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INTRODUCTION

The investigation from which this thesis has arisen relates to the
design and application of a special analogue computer for solving such
problems as

9z, azz.
1

i
-8 B = fi(x,t,zi,...,zn), a8y > o,

Zi(o,t) = q’i(t)v zi(1’t) - ni(t)’ zi(x,O_) - Yi(x)’ i=1,.00yn.

The realized special analogue computer does not solve a given problem
itself but a numerical approximation of it obtained by replacing the dif-
ferential equations by difference equations. As a consequence x and t can
only have discrete values.

As for the choice of the type of the difference equation and the values
of the step widthes one has to take care that the exact solution of the
difference problem is a good representation of the solution of the diffe-
rential problem.

The step widthes ought not to be chosen smaller than strictly needed
because smaller values of the step widthes result in higher cost for ob-
taining a solution. In connection with this sometimes it seems sensible
to fit the boundary and initial values of a given differential problem be-
fore using them with the corresponding difference problem.

Studying the criteria which the step widthes have to satisfy it has
proven to be useful to apply two concepts: the external solution and the
internal solution.

The special analogue computer does not solve a difference problem direct-
ly but by means of an iteration process at each time t . The rate of con-
vergence of this iteration process proves to be high in comparison with a
digital iteration process.

The thesis can be divided into two parts. In the first one, being the
chapters I and II, the concepts external and internal solution are discus-
sed from analytic point of view. The second part deals with the numerical
aspects of solving problems of the above mentioned type. We remark that
for a good understanding of the second part no detailed knowledge of the
first two chapters is needed.







Chapter 1 *

EXTERNAL AND INTERNAL SOLUTION FOR ORDINARY DIFFERENTIAL EQUATIONS

Definitions

In this thesis a number of notions are used for boundary and/or initial
value problems of different kinds. All these problems have boundaries on
which one of the independent variables is constant. Because most problems
have only one dependent variable and one or two independent variables, in
this paragraph we will define the mentioned notions only for the last
problems. Moreover we will restrict ourselves to linear problems. Further
existence and uniqueness of the notions will be left out of consideration.

If we conceive differentiation, matrixtransformation, etc. as operations,
then all considered problems can be written in the same form. Denoting the
operators of a problem by Oi’ i=1,...,n, then for each problem the solu-

n
tion f has to satisfy a number of equations Lf = g, where L = E ki Oi with
i=1

ki = constant and g is a given quantity. Only one of these equations is va-
1id in the whole region for which the problem is formulated. This equation
can be a partial differential equation, an integral-difference equation,
etc. and will, in general, be called system equation. The other equations
are the boundary and/or initial conditions.

Denoting the indepeudent variables by x., i = 1,2, a boundary will be
called a xi-boundary, if x; = constant on %his boundary.

First we consider a problem without boundary and initial conditions,
thus only a system equation Lf =g is given. We state that the operators
of the system equation can be applied infinitely often to g and its trans-
forms, already performed. Then we define the external solution as that
linear composition of g and its transforms which satisfies the system equa-
tion in such a way that the coefficients of this linear composition are
independent on the choice of g.

For a boundary and/or initial value problem we state that the operators
of the system equation can be applied infinitely often to the right hand
members g of the system equation and of the equations valid on the x.-
boundaries as well as to the transforms of these right hand members é. Then
we define the x. -external solution as that linear composition of these
right hand membérs g and their transforms, which satisfies the system equa-
tion and the equations, valid on the x,-boundaries, where the coefficients
of the linear composition are independ%nt on the choice of the right hand
members g.

In general the external (or x,-external) solution is not the solution
of the given problem., The differénce between the solution of the given
problem and the external solution is defined as the internal (or xi-internal)

solution.

In this thesis we call f an elementary solution of an equation Lf=0 if
f satisfies this equation and is also an eigenelement of all operators Oi
of L (this means 0;f = ¢;f with ¢, = constant).




We will call f a x,-elementary solution if

1) it is an eigenelement of all operators of the system equation with
exception of the operators representing an operation with respect
to X,

2) it satisfies the homogeneous system equation as well as the homoge-
neous conditions on the xi-boundaries.

We can conceive a boundary and initial value problem as describing a
physical system. If the solution of a given problem is identically zero,
then we say that the corresponding physical system is in absolute rest.
If only the internal solution is identically zero, then we say that the
physical system is in relative rest. We call a linear physical system
stable if for each deviation out of (absolute or relative) rest the phy-
sical system keeps this deviation or comes back again into the state of
rest in the long run. In the contrary case we call the physical system
unstable,

External and internal solution for linear ordinary differential and
difference equations with constant coefficients

Up to now the notions external and internal solution are defined
generally in a rather abstract way. Now we will illustrate these notions
for simple initial value problems.

First we consider the problem
ahy(n)(t) + oees + aoy(t) = g(t), 8 s++.,8 = constants, where

(n-

vE0) sty 1)(O) are prescribed. 1)

The system equation of this problem %s an ordinary differential equation,
the operators 01""’0n are é%,...,——; . We assume that g(t) can be diffe-
rentiated infinitely often. a%

The eigenfunctions of 4. are

dt
eAt; A = constant. : (2)
By definition an elementary solution of the homogeneous differential
n
equation has to be an eigenfunction of all operators % Q__. So an

g dt"“’dtn
elementary solution is ¢ J sy Provided Aj satisfies

&nkn * .o ta =0, (3)

We restrict ourselves to the case that all roots oa Ehis equation are

different. Then there are n elementary solutions e 3 and the general
solution of the homogeneous differential equation is

n Ajt
;E; bje H bJ = constant. (4)
j=



According to the definition of paragraph 1 the external solution of
differential equation (1) is a linear composition of g(t) and its de-
rivatives in such a way that the coefficients of this composition are
independent on the choice of g(t). We write the external solution
ye(t) in the form

