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Abstract

Single Molecule Localization Microscopy (SMLM) has enabled researchers to breakthrough
the diffraction limit and obtain nanometer resolution images of macromolecular structures.
But due to the time involved in obtaining ample data for proper image, the technique is
venerable to many problem including fluctuations due to thermal gradients from surrounding
which cause the frames to drift. SMLM relies on the stochastic blinking of fluorophore probes.
Thus drift in SMLM could be explicitly modelled as a stochastic state space process. These
models could be used to perform drift correction.

Two state space models are proposed relying on different properties of SMLM. The first
model utilizes shifting of underlying image structure. The state space model for this property
is constructed using shift matrices. A system identification method along with image recon-
struction method is also derived to form the drift compensation algorithm for this model.
This algorithm is further developed to provide adequate performance within low computa-
tional time. The second model relies on the position of emitter molecules and utilizes linking
or pairing of fluorophore probes in succeeding frame to obtain the output data. Drift com-
pensation algorithm for this model is constructed using Prediction Error Methods (PEM) and
Kalman (RTS) smoother.

The drift correction algorithm for these two models are also bench-marked with existing algo-
rithms to obtain insight into performance. Furthermore, other properties of these algorithms
are explored using simulation dataset and recommendation are provided for improvement and
further research.
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“...If you can meet with Triumph and Disaster,
And treat those two impostors just the same...”
— If by Rudyard Kipling





Chapter 1

Introduction

1-1 Diffraction Limit

Ever since the invention of microscope in 1590 by two Dutch spectacle-makers, Hans and
Zacharias Janssen, it has greatly empowered the advancements in biotechnology and biomed-
ical research. With the development in technology, the resolution of the image captured by
the microscope increased as well. But there is a inherent limit to this resolution. Huygens
wavelet theory shows that light is a wave, and thus interferes with other light waves to create
constructive and destructive patterns. As the light wavefronts pass through the circular aper-
ture, diffraction occurs which limits the optical resolution in application [15]. This so called
diffraction limit restricts the ability of optical instruments like microscopy to distinguish be-
tween two light emitting particles lying at close distance to each other. Figure 1-1 shows the
image of Point Source Function (PSF) of two particles at various distance.

Figure 1-1: (a) Lateral separation between two light source is too small for proper resolution,
(b) PSF are marginally distinguishable, and (c) Clearly distinguishable PSF.

Abbe’s diffraction limit shown in (1-1) governs the resolution in optical microscopy.

d = λ

2NA
(1-1)
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2 Introduction

where d is the resolution, λ is the wavelength of light used to capture the image and NA
is the numerical aperture of lens. Multiple methods have been developed to surpass the
diffraction limit such as electron microscopy, atomic force microscopy and Super Resolution
Microscopy (SRM). Under the umbrealla of SRM, there are multiple techniques as well for
e.g. Scanning Microscopy like ISM, Structures Illumination Microscopy (STED) and Single
Molecule Localization Microscopy (SMLM). In this thesis, our focus lies in SMLM.

1-2 Single Molecule Localization Microscopy

SMLM relies on fluorescent markers and fluorescent protein expression. These markers are
localized from diffraction limited image sequence and then the sample structure is identi-
fied by combining all the localization from the blinking markers. The imaging techniques
falling under SMLM capture resolution of upto 10nm with the utilization of two objective
lens [27, 24]. One of the early methods of performing SMLM, Sub-diffraction-limit imaging
by stochastic optical reconstruction microscopy (STORM) focuses on repetitive blinking flu-
orophore markers attached to certain proteins [20]. Other methodologies also exist, such as
Photoactivated Localization Microscopy (PALM) or fluorescence photoactivation localization
microscopy (FPALM) [14] and Fluorescence Imaging with One-nanometer Accuracy (FIONA)
[28] which relies on stochastic activation of sparse sets of individual fluorophores and subse-
quent determination of their positions. Furthermore, it is also possible to extract information
about the sample in 3-dimension as well. 3D localization methods utilize additional optical
instrument for e.g. cylindrical lens insert in the detection path or multifocus configuration to
localize the 3D position [17].

1-3 Drift

SMLM requires a large sequence of diffraction limited frames (typically >104). This in turn
demands a large acquisition time through which a number of practical problems arise e.g.
elongated photostability, photobleaching and complex preparation. One of the major problem
is drift. Equipment such as excitation laser could produce enough thermal gradients to cause
the sample to fluctuate. It could produce enough movement to move the sample by few
nanometers. This makes it difficult to determine the absolute position of the markers and
therefore the molecular density of the sample [19].

Figure 1-2: (a) The effect of drift in a single time step on localization of emitters (b) Image
showing localization after drift correction

Akshat Srivastava Master of Science Thesis



1-4 Thesis Layout 3

Many methods have been proposed to solve this problem. This includes modifying the exper-
imental setup and using advance equipment, known as active drift compensation techniques.
On the other hand, we can correct the drift after the low resolution frames are recorded,
known as passive drift compensation. Each method carries a trade-off between costs involved,
feasibility, required precision, time and ease of use. Thus which method to utilize depends on
the choice of latter factors.

1-4 Thesis Layout

In this thesis study, we explore passive drift correction using methodologies of system and
control. In Chapter 2 we discuss in brief existing methodologies. Different techniques, their
drawbacks, comparative advantages and performance results are discussed therein. Chapter
3 discusses the state space model based on the shift matrices and molecular density. The
model is developed for simple 1D case and then 2D drift in SMLM. Using this model, a
drift compensation algorithm is also developed using the tools from system identification and
filtering, and further enhanced using tools from image processing and EM algorithm. Chapter
4 follows a similar approach where we develop state space model using the position of emitter
molecules. This model is also used to create a drift compensation algorithm. The two drift
compensation algorithms developed are benchmarked against the existing algorithms using
computational time and RMSE for performance in Chapter 5. We also investigate and discuss
insights about the two algorithms, the pros and cons of each algorithm as well as when and
why algorithms break down. Chapter 6 ends with conclusion to this thesis study and further
developments that could be performed for each algorithm.

In the following chapters, certain terms are used interchangeably. This includes markers
which is same as probes and emitters. Often the word molecule is also included. State space
models is also interchanged with hidden markov models, although the former is a subset of the
latter. Similarly, the emitter density is synonymous with molecular density. Furthermore, it
is important to understand the meaning between two different terms for e.g. relative drift and
absolute drift, molecular density, frame density and molecular frequency, etc. Smoothing is
also used in the context of stochastic signal processing as well as image processing. Depending
on the context, the word carries different meaning. Such terms are repeatedly mentioned and
might cause confusion.

Master of Science Thesis Akshat Srivastava
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Chapter 2

Drift Correction methods in SMLM

Drift correction or compensation in the context of SMLM refers to removing drift from low
resolution frames captured in the imaging process. There are variety of ways to accomplish
this. For ease of understanding, we classify the ways in categories shown in Figure 2-1.
These categories primarily consist of Active compensation technique and Passive compensa-
tion techniques. The former relies on correcting drift in real time (actively) with feedback
control system consisting of actuators and sensor whereas the latter focuses on correcting
drift after the frame are captured (passively).

Figure 2-1: Different categories of drift compensation techniques

These techniques are discussed in the following sections. Mathematical details and in-depth
results could be found in literature. It is often noticed that due to the fluctuation in the
axial direction, the emitters concentrate or blur out [17]. Without correction, the peak signal
intensity drops. This would degrade the localization of emitters and the drift correction in
the lateral direction. Thus, for axial drift correction, it is required to have separate focus
hardware [18] to perform a primary correction in axial axis. Other methods also include
correcting axial drift manually by adjusting the stage.

Master of Science Thesis Akshat Srivastava



6 Drift Correction methods in SMLM

2-1 Active Compensation

This compensation methods removes drift from the frames simultaneously as they are being
captured. It uses a closed loop system of lead zirconate titanate (PZT) stage actuator for
precise displacement control (but at low frequency) and sensors to detect the drift. The
sample is kept on the stage and once the drift is detected, the actuators move in the opposite
direction of drift to compensate it. An instrumental component in the configuration is fiducial
markers. These markers, unlike the fluorophore probe emitter do not blink, but are visible
through most of the experiment. Different fiducial markers are available along with their
respective pros and cons. Some examples include Gold nanoparticle [30], Nano-patterning
of coverslip [17], Fluorescent micro-particles [1] and Nanodiamonds [5]. Ideal properties of
fiducial markers include stationarity, monodispersion to avoid aggregation, photostability and
non-fluctuating signal. Figure 2-2 shows few types of markers.

Figure 2-2: Examples of few types of Fiducial markers including (a) Fluorescent micro-particles,
(b) Nano-patterning of coverslip and (c) Gold nanoparticle in bright field imaging

Figure 2-3 shows schematic of setup used for active drift correction. Although the actuator
remains almost the same in all the setup, what differs is the type of sensor used. These include
video camera, which is also used to perform bright-field imaging. A sample image is shown in
Figure 2-2(c). IR led and detectors are also used alongside camera to detect fiducial markers
as in 2-2(b). The correction is performed by measuring the diameter of the diffraction ring
around fiduciary marker, along with known incremental displacement. It is observed that the
diameter is proportional to the axial displacement and focus of ∼20nm is achieved. For the
lateral calibration and correction, the centers of fiduciary marker are fitted with a gaussian
function to identify the centers. The movement of these centers in each frame correspond to
the drift which is corrected using the actuators.

Some setups also use laser along with Quadrant Photodiode (QPD) sensor to keep the stage
stable [23]. Furthermore, there is an active correlation compensation technique which re-
moves drift using frame cross-correlations. The principle is to track the peak position of the
correlation function, which is used to determine the lateral x-y drift in the image plane. The
drift in axial plane is evaluated by the change in intensity. The drawback of this method is
low frequency of response. Although the CCD camera has a frame rate of 30 Hz, but due
to intermediate processes involved such as image correlation, Gaussian fitting and taking the
drift adjustment through motor movement into account, the actual response rate is around
7.5 Hz. Improvements could include faster responding xyz piezo stage and faster IR camera.
Furthermore, while carrying out image correlation, the contrast of the image plays an impor-
tant role. The contrast utilized to select specific part of the bright-field image is sometimes
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2-2 Passive Compensation 7

low. Without correlation feedback, the average coordinate drift of fiducial marker is more
than 100nm in a period of 500s. Through feedback, the stage is locked within a Root Mean
Squared Error (RMSE) position error of about 10 nm in the xy plane and about 20 nm in
the z direction over a time period of 300 seconds.

Figure 2-3: Drift Rate correction Setup, C: Condenser, Z: Piezo z stage, XY: motorized xy stage,
OBJ: objective, DM1, DM2: dichroic mirrors, TL: tube lens, IRBP: IR band-pass filter, IRB: IR
blocking filter, FBP: fluorescence band-pass filter [19]

2-2 Passive Compensation

The whole process of utilizing fiduciary markers, specially for lateral drift correction almost
always leads to added complexity. None of them are easily synthesized and require additional
equipment as well [21]. Additional camera and marker synthesis raises the costs, escalated
higher by a requirement of substantial optics expertise. Passive (or Posterior) drift correction
methods operate on frames after the process of capturing them is completed. These methods
utilizes the emitters themselves to determine the drift either through statistical method or
using model based approach such as drift at minimum entropy DME or Bayesian Sample Drift
Inference (BaSDI). For bench-marking purposes, these methods could be tested on simulated
and synthesized data as well which allows application of various methodologies.

Drift could be estimated from one frame to another, which is called relative drift or from
initial frame to any other frame, which is called absolute drift. Some algorithms estimate the
former, while other estimate the latter.

2-2-1 Cross-Correlation

Cross-correlation has been used in energy filtered transmission electron microscopy [13],
atomic force microscopy, and scanning tunneling microscopy [22] to correct for sample drift,

Master of Science Thesis Akshat Srivastava



8 Drift Correction methods in SMLM

where subsequent images show the same structure, but differ primarily by their spatial posi-
tion. The method therefore finds abundant application in SMLM as well. These algorithms
assume that drift is a continuous process but not linear over the course of measurement.
Furthermore drift occurring in a single camera frame (the time elapsed while capturing an
image) is assumed to be negligible and uncorrelated with other spatial coordinates.

There are three different methods which makes use of correlation, either in different manner, or
by using some empirical methodology (such as elimination of redundant dataset). Underlying
these algorithm lies some fundamental operation required to properly execute the algorithms
briefly discussed as follows:

1. Aggregation: Frames within a time interval T are aggregated. This interval is such that
it is long enough to assume drift within each time step is linear but also small enough
to capture enough particles (∼ 1000). The time step, lets say 5s would capture some
particles. This is necessary since in a single frame, one could only expect a small number
of emitters. The size of the aggregates, m (a.k.a segments [29]) needs to be selected for
proper Signal to Noise Ratio (SNR). When m is small, there are few localization points.
This leads to noisy correlation function which could contain false maxima Figure 2-4(d).
On the other hand, taking m large leads to an inevitable linear interpolation of drift
calculation which in turn reduces the accuracy of the correction (even though high SNR
is obtained Figure 2-4(c)).

• Segment Sj of image frames is defined as the collective set of coordinates of emit-
ters from m frames. Sj = {x1, x2, . . . , xn}, where xi ∈ R3 is the position of ith
fluorophore and n is the total number of emitters in segment j. Notice that n
differs for each segment.

• Drift in segment j is denoted by dj . The resulting observed segments Sj consist
of, Sj = {x1 + dj , x2 + dj , . . . , xn + dj}.

2. Projection: For each aggregated data frame, the xyz projection are made by forming
three 2D planes (xy,yz, and xz). The particles are also binned into pixels (histograms)
which represent the instantaneous molecular density. The bin size is in pixel dimension,
which is small enough to capture the details (for e.g. importance for separation of one
fluorephore point from another) and large enough to have apt number of localization
points. The choice of the bin size, dictated by the Nyquist Shannon sampling theorem
as twice finer than the standard deviation of minimum effective structure of interest.
The effective minimum structure is in turn a function of marker distribution’s standard
deviation and the localization precision [10].

3. Evaluation: Cross-correlation (CC) [29] is evaluated, Cij(r) between two segments, Si

and Sj . The argument rij which maximizes the value of cross-correlation reflects how
much drift has occurred.

