz.

Figure 5-13: Believed velocity for a changing τ parameter. It can be seen that decreasing τ
leads to a faster convergence, this is especially observable for τ = 0.001.

5-4-2 Changing the learning rate for the belief update

In figure 5-14 the measured velocity for different values of the learning rate for the belief
update, κµ is shown. It can be seen that increasing the parameter leads to a decrease in rise
and settling time. This is even more clearly visible in the drive commands in figure 5-15 which
settle faster for higher values of the learning rate. Table 5-5 reports the measured rise and
settling times, it can be seen that an increase of the parameter indeed results in an decrease
of rise and settling time. Note that the learning rate for a belief update frequency of 1kHz
can be changed to 1, however for the 50Hz cases this results in a unstable system (Graph can
be found in appendix D).

(a) Belief update frequency of 50Hz. (b) Belief update frequency of 1kHz.

Figure 5-14: Measured velocities for a changing κµ. Increasing κµ decreases the settling time.
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(a) Belief update frequency of 50Hz. (b) Belief update frequency of 1kHz.

Figure 5-15: Drive commands, increasing kµ makes the drive command converge faster.

Table 5-5: Table that shows the settling time and rise time while changing κµ. It can be seen
that the rise time and settling times decrease with an increase of κµ.

f = 50Hz f = 1kHz
κµ tset [s] trise [s] tset [s] trise [s]
1 - - 0.58 0.35
0.5 0.64 0.30 0.61 0.30
0.1 0.66 0.24 0.69 0.30
0.01 0.94 0.35 0.93 0.39

A closer look to figure 5-16 (the believed velocity) shows that the beliefs are already over-
shooting for κµ = 0.1 and 0.5 for the systems with a belief update rate of 50Hz. This is a first
indicator that the system becomes unstable, as the control action tends to follow the beliefs.
To understand this behavior equation 5-3 can once again be used. Increasing κµ leads to a
larger effect of the second term, which causes the system to take larger steps for the belief
update. A difference compared to the parameter τ is that the term itself is multiplied by the
parameter κµ.

5-4-3 Changing the learning rate of the action update

figures 5-17 and 5-18 show the measured velocity and the drive commands of the Active
Inference controller for varying values of κa. In figure 5-17 it can be seen that increasing
the learning rate leads to a shorter rise time, at the cost of overshoot and ringing. Similar
behavior can be observed in the drive commands, where ringing and overshoot is observable
for the higher values of κa. It can also be seen that the effect is observable for both the 50 Hz
and 1kHz case, however it occurs earlier at the 50Hz case. The overshoot is also higher for
the 50Hz case if one compares for example κa = 20. The ringing results in a longer settling
time which can be observed in table 5-6, the rise time does decrease. To understands what is
happening in this case, the action update (equation 5-4) can be used. Increasing κa directly
affects the control action update and increases the control action. If the steps are too large,
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(a) Belief update frequency of 50Hz. (b) Belief update frequency of 1kHz.

Figure 5-16: Believed velocity for changing κµ. It can be seen that for the 50Hz case the beliefs
become less accurate. For the 1kHz case the beliefs remain fine.

ringing will start to occur as the system overcompensates.

ȧ = −κa

K 0 0
0 K 0
0 0 K


 Πyεy

Πy′εy′

Πy′′εy′′

 (5-4)

(a) Belief update frequency of 50Hz. (b) Belief update frequency of 1kHz.

Figure 5-17: Measured velocities for a changing κa. Increasing κa leads to ringing and overshoot,
for a small increase to 10 it seems beneficial.

figure 5-19 shows the believed velocity once again ringing is observed. It can be seen that
the ringing is less present in the believed velocity. This can be explained by setup of the
controller, as the system tends to believe that it reaches the desired state. This means that
the system expects to be closer towards the desired set point and thus basically estimates its
actual position wrongly. This is emphasized by the chosen values for the precision matrices
which are larger for the sensory input compared to the believed input. This results in a
system that is biased towards the desired set point.
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(a) Belief update frequency of 50Hz. (b) Belief update frequency of 1kHz.

Figure 5-18: Drive commands for a changing κa, similar behavior is observable as with the
beliefs. The lower frequency suffers to ringing faster compared to the higher frequency.