7 (9 = 2 0w (5)

Supposing that it is allowed to differentiate (5) term by term when (5)
is substituted in (1) gives

Min(n,k)

y 2 jop_y) 89(e) = a(t). (6)

k=0 Jj=0

As the coefficients c, must be independent on the choice of g(t), it
follows from (6) that these coefficients satisfy

a_c =1
o o
A
N
a,c +a c, =0
1 0 (o} «
) N
] =~
~
| ~
1 RN
8 ¢ == s e +a ¢ =0
n’o on
W ~
N N
N ~
N ~
N ™,
N ~
a Cc-—=—=————- +a ¢ = 0. (1
n r, o n+r
~ ~

Obviously the solution for the constants ¢, is unique, provided ao¥(L

k
The infinite system of equations, that can be obtained from (7) by
omitting the first n equations, represents a recurrent relation between

(n+1) succeeding c's:

8 C_ + sececee + 8 _C =03 r 0, 8
nr 0 n+r } (8)

The initial conditions of (8) are formed by the first n equations of (7).
The solution of (8) can be found in the following way. In relation to (8)
we consider the functions h(x) which satisfy the following difference
equation

anh(x) + ... +ah(x+n- 1)-+a°h(x +n) = 0. (9)
An elementary solution of this equation is ujx, provided uj satisfies
n n=-1
a u +ap +eeo +a =0, (10)

Comparing (10) with (3), we deduce




1 &
B = 'r $ J = 1,...,1’1- (11)

n
2 dj (r)x; dj = arbitrary constant. (12)
32

=Y

Substituting x = k in (12), we obtain for the general solution of (8)
1.k
b e i %3 ) (13)
J=1 J

Finelly the solution of (7) can be found by choosing the constants d. such

that (13) also satisfies the first n equations of (7). Since the con&tants

¢, are uniquely fixed by (7), we can conceive (13) as a system of n linear

e&uations with unknowns di""'dn' The coefficient determinant of this sys-
tem is a Vandermonde determinant, which implies, that the solution of (13)

is unique.

The above considerations have been based on the agssumption that series
(5) can be differentiated term by term. Now the condition will be deter-
mined, which g(t) has to satisfy for this. From (13) it follows

1k n d, A 1 n d, A x
USRS S wal LU ol S b0 | RS

Suppose that the constants A, have been arranged in increasing absolute
value., Then ]AI/A l <1 for e&ch J. This means that for each ¢ > 0, a num-
ber M1 can be found such that

[ ¢
S 26 <. for k > M, . (15)
=2 %1 A ; :
Substitution of this in (14) gives:
e | < (1+ e)[dlll}-jtlk for k> M. (16)

Suppose that in the t-interval [t1't2] the function g(t) has the property
that two positive numbers A and M2 can be found for which

k
Ig( )(t)l = constant , A¥ with A < IAII for k> u,. (17)

If g(t) satisfies (17), it holds by virtue of (16):



|ckg(k)(t)| < constant. (1 +s)|d1H§?4k for k > Max(M, ,M,). (18)
1

So for sufficiently large k the terms of series (5) in absolute value

are smaller than the terms of a geometric series with ratio A/ki
smaller than 1, Hence series (5) is uniformly convergent in [t,,t,], if
g(t) satisfies (17). Likewise it is simple to see, if g(t) satisfies (17)
that the series which arise from (5) by differentiating term by term, are
uniformly convergent. So the sum of series (5) is a solution of the in-
homogeneous differential equation.

Hence the sum of series (5) can be considered as the definition of the
external solution.

The internal solution of an inhomogeneous problem satisfies the homo-
geneous differential equation. Its initial conditions are equal to the
differences between the given initial conditions and the corresponding
values of the external solution. So the internal solution yi(t) of (1)
satisfies

anyi(n)(t) Foeae + aoyi(t) =0

7,(0) = 3(0) = ,(0)5. .53, 0) = ¥ (0)-y Vo). (19)

Apparently the internal solution can be found from the general solution
(4) by choosing the constants b, such, that the initial conditions of the
internal solution are satisfied?

Before illustrating the notions external- and internal solution for
ordinary difference equations with constant coefficients, first the re-
sults of the preceding will be generalised. In the system equation of (1),

replacing It by Q,, being some linear operator, gives

On-1

n
a.noiy + a.n_1 A

Y+ oeee tay =g (20)

Because fromQ,f= Af it follows O"f= hmf, the elementary solutions of the
homogeneous operation equation, %elonging to (20), are those eigenfunc-
tions f. of O,, for which the eigenvalues A, satisfy the equation (3).

If again all A, are different and if only one f, corresponds to each A

’
then the genergl solution of the homogeneous equation, belonging to (28),
is

n
> b.f. with b, = arbitrary constant. (21)
j=1 J j ' j -

We can deduce from (5) and (17), that the external solution Yo of (20) is

o0
k
vy, = ZEZ ¢, 0, (22)

e k=0




provided g satisfies, for sgfficiently large k,

qugl = constant .Ak with A < |X1 . (23)

Again the internal solution can be found from the general solution (21)
by choosing the constants b. such that the auxiliary conditions of the

internal solution are satisfied.

