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Abstract

Because of several - sometimes extreme - complications caused by
cracks and weak spots in a metal industry roll, it is of great impor-
tance to detect these defects in time. Measurements on rolls with
artificial- and natural defects have been performed. An imaging op-
erator is introduced, which uses the measurement data to depict the
correct locations of the scatterers in the roll. Even when almost 95%
of the original measurement data is discarded, the defects in the roll
can still be detected. This thesis shows how these imperfections cause
deviations in the eddy current measurement setup and presents how
the deviations can be used to locate these defects in the steel. The
roll is modeled as a conductive half space after which the inhomoge-
neous Helmholtz equation will be solved to find the electromagnetic
fields inside the steel. Defects are modeled as small spheroids with
respect to the wavelength, which makes it possible to find the fields
inside these scatterers. Furthermore, an equation is found which re-
lates deviations in receiver signals to the electric- and magnetic fields
and contrasts in the roll. The quasi-static approach is used to sim-
plify this equation, after which results are shown for different defects
and antenna configurations. Similar outcomes are obtained when the
measurement data is compared to the theory.
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Abstract

Because of several - sometimes extreme - complications caused by cracks and
weak spots in a metal industry roll, it is of great importance to detect these
defects in time. Measurements on rolls with artificial- and natural defects have
been performed. An imaging operator is introduced, which uses the measure-
ment data to depict the correct locations of the scatterers in the roll. Even
when almost 95% of the original measurement data is discarded, the defects in
the roll can still be detected. This thesis shows how these imperfections cause
deviations in the eddy current measurement setup and presents how the devia-
tions can be used to locate these defects in the steel. The roll is modeled as a
conductive half space after which the inhomogeneous Helmholtz equation will
be solved to find the electromagnetic fields inside the steel. Defects are modeled
as small spheroids with respect to the wavelength, which makes it possible to
find the fields inside these scatterers. Furthermore, an equation is found which
relates deviations in receiver signals to the electric- and magnetic fields and con-
trasts in the roll. The quasi-static approach is used to simplify this equation,
after which results are shown for different defects and antenna configurations.
Similar outcomes are obtained when the measurement data is compared to the
theory.
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Chapter 1

Introduction and survey

The production of metal sheets and plates is a great part of the metal industry
to which large companies such as ArcelorMittal and Tata Steel are committed.
Although there are many ways to create such sheets and plates, the concept is
the same. Thick aluminium and steel plates are put through a pair of rotat-
ing rolls, the distance between these rolls determines the desired thickness of
the plate. Each roll experiences a great repetitive amount of force during this
process and thus it becomes fatigued over time. As a consequence, cracks and
weak spots develop at and underneath the surface of the roll. These defects in
the material are undesirable as they lead to multiple risks. Such a crack tends
to grow due to the great forces acting on it and eventually impairs the roll to
a certain extent after which pieces of the roll spall and burst out due to high
internal stresses (see Figure 1.1). At such times safety can no longer be guar-
anteed for the environment. In addition, a roll is very valuable and therefore
any impairment will cost an extensive amount of money. If a defect is found
in time, the roll can be repaired using grinding technologies which then elimi-
nates the above mentioned risks. Because money, and especially safety, are very
important, it is a serious business to find the defects in the roll in time.

(a) (b)

Figure 1.1: A big piece is spalled from the roll (a) and some cracks in a roll
from nearby are shown (b).
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Lismar BV is a company which is specialized in finding such defects and
they develop complete products for their customers in the metal industry to
detect and remove these defects. Using eddy current and ultrasonic inspection
as separate methods, they are able to map imperfections in the roll.

This thesis focuses on the first technique Lismar uses, namely, eddy currents.
The developed system works, but the exact physical processes behind it are not
completely understood. Therefore, the current system cannot be used optimally
to obtain all the information from the measured data. Lismar plans on improv-
ing the signal processing of their system by the use of additional knowledge on
the underlying physical processes. Such an improvement is desirable to find
smaller defects (cracks) and to improve defect classification and defect sizing.
Furthermore, Lismar would like to scan a roll as fast as possible without losing
any valuable information. In order to improve the signal processing and there-
fore the system, a scientific foundation of the underlying processes is necessary.
This leads to the following research proposal:

Develop a scientific model which describes how a roll with possible defects causes
deviations in the received signals in the Lismar measurement system, and is em-
ployed such that it is applicable in practice to detect and display small defects.

This model will give a good electromagnetic foundation for the measurement
system of Lismar. In addition, it will provide insights in the physical processes
that take place within a roll and the defects. Therefore, it can be used to op-
timize the existing system. Furthermore, received signals from a measurement
will be used to find the locations of the imperfections in a roll by using an imag-
ing method.

The remainder of this thesis is as follows. Chapter 2 provides background infor-
mation regarding eddy current testing, defects, and the configuration used by
Lismar. In Chapter 3, a model is derived which explains how received signals
deviate due to contrast sources. The application of the model is presented in
Chapter 4 in which also an equation is derived which shows how defects disturb
eddy currents. In order to find the defects in the roll, an imaging operator is
derived in Chapter 5. This operator is applied to real measurements performed
on two different rolls in Chapter 6, where theory derived in previous chapters is
compared and applied. Finally, conclusions can be found in Chapter 7.
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Chapter 2

Background

This chapter discusses the process of rolling and in particular the origin of defects
in a roll. Material properties of the roll and existing research with regard to
eddy current testing are mentioned, from which some useful publications are
used throughout this thesis. Finally, the measurement setup from Lismar is
discussed, which also provides the constraints for the model that is derived in
this thesis.

2.1 Properties and origin of defects in a roll

The process of rolling can be divided into two main categories: hot rolling and
cold rolling. This is a large difference as the former works with metal tempera-
tures above the recrystallization temperature and the latter with temperatures
beneath this point. Recrystallization is used to repair deformed crystals which
arise in the rolling process. This recrystallization has an effect on the metal
characteristics as it reduces in both strength and hardness [9], which makes it
less fragile. Cold rolling does not repair deformed crystals and has an exact op-
posite effect on the metal characteristics; an increase in strength and hardness.

As long as the roll is intact and of good quality, the rolling process will be
optimal and safe. However, there are some factors which might impair such
rolls and therefore affect the quality and the safety. Since the rolls endure a lot
of pressure (over 1000 MPa) due to the force acting on it [6], the shell is made
from a strong material such as hardened steel.

The largest force of the roll acts in a plane tangential to the metal plate and
due to the rotation of the roll the material becomes fatigued over time. As a
consequence, small cracks appear and grow further due this repetitive pressure.
Especially for hot rolling there is an additional factor which impairs the roll.
As the temperature of the metal plates are usually above 1000 degrees Celsius
during rolling [8], the roll itself tends to warm up quickly. This is undesirable
because the roll loses its strength and therefore the roll is cooled with water.
The downside of this cooling is the continuously warming up and cooling down
which leads to thermal weakness. This thermal weakness causes fine cracks.
In addition, water causes severe damage to the surface of the roll because of
corrosion [5].

The last form of defects are in the form of weak spots and are most likely

3



Table 2.1: Characteristic properties of the roll

εr relative permittivity [12] 1 [no unit]
µr relative permeability 1-100 [no unit]
σ conductivity [11] 106 − 107[ 1

(Ωm) ]

caused by incidents during rolling. If, for example, a metal plate gets stuck in
the machine, it damages the steel due to the abrupt concentrated force. This
weakens the steel and cracks appear at and beneath the surface.

Electromagnetic fields are very sensitive to the material properties of a steel
roll. It is therefore important to list these properties, which is done in Table
2.1. In general, two currents are distinguished. Namely, conduction currents
(related to the conductivity) and displacement currents (related to the per-
mittivity). For low frequencies, the former currents dominate and the latter
currents can be ignored. Permeability is a measure of how easily a magnetic
field can be formed in a material. This property is hard to determine and is
therefore not a well-known characteristic.

2.2 Eddy current testing

In a wide range of applications, nondestructive testing (NDT) is of great im-
portance. Under NDT conditions, certain objects are tested without breaking
it, i.e. testing from outside the object. One could think of testing the quality of
pipelines located under the ground, mapping parts of a human body with the
use of MRI, inspecting airplanes for small cracks, or in this case finding cracks
or weak spots in a roll.

There are multiple methods that can be used for NDT, the method chosen
depends on the specific object to be tested. The commonly used ones for the
application of finding defects in a conductive metal plate are ultrasonic- and
eddy current testing. These methods have a thing in common, namely, it is
possible to find cracks in both the surface and the subsurface of the plate. In
this thesis we will only focus on eddy current testing.

Eddy current testing originates over 50 years ago [14]. A sinusoidal current
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As an example, assume that there is a deep crack in the
surface immediately underneath the coil. This will interrupt or
reduce the eddy current flow, thus decreasing the loading on
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This is the basis of eddy current testing, by monitoring the
voltage across the coil in such an arrangement we can
detect changes in the material of interest.

Note that cracks must interrupt the surface eddy current flow
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not cause any significant interruption and may not be
detected
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Figure 2.1: Simplified sketch of how a coil above a conductive plate induces
eddy currents (a) and how defects cause these currents to deviate (b) [13].
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drives the coil which creates an electromagnetic field that induces eddy currents
inside the object. These currents, as the name reveals, run in closed circles and
are depicted in Figure 2.1a in simple form. The induced currents produce their
own secondary EM-field which is picked up by the receive antenna. As soon
as there is a defect in the material, the induced currents will flow somewhat
differently (see Figure 2.1b) and consequently, radiate a different secondary
field. These differences are found in deviations in the receiver’s coil impedance
in the form of resistance- and reactance fluctuations. Due to these two parts,
both a phase and an amplitude can be obtained during a measurement and this
information can be used to reveal information about the defect.

Because of the sinusoidal current, the fields can be derived in the frequency
domain as is done in [15], where two different NDT setups are discussed. In
the first setup, a coil above a conducting half space is considered, while in the
second being a coil surrounding a tube is analyzed. Impedance changes are
found for a small spherical defect which differs in conductivity from the object
it is in. This has been extended for a setup of multiple coils and multiple
cylindrical conductors [16]. Such a conducting half space has also been derived
in the geophysics [4], where spatial Fourier transforms are applied to simplify
calculations. However, only the space between the source in vacuum and the
conducting half space is derived and not the field inside the conductor.

The impedance change due to a crack has been evaluated in several studies
[17, 18, 19]. However, these studies do not provide a clear relation between
the orientation of the crack and the change in impedance. Furthermore, the
use of multiple antennas in a measurement setup is not incorporated. These
multiple antennas are studied [24], by introducing a sensitivity function which
connects these different antennas. However the crack is modeled as a sphere
and is therefore orientation independent. Based on the same principle, multiple
frequencies can be used instead of a single one [7]. In this case, more information
is obtained about the imperfections and unwanted signals can be filtered out
more easily [21].

Around the seventies, eddy current testing has been extended to the pulsed
eddy current technique. A pulse has the advantage over a continuous wave
as it contains more frequencies, i.e. a broader bandwidth. This implies that
there is potentially more information available [20]. These pulses also contain
more peak power than a continuous wave which means that with the same
amount of energy one can also find defects that lie deeper inside the metal. In
addition, with a pulse driven coil the electromagnetic fields decay over time,
as does the secondary field. This decay can be studied by sending a pulse and
after this transmission the receiver records only the secondary field induced by
the object. This data provides additional information about the object, better
approximations can be found for the dimensions and depth of defects. This is
a rather new research field [22, 23] and more complicated since both time- and
frequency-domain field analysis must be carrier out.

2.3 Configuration used by Lismar

This section discusses the measurement setup of Lismar which also leads to some
constraints of the model. Due to confidential information, only the necessary
parts of the setup are presented which are needed throughout this work.
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Receiver

4
.5
m
m

Figure 2.2: The antenna array used by Lismar consists of four square loop-
antennas. The midpoints of the vertical- and horizontal aligned antennas are
seperated 4.5 mm.

Lismar Engineering is continuously working on new and better equipment.
Their newest system is called LRI which combines ultrasonic and eddy cur-
rent measurements. This system is based on the same principles as the system
VENDT, which has been a project by Lismar and TNO. Since both systems are
built on the same concept, the VENDT system will be used as guideline for this
work [25, 26].

This eddy current system is based on the multiple frequency method as
described in the previous section. The measurement setup scans the metal with
antennas from a 0.5-1 mm height, while moving over the length of the rotating
roll. For this measurement, an array of antennas is used which has four square
loop-antennas (depicted in Figure 2.2). One of the loops acts as a transmitter
and a receiver (monostatic) while the remaining ones act as receivers.

The measurement array is connected to a differential bridge [10]. This bridge
is used to find variations in potential over the antennas as these differences hold
information about the defect. Without such a bridge, the absolute potential
over an antenna from the measurement array is measured. This potential has
some offset which makes it harder to find differences. The function of the bridge
is to steer the offset of the antennas to zero, after which only the variations in
potential are measured.

An FPGA and a digital-to-analog converter are used to transmit a signal.
Every desired pulse or sequence of pulses can be modulated and send to the
transmitter. All four outputs of the bridges are directed to an amplifier and this
amplifier is connected to a 6-channel analog-to-digital converter. The sample
frequency of this ADC is set to 10 MHz, which implies that frequencies up to
5 MHz can be found according to the Nyquist frequency. After the ADC, the
signal is send towards the FPGA again which allows up to six demodulation-
sequences per channel, such as a single frequency. Hereafter the final step is
performed, namely, processing the data.
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Chapter 3

Development of the model

The main goal of this thesis is to find more information about the defects in a
roll. To this end, it is important to understand the underlying physical princi-
ples. Starting point is the measurement setup depicted in Figure 3.1. Here, the
rectangle represents the roll containing a crack at the left-hand side. Above the
roll two loop-antennas are located, one acts as a transmitter and the other one
as a receiver.

The basic idea of finding cracks and weak spots in a roll is quite simple. The
antenna pair scans over the roll from one end to the other. The transmitter
continuously transmits an electromagnetic wave towards the roll. This wave
interacts with the roll as it induces currents in the conductive material. These
currents produce an electromagnetic wave which is picked up by the receiver.
In case there is no crack present, i.e. a clean roll, the received signal will be
the same at any point during the scan. When there is a flaw present, the roll
radiates slightly different than before and consequently the antenna will receive
a somewhat different signal. These differences contain information about the
specific flaw, the difficulty lies in the interpretation of these deviations.

To translate these deviations in the received signal to valuable information,
it is important to understand how the received signal comes into being. For
example, what physics take place between the transmitter, the roll and the
receiver? For this purpose, a theoretical model is developed which gives insight
into this process. Having this model available, it can be used to translate the
measured differences into useful information about the defects.

Within this chapter there will first be an elaboration on the mathematical
notation which is used throughout this thesis. In Section 3.2, the electromag-
netic fields are derived which are needed to find the difference in the received
signal due to a flaw in the roll. Then, in Section 3.3, an expression is found
which expresses these variations in the receive antenna as function of the derived
fields, and as function of the geometric- and material properties of the defect.
Its limitations are discussed at the end of this chapter.

3.1 Notation

Before the theory is discussed, first some elaboration on the notation and the
use of mathematical operations throughout this chapter.

7



Transmitter Receiver

Antenna pair moves
over the roll

Figure 3.1: Measurement setup in its simplest form. A roll with a crack along
with a transmitting and receiving antenna.

To specify position, a Cartesian coordinate system is used with unit vectors
ix, iy and iz, which form a right-handed system. The position vector is denoted
as x = xix + yiy + ziz and ∂i denotes differentiation with respect to the ith
coordinate (i = x, y, z). Furthermore, the nabla operator is given by

∇ = ix∂x + iy∂y + iz∂z,

and ∂t denotes differentiation with respect to the time.

3.2 Electromagnetic fields

The purpose of this section is to find expressions for the electromagnetic fields
that are present in case there is a roll with a possible defect. To this end, the
measurement setup depicted in Figure 3.1 is built from scratch. We start simple
and then rebuild the configuration to arrive at the original setup again.