Table 5-6: Table that shows the settling time and rise time while changing κa. The rise time
decreases with an increase of the learning rate. The settling time decreases at first, but later
ringing occurs which negatively affects the settling time.

f = 50Hz f = 1kHz
κa tset [s] trise [s] tset [s] trise [s]
20 1.65 0.13 1.28 0.14
15 0.1.14 0.20 0.90 0.20
10 0.81 0.26 0.73 0.30
8 0.90 0.35 0.88 0.39

(a) Belief update frequency of 50Hz. (b) Belief update frequency of 1kHz.

Figure 5-19: Believed velocities, it can be seen that the beliefs remain smooth for the 1kHz
case. For the 50Hz case ringing occurs for the higher values of κa, this could lead to instability
for higher values.
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5-4-4 Effect of the increased update frequency

In the previous sub sections the parameters τ , κµ and κa were tuned. A difference in the
responses for the 50Hz and 1kHz systems was observed. To explain this the integration scheme
will once again be used, equations 5-5 and 5-6. In the case of a higher frequency the time
step, h, decreases and therefore the system takes smaller steps to calculate the actions and
beliefs. This gives an advantage to higher frequency systems as the ȧ and µ̇ can be larger
while the system remains stable. This explains why the tuning parameters can be changed
to larger values, as increasing the tuning parameters increases ȧ and µ̇. This can be seen by
for example looking at equation 5-3, where µ̇ was defined. Changing the parameters directly
affects µ̇ and increasing them increases µ̇, and thus to estimate µ a larger value of µ̇ is used.
Thus, the smaller time step for a system with a higher belief update frequency makes the
larger ranges of tuning parameters possible.

at = at−1 + hȧt (5-5)

µt = µt−1 + hµ̇t (5-6)

Another advantage of the higher frequency system is that it calculates the beliefs more often,
this makes it possible to react to changing circumstances. This is simply due to the fact that
the higher frequency system, takes more steps in the same period of time. Thus if something
changes, it is possibly able to faster detect it and adapt to it.

All in all, changing the beliefs update frequency alone does not help decrease the settling time
of the Active Inference controller. It does make it possible to use a larger range of values for
the tuning parameters which in its turn help the system to settle faster. Increasing the update
parameters comes at a cost, for example increasing the parameter τ results in a shorter rise
time yet it does introduce a bit of overshoot.

5-4-5 Ranges of the tuning parameter

In the beginning of this section the used values of the tuning parameters were shown (table
C-1). This section aims to report the maximum usable values of the tuning parameters, as
these differ for the 50Hz and 1kHz case both will be documented. Earlier in the section
some of the maximum ranges for the 50Hz controller where already shown as the controller
became unstable. The other values were found by using the robot on a box and evaluate the
performance. The resulting maximum, or in the case of τ minimum values, can be found in
table 5-7. Note that for κa the values are the same, it was decided to report the highest value
that improved the system as was found in the previous section. The difference in maximum
tuning parameters can be explained using the integration scheme as is done in the previous
section.
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Table 5-7: Maximum values usable for the active inference controller.

Parameter 50Hz 1kHz
τ 0.005 0.0002
κmu 0.1 3
κa 10 10

5-5 Improved Active Inference controller vs standard Active Infer-
ence controller

In the previous section it was found that increasing the belief update frequency in combination
with tuning of the parameters could lead to an improved Active Inference controller. For a first
improved Active Inference controller it was decided to only increase the temporal parameter
which resulted in a controller with the parameters as found in table 5-8. To test whether the
controller is indeed faster than the initial controller a step response test will be performed.
There will also be a square wave test, this test is used to see whether the overshoot is an issue
for the system.

Table 5-8: Parameters used for the improved and standard Active Inference controller.

Parameter Improved AIC Standard AIC
Belief update frequency 1kHz 50Hz
τ 0.001 0.03
κmu 0.1 0.1
κa 8 8

5-5-1 Step response

In figure 5-20 the velocity of the Jackal is plotted over time for the standard Active Inference
controller and the improved Active Inference controller. It can be seen that the rise time is
less for the improved controller and the settling time is shorter. This is more clearly visible
in the drive commands of figure 5-21a. The believed velocity is shown in figure 5-21 and it
can be seen that these converge a lot faster. Lastly in table 5-9 the measured rise and settling
times are reported and it can be seen that the improved controller converges 0.21s faster.