Now we consider the case that O, is a difference operator *). An expres-
sion of the form Ay/At= {y(t+8,t +8t) -y(t+b,t)}/0t is called a diffe-
rence quotient of y in point t, if Ait,At are constants. Under Any/Atn will
be understood the transform which is obtained from y(t) by applying the dif-
ference operator it successively n times. In the case O= it the elementary
solutions f. can be determined in the following way. The eigenfunctions f

of the opergtor e are

t
£ wip At; p = constant. (24)

'An eigenfunction f is an elementary solution f. of the homogeneous dif-
ference equation, belonging to (20), if its eifenvalue satisfies equation
(3), so if it holds /

A, t/A%
(pj g 1)pj = A0t (25)

*) In this case the external solution is called "Hauptlésung" by
N.E. Norlund, page 40 of [1].
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Chapter 2

EXTERNAL AND INTERNAL SOLUTION FOR THE PARABOLIC DIFFERENTIAL EQUATION

The x-external solution for a diffusion problem

We consider a physical system described by the equation az/at- azz/bx2 = 0,
where the boundaries are x=0 and x=1. Supposing z is given on the x-boun-
daries and the initial state of the physical system is known, the problem
can be formulated by

2
Z(O,t) - Q(t)’ z(1vt) # ﬂ(t)

z2(x,0) = v(x). ~ (1
We assume that ¢ and n can be differentiated infinitely often.

First the notions x-external- and x-internal solution will be considered
physically. The x-external solution 2z (x,t) is the solution which is forced
upon the physical system from the outfide via the boundary conditions. So
the external solution does satisfy

aze azze
Ez_ . ax2 =%
ze(oyt) - ?(t)v 29(1,t) = n(t). s (2)

Now we consider two known special cases of the notion "x-external solu-
tion", namely "steady state solution" for ¢,n constant and "periodic steady
state solution" for ¢,n periodic. The stability of a problem (1) guarantees
that for large t the solution z(x,t) becomes also constant respectively pe-
riodicz1§ common f{gperty of both cases is that being constant or periodic
of 9,9 seee Ny yee. corresponds with a constant or periodic solution
for large t and that we can build up this asymptotic solution linearly from

1) 1
P 9 peeeiTyl seee

For a problem with constant or periodic boundary conditions the diffe-
rence between the solution of the given problem and the steady state or
periodic steady state solution is often called "transient". Physically the
x-external- and x-internal solution are generalizations of the concepts "(periodic)"
steady state solution" respectively "transient" in the case that the boun-
dary conditions depend arbitrarily on t. The x-external solution has to be
fixed uniquely by ¢ and 7. The mentioned common property of the above special
cases of ¢ and 7 suggests, that it must be possible in general to build up
the x-external solution linearly from ¢,n and their derivatives. This agrees
completely with the definition of the x-external solution, as given in para-
graph 1.1,




There is also a t-external solution. However, this solution makes no
sense for a physical system described by (1). In the next of this chapter
"external solution" will always mean x-external solution (only in paragraph
2,8 and 2.9 some attention is paid to the t-external solution).

Now we will consider the following mathematical formulation of the ex-
ternal solution

200t) = > {g (e (0 + g (1 - 0n )} (3)
=0

th

We remark that the k term of this series contains only the kth deriva-

tives of 9 and 0.

First we will determine the functions gk(x). Series (3) satisfies the
boundary conditions of (2) independent on ¢ and 1, only if

g,(0)

13 g,(0) = 0, k& 1

0, k = 0, (4)

g, (1)

For the sake of convenience we will take n(t) = 0. Substituting formally
(3) in (2) (supposing (3) can be differentiated term by term) we obtain

o0

8, (o) + 3 o100 - 6B} ) - 0. (5)

This holds for arbitrary ¢, only if the functions gk(x) satisfy the fol-
lowing infinite system of homogeneous ordinary differential equations

80(2)(x) =0
gk(2)(X) - g _q4(x) =0, k=1, (6)

From (4) and (6) we have

g, (x) = 1 - x. (1)
Obviously the functions gk(x), k 21, satisfy the recurrent relation
6.2 (x) - g,_(x) = 05 £(0) = g (1) = 0, k 21 (8)
k 8.1 i 8y - gk = 0, =1,

which has the form of an ordinary differential-difference equation with

vanishing boundary conditions in x =0 and x=1., From (7) the functions gk(x)

can be found successively by repeated integration. In this way we find
for g,(x)

3
g (x) = - 1% 4 L= (9)



- 10 =

It can easily be shown that each function gk(x) is an odd polynomial in
(1-x) of degree (2k +1).

Another formulation of the functions g (x) can be found in the follo-

wing way. The polynomials gk(x), k 2 1 form the solution of a boundary-
and initial value problem

ek(z)(X) - g._q(x) =0,
g (x) =1 -x
g, (0) = g(1) =0, k 21, (10)

Because the system equation of (10) as well as the conditions on the
x-boundaries are homogeneous, the x-external solution of (10) vanishes.
This means that the solution of (10) is identically equal to the x-internal
solution. The last one can be written as an infinite series of x-elementary
solutions. Therefore first the x-elementary solutions of (10) will be de-
termined. By definition a solution of the system equation is a x-elementary
solution, if it is an eigenfunction of A and if it vanishes for x=0 and

k
x=1. So the x-elementary solutions must be of the form
k .
p- . (function of x), p = constant. (11)
Elaboration gives the x-elementary solutions as

k
L.i)— sin :jnx 9

(jn)Zk J= 1925000 (12)

Expression (12) makes attractive the writing of g,(x) as a Fourier-
series, containing only sinusterms. From (9) we derive

e 1 sin jnx
g (x) =<2 Sinjix o<y =1, (13)
: = am® T
Regarding (13) term by term, we obtain from (12) and (13)
- j
g(x) = (- 02— BB 02531, (14)
3=1 (§nm)

Series (13) may be treated term by term, because the obtained series (14)
is absolutely and uniformly convergent in 0 = x =1, if k £ 1,