Dij = rij , where rij maximizes Cij(r) (2-1)

There are three methods through which correlation (or evaluation step) could be performed.
Furthermore, a cubic spline is optionally fit to the resulting curves for noise reduction. Drift
within each time interval is then determined by linear interpolation [21]. The first most basic
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2-2 Passive Compensation 9

Figure 2-4: The effect of aggregate on the correlation (a) A superresolution image of microtubules
that contains severe sample drift. The image is spatially binned into a 2D histogram with a bin
size of 30 nm. Scale bar: 1 µm. (b) One time segment with f = 1000 frames. (c) The cross-
correlation function between the first and the last segments with f = 1000 frames. The white
cross shows the auto-correlation peak of the first image. The arrow points out the direction and
the amount of the drift between these two intervals. (d) The cross-correlation function between
the first and the last segments with f = 100 frames. Note that the SNR in the map is greatly
decreased [29]

method is called Direct Cross Correlation (DCC). The initial segment is correlated with
the current segment and the drift corresponding to the maximum value is evaluated. Mean
Cross Correlation (MCC) evaluates the drift as a solution to LLSQ problem. It considers the
correlation of any segment i with each and every other N frames. Redundant cross-correlation
(RCC) is the most widely used correlation method for removing drift. This drift correction
algorithm exploits the redundancy among the correlation pairs. RCC is quite similar to MCC.
The difference between MCC and RCC lies within forming an over-determined set of linear
equations solved for the value of drift.

These methods are benchmarked using both simulated and synthesized data-sets are utilized.
For example, Figure 2-5(a) shows simulated structure of mitochondria generated using a
custom written program in LabVIEW, consisting of about 80,000 particles. The structure
is contaminated with a Zero Mean White Noise (ZMWN) and also injected with a known

Master of Science Thesis Akshat Srivastava



10 Drift Correction methods in SMLM

sinusoidal drift in time to obtain Figure 2-5(f). It should be noticed that this is just a single
plane projection as indicated in the Figure. Other projections, different structures along
with the most simplest correlation technique, DCC, are discussed in [21]. Furthermore, open
training data is also available at [6].

Figure 2-5: (a)Simulated structure of "mitochondria" in x-y plane (b)Same structure contami-
nated with drift (c) Aggregated localized image of mitochondria with drift from two color channels
(see [23] for two color localization measurement) (d) Drift corrected image of mitochondria using
posterior correction method [21]

One of the determining factor for posterior drift correction is also the sample structure. For
example, consider a structure with it’s longest length oriented towards either of the lateral
axis. Determining the drift in in the longest length will be difficult since no matter how
much sample drift occurs in that axis, it will look nearly identical. As a rule of thumb, only
molecules that are within a distance a from an object “edge” (a structural feature indicating
a strong change in density) contribute to detection of drif. This phenomenon has to be
considered when choosing the Region of Interest (ROI) for the projection.

The drift correction algorithm was implemented (in literature) on the experimental data which
contains drift of about 150nm in x-direction and 100nm in the y-direction. The spatial bin
size of the drift extracted was 15nm. To quantify the results obtained on the experimental
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2-2 Passive Compensation 11

data, RMS error was used which yielded 1.56nm. Analysis of real data yielded an image FRC
resolution in the range of 47.8nm. The precision of this method increases with increase in
number of frames. The best image resolution attained through this method is 45.7nm.
Other important parameters include the number of molecules in each time interval and the
localization precision. Many articles discuss and state that drift correction using cross-
correlation is able to remove drift of several nanometers below 5nm with only 2,000 localized
molecules in each interval. Hitherto, correlation based methods are the most frequently used
in SRM due to their speed and accessibility.

2-2-2 Drift at Minimum Entropy

An alternative is to parameterize the drift as a specialized cubic spline and utilize the prob-
ability density formed as a measurement of entropy. This so called "entropy" arises from the
information theory and machine learning but in a slightly different context. The drift is esti-
mated by minimizing an upper bound on this entropy. DME run-time is on the same order of
magnitude as correlation methods. Furthermore, the method could also be tuned to suit the
computational time in case a large but redundant (i.e. low number of bright spots) dataset is
at disposal. DME outperforms both, model based and correlation based methods. It is able to
produce a more detailed drift trace without consuming as much time as BaSDI. Furthermore,
when localization within one bin becomes a limiting factor for correlation based methods
(sparser dataset), DME still outperforms other methods. For a 250 frame size, correlation
method produce mean absolute error of 8nm whereas DME produces only 3nm [4].
In typical SMLM reconstruction, a binning size of around 50 frames per bin is optimal for
DME, versus a minimum of 500 required for cross-correlation methods. Depending on the
drift in the system, this can result in an improvement in image quality. A major advantage
of the DME is that in addition to the drift estimate, it also gives an estimate of it’s own
precision. The implementation reports this using the RMSD between the drift estimates of
the split dataset, which can then be used to inspect the quality of the DME output and tune
the bin size.

2-2-3 BaSDI algorithm

BaSDI algorithm is short form for Bayesian sample drift inference. This algorithm assumes
a Hidden Markov Model (HMM), consisting of drift dk as the hidden state and the observed
frames fk as the observed state. The absolute lateral drift in kth frame is denoted as dk ∈
ZN×2 where N is the total number of frames. The observed frames, fk ∈ Nh×w with h
and w the height and width of image frame respectively. The frame consist of the number
of emitters present in the bin at lateral dimension i, j denoted by fij . Collectively, all the
frames are represented as o = {f1, f2, . . . , fN }. The number of emitters appearing in each
bin and each frame are dictated by the molecular density of each bin, θ ∈ Rh×w consisting
of θi,j ∀i, j which acts as a parameter for this model. Our aim is to find the drift in each
frame dk and thereby the molecular density, θ with the only information available about the
observed frames, o.
The dynamical relationship between the current hidden state and the next hidden state gives
rise to transition probability. In our case, we assume the drift as a random walk model The
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12 Drift Correction methods in SMLM

Figure 2-6: Hidden Markov Model (HMM)

relationship between the observed variable and the hidden variable gives us emission probabil-
ity or observation probability. Using these probabilities, our aim for finding dk and θk could
be analogously be stated as a twofold step. Firstly, performing system identification to find
parameter θk and secondly, obtaining the hidden states, dk using smoothing. Unfortunately,
performing either step requires the information about other. Whichever probability is easiest
to deduce and carries most information, dictate what step is conducted first.

The drift is assumed to be dictated by a random-walk model which does not provide much
information. On the other hand, the availability of frame data could provide an approximate
information about molecular density. Therefore we assume the initial molecular density as
the sum of all the frames and perform smoothing using forward-backward algorithm to obtain
the posterior distribution of drift given the frame data, fk and assumed molecular density,
θ̂i denoted by P

(
d|o, θ̂i

)
. Using this distribution we find the new parameter, θ̂i+1 which

maximizes the (log) likelihood of observing the data, L (o|d, θ).

The problem statement is to obtain the MAP estimation of d. This is in practice achieved
using the viterbi algorithm. (2-2)

d̂MAP = arg max
d

P (o | d)P (d) (2-2)

Within the EM algorithm, there are multiple steps for E (Expectation evaluation) and M
(Maximization) part. They are discussed thoroughly in the following sub-sections. For a
short explanation and simple example of the EM algorithm, see Appendix A-2.

E-step

As the name states, this step aims at evaluating the expectation (over drift) of observing the
frame data, o given the approximate molecular density, θ̂ and the marginalized distribution
of drift for all it’s support (i.e. [−dmax, dmax]) for all frames, P (dk,1, dk,2|o, θ̂) ∀k (dk,1 refers
to drift in x-axis while dk,2 indicates drift in y-axis). Since it is more convenient to evaluate
the logarithm of probability distribution, we find log in (2-3). The reasoning behind taking
the expectation over drift is explained in the M-step.

Ed∈D

[
log P (o | d, θ̂) | o, θ̂

]
(2-3)

To evaluate this, we need to obtain the marginal distribution P (dk,1, dk,2|o, θ̂) ∀k which, in
turn, requires the posterior distribution of drift. Invoking bayes theorem, we could state the
dependence of this posterior distribution on the likelihood and the prior as follows
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2-2 Passive Compensation 13

P
(
d | o, θ̂

)
∝ P

(
o | d, θ̂

)
P (d) (2-4)

Once the posterior distribution is obtained, one could perform marginalization, but since
the resulting distribution is not analytical, marginalization has to be performed using a
numerical technique. This is computationally expensive. Instead the authors utilize the
forward-backward algorithm to directly compute the marginal probability in a computation-
ally efficient manner. We discuss both of these component as follows and then focus on the
forward-backward algorithm.

Prior
To be able to obtain the prior distribution of drift, an underlying displacement model must
be assumed. As previously stated, the model is a Markov process called random walk. The
algorithm has also assumed a maximum drift, dmax, thus the resulting distribution of the
random walk model must be truncated. The resulting gaussian distribution is actually a
truncated gaussian distribution.

P (d) = P (d11) P (d12)
N∏

k=2
P (dk,1, dk,2 | dk−1,1, dk−1,2)

= P (d1,x) P (d1,y)
N∏

k=2
P (dk,x, dk,y | dk−1,x, dk−1,y)

= P (d1,x) P (d1,y)
N∏

k=2
t (dk,x − dk−1,x, dk,y − dk−1,y)

(2-5)

Since the assumed random walk model is expressed as x(k + 1) = x(k) + ϵ(k), it would mean
that ϵ(k) = x(k + 1) − x(k) ∈ N (0, σ2). Therefore,

t(δdx, δdy) = N
(
δdx; 0, σ2

)
N
(
δdy; 0, σ2

)
+ ϵ; δdx < s, δdy < s (2-6)

The first argument of the normal distribution indicates which variable is the distribution
being evaluated for (like δx). The rest indicates the mean and the variance of the distribution.
For example, if we have x(k + 1) = x(k) + ϵ(k), and it is required to evaluate P (x1|x0) =
P (x0)P (x1|x0). It could be easily shown that P (x1|x0) = P (x0) ∗ N (E[x(0)], σ2). One would
obtain the product of normal distributions for P (xn|xn−1) in general. With this, we obtain
the prior of equation (2-4).

Probability of Observation
Normalized Molecular density at each spatial coordinate represents the probability of finding
a molecule at that given coordinate. This is an example of multinomial distribution, whereby,
the possibility of finding an emitter at position (i, j) is given θi,j . The joint probability of
finding or observing all these emitters (or localization events) in a frame f is given as follows.

P (f | θ) = (∥f∥1)! ×
∏
i,j

(θi,j)fij (2-7)

The first term in the above equation represents the number of sequences in which we would
observe the emitters present in the frame f . It is always an integer. Since there is drift,
(dx,dy) acting on this frame, the resulting probability needs to be adjusted by shifting the
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14 Drift Correction methods in SMLM

frame by this amount (indicated by the shift in indices). In some cases, this shifting could
be large enough to push the emitter position out of the reference frame. This is why we pad
the frame image with a "0" border of size dmax. Then, as long as the maximum drift does
not exceed dmax, we can still perform the computation to obtain reasonable approximate of
the a posteriori distribution. Furthermore, as is conventional, we employ logarithm of the
probability instead.

log P (f | θ, dx, dy) ≈ log (∥f∥1)! +
∑
i,j

fi−dx,j−dy log θi,j (2-8)

Performing this computation over all the frames, o and segregating the term that are inde-
pendent of θ, we obtain the final form of probability of observation.

log P (o | d, θ) ≈
∑

k

∑
i,j

oi′,j′,k log θi,j + constant (2-9)

Figure 2-7: The probability of observing the localization given the molecular density and the
value of absolute drift. The evaluation is across different values of drift in lateral axis calculated
using convolution

with i′ and j′ representing the shifted indices of each frame. The above operation involve
shifting and subsequent multiplication which is basically to correlation. Image correlation
suddenly finds a meaningful explanation here. For efficient computation, 2D convolution is
utilized to evaluate the above, with one of the term (either log θi,j or oi′,j′,k) reversed. The
result is a matrix ∈ RN×2dmax×2dmax consisting of the logarithmic probabilities with different
values of drift. For a single frame, the support of evaluated probability takes the form as
shown in Figure 2-7.

Forward-Backward Algorithm
To evaluate the marginal distribution, forward-backward algorithm is utilized. This algorithm,
instead of evaluating the marginal distribution through performing numerical integration over
the joint drift distribution, directly computes the marginal distribution by operating over
observation probability with the prior. There are two parts of computation, forward and
backward. In the forward computation, the algorithm takes the starting frame and work it’s
way forward through all the combinations of drift which would lead to the current frame
fk. In the backward computation, the final image (or equivalently, the last frame) is worked
backwards through all the drift sequences to reach the current frame fk.
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2-2 Passive Compensation 15

1. Forward: This computation begins from the first frame and goes up-to the current
frame through all the possible drift sequences. The probability of this transition is
obtained through (2-10).

α(dx, dy, 1) ∼ P

(
f1 | θ̂

(i)
, dx, dy

)
α(dx, dy, k) ∼ P

(
fk | θ̂

(i)
, dx, dy

) ∑
δdx,δdy

α(dx, dy, k − 1)t(dx − δdx, dy − δdy),
(2-10)

Upon careful observation, it could be concluded that the summation in the second term
is a convolution operation with a gaussian kernel. This fact is utilized for computational
efficiency whilst implementation.
(2-10).

2. Backward: This computation is performed using (2-11). The execution is quite similar
to the Forward part except that we iterate backwards.

β(x, y, N) = 1
β(x, y, k) ∼

∑
δx,δy P

(
fk | θ̂

(i)
, δx, δy

)
β(x, y, k + 1)t(δx − x, δy − y) (2-11)

After obtaining both the forward and backward part, we multiply them both to obtain the
final marginal distribution (2-12).

P

(
dk,1, dk.2 | o, θ̂

[i]
)

∼ α(x, y, k)β(x, y, k) (2-12)

With this, all the necessary terms to evaluate the expectation (2-3) over drift are at hand.

M-Step

The M-step is aimed at obtaining the maximum likelihood of the expectation evaluated in the
E-step. The reason why we evaluate expectation over drift is to remove the drift argument,
d from the expectation. This is only possible if we have the marginal distribution of drift,
which is already evaluated in the E-step.

θ̂
[i+1] = arg max

θ
Ed∈D

[
log P (o | d, θ) | o, θ[i]

]
(2-13)

It is possible to obtain an analytical solution to the above optimization problem [8]. The
calculation are thoroughly stated in the reference and the final result is stated below.

θ̂
[i+1]
ij ∝

∑
k

∑
dk,x,dk,y

P

(
dk,x, dk,y | o, θ̂

[i]
)

oi−dk,x,j−dk,y ,k (2-14)

In principle, the above equation is a weighted sum over all the frame shifted by a drift value
with the weight as the probability of that value of drift thus the most probable value of
drift carries the most weight. At the end of the iteration, an improved approximate of the
molecular density is obtained.
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16 Drift Correction methods in SMLM

Iterations

Once an improved approximate is obtained, the EM cycle could be repeated. It is ensured
that with each iteration, an improved estimate is obtained and that the estimate converges to
a specific value as well. The convergence of drift’s distribution and the maximum number of
iterations is used to dictate the flow of loop. For e.g. if the difference between the standard
deviation of drift in one iteration and the succeeding iteration is smaller than a certain pre-
defined a value, then the loop stop. Furthermore, at the beginning of loop, the molecular
density is smoothed using a gaussian kernel. The scale of this kernel is decreased with each
iteration such as to be able to extract more information.