Specifically, first we consider a source located in vacuum and we determine
the resulting fields (see Figure 3.2 left). We refer to this field as the incident
electromagnetic field. Second, we include the roll and place it beneath the source
as indicated in Figure 3.2 (middle). The roll is characterized by a conductivity
σroll, a permittivity εroll, and a permeability µroll. The dimensions of the roll
are finite but large with respect to the wavelength. The resulting field at any
point in space is called the background electromagnetic field. Finally, to arrive
at the measurement setup of interest, we include a possible defect to the latter
setup. A loop antenna placed above a roll containing a possible crack is shown
on the right of Figure 3.2. The medium parameters of the defects are given
by the conductivity σd, the permittivity εd, and the permeability µd and the
electromagnetic field in this configuration is called the total electromagnetic
field.

In this section, the three cases of interest are treated separately, starting
with a single source in vacuum.
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σroll , μroll , εroll 

ε0  , μ0 

1. Incident field
(source in vacuum)

2. Background field
(source over roller)

3. Total field
(source over roller with defect)

ε0  , μ0 ε0  , μ0 

σroll , μroll , εroll 

σd , μd , εd 

Figure 3.2: A loop antenna is placed in vacuum (left) and a loop antenna is
placed above a roll of finite dimensions (middle). A loop antenna placed above
a roll containing a possible defect is shown on the right.

3.2.1 The incident electromagnetic field

The first step is to place a loop-antenna in vacuum. In order to find expressions
for the electromagnetic fields, the Maxwell equations need to be solved. In a
vacuum domain, these equations are given by

−∇×H(x, t) + ε0∂tE(x, t) = −J(x, t), (3.1)

and

∇×E(x, t) + µ0∂tH(x, t) = −K(x, t). (3.2)

Here,

E is the electric field strength [V/m],
H is the magnetic field strength [A/m],
J is the external electric current density [A/m2],
K is the external magnetic current density [V/m2],
µ0 = 4π × 10−7 is the magnetic permeability vacuum [H/m],

and

ε0 = 1
µ0c20

is the dielectric permittivity vacuum [F/m].

The external current densities are defined on a bounded source domain D and
start to act at the time instant t = 0.

To solve Maxwell’s equations (3.1) and (3.2) for the fields, we subject these
equations to a one-sided Laplace transform with respect to time and a Fourier
transform with respect to space.
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For a wave field component f(x, t) that is causally related to the source, the
one-sided Laplace transform is defined as

f̂(x, s) =

∞∫
t=0

f(x, t)e−stdt for Re(s) > s0,

and f̂ is an analytic function of s in the the right-half plane Re(s) > s0.
The inverse Laplace transform is given by

f(x, t) =
1

2πi

s0+i∞∫
s0−i∞

f̂(x, s)estds for all t,

and the integral on the right-hand side (the so-called Bromwich integral) auto-
matically yields the value zero for t < 0.

Finally, the spatial Fourier transform of f̂(x, s) is defined as

f̃(k, s) =

∫
x∈R3

f̂(x, s)e−ik·xdV, (3.3)

while the inverse spatial Fourier transform is given by

f̂(x, s) =
1

(2π)3

∫
k∈R3

f̃(k, s)eik·xdV. (3.4)

Applying now the temporal Laplace and spatial Fourier transform to Eqs.
(3.1) and (3.2) and using the transformation rules

∂t
L−→ s and ∇ F−→ ik,

we obtain

−ik× H̃(k, s) + η0Ẽ(k, s) = −J̃(k, s), (3.5)

and

ik× Ẽ(k, s) + ζ0H̃(k, s) = −K̃(k, s), (3.6)

where η0 = sε0 and ζ0 = sµ0. These equations can now be solved in a fairly
straightforward manner (see Appendix A or e.g. [2]). The notation that we use
and Eqs. (3.7)-(3.15) are cited from [1]. We then arrive at

Ẽ(k, s) = −
(
ζ0I +

1

η0
kkT

)
Ã(k, s)− ik× F̃(k, s), (3.7)

and

H̃(k, s) = −
(
η0I +

1

ζ0
kkT

)
F̃(k, s) + ik× Ã(k, s), (3.8)
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where Ã and F̃ are the so-called spectral domain electric and magnetic vector-
potentials given by

Ã = G̃J̃ and F̃ = G̃K̃, (3.9)

and

G̃ =
1

kTk + γ2
0

with γ0 =
s

c0
(3.10)

is the spectral domain scalar Green’s function.
Applying an inverse spatial Fourier transform to Eqs. (3.7) and (3.8), we

obtain

Ê(x, s) = −ζ0Â(x, s) +
1

η0
∇
(
∇ · Â(x, s)

)
−∇× F̂(x, s), (3.11)

and

Ĥ(x, s) = −η0F̂(x, s) +
1

ζ0
∇
(
∇ · F̂(x, s)

)
+∇× Â(x, s), (3.12)

where the frequency-domain vector potentials are given by

Â(x, s) =

∫
x′∈D3

Ĝ(x− x′)Ĵ(x, s)dV,

and

F̂(x, s) =

∫
x′∈D3

Ĝ(x− x′)K̂(x, s)dV.

In the above expressions, Ĝ is the s-domain scalar Green’s function given by

Ĝ(x, s) =
e−γ0|x|

4π|x| . (3.13)

Finally, carrying out all differentiations in Eqs. (3.11) and (3.12), we arrive at

Ê(x, s) =

∫
x′∈D

e−γ0|x−x
′|

4π|x− x′|3 (3Q− I)
1

η0
Ĵ(x′, s)dV

+

∫
x′∈D

e−γ0|x−x
′|

4π|x− x′|2
[
(3Q− I)

γ0

η0
Ĵ(x′, s) + Θ× K̂(x′, s)

]
dV

+

∫
x′∈D

e−γ0|x−x
′|

4π|x− x′|

[
(3Q− I)

γ2
0

η0
Ĵ(x′, s) + γ0Θ× K̂(x′, s)

]
dV (3.14)
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and

Ĥ(x, s) =

∫
x′∈D

e−γ0|x−x
′|

4π|x− x′|3 (3Q− I)
1

ζ0
K̂(x′, s)dV

+

∫
x′∈D

e−γ0|x−x
′|

4π|x− x′|2
[
(3Q− I)

γ0

ζ0
K̂(x′, s)−Θ× Ĵ(x′, s)

]
dV

+

∫
x′∈D

e−γ0|x−x
′|

4π|x− x′|

[
(3Q− I)

γ2
0

ζ0
K̂(x′, s)− γ0Θ× Ĵ(x′, s)

]
dV. (3.15)

The integrals are evaluated over the source domain D. Furthermore, Θ = x−x′

|x−x′|
is a unit vector in the direction x − x′, i.e. a vector pointing from the source
to the receiver, and Q is a projection matrix defined as ΘΘT . Finally, the
propagation coefficient of vacuum γ0 = (η0ζ0)

1
2 = s

c0
with Re(γ0) ≥ 0.

Now, the electric- and magnetic field at location x can be determined for a
specific source. The first integral in Eqs. (3.14) and (3.15) represents the near-
field as this term is much larger than the other two integrals when evaluated at
small distances. The third term is the far-field as this term dominates at large
distances. Finally, the mid-term represents the intermediate field.

To work with these equations, it is necessary to know what source is being
used in the configuration, which in our case is a small loop-antenna. Such an
antenna can be represented as a point source in the form of a magnetic current
density as

K(x, t) = µ0∂tmδ(x− xs), (3.16)

where xs is the position of the source and m is the moment of the antenna. This
moment is defined as m = I(t)An, where I is the current through the loop, A
is the area of the loop, and n is the normal vector perpendicular to this loop.
In the Laplace domain this source is equal to K̂(x, s) = ζ0Î(s)πa2δ(x − xs)n,
with a being the radius of the loop. The electric current density J can be set to
zero as there is no other source present. Equations (3.14) and (3.15) can now
be written as

Ê(x, s) =
e−γ0|x−x

s|

4π|x− xs|2 Θ× ζ0Î(s)πa2n

+
e−γ0|x−x

s|

4π|x− xs|γ0Θ× ζ0Î(s)πa2n, (3.17)

and

Ĥ(x, s) =
e−γ0|x−x

s|

4π|x− xs|3 (3Q− I)
1

ζ0
ζ0Î(s)πa2n

+
e−γ0|x−x

s|

4π|x− xs|2 (3Q− I)
γ0

ζ0
ζ0Î(s)πa2n

+
e−γ0|x−x

s|

4π|x− xs| (3Q− I)
γ2

0

ζ0
ζ0Î(s)πa2n. (3.18)

From Eq. (3.17), we observe that the electric field strength is completely trans-
verse to n, that is, n · Ê = 0. For example, if the loop is oriented in the
z-direction (n = iz), then Êz = 0.
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In our NDT application, we are usually only interested in the electromagnetic
field very close to the source. This means that for all practical purposes, the
electromagnetic field can be approximated by

Ê
inc

(x, s) =
a2ζ0e

−γ0|x−xs|

4|x− xs|2 Θ× Î(s)n (3.19)

and

Ĥ
inc

(x, s) =
a2e−γ0|x−x

s|

4|x− xs|3 (3Q− I)Î(s)n, (3.20)

since the remaining terms essentially vanish within our domain of interest. These
final equations are the incident electromagnetic fields in the near-field of the
loop-antenna.

3.2.2 The background electromagnetic field

The incident field has been derived in the previous subsection. The next step is
to include the roll in our configuration as depicted in Figure 3.2. This roll will
interact with the incident field as it induces electric- and magnetic currents and
consequently radiates a new electromagnetic field. This field is said to be the
scattered field and needs to be found. If this field is known, then the background
field is found as well by a simple superposition of the incident- and scattered
field.

Equations (3.14) and (3.15) can be used again to find the scattered field. As
the roll is in the near-field of the antenna, all the terms which are hardly of any
influence on the fields can be neglected. Also, the sources in these equations are
replaced by the induced sources using the constitutive relations given by

Ĵ
ind

(x, s) =
[
σroll + s(εroll − ε0)

]
Ê(x, s), (3.21)

and

K̂
ind

(x, s) = s(µroll − µ0)Ĥ(x, s). (3.22)

We arrive at

Ê
sc

(x, s) =

∫
x′∈Droll

e−γ0|x−x
′|

4π|x− x′|3 (3Q− I)
1

η0
Ĵ

ind
(x′, s)dV

+

∫
x′∈Droll

e−γ0|x−x
′|

4π|x− x′|2 Θ× K̂
ind

(x′, s)dV, (3.23)

and

Ĥ
sc

(x, s) =

∫
x′∈Droll

e−γ0|x−x
′|

4π|x− x′|3 (3Q− I)
1

ζ0
K̂

ind
(x′, s)dV

−
∫

x′∈Droll

e−γ0|x−x
′|

4π|x− x′|2 Θ× Ĵ
ind

(x′, s)dV. (3.24)
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Now, as mentioned in the previous chapter, in typical applications the conduc-
tion currents dominate the displacement currents inside the roll. Consequently,
we have

Ĵ
ind

(x, s) = σrollÊ(x, s). (3.25)

Taking into account the explicit expressions for the induced currents given by
Eqs. (3.22) and (3.25), we arrive at

Ê
sc

(x, s) =
σroll

η0

∫
x′∈Droll

e−γ0|x−x
′|

4π|x− x′|3 (3Q− I)Ê(x′, s)dV

+

(
µroll

µ0
− 1

) ∫
x′∈Droll

e−γ0|x−x
′|

4π|x− x′|2 Θ× ζ0Ĥ(x′, s))dV, (3.26)

and

Ĥ
sc

(x, s) =

(
µroll

µ0
− 1

) ∫
x′∈Droll

e−γ0|x−x
′|

4π|x− x′|3 (3Q− I)Ĥ(x′, s)dV

−σ
roll

η0

∫
x′∈Droll

e−γ0|x−x
′|

4π|x− x′|2 Θ× η0Ê(x′, s)dV. (3.27)

If the field inside the roll is known (here Ê and Ĥ), the background field is found
by summing the incident field due the antenna and the scattered field due to
the roll as

Ê
bg

(x, s) = Ê
inc

(x, s) + Ê
sc

(x, s), (3.28)

and

Ĥ
bg

(x, s) = Ĥ
inc

(x, s) + Ĥ
sc

(x, s). (3.29)

At this moment, however, the fields inside the roll are unknown. In fact, this
field is a combination of the incident field and some self-interaction terms. These
latter fields are caused by induced currents and these can be seen as new sources
which induce new currents in the metal again. In addition, the field inside the
roll strongly attenuates in depth due to the conductivity. Because of these rea-
sons, Ê(x′, s) and Ĥ(x′, s) in above equations are hard to determine. In order to
find the fields inside the roll explicitly, some additional expressions are necessary.

An approximation regarding the geometry of the roll is made to ease the deriva-
tion for the fields inside the object. Since the antenna is close to the surface, the
curvature of the roll becomes negligible and the roll itself becomes extremely
large compared to the height of the antenna above the metal. This implies that
the roll can be seen as an infinitely large conducting half-space as depicted in
Figure 3.3. Here, the loop-antenna is placed at a height of z = −h with its
winding parallel to the roll. The boundary between the two layers is placed at
z = 0. The top-layer is labeled as medium a, while the conductive bottom-layer
is labeled as medium b.

The background field is found more easily in this new setup because of two
reasons:
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εb , μb , σb

εa , μa , σa

z=-h

z=0
ix

iz

iy

m̂

Figure 3.3: Half-space with a magnetic dipole at height z = −h above the roll
which occupies the domain z > 0. Both layers have their own medium properties
ε, σ and µ.

1. The antenna only excites in vertical direction (i.e. the z-direction) and
excitations in other directions can be set to zero;

2. The configuration is invariant in x- and y-direction. Consequently, the
electromagnetic field can be found using spatial Fourier transformation
techniques.

Let us now be more specific. First, recall that a small z-directed loop antenna
located in medium a can be modelled as an external magnetic-current source of
the form

K̂(x, s) = ζam̂δ(x)δ(y)δ(z − h)iz (3.30)

and obviously we also have

Ĵ(x, s) = 0. (3.31)

Here, m̂ = πa2I(s) and the unit vector iz is extracted from the dipole moment as
in this setup the moment of the antenna is directed in the z-direction, implying
that the loop is parallel to the surface of the roll. Equations (3.11) and (3.12)
give solutions for the electromagnetic field in terms of vector potentials which
we can use. Since there is no electric current source, there is also no electric
vector potential. This means Â can be set to zero and the equations become

Ê(x, s) = −∇× F̂, (3.32)

and

Ĥ(x, s) = −ηnF̂ +
1

ζn
∇∇ · F̂, (3.33)

where ηn = σn + sεn and ζn = sµn are the medium parameters of medium n
(n = a or n = b). In our NDT application, the lower halfspace z > 0 is occupied
by the roll (medium b), while medium a consists of air.
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When operating at a frequency ω (s = −iω), we know the frequency-domain

magnetic vector potential F̂ should satisfy Helmholtz’s equation in both the
upper and lower halfspace. Explicitly, we have

(∇2 + k2
a)F̂ = −ζam̂δ(x)δ(y)δ(z − h)iz for z < 0 (3.34)

and

(∇2 + k2
b)F̂ = 0 for z > 0, (3.35)

where kn = (−ηnζn)1/2 is the wave number with Im(kn) ≥ 0. Notice that
the right-hand side of the Helmholtz equation in medium b vanishes, since the
source is located in the upper halfspace.

From the above equations we observe that only the z-component of the vector
potential is excited and F̂x and F̂y are equal to zero. We are left with

(∂2
x + ∂2

y + ∂2
z + k2

a)F̂z = −ζam̂δ(x)δ(y)δ(z − h) for z < 0, (3.36)

and

(∂2
x + ∂2

y + ∂2
z + k2

b)F̂z = 0 for z > 0, (3.37)

and from Eqs. (3.32) and (3.33) it follows that

Êx = −∂yF̂z, (3.38)

Êy = ∂xF̂z, (3.39)

Êz = 0,

(3.40)

Ĥx = ζ̂−1
n ∂x∂zF̂z, (3.41)

Ĥy = ζ̂−1
n ∂y∂zF̂z, (3.42)

and

Ĥz = ζ̂−1
n ∂2

z F̂z − η̂nF̂z = ζ̂−1
n (∂2

z + k2
n)F̂z. (3.43)

We again observe that the z-component of the electric field vanishes, which
means the electric field is completely transverse to the z-direction.