From (14) an important limit property of the functions gk(x) can be
derived in the following way. We have

i 1 sin j nxl
2k jn o0 A
=2 E 1 3
‘ (j?) sin mx §. ISIn uxl' (15)
= =] #23
n




- 11 =

Applying the unequality |§iﬁzﬁ%§| =1 to (15) we can derive that for each

€ > 0 a number chan be found such that

sin jnxl
RETIRETS
=2 (:17‘)
"1 sin nxl L ) i K1. (16)
u2k b4

From (14) and (16) we obtain

(1 -e)lsinnxi;z%:T <|gk(x)i <(1+¢)|sin nx—==— =y I kXK, (17)

2k+

From (14) and (17) it follows

k 2k+1
(-1)"g, (x)x
i - =x =1.
;iPw R e 1, 0 =x 51 (18)

Now we will determine, when series 3; may be differentiated term by
term. Suppose that n(t) = O and that ¢(t) satisfies in the interval [t1't2]

Iw(k)(t)l = c(onstant) . ak; a <%, if k> K,. (19)
From (17) and (19) we have

le (x)e () (1)] s o(1 + ¢) 2 (i%)k, if k > Max(K, ,K,). (20)

The right hand member of (20) is the kP term of & geometric series with ratio % 5
n

Hence, series (3) is absolutely and uniformly convergent in 0 = x = 1,
t, =t =t,, if for large k ) k)(t)| as well as |n(k)(t)| (since we may
interchange ¢ and 7n) is smaller than a constant times a , a < uz.

In nearly the same way as in the case of convergence, it can be proved

that series (3) diverges in general if Io(k)(t)l and/or In(k)(t)l are larger
than a constant times =

So we have proved that the series z {g (x)o( )(t)+-g (1 - x)ﬂ(k)(t)}
k=0
is a solution of .problem (2), if ¢ and n satisfy (19). This means that it
is in fact the x-external solution of problem (1), as defined in paragraph
1a 1.

Finally we will show that the x-external solution (3) confirms our
assertion that it is the generalization of the concepts "steady state" and
"periodic steady state solution". Again we take 7(t) = 0.
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The case 9(t) = constant is trivial, because then series (3) contains
only one term which is equal to the steady state solution.
The case of periodic boundary conditions will only be considered for
i 2
o(t). = elbt, -n2¢1p < n°, For large t the behaviour of z with respect to t

will be like e X for each x in 0 = x < 1, because the considered problem
is stable. This means that for large t the solution z(x,t) is a function of

the form f(x). eibt which satisfies (2) for ¢ = ¢ t, n = 0. Substitution
of ze(x,t) = f(x)eibt in (2) gives

2, (Rt) = sinhVib(1-x) Livt (21)
sinhvzs

However we must obtain the same function ze(x,t) from (3) and so it must
hold

o0

{Z gk(x)(ib)k§ ginh VID = sinhgmﬁ -x)% ) (22)

k=0

Expansion of both members of (22) in a power series of Vib and equalizing

coefficients of (Vib)zn+1 gives
g _,(x) g_(x) 2n+1
n=1 o (1-x)
8,(x) + 3Tt eer F Tpri)T = (2n)T (23)

In paragraph 2.2 it will be shown in a simple way that this recurrent
relation between the polynomials gk(x) is true. So it may be concluded
that the x-external solution agrees with the steady state- and periodic
steady state solution in the case of constant respectively periodic boun-
dary conditions.

Expansion of a function in its even derivatives in 2 points

For a problem (2.1.1) the even derivatives with respect to x of
ze(x,t) in x=0 and x =1 can be obtained for each t from ¢ and n with

the help of the system equation of (2.1.1) as 2%z (0,t)/3x%* =9 ! (t),
#z (0,t)/3x* = w(g)(t), etc. This means that it ?s allowed to replace
w(k (t) and n(k)(t), k=0,1,... in series (2.1.5) by 32kze(0,t)/3x2k
and 82kze(1,t)/ax2k. Then we obtain

3%%; (0,t) 32kze(1,t)§

xot = 3 X —_— 1 - 1
2, (x,%) g{gku o &l -0 — 5 (1)

We observe that in this expression only z_and its derivatives to x appear.
This suggests that a function f(x) can be expended in its even derivatives
in x=0 and x=1 as
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£x) = 2_ {g,()1(0) + g (1 - e 1)] . (2)
k=0

We call a series of form (2) a 2 points expansion [2], [3]. Assuming that
a seriesexpansion of form (2) exists for f(x) as well as for its even de-
rivatives, it can easily be deduced formally that the functions gk(x) in

(2) are indeed the same functions as we have already met before.

Substituting successively f(x) = 1,x,x%,x°, the following relations
arise

1 =g (x) +g,(1 - x) "
x = g, (1 - x)

x* = 2g(x) + g (1 - x) + 2g,(1 - x)

x® = g,(1 - x) + 6g,(1 - x). (3)

The first two relations yield g°(1 -x) = x and from the 3rd and 4th relation
it follows 31(1-x) = (x® - x)/6. Continuing in this way we can calculate all

functions gk(x) one after another. The substitution of x°" and x°" ' in (2)
results into the following recurrent relations

<20 (x) g, (1-x) i g, 1(1-x) + g, (1-x)
2008 "B M O 21 Sl o T T
<20+ g,(1-x) g _,(1-x) g, (1-x)

(en+1)1 = T 31 e BRI (4)

As for the convergence of series (2) we will refer to what has been
said in the last paragraph about the convergence of series (2.1.3), because

in this series we may replace ¢(k)(t) and 7 k)(’c) by f(Zk)(O) and f(2k)(1).