Results

BaSDI algorithm achieves a better precision as compared to the existing correlation methods
and almost as good as fiducial marker based correction method. The key difference between
the BaSDI method and the correlation method lies in the step of aggregation, which produces
a discredited trace of drift between each aggregate in correlation based method. BaSDI on
the other hand, created a more detailed trace of the drift between each frames resulting in
better resolved image features. In comparison to correlation based method that produced an
error of 7 pixels, BaSDI is able to deliver an error of 1 pixel on the same dataset [8]. The
main drawback with BaSDI is for large data-set (for e.g. DNA-PAINT), it consumes a large
processing time to be able to produce drift results which are similar in terms of precision to
fiducial marker correction.

Figure 2-8: Results showing low rate performance of BaSDI and image correlation method for
drift trace estimation on simulated data [8]

2-3 State Space Modelling of Drift in SMLM

State space models refers to a class of mathematical modelling techniques which utilizes first
order differential equations to model the dynamics of physical and abstract processes. They
are alternative to traditional transfer function/differential equations which are mostly used
to model Single Input Single Output (SISO) systems with zero initial condition. The state
space representation of a dynamical system consists of the evolution model for the state
variables (2-15), also called process dynamics and the observation model (2-16) that links the
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2-3 State Space Modelling of Drift in SMLM 17

observations or output to the state variables. The state, x(t) ∈ Rn and the output y(t) ∈ Rm

are represented as follows.

ẋ(t) = f (x(t), y(t)) (2-15)

y(t) = h (x(t), y(t)) (2-16)

Linear state space models are ones for which f(·) and h(·) are linear functions. Furthermore,
state space models are also used to represent stochastic processes such as linear gaussian
process or linear poisson processes, depending on the type of process and output noise in-
fluencing the system. Stochastic processes represented in state space format are also called
Hidden Markov Model (HMM). The probability distribution of state for Markov processes
depends only on the present state, not the past. The reason why it is called Hidden is because
of the fact that one can only observe the output, y(t), not the state, x(t) which remains hid-
den. For computational purposes, we utilize discrete time systems as dealing with real-time
systems requires collecting data at specific time-steps or sampling frequency. Equation (2-17)
and (2-18) represents an autonomous (i.e. without the external influences of input) example of
linear time invariant gaussian process. It is time-invariant since the process dynamics matrix
A and the output matrix C do not change with time. This representation is used throughout
the discussion.

State Dynamics:

x(k + 1) = Ax(k) + w(k)
with w(k) ∼ N (0, Σw)

(2-17)

Output Dynamics:

y(k) = Cx(k) + v(k)
with v(k) ∼ N (0, Σv)

(2-18)

Hitherto, utilization of state space for modelling drift in SMLM is not documented, although
using it might yield edge in terms of performance, computational time and ease of under-
standing. Furthermore, previously mentioned BaSDI algorithm utilizes forward-backward
algorithm which is similar to the Kalman RTS smoother algorithm. Furthermore, BaSDI also
uses a implicit HMM model for drift. We aim to model the process of drift using explicit state
space models to discover properties of system. The following chapters develop two state space
models to describe drift in SMLM. These models are further used to perform drift compen-
sation through the methods of system identification and filtering/smoothing for respective
models.
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Chapter 3

State Space Modelling using Shift
Matrices

The spatial molecular density dictates the number of emitter molecules present at each spatial
position, as shown in Figure 3-1. This density roughly represents the underlying sample image
which drifts throughout the course of experiment. The process of SMLM and drift could
be represented by the combination of this spatial molecular density and drift, which is the
foundation for this state space model. BaSDI algorithm also uses shifting of observed frames
in it’s likelihood function (2-8), while keeping spatial molecular density fixed. Our observation
is that one could shift the spatial molecular density instead of shifting frame and obtain an
explicit linear hidden markov model or a state space model as shown in this chapter.

3-1 1D Shift Matrix Model

We assume in this model that the drift takes integer values, i.e. the molecules could shift by
integer multiple of a defined unit. This is because the spatial molecular density is defined for
discretized spatial grid. For simplicity, we start with 1D representation of the model i.e. we
only consider drift in one axis. Furthermore, for the purpose of simulation and generating
data, we also assume the following.

Assumption 1: The maximum absolute drift is dmax.

Assumption 2: The relative drift, d(k) ∈ Z takes a value within a specified interval [−d̄, d̄]
where d̄ is smaller than dmax.

With the first assumption, we would be able to select the width of padding required to avoid
loss of information of spatial molecular density. The second assumption lays the foundation
for system identification algorithm for this model. We represent the relative drift at time step
k as d(k) ∈ Z and spatial molecular density as θ(k) ∈ Rn+2dmax where n is the number of
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20 State Space Modelling using Shift Matrices

Figure 3-1: Simulated SMLM image of Microtubules showing the regions with high and low
number of emitter molecules

bins or size of grid and dmax is the maximum drift. The extended size of spatial molecular
density (2dmax) is analogous to padding an image with zeros following the first assumption.
Padding is important such as to avoid loss of information of spatial molecular density through
successive shifting of image. The output frame, y(k) ∈ Zn+2dmax

+ consist of subset of emitters
blinking at time instant k in each spatial coordinate.

State Dynamics:

Spatial Molecular Density Dynamics

θ(k + 1) = Ad(k)θ(k) where, (3-1)

The state transition matrix Ad(k) are shift matrices with shift equal to the value of d(k). For
e.g. if d(k) = 1, −1 or 0, Ad(k) takes the following instances of upper shift, lower shift and
identity matrices. This could be extended to any value of d(k)

A1 =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

... . . . . . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

A−1 =


0 0 0 . . . 0 0
1 0 0 . . . 0 0
...

... . . . . . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0

A0 =


1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

... . . . . . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1


(3-2)

Output Dynamics:

y(k) = Poisson (θ(k)) , (3-3)
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3-1 1D Shift Matrix Model 21

Figure 3-2: (a)Padding spatial molecular density vector θ(k) with zeros of length equal to the
maximum expected drift, dmax (b) Padding an image

where, Poisson(λ) = λz

z! e−λ

Depending on the exponent, each support of poisson distribution carries a different probability.
This is shown for various values of exponent in Figure 3-3. As the exponent of the distribution
decreases, the values near zero are more likely to occur. In case of above SMLM drift model,
the spatial emitter density influences the exponent, and therefore the shape of the poisson
distribution curve.

θ(k + 1) = Ad(k)θ(k)
y(k) = Poisson (θ(k))

(3-4)

The value of spatial emitter density depends on a lot of factors. To name a few, it depends
on the sample structure, the type fluorophore probe (cy5,cy3 etc), the amount of dispersion,
inherent properties like photo-bleaching and excitation rate. For the sake of simplicity, we
simply assume that the spatial molecular density depends only on the shape of the sample
image. Since θ(k) is our state, the initial value of state, θ(0) represents the underlying
sample image that we would like to obtain. All the subsequent states, θ(k) simple represent
a shifted version of θ(0). The step for evaluating the initial state is therefore called Image
Reconstruction whereas estimating drift from data is referred to as System Identification.

Figure 3-4 shows data from simulating the model in (3-1) and (3-3). In Figure 3-4(a), one
could notice the initial state θ(0) which is shown in the left most side appended graph depicting
two rectangles. These rectangles get displaced by drift, d(k) across frames and using these
values through a poisson distribution, we obtain the output data, y(k).
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22 State Space Modelling using Shift Matrices

Figure 3-3: Poisson Distribution for different exponent values, λ. For large values of λ, the
distribution converges to a gaussian distribution and for small values of λ, the values near zero
are more likely to occur.

Figure 3-4: Illustration of the data obtained from simulating shift state space model. The data
is generated using θ(0) as two stripes, as shown in the left most border of (a) having a value of
0.01. The state of the system, namely spatial molecular density, θ(k), is shown for all time steps
as well. (b) The output of the system, y(k) and (c) The drift, d(k)

3-2 2D Shift Matrix Model

In 2D, the spatial molecular density is represented by an image which could drift right and
left along with upwards and downwards. We use bold symbols to separate the 1D model
with 2D model. Now, lateral drift is denoted by d(k) ∈ Z2 such that d(k) = [dx(k), dy(k)]⊤
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3-2 2D Shift Matrix Model 23

with dx(k) as the drift in horizontal direction and dy(k) as the drift in vertical direction.
The state, which is spatial molecular density denoted by θ(k) ∈ R(n+2dmax)×(n+2dmax) with
dmax ∈ Z as the maximum drift. θ(k) is a matrix representation of sample image. Similarly,
the output frames, y(k) ∈ Z(n+2dmax)×(n+2dmax) are matrix representation of localizations.
These localizations are extracted from frames captured through microscope. It should be
noted that the padding here is around the four borders of the image as shown in Figure
3-2(b). Furthermore, it is not necessary that image should have same breadth and width, but
for the sake of simplicity we take them to be same.

State Dynamics:

Spatial Molecular Density Dynamics

θ(k + 1) = Adx(k)θ(k)Bdy(k) (3-5)

Output Dynamics:

y(k) = Poisson(θ(k)) (3-6)

Both Ady(k) and Bdx(k) are shift matrices as elaborated in (3-2). In the above state dynamics,
we could observe both, a pre and post multiplication with shift matrices. Pre-multiplication
shifts the spatial molecular density upwards and downwards, similar to the 1D model. Post-
multiplication shifts it right and left. Figure 3-5 shows some highlights obtained by simulating
the above equations. Although complete, the model is bi-linear due to the post and pre
multiplication. For analytical purpose, it is easier to deal with a linear model. Thus, to
obtain linear form of this equation, we utilize the following theorem.

Theorem: The consecutive multiplication of three matrices could be stated as follows in a
vectorized format

vec(ABC) =
(
C⊤ ⊗ A

)
vec(B)

where ⊗ is Kronecker Product

Using this theorem, we could extend our 2D spatial molecular density into a 1D vector. We
re-write (3-5) as follows.

vec(θ(k + 1)) = vec(Ady(k)θ(k)Bdx(k))

=
(
B⊤

dx(k) ⊗ Ady(k)
)

vec(θ(k))
(3-7)

Thus, we re-define our new spatial molecular density state, the state transition matrix and
the new output as,

Θ(k) = vec(θ(k))

Adx(k),dy(k) =
(
B⊤

dx(k) ⊗ Ady(k)
)

Y(k) = vec(y(k))

(3-8)

which gives us our final model. This is a linear time varying stochastic system with integer
output. The model is similar to the 1D state space model derived in previous section.
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Θ(k + 1) = Adx(k),dy(k)Θ(k)
Y(k) = Poisson (Θ(k))

(3-9)

Figure 3-5: Result of simulating 2D state space model using the spatial molecular density data
from microtubule simulation. The data consist of a 200px×200px (100nm/px) image with 1000
binding sites and frame molecular density of about 1.6 × 10−4. (a) Shows the sum of all output
frames y(k). In comparison to this, (b) Shows the actual underlying microtubule image, θ(k).
Upon comparing both, it is clear how drift produces a smearing effect. (d) Shows the generated
drift used to form the data

3-3 Drift Compensation Algorithm using Shift Matrix State Space

After we have developed the Shift Matrix State Space (SMSS) models, our aim is to determine
the parameters of this model using observed data. These parameters are the drift dx(k) and
dy(k), i.e. the subscript of shift matrices, Adx(k),dy(k) and the underlying sample image, Θ(k)
which together lead to the process of eliminating drift, or drift compensation. The method of
finding the parameters is called System identification and the process of finding the underlying
sample images, Θ(k) is called Smoothing. But since Θ(k) is just a shifted version of Θ(0),
our aim is to only find Θ(0) which is referred to as Image Reconstruction algorithm.

3-3-1 System Identification

The system under consideration has integer observation, Y(k). Subspace identification tech-
nique usually deal with Linear Gaussian systems. Thus a more viable option is to use the
conventional likelihood maximization for estimating the state transition matrix Adx(k),dy(k)
and thereby the drift d(k). Since the assumed model utilizes relative drift, each value of d(k)
is independent of other and thus each state transition matrix is independently determines
the shift in the subsequent image. An important thing to recall is the drift set for which the
likelihood function is evaluated. This set of drift values is given by [−d̄, d̄] for both dx and dy

in line with Assumption 2.
Thus we can optimize over each value of observed output frame independently. Before the
System identification algorithm is initiated, we require information about the initial state,
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Θ(0), which is the underlying sample image. Since we do not know it beforehand, we roughly
approximate it by summing up all the output frames and assuming the result as our initial
states. Let this approximation of initial state be represented by Θ̂(0)′,

Θ̂(0)′ =
N∑
k

Y(k) (3-10)

There are three steps involved for system identification algorithm of the above model are as
follows.

• Evaluation : The log likelihood is evaluated for the current frame with state transition
matrix Adx(k),dy(k) corresponding to all values of drift from the set [−d̄,d̄] for both dx

and dy. This is following Assumption 2. The likelihood for Y(k), given the previous
state, Θ̂(k − 1)′ depends on Adx(k),dy(k) since

Y(k) = Poisson
(
Θ̂(k)′

)
= Poisson

(
Adx(k−1),dy(k−1)Θ̂(k − 1)′

)
since,

Θ̂(k)′ =
(
Adx(k−1),dy(k−1)Θ̂(k − 1)′

)
Thus we denote the likelihood as L

(
Y(k)|Θ̂(k − 1)′, dx(k − 1), dy(k − 1)

)
, i.e. the like-

lihood of observing Y(k) given the information about the last state and assumed drift
value. For notation purpose, the subscript i denotes the i′th element of the vector. For
e.g. Y(k)i is the i’th element of output vector Y(k).

L
(
Y(k)|Θ̂(k − 1)′, dx(k − 1), dy(k − 1)

)
=

∏
i

((
Adx(k−1),dy(k−1)Θ̂(k − 1)′

)
i

)Y(k)i exp
(
−
((

Adx(k−1),dy(k−1)Θ̂(k − 1)′
)

i

))
(Y(k)i)!

(3-11)

A more convenient way of evaluating the likelihood is by evaluating the logarithm of
the likelihood as follows:

log
(
L
(
Y(k)|Θ̂(k − 1)′, dx(k − 1), dy(k − 1)

))
=
∑

i

Y(k)i log
((

Adx(k−1),dy(k−1)Θ̂(k − 1)′
)

i

)
−
∑

i

(
Adx(k−1),dy(k−1)Θ̂(k − 1)′

)
i

(3-12)

ignoring the term which remains constant, specifically, the numerator from (3-11).