As mentioned before, the configuration considered here exhibits a spatial
invariance in the x- and y-directions at any point in space. This property can
be exploited by applying a spatial Fourier transformation with respect to the x-
and y-coordinates. The forward Fourier transform is defined as

F̃z(kx, ky, z, ω) =

∞∫
x=−∞

∞∫
y=−∞

F̂z(x, y, z, ω)e−i(kxx+kyy)dxdy, (3.44)

while the inverse Fourier transform is given by

F̂z(x, y, z, ω) =
1

4π2

∞∫
kx=−∞

∞∫
ky=−∞

F̃z(kx, ky, z, ω)ei(kxx+kyy)dkxdky. (3.45)
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Region I

Region II

Region III

Figure 3.4: The configuration is divided into three regions, Region I only has
wave propagation in negative z-direction, Region III only in positive z-direction
and Region II has both

Applying now the spatial Fourier transform to Eqs. (3.36) and (3.37), we obtain

(∂2
z − γ2

a)F̃z = −ζam̂δ(z − h) for z < 0, (3.46)

and

(∂2
z − γ2

b)F̃z = 0 for z > 0, (3.47)

where γa and γb have been introduced as

γa = (k2
x + k2

y − k2
a)

1
2 with Re(γa) ≥ 0,

and

γb = (k2
x + k2

y − k2
b)

1
2 with Re(γb) ≥ 0.

As a reminder, the idea is to find solutions for the magnetic potential Fz such
that the electromagnetic fields can be found. For this purpose the configuration
from Figure 3.3 is divided into three regions as is shown in Figure 3.4. In
Region I there is only an upward traveling wave (negative z-direction), Region
II has both an upward and downward traveling wave, and Region III only has
a downward traveling wave (positive z-direction).

In Region I, there is no source present and the fields are in medium a.
Therefore, Eq. (3.46) is valid with a vanishing right-hand side. We have

(∂2
z − γ2

a)F̃z = 0. (3.48)

A general solution for F̃z for this equation is

F̃z = ã+e−γaz + ã−eγaz. (3.49)
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This equation should remain bounded for z → −∞. This is only true if ã+ = 0.
In Region III, Eq. (3.47) is applicable and a general solution for this equation

is
F̃z = c̃+e−γbz + c̃−eγbz. (3.50)

Here, the solution should remain bounded for z → ∞, implying c̃− = 0. Since
Region II is already bounded by the regions surrounding it, the solutions for F̃z
become

Region I F̃z = ã−eγaz z < −h, (3.51)

Region II F̃z = b̃
+
e−γaz + b̃

−
eγaz −h < z < 0, (3.52)

and

Region III F̃z = c̃+e−γbz z > 0. (3.53)

The problem of finding F̃z(k, s) has shifted to finding the coefficients ã−, b̃
−

,

b̃
+

, and c̃+. These coefficients can be found by invoking the electromagnetic
boundary and source conditions at z = 0 and z = −h, respectively. As soon as
the coefficients have been found, the solutions for F̃z(k, s) must be transformed
back to the (x, s)-domain. Hereafter, the required background field for a half-
space configuration can be found using Eqs. (3.38)-(3.43). These latter steps
have all been carried out in Appendix B and the results have been summarized
in Table 3.1. In this table, J0 and J1 are the Bessel functions of the first kind
and order zero and one, respectively. Region I is not included, since we do not
carry out any measurements in this domain. The equations in the table present
the complete solution for the background electromagnetic field.
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3.2.3 The total electromagnetic field

In the previous subsections the incident field and the background field have been
determined completely. The background field is the field that is present if there
is no defect in the roll, i.e. a clean roll. If there is a flaw in the metal then the
fields arriving at a receiver will be slightly different. Specifically, we have

Ê
tot

(x, s) = Ê
bg

(x, s) + Ê
d
(x, s), (3.54)

and

Ĥ
tot

(x, s) = Ĥ
bg

(x, s) + Ĥ
d
(x, s). (3.55)

This latter term is the field caused by deviations in conductivity or permeability
due to a crack or weak spot which causes fluctuations in the field. The source
of these defects can be defined in the same manner as Eqs. (3.22) and (3.25),
i.e.

Ĵ
d
(x, s) =

[
σd − σroll + s(εd − εroll)

]
Ê

tot
(x, s) (3.56)

and

K̂
d
(x, s) = s(µd − µroll)Ĥ

tot
(x, s). (3.57)

The scattered field can be found by using the Maxwell equations, which are
given by

Ê
d
(x, s) =

∫
x′∈Dd

GEJ(x− x′)Ĵ
d
(x′, s)dV

+

∫
x′∈Dd

GEK(x− x′)K̂
d
(x′, s)dV, (3.58)

and

Ĥ
d
(x, s) =

∫
x′∈Dd

GHJ(x− x′)Ĵ
d
(x′, s)dV

+

∫
x′∈Dd

GHK(x− x′)K̂
d
(x′, s)dV. (3.59)

The sources are given by Eqs. (3.56) and (3.57). The permittivity of the metal
is close to that of vacuum, in addition we work with low frequencies, therefore
these two sources become

Ĵ
d
(x, s) = (σd − σroll)Ê

tot
(x, s) = δσÊ

tot
(x, s) (3.60)

and

K̂
d
(x, s) = s(µd − µroll)Ĥ

tot
(x, s) = δµĤ

tot
(x, s). (3.61)
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Substituting these results in Maxwell’s equations gives

Ê
d
(x, s) = δσ

∫
x′∈Dd

GEJ(x− x′)Ê
tot

(x′, s)dV

+ δµ

∫
x′∈Dd

GEK(x− x′)Ĥ
tot

(x′, s)dV, (3.62)

and

Ĥ
d
(x, s) = δσ

∫
x′∈Dd

GHJ(x− x′)Ê
tot

(x′, s)dV

+ δµ

∫
x′∈Dd

GHK(x− x′)Ĥ
tot

(x′, s)dV. (3.63)

Equations (3.54) and (3.55) can now be used to find solutions for the total
electromagnetic field.

3.3 Change in the impedance due to a defect

In the last section the electromagnetic fields have been derived for the back-
ground and the scatterer. However, these expressions do not give a direct rela-
tion between the change in the impedance and the presence of a defect. With
the use of Lorentz’s reciprocity theorem, it is possible to arrive at such a rela-
tion [27]. The reciprocity theorem interconnects two different states (called A
and B) which both are possible to occur in one and the same domain. Each
state has its own source and medium parameters. The two states relevant for

D
s

δD
s

δD

D

D
roll

δD
roll

v

v

(a)

D
s

δD
s

δD

D

D
roll

δD
roll D

d

δD
d

v

v

(b)

Figure 3.5: The two different states which are used in the reciprocity theory.
The left-hand side shows a roll without a defect (state A) and the right-hand
side a roll with a defect (state B).
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our NDT application are specified in Table 3.2 and illustrated in Figures 3.5a
and 3.5b. In these figures, Droll is the domain occupied by the roll, Dd is the
domain occupied by the defect, while the domain Ds contains the transmit-
ting and receiving antennas. This domain has a closed boundary surface ∂Ds.
Furthermore, the domain surrounding the roll, defect, and antenna domain is
denoted by D. This domain has a closed outer boundary surface ∂D. Notice
that domain D is source-free, since all sources are located within the domain Ds.

For a general time-invariant and bounded domain D with closed boundary
∂D and outward unit normal ν, Lorentz’s reciprocity theorem is given by [27]∫

x∈∂D

(
Ê

A × Ĥ
B − Ê

B × Ĥ
A
)
· ν dA =∫

x∈D

[
−(ηB − ηA)Ê

A · ÊB
+ (ζB − ζA)Ĥ

A · ĤB
]

dV

+

∫
x∈D

(
Ĵ

A · ÊB − K̂
A · ĤB − Ĵ

B · ÊA
+ K̂

B · ĤA
)

dV.

(3.64)

We now apply this theorem to the domain D as shown in Figures 3.5a and 3.5b
and use the states as specified in Table 3.2. The above reciprocity relation then
becomes∫

x∈∂D

(
Ê

bg × Ĥ
tot − Ê

tot × Ĥ
bg
)
· ν dA+

∫
x∈∂Ds

(
Ê

bg × Ĥ
tot − Ê

tot × Ĥ
bg
)
· ν dA

=

∫
x∈Dd

(
−δσ Ê

bg · Êtot
+ sδµ Ĥ

bg · Ĥtot
)

dV,

(3.65)

where we have introduced the differences in conductivity and permeability as

δσ = σd − σroll and δµ = µd − µroll.

The first term on the left-hand side of Eq. (3.65) vanishes if we place the surface

Table 3.2: Definition states

State A State B

Ê
A

(x, s) = Ê
bg

(x, s) (x ∈ D) Ê
B

(x, s) = Ê
tot

(x, s) (x ∈ D)

Ĥ
A

(x, s) = Ĥ
bg

(x, s) (x ∈ D) Ĥ
B

(x, s) = Ĥ
tot

(x, s) (x ∈ D)

Ĵ
A

(x, s) = 0 (x ∈ D) Ĵ
B

(x, s) = 0 (x ∈ D)

K̂
A

(x, s) = 0 (x ∈ D) K̂
B

(x, s) = 0 (x ∈ D)

η̂A =

{
σroll + sεroll if x ∈ Droll

sε0 if x /∈ Droll
η̂B =


σroll + sεroll if x ∈ Droll

σd + sεroll if x ∈ Dd

sε0 if x /∈
{
Droll ∪ Dd

}
ζ̂A =

{
sµroll if x ∈ Droll

sµ0 if x /∈ Droll
ζ̂B =


sµroll if x ∈ Droll

sµd if x ∈ Dd

sµ0 if x /∈
{
Droll ∪ Dd

}
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∂D at infinity. Carrying out this procedure, we are left with∫
x∈∂Ds

(
Ê

bg × Ĥ
tot − Ê

tot × Ĥ
bg
)
· ν dA =

∫
x∈Dc

(
−δσ Ê

bg · Êtot
+ sδµ Ĥ

bg · Ĥtot
)

dV.

(3.66)

Let us now focus on the surface integral on the left-hand side of Eq. (3.66).
Recall that this closed surface bounds the antenna domain Ds.

We now assume that we operate at low frequencies and the electric field
strength on ∂Ds can be considered as curl-free. Consequently, we can write the
electric field strength as the gradient of a potential function. Explicitly, we have

Ê
bg

= −∇φ̂bg and Ê
tot

= −∇φ̂tot on ∂Ds,

where φ̂bg and φ̂tot are the potential functions corresponding to Ê
bg

and Ê
tot

,
respectively.

Substitution of the above relations in the surface integral gives∫
x∈∂Ds

(
Ê

bg × Ĥ
tot − Ê

tot × Ĥ
bg
)
· ν dA =

∫
x∈∂Ds

(
∇φ̂tot × Ĥ

bg −∇φ̂bg × Ĥ
tot
)
· ν dA.

Using the identity
∇φ̂× Ĥ = ∇× (φ̂Ĥ)− φ̂∇× Ĥ

this can be written as∫
x∈∂Ds

(
Ê

bg × Ĥ
tot − Ê

tot × Ĥ
bg
)
· ν dA =∫

x∈∂Ds

[
∇× (φ̂totĤ

bg
)−∇× (φ̂bgĤ

tot
) + φ̂bg∇× Ĥ

tot − φ̂tot∇× Ĥ
bg
]
· ν dA.

With the help of Stokes’s integral theorem, it is easily shown that∫
x∈∂Ds

[
∇× (φ̂totĤ

bg
)−∇× (φ̂bgĤ

tot
)
]
· ν dA = 0,

and we obtain∫
x∈∂Ds

(
Ê

bg × Ĥ
tot − Ê

tot × Ĥ
bg
)
· ν dA =

∫
x∈∂Ds

(
φ̂bg∇× Ĥ

tot − φ̂tot∇× Ĥ
bg
)
· ν dA.

Using Maxwell’s equations in the low-frequency approximation

∇× Ĥ
bg

= Ĵ
bg

and ∇× Ĥ
tot

= Ĵ
tot

this can be written as∫
x∈∂Ds

(
Ê

bg × Ĥ
tot − Ê

tot × Ĥ
bg
)
· ν dA =

∫
x∈∂Ds

(
φ̂bgĴ

tot − φ̂totĴ
bg
)
· ν dA.

We now assume that the current density over the surface ∂Ds is mainly con-
centrated at the perfect conductors that form the ports of the antenna system

23



located in the source domain (see Figure 3.6). For an antenna system consisting
of N ports [28], we then have∫
x∈∂Ds

(
Ê

bg × Ĥ
tot − Ê

tot × Ĥ
bg
)
· ν dA =

N∑
α=1

∫
x∈Aα

(
φ̂bgĴ

tot − φ̂totĴ
bg
)
· ν dA,

where Aα is the surface of the αth termination port. Notice that the potential
is constant at the surface of a conductor, since the terminals are assumed to be
perfectly conducting.

Inside the source domain, we now select a reference point where we set the
electric potential to be zero. With reference to this point, terminal α now has
a potential V̂α and we may write∫

x∈∂Ds

(
Ê

bg × Ĥ
tot − Ê

tot × Ĥ
bg
)
· ν dA =

N∑
α=1

[
V̂ bg
α Îtot

α − V̂ tot
α Îbg

α

]
, (3.67)

where Îα is the electric current at the surface of the port of a conductor with
constant voltage V̂α.

The voltages at the terminals can be written as a product of the impedance
matrix and the currents flowing through the terminals as

V̂α =

N∑
β=1

Ẑα,β Îβ . (3.68)

If α = β, Zα,β is the self-impedance of the port/antenna, while for α 6= β
the impedance Zα,β is called the mutual impedance between antenna α and
β. For the configuration considered here, it can be shown that the system is
reciprocal, that is, Zα,β = Zβ,α. This property implies the impedance matrix Z
is symmetric.

D
s

...

δD
s

I1 

V1
^

^

I2 ^ IN-1 ^ IN ^

V2
^ VN-1

^ VN
^

v

Figure 3.6: Source domain represented as ports, number of antennas/ports
equals N .
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Substituting Eq. (3.68) in the above equation and applying the symmetry of
Zα,β , we obtain

N∑
α=1

[
V̂ bg
α Îtot

α − V̂ tot
α Îbg

α

]
=

N∑
α=1

N∑
β=1

[
Ẑbg
α,β Î

bg
β Îtot

α − Ẑtot
α,β Î

tot
β Îbg

α

]
,

=

N∑
α=1

N∑
β=1

[
Ẑbg
α,β Î

bg
β Îtot

α − Ẑtot
β,αÎ

tot
α Îbg

β

]
,

=

N∑
α=1

N∑
β=1

[
Ẑbg
α,β − Ẑtot

α,β

]
Îtot
α Îbg

β ,

=

N∑
α=1

N∑
β=1

δẐα,β Î
tot
α Îbg

β , (3.69)

where we have introduced the change in the impedance matrix δZα,β as

δẐα,β = Ẑbg
α,β − Ẑtot

α,β . (3.70)

The right-hand side of Eq. (3.67) can now be replaced with this new result
leading to

N∑
α=1

N∑
β=1

δẐα,β Î
tot
α Îbg

β =

∫
x∈Dd

(
−δσÊ

bg · Êtot
+ sδµĤ

bg · Ĥtot
)

dV. (3.71)

To obtain an expression for the individual elements of δZα,β , we take Îtot
α and

Îbg
β nonzero for α = f and β = g, f, g ∈ {1, 2, ..., N}, and set all other currents

to zero. We then have

δẐf,g Î
tot
f Îbg

g =

∫
x∈Dd

(
−δσÊ

bg · Êtot
+ sδµĤ

bg · Ĥtot
)

dV. (3.72)

Finally, since the electromagnetic fields are linearly related to the currents, we
may write

Ê
bg

= êbg
g Î

bg
g ,

Ê
tot

= êtot
f Îtot

f ,

Ĥ
bg

= ĥ
bg

g Î
bg
g ,

Ĥ
tot

= ĥ
tot

f Îtot
f , (3.73)

and Eq. (3.72) can be rewritten as

δẐf,g Î
tot
f Îbg

g =

∫
x∈Dd

(
−δσ êbg

g · êtot
f + sδµ ĥ

bg

g · ĥ
tot

f

)
dV Îtot

f Îbg
g .