We remark that in the derivation of (2.1.3) we have only used in fact
that

&, the boundaries x=0 and x=1 are independent of t
b. on these boundaries there are unique relations between the even deri-
va?ive§ with respect to x and the derivatives with respect to t of
Z %yt
e

So it will be clear that series (2) will also be the base for the external
solution of other partial differential equations, for instance

8%2/04% - 8%3/0x° = 0 or 9%s/8x %+ 3%s/0y* « 0, a8 is shown in [4].
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Omitting the terms of series (2) for k Z n gives an approximation of
f(x) in the form of a polynomial of the degree (2n + 1). This polynomial
F2n+1(x) has the same even derivatives as f(x) in x = 0 and x = 1 up to

and including the order 2n.

Now we will consider the remainder R2n+2(x) = f(x) - F2n+1(x).
Romia) = 2 g 1% 0) + g (1 - 0P} (5)
o+

We shall show formally that R ) can be expressed into f(2n+2)(x).

2n+2(x
Applying (2), we can write f(2n+2)(x) as

f(2n+2>(x) ) 5": {gk(x)f(2n+2+2k)(0) ‘g (1- x)f(2n+2+2k)(1)§. (6)

k=0

The right hand members of (5) and (6) have the same form; only the orders
of corresponding derivatives of f differ an amount 2k. We are able to
diminish the order of the derivatives of f in (6) with the help of the fol-
lowing recurrent relation

1

B () = = [ KW (Waw, (1)

o

where K(x,p) is the known kernel:

1A

K(xyp) = p(1 = x), 0=p =x

1A

x(1 - u), x=p =1, (8)

Relation (7) can easily be proven by integrating its right hand member
by parts, using the property gk+1(2)(x) - gk(x). Integrating both members
of (6) over the x-interval [0,1] after multiplication by K(x,p) gives

1

- [xeme @D a3 fa (e (0) 4 (1- e ()]

[¢]

(9)

Comparing (9) and (6) with (5) leads to the conclusion that the right
hand member of (6) passes into that of (5) if we perform the above manner
of integration (n+ 1) times. In this way we obtain

1
Fomea() = O™ [ w2 (yan, (10)
0
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where Kn+1(x,u) is the n times iterated kernel of K(x,p). Because
Kn+1(x,u) Z 0 in the x-interval [0,1] for each n, we can apply the first

(2n+2)

mean-value theorem about integrals to (10), provided f (x) is con-

tinuous in [0,1]. Then we obtain

1

R2n+2(x) = (_ 1)n+1 f(2n+2)(§) f Kn+1 (x,u)du, 0 =¢§g §_1. (11)
o

It is well-known that Kn+1(x,u) can be written as (see also paragraph 9)

00
K (x,u) = 2> SiBEIxein (12)
n+1 2n+2
r=1 (rm)

Substituting (12) into (11) we may interchange the order of integration
and summation because series (12) is absolutely and uniformly convergent.
Elaboration gives

2n+2) n#l sin(2r+1)nx
R, ,,(x) = £{ (). 4(-1) » 0sE=1. (13)
sk T=0 {(2r+1)n}2n+3
By virtue of (2.1.14) we can also write (13) as
2
R2n+2(x) i {8n+1(x) i 8n+1(1 2 x)§ f(2n+ )(E)’ e T

We observe that in this form the remainder R2n+2(x) resembles very much

the Lagrange remainder of the Mac Laurin-series. The only difference is
2n+2 3

x
that Tonea)T has been replaced by {gn+1(x) + 8n+1(1 - x)}.

For large values of n it follows from (2.1.18) that

(x) ~ (- )P+ Agdnax (2042) ) osg=1. (15)

Ron+2 _2n+3

In the last two paragraphs we have found several properties of the func-
tions g(x). However these functions can be conceived to be completely
known, because they are closely related to Bernoulli polynomials:

2k+1

& (x) = 3T Bawer (1 - 3)- M (16)

*) I am indebted to Prof. S.C. van Veen for pointing out this relation.
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2.3, External solution of a "parabolic" difference problem

Again we consider problems of type (2.1.1) but now, however, for the
case in which the differential equation has been replaced by a difference
equation. The solution of the obtained difference problem is only defined
for discrete values of x, > ) mAx and discrete values of t, tn = nAt.

Denoting the difference quotient which arises instead of az/at by
Az/At, etc. the problems to be considered are

2
Az(xm,tn) A z(xm,tn) )
At N

ax*
2(0,t.) = o(t ); 2(1,¢.) = n(t )
z(x,0) = v(x). (1)

We see that in (1) the x-interval [0,1] is divided in M subintervals,
M = 1/0x. By definition the x-external solution has to be a linear com-
position of ¢, n and their difference quotients with respect to t. In

analogy with paragraph 2.1 we only consider the external solution writ-
ten as

2 (egrty) = > {oag)e () + g7 - x 0 (e} (2)

k=0

where for shortness sake we have used the notation Akf/Atk = f)k(

*
The functions gk(xm) appear to be the solution of the following
boundary- and initial value problem

g2 (x) - g% (x)

0

g,(0) = g, (1) = 0, &

v
-

g (x ) =1-x_ . (3)

In order to be able to obtain a solution of (3) we restrict ourselves
to the case in which

¥2( o%e,(x ) g (x,_;)-28.(x )+ (x
(xm) = (Ax)z = (Ax)a

m+1)

. (4)

Substltutlng this in (3) gives a ‘recurrent relation between gk(x ) and

- 1(x ), m = 1,...,M=1, in the form of a simple set of linear equations,
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in which g (x_) occurs implicitly. Denoting the matrix of this system
k'"'m

by A and introducing a vector !k such that its mth component is equal

to g;(xm) we can write the set of equations as

- >
A =4 = O ERD
’
¥4 = (- o0 dis8Y (5)
(ax)