• Optimization : Whichever value of dx(k) and dy(k) yields the highest likelihood is
the most likely value of drift for frame k. Since the number of values is drift values
over which likelihood is evaluated is small, one can evaluate the minimizing argument

Master of Science Thesis Akshat Srivastava



26 State Space Modelling using Shift Matrices

in significantly small computational time without requiring complex technique such as
gradient descent.

d̂(k − 1) = arg max
dx(k−1),dy(k−1)

(
log

(
L
(
Y(k)|Θ̂(k − 1)′, dx(k − 1), dy(k − 1)

)))

• Update : The next state is updated using the recursion in (3-9).

Θ̂(k)′ = Adx(k−1),dy(k−1)Θ̂(k − 1)′

and the whole step is performed again for observed data Y(k + 1). All the three steps
are then repeated for all observed frames.

It should be noticed that the same algorithm could be used for 1D case as well since both the
systems are exactly same except the state transition matrix Adx(k−1),dy(k−1) which would be
replaced by Adx(k−1) and we would maximize for the single argument, dx(k).

3-3-2 Image Reconstruction

Once we have obtained the most likely drift trace from the output data using System Iden-
tification, the question lies in finding out the initial spatial molecular density, θ(0) which is
equivalent to reconstructing the underlying sample image.

In the identification cycle, we assumed the initial state as the normalized sum of the output
(3-10) to find the best estimate of drift. Once the best estimate of drift d̂(k) is available, we
can counter adjust each of the output frames to obtain the drift compensated output, Ŷ(k).
This output could then be used to find a better approximation of spatial molecular density
by summing up all the drift corrected output frames. The following step show the process of
obtaining the proper estimate of the spatial molecular density.

1. Evaluation: Evaluate the absolute drift, d̃(k) using the estimated relative drift, d̂(k),
which is basically the cumulative sum of the latter.

2. Compensation: Obtain the counter drift, i.e. −d̃(k)

3. Reconstruction: Apply this absolute counter drift on each of the output to obtain
negate the effect of drift.

Ŷ(k) = A−d̃x(k−1),−d̃y(k−1)Y(k)

The new spatial molecular density,Θ(k)∗(0) is formed using the drift compensated out-
put frames

Θ(k)∗(0) = 1
N

∑
k

Ŷ(k) (3-13)
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3-4 Algorithm Development

Now, we would like to test the drift estimation (system identification) and image reconstruc-
tion algorithm and make adjustment to improve the performance. We start with the simplest
case first, that of 1D case using two stripe spatial molecular density data as previously shown
in Figure 3-4, but with rich frame output data (i.e. large number of molecules appearing in
each output frame). The dataset consist of 200px data in length with discrete relative drift
generated from uniform distribution over values [−1px, 0px, 1px]. Furthermore, the spatial
molecular density of simulated date is assumed to be uniform over all the sample image. Upon
successful working, we would increase the sparsity of the data by scaling the spatial molecular
density desirably. The output frames are shown in Figure 3-6 (b).

We begin by evaluating the approximate of initial spatial molecular density, θ(0) which is
obtained through normalized sum of all output frames. Then the likelihood is evaluated for
the second frame, y(1) over the drift set considered, [−d̄, d̄] for d̄ = 1, i.e. L(y(1)|θ(0), −1),
L(y(1)|θ(0), 0) and L(y(1)|θ(0), 1) with A−1, A0 and A1 respectively. Whichever value of d(0)
gives the least negative log likelihood is the best estimate of drift in first frame. This estimate
is used to update the current state. The updated state, θ(1) is used in the next iteration with
frame y(2) to find d(1). Likewise, we evaluate the drift for the whole dataset. The resulting
estimated drift is shown in Figure 3-6 (a) along with the drift compensated output data in
(c).

Figure 3-6: Result of System Identification and Image reconstruction algorithm on a dataset
generated using 1D state space model. The data is generated using θ(0) consisting of two stripes
as shown in Figure 3-4 having unit value. This generates a rich output data, y(k) as shown in
(b) consisting of 30 molecules per frame (m/f) on average. Using the System Identification we
obtain the estimated drift, d̂(k) as shown in (a) along with the ground truth drift, d(k). A bias is
added in the resulting estimated drift to show both curves separately. Using the estimated drift
along with image correction algorithm, we obtain the drift compensated data,ŷ(k) in (c)
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To increase the complexity similar, to actual experiments, we observe the result obtained
using lowered spatial molecular density as shown in Figure 3-7. The drift estimation fails due
to the reduced number of molecules appearing in each frame. Due to this, all drift values have
equal likelihood and thus optimization operation becomes trivial. To increase the information
in single frame, we combine a specific number of frames together to form a single frame. This
is referred to as frame binning. Throughout these combined frames, drift is assumed to be
constant. The result of binning is a new output dataset, Y (k) with reduced number of frames.
The process of binning is illustrated in Figure 3-8

Figure 3-7: Result of System Identification on sparser data generated using θ(0) consisting of
two stripes with value scaled down to 0.03. As evident in (a) the drift estimation fails due to
reduced number of emitters appearing in each frame as shown in (b) which consist of 1 molecule
per frame (m/f) on average

As a result of binning, it is more likely that larger values of drift could be encountered which is
why, we increase the set of drift values for which we perform optimization as well (i.e. increase
the value of d̄). This modified set is different from the one considered in Assumption 2.

Figure 3-8: Illustration of the process of binning

Furthermore, the resulting reconstructed sample image, θ(k)∗(0) from the image reconstruc-
tion step, (3-13), is utilized to perform the whole cycle of system identification and image
reconstruction again by feeding back the reconstructed image as the initial state for the sec-
ond iteration. This is similar to the EM algorithm which reuses the maximized argument to
re-evaluate the expectation, yielding a better estimate at each iteration [7]. More information
about EM algorithm is available in Appendix A-2. In generalized sense, the reconstrcuted im-
age obtained at each loop could be represented by θ(k)(0)i where superscript i is the iteration
number. This whole process of recycling the reconstructed image could be repeated until a
convergence is obtained in the drift estimate, d̂(k). We could measure the Root Mean Squared
Error (RMSE) between the current drift estimate (obtained through current iteration) and
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the one obtained in previous iteration. If the RMSE is below a pre-specified threshold, then
convergence is said to be achieved. Furthermore, we also limit the number of iterations by a
pre-specified maximum value. Figure 3-9 shows this loop schematically.

Figure 3-9: Illustration of the extended drift correction algorithm

Using the extended drift correction algorithm, we simulate few more increasingly sparsed
dataset using the 1D model and observe the performance as shown in Figure 3-10.

The resulting performance is adequate to test the extended algorithm on 2D state space
model. One important thing to keep in mind is that the same spatial molecular density value
would generate different number of emitter molecules per frame in 1D case as compared to
the 2D case because there is an added dimension. Due of this, we would like to test the 2D
drift correction algorithm on even smaller scaled values of θ(0) as compared to the 1D model
to obtain results which resemble the actual experimentation. Furthermore, since θ(k) and
y(k) are more informative than Θ(k) and Y(k) due to the former pair being an image matrix,
thus we choose to show them in the following figures.

To generate data, we use a sample image of 4 squares as the spatial molecular density, θ(0).
This is a bitmap image where each white pixel has unit value. This is shown in Figure 3-11.
To obtained different amount of sparsity in data, we scale pixel by desired value.

We begin testing by scaling each unit value of θ(0) to 0.002 and 0.001 which produces 18m/f
and 9m/f on average respectively. The results are shown in Figure 3-13. The drift correction
works successfully with this frame density but for smaller scaling i.e. 0.001 which produces
about 9m/f, the algorithm fails. Furthermore, the computational time is still comparable to
BaSDI which is one of the slowest drift correction algorithm. To improve both the speed and
performance of 2D drift correction, we add two more operations in the algorithm.

To solve the performance issue, we pre-process the spatial molecular density by smoothing
(as in context of image processing) it with a gaussian filter. To intuitively understand how
this helps in improving the process, we must understand what the likelihood function does.
The likelihood function basically compares the observed data, y(k) with the shifted spatial
molecular density, θ(k) to evaluate the most likely drift value. By gaussian smoothing the
spatial molecular density, we highlight the part with higher molecular density as compared
to the lower density part in the initial estimate of image, θ(0)1 producing a more convex
optimization problem. Smoothing the image simultaneously also accounts for the localization
error as well. A smoothed image is shown in Figure 3-12(b) which otherwise, due to coarse
estimate in 3-12(a) leads to non-linearities in the optimization problem.

Furthermore, since we are dealing with small values of spatial molecular density, we also notice
that logarithm of a small value is much larger than the value itself, (3-14). Using this, we
can safely ignore the last term in (3-12) and rewrite the likelihood function as in (3-15) which
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Figure 3-10: Result of extended drift correction algorithm on sparser data generated using θ(0)
consisting of two stripes with value 0.03 in (b) and 0.01 in (e) with an average of 1 molecule per
frame in (b) and 1 molecule per 3 frames in (e). For (b), the estimated drift d̂(k) as shown in (a)
was obtained using a binning size s = 3 and drift set as [−5, 5], i.e. d̄ = 5. The resulting RMSE
error is 2.2134 and the drift corrected data, ŷ(k) is shown in (c). Similarly for data in (e), the
estimated drift as shown in (d) was obtained using a binning size s = 8 and drift set as [−7, 7].
The resulting RMSE error is 3.1691 and the drift corrected data, ŷ(k) is shown in (c).

decreases the overall computational speed. The new drift compensation algorithm cycle is
shown schematically in Figure 3-15. We test this modified algorithm on data generated with
scale down value of initial molecular density of 0.001 and 0.0007. The results are shown in
Figure 3-14.

log (Θ(k)) ≫ Θ(k), for small Θ(k) (3-14)
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Figure 3-11: Sample image, θ(0) shape used to generate data for 2D drift correction testing. The
image consist of four squares placed equidistant to each other. The resulting spatial molecular
density is uniform over the white region. The value of θ(0) is scaled desirably to control the
amount of sparsity in output frames

Figure 3-12: (a)Coarse sample image estimate formed using summation of all frames and (b)
Gaussian smoothed image highlighting the part with high spatial molecular density

log
(
L
(
Y(k)|Θ̂(k − 1)′, dx(k − 1), dy(k − 1)

))
≃
∑

i

Y(k)i log
((

Adx(k−1),dy(k−1)Θ̂(k − 1)′
)

i

)
(3-15)

3-4-1 Final Algorithm

The algorithm now depends on lot of parameters compared to the ones introduced in the
previous section. These include the binning size, s, the drift values over which optimization
problem is performed, d̄, the window size of the gaussian smoother and the threshold for
confirming convergence of drift values. All these parameters effect the resulting estimate of
drift in various ways thus it is important what values of the parameters must one select. The
choice of parameters depends on different factors.

Binning for example increases the richness of data at the expense of eliminating information
about drift from individual frames. This becomes even worse when we have to account for
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Figure 3-13: Result of 2D drift correction on data generated using 2D state space model as
described in (3-7). The output data, y(k) in (a,b,c,d) consist of about 18m/f on average, with
each frame having dimension of 400 × 400 px. The drift is generated using a uniform distribution
over [−1px, 0px, 1px]. (a) Shows the initial state estimate, θ(0)1 which is obtained by binning
all the output frames, y(k) into single frame. (b) Shows the correct estimate, θ(0)5 along with
the estimated drift for x and y axis in (c) and (d) respectively. A bias is added in the estimate
to show the two curves separately. The binning size, s = 4 with d̄ = 7px. Convergence was
achieved within 5 iterations using a threshold RMSE of 1.5. For Frame density of 9m/f consisting
of (e,f,g), the algorithm fails to converge even after binning and feedback as evident by the drift
estimate in (f) and (g). (e) shows the data initial estimate of state, θ(0)1
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Figure 3-14: Result of 2D drift correction using modified compensation algorithm in Figure 3-15.
The output data is generated using the 2D model with 4 squares scaled to 0.001 and 0.0007 which
produces on average 9m/f and 7m/f respectively. The dimension of the data is 400×400px. The
ground truth drift is generated using a uniform distribution over [−1px, 0px, 1px]. (a) shows the
initial state approximation, θ̂(0)1 for data of 7m/f. The resulting drift estimate in (c) and (d) is
obtained using a binning size, s = 4 and d̄ = 11 having RMSE of 6.3284 and (e) shows the final
estimate of initial state, or the sample image. Similarly, (b) shows the initial state approximation,
for data of 9m/f. The resulting drift estimate in (c) and (d) is obtained using a binning size,
s = 4 and d̄ = 7 having RMSE of 4.5634 and (f) shows the final estimate of initial state, or the
sample image.

average on-time of emitters. The reason behind this trade off is quite intuitive. Binning vir-
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Figure 3-15: Schematic representation of drift compensation algorithm based on state space
model in 3-9. To select the parameters for drift compensation, we obtain a rough estimate
using RCC in (a) and (b). Furthermore, the initial estimate of sample image is smoothed using
gaussian blurring (d) and the likelihood is evaluated for each frame one by one to estimate the
drift in respective frames through the loop (e-f-g-h-e). The relative drift obtained is used to
evaluate counter drift (i), and each frame is treated for drift correction (j) to produce a better
estimate of sample image (k). The convergence of estimated drift is tested (m). If the number of
iterations reach a maximum value or convergence is achieved, the algorithm stops (o), otherwise,
it continues to feedback the reconstructed image to obtain an even better estimate of drift

tually increase the frame molecular density, due to which we have higher number of molecules
per frame, but this increase is strictly virtual. By combining the frame together, we ignore
the fact that molecule could have moved between these frames, even though not visible. Fur-
thermore, as stated, if the molecule continued to appear in succeeding frames (on-time), we
also discard the drift information that the continued blinking of that certain molecules would
have given us. This is empirically discussed further in Chapter 5. Generally, deciding the
correct binning size is a matter of trial and error since all datasets differ from each other.

The drift values over which optimization is performed, d̄ could be decided fairly by assessing
the actual drift curve. Since in most cases, little to no information is available about ground
truth drift, we must rely on other ways for obtaining a fast initial estimate of drift. For
example, RCC with a large binning size gives a fair estimate of the shape of drift curve using
which, one could decide the value of d̄. The size of the smoothing window depends on the
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size of the sample structure and sample image size. It should be about some fraction of the
size of the image. Furthermore, the threshold for drift convergence is also a matter of trial
and error. It could differ from dataset to dataset but empirically, we could state that a small
value (0.3-0.5) is best. The final SMSS drift compensation algorithm pipeline is shown in
Figure 3-15 with different sub-algorithms. This drift compensation method is tested against
other algorithms in the Chapter 5 for computational time and performance.