Since this equation should hold for any nonzero Îtot
f and Îbg

g , we conclude that

δẐf,g =

∫
x∈Dc

(
−δσ êbg

g · êtot
f + sδµ ĥ

bg

g · ĥ
tot

f

)
dV. (3.74)
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This equation relates the change in the impedance to the presence of a defect.
If no defect is present, then δσ = 0 and δµ = 0 and clearly δẐf,g = 0 as well.

To put the above formula into action, suppose that we have two antennas
present in our configuration. One antenna acts as a receiver (f = rx), while the
other one acts as a source (g = tx). Then the impedance difference between
these two antennas can be found by finding the electromagnetic fields inside the

crack. Specifically, the vectors fields êbg
tx , ĥ

bg

tx , êtot
rx , and ĥ

tot

rx have to be found
inside the domain Dd occupied by the defect. These fields can be interpreted as
follows:

êbg
tx , ĥ

bg

tx is essentially the electromagnetic background field inside
Dd in case there is no defect present inside this domain,

êtot
rx , ĥ

tot

rx is essentially the electromagnetic field inside the crack if
the receiver would act as a the transmitter.

These fields have been derived in Section 3.2 and are given given in Table 3.1
and Eqs. (3.54) and (3.55). However, in many cases of practical interest the
defect is small (crack) compared to the wavelengths of operation and the Born
approximation may be applied. In this approximation, the total field inside the

defect is approximated by the background field, i.e., êtot ≈ êbg and ĥ
tot ≈ ĥ

bg
.

Using this approximation, the above equation becomes

δẐf,g =

∫
x∈Dd

{
−δσ êbg

g · êbg
f + sδµ ĥ

bg

g · ĥ
bg

f

}
dV (3.75)

and there is no need anymore to determine the total field inside the defect.
A change in impedance over two antennas is not precisely what is measured

by the system. Voltages are measured instead and it is therefore convenient to
rewrite the change in impedance formula (3.74) in terms of voltages.

To this end, we return to the N -port description (Eq. (3.68))
V̂1

V̂2

...

V̂N

 =


Ẑ11 Ẑ12 · · · Ẑ1N

Ẑ21 Ẑ22 · · · Ẑ2N

...
...

. . .
...

ẐN1 ẐN2 · · · ẐNN



Î1
Î2
...

ÎN

 (3.76)

and consider a system consisting of four ports (N = 4). The first port represents
the transmitter, while the other three act as receivers. Now the voltage at
receiver 3, for example, is given by

V̂3 = Ẑ31Î1 + Ẑ32Î2 + Ẑ33Î3 + Ẑ34Î4. (3.77)

Since the voltage at port 3 needs to be determined, the transfer from port 1 to
port 3 needs to be found. This can be done by setting Î2, Î3 and Î4 to zero.
Solving for Ẑ31 then gives us

Ẑ31 =
V̂3

Î1
, (Î2, Î3, Î4 = 0). (3.78)

When there is a crack or weak spot in the roll, a change in impedance will occur
and therefore also a change in the voltage at the receiver (V̂3). These quantities

26



are linearly related via Ohm’s law and therefore

Ẑbg
31 − Ẑtot

31 =
V̂ bg

3 − V̂ tot
3

Î1
,

which is equal to

δẐ31 =
δV̂3

Î1
. (3.79)

Generalizing this approach to arbitrary ports of an N -port system, we have

δV̂f

Îg
=

∫
x∈Dc

{
−δσ êbg

g · êtot
f + sδµ ĥ

bg

g · ĥ
tot

f

}
dV. (3.80)

3.4 Limitation of the model

In Section 3.2, expressions for the electromagnetic fields have been derived for
a small loop antenna in vacuum, for a loop antenna above a roll, and for an
antenna above a roll with a possible defect. Section 3.3 covered the derivation
of the theoretical models that we will use in our experimental studies. Before
doing so, however, it is important to realize that some assumptions have been
made in deriving these models. These assumptions are:

1. The electromagnetic fields given in Eqs. (3.19), (3.20), (3.28), (3.29),
(3.54), and (3.55) have neglected the intermediate- and far field terms
caused by a source. This assumption has been made because the wave-
lengths in free space are much larger than the dimensions of the measure-
ment setup. Therefore these terms become negligible compared to the
near-field term [3].

2. The antennas in the original setup used by Lismar are square loop-antennas.
Within this work, these antennas have been modeled as magnetic dipoles
to ease the calculations. The far field of an electrically small square loop-
antenna is identical to that of an electrically small circular loop-antenna
and a magnetic dipole [3]. The near field, however, will probably differ
and should be investigated in future work. For example, the near field of
a square loop-antenna can be modeled as four magnetic dipoles (see [35]).
This field can therefore be computed using the results presented in this
thesis without a lot of additional effort.

Furthermore, antennas that are close to each other have some mutual
coupling which has not been been taken into account. However, using
the double integral Neumann formula [36], it follows this effect can be
neglected as it is close to zero.

3. The derivation for the background field that is presented in Table 3.1 has
as a starting point the assumption that the roll is a conductive half space,
implying that the cylindrical shape of the roll has been neglected. This
is assumed because the antennas are really close to the roll (0.5 mm) and
its curvature can therefore be neglected.
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Chapter 4

Application of the field and
impedance model

This chapter discusses eddy currents in clean rolls and rolls containing a defect.
For a roll that does not contain any flaws, non-disturbed eddy currents should
form inside the metal. This will be shown by using derivations from last chapter
and by the use of the simulation program Comsol Multiphysics. Hereafter,
defects will be further examined by introducing a small crack in the shape of
an ellipsoid and the question will be answered why some cracks are easily found
while others are not.

4.1 Eddy currents in a clean roll

This section is divided in two parts. In the first part we investigate the atten-
uation of the electromagnetic field inside the roll as function of the skin-depth.
Using this function, the surface currents can be found by pushing the skin-depth
to zero. Using a new derived equation for these currents, we are able to partly
validate the background field derived in last chapter. The second part starts
with a skin-depth which is not equal to zero, after which the fields in the roll

ε0 , μroll , σroll

ε0 , μ0 ix

iz

iy

m̂

v

Figure 4.1: Magnetic dipole placed above a roll, ν = −iz is a unit vector
perpendicular to the surface.
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Figure 4.2: Skin depth for f=1 MHz, µ = µ0, and for two different conductivities,
namely, σ=105 S/m and σ=107 S/m.

are evaluated with the use of Comsol and the derived theory.

4.1.1 Surface currents

Consider the setup illustrated in Figure 4.1. Here, a small current carrying
wire is placed above a roll. In the roll there will be induced currents due to
the magnetic fields of this antenna and the currents at the surface are called
surface currents (Js). Each field penetrating the roll attenuates with distance
depending on the material characteristics of the roll. In general, this relation
can be given in terms of the skin-depth as [29]

J = Jse
− |x|
δs , where the skin-depth δs =

√
2

ωσµ
. (4.1)

This relation implies that the skin-depth becomes really small for a high con-
ductivity, high permeability, or high frequencies. As a consequence, for such
small values, the currents attenuate really fast over distance. For comparison,
Figure 4.2 illustrates one case in which the conductivity is equal to 105 S/m
and the other for σ = 107 S/m. This attenuation is also seen in the expressions
for the background field listed in Table 3.1 through the factor e−γbz, in which
γb is dependent on the material properties.

For a perfect electric conductor (PEC) the conductivity is infinitely large
(σ →∞). This means that all the currents are concentrated at the surface. In
this special case, the surface currents are given by

Ĵs(x, y) =

 6yh
−6xh

0

 K̂1
z

4π|x− xs|5 , [A/m] (4.2)
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Figure 4.3: Surface currents found with Equation 4.2. Magnetic dipole is located
at point (0,0). The left figure illustrates the directions of the currents while the
right shows the intensity of these currents.
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Figure 4.4: Surface currents found with background field. Magnetic dipole is
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with z = 0, and in which K̂1
z = I(s)A, where I is the current through the

winding, A is the cross section of the loop, and h is the height of the antenna.
This equation is derived in Appendix C. The currents are obviously tangential
to the surface, since Js only has a x- and y-components.

The surface currents have been plotted in Figure 4.3 for h = 1 mm, I =
1 mA, and a cross section of π(2 · 10−6) m2. The magnetic dipole is located at
the point (0, 0) and is evaluated for a total surface of 16 mm2. The left-hand
side of Figure 4.3 illustrates the directions of the currents, whereas the right-
hand side figure illustrates the intensity of the currents. Clearly, the currents
are running in circles on the surface of the roll. Hence, these currents are named
eddy currents.

The background field derived in Subsection 3.2.2 should provide equally like
outcomes as the surface currents derived in Appendix C. Because these latter
derivations assume an infinitely large conductivity, a high conductivity will be
chosen for the background field. As the electric field is approaching zero at the
surface for a high conductivity, the magnetic field is used to find the currents.
This field is evaluated just below the surface and its result is shown in Figure
4.4. The graphs are identical to each other including the magnitude of the
surface currents.

4.1.2 Evaluating the fields inside the roll

The electromagnetic fields will penetrate the steel when the conductivity and
permeability do not approach infinity. To see what fields are produced by a
magnetic dipole placed above steel (see Figure 4.1), we will evaluate the derived
background field from Subsection 3.2.2 for different depths. For validation and
comparison reasons, the same setup has been built in Comsol Multiphysics from
which we should see similar trends regarding the fields. In Comsol, the roll is
built in two dimensions, which is reasonable since the roll has large dimensions
in the x- and y-directions. Figure 4.5 illustrates this procedure. The configura-
tion is extended to infinity in both directions on the condition that there is no
variation in these directions.

We will consider a roll with a conductivity of 108 S/m and a permeability
equal to vacuum for depths 0.05 mm, 0.10 mm, and 0.15 mm. The electric
field component Ey that is tangential to the steel and the magnetic fields Hz

y

x

z

Figure 4.5: Comsol extends the configuration in y-direction to infinity in both
directions, such that 3D objects can be modeled as 2D objects by taking a slice.
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(a) Electric field Ey for σ=108 S/m, µ = µ0.
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(b) Magnetic field Hx for σ=108 S/m, µ = µ0.
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(c) Magnetic field Hz for σ=108 S/m, µ = µ0.

Figure 4.6: Normalized fields for different depths and medium parameters. Re-
sults from Comsol are depicted by solid lines, the theory with dashed lines.
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perpendicular- and Hx tangential to the steel, are separately plotted in Figures
4.6a, 4.6b, and 4.6c respectively. The results have been normalized to the max-
imum of the strongest field as the amplitudes from Comsol and the theory are
different. The difference in magnitude results from the fact that an ideal dipole
source (Dirac distribution) cannot be modeled exactly in a numerical code such
as Comsol. However, both Comsol and the theory give similar results for con-
ductive media. In all sub-figures, the attenuation of the fields in depth, and
horizontal distance, is the same. The diffusion of the waves in the medium can
clearly be seen as the fields tend to attenuate when distancing from the source.

The simulation in Comsol has also been applied for media with a perme-
ability not equal to that of vacuum. However, this causes some deviations with
respect to the derived background field equations. More precisely, the attenu-
ation of the field over distance in the x-direction differs. Further validation by
simulating 3D in Comsol is recommended for future work, as these differences
are probably caused by the way the source is implemented in Comsol.

4.2 Defects in a roll

The section is divided in two parts. The first part will use the simulation
program Comsol Multiphysics to illustrate the disturbance of currents due to a
rectangular crack, with different orientations with respect to the eddy currents.
Hereafter, an equation is derived which models a small ellipsoid in a homogenous
medium. Using this model, it becomes clear why some cracks are found and
other are not. The second part will cover the change in impedance caused by a
defect with the use of the impedance model presented in Eq. (3.74).

4.2.1 Disturbance of currents

In Comsol Multiphysics, a simple 3D setup is built which can be used to get in-
sight in the disturbance of eddy currents due to cracks. We consider a magnetic
dipole that is located above the center of a highly conductive plate containing
a rectangular crack. This crack can have different orientations with respect to
the eddy currents. Two extreme cases are distinguished, namely, one in which
the long side of a crack runs parallel to the currents, and one in which a crack is
perpendicularly oriented with respect to the currents. The crack has been cut
out from the plate and is filled with air.

Both cases are illustrated in Figure 4.7. The top two figures show the eddy
currents for a crack that is oriented parallel to the currents, whereas the bottom
two illustrate eddy currents for a crack perpendicular to the currents. The cones
in these figures indicate the direction of the eddy currents and the colors their
intensity. We observe that the eddy currents are much more perturbed in the
perpendicular case as more current has to change route in this case. In this
example, the modeled crack is quite large and will most-likely be detected in
both scenarios. However, as the size of the cracks becomes smaller, the eddy
currents will hardly be affected by the parallel crack, while the perpendicular
crack can still cause dramatic changes in the eddy current pattern. We therefore
conjecture that small parallel cracks are much more difficult to detect than
cracks which are perpendicularly oriented.
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(a) Crack parallel to eddy currents (b) Crack parallel to eddy currents, zoomed in

(c) Crack perpendicular to eddy currents (d) Crack perpendicular to eddy currents, zoomed in

Figure 4.7: Two different orientations of the cracks. Perpendicular cracks dis-
turb the currents more than parallel cracks.
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(a)

E0

σroll
 

σd
 

y

xz

(b)

Figure 4.8: Ellipsoid in a Cartesian coordinate system on the left, where param-
eters a, b and c are free to choose and determine the shape of the object. On
the right, an ellipsoid placed in a uniform external electric field. The medium
has a conductivity σroll and the ellipsoid a conductivity σd.

By modeling the crack as an ellipsoid, it can be shown that this is indeed
the case. Specifically, let us take an ellipsoid filled with a homogeneous and
isotropic material that is characterized by a constant conductivity σd. Its shape
is determined by the parameters a, b, and c as illustrated in Figure 4.8a. We
embed this ellipsoid in a homogeneous and isotropic background medium with
conductivity σroll and we assume that an external field E0 is present in this
background material (see Figure 4.8b.) Denoting the field inside the ellipsoid
by Ein, it can be shown that [31]

Ein(x) = (1 + L
δσ

σroll
)−1E0(x). (4.3)

Here δσ = σd−σroll and L is the depolarization factor. This factor is actually a
diagonal dyadic with diagonal elements Lx, Ly, and Lz. These factors relate the
external field to the field in the ellipsoid and add up to one. A special case of
the ellipsoid is a spheroid for which a = c, implying Lx = Lz (see Figure 4.8a).
Using this shape, only the Ly factor remains in integral form given by [32]

Ly =
g

2

∫ 1

−1

u2

1− (1− g)u2
du, where g =

(a
b

)2

, (4.4)

and

Lx = Lz =
1− Ly

2
. (4.5)

For the case b >> a = c, the spheroid takes the form of a needle and is
oriented perpendicular to the x-directed electric field. Therefore, g ≈ 0 and
consequently Ly = 0 and Lx = Lz = 1/2. Using Eq. (4.3) with σd = 0, the field
inside the ellipsoid becomesEin

x

Ein
y

Ein
z

 =

2 0 0
0 1 0
0 0 2

E0

0
0

 =

2E0

0
0

 . (4.6)
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Figure 4.9: The spheroid is rotated 180 degrees for different shapes (a) and
different conductivities (b), the factor X is shown in the plots, i.e. Ein = XE0.
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Figure 4.10: Two antennas above a roll. The unit vectors νn and nn are shown
as well. The former is a unit vector orthogonal to the surface of the loop, the
latter is a unit vector pointing towards the defect.