This is an initial value problem. First we will determine the elementary
solutions of the system equation of (5). By definition these are those

eigenelements of A and j% s which also satisfy the system equation., If we

denote the eigenvectors and eigenvalues of A by u. and ., the elementary
solutions prove to be s J J

11k ;
(;;) By Jo= 1y ,Ma1, (6)

It is well-known that the eigenvectors and eigenvalues of the tri-diagonal
matrix A are

u, = (u31,...,uj,M_1) . Uy = sin gEx g
» 2(1- A
by = - 08 amax/ EA-6 e | o (7)
(ax)

Obviously the eigenvectors u. are linearly independent, so the general
solution of the system equatgon of (5) is

M-1
1.k

> Kj(jr—) gy - (8)

J=1 J
From this the solution of (6) arises, if the constants K. are chosen
such that J

M=-1
X = % qujE’j . (9)

*
Denoting these values of Kj by bj we have the functions gk(xm) as

=

-1

g (x,) = 2 b, (L

k
b
3

sin Inx ., M= tyse. M1, "k 20, (10)

3=

-

It can easily be seen that (10) also holds in x_ = O and x =1, excepted
in X - 0 for k = 0. o »

]
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We remark that (10) can also be obtained directly from (3) in an
analogous way as has been done in paragraph 2.1 for the determination
of gk(x) Then we would have found the x-elementary solutions of (3) as

o 2 k :
{- 517:&;;%;;3;7 E sin jxxm, J = 1y000yM=1, m=0y0..,M. (11)

Of course from this we would finally have obtained (10) again. We call
attention to one difference between both above methods of determining

*
gk(x ). While in the first method eigenvectors and eigenvalues of A

must be known, they arise in the second method as a subsidiary result .
from (11).

Applying the difference operator 52 to an arbitrary odd polynomial
Q, (x) results again in an odd polynomial Q,(x), whose degree is decreased
by 2. For given coefficients of Q, (x) it holds that all the coefficients
of Q,(x) excepted that of x are unlquely fixed. We can choose this coef-
ficient such that Q (1) 0. Hence startlng from an odd polynomial of the
first degree, P (1 - x) = x, which equals 51(1 - x ) in x = x , we can
construct odd polynomlals in x, Pk(1 - x), of degree (2k + 1), k = 1,2,etc.,

which satisfy (3) for each 0 = x =1. The first three of these polynomials
are

P°(1 -x) = X

P (1 - x) - L3{ax —i(A—")— = (12)

360 120 ’

We observe that only the coefficients of the polynomials P, (x) contain
the parameter Ax for k Z 2 and that P (x) =g, (x) and P (x = gi(x). From the
last equalities we have

eXx,) - g, (x,) (13)

g (x,) = g (x). (14)

Now we will show that from these relations a seriesexpansion of cos y
can be derived. Substituting (10) and (2.1.14) in (13) and (14) -7
we obtain

ol
sin Jnxm

ij sin juxm=2j=1-—jn—, M= Ty00s,M (15)




M-1D © gin jnxm

S —dgin jax = -2 =2, m=0,...,M. (16)
3=1 ¥ > =1 (n)

For each x in [0,1] it nholds
sin {(§£ £ 3)mx } =  sin nx , P =0,1,... . (17)

By means of this relation we can reduce the right hand members of (15)
and (16) to finite series. Then equating the coefficients of sin jmx in

the left and right hand member of (15) and of (16) gives, if we write

3“/2=y,
bj i €F [% + z;; (;%; ¥ ;%;)] = Ax cotg ny (18)
_1129—")1[1—+i 1 7. (19)

3
b5 4x® Ty® a1 (3-r)®  (yer)®

From these equalities by substitution of (7) into (19) we can deduce

S !

M,L[L+Z{ A 2 e i T (20)

3 3 3 3 3

sin"ny 2" y r=1 (y-r) (y+r)
In the special case y = l, this series reduces to a well-known series of
Euler 4

3
n 1 1 1 1
5 U bl 8 e ol e el L (21)

3 5 7 9

*
With the obtained knowledge about gk(xm) we are able to determine the

conditions for the convergence of series (2). From (7) and (10) it can
easily be seen that

*
k = g (x_ )
lim%{ﬁm}k_u_,h y Ol (22)
1

k— o (Ax)z 8in nxm

From the great resemblance with (2.1.18) we can conclude immediately

that series (Zg is absolutely convergent in 0 = x =1, T, £t ST, if

k (tn)l as well as In k((tn)| are smaller than a constant
times ak, 8 < 2(1 - cos nAx)/(ox)2.

for large klp

In the next we will show that the external solution (2) of the diffe-
Tence problem approaches the external solution (2.1.3) of the differential




problem, if At, Ax — 0. First we shall prove that each term of (2) tends
to the corresponding term of (2.1.3), if At, Ax — 0 and x, t are constant.
Because the choice of x has to be at will, we consider

*
h (x) = E bj(__) sin jmx, in which x is continuous, instead of gk(xm).

