The localisation of freight wagons on marshalling yards

P5 presentation | Hester Willems | 25 June 2015
Main mentor: Dr. ir. S.C. van der Spek
Second mentor: Ir. E. Verbree
Co-reader: Drs. C.W. Quak

Technical mentor CGI: Rob Udink
Internship mentor: Roel Bos
Special thanks to: ir Robert L. Voûte
• Problem
• Result
• Road to the result
 • Research questions
 • Result literature study
 • Characteristics & processes
 • Tests
• Conclusions, applicability & future work
Problem description

- Location of freight trains not known: Problem for efficiency & use of rail transportation: "... There are also a lot of complaints about lacking service on the rail. According to Sitskoorn, a freight train can easily be lost for a week. 'You don't believe this in the time of GPS, but it is the case..."

- Unsafe situations, example fire on marshalling yard Kijfhoek
Problem description
Problem description
Result: System using GPS with enhancements that can determine the track and order of the wagons.
To what extent is it possible, using current and affordable positioning techniques, to localise freight trains on marshalling yards in such a way that it can be determined on which shunting track the coach is located and what the order of the wagons is?
1. What techniques could be used for the localisation of freight wagons and what are the advantages and disadvantages?
2. What localisation technique would be optimal to use in this particular case, based on its performance parameters?
3. What would be the best set up to use for the chosen method?
4. Does the method and system architecture work? Does it generate the expected results?
5. On what scale (area, track, exact location) can freight wagons be found using the system?
Methodology

- Literature study
- Method of positioning
- Input stakeholders

Develop processes → Formulate characteristics → Test whole system in real test → Analysis & validation → Small tests of parts of the system
• Problem
• Result
• Road to the result
• Research questions
• Result literature study
• Characteristics & processes
• Tests
• Conclusions, applicability & future work

Contents

UWB
• Problem
• Result
• Road to the result
• Research questions
• Result literature study
• Characteristics & processes
• Tests
• Conclusions, applicability & future work

GPS/GNSS
Literature study

Method of positioning

Input stakeholders

Develop processes

Formulate characteristics

Small tests of parts of the system

Test whole system in real test

Analysis & validation
Marshalling yard characteristics

- Stationary vehicles
- Vehicles on marshalling yard usually stay on the same spot for the largest part of their stay

- Rail network
- The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons

- Order of the wagons
- For analysis purposes, to see how accurate the distance between two subsequent wagons is
- If analysis goes well, order of wagons can be determined based on distances

Hardware
Marshalling yard characteristics

- Stationary vehicles
 - Vehicles on marshalling yard usually stay on the same spot for the largest part of their stay

- Rail network
 - Wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons

- Order of the wagons
 - For analysis purposes, to see how accurate the distance between two subsequent wagons is
 - If analysis goes well, order of wagons can be determined based on distances

GeoEvent Extension
Characteristics & Processes

Marshalling yard characteristics

- Stationary vehicles: Vehicles on the marshalling yard usually stay on the same spot for the largest part of their stay.

- Rail network: The wagons are on the rail network, which can be seen as an extra reference system for the location of the wagons.

- Order of the wagons: For analysis purposes, to see how accurate the distance between two subsequent wagons is.

- If analysis goes well, the order of wagons can be determined based on distances.
Marshalling yard characteristics

• Stationary vehicles
 Vehicles on the marshalling yard usually stay on the same spot for the largest part of their stay

• Rail network
 The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons

• Order of the wagons
 For analysis purposes, to see how accurate the distance between two subsequent wagons is
 If analysis goes well, order of wagons can be determined based on distances
Marshalling yard characteristics

- Stationary vehicles
 - Vehicles on the marshalling yard usually stay on the same spot for the largest part of their stay.

- Rail network
 - The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons.

- Order of the wagons
 - For analysis purposes, to see how accurate the distance between two subsequent wagons is.
 - If analysis goes well, the order of wagons can be determined based on distances.
Methodology

- Literature study
- Method of positioning
- Input stakeholders
- Formulate characteristics
- Develop processes
- Small tests of parts of the system
- Test whole system in real test
- Analysis & validation
Marshalling yard characteristics

- Stationary vehicles
- Vehicles on marshalling yard usually stay on the same spot for the largest part of their stay
- Rail network
 - The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons
- Order of the wagons
 - For analysis purposes, to see how accurate the distance between two subsequent wagons is
 - If analysis goes well, the order of wagons can be determined based on distances

Test setup
Marshalling yard characteristics

- Stationary vehicles
 - Vehicles on marshalling yard usually stay on the same spot for the largest part of their stay

- Rail network
 - The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons

- Order of the wagons
 - For analysis purposes, to see how accurate the distance between two subsequent wagons is
 - If analysis goes well, the order of wagons can be determined based on distances

Error:
- One to two
- Two to three
- Three to four
- Four to six
- Six to one

Raw data

Legend:
- May third
- May fourth
- May ninth
- "Railnetwork"
- Basemap
Marshalling yard characteristics

- Stationary vehicles
- Vehicles on the marshallng yard usually stay on the same spot for the largest part of their stay.

- Rail network
- The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons.

- Order of the wagons
- For analysis purposes, to see how accurate the distance between two subsequent wagons is.
- If analysis goes well, the order of wagons can be determined based on distances.