3-5 2D drift correction using 1D model

In the last section, we developed both the 1D model and the 2D model along with the system
identification and image reconstruction algorithm as well. It should be obvious that 1D drift
correction is faster as compared to the 2D correction since the computational complexity of
the former is on the order of O(N

s × n) whereas for the latter it is O(N
s × n2) where n is the

dimension of the state space, N is the number of frames and s is the binning size. A question
we should ask is, if it is possible to treat the drift correction of 2D image as two separate
cases of 1D drift correction.

It is possible to treat the 2D drift correction as two separate case of 1D correction [3]. We
proceed first by evaluating the sum of image matrix, θ(0) along both the axis (row and
column) which could be achieved using sum command in MATLAB, resulting in θ(0)x and
θ(0)y. This is similar to marginalizing a probability distribution. The same operation of
summing along axis is also performed on all the output frames, y(k) to obtain yy(k), yy(k),
representing drifted data in x and y axis respectively. Then we could proceed to apply the 1D
drift correction algorithm on both dataset for respective axis. The resulting drift is used in
the 1D Image reconstruction algorithm and the loop is repeated until convergence is achieved.
The final estimate of drift from both axis is used to reconstruction the 2D image. By treating
the 2D drift compensation problem as two separate cases of 1D, we would for sure loose some
information, so a subsequent question would be how much information do we loose in treating
the 2D drift correction case as 1D and what is the affect of that loss. These questions are
answered in Chapter 5.
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Chapter 4

State Space Modelling using Emitter
Position

To develop an alternative state space description of drift in SMLM, we consider another
property of this process, namely, the position of emitter molecules. The position of emitter
molecules is obtained from the experiments through the process of localization in which
we estimate the position of the emitter molecules from the Point Source Function (PSF)
generated by it [11]. This estimation is accomodated with an error called localization error.
This error differs for each emitter but could be well described with a normal distribution
having a particular mean and standard deviation. Before introducing notations, please note
that the notations in this chapter have no relation with previous chapter.

Similar to our previous modelling steps, let us begin by considering 1D drift only. Let our
state, x(k) ∈ RN represent the position of all N molecules observed throughout the image
capturing and localization process. Another fair assumption is that drift is dictated by a
random walk model. This implies that the position of each emitter molecules will be influenced
by a zero mean normally distributed noise term, w(k) ∈ RN . On the other hand, the output
y(k), consist of molecules visible in frame k. These molecules are a subset of x(k) which means
that the operation of extracting a subset of x(k) could be described through multiplication
with C(k) which is a diagonal matrix containing 1’s and 0’s for emitter which are ON and OFF
respectively. To account for the localization error, the ON molecules would be contaminated
by ZMWN, v(k). The state space is summarized in (4-1) and (4-2).

State Dynamics:

x(k + 1) = x(k) + w(k) where (4-1)

w(k) ∼ N
(−→0 N , σ2

wIN

)
Output Dynamics:

y(k) = C(k)x(k) + C(k)v(k) where (4-2)
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v(k) ∼ N
(−→0 N , σ2

vIN

)
with −→0 N is a vector containing N zeros and IN is an identity matrix of size N . One should
also note that the output equation (4-2) consist of multiplication with matrix C(k) with
both terms, x(k) and v(k) since localization error is only applicable to the emitter molecules
turning ON in frame k.

Ideally, we would proceed by performing system identification to find out the matrices C(k)
and then performing smoothing using RTS smoother to find the states, x(k) which we can use
to find the drift. Apparently, this model carries huge drawbacks. To elaborate them, notice
that the output vector, y(k) must contain the position of the molecules turning ON and, for
those molecules which stay turned OFF, the corresponding index in the vector y(k) should
have zero value. For this, we will need to know precisely which molecule appears in what
frame. Such information is very difficult to attain since there is no way to know if the emitter
molecule blinking in one frame is the same as blinking in other frame or not. Furthermore,
the average number of emitter molecules and number of frames in an SMLM experiment is
about 10, 000 and 20, 000 respectively. This means for each time step of 20, 000 frames, C(k)
would have dimensions 10, 000×10, 000. Even if C(k) is sparse matrix, we would have to find
10, 000 × 20, 000 parameters using System identification which is quite impractical.

Since the dimension explosion creates a big hurdle in the stated model, we must modify
or come up with an alternative state space description which has reduced dimension and
therefore, lesser number of parameters. To do so, we introduce an important step called
linking.

4-1 Linking

Although it might not be possible to label the emitter molecules precisely and know when
and in which frame they blink and when they do not, we could approximate this information.
The process of pairing these emitter molecules is called Linking. To elaborate this process,
consider two frames with certain number of molecules in them as in Figure 4-1(a). Let frame
1 contain molecules shown in blue and frame 2 contain molecules shown in orange.

To carry out the linking process, we must select a metric to label the molecules. We choose l2
norm which is basically radial threshold, σr around a center point. This radial threshold is of
fixed value. Using the position of emitter molecules appearing in frame 1 as the center point,
we attempt to identify if the emitter molecules appearing in next frame are within or outside
the radial threshold, σr. If the emitter molecules are within the bound, we assume that it
is the same molecule, only appearing in next frame. If not, then it is altogether a different
molecule. Furthermore, if multiple molecules are detected within the specified linking radius,
then the emitter molecules lying closest is assigned as a pair.

An important question here is how do we select the value of radial threshold (or the linking
radius) since through it, we conclude if the emitter molecules in succeeding frame is same
or not. A good estimate of this threshold would combine the information from the relative
drift distribution and the distribution of the localization error. This is because we expect
correct linkings to have drifted (dictated by the distribution of drift) along with mis-located
(which is governed by distribution of localization error). In our analysis we assume the linking
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Figure 4-1: Illustration of the process of Linking in which we identify and label if the molecules
appearing the succeeding frames are same or not.

radius to be almost equal to the sum of standard deviation of distribution of drift and that of
localization error. In most experimental data, the distribution of relative drift in not available.
This could be roughly evaluated by obtaining an initial estimate of drift using RCC. Further
investigation and discussion on linking radius is reserved for Chapter 5.

Using the labeled emitter molecules, we evaluate the horizontal and vertical displacement that
occurred from one frame to another. For example, the horizontal displacement observed in
one of the pair is shown in Figure 4-1(b). With each succeeding pair of frame, there would be
a different number of molecules linked together. Let mmax represent the maximum number of
molecules linked in any given succeeding pair of frames. This value will dictate the dimension
of the output observed in new state space model.

4-2 Modified Model : Position Linking State Space

The resulting data from the linking process, which consist of relative displacement of the linked
emitter molecules is the new observed/output, y(k) ∈ R2mmax of the alternative state space
model we aim to construct in this subsection. Let us call this model Position Linking State
Space (PLSS). In each pair of succeeding frames, the number of linked pairs are represented
by m(k). The output, y(k) represents the displacement of different linked molecules in frame
k and frame k + 1 and so on. The dimension is 2mmax to represent the data in both the
axis i.e. 2 times mmax. Each vector y(k) would consist of 2m(k) non-zero entries and
2 (mmax − m(k)) zeros entries from top to bottom. We can then define our state as the
relative drift, d(k) ∈ R2 = [dx(k), dy(k)]⊤ being frame to frame drift taking place between
frame k to frame k + 1 in both lateral axis.

State Dynamics:

d(k + 1) = Ad(k) + w(k) where (4-3)

w(k) ∼ N
(−→0 2, σ2

wI2
)
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Output Dynamics:

y(k) = C(k)d(k) + N(k)v(k) where (4-4)

v(k) ∼ N
(−→0 mmax , σ2

vImmax

)
with w(k) ∈ R2 and v(k) ∈ Rmmax . The output matrix C(k) is obtained from the number of
molecules linked in frame k and k + 1, denoted by m(k). It consist of 1’s and 0’s at index
corresponding to the molecules which are linked. The Noise matrix, N(k) is also obtained
from the linking process and is a diagonal matrix which imparts localization error on the
linked pair of emitter molecules only. It contains same number of 1’s as equivalent to twice
the number of non-zeros entries in the observed output, y(k). An example output vector
having m(k) = 2, i.e. number of linked molecules pairs is 2, the output vector, y(k) with
corresponding C(k) matrix and Noise matrix, N(k) is shown in (4-5) for mmax = 3.

y(k) =



y1,x(k)
y2,x(k)
y1,y(k)
y2,y(k)

0
0


, C(k) =



1 0
1 0
0 1
0 1
0 0
0 0


, N(k) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(4-5)

with y1,x(k) is the horizontal displacement of first pair of emitter molecules and y1,y(k) is
the vertical displacement of the same pair. The advantage of this state space model is that
it has significantly lesser dimension as compared to the former model. Due to this, the
computational resources required to obtain drift, d(k) is significantly low. But one important
attribute of this model is that it has non-stationary output noise due to the combination of
N(k) an v(k). This is discussed in following section.

4-3 Drift Compensation algorithm using Position Linking State
Space

Similar to shift state space model, we would like to find out the parameters of the model
derived in this chapter, specifically A matrix and also find out the process (a.k.a hidden)
states of the model, d(k). The process state is the drift and yet again, system identification
and smoothing algorithm give rise to the drift compensation algorithm using PLSS. We
discuss the development as follows.

4-3-1 System Identification using PEM

Prediction Error Methods (PEM) are used to find the system matrices for models having
both deterministic and stochastic part. For example, our aim here is to find the matrix
A in (4-3) from the data obtained through linking. This is the deterministic part of the
system while the process and output noise form the stochastic part of the system. Our aim
is to first parameterize the system matrices, of a suitable equivalent model and then form an
optimization problem to find the best value of the parameters using the information we have.
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The information available to us includes y(k), C(k) and N(k). Since we do not have infor-
mation about the noise, w(k) and v(k), so we ought to form an equivalent model which could
approximately represent these noise terms. Using kalman filter theory, the most suitable
equivalent model for (4-3) and (4-4) is the innovation state space model in (4-6).

d̂(k + 1) = Ad̂(k) + K(k)e(k)
y(k) = C(k)d(k) + e(k)

(4-6)

with e(k) as the innovation signal which is ZMWN. The problem with using this innovation
model for system identification is twofold. First, it has a time varying kalman gain, K(k),
i.e. for each time step, we would have a different Kalman gain which should be estimated.
This is a very hard problem to solve without sufficient dimension of the output signal, y(k).
Secondly, the innovation signal e(k) is used to represent a ZMWN signal, but the noise term
we have in our system have non-stationary distribution since the covariance of output noise
varies with time due to the term N(k).

To work around both the problems, we slightly modify the output dynamics (4-4), resulting
in the following.

State Dynamics:

d(k + 1) = Ad(k) + w(k) (4-7)

Output Dynamics:

C(k)†y(k) = d(k) + C(k)†N(k)v(k)
y(k) = d(k) + ṽ(k),

where ṽ(k) = C(k)†N(k)v(k), and
y(k) = C(k)†y(k)

(4-8)

with C(k)† as the pseudo-inverse of matrix C(k). Also note that y(k) = C(k)†y(k). We
transferred the C(k) matrix from the state term on the right side of (4-8), but the system still
remains time varying due to the output noise term. The noise is non-stationary because of
it’s time varying covariance matrix by multiplication with the term C(k)†. It could be shown
that for small enough localization error, i.e. small σ2

v , we may assume that the non-stationary
output noise signal behaves like a stationary signal. The reason behind this assumption is
discussed in the next subsection.

The resulting innovation model for this modified system is given as follows.

d̂(k + 1) = Ad̂(k) + Ke(k)
y(k)(k) = d(k) + e(k)

(4-9)

with y(k)(k) = C(k)†y(k) as the new output data. Note that the new innovation model
contains a time invariant kalman gain. Using this model, the one step ahead prediction for
the innovation model in (4-9) is given by (4-10).
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d̂(k + 1|k) = (A − K)d̂(k|k − 1) + Kỹ(k)
= Ãd̂(k|k − 1) + Kỹ(k)

ŷ(k)(k|k − 1) = d(k|k − 1)
(4-10)

with Ã = (A−K). Furthermore, we also parameterize the A and K matrices with parameters
α = {α1, α2, . . . , α8} as follows.

A =
[
α1 α2
α3 α4

]
, K =

[
α5 α6
α7 α8

]
(4-11)

Next, we must form an optimization problem to find the best estimate of these parameters
using the data. The cost function utilized is the l−2 norm of the predicted output, ŷ(k|k −1)
as shown follows

JN (α) = 1
N

N−1∑
k=0

∥ỹ(k) − ŷ(k|k − 1, α)∥2
2 (4-12)

where ŷ(k|k −1, α) is obtained by using the one-step ahead prediction equation in (4-10) and
the initial state d(0) = [0, 0]⊤.

d̂(k|k − 1, α) = Ãkd(0) +
k−1∑
τ=0

Ãk−1−τ Ky(τ)

ŷ(k|k − 1, α) = d̂(k|0)
(4-13)

Using (4-13), (4-12) and (4-11) we aim to find the argument which minimizes the cost function,

α̂ = arg min
α

(
1
N

N−1∑
k=0

∥y(k) − ŷ(k|k − 1, α)∥2
2

)
(4-14)

The above optimization problem is a unconstraint non-linear programming which could be
solved using fminunc MATLAB command. We would have to provide suitable initial values
of the parameters, α to the function. It is possible to evaluate a fine initial estimate for
A(α) but not for K(α). To understand how we would evaluate the initial estimate of A(α),
we will make a poor yet fair assumption that the value of state, d(k) ≃ ỹ(k). Let us call
this approximation, d̃(k). Using equation (4-9) where the innovation signal, e(k) = 0 since
d̃(k) = ỹ(k), we must find out the approximation of state dynamics matrix Ã(α) such that,
for all k

d̃(k + 1) = Ã(α)d̃(k), ∀k (4-15)
which could be boiled down to a least square/regression problem as follows.[

d̃1(1) d̃1(2) d̃1(3) . . . d̃1(N)
d̃2(1) d̃2(2) d̃2(3) . . . d̃2(N)

]
=
[
α1 α2
α3 α4

] [
d̃1(0) d̃1(1) d̃1(2) . . . d̃1(N − 1)
d̃2(0) d̃2(1) d̃2(2) . . . d̃2(N − 1)

]
d̃1,N = Ã(α)d̃0,N−1

(4-16)

for which, the solution to the problem is as follows

Ã(α) =
(
d̃0,N−1

)†
d̃1,N
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where the supercript † is used to represent the pseudo-inverse. This Ã(α) could be used as
an initial value for the optimization problem in (4-14). As stated, the initial value of matrix
K cannot be evaluated since the innovation signal, e(k) = 0 when d̃(k) = ỹ(k), therefore we
assign an arbitrary initial value.