We divide hk(x) as well as the Four1erseries of g, (x) into the sum of
the first N terms, denoted respecz}vely by SN and SN' and the remaining
series, denoted respectively by RR and RN' Then we have

Iy (x) - g ()| = Isg - syl + IRy = Ry[. (23)

*
From (7) and QP) it can easily be understood that Sy tends to Sy if
Ax — 0, For RN we have

* M=1 1k
IRyl < > ol 1% (24)
J=N+1 3
Because jAx < 1, we have from (18)
2
os | <53 (25)
and from (7)
1 1

I&|< - — . (26)
3 (gm pLimbe)ly (an)*u-;‘—z

From this we see that for k 2 1 the right hand member of (24) is conver-

gent if M —*®, Hence IR;1 can be made arbitrarily small by choosing M and
N sufficiently large. The same holds for IRNI, because series (2.1.14) is
absolutely convergent for k 2 1, From the above we conclude that

Ih (x) - gk(x)I can be made arbitrarily smell in 0 = x = 1 by choosing Ax
small enough. This means that h (x) converges uniformly to gk(x) in [0,1],

if Ax — 0. Because Q)k((t)" w(k)(t) if At —0, it has been shown now that
each term of (2) tends to the corresponding term of (2.1.3), if At, Ax — O.

The proof that the external solution (2) approaches the external so-
lution (2.1.3) if At, Ax — 0 is nearly the same as the above one and so
will not be repeated here.

We observe that again series (2) relates to a 2 points expansion of a
function f(x), being
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9 2k 2k
£(x) = 2 {p,(x) L0 | p (1 y) 2 (27)
k=0 (ax) (a

£(1
x)2k

Truncating this series after the nth term gives a polynomial approxima-
tion of f(x) that has the same even difference quotients in x = 0 and
x = 1 up to and including order 2n.

In conclusion we will determine a generating function of the polynomials
Pk(x). First we remark that series (2) also satisfies the system equation

* *
and the x-boundary conditions of (1), if gk(xm) and gk(1- xm) are replaced

by Pk(x) and Pk(1- x)5 where again x is continuous. Then taking n(tn) =0
and ¢(tn) such that ¢ 1((1',n) - bw(tn), b = constant, we obtain from (2)
- k
2o(xt,) = £(x)e(t)s £(x) = > P (x) b*, (28)
k=0

We can also determine f(x), substituting directly ze(x,tn) = f(x)w(tn)

in the system equation and the x-boundary conditions of (1). This results
into

! 2
£(x) = sinh A(1-x) A oo areacosh {1 + b(ax) e (29)

sinh A i T Ax 2

Hence

sinh A

Si_nhi(‘]-_xl - i Pk(x) bk 5 (30)
k=0

2.4. The x-internal solution of a diffusion problem

First again we will consider problems of type (2.1.1). By definition
the x-internal solution zi(x,t) is the difference between the solution of

the given problem and the x-external solution, so zi(x,t) has to satisfy:

2
azi i ) zi 5
ot sz

zi(O,t) = zi(‘l,t) =0
24(x,0) = v(x) - z_(x,0). (1)

We will determine zi(x,t) 88 a series of x-elementary solutions of (1),
ALt 4

being e J aj(x), provided aj(x) satisfies



2.5,

aj(Z)(x) - Aja(x) = 0, a,(0) = (1) = 0. (2)

Only if Aj = - (jﬁ)z, j=12,.0., we obtain a nontrivial solution of (2)

as aj(x) = sin jnx. So the x-elementary solutions of (1) are

ey
e'(Jn) " 8in J¥x, .3 & 1,260 5 (3)

o0
Hence formally we have, writing zi(x,O) - zz: ey sin jmx, that
J=1

= 2
z, (x,t) = b oy sin jxx RIGLY

=1

From (4) we see that the internal solution tends to zero if t — oo,
This means that the corresponding physical system is stable. This stabi-
lity only includes that all x-elementary solutions approach zero if
t — o, However the elementary solutions do not tend to zero in the same
extent., For relative comparison of the elementary solutions there is need
of a measure of stability. For each elementary solution it holds that the
ratio of the values at times t and (t=-1) is constant. From (3) we have
the growthfactor gj of the J h elementary solution as

(4)

g, - (D7, (5)

The inverse s, of the growthfactor g, can serve as a measure of stability.
We also need some measure of stahili%y for the internal solution itself,

but the ratio of its values at t and (t-1) is not a constant. However we

observe that for large t this ratio tends to a constant, because then the
2

internal solution is approximately equal to clsin nxX e"’t t. Sozit is sen-

sible to introduce a measure of asymptotic stability, being en .

With respect to later on we will also regard here the case (1), in which

the equation 9z/8t -3%2/6x® = 0 is replaced by 9z/dt - 8°2z/dx° - pz = 0.
Then we find the elementary solutions as

. 2
sin jux oiP-(3®) 71t s F=1,2,0.. . (6)

Hence this physical system is only stable if p < n2,

Internal solution of a "parabolic' difference problem

In the next we will determine the internal solution zi(x st ) of
problem (2.3.1), which has to satisfy ; U=




Al

2
Azi(xm,tn) : A zi(xm,tn) p

At (Ax)z

zi(O,tn) B zi(O,tn) =0

2, (x,0) = ¥(xy) = 2,(x,:0). (1)
2 2
Again we consider (1) only in the case that is taken equal to =%
(ax) (ax)” -
Then the x-elementary solutions of (1) prove to be
sin jnix_ &° J =152 Al 02
m ©j,At 1] 9C9ece 9 R
.th
where tn = nAt and gj e represents the growthfactor per step At of the J
) ? M=1 E
elementary solution. Writing the initial condition zi(xm,O) as E dj sin jnxh,
we have J=1
M=1 i
zi(xm,tn) = §i1 djsln mx €5, ° (3)

A
The value of gj At depends amply on the choice of the difference operator At °
’

As examples we will consider the difference equations of Milne and of
Laasonen

6+z(xm,tn) . bzz(xm,tn)

At (Ax)z

=0 Milne, (4)

2
b_z(xm,tn) ; b z(xm,tn) 5

At (Ax)2

Laasonen, (5)

where 0, 6+ and ® are the central, forward and backward difference. In

this order the growthfactor proves to be

24t

T e (ax)? (1 - cos jxbzx) (6)
g A " oAt ] . (7)
3:8% 45 (1-cos jnax)

(ax)?