Table 5-9: Resulting step response times for the standard Active Inference controller and the
improved Active Inference controller.

Standard Improved
Step [m/s] tset [s] trise [s] tset [s] trise [s]
0.5 0.88 0.36 0.51 0.19
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Figure 5-20: The measured velocity of the Jackal for the improved and standard Active Inference
controller. It can be seen that the improved controller converges faster and that the rise time
decreased as well.

(a) Drive commands. (b) Believed velocity.

Figure 5-21: figures 5-21a and 5-21 display the drive commands and believed velocity of the
Jackal for the standard and improved Active Inference controller respectively. It can be seen that
the drive commands for the improved controller converge faster, yet have a bit more overshoot.
The beliefs converge faster for the improved controller, which causes the system to converge
faster.
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5-5-2 Square wave tests

This section focuses on the results of the square wave test, two different square waves were
used as inputs. The square wave test was performed to see whether the overshoot would make
it impossible to track the square wave, or lead to instability for an altering velocity. In table
5-10 the minimum and maximum values of the square wave inputs can be found. In figures
5-22a to 5-23 the velocity of the Jackal for the different square waves is plotted for both the
standard and the improved Active Inference controller. In the graphs the desired velocity is
plotted as well, this is the set point given to the controller. It can be seen that in general
the improved controller rises a bit faster than the original controller. The overshoot does not
cause instability and makes it possible for the controller to reach the desired point, whereas
the original controller fails in this task.

Table 5-10: Minimum and maximum values of the square wave inputs.

Case Minimum Maximum
1 0.1 0.5
2 0.1 1
3 0.2 1.2
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(a) Square wave 1

(b) Square wave 2

Figure 5-22: Results of the square wave tests. The improved controller rises faster and has a bit
of overshoot. The original controller does not converge to the desired set point. The goal was to
see whether the system would remain stable and this is the case

5-5-3 Improved Active Inference vs differential drive

In chapter 3 the differential drive controller of the Jackal was compared to the basic Active
Inference controller. At that point the Active Inference controller had a longer rise and settle
time. The improved Active Inference controller is also tested against the original Jackal
controller. In figure 5-24 the measured velocity and drive commands for this test are shown.
The settle time of the Active Inference controller is now, 0.51s versus 0.54s of the differential
drive controller. A clearer difference can be found in the rise time of the Active Inference
controller this is 0.19s while the differential drive controller has a rise time of 0.35s. Therefore
it can be said that the Active Inference controller now performs better than the differential
drive controller for this test.
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Figure 5-23: Square wave 3, this is the largest square wave. It can be seen that the new improved
controller has some overshoot, the standard controller does not reach the desired set point.

(a) Measured velocity. (b) Drive commands.

Figure 5-24: In these figure the performance of the differential drive controller, which is the
standard implemented controller for the Jackal, is compared to that of the Active Inference
controller. It can be seen that the Active Inference controller is more accurate, as the differential
drive controller settles at a higher velocity, and it has a shorter rise and settling time.
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Conclusion and future work

The main goal of this thesis was to find a method to decrease the response time, or settling
time, of an Active Inference controller, while maintaining the accuracy of the controller.
To do so, a state space model of the Active Inference controller was created to gain a better
understanding of the controller. From this state space controller it became clear that the belief
update of the Active Inference controller is of interest if one wants to decrease the settling
time. Three different methods to speed up the beliefs were explored, for the first method the
update frequency of the entire controller was increased which did not help decrease the settling
time. For the second method the update frequency of the belief update loop was increased,
this resulted in a smoother controller and combined with the third method helped decrease
the settling time. For the third method the belief update frequency was increased and the
parameters were tuned, as it was found that these could be tuned to a larger range of values
if the update frequency is increased. This last method proved efficient to decrease the settling
time of the Active Inference controller, although it did introduce overshoot. Therefore the
main research goal of this thesis, how can the response time of an Active Inference controller
be decreased, while maintaining the accuracy of the controller?, is answered.