4-3-2 Non-stationary noise analysis

The modified state space equations in (4-8) contain non-stationary output noise due to the
multiplication with time varying matrix C(k)† and N(k). The general structure of matrix
C(k) is shown below.

C(k) =



1 0
1 0
...

...
1 0

m(k)


0 1
0 1
...

...
0 1

m(k)


0 0
0 0
...

...
0 0

mmax − 2m(k)





(4-17)

Since the original output noise v(k) has zero mean, the mean of the non-stationary noise stays
unaffected. What changes at every time step k is the variance of the noise. We will investigate
the bounds of this time varying variance of the non-stationary noise and find out the condition
under which the non-stationary noise signal could be assumed to be fairly stationary.

To begin our analysis, we first describe the structure of the matrices C(k), C(k)† and N(k).
A sample of these matrices is shown in (4-5). Due to their structure, these matrices and their
product follow special properties as discussed below.

Property 1: C(k)†N(k) = C(k)†

Explanation:
C(k)† =

(
C(k)⊤C(k)

)−1
C(k)⊤

which means that
C(k)†N(k) =

(
C(k)⊤C(k)

)−1
C(k)⊤N(k)

The key here is to realize that
C(k)⊤N(k) = C(k)⊤

This could be understood by peeking into the structure of these matrices.
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Figure 4-2: Illustration of C(k)⊤N(k) = C(k)⊤

The highlighted green part in Figure 4-2 represents the non-zero entries of both the matrices.
As is evident, the non-zero entries of the N(k) matrix form an identity matrix with the exact
same size as the number of non-zero columns in C(k)⊤.

Property 2: The C(k)† = 1
m(k)C(k)⊤ for m(k) > 0

C(k)† =


1

m(k)

[
1 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0

]
m(k) > 0[

0 0 . . . 0 0 0 . . . 0 0 0
0 0 . . . 0 0 0 . . . 0 0 0

]
m(k) = 0

with m(k) the number of linked molecules corresponding to data y(k). The non-zero columns
containing unit in the above matrix is equal to 2m(k). The first m(k) columns of the first
row contain ones and the next m(k) columns in the second row also contain ones. Rest of the
entries have zeros.

Using Property 1 and Property 2, we can state that the non-stationary output noise is given
as

C(k)†N(k)v(k) = C(k)†v(k) =



1
m(k)

[
1 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0

]


v1(k)
v2(k)
v3(k)

...
vmmax(k)


m(k) > 0

[
0
0

]
m(k) = 0

where vi(k) ∼ N
(
0, σ2

v

)
∀i which means that all vi are random variables having same distri-
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butions. Focusing on the case where m(k) > 0, we have the resulting noise terms,

C(k)†v(k) = 1
m(k)

 ∑m(k)
i=1 vi(k)∑2m(k)

i=1+m(k) vi(k)

 =
[
z1
z2

]
, m(k) > 0

Now, we will find the distribution of the resulting random variables. Let us evaluate the
distribution of the first element, z1 using fundamental properties of expectation and variance.

z1 = 1
m(k)

m(k)∑
i=1

vi(k)

E (z1) = 1
m(k)

m(k)∑
i=1

E (vi(k)) = 0

V ar(z1) = 1
m(k)2

m(k)∑
i=1

V ar (vi(k))

= V ar (vi(k))
m(k) , since V ar(vi(k)) = σ2

v ∀i

(4-18)

For m(k) = 0, the variance, V ar(z1) = 0. Furthermore, the distribution of the second element,
z2 is the same as z1.

To evaluate the upper limit and the lower limit of the variance, we use the expression in
(4-18). The lower bound on variance denoted by the subscript L, V ar(z1)L = 0 is given when
m(k) = 0 for all frames, (i.e. ∀k). The upper bound is, V ar(z1)U = σ2

v when m(k) = 1 for
all frames.

V ar(z1)L = 0, and
V ar(z1)U = σ2

v

(4-19)

The above analytical results are confirmed using ensemble variance for different generated
datsets with a defined value of σ2

v . To evaluate the lower bound, we generate 100 realizations
of data with m(k) = 0 ∀k using (4-8) and then evaluate the ensemble variance. Similarly, for
the upper bound, we generate 100 realizations with m(k) = 1 ∀k. Furthermore, we generate
15 random sequence of m(k). For each sequence, we generate 100 realizations and then we
evaluate the variance. This dataset resembles actual experimentation. The results are shown
in Figure 4-3 (a). We also evaluate ensemble variance for different values of m(k) by generated
100 realizations for each value of m(k) (and therefore C(k)) as shown in Figure 4-3 (b) along
with the analytical values obtained from (4-18).

With this observation, we can conclude that for localization error, v(k) having considerably
small variance, σ2

v , the output non-stationary noise, ṽ(k) in (4-8) roughly behaves like a
stationary noise signal. Data with such characteristic is more suitable for system identifica-
tion algorithm discussed previously as compared to one having localization error with higher
variance.

For the verification of the system identification algorithm, we generate 20 realizations with
1000 samples using a specific A matrix containing complex eigenvalues. The number of
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Figure 4-3: The upper and lower limit of the Variance for non-stationary noise is shown here. The
datasets are generated using 1000 samples of the non-stationary noise term v(k) = C(k)†v(k)
with ZMWN localization error, having σ2

v = 0.01. Using (4-18), the upper bound on the non-
stationary noise term is given as V ar(v(k))U = σ2

v and the lower bound is given by V ar(v(k))L =
0. This is confirmed in (a) where the upper and lower limit of variance is obtained by evaluating
the ensemble variance shown in black curve, of non-stationary noise generated with m(k) = 1
and m(k) = 0 respectively for all frames,k. To show that the variance of non-stationary noise
lies within these limits, 15 different datasets are generated each containing 1000 realizations.
These dataset have random number of linked molecules generated using a normal distribution
over [0, mmax]. As one could see, the ensemble variance of these simulated datasets lies within
the upper and lower limit. Furthermore, we also generated 100 realization of non-stationary noise
for m(k) = 0, 1, 2, . . . , 15. The ensemble variance for each m(k) is shown in (b) along with the
analytical variance for each m(k). As stated previously, the maximum variance is obtained for
m(k) = 1 and lowest for m(k) = 0.

emitter molecule linked pairs in each frame is generated using a uniform distribution over
[0, mmax] with mmax as the maximum number of emitter molecule pair. The matrix C(k)
is generated using this information. The process noise w(k) ∼ N

(−→0 2, σ2
wI2

)
and output

noise v(k) ∼ N
(−→0 mmax , σ2

vImmax

)
. The resulting eigenvalues of the estimated matrix, Â

are plotted against the actual eigenvalues. As shown in Figure 4-4 (a), varying output noise
variance to a higher value produces less precise results which has been concluded from the
non-stationary noise analysis above.

4-3-3 Kalman Smoother

To evaluate an optimum estimate of the states of a state space model such as one for drift
in (4-3) and (4-4) we use so called Filters or Smoothers. There are many filters which are
used to deal with noise of certain characteristics and extract the underlying information
(for e.g. states). A low pass filter-for example-eliminates noise having the Power Spectral
Density (PSD) below a certain magnitude. Band-pass filter removes noise lying within a
certain frequency band. However these filter are not optimum, in the sense that they do not
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Figure 4-4: Results of System Identification using the PEM model with different process and
output noises. 20 realizations of 1000 samples are generated using the model in (4-3) and (4-8)

having A =
[

0.5 0.1
−0.4 0.7

]
with eigenvalues 0.6 ± 0.1732j. The system identification algorithm

is used to estimate the system dynamics matrix Â for each realization. (a) and (b) shows the
result with varying output noise and process noise respectively. As stated previously, the system
Identification algorithm performs better with output noise having low variance (σv = 0.1) as
compared to high variance (σv = 0.5), shown in (a). The algorithm is robust with varying
process noise shown in (b) with very good precision, to the extend the one complex pole is almost
hidden underneath the estimated poles. (c) shows the states, d1(k) and d2(k) of single realization
generated using the stated A matrix and process noise variance, σw = 0.1. This is relative drift
and (d) shows the cumulative sum of the states which is the absolute drift

necessarily produce the best estimate of the desired signal/state. Optimum filter on the other
hand, provide the best estimate of the desired signal.

In general, filtering is the process of obtaining a better estimate of state or signal using
observation available up-til the current time-step, k. This is the classic problem considered
by Wiener [12] in which we have signal/state are corrupted by ZMWN, and the goal is to
estimate the signal using a causal filter, i.e., using current and past observations. Smoothing
is the same as the filtering problem except that the filter is allowed to be noncausal, i.e. using
observation of past, present and future. This is similar to the forward-backward algorithm.
In many situations, for e.g. super resolution microscopy and satellite imaging, smoothing is
more suitable since we have observation of the whole experiment and we would like to use

Master of Science Thesis Akshat Srivastava



48 State Space Modelling using Emitter Position

it all to evaluate the best estimate. Smoothing is suitable as a post processing technique.
Furthermore, forward-backward algorithm is a derivative of smoothing algorithm itself.
There are three different ways to perform smoothing Fixed point, Fixed Lag and Fixed Interval.
Since we have all the observations in the interval k = 0 to k = N , we will use the fixed
interval smoothing. There are two methods of Fixed interval smoothing. One of which
is theoretically straight forward method which relies on evaluating the forward part and
backward part separately and then combining them. This is similar to the forward-backward
algorithm described briefly in section 2-2-3. The other counterpart called RTS algorithm,
which is conceptually more difficult but is computationally cheaper than forward-backward
smoothing.
The mathematical treatment of both these smoothers is extensive and could be found in
[12]. The key idea is to use a forward filter (basic kalman filter) along with a reverse filter
which relies on the one time step back dynamic recursion [25]. The Fixed interval smoothing
algorithm (or RTS algorithm) is described in (Al. 1).
To apply the Fixed interval smoothing algorithm, we require information about the initial
state, d(0), state space matrices, the covariance matrix of the initial state, Pf (0|0), covariance
of process noise, Q and output noise, R. All the information is available except the process
and output noise covariances. To obtain this covariance matrices, we utilize (4-6). Since the
innovation model in (4-6) is an equivalent representation of the actual model in (4-3) and
(4-4), we may conclude that

V ar (w(k)) ≃ V ar (K(k)e(k)) = V ar
(
d̃(k + 1) − Ad̃(k)

)
V ar (N(k)v(k)) ≃ (e(k)) =

(
y(k) − C(k)d̃(k)

) (4-20)

with d̃(k) = C(k)†y(k) same as in (4-15). Thus we aim to evaluate the ensemble variance of
signal d̃(k + 1) − Ad̃(k) and y(k) − C(k)d̃(k). Before that, we must select for which time step,
k is the ensemble variance being evaluated for. To evaluate the variance for w(k), we evaluate
d̃(k + 1) − Ad̃(k) for all k and then evaluate the ensemble variance. For variance of v(k), it
should be clear through some reasoning that to obtain a good estimate, we should use all the
time-steps k for which m(k) = mmax. For these particular k, we will have N(k) = Immax and
y(k) will be a vector with non-zero elements since m(k) = mmax.
To test the RTS smoother algorithm, we generate several dataset having different localization
error distribution and different output dimension which is based on maximum linked pairs in
any succeeding frame, mmax. The resulting cumulative sum of the estimated states in y-axis
are shown in Figure 4-5. It is observed that the smoother algorithm produces poor estimate
when the output dimension, mmax is low and localization error is large. Furthermore, we
should note that the estimated states consist of relative drift values. Therefore, any error in
the estimation is cumulative when evaluating absolute drift using these values. It is for this
reason that some deviation should be expected in any estimation process as the time-step
increases which is also evident in Figure 4-5.

4-3-4 Final Algorithm

In last few subsections, we developed the tagging, system identification and smoothing algo-
rithm. By appending the image reconstruction algorithm similar to subsection 3-3-2 at the
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Figure 4-5: Cumulative sum of estimated state obtained using different output noise variance,
σv and output dimension, mmax. As observed, the estimation is best with low localization error
(output noise variance) and high output dimension or equivalently, high number of linking within
data. The Smoother is more sensitive to the localization error overall.

end, we obtain the drift compensation algorithm using the model in (4-3) and (4-4).
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Algorithm 1: RTS Smoother
Result: x̂(k), P (k), K(k)
Initialize the forward filter;

x̂f (0) = E (x0)

Pf (0|0) = E
[
(x0 − x̂f (0)) (x0 − x̂f (0))T

]
k = 1

while k≤N do
Execute Standard Kalman filter;

Pf (k|k − 1) = A(k − 1)Pf (k − 1|k − 1)A(k − 1)T + Q(k − 1)

Kf (k) = Pf (k − 1|k)C(k)T
(
R(k) + C(k)P (k|k − 1)C(k)⊤

)−1

x̂f (k|k − 1) = A(k − 1)x̂f (k − 1|k − 1)
x̂f (k|k) = x̂f (k|k − 1) + Kf (k) (y(k) − C(k)x̂f (k|k − 1))
Pf (k|k) = (I − Kf (k)C(k)) Pf (k|k − 1)

k = k + 1

end
Initialize RTS smoother;

x̂(N) = x̂f (N |N)
P (N) = Pf (N |N)

j = N − 1

while j ≥1 do
Execute the RTS smoother;

If (j + 1|j) = (Pf (j + 1|j))−1

K(j) = Pf (j|j)A(j)T If (j + 1|j)
P (j) = Pf (j|j) − K(j) (Pf (j + 1|j) − P (j + 1)) K(j)T

x̂(j) = x̂f (j|j) + K(j) (x̂(j + 1) − x̂f (j + 1|j))
j = j − 1

end
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Figure 4-6: Schematic Representation of Drift compensation algorithm using the PLSS. To
obtain a fair estimate of radial threshold for performing linking in (c), we obtain a rough estimate
of drift using RCC, (a). The resulting drift estimate along with the localization error available
from the localization process is used to pick a radial threshold value, (b). Using the output
from linking, we obtain our observed data. For the purpose of system identification, we utilize the
modified state space which involves evaluating a modified observed data in (g) and then obtaining
an initial estimate of system dynamics matrix Ã in (h) for the non-linear optimization problem
formed using PEM to obtain the best estimate, Â in (i). Using this we apply Kalman (a.k.a RTS)
smoother on the original state space to obtain the best estimate of state, or relative drift. (d-e).
Using this estimate, we re-construct the sample image in (f) and obtain the final image.
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Chapter 5

Performance Comparison and
Discussion

In the previous sections, we have defined two new drift estimation algorithms and tested them
on simulated data. In this chapter, we compare these algorithms against current state-of-the-
art alternatives, on both simulated and experimental data.