The field inside the ellipsoid becomes twice as large as the background field.
Such a crack can be found easily by a measurement system. Now, imagine that
the crack is rotated by 90 degrees and becomes parallel to the electric field.
Following a similar analysis as before, we now getEin

x

Ein
y

Ein
z

 =

1 0 0
0 2 0
0 0 2

E0

0
0

 =

E0

0
0

 . (4.7)

Now, the field inside the spheroid is the same as the background field. Hence,
it cannot be found as it does not disturb the field. In Figure 4.9a some different
shapes of the spheroid versus orientation are plotted with respect to the back-
ground field. Figure 4.9b shows a needle perpendicular to the electric field for
some different values of δσ.

4.2.2 Change in the impedance due to a crack

In Section 3.3, a model has been derived for impedance variations due to con-
trasts with respect to the background field. For convenience, this equation is
repeated here as

δẐf,g =

∫
x∈Dd

(
−δσ êbg

g · êtot
f + sδµ ĥ

bg

g · ĥ
tot

f

)
dV. (4.8)

As mentioned earlier, the Born approximation can be used to approximate the
total field by the background field if the defect is sufficiently small. However, the
background field is still required in this case and this can be a computationally
intensive task.

In this section, we therefore follow an alternate route and approximate the
electromagnetic field by the quasi-static field. The background field derived in
Subsection 3.2.2 is not used in this alternate route. For simplicity, we consider
defects with no contrast in the permeability and a configuration consisting of
a single transmitter and single receiver (see Figure 4.10). In Appendix D, it is
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shown that within a quasi-static field approximation, the change in the mutual
impedance between these two antennas is given by

δẐ =

(ωµ0A)2

∫
x∈Dd

δσ

16π2|x− xs|2|x− xr|2
[(ns · nr)(νs · νr)− (ns · νr)(νs · nr)] dV,

(4.9)

where nn = x−xn
|x−xn| is a unit vector pointing from the transmit or receive antenna

(n=s or n=r) towards the point that is evaluated (x ∈ Dd), νn is the unit
vector perpendicular to the area of the loop-antenna, and ω is the frequency of
operation. These unit vectors are depicted in Figure 4.10.

Equation (4.9) shows that the impedance variations are caused purely by
geometrical changes in the system, such as the distances and directions from the
antenna to a contrast point. Furthermore, because we said there is no contrast
in permeability, the expression gives just solutions for the resistive part of the
impedance variations. For higher frequencies there will also be higher order
terms. We did not incorporate these terms in the quasi-static approach as their
influence on the impedance is minimal for low frequencies. If these higher order
terms where incorporated, there would also be a reactive part caused by changes
in conductivity.

To see what kind of results this equation gives, we first have to note that the
orientation of the crack with respect to the eddy currents is not yet included.
Therefore, we will consider a hole in the form of a sphere which is orientation
independent (see Subsection 4.2.1). Now suppose we have two antennas which
are placed horizontally next to each other at 1.5 mm height above a steel plate,
this plate contains a crack with a volume 10−3 mm3 at some location. The
distance between the midpoints of the antennas is 4.5 mm and they transmit a
frequency of 100 kHz. The antenna pair is scanning the plate vertically, where
every time the end of the plate is reached it starts over some horizontally distance
further. This process is illustrated in Figure 4.11. The impedance variations

y

xz

Tx Rx

Tx Rx

crack

Figure 4.11: The transmitter and receiver are scanning the steel plate vertically,
where every time the end of the plate is reached it starts over some horizontally
distance further.
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(a) Antennas horizontally aligned, xy-plot (b) Antennas horizontally aligned, xyz-plot

(c) Antennas vertically aligned (d) Antennas in a monostatic configuration

Figure 4.12: Impedance variation plot for a scan over a steel plate containing a
spherical crack at location (0,0), for bistatic and monostatic configuration.

can now be measured by taking samples during the scan using Eq. (4.9).
The result of this scan is shown in Figure 4.12a and 4.12b where the xy-

axes determine the location where a sample has been taken, and the z-axis
determines the variation in impedance. Upon approaching a defect, the change
in the impedance first decreases a bit but shortly after increases significantly.
This alternation is due to the multiplication of the unit vectors ns and nr as
these flip sign as soon as one antenna has moved over the defect already while
the other has not. The strongest signal is achieved if the crack is in between
the two antennas. Furthermore, the shape of the sphere cannot be recognized
because it is stretched in the horizontal direction due to the distance between
the horizontally oriented antennas. This distance causes the sensitivity region
between the antennas to be stretched as well. For small cracks with respect to
this distance, the impedance variation is a rough copy of the sensitivity region.
Therefore, this distance can be said to determine the resolution of the scanning
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system for some part.
The same scan can be made by antennas which are oriented differently to-

wards each other. For example, in Figure 4.12c we have made a scan with two
antennas placed vertically towards each other. The difference is that the image
is rotated by 90 degrees, which is expected as the antennas have been rotated
by 90 degrees as well and the crack is modeled as a sphere. If the scan is made
with the antennas in monostatic configuration, the result from Figure 4.12d is
obtained. Here, we observe a circle in which the dark blue peak of this circle
corresponds with the most sensitive part of the antenna system. This fits the
theory, as the eddy currents induced by our source are rotationally symmetric.

To include the orientation of the crack with respect to the eddy currents, we
create an oblate spheroid with a width that is twice as large as its length (i.e.
b = 2 and a = c = 1) and dimensions much smaller than the wavelength. The
total electric field term in Eq. (4.8) is now influenced by the orientation of the
crack via Eq. (4.3).

Illustrated in Figure 4.13 are four enlarged cracks with a different orientation
which we would like to detect. One scan is made with a bistatic configuration
where the antennas are horizontally aligned, while the other scan is made in a
monostatic configuration. The scanning results are shown in Figures 4.14a and
Figure 4.14b, respectively. Clearly, the best detections for a horizontally aligned
antenna system are obtained for a horizontally oriented crack , since in this case
the eddy currents are maximally disturbed. The vertically oriented spheroid
disturbs the eddy currents less and as a consequence shows a lower variation
in impedance. The variation for diagonal oriented spheroids is somewhere in
between.

The orientation of the cracks can be found in a monostatic measurement
setup. This is because the eddy currents are disturbed most when the crack
is perpendicular to these currents. In case of a horizontal oriented crack this
occurs when the antennas are located on the left and on the right side of this
crack, which causes the currents to be perpendicular to the long side of the
crack. We also see some impedance deviations in case the antenna is located
above and below the crack. This is due to the fact the currents are disturbed
as well by the short side of the defect, but to a much smaller extend. For other

Figure 4.13: Four spheroid cracks with b = 2 and a = c = 1 are placed in a steel
plate, all four have a different orientation.
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oriented cracks the same analysis applies as can be seen in the figure.

(a) Antennas horizontally aligned

(b) Antennas in a monostatic configuration

Figure 4.14: Impedance variation plot for a scan over a steel plate containing
four holes at different locations with different orientations.
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Chapter 5

Imaging

In this chapter we discuss the construction of an imaging operator that can be
applied on measured NDT data to construct images of possible defects. The
imaging operator is essentially a backprojection operator, that is, it projects
measured data back to the place where they originally came from. To demon-
strate the effectiveness of the operator, we apply it on synthetic data created by
Comsol Multiphysics. In Chapter 6 the operator is applied to measured data.

5.1 Imaging operator

During a measurement we acquire data which holds information about the roll.
Using imaging we try to reconstruct the sources and contrasts in the roll by
making use of this data. In order to do so, we develop an imaging operator that
acts on the data and projects it back to the imaging domain.

We start by defining the scattered field due to defects in the roll as

wd(x, s) =

∫
x′∈Dd

G(x− x′, s)qd(x′, s)dV, with x ∈ Dr. (5.1)

Here, G is the frequency-dependent Green’s function, qd is the scatterer source
defined in domain Dd, and wd is the field due to a defect measured in the

D
d

D
s

D
r

qd

qs

receivers source

defects ws
wd

Figure 5.1: Configuration used in imaging. Three domains are specified, the
source domain Ds with source qs, the scatterer domain Dd with sources qd, and
the receiver domain Dr where the receivers are located.
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receiver domain Dr. This scatterer source is induced by the field radiated by
the transmit antenna. In particular, we have

qd(x) = χ(x)w(x, s), (5.2)

where w is the total field inside the domain Dd and χ is the frequency-independent
contrast function containing the medium parameters of the defect. For imaging
purposes, we are interested in the distance between the source and the scatterer
and the phase shifts which arise. Therefore, we are not concerned about the
exact total field inside the steel and we can replace the total field by the incident
field using the Born approximation1. This incident field is given by

ws(x, s) =

∫
x′∈Ds

G(x− x′, s)qs(x′, s)dV, for x ∈ Dd. (5.3)

Here, qs is the source defined in the source domain Ds. If this source is a point
source with unit amplitude located at x = xs, the above simplifies to

ws(x, s) = G(x− xs, s). (5.4)

Applying the Born approximation and using this incident field, we obtain for
our data the integral representation

wd(x, s) =

∫
x′∈Dd

G(x− x′, s)G(x′ − xs, s)χ(x′) dV with x ∈ Dr. (5.5)

Now typically data is collected for different source locations at different fre-
quencies and different receiver locations. Denoting the position vector of the
different point source locations by xs;m, m = 1, 2, ...,M , the position vector of
the different receiver locations by xr;n, n = 1, 2, ..., N , and the different frequen-
cies of operation by sf , f = 1, 2, ..., F , we have a total amount of measured data
given by

wd(xr;n,xs;m, sf ) =

∫
x′∈Dd

G(xr;n − x′, sf )G(x′ − xs;m, sf )χ(x′) dV, (5.6)

for m = 1, 2, ...,M , n = 1, 2, ..., N , and f = 1, 2, ..., F . The right-hand side of
the above equation defines a data operator

Λ{χ}(xr;n,xs;m, sf ) =

∫
x′∈Dd

G(xr;n − x′, sf )G(x′ − xs;m, sf )χ(x′) dV. (5.7)

To introduce the imaging operator, we first define the inner product of two
measured data sets. Specifically, the inner product of the data sets w and v is
defined as

〈w, v〉M =

M∑
m=1

N∑
n=1

F∑
f=1

w(xr;n,xs;m, sf )v∗(xr;n,xs;m, sf ), (5.8)

where the asterisk denotes complex conjugation. Similarly, the inner product of
two functions χ and ξ defined on the imaging domain Dd is defined as

〈χ, ξ〉D =

∫
x∈Dd

χ(x)ξ∗(x) dV. (5.9)

1The defects are usually small as well and the Born approximation is fairly accurate in
these cases.
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The adjoint or imaging operator is now introduced as the operator Λ∗ for which

〈Λ{χ}, v〉M = 〈χ,Λ∗{v}〉D
for all measurement sets v and all χ defined on the imaging domain. Notice
that by definition the imaging operator acts on measured data and maps it to
a function defined on the imaging domain.

To arrive at an explicit expression for the imaging operator, we substitute
the definition of the data operator in the left-hand side of the above equation.
We obtain

〈Λ{χ}, v〉M =

M∑
m=1

N∑
n=1

F∑
f=1

∫
x′∈Dd

G(xr;n − x′, sf )G(x′ − xs;m, sf )χ(x′) dV v∗(xr;n,xs;m, sf ) =

∫
x′∈Dd

χ(x′)

 M∑
m=1

N∑
n=1

F∑
f=1

G∗(xr;n − x′, sf )G∗(x′ − xs;m, sf )v(xr;n,xs;m, sf )

∗ dV.

From this result, the imaging operator is easily recognized as

Λ∗{v}(x) =

M∑
m=1

N∑
n=1

F∑
f=1

G∗(xr;n−x, sf )G∗(x−xs;m, sf )v(xr;n,xs;m, sf ), (5.10)

with x ∈ Dd. The description of the imaging operator is now complete, except
for the Green’s functions which we will discuss in the next section.

5.2 Green’s function

In the previous chapters, we have shown that the scalar steady-state Green’s
function for a vacuum domain is given by

G(x, ω) =
exp(−γ0|x|)

4π|x| ,

where the propagation coefficient is given by γ0 = −iω/c0.
For a homogeneous and lossy medium, the Green’s function is essentially

the same except for the propagation factor. Specifically, for a homogeneous
medium with a constant conductivity σroll, constant permittivity ε, and constant
permeability µroll, we have

G(x, ω) =
exp(−γ|x|)

4π|x| ,

where the propagation coefficient is now given by

γ =
[
−iωµroll(σroll − iωε)

]1/2
with Re(γ) ≥ 0.

In our NDT application, we have σroll >> ωε, since the conductivity is in the
order of 107 S/m and the frequency in the order of 106 Hz, while ε ≈ ε0. The
propagation coefficient simplifies to

γ =
1− i
δs

,
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where we have introduced the skin depth as

δs =

√
2

ωσrollµroll
.

The scalar Green’s function for wave field problems turns into the Green’s func-
tion for diffusion problems and becomes

G(x, ω) =
exp(−|x|

δs
) exp(i

|x|
δs

)

4π|x| .

Substituting this Green’s function in the expression for the imaging operator,
we obtain

Λ∗{v}(x) =

M∑
m=1

N∑
n=1

F∑
f=1

exp

[
−(i+ 1)

dn,m(x)

δs;f

]
16π2|xr;n − x|2|x− xs;m|2

v(xr;n,xs;m, sf ), (5.11)

with x ∈ Dd, and where we have introduced the total distance function

dn,m(x) = |xr;n − x|+ |x− xs;m| (5.12)

and

δs;f =

√
2

ωfσrollµroll
for f = 1, 2, ..., F .

Equation (5.11) is the imaging operator for a homogeneous and highly conduc-
tive background medium (roll of infinite extent). To take the presence of air into
account, we should actually use the Green’s dyadics for the halfspace problem.

receiver source

p

g

k

j

defect

air

steel

Figure 5.2: The electromagnetic field propagates in two different media, namely,
air and steel. The shortest distance from an antenna to a defect has been
indicated by the distances g, j, p, and k. The former two are the distances
through air, while the latter two are through steel.
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Figure 5.3: The source is located at position xs, the point we want to evaluate
at x. Distances are indicated as parameters.

These dyadics can be determined using the techniques presented in Chapter 3.
The resulting expressions are very complex, however, and very expensive to
compute. We therefore resort to the following heuristic approach.

First, observe that in our configuration, fields propagate through air along
a path from the antenna to the surface of the roll and along a path through the
roll from the surface to the defect. This is illustrated in Figure 5.2, where the
shortest distances from the antenna towards a defect are indicated. Now the
denominator of the Green’s function is the same in both media. The nominator,
however, is medium dependent and the lengths of the shortest paths through
air and steel have to be found. Typically, the antennas are placed at a height of
about 1 mm above the roll and the source transmits a signal with a frequency up
to approximately 1 MHz. In air this corresponds to a wavelength of 300 m (see
Section 2.3). Consequently, there will hardly be any phase shift or attenuation
along the path located in air. It is therefore not necessary to find the lengths
g and j and their contribution to the total distances dn,m(x) can be neglected
in the imaging operator. On the other hand, due to diffusion, the parts inside
the roll introduce a large phase shifts and attenuation even for small distances.
The lengths p and k need to be found for this reason.

To find explicit expressions for these lengths, consider the geometry depicted
in Figure 5.3, where xs is the location of the source placed at height h and x
the location of the evaluated point at depth dz and removed some horizontal
distance dR from the source. The gradient of the line between the two points
is equal to

GR =
h+ dz

dR
=

h+ dz√
(xs − x)2 + (ys − y)2

. (5.13)

Now, the horizontal distance inside the roll is found as

r =
dz

GR
, (5.14)
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after which the distance k can be calculated as

k =
√
dz2 + r2

=

√
dz2 +

(
dz

h+ dz

)2

[(xs − x)2 + (ys − y)2].
(5.15)

The same procedure can be used to find distance p. When computing the
distances dn,m(x) in the imaging operator, we use dm,n(x) = km(x) + pn(x)
instead of the original formula (5.12). Here, km is the distance from source
m to the evaluated point, whereas pn is the distance from receiver n to the
evaluated point.