Throughout this process some sub-goals were set and answered. First of all, together with
three other students an Active Inference velocity controller to control a Jackal robot was
built. The controller was built and compared to the standard differential drive controller in
section 3-4 and it was found that it initially performed worse than the the differential drive
controller. After increasing the performance of the Active Inference controller it performed
better than the differential drive controller.

A second goal was to find out if a state space model can be used to analyze and simulate an
Active Inference controller? Therefore a state space Active Inference controller was derived
in section 4-1, it was found that this model can be used to gain a better understanding of
the working principles of the Active Inference controller. From this model it was found that
the actions always trail the beliefs, and more importantly the actions are dependent on the
convergence speed of the beliefs. A limitation in the model was found as the actual controller
becomes unstable at a certain point whereas the state space model remains stable.

During the process the Gazebo environment was used to simulate the robot, therefore the
following research goal can also be answered: can the Gazebo environment be used to simulate
an Active Inference controller for a Jackal robot? It can be concluded that the Gazebo simu-
lation is usable, however there are differences between the actual response and the response in
Gazebo. This could potentially lead to issues if a controller is tuned in Gazebo and then used
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on the real robot. The system can become unstable on the actual robot while it remained
stable in Gazebo.

Is it beneficial for the accurateness of the controller to increase the update frequency of the
entire system, or part of the system? It was found that increasing the update frequency of
both the entire system and only the belief update does help the accurateness of the controller.
It helps the controller to faster adapt to changes and it makes it able to better filter noise.
This in it’s turn helped with the research question, does increasing the update frequency of the
system or part of the system affect the tuning parameter of the Active Inference controller?
Changing the frequency of the system makes it possible to use a larger range of values for
the parameters, which helps the Active Inference controller to converge faster. It was found
that changing the belief update frequency helps most, changing the action frequency does not
have an additional affect on the performance.

The last research question asked What are the maximum values that can be used for the
tuning parameters? In table 5-7 the maximum, and in the case τ the minimum, values of the
tuning parameters were shown. It was observed that the values differ for changing update
frequencies, which was explained using the integration scheme.

6-1 Future work

In this thesis the first steps to a faster converging Active Inference controller were set, focusing
on the update frequencies of the controller. Eventually it was found that by increasing the
frequency a larger range of values could be used for the tuning parameters. A first step
for future work would be to change more than one parameter at once, this could make the
controller faster. A second possibility that could help decrease the settle time of the Active
Inference controller would be to change the gradient descent method. Changing the update
frequency essentially changes the step size for the gradient descent, which came with some
benefits although it did not change the performance. Using a different method of gradient
descent could help and would be an interesting field of further research. As a third possibility
it would be interesting to change the amount of generalized orders and see whether the effect
would be the same, or whether this would change. Even more so, it might be possible that
the current changes only work for the used amount of generalized orders. A last possibility
would be to explore the generative model of the state dynamics. In current applications an
attractor dynamics model that assumes that the system converges towards a certain desired
point is used for the state dynamics. This model could be changed towards a dynamic model
that predicts the path towards the desired state, to gain a more accurate controller.
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State space simulator

1 function [ y , x , tr , A , B , C , error_y , error_mu ] = ...
aic_ss_simulator ( pi_mu , pi_y , precision_mu , D , k_a , k_mu , tau , p , ...
dt , T_end , mu_des , dgrd , errors_bool )

2 %This function accepts the parameters that are used f o r an active inference
3 %controller , time step dt, end time and desired beliefs . It outputs the y
4 %and x states of a simulated state space system . The goal is to obtain a
5 %better insight in the dynamics of the system .
6

7

8 %Inputs : pi_mu , precision matrix f o r the beliefs . [ sigma_mu 0 ; 0 sigma_mu ' ]
9 % pi_my , p r e c i s i o n matrix f o r the measurements . [ sigma_y 0 ; 0 sigma_y ' ]

10 % precision_mu , vector that contains the precision sigma values of mu , ...
needed to compute B [ Sigma_mu , Sigma_mu ' . . ]