To be able to test these algorithms, we require a standard simulation pipeline using which
localization data is generated. This would include numerous parameters such as to resemble
the experimental data as closely as possible. This is discussed in section 5-1. Using this
simulation pipeline we would obtain observations about the performance, computational time
as well as flaws of the algorithms which are discussed in succeeding sections. These observa-
tions are concluded in Chapter 6 with summarized comments about the potential algorithm
development.

5-1 Simulation Pipeline

Simulating the SMLM experiment requires generating binding sites or localization points,
contaminating them with drift and then selecting a subset to be represented in each frame.
Multiple parameters are required to be selected before simulating the SMLM data such as
the variance of localization error, drift variance, the frame density etc. In this section, we
describe each of these steps.

5-1-1 Localizations

The binding sites or localizations are supposed to be position of the blinking emitter probes.
More information on localization process could be obtained in [2, 20, 16, 9]. How the local-
izations process works is not of concern here, but what is important is the output obtained.
The output is generated using either a sample image or a mathematical function. In the case
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of using a sample image, we begin with importing a bitmap image of sample. This could be
clusters, microtubules or any other shape. These images are used to extract the coordinates of
the pixels. Unfortunately with this method, the problem of pixelation prevails. These pixels
are then used to simulate the process of SMLM. In the case when a mathematical function
is used, for e.g. in case of simulating microtubules, we may use spline to represent them and
produce binding points along these splines. The points or localizations are used to simulate
drift in SMLM.

Along with the process of localization, there is an error involved called localization error. This
error is due to an inevitable inaccuracy involved whilst finding the exact position of emitter
probe through the PSF generated. This error could be fairly accounted in the simulation
by contaminating the position of each emitter by a unique ZMWN value. The amount of
this localization error is controlled by varying the standard deviation (or equivalently, the
variance) of this ZMWN. The standard deviation is measured in nm.

Relative drift, or frame to frame drift is generated using a normal distribution of particular
mean and standard deviation (both in nm). The absolute drift is obtained by cumulative
summation of the relative drift values. These values are used to contaminate the localization
positions of the probes at each frame or time-step. From the set of contaminated localization
positions, we select a subset which represents the data in single frame. This selection requires
to account for random selection of emitter molecules as well as the on-time which is observed
in STORM and DNA-PAINT dataset. The on-time refers to the phenomenon due to which the
same emitter molecule is observed in succeeding frames for an arbitrary period. STORM data
has very short on-times as compared to DNA-PAINT data which has much longer on-times.

5-1-2 Data Generation

The output frames from localizations are used as input to both algorithms. In case of SMSS
algorithm, BaSDI and RCC, binning is also required. Binning refers to aggregation of certain
number of frames into a single frame. With binning, we can virtually increase the frame
density at the cost of losing information about drift. This is discussed thoroughly in subsection
3-4. BaSDI and SMSS requires integer position to work with. This requires slight modification
in the frame data. We must first perform a scaling (affine transformation) or zooming and
then round the values to closest integer. This produces a suitable integer approximation
of frame data but also introduces discretization error. The simulation pipeline is shown in
Figure 5-1.

For PLSS model, we also require to test the influence of linking. It is expected that there
would be a threshold ratio of correct to incorrect linkings (or jaccard index) below which,
considerable estimation error would be encountered. To find this threshold, we also create
another additional data generation to specifically control the jaccard index. We use the
resulting dataset to test the PLSS model.

5-2 Performance and Computational Time

Measurement of performance is based on RMSE between the ground truth of absolute drift
trace used to contaminate the localizations and the estimated absolute drift obtained. The
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Figure 5-1: Schematic representation of Simulation for generating localization data. This consist
of Generating the localization points using either image or a mathematical function along with
a ground truth drift in (a) and adding these drift traces to subsequent frames in (b) along with
introducing on-time and localization error in (d). The collective frame data in (f) is passed to
perform binning in (g). In case of using BaSDI or shift state space for drift compensation, we
also require to discretize the data which is done in (h)

computational time is measured from the point the algorithm begins to evaluate the drift
estimate till the point the estimated drift is obtained. These measure could be made for
different realizations of data, localization error, binning and other variables to obtain insight
into the prowess and weakness of each algorithm.

To benchmark the state space derived drift compensation algorithms against the existing ones
including BaSDI, DME and RCC, we generate data using the simulation pipeline discussed
and record the performance along with computation time for different binning sizes. The
ground truth relative drift is obtained from a normal distribution, N

(
µ = 0nm, σ2 = 4nm2).

Localization error is also generated using N
(
µ = 0nm, σ2 = 10nm2). A total of 3467 binding

points along 2D splines are used to generate data which consist of total 90482 binding sites.
Each of 10, 000 frames have size 100 × 100px (100nm/px) and consist of 10 emitter per frame
on average with an average on-time of 2 frames. Zooming is used to discretize the data for
BaSDI and SMSS algorithm. We use a zoom factor of 15 with smoothing factor of 4 and
window size 40px. For 2D SMSS, the drift values over which likelihood is evaluated is d̄ = 2.
For 1D shift state space, this value is required to be changed suitably as per the binning size.
The reason behind this is explained in next section. Since binning is not required in PLSS
model, we vary the linking radius which in turn generates different observed data resulting
in different estimate producing a variation in performance. Other parameters for BaSDI and
DME algorithm are adjusted accordingly. The results are shown in Figure 5-2.
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Figure 5-2: Different Passive Drift Compensation methods tested on Simulated Microtubule
data. The Data consist of 10 microtubules with 100 × 100px frame (100nm/px) and 10, 000
frames in total. The frame density is 10m/f and an average on-time of 2 frames. The relative
ground truth drift is generated using a normal distribution, N (µ = 0nm, σ = 4nm) as shown
in (a). The localization error is generated using N (µ = 0nm, σ = 10nm). For discretization of
data, a zoom factor of 15 was used. (b) shows enlarged section of ground truth along with the
estimated drift using different algorithms. Drifted sample image is shown in (c) and (d) shows the
undrifted sample image. (e) Shows the comparison graph of computational time against the RMSE
precision. The performance of PLSS model is recorded by varying the linking radius, mentioned
as ’rad’ algorithm has very low computational time but produces large error. 1D Shift algorithm
performs adequately whereas the 2D shift algorithm consumes slightly less computational time as
compared to BaSDI but also produces higher error.

As shown in Figure 5-2(e), the 1D algorithm gives a fair estimate with smaller computational
time as compared to BaSDI and DME. This result varies for more complex sample images and
is discussed in the next section. The PLSS model algorithm takes the least computational time
but the resulting estimates carry significant error in comparison to other methods. This is
primarily due to the number of linked pairs and the cumulative error in relative drift estimates
which is discussed further in section 5-4. The performance of 2D shift state space algorithm
is slightly less than BaSDI algorithm and also takes lesser time. This is expected since
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BaSDI algorithm takes into account both the estimation of absolute drift and the posterior
distribution as compared to 2D state space algorithm which only takes into account the
likelihood of relative drift. Furthermore, the problem with 2D shift algorithm is that it
contains lot of parameters that require to be tuned properly to produce good results. Whereas
BaSDI is a global optimizing algorithm, in the sense that it finds the optimum value of the
parameters by default.
The results indicate that 1D shift state space and PLSS model have potential for drift com-
pensation methods as they do not use excessive compute time. We investigate these two
algorithms in following sections. First we discuss the limitation of 1D algorithm in the next
section and then investigate the properties of PLSS model.

5-3 Discussion on 1D SMSS algorithm

It has been discussed in SMSS model that we can solve the problem of 2D drift correction
as two separate cases of 1D drift estimation for each lateral axis. This is performed by
summing the 2D dataset frames along lateral axis, normalizing it and using the resulting
dataset for 1D shift state space model. Solving the 2D drift correction problem as 1D offers a
high computational speed, it’s performance decreases as the complexity of the sample image
increases. How do we define a complex sample image?. The complexity of the image could be
defined by how many clusters that sample image consists of and how large is the sample image.
To show the increasing error, we form different simulated datasets with increasing number of
microtubules and measure the difference between the resulting drift estimate from 1D drift
compensation algorithm and that of 2D drift compensation algorithm. As is evident in Figure
5-3 (b), the estimation error in the drift estimate increases as the number of microtubule
increase.
The error produced in the drift estimation is due to the loss of information when treating 2D
dataset as two separate 1D dataset. We attempt to investigate this loss of information and
quantify it between the 1D algorithm and 2D algorithm. A good candidate for such measure
is the likelihood function. The likelihood function in (3-11) dictates the likelihood of all drift
values in the set, [−d̄, d̄] in both axis, i.e. dx and dy. We obtain a likelihood function for
2D drift correction, L(dx, dy)2D and 1D drift correction, L(dx)1D, L(dy)1D. In ideal scenario,
where no information is lost, the marginalized 2D likelihood in both axis should be equivalent
to the 1D likelihood in respective axis.∑

dx

L(dx, dy)2D = L(dy)1D

∑
y

L(dx, dy)2D = L(dx)1D

But in practice, this is not the case since we would encounter some loss of information due
to summing up of image along the axis. What we would like to measure is the difference
between these two likelihoods.

ex =
∑
dx

L(dx, dy)2D − L(dy)1D

ey =
∑
dy

L(dx, dy)2D − L(dx)1D

(5-1)
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Unfortunately, one cannot evaluate this analytically. This is primarily because the summing
up of image in either axis cannot be described as an analytical function, or in other words,
there is no analytical description of the frames or sample image, they are just matrices con-
taining values. Furthermore, it should also be noticed that the likelihood function is also
dependent on the current frame, y(k) and also the current iteration i. So, if we aim to mea-
sure (5-1) numerically, we should decide suitably how to do so. For the iteration number,
it is best to measure the likelihood when convergence is achieved since that gives the best
resulting drift estimate. Then, we could compare the two likelihoods for all frames, (y(k) ∀k)
and evaluate the mean.

First, we test the effect binning has on both the algorithms. We generate 10 different micro-
tubules simulation data using the discussed pipeline. By varying the bin size and recording
the performance, we are able to observe the effect binning has on 1D algorithm as compared
to the 2D algorithm. Furthermore, we also vary the number of micro tubules (thereby the
complexity of sample image) and record the RMSE along with the likelihood difference, ex

and ey as in (5-1) for suitable binning size and drift values. The drift values of 1D algorithm
are required to be changed with the binning size. This is because the 1D algorithm relies
on marginalizing the actual 2D image, which gives rise to a more condensed image. This
over-condensation causes wrong drift values to become more likely which is why it is more
important to choose the right set of drift values in 1D algorithm where information is being
compressed. Figure 5-3 (e),(f) show different number of microtubules consisting of 10 and 40
respectively. The likelihood error, ex and ey also increases as the image complexity increase
(by increasing the number of micro-tubules). This makes the 1D algorithm more sensitive to
varying parameters such as drift values, d̄.

To quantify the performance of 1D and 2D algorithm on experimental data, we used DNA-
PAINT origami nanostructure data. The non-bead localizations from this experiment were
drift-corrected using BaSDI, 1D and 2D shift algorithm. The result is shown in Figure 5-4.
The dataset consist of large number of clusters. Due to this, the sensitivity of 1D SMSS
algorithm is very high, as evident by the fluctuations in the drift estimate. Fluctuations are
also present in 2D SMSS algorithm.

5-4 Position Linking State Space model

The PLSS model algorithm takes much less time as compared to other algorithms but suffers
from problem of cumulative error. The main reason behind this is the linking part of the
algorithm. The linking determines the richness of the output data. If the data is not rich,
neither the system identification algorithm nor the Kalman filter would provide apt results.
The data is called rich when it contains a high number of correctly linked pairs. If either the
number of linked pairs is small or the linked pairs are incorrect, i.e. the emitter molecules
linked together are not the same molecule, then the resulting drift estimate is poor. We test
both of these factors using different simulation data. For purpose of explaining the result, we
called the ratio of correctly linked pairs to incorrectly linked pairs as jaccard index. The higher
the jaccard index, the more precise are the results. This is shown in Figure 5-5(c) where the
linking pairs are generated for given jaccard index values and their performance are measured.
Repeated over different realization of simulated data with varying frame density, the results
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Figure 5-3: Quantitative measure of the difference between the likelihood and the RMSE in drift
estimate. The data is created using different number of micro-tubules. The frames are of size
200 × 200 px with 100nm/px having localization error generated using normal distribution with
standard deviation of 10nm. The relative drift is also generated using a normal distribution with
standard deviation of 4nm. On average, the frames contain 10m/f and there are 10, 000 frames.
The error measured in likelihood as discussed in (5-1) is shown in (a) along with measurement
error with increasing number of microtubules. As evident, the likelihood error increases as the
number of microtubules increase (i.e. the image complexity) due to which the resulting error in
the drift estimate in 1D implementation increases as well. The drift estimate error in 2D algorithm
remains almost constant. The error in DME is shown for reference. (e) and (f) shows sample
images with 40 and 10 microtubules. (g) and (h) shows the drift corrected image using 1D shift
and 2D shift algorithm respectively. (i) shows the effect of binning size on the performance of
the algorithm.

confirm the claim. It is clear that as the jaccard index increases, the estimation error become
smaller for all frame densities.

We also tested the algorithm with dataset which will give rise to higher number of linked
pairs, correct and incorrect both. In principle, at low average on-time, a higher linking radius
would result in low jaccard index which will give poor performance. This is shown in Figure
5-5(b) with red curves. Furthermore, low linking radius would give rise to no pairing, and thus
empty output dataset which again produces poor performace. Good performance is obtained
when we have large average on-time and high linking radius as shown in yellow and green
curves in Figure 5-5(b).
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Figure 5-4: Estimated drift using DNA-PAINT nanostructure experimental data using BaSDI,
1D and 2D shift algorithm. (a) and (b) shows the estimated drift trace for X-axis and Y-axis
respectively. Fluctuations are present in both 1D and 2D but it is more prominent in the former.
(c), (d) and (e) shows the zoomed subsection of the sample image corrected using 1D, 2D and
BaSDI.
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Figure 5-5: Estimated Drift using PLSS model. The simulated data contains 10 microtubule,
10, 000 frames with size 200×200px (100nm/px). The drift is generated using normal distribution
N (µ = 0nm, σ = 4nm) and the localization error is generated using the normal distribution,
N (µ = 0nm, σ = 10nm). The average on-time and frame density of molecules is varied to obtain
insight into performance of algorithm. (a) shows the resulting drift trace with average on-time of
2 frames and 10m/f. It is evident that the trace diverges due to cumulative error in relative drift
for both axis. The effect of linking radius is shown in (b) for different number of microtubules
and different average on-times. Low linking radius leads to poor output data since less number
of linked molecules are low. As the linking radius is increased or the average on-time is large,
the number of pairs also increase which produce rich output data as well as low RMSE. To test
how number of linked pairs affect the performance, we specifically generated correct pairs and
in-correct pairs controller using Jaccard index and asses the RMSE with varying frame density.
(d) Shows the sample image of simulated data. The drift contaminated section of the data is
shown in (e) and the drift corrected data using PLSS model is shown in (f)
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Chapter 6

Conclusion

6-1 Conclusion

The aim of this thesis was to investigate the application of state space methodologies for drift
compensation in SMLM. Two main state space models have been derived in this thesis and
used to perform drift correction on simulated and experimental dataset.