5.3 Imaging of synthetic data

Having the imaging operator ready, we are now in a position to detect some
defects. To confirm that this is indeed the case, we use the program Comsol
Multiphyics to create some synthetic data. The modeled configuration is de-
picted in Figure 5.4. Here, a source and a receiver are placed above a steel
halfspace with a conductivity of 107 S/m and a relative permeability of 100.
Three defects are present at the surface of this steel object. Each has a width
of 1 mm and their edges are separated 5 mm from each other. Their depths are
0.5 mm, 0.8 mm, and 1.1 mm as illustrated in Figure 5.4. The antenna pair
scans the object once from left to right, while the source transmits at 8 kHz,
10 kHz, and 20 kHz. During the scan, samples are collected every 1 mm by
the source and the receiver. In this example, we image a slice through the steel
plate located exactly beneath the scanning line. We do not perform a complete
surface scan, since this takes too much computation time in Comsol. This does
not affect the testing of the imaging operator, of course.

The data that is received by the two antennas represent the total magnetic
field. Because we are interested in the scattered data only, we subtract the fields
induced by a defect free part of the roll from the received data as

Hd = Htot −Hsteel. (5.16)

The data that is left is caused only by the defects inside the roll.
To implement the imaging operator, we first subdivide our imaging do-

main Dd into Q voxels. The midpoint of each voxel is denoted by xq, q =

receiversource

Figure 5.4: A source and a receiver scan a roll containing defects with depths
0.5 mm, 0.8 mm, and 1.1 mm (left to right). The roll is modeled as a halfspace.
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1, 2, ..., Q. Our image is now obtained by setting x = xq in Eq. (5.11). We have

Λ∗{v}(xq) =

M∑
m=1

N∑
n=1

F∑
f=1

exp

[
−(i+ 1)

dn,m(xq)

δs;f

]
16π2|xr;n − xq|2|xq − xs;m|2

v(xr;n,xs;m, sf ), (5.17)

for q = 1, 2, ..., Q. Arranging all the elements Λ∗{v}(xq) and data values
v(xr;n,xs;m, sf ) in the Q-by-1 and MNF -by-1 vectors c and b, respectively,
we can also write the imaging operator in matrix-vector form as

c = AHb, (5.18)

where the elements of the Q-by-MNF matrix AH are implicitly defined in
Eq. (5.17). Note that we write the imaging operator as AH , since the MNF -
by-Q matrix A = (AH)H is essentially a discretized version of the data operator
Λ given in Eq. (5.7). With this identification, our imaging approach is basically
equivalent to matched filtering.

In our numerical experiment, the imaging operator of Eq. (5.17) is now
applied to data acquired using a mono- and bistatic source/receiver setup. The
imaging results are depicted in Figures 5.5a and 5.5b. We observe that the
location of the cracks at the surface of the roll are found in both cases. If
a crack has a greater depth, then a larger spot is produced by our imaging
operator. Furthermore, in bistatic mode the recovered cracks spread out in
depth, while in monostatic mode the width of the recovered cracks increases as
the depth of the cracks increases.

In both figures the actual depth of the crack cannot be recovered. Imaging
produces “blurred spots” and only uses the attenuation and phase shifts intro-
duced along the paths between an antenna and an evaluated point. To find the
exact geometric features and constitution of a crack, a more accurate model has
to be developed and full nonlinear inversion techniques need to be applied.

(a) (b)

Figure 5.5: Imaging results for bistatic (a) and monostatic (b) data. The cracks
are located at x=-6 mm, 0 mm, and 6 mm. Going from left to right, the depths
of the cracks are 0.5 mm, 0.8 mm, and 1.1 mm.
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Chapter 6

Measurements

The previous chapter introduced the concept of imaging. The introduced imag-
ing operator has been tested on synthetic data and has been proven to work.
Within this chapter we will test this operator on real data measured by a setup
from Lismar.

First this measurement setup is discussed, i.e. which hardware is used, what
kind of signal is transmitted and what objects are to be tested. Hereafter the
measured data will be presented and prepared for imaging, followed by the
actual imaging itself.

6.1 Measurement setup

The measurement setup that is used to get data can be described as follows.
The modulated transmit signal is created by an FPGA. This device can be
programmed with the use of Lismar’s software. Before the signal is transmitted
it passes by a Digital to Analog Converter (DAC) and an amplifier. At the
receiver end, the output of four bridges (see Section 2.3) is amplified and then
digitized using an Analog to Digital Converter (ADC) operating at 10 MS/s.
The FPGA allows this digital signal to be demodulated for several frequencies,
after which the result is send to the PC for further processing.

A block diagram for this setup is depicted in Figure 6.1 and the components
used in the measurement setup are shown in Figure 6.2a. The roll is placed
in a turning lathe and while scanning, the antennas move at some height over
the rotating roll from left to right while sampling the received data. This is
illustrated in Figure 6.2b.

Antennas

(4)

Amplifier

(3)

ADC/DAC

(2)

FPGA

(1)
PC

Figure 6.1: Block diagram of the measurement setup. The PC controls the
FPGA, the signals are send to a DAC and amplifier, after which it reaches the
antennas. The received signals are amplified, digitized, and processed by an
FPGA. The PC is responsible for further processing.
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21
3

4

(a) Photograph showing the different components of the measurement
setup. Here, (1) and (2) are the ADC/DAC and FPGA which are sealed
in a box, (3) is the amplifier, and (4) are the antennas.

(b) The roll rotates during a scan, while the antennas move from left to
right over the roll.

Figure 6.2: Photographs of the measurement setup. The top figure displays the
components, whereas the lower figure shows how a scan is made.
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The transmitted signal is a periodic wave of 100 kHz, which contains the
100 kHz, 300 kHz, and 500 kHz components. This allows us to get more data
for processing. These three frequencies are also used for demodulation in the
FPGA. Since we need the amplitude and phase of a signal for imaging, we
also demodulate the received signals with the orthogonal 90 degrees forward
shifted versions of the last mentioned frequencies. The resulting receiver setup
is called the in-phase & quadrature receiver [33]. Our six demodulation signals
are depicted in Figure 6.3. The demodulator in the FPGA uses sample and
hold [33] to collect the data. This means that a group of demodulated samples
are summed before it is transferred to the computer. In the end, at every 0.5
mm in roll circumference direction and 0.3 mm in roll axial direction, a complex
sample is taken during the measurement.

Lismar developed software which maps the received data for each channel to
a 2D surface. This surface represents the area of the roll, i.e. the circumference
position versus the axial position is plotted. This implies that we do not have
to account for the rotational and axial speed of the roll anymore.

Two rolls have been tested in our measurement campaign. The first roll
contains some defects which are artificially made. On this roll four slots (rep-
resenting cracks) with different orientations are present, each having a depth
of 0.6 mm, a width of 0.1 mm, and a length of 3 mm. In addition, this roll
also contains some small round holes. The second roll has actually been used
in practice and contains some natural damage. This damage is seen as a weak
spot or as a group of cracks on a small area.
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Figure 6.3: Six demodulation signals. The top row displays the sine waves of
100 kHz, 300 kHz and 500 kHz. The bottom row displays the corresponding
cosine waves.
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6.2 Preprocessing of data

During a measurement, we obtain data from a total of 24 channels consisting
of the real and imaginary parts of the complex signals delivered by the four
antennas that correspond to the three frequencies of operation. The signals
represent the deviation in voltage over the bridge while scanning the roll (see
Section 2.3). Because the roll is placed a bit oblique in the turning lathe, it
causes some variation in height of the antenna above the roll. As a consequence,
the received signals deviate during a scan, even if there is no defect. This can
be seen in Figures 6.4a and 6.4b, where as an example the imaginary signal
is taken from the 100 kHz data of the first roll under test. Here we see that
the signal deviates strongly in both the x- and y-directions. The horizontal
variation is caused because of the changing height during the scan, the vertical
variation is caused because we scan the rotating roll while the antennas are
moving. Therefore, strokes of the roll surface that are acquired during a scan,
are a bit skewed. In the processing this has been corrected for by treating
these skewed lines as straight lines again, and therefore this vertical direction is
subject to height variations as well. The cracks can also be seen clearly due to
the strong peaks.

The undesirable deviations can be compensated for by subtracting a clean
part of the roll from the total signal. As the signal strongly deviates over the
surface, the surface of the roll is divided into a few large blocks which all are
treated separately. For such a block, a wide defect-free stroke of the roll is found
in x-direction. This wide stroke is averaged over the y-direction to filter out noise
variations and to get a single line. This line is then subtracted from the original
surface to compensate for the height variations. This procedure is repeated for
a wide defect-free stroke in y-direction to filter out the deviations due to the
skewed scanning lines. An advantage of this method is that we immediately are
left with the signal coming from the scatterers only, see Eq. (5.16). The result
of this method is shown in Figures 6.4c and 6.4d. After correction, only a small
offset and a few deviations are present in the x- and y-directions.

6.3 Analyzing the data

In this section we compare the measurement results with the theoretical expres-
sions obtained in Section 4.2. Note that in that particular section we assumed
that the roll has no contrast in its permeability, i.e. the roll has a relative per-
meability equal to one. Furthermore, only the zero-order electric field was taken
into account and the resulting expression for the mutual impedance is therefore
purely real. For nonmagnetic steel this may be an legitimate approximation [34].

The roll that is used to compare measurements with theory is the artificially
damaged roll. This roll contains four cracks: one horizontal, one vertical, and
two diagonally oriented cracks. The diagonal cracks are in opposite direction.
In addition, a defect is present in the form of a cone hole with a diameter of
2.6 mm. This latter defect will be put to the test first because it comes closest
to the sphere we examined in Section 4.2.

The results from the measurement are shown in Figure 6.5 for bistatic and
monostatic setups. To compare the measurements with theory, we take the
absolute value of the complex signal, since then we have a strong agreement
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(a) Unprocessed data (b) Unprocessed data

(c) Preprocessed data (d) Preprocessed data

Figure 6.4: Compensating variations in the data due to the roll. Unprocessed
data is shown in the top row, while the bottom row shows preprocessed data.
Clearly, processing of the data corrects for the variations due to the roll.
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Figure 6.5: Absolute signal for a bistatic (a) and monostatic (b) scan over a
cone hole with a diameter of 2.6 mm.

between measured and predicted data. One reason for this could be that the
relative permeability in the roll is small, or the influence of the permeability
on the received signal is much smaller than the influence of the conductivity.
This would mean that the resistive part of the signal dominates. The mea-
surement results are shown in Figure 6.5 for both the bistatic and monostatic
configuration. In the bistatic setup, the antennas are horizontally aligned. The
corresponding results derived for a sphere are shown in Figures 4.12a and 4.12d.
For the monostatic configuration the results look quite similar, except that the
theoretical results show a zero point in the middle of the crack. This is because
we use the electric field of a dipole antenna to create the data, which has in
theory a forced zero point right beneath the center of the loop-antenna. Since
the antennas have a maximum magnetic field in the center of the loop, it could
cause some deviation for a small change in permeability. Another explanation
is that our modeled sphere is much smaller than the wavelength, which is def-
initely not the case here. Therefore, the zero in the middle vanishes as well.
The same trend is seen however, since the eddy currents are equally disturbed
at either side of the hole.

For the bistatic setup, we observe a stretched shape in the horizontal direc-
tion for predicted and measured data. The measurements also show two peaks
on the side of the cone. The reason is that the currents are more concentrated at
the sides where the eddy currents run parallel. This is because the blocked eddy
currents find a new way around the defect. This is confirmed in Figures 4.7c and
4.7d, where we see a darker color (larger intensity) at these sides. Because the
antennas are horizontally aligned and have their most sensitive part in between
their centers, the peaks are also horizontally aligned.

In our next experiment we consider a monostatic antenna setup, which scans
four slots with a different orientation. The measurement data that is used is the
absolute signal of the 100 kHz data-set and the measurement results are shown
in Figure 6.6. The results for the corresponding theoretical model are depicted
in Figure 4.14b. We observe that the figures are quite similar. The edges of the
slots are highlighted most, and the highest intensity is found around the slot
tips of the defects. This is because here the eddy currents are perpendicular to
the long side of the slot and try to go around the defect. The two smaller peaks
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Figure 6.6: Absolute signal for four different oriented cracks. The cracks are
scanned using a monostatic source/receiver unit.

in each sub-figure are caused by the short sides of the crack which disturb the
currents as well, but to a lesser extent. In the original measurements, the small
peaks have an opposite sign compared to the large peaks. The reason is not
completely clear, but it could be that the eddy currents go over the faces of the
slot rather than around the slot. The concentration of the currents running at
the long sides of the slots then decreases (where it normally would increase). In
our theoretical model we used a spheroid, which does not have any sharp edges
and the electric field varies continuously around the defect. A strong edge-effect
is therefore not observed and we do not encounter any sign changes as well (see
Figure 4.9a). The strongest peaks do appear at the same locations, however.

As a final example, we compare the measured and theoretically predicted
signals when scanning over a crack. The horizontally oriented crack from the
artificially modified roll is used for this test. The 100 kHz component of the
received signal is used and the antennas are horizontally aligned towards each
other. We choose this setup because the top left crack from Figure 4.14a is made
with these settings. The only difference between the setups used in practice and
theory is the height of the antennas above the roll. This difference in height
does not have a significant influence on the results, however (see Eq. (4.9)). If
we now plot the data for a horizontal line-scan exactly over the crack, we obtain
the results as shown in Figure 6.7. We observe that in this case the theoreti-
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Figure 6.7: Linescan over a horizontally oriented crack with horizontally aligned
antennas. Each curve is normalized with respect to its own maximum.

cally predicted response is in excellent agreement with the measurements. The
spheroid used in the theory has a very small size compared to the wavelength
inside the roll, while the slot in the roll has a much larger size (its length is
3 mm). Because the distance between the two antennas is 4.5 mm, the larger
size of the slot is barely noticed and as a consequence the responses look quite
the same. As these defects are both smaller than the distance between the an-
tennas, the sensitivity of the antenna pair dominates. For defects with larger
dimensions the influence of the shape of the defect is likely to become more
noticeable.

6.4 Imaging

Within this section we will see to what extent the imaging operator works on
the measured data. First we will inspect the roll with artificial defects and
subsequently consider the roll with natural defects.

First, we will illustrate how the data looks like before it is processed. For the
100 kHz received signal, the monostatic, the horizontal, and diagonally oriented
antennas are depicted in Figure 6.8. The vertical signal is not shown as it looks
about the same as the horizontal one. Already we can see some disturbances in
the steel and a significant improvement is obtained if we apply the preprocessing
step from Section 6.2. The results that are obtained are shown in Figure 6.9 for
the same three antenna pairs. The data is much cleaner now and all the cracks
can be seen already.

The imaging operator from Chapter 5 can be built in Matlab by using some
properties of the setup. The height of the antennas above the roll and the
distance between the midpoint of the antennas is used. Since we do not know
the properties of the material, we choose a conductivity equal to 107 S/m and a
relative permeability equal to 1. For imaging purposes, knowing the exact values
for these parameters is not essential. If, for example, the medium parameters
are chosen too large then a more focussed image will be obtained, while a more
“blurry” image is obtained if the medium parameters are chosen too low. The
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depth at which we try to image is chosen to be one skin-depth for the highest
frequency. This corresponds to a depth of 0.23 mm.

We have four antennas each receiving three different frequencies and initially
the imaging operator was built to make one surface plot with all the available
data. Such an approach cannot be followed, however, since each antenna has
its own gain and phase shift introduced due to the hardware settings and the
hardware involved in the measurement configuration. We therefore computed
images for each antenna separately. Using some kind of signal processing to
restore the actual phases and amplitudes, this problem can probably be resolved.
The imaging results for the artificially damaged roll and naturally damaged roll
are discussed in the next two subsections, starting with the artificially damaged
roll.