11 % D, d e r i v a t i v e operator . [ 0 1 ; 0 0 ]
12 %k_a l e a r n i n g ra t e f o r the ac t i on update
13 %k_mu l e a r n i n g ra t e f o t he b e l i e f update
14 % tau temporal parameter , used in the a t t r a c t o r dynamics model
15 % p #of g e n e r a l i z e d c o o r d i n a t e s
16 %dt time step
17 %T end time o f the s imu la t i on
18 %mu_des , d e s i r e d mu s t a t e i . e . s t a t e s to which the system evo lve s
19

20

21 %Outputs Y v e l o c i t y o f the system , vec to r 1xn (n = T_end/dt )
22 %x = conta in s the b e l i e f s and a c t i o n s over time matrix 2∗(p+1)Xn
23

24

25 %Create tau matrix , used in the determinat ion o f A
26 tau_mat = create_tau_matrices (p , tau ) ;
27

28 %D e f i n i t i o n o f A,B and C matr i ce s
29 A = [D − k_mu∗tau_mat∗pi_mu∗D − k_mu∗tau_mat∗pi_mu/tau−k_mu∗pi_y −k_mu∗pi_y ;
30 k_a∗pi_y −k_a∗pi_y ] ;
31

32 B = [k_mu∗pi_mu (1 , 1 ) /( tau ∗ tau ) ;
33 k_mu∗pi_mu (1 , 1 ) / tau ;
34 z e r o s ( (2∗ p) ,1 ) ] ;
35 C = [ z e r o s (1 , p+1) 1 z e r o s (1 , p ) ] ;
36

37 y = z e r o s (1 ,T_end/dt ) ;
38 x = z e r o s (2∗ ( p+1) ,T_end/dt ) ;
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39 error_y = z e r o s (p , T_end/dt ) ;
40 error_mu = z e r o s (p , T_end/dt ) ;
41

42

43 x_help = x ( : , 1 ) ;
44

45 f o r i = 1 :T_end/dt
46 %simula t i on o f the model
47 x_dot = A∗x ( : , i ) + B∗mu_des ;
48 i f dgrd
49 f o r j = 1 :5
50 x_help = x_help+x_dot∗dt ;
51 x_dot = A∗x_help+B∗mu_des ;
52 end
53 x ( : , i +1) = x_help ;
54 y ( : , i ) = C∗x ( : , i ) ;
55 e l s e
56 x ( : , i +1) = x ( : , i ) + x_dot∗dt ;
57

58 y ( : , i ) = C∗x ( : , i ) ;
59 end
60 i f e r ror s_boo l
61 %e r r o r terms c a l c u l a t i o n
62 error_y ( : , i ) = x ( ( p+3):end , i ) − x ( 2 : ( p+1) , i ) ;
63 error_mu (1 , i ) = x (2 , i )−(mu_des−x (1 , i ) ) / tau ;
64 error_mu ( 2 : p , i ) = x ( ( 3 : p+1) , i ) − x ( 2 : p , 1 ) / tau ;
65 end
66 end
67

68 timeArray = 0 : dt : T_end/dt ;
69 t r10 = f i n d (y>0.1∗mu_des , 1 ) ;
70 t r90 = f i n d (y>0.9∗mu_des , 1 ) ;
71 t r = timeArray ( t r90 )−timeArray ( t r10 ) ;
72

73 end
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Active inference controller block
diagram

Figure B-1: Active inference control block diagram as it was introduced by the Jackal team
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54 Active inference controller block diagram
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Parameters of the Active Inference
controller

Table C-1: Parameters of the basic Active inference controller.

Parameter Value
τ 0.03
κµ 0.01
κa 8
Generalized orders 3
Σµ 1.5
Σµ′ 2.0
Σµ′′ 4.0
Σµ′′′ 8.0
Σy 2
Σy′ 2
Σy′′ 100000
Σy′′′ 100000
Fupdate 50Hz
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Unstable step response cases

(a) Measured wheel velocity (b) Believed velocity.

Figure D-1: Step response results for the unstable case of κµ=1 for an update frequency of 50Hz.
It is observable that the measured velocity does not converge to the desired point (0.5m/s) and
the believed velocity becomes infinite.

(a) Measured wheel velocity (b) Believed velocity.

Figure D-2: Step response results for the unstable case of τ=0.001 for an update frequency of
50Hz. It is observable that the measured velocity and the believed velocity become unstable.
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