The first model utilizes the spatial molecular density as the state of the system. The dynamics
of this state is influenced by drift which is introduced using shift matrices. These shift
matrices shift the entries of matrix of spatial molecular density in lateral axis (i.e. along
rows and columns). The output consist of a matrix containing number of emitters at each
spatial coordinate. The number of emitters is dictated by the molecular density at that spatial
coordinate, thus we define the output using a Poisson distribution. This is similar to many
other applications of state space modelling where the output happens to be strictly integer
[26]. The resulting state and output are matrices, and the resulting model is bi-linear. To
be consistent with existing state space models, the bi-linear state space is converted to a
linear state space model. Furthermore, we also derive the system identification algorithm for
this model using maximum likelihood estimation to obtain the shift matrices and therefore
the drift taking place in each frame. This estimated drift is used to reconstruct the state
and obtain the underlying spatial molecular density. The resulting combination of system
identification and state or image reconstruction gives the drift compensation algorithm using
SMSS model. This drift compensation algorithm is further improved using tools such as
gaussian image smoothing, EM algorithm and binning. We also attempted to treat 2D drift
compensation problem as two independent cases of 1D drift compensation by pre-processing
the 2D dataset to generate 1D datset using marginalization.

The second model relies on the position of the emitter molecules. Since using the position
alone could give rise to number of practical problems such as very large dimensions, we in-
troduced the process of linking, i.e. pairing molecules in succeeding frames. The molecules
which are paired represent the same molecules but in succeeding frames. The data resulting
from linking is used as output for the particle position state space model. Using Prediction
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Error Methods (PEM), we perform system identification using data from linking and fur-
thermore perform smoothing (stochastic signal processing) using RTS smoother to obtain the
underlying state, which is relative drift. Since the model has time varying output noise, we
also study the non-stationary characteristic of this noise signal and derive suitable condition
under which the noise could be safely assumed as stationary.
The drift correction algorithms arising out of these two models are tested for their perfor-
mance and computational time through bench-marking them with existing drift correction
algorithms. We also study individual properties of these algorithms using different simulated
and experimental dataset.

6-2 Recommendations

The algorithms developed in this thesis have drawbacks and advantages. These are quantified
in the Chapter 5. Here we summarize the results along with suggested improvement in each
algorithm. We also conclude with further research that could be performed using the models
developed in this thesis study.
The 1D shift state space algorithm is fast and works well with simple sample structures. It
achieves apt precision with 10 times less computational time as compared to BaSDI. But, it
also fails when the sample image becomes complex. Furthermore, unlike the 2D state space
algorithm or BaSDI, the bin size is required to be determined correctly in order to obtain
the best possible estimate of drift. Also when working with 1D shift state space algorithm,
larger drift value for likelihood, d̄ produces more fluctuations as well. Thus it is also required
to select a proper value of d̄. The 2D shift state space algorithm works comparable to BaSDI
algorithm and consumes slightly less time. But nevertheless, the computation time is large
and thus it is not suitable for large dataset. Furthermore, at low frame density, the 2D
algorithm would breakdown as well. BaSDI on the other hand does not. This is primarily
because of BaSDI takes into account the absolute drift as well as prior information of the
model of drift which gives better results than using likelihood alone.
One of the ways to improve the speed of 2D state space is to start with a better pre-estimation
of drift similar to DME. This pre-estimation could be obtained using either 1D state space
algorithm or RCC. There are several more test that could be performed on the algorithm for
example investigating the effect of frame density also. Frame density is different from Spatial
Molecular Density. The former is explicitly used to decide how many molecules appear in a
single frame on average based on the dimensions of the captured image. Spatial molecular
density is used in SMSS model and we limit it to that only. It is implicitly controls the
number of molecules since it specifically dictates how many molecules will appear at a single
spatial coordinate in a given frame. In a typical SMLM experiment, the value of frame density
ranges from 4×10−4 to 1×10−4. It is also important to note the difference between the frame
density (m/fpx2 for 2D and m/fpx for 1D, with px as pixels) and the number of molecules
per frame (m/f). The relationship between two is given by (6-1).

Molecular Density(2D) = Average Molecules per frame(m/f)
Effect Sample Image Size(px2) (6-1)

The average number of molecules per frame could vary largely. It could be 20m/f, 30m/f or
even larger but it is the molecular density which dictates the sparsity of data. Thus it could
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be insightful to experiment with frame density as well. Although we have measured the effect
of different binning size on the SMSS algorithms, it could also be useful to understand the
effect of average on-time and binning size on them.

It is also stated that the size of the gaussian smoothing window depends on the effective
size of the sample image. This is manually adjusted for the tests performed in Chapter 5.
Therefore, it is also possible to create a sub-algorithm which adjusts the window size (as well
as the factor) for gaussian smoothing. This could involve finding the effect different window
size (and factor) have on the performance of 2D algorithm. Furthermore, the performance
of 2D state space algorithm could also be increased by decreasing the smoothing factor of
gaussian window at each iteration by a certain amount.

For PLSS, we have used a linking radius to pair the molecules in succeeding frames. If there
are multiple molecules lying within the radius, then the closest one is assigned as the pairing
molecule. We can also use a more narrow condition to be able to obtain correct linking or
pairing. For e.g. we can select a lower and upper radial bound within which we will investigate
the pairing instead of searching for pair within specified radius. We can also try to correct the
SMLM dataset using fast correction method, such as 1D shift state space algorithm or RCC
and then apply the PLSS algorithm to obtain improved drift correction. PLSS also suffers
from cumulative error in relative drift due to which the resulting estimate has increasing
offset. It is worth noticing that the 2D shift state space algorithm also estimates relative drift
but does not suffers from this offset. This is because for each frame, the estimated drift is
first corrected and then the drift in next frame is estimated. We can use similar technique
of updating information for updating output for single time step and then proceeding to
estimate drift for the rest of the data.
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Appendix

A-1 Implementation of shift state space

Although we have the dynamic recursion in (3-9), implementing this directly would be compu-
tationally expensive. To illustrate this, an SMLM image of 2000px×2000px size would require
shift matrices of size 2000×2000 and the resulting Kornecker product matrix, Adx(k−1),dy(k−1)
would be of size 4000000 × 4000000. Although the resulting matrix is sparse, multiplica-
tion with such large dimension could easily hamper the computational performance of the
algorithm. Fortunately, the operation of multiplying with shift matrices could be easily im-
plemented by the slicing operation, which is way faster than the matrix multiplication. We
use the command circshift in MATLAB. This command shifts the state (spatial molecular
density) matrix, θ(k) along both rows(y) and columns(x) by desired number of times and
direction. It also circulates the elements being shifted but due to padding, it has no effect on
the implementation.

Furthermore, since the number of pixels having non-zero value is comparatively small, the
image is stored in spatial cordinates having non-zero values as compared to matrix of the whole
image. Whenever there is a requirement to obtain the complete image, ij_to_image function
is used to obtain the image matrix from coordinates. Otherwise, when the size of image is too
big, storing these in matrix form posses computational challenge from memory point of view.
Evaluating the log likelihood in (3-12) is also computationally heavy. This is because of the
number of times shifting, product and summation operations are performed in both terms
on RHS (right hand side). Fortunately, the stated three operations could be condensed in
a single operation performed by correlation function. Furthermore, the correlation function
could be computed at much faster speed in Fourier domain using convolution. Although, to
obtain equivalent result, we do require to pre-process the arguments.

1. Padding one of the argument by the number of maximum shifts with zeros. For e.g.
in 2D case, we would padd the spatial molecular density matrix θ(k) by d̄ using the

Master of Science Thesis Akshat Srivastava



68 Appendix

function padding in MATLAB. In case of 1D, we would only require to padd in single
axis.

2. Inverting the other argument, for e.g. the observed frame y(k) would be required to
be rotated by 180◦ using the command rot90 in MATLAB. For 1D, we could use flip
instead.

We use the MATLAB function conv2 to implement this operation. Therefore, (3-12) could
be rewritten as the difference between two convolution terms.

log
(
L
(
Y(k)|Θ(k − 1)′, dx(k − 1), dy(k − 1)

))
= vec (conv2 (α, β) − conv2 (α, I)) , where

α = padding
(
log (θ(k)) , [d̄, d̄]

)
β = rot90 (y(k), 2)
I = eye (n)

(A-1)

As evident, the above operates over the whole data at once instead of iterating over each
entry. This produces a significant increase in computational speed. In case of 1D, instead of
using conv2, we simply use conv command.

To be able to find the maximizing argument of the optimization problem in 2D, one has to
find the drift value corresponding to the maximum value of the resulting output from (A-1).
To do so, we must first reshape the output into a matrix of shape 2d̄ × 2d̄. Then, the index
corresponding to this maximum value would yield the most likely value of drift. This is an
example of combinatorial programming.

Readers might notice that we jump from using the terms from bi-linear model to the ones
in linear model. That is because, from an analytical point of view involving derivation of
likelihood algorithm, it is easier to deal with linear model whereas from a practical point of
view where we require fast speed and have lot of 2D pre-build functions at hand, it is easier
to deal with bi-linear model. Furthermore, as stated previously, the linear model also allows
us to derive the likelihood algorithm for both 1D and 2D using almost no difference.

A-2 EM Algorithm

Consider a domain and range sample set H and Y. Let us also assume a many to one mapping
(similar to an invalid function) from H to Y. Now the article defines an incomplete set x
which is not directly observed, but indirectly observed through y. The article also defines
sample densities f(x|Φ) and g(y|Φ) parameterized by the vector Φ which defines the shape
of density in the sample sets. We assume there is a mapping x → y(x) from H to Y, and
that x is known only to lie in H(y), the subset of H determined by the equation y = y(x),
where y is the observed data.

For a simple numerical example, consider three different bags containing red, green and blue
balls y = {10, 15, 13} respectively, with a total 38 balls. The corresponding distribution would
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be P (y) = {10
38 , 15

38 , 13
38}. The different ways in which we may draw 10 red, 15 green and 13

blue balls and putting them back instantly, would be something like R,R,R,R... or R,B,R,R...
and so on and the total number of ways would be 38!

10!×15!×13! . The corresponding probability
for any sequence of draw for e.g. R,R,R,R... would be (10

38)10(15
38)15(13

38)13. Therefore, the
total probability of drawing would be 38!

10!×15!×13! × (10
38)10(15

38)15(13
38)13. Compare this with the

equation (??). There θij gives the probability/molecular density and fij gives the number of
ways in which each molecule is sort of drawn out.

Consider another example in which 197 animals are distributed multinomially into four cat-
egories, so that the observed data consist of

Y = (y3, y2, y3y4) = (125, 18, 20, 34)

Thus

g(y | π) = (y1 + y2 + y3 + y4)!
y1!y2!y3!y4!

(1
2 + 1

4π

)y1 (1
4 − 1

4π

)y3 (1
4 − 1

4π

)y2 (1
4π

)y

·

To illustrate the EM algorithm, we represent y as incomplete data from a five-category
multinomial population where the cell probabilities are

(
1
2 , 1

4π, 1
4(1 − π), 1

4(1 − π), 1
4π
)

, the
idea being to split the first of the original four categories into two categories. Thus the
complete data consist of x = (x1, x2, x3, x4, x5) where y1 = x1 + x2, y2 = x3, y3 = x4, y4 = x5,
and the complete data specification is

f(x | π) = (x1 + x2 + x3 + x4 + x5)!
x1!x2!x3!x4!x5!

(1
2

)x1 (1
4π

)x2 (1
4 − 1

4π

)x2 (1
4 − 1

4π

)x4 (1
4π

)x5

Note that the integral in (1.1) consists in this case of summing (1.3) over the (x1, x2) pairs
(0, 125), (1, 124), . . . , (125, 0), while simply substituting (18,20,34) for (x3, x4, x5)

To define the EM algorithm we show how to find π(p+1) from π(p), where π(p) denotes the
value of π after p iterations, for p = 0, 1, 2, . . . . As stated above, two steps are required. The
expectation step estimates the sufficient statistics of the complete data x, given the observed
data y. In our case, (x3, x4, x5) are known to be (18,20,34) so that the only sufficient statistics
that have to be estimated are x1 and x2 where x1 + x2 = y1 = 125. Estimating x1 and x2
using the current estimate of π leads to

x
(p)
1 = 125

1
2

1
2 + 1

4π(p) and x
(p)
2 = 125

1
4π(p)

1
2 + 1

4π(p)

The maximization step then takes the estimated complete data
(
x

(p)
1 , x

(p)
2 , 18, 20, 34

)
and

estimates π by maximum likelihood which involves finding ∂f
∂π . It should be noticed that

x
(p)
1 and x

(p)
2 have no relation with π, thus the partial derivative needs not to perform the

derivative action on x
(p)
1 and x

(p)
2 .

π(p+1) = x
(p)
2 + 34

x
(p)
2 + 34 + 18 + 20
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Glossary

List of Acronyms

SMLM Single Molecule Localization Microscopy
SRM Super Resolution Microscopy
EM Expectation-Minimization
PLSS Position Linking State Space
PSD Power Spectral Density
MAP Maximum a priori
SISO Single Input Single Output
PEM Prediction Error Methods
RMSE Root Mean Squared Error
HMM Hidden Markov Model
RMS Root Mean Squared
LLSQ Linear Least Square
QPD Quadrant Photodiode
ROI Region of Interest
SNR Signal to Noise Ratio
ZMWN Zero Mean White Noise
DCC Direct Cross Correlation
MCC Mean Cross Correlation
RCC Redundant cross-correlation
CCD Charge-Coupled device
IR Infrared
DME Drift at Minimum Entropy
BaSDI Bayesian Sample Drift Inference
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STED Structures Illumination Microscopy
STORM Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy
PALM Photoactivated Localization Microscopy
FIONA Fluorescence Imaging with One-nanometer Accuracy
PSF Point Source Function
RTS Rauch–Tung–Striebe
SMSS Shift Matrix State Space
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