6.4.1 Roll with artificial defects

The imaging results for a roll with artificial defects are shown in Figure 6.10.
At first sight, the results are not remarkably different compared to the image
we started with. This is due to the fact that the data is already really clean
after preprocessing. As the antennas are really close to the surface, it is natural
that if a large deviation in phase and amplitude is induced it must come from
an imperfection close around it. A better comparison can be made if we zoom
in on the third crack from above for the monostatic signal, since this signal is
of relatively poor quality. The imaging results are shown in Figure 6.11 for the
original data, the preprocessed data, and the imaged data. The resolution in all
the images remains the same. We observe that imaging provides a significant
improvement, since it uses all the data available from the monostatic antenna.
The original and preprocessed data contain some shifts in the vertical direction.
This is due to a slightly variable speed of the turning lathe. The size of the crack
cannot be determined exactly, since this requires more detailed knowledge about
the radiation pattern of the antennas, the distance between the antennas, and
the material properties chosen for imaging. Since the edges of the crack cause
the highest disturbance of the eddy currents, we can only provide an indication
of the size of the defect.

Data reduction

During the measurements, usually a large number of samples were taken. Specif-
ically, samples were taken every 0.5 mm in roll circumference direction and every
0.3 mm in roll axial direction. Lismar tries to deliver products to their clients
which are able to scan a roll quickly and therefore the sampling in roll axial
direction is not as fine as during the measurement. As an extreme case, assume
that we take a sample every 4.5 mm in roll axial direction. This length cor-
responds to the distance between the antennas. As a consequence, 93% of the
original data is then discarded. In Figures 6.12 and 6.13 the resulting images
are presented. Again, the imaging operator is able to detect the crack, but to
what extent depends on which lines are being discarded. The former uses data
that is close to some peaks from the original set, whereas the latter uses data
between the peaks. In both cases, however, the crack is found.
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(a) monostatic (b) Horizontal (c) Diagonal

Figure 6.8: Unprocessed data for the 100 kHz signal and for different antenna
pairs. Distances in this figure are expressed in meters.
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(a) monostatic (b) Horizontal (c) Diagonal

Figure 6.9: Preprocessed data for the 100 kHz signal and for different antenna
pairs. Distances in this figure are expressed in meters.
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(a) monostatic (b) Horizontal (c) Diagonal

Figure 6.10: Imaging results for the different antenna pairs.
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(c) Imaged

Figure 6.11: The original data (a), the preprocessed data (b), and the imaged
data (c) are shown for the diagonally oriented crack in the first test roll.
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Figure 6.12: Every 4.5mm a sample is taken instead of every 0.3mm. The
remaining data lines are close to the peaks of the original data.
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Figure 6.13: Every 4.5mm a sample is taken instead of every 0.3mm. The
remaining data lines only pick up a small part of the crack.
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(a) (b)

Figure 6.14: In the roll a crack is located , the shape of this crack is seen in
both figures. The left-hand side figure contains a mm-scale indication.

6.4.2 Roll with natural defects

The second roll which has been tested is the one with some natural defects. A
photograph has been taken from a crack which is hardly visible to the naked eye
and is depicted in Figure 6.14 (left) on a millimeter scale. In Figure 6.14 (right),
the same crack is shown but now with the crack highlighted. Finally, the data
that is acquired during the measurement is shown for the four receiving antennas
in Figure 6.15, again for the absolute 100 kHz signal.

The imaging operator that we used is the same as the one before and the
medium parameters were chosen to be the same as well. After the preprocessing
of the data, the results as shown in Figure 6.16 are obtained. In these figures, we
observe some large rectangular domains. These are caused by the preprocessing
of the data as explained in Section 6.2. For a roll with so many deviations at the
surface, this preprocessing has to be executed carefully in order not to subtract
to much valuable scanning data. Otherwise, it could cause some artifacts as
shown in Figure 6.16a.

We also notice some vague spots in the figures. These are induced by weak
spots in the material, where the conductivity and permeability have changed a
bit. This change can occur due the incidents during the rolling process. The red
spots are most likely defects in the steel, such as our crack from the photograph
which is seen in every figure. On the other hand, some red dots are visible in one
figure while not in the others. This is because the imaging results depend on the
orientation of the crack with respect to the antenna alignment (see Section 4.2).

Data reduction

We tested the performance of the imaging operator by disregarding almost 95%
of the data as shown in Figure 6.17. We do this to simulate a faster axial
scanning speed, of course. Using our imaging method, we obtain the results as
shown in Figure 6.18. Clearly, most imperfections are found. We also repeated
this experiment for different data-sets, as it is an arbitrary choice which 95%
of the measured data in roll axial direction is discarded. All possibilities show
similar outcomes, apart from some small deviations in the shape of the weak-
and red spots.
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(a) monostatic (b) Horizontal

(c) Vertical (d) Diagonal

Figure 6.15: Measurement data for the four receive antennas on the natural
damaged roll.
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(a) monostatic (b) Horizontal

(c) Vertical (d) Diagonal

Figure 6.16: Imaged data for the four receive antennas on the natural damaged
roll.
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Figure 6.17: Measurement data for the four receive antennas on the natural
damaged roll in case almost 95% of the original data is discarded.
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(a) monostatic (b) Horizontal

(c) Vertical (d) Diagonal

Figure 6.18: Imaged data for the four receive antennas on the natural damaged
roll in case almost 95% of the original data is discarded.
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Chapter 7

Conclusions and discussion

In this thesis we have shown how induced currents in a roll can be modeled.
We have also shown how defects in the roll disturb these currents and what the
consequences are on the received signals in the measurement system of Lismar.
These findings have been captured in one equation, which has been derived from
various scientific literature. Furthermore, we were able to improve the signal
processing of Lismar by the use of an imaging operator. This operator is used
on real measurement data to locate defects inside a roll and it enabled faster
scanning of a roll without loss of information.

Using Maxwell’s equations, the electromagnetic fields in a roll have been
derived. In order to obtain these fields, the roll has been modeled as a half-
space, which is possible because the antennas are very close to the surface. The
square loop antenna above this half space has been approximated by a magnetic
dipole which excites in vertical direction, e.g. it excites perpendicular to the
surface of the half space. By solving the inhomogeneous Helmholtz equation for
this setup, we arrived at explicit expressions for the field inside the roll. These
expressions have been validated with an equation for surface currents and with
the use of the simulation program Comsol Multiphysics.

Making use of the reciprocity theorem, an expression was found for devia-
tions in the impedance of the antennas caused by the defects. This expression
is a function of the material contrasts and the electromagnetic fields inside the
roll. By assuming that there is no contrast in permeability, the expression re-
duces to an impedance function that depends on electric field terms only. These
fields were approximated by their quasi-static counterparts. Such an approach
is legitimate since the size of the measurement domain is relatively small com-
pared to the wavelength for low frequencies. The quasi-static fields provided
us with a closed-form expression for the impedance change that can be used
in practical measurement scenarios. Furthermore, we also studied the electric
field in a defect by modeling the defect as a small spheroid with respect to the
wavelength and assuming that it is placed in a uniform external field.

Using the last mentioned expression we simulated impedance variations for
a number of spheroids in a conductive plate; various shapes, orientations, and
contrasts have been tested. These scans were made for both monostatic and
bistatic antennas configurations. The results clearly showed the shape and the
orientation of the defects. We also demonstrated that the orientation of the
cracks with respect to the direction of the eddy currents determines to what

67



extend the impedance deviates. For cracks oriented perpendicular to the eddy
currents the highest change is obtained. Cracks which are in the same direction
as the eddy currents and are in the shape of a needle, cause no change in the
received signal.

These results have been compared with real measurement data on a roll
with artificial defects which contains cracks in different orientations and shapes.
Similar trends are found when the absolute signal of the measurement is com-
pared with our simulated results. The absolute signal has been used since this
one shows the most similarities. Some differences are found, however, probably
caused by the assumption in our impedance model that there is no contrast in
permeability. The derived theory in this work seems to fit the reality to a great
extent, however.

Since the measurement data holds information about the location of the de-
fects, an imaging operator has been introduced to locate these scattering sources.
The different antennas in the measurement setup could not be combined to cre-
ate one single image. This is caused by differences in phase and gain between
the antennas introduced by the hardware. Therefore, the antennas could oppose
each other in the imaging process instead of gaining one another. By the use
of an introduced preprocessing method we were able to apply this operator on
data from the scatterers only and good results were obtained for a roll with
artificial defects and a roll with natural defects. Lismar tries to find defects as
fast as possible. Therefore, we simulated an increase in axial scanning speed
by discarding almost 95% of the measured data in roll axial direction, which is
equivalent to taking a sample every 4.5 mm instead of 0.3 mm. The defects in
the roll can still be found when the imaging operator is applied on this sparse
data. The experiment has been repeated for several data-sets, each set con-
taining another part of the original data-set. Up to some small deviations, we
achieved similar outcomes for the different data-sets and the defects can still be
found.

Based on our research and findings, several suggestions for future research are
made. The first suggestion is to find the higher-order quasi-static expansion
fields. A more accurate impedance formula may then be obtained and contrasts
in the permeability can be taken into account as well.

The second suggestion is to apply a form of equalization on the received data.
In this work, imaging is applied for each of the four antennas separately, while it
would be desirable to combine these different antennas. This can be made pos-
sible with different hardware settings where all antennas have the same gain or
with the use of signal processing, which tries to exclude the phases and different
gains in the measurement setup introduced by the hardware. Furthermore, the
contrasts in the roll can be found better using regularization techniques, which
tries to suppress the noise in the received signal.

Another suggestion is that the square loop-antenna from the original mea-
surement setup is modeled by multiple dipoles. In this work it has been modeled
as a single dipole which has a different near field radiation pattern.

The fourth suggestion is that the derived background field is validated more
thoroughly. In this thesis, we simulated a half space in two dimensions using
Comsol Multiphysics. Instead, a better comparison could be made by a fully
simulated 3D model.

In addition, the preprocessing in this work to compensate for height varia-
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tions should be improved. Currently, this is done by finding clean parts of the
roll by hand, and subtract these parts from the total signal. Off course, this is
not a refined technique. Instead, a technique should be applied that detrends
the acquired data in a professional manner.

The sixth suggestion is to optimize the transmitted signal. This signal con-
tains three different frequencies which could be chosen such, that each received
frequency by the antenna array holds the most independent information on the
roll as possible. Then, the imaging operator uses more unique information which
leads to better results.

The last suggestion is that the different shapes and sizes of the defects
should be investigated. Within this research, defects have been modeled as
small spheroids with respect to the wavelength. For further analysis on how
certain cracks behave, the impedance deviations due to different cracks should
be found, such as the influence of cracks with sharp edges on the change in the
impedance.
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Appendix A

Spectral-domain solution of
Maxwell’s equations in
vacuum

The Fourier and Laplace transformed Maxwell’s equations are given in Eqs.
(3.5) and (3.6) and are repeated here for convenience. We have

−ik× H̃ + η0Ẽ = −J̃, (A.1)

and

ik× Ẽ + ζ0H̃ = −K̃. (A.2)

These equations do not provide a solution for static fields and have to be ex-
tended in order to do so. To this end, the compatibility relations are used which
state that

η0k
T Ẽ = −kT J̃ (A.3)

and

ζ0k
T H̃(k, s) = −kT K̃. (A.4)

We are now in a position to determine the elctromagnetic field. Specifically, if
we eliminating the magnetic field strength H̃ from Eqs. (A.1) and (A.2) and use
the compatibility relation of Eq. (A.3), we obtain

Ẽ(k, s) =
1

γ2
0 + kTk

[
−
(
ζ0I +

1

η0
kkT

)
J̃(k, s)− ik× K̃(k, s)

]
. (A.5)

Similarly, by eliminating the electric field strength and using the compatibility
relation of Eq. (A.4), we find

H̃(k, s) =
1

γ2
0 + kTk

[
−
(
η0I +

1

ζ0
kkT

)
K̃(k, s) + ik× J̃(k, s)

]
. (A.6)
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Introducing now the electric- and magnetic vector potentials as

Ã = G̃J̃ and F̃ = G̃K̃,

respectively, where

G̃ =
1

γ2
0 + kTk

(A.7)

is the spectral-domain scalar Green’s function, we can write the spectral domain
field quantities as

Ẽ(k, s) = −
(
ζ0I +

1

η0
kkT

)
Ã(k, s)− ik× F̃(k, s), (A.8)

and

H̃(k, s) = −
(
η0I +

1

ζ0
kkT

)
F̃(k, s) + ik× Ã(k, s). (A.9)
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Appendix B

The electromagnetic field
inside a two-layer
configuration

To determine the vector potential F̃z, it is required to determine the coefficients

ã−, b̃
−

, b̃
+

, and c̃+. Four equations are required to solve for these four coef-
ficients. These equations follow from the source and boundary conditions that
are required to hold at the planes z = −h and z = 0, respectively.

Let us start with the source conditions at the plane z = −h. From Helmholtz’s
equation it immediately follows that F̃z should be continuous across the plane
z = −h. In other words, we must have

lim
z↓−h

F̃z = lim
z↑−h

F̃z. (B.1)

Furthermore, if we integrate Helmholtz’s equation over a small interval sym-
metrically located around z = −h, we obtain

lim
ε↓0

−h+ε∫
z=−h−ε

(∂2
z − γ2

a)F̃zdz = −ζam̂ lim
ε↓0

−h+ε∫
z=−h−ε

δ(z + h)dz, (B.2)

which simplifies to
lim
z↓−h

∂zF̃z − lim
z↑−h

∂zF̃z = −ζam̂, (B.3)

since F̃z is a bounded function of z. Equations (B.1) and (B.3) are the source
conditions that should hold at the source plane z = −h. Repeating the above
procedure at the interface z = 0, we arrive at the boundary conditions

lim
z↓0

F̃z = lim
z↑0

F̃z (B.4)

and

lim
z↓0

∂zF̃z = lim
z↑0

∂zF̃z. (B.5)
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These boundary conditions tell us that F̃z and ∂zF̃z should be continuous upon
crossing the interface z = 0.

If we now substitute the general solutions for F̃z from Eqs. (3.51)-(3.53) in
the above source and boundary conditions, we obtain the 4-by-4 system

b̃
+
eγah + b̃

−
e−γah = ã−e−γah, (B.6)

−γab̃
+
eγah + γab̃

−
e−γah − γaã−e−γah = −ζ̃am̃, (B.7)

c̃+ = b̃
+

+ b̃
−
, (B.8)

and

−γbc̃+ = −γab̃
+

+ γab̃
−
, (B.9)

and the coefficients are found as

ã− =
ζam̃

2γa
[eγah +

γa − γb

γa + γb
e−γah], (B.10)

b̃
−

=
ζam̃

2γa

γa − γb

γa + γb
e−γah, (B.11)

b̃
+

=
ζam̃

2γa
e−γah, (B.12)

and

c̃+ =
ζam̃

2γa

2γa

γa + γb
e−γah. (B.13)

Substituting these coefficients in Eqs. (3.51)-(3.53), we arrive at the solutions

Region I F̃z =
ζam̃

2γa
[eγa(z+h) +Reγa(z−h)], (B.14)

Region II F̃z =
ζam̃

2γa
[e−γa(z+h) +Reγa(z−h)], (B.15)

and

Region III F̃z =
ζam̃

2γa
Te−γahe−γbz, (B.16)

where R and T are the reflection and transmission coefficients given by

R =
γa − γb

γa + γb
and T =

2γa

γa + γb
,

respectively.
To return to real space, the inverse Fourier transform from Eq. (3.45) should

be applied. Since we are not interested in the electromagnetic field in Region I,
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only Regions II and III are considered. Starting with the former, we have

F̂z(x, y, z, ω) =
1

4π2

∞∫
kx=−∞

∞∫
ky=−∞

F̃z(kx, ky, z, ω)ei(kxx+kyy)dkxdky,

=
ζam̂

8π2

∞∫
kx=−∞

∞∫
ky=−∞

1

γa
[e−γa(z+h) +Reγa(z−h)]ei(kxx+kyy)dkxdky.

(B.17)

To simplify this expression, it is convenient to use polar coordinates, which is
possible since our configuration is cylindrically symmetric with respect to the
center of the source. This can be done for both spaces (k- and x-domain) using
the following transformations

(kx,ky)-space (x,y)-space

kx = λ cos(ψ) x = ρ cos(θ)

ky = λ sin(ψ) y = ρ sin(θ)

λ = (k2
x + k2

y)
1
2 ρ = (x2 + y2)

1
2

ψ = tan−1(
kx
ky

) θ = tan−1(
x

y
)

0 ≤ λ <∞ 0 ≤ ρ <∞,

and

0 ≤ ψ < 2π 0 ≤ θ < 2π.