Average – All sensors
Marshalling yard characteristics

• Stationary vehicles
 • Vehicles on marshalling yard usually stay on same spot for largest part of their stay

• Rail network
 • The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons

• Order of the wagons
 • For analysis purposes, to see how accurate the distance between two subsequent wagons is
 • If analysis goes well, order of wagons can be determined based on distances

Average – Sensor 3
Marshalling yard characteristics

- Stationary vehicles: Vehicles on the marshalling yard usually stay on the same spot for the largest part of their stay.
- Rail network: The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons.
- Order of the wagons: For analysis purposes, to see how accurate the distance between two subsequent wagons is. If analysis goes well, the order of the wagons can be determined based on distances.

Third of May

- Distance (m)
- Time (min.)
- Error one to two
- Error two to three
- Error three to four
- Error four to six
- Error six to one

Ninth of May

- Distance (m)
- Time (min.)
- Error one to two
- Error two to three
- Error three to four
- Error four to six
- Error six to one

Average - Sensor 3
Marshalling yard characteristics

- Stationary vehicles
 - Vehicles on marshalling yard usually stay on the same spot for the largest part of their stay

- Rail network
 - The wagons are on the rail network, which can be seen as an extra reference system for the location of the wagons

- Order of the wagons
 - For analysis purposes, to see how accurate the distance between two subsequent wagons is
 - If analysis goes well, the order of the wagons can be determined based on distances

Average matched
Marshalling yard characteristics

- Stationary vehicles
- Vehicles on the marshalling yard usually stay on the same spot for the largest part of their stay

- Rail network
 - The wagons are on the rail network; this network can be seen as an extra reference system for the location of the wagons

- Order of the wagons
 - For analysis purposes, to see how accurate the distance between two subsequent wagons is
 - If analysis goes well, the order of wagons can be determined based on distances

X axis = time (minutes)
Y axis = rail number

Average matched

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 6
Marshalling yard characteristics

- Stationary vehicles
 - Vehicles on the marshalling yard usually stay on the same spot for the largest part of their stay

- Rail network
 - The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons

- Order of the wagons
 - For analysis purposes, to see how accurate the distance between two subsequent wagons is
 - If analysis goes well, the order of wagons can be determined based on distances

Legend
- May third
- May fourth
- May ninth
- "Railnetwork"
- Basemap
Marshalling yard characteristics

- Stationary vehicles
- Vehicles on marshallling yard usually stay on same spot for largest part of their stay

- Rail network
- The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons

- Order of the wagons
- For analysis purposes, to see how accurate the distance between two subsequent wagons is
- If analysis goes well, order of wagons can be determined based on distances
Marshalling yard characteristics

- Stationary vehicles
 - Vehicles on the marshalling yard usually stay on the same spot for the largest part of their stay.

- Rail network
 - The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons.

- Order of the wagons
 - For analysis purposes, to see how accurate the distance between two subsequent wagons is.
 - If analysis goes well, the order of wagons can be determined based on distances.

![Graphs showing distance over time for Third of May and Ninth of May with different error ranges.](chart.png)
Marshalling yard characteristics

- Stationary vehicles
 - Vehicles on marshallling yard usually stay on the same spot for the largest part of their stay

- Rail network
 - The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons

- Order of the wagons
 - For analysis purposes, to see how accurate the distance between two subsequent wagons is
 - If analysis goes well, order of wagons can be determined based on distances

Legend
- Sensor one
- Sensor two
- Sensor three
- Sensor four
- Sensor six
- "Railnetwork"
- Basemap
Marshalling yard characteristics

- Stationary vehicles
- Vehicles on marshalling yard usually stay on the same spot for the largest part of their stay
- Rail network: The wagons are on the rail network, this network can be seen as an extra reference system for the location of the wagons
- Order of the wagons: For analysis purposes, to see how accurate the distance between two subsequent wagons is
- If analysis goes well, the order of wagons can be determined based on distances

X axis = time (minutes)
Y axis = rail number
Order of wagons
Test conclusions

- Previous measurements improve result (outliers removed)
- Correctly matched in 51% of cases in average calculation, 65% after median
- Median after an hour and a half always matched correctly
- Determining order based on bearing and distance is possible if sensors couple of meters apart
Conclusions sub questions

1. What techniques could be used for the localisation of freight wagons and what are the advantages and disadvantages?
2. What localisation technique would be optimal to use in this particular case, based on its performance parameters?
3. What would be the best set up to use for the chosen method?
4. Does the method and system architecture work? Does it generate the expected results?
5. On what scale (area, track, exact location) can freight wagons be found using the system?
To what extent is it possible, using current and affordable positioning techniques, to localise freight trains on marshalling yards in such a way that it can be determined on which shunting track the coach is located and what the order of the wagons is?
Applicability

- Previous measurements improve result (outliers removed)
- Correctly matched in 51% of cases in average calculation, 65% after median
- Median after an hour and a half always matched correctly
- Determining order based on bearing and distance is possible if sensors couple of meters apart
Future work

• Previous measurements improve result (outliers removed)

• Correctly matched in 51% of cases in average calculation, 65% after median

• Median after an hour and a half always matched correctly

• Determining order based on bearing and distance is possible if sensors couple of meters apart
Questions?