Consequently, we have

kxx+ kyy = λρ[cos(ψ) cos(θ) + sin(ψ) sin(θ)] = λρ cos(ψ − θ), (B.18)

k2
x + k2

y = λ2[cos2(ψ) + sin2(ψ)] = λ2, (B.19)

γa = (λ2 − k2
a)

1
2 , (B.20)

and

γb = (λ2 − k2
b)

1
2 . (B.21)

Finally, the integration parameters can be changed with the use of the Jacobian
determinant as

det(J(λ, ψ)) = det

[
∂kx
∂λ

∂kx
∂ψ

∂ky
∂λ

∂ky
∂ψ

]
,

= det

[
cos(ψ) −λ sin(ψ)
sin(ψ) λ cos(ψ)

]
= λ. (B.22)

Then, dkxdky = λdλdψ and Eq. (B.17) can be written as

F̂z(ρ, z, ω) =
ζam̂

8π2

∞∫
λ=0

2π∫
ψ=0

1

γa
[e−γa(z+h) +Reγa(z−h)]eiλρ cos(ψ−θ)λdψdλ.(B.23)
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The latter part of this equation is recognized as the zeroth order Bessel function
of the first kind. Specifically, we have

2π∫
ψ=0

eiλρ cos(ψ−θ)dψ = 2πJ0(λρ) (B.24)

and Eq. (B.23) becomes

F̂z(ρ, z, ω) =
ζam̂

4π

∞∫
λ=0

λ

γa
[e−γa(z+h) +Reγa(z−h)]J0(λρ)dλ. (B.25)

This is the vector potential F̂z in Region II, that is, for −h < z < 0.
A similar procedure can be followed for Region III. Applying the inverse

Fourier transform to

F̃z =
ζam̃

2γa
Te−γahe−γbz (B.26)

and switching to polar coordinates, we obtain

F̂z(x, y, z, ω) =
ζam̂

4π

∞∫
λ=0

λ

γa
Te−γahe−γbzJ0(λρ)dλ, (B.27)

where we again used Eq. (B.24). This is the vector potential in Region III, that
is, for z > 0.

Having found the vector potential in Regions II and III, we can finally de-
termine the electromagnetic field in these regions using Eqs. (3.38)-(3.43).

Starting with Region II, we have for the x-component of the electric field
strength

Êx = −∂yF̂z = −y
ρ

∂

∂ρ
F̂z,

= −y
ρ

ζam̂

4π

∞∫
λ=0

λ

γa
[e−γa(z+h) +Reγa(z−h)]

∂

∂ρ
J0(λρ)dλ,

=
y

ρ

ζam̂

4π

∞∫
λ=0

λ2

γa
[e−γa(z+h) +Reγa(z−h)]J1(λρ)dλ, (B.28)

where we have used
∂

∂ρ
J0(λρ) = −λJ1(λρ).

Similarly, the y-component of the electric field strength follows as

Êy = −x
ρ

ζam̂

4π

∞∫
λ=0

λ2

γa
[e−γa(z+h) +Reγa(z−h)]J1(λρ)dλ, (B.29)

while Êz = 0.
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For the x-component of the magnetic field strength in Region II, we obtain

Ĥx = ζ−1
a ∂x∂zF̂z

= − m̂
4π
∂x

∞∫
λ=0

[e−γa(z+h) −Reγa(z−h)]λJ0(λρ)dλ,

= − m̂
4π

x

ρ

∞∫
λ=0

[e−γa(z+h) −Reγa(z−h)]λ
∂

∂ρ
J0(λρ)dλ,

=
m̂

4π

x

ρ

∞∫
λ=0

[e−γa(z+h) −Reγa(z−h)]λ2J1(λρ)dλ. (B.30)

Following similar steps as above, we obtain for the y-component of the magnetic
field strength

Ĥy =
m̂

4π

y

ρ

∞∫
λ=0

[(e−γa(z+h) −Reγa(z−h)]λ2J1(λρ)dλ. (B.31)

Finally, the z-component of the magnetic field strength can be found from

Ĥz = ζ−1
a (∂2

z + k2
a)F̂z. (B.32)

Working out this expression gives

Ĥz =
m̂

4π

∞∫
λ=0

λ

γa
[(γ2

a + k2
a)e−γa(z+h) +R(γ2

a + k2
a)eγa(z−h)]J0(λρ)dλ,

=
m̂

4π

∞∫
λ=0

λ3

γa
[e−γa(z+h) +Reγa(z−h)]J0(λρ)dλ, (B.33)

where Eq. (B.20) is used in the last step. All field quantities in Region II are
now completely determined.

For Region III the same process is followed and we merely state the results.
For the electric field strength, we obtain

Êx(ρ, z, ω) =
y

ρ

ζam̂

4π

∞∫
λ=0

λ2

γa
Te−γahe−γbzJ1(λρ)dλ, (B.34)

and

Êy(ρ, z, ω) = −x
ρ

ζam̂

4π

∞∫
λ=0

λ2

γa
Te−γahe−γbzJ1(λρ)dλ, (B.35)

and

Êz(ρ, z, ω) = 0, (B.36)
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while for the magnetic field strength we have

Ĥx(ρ, z, ω) =
ζa
ζb

x

ρ

m̂

4π

∞∫
λ=0

λ2 γb

γa
Te−γahe−γbzJ1(λρ)dλ, (B.37)

Ĥy(ρ, z, ω) =
ζa
ζb

y

ρ

m̂

4π

∞∫
λ=0

λ2 γb

γa
Te−γahe−γbzJ1(λρ)dλ, (B.38)

and

Ĥz(ρ, z, ω) =
ζa
ζb

m̂

4π

∞∫
λ=0

λ3

γa
Te−γahe−γbzJ0(λρ)dλ. (B.39)

The background field is now completely derived and all the results are summa-
rized in Table 3.1.
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Appendix C

The surface current for a
perfectly conducting roll

A perfect electric conductor is by definition a material with σ → ∞. Such an
object is electrically impenetrable and all the currents are concentrated at the
surface. For waves approaching the surface the relevant boundary conditions
are

ν ×E→ 0 and ν ·B→ 0. (C.1)

Here, ν is a unit vector perpendicular to the surface of the perfect conductor. In
words, the tangential electric field component goes to zero, as does the normal
component of the magnetic flux density. The tangential components of the
magnetic field strength, however, build up the current at the surface of the
perfect conductor. More precisely, we have

Js = ν ×H, (C.2)

where Js is the surface current expressed in A/m.
To find this current, it it necessary to find the magnetic field at the surface.

This can be done by the method of images as depicted in Figure C.1. In this

ε0 , μ0 

ix

iz

iy

K
1

v

z=-h

z=h

z=0

K
2

Figure C.1: Magnetic dipole and its mirror. At z = 0 the boundary conditions
for a perfect conductor should hold.
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method, the conductor is removed from the configuration and a second source
is placed in the lower halfspace z > 0 such that the boundary conditions of
Eq. (C.1) are satisfied. The resulting field in the upper halfspace z > 0 is then
equal to the field that is present above the perfect conductor.

In particular, if E1 denotes the electric field strength generated by the dipole
source at z = −h and E2 is the field generated by the mirror source, then this
mirror source should be chosen such that at the interface z = 0

ν ×
(
E1 + E2

)
= 0. (C.3)

In order for this to be true, the second source should be positioned at the mirror
location z = +h and it should be equal to the negative of the first source, i.e.
K2 = −K1 [30]. The surface current can now be calculated as follows:

Js = ν ×
(
H1 + H2

)
, (C.4)

where H1 is the magnetic field due to K1 and H2 is the magnetic field due to
K2.

From Chapter 3, we know that the magnetic field due to a general K̂ source
is given by

Ĥ
inc

(x, s) =

∫
x′∈Ds

1

4π|x− x′|3 (3Q− I)
1

sζ0
K̂(x, s)δ(xs − x′)dV. (C.5)

Taking K̂ to be a magnetic dipole of the form K̂ = sµ0Î(s)Aδ(xs − x)n in
which A is the area of the loop and n is a unit vector indicating the excitation
direction of the antenna, the incident field equation gives

Ĥ(x, s) =
1

4π|x− xs|3 (3Q− I)K̂
′
. (C.6)

Here, K′ = I(s)An. Using this fields in Eq. (C.4) gives

Js =
1

4π|x− xs|3ν ×
(

(3Q1 − I)K̂
1′

− (3Q2 − I)K̂
1′
)
, (C.7)

with z = 0. In this expression, the projection matrices Q1 and Q2 are given by

Q1 = 1
d2

 x2 xy −xh
yx y2 −yh
−hx −hy h2

 and Q2 = 1
d2

x2 xy xh
yx y2 yh
hx hy h2

,

where x and y are the coordinates of the evaluated point, h is the height of the

antenna, and d = |x − xs| with z = 0. Working out (3Q1 − I)K̂
1′

and taking

into account that K̂
1′

has a z-component only, we obtain

Â
1

:=

 3x2

d2 − 1 3xy
d2

−3xh
d2

3yx
d2

3y2

d2 − 1 −3yh
d2

−3hx
d2

−3hy
d2

3h2

d2 − 1


 0

0

K̂1′

z

 =

 −3xh
d2
−3yh
d2

3h2

d2 − 1

 K̂1′

z (C.8)

with z = 0. Similarly,

Â
2

=

 3xh
d2

3yh
d2

3h2

d2 − 1

 K̂1′

z (C.9)
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and Eq. (C.7) can be written as

Ĵs =
1

4π|x− xs|3
(
v × Â

1 − v × Â
2
)

with z = 0. (C.10)

The final expression for the surface current is found when these cross products
are computed, which leads to

Ĵs(x, y) =

 6yh
−6xh

0

 K̂1
z

4π|x− xs|5 with z = 0, (C.11)

and K̂1
z = I(s)A.
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Appendix D

Impedance variations due
to cracks using static fields

For a defect showing no contrast in the permeability, the change in the mutual
impedance between the transmitting and receiving antenna is given by

δẐ = −
∫
x∈Dd

δσ êbg
s · êbg

r dV, (D.1)

where we have applied the Born approximation as well, since we are usually
looking for small defects (cracks). The background fields are required to evaluate
this expression. However, computing these fields for different scanning scenarios
may be a computationally intensive task. We therefore follow a quasi-static field
approach resulting in an approximate but closed-form expression for the change
in the mutual impedance.

We start with the upper halfspace z < 0. In this domain, Maxwell’s equa-
tions are given by

−∇× Ĥ + sε0Ê = 0, (D.2)

εb , μb , σb

εa , μa , σa

z=-h

z=0
ix

iz

iy

m̂

Figure D.1: Half-space with a magnetic dipole at height z = −h above the
roll which occupies the domain z > 0. Both layers have their own medium
properties ε, σ and µ.
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and

∇× Ê + sµ0Ĥ = −K̂
ext
, (D.3)

whereas the compatibility relations are

∇ · Ê = 0 and sµ0∇ · Ĥ = −∇ · K̂ext
. (D.4)

The lower halfspace (z > 0) is occupied by the roll. Since there is no source
present inside this roll and since the conduction currents dominate the displace-
ment currents, we have

−∇× Ĥ + σrollÊ = 0, (D.5)

and

∇× Ê + sµrollĤ = 0, (D.6)

for z > 0. Furthermore, the compatibility relations in this halfspace are given
by

∇ · Ê = 0 and ∇ · Ĥ = 0. (D.7)

To arrive at a quasi-static field approximation, we now expand the electro-
magnetic field quantities in a power series in s. Specifically, we write

Ê =

∞∑
k=0

skE[k] and Ĥ =

∞∑
k=0

skH[k], (D.8)

and refer to {E[k],H[k]} as the kth order expansion field. To obtain the equations
that govern these fields, we substitute the power series of Eq. (D.8) in Maxwell’s
equations and the corresponding compatibility relations and collect all terms
which have an equal power in s. This is the general procedure of obtaining the
equations for the expansion fields. In our quasi-static field approach, however,
we are only interested in the zero-order field {E[0],H[0]}. Furthermore, only the
zero-order electric expansion vector is required, since the electric field strength
contributes to the change in the impedance if the defect exhibits no contrast in
the permeability.

By following the above mentioned procedure, we obtain for the zero-order
electric expansion vector the equations

∇× Ê
[0]

= −K̂
ext

and ∇ · Ê[0]
= 0,

which hold in the upper halfspace, while in the lower halfspace we have

∇× Ê
[0]

= 0 and ∇ · Ê[0]
= 0.

Combining these two sets of equations, we have

∇× Ê
[0]

= −K̂
ext

and ∇ · Ê[0]
= 0, (D.9)

82



for all x ∈ R3.
To solve the above two equations, first note that the zero-order electric field

strength is automatically divergence-free if we write

Ê
[0]

= ∇× Ĝ
[0]
, (D.10)

where Ĝ
[0]

is a vector potential. This potential is required to satisfy the gauge
condition (Coulomb gauge)

∇ · Ĝ[0]
= 0.

If we now substitute Eq. (D.10) in the first equation of (D.9), we obtain

∇×∇× Ĝ
[0]

= −K̂
ext
,

and this equation can be written as

∇∇ · Ĝ[0] −∇2Ĝ
[0]

= −K̂
ext
.

Finally, using the gauge condition, we arrive at

∇2Ĝ
[0]

= K̂
ext

and the solution of this equation is given by

Ĝ
[0]

(x, s) = −
∫
x′∈Ds

K̂
ext

(x′, s)

4π|x− x′| dV. (D.11)

Having found the vector potential, we can now determine the zero-order electric
expansion field. In particular, substituting Eq. (D.11) in Eq. (D.10), we obtain

Ê
[0]

(x, s) =

∫
x′∈Ds

1

4π|x− x′|2
[
n× K̂

ext
(x′, s)

]
dV, (D.12)

where

n =
x− x′

|x− x′|
is a unit vector pointing in the x− x′ direction.

Now to compute the mutual impedance between the transmitting and re-
ceiving loop antenna, we need the vectors êbg

s and êbg
r . To obtain the former,

we model the small transmitting loop antenna by a magnetic dipole as

Kext(x, s) = sµ0AÎ
bg
s (s)δ(x− xs)νs,

where A is the area of the loop and xs is the position vector of the center of the
loop. Substitution of this expression in Eq. (D.12) gives

Ê
[0]

(x, s) = êbg
s Î

bg
s ,

where

êbg
s = sµ0A

1

4π|x− xs|2
ns × νs and ns =

x− xs
|x− xs|

.
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Figure D.2: Two antennas above a roll. The unit vectors νn and nn are shown
as well. The former is a unit vector orthogonal to the surface of the loop, the
latter is a unit vector pointing towards the defect.

Similarly, to obtain êbg
r , we take

Kext(x, s) = sµ0AÎ
bg
r (s)δ(x− xr)νr,

where xr is the center of the receiving antenna. The corresponding field is found
as

Ê
[0]

(x, s) = êbg
r Î

bg
r ,

where

êbg
r = sµ0A

1

4π|x− xr|2
nr × νr and nr =

x− xr
|x− xr|

.

All unit vectors used in the above derivation are shown in Figure D.2.
Substituting the expressions for êbg

s and êbg
r in Eq. (D.1) gives

δẐ = −(sµ0A)2

∫
x∈Dd

δσ

16π2|x− xr|2|x− xs|2
(nr × νr) · (ns × νs) dV (D.13)

and using the rule

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

we can also write the change in the impedance as

δẐ =

− (sµ0A)2

∫
x∈Dd

δσ

16π2|x− xr|2|x− xs|2
[(ns · nr)(νs · νr)− (ns · νr)(νs · nr)] dV.

Finally, if we operate in steady-state at an angular frequency ω (s = −iω)
the above formula becomes

δẐ =

(ωµ0A)2

∫
x∈Dd

δσ

16π2|x− xr|2|x− xs|2
[(ns · nr)(νs · νr)− (ns · νr)(νs · nr)] dV.
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