For the difference equation of Milnre the following remarks can be made.
All growthfactors are smaller than +1 and by choosing At large enough each
growthfactor can be made smaller than -1, For small values of At the 18t
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elementary solution has the smallest stability, but enlarging At changes
this and 8y_1.A is the growthfactor which becomes first smaller than -1.
S i |

It holds Igj Atr = 1 for each j or in other words the internal solution is
’
stable if

At #id
(Ax)2 = 1+cosnAx ° (8)

For the difference equation of Laasonen it holds 0 £ gj At < 1 for each j
’

So the internal solution is unconditionally stable. For each At and Ax the
1St elementary solution has the smallest stability.

Finally we remark without proving it here that the internal solution of
the considered difference problems approaches the internal. solution of the
corresponding differential problem, if At, Ax — O.

2,6. A more general seriesexpansion of the external solution

In paragraph 2.1 we have discussed one special seriesexpansion of the
external solution, having a rather strong condition of convergence. We
remark that this condition of convergence does not give any indication
about the existence of the external solution. This can be shown for a

special case of problem (2.1.1), namely ¢(t) = eat, n(t) = 0. Then all
derivatives of ¢(t) are proportional to ¢(t) itself and so by definition
the external solution can be determined directly by substituting ze(x,t) =

r(x)?(t) in (2.1.2). Regardless the value of a, the external solution
proves to be

ze(x’t) - sinhVa(1-x) ot (1)

sinhVa

The same result can be obtained from (2.1.3), but only if Ial < nz, because
otherwise series (2.1.3) is not convergent. |

In this paragraph we will consider a more general seriesexpansion of
the external solution having a parameter such that the region of conver-
gence can be shifted at will by means of this parameter.

Introducing a new dependent variable
-at
u(x,t) = z(x,t)e s (2)

we obtain from (2.1.1), if we take n(t) = O and write a(t) = w(t)e-at,
that u(x,t) has to satisfy

au? 3%u

—? + ;—; +au=0
x

u(0,t) = a(t), u(1,t) = 0
a(x,0) = ¥(x). : (3)
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In analogy with the choice of the seriesexpansion of ze(x,t) in paragraph
2.1, we will try to find a seriesexpansion of ue(x,t) of the form

o0
k
u (x,8) = 2_ 6, (x,a) a)(e). (4)
k=0
Obviously Gk(x,a) equals gk(x) for a = 0, Formal substitution of series

(4) into (3) gives as recurrent relation between the functions Gk(x,a),
k =1

6,2 (x,8) - & 6 (x,8) = 6,_,(x,8), € (0) = G, (1) = 0, (5)

while Go(x,a) has to satisfy ’

00(2)(x,a) - a6, (x,8) =0, 6 (0)=1, 6(1)=o0. (6)

Assuming that (2) also holds for the external solutions, we obtain from

(4), if « " (t) is expressed in ¢(t) and its derivatives
o k
3,(x,8) = > 6, (x,8) {2 (-2 %)) . (7)
k=0 J=0

Of course we have to verify that this seriesexpansion is true. However
first we will determine the functions Gk(x,a). The first two can easily be
obteined from (5) and (6) as

inhVa(1-
oyeis) ¢ R Q

G (x,a) = 1 _sinhVax_ gEiEi coshVa(1-x) ; o
F Va (sinhva)z 2Va  ginhVa

Again it will prove sensible to write the functions G, (x,a) as Fourierseries
with only sin terms. This can most easily be done by writing first Gl(x,a)
as Fourierseries and after that by formally substituting one after another
the functions Gk(x,a) into (5). In this way we find

Gk(X,a) = (-1)k = %E; Ez;;;ff;TE:T sin jnx. (10)

We observe that treating these series formally is indeed allowed because
they are all absolutely and uniformly convergent in [0,1] for each value
of a, For large values of k one of the terms of series (10) will become

dominating each of the others. We abbreviate (-1)k23n/{(jn)2 + a}k+1 as

t; and denote t; of the dominating term by t;. It holds that |tj/tJ| -0
for k— e if
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£ 2
|£JEl;:5| 5 S T IREAR (L S (1)

(In)° +a

It can easily be derived that (11) is satisfied if

2 2 shlLe
J +(J+1) 3 J=1) +J
a = - 5 < Re 3 < - 5 =8, J#1 and
a
- g < Re ;; , J=1. (12) .

Now we will outline how to prove that the Jth term also dominates all
other terms of (10) together, if a satisfies (12). We divide series (10)
into three parts:

J=1

1) p1=Zt sin jnx
=19

2) P, = t; sinJnx

3) By = 2ty sinjmx . (13)
j=J+1 )

Because the first part is a finite sum, we can conclude immediately that
P, P,

l;LI -0, if k =, It can also be proven that [{¥| — 0 if k —w, but we
g

omit this proof, because it is similar to the corresponding proof for the
polynomials gk(x) in paragraph 2,1, Hence we have

k
(_1) Gk(x’a)
lim —_—
Jeas 00 tJ sin Jnx

=1, (14)

From this the condition of convergence of series (7) can be derived; again
we suffice to refer to paragraph 2.1. It proves if a satisfies (12) that
series (7) is absolutely and uniformly convergent in the x,t-region

0=x=s1,t =t =t, if in this t-interval for large k I{Q(t)e-at}(k)l

as well as I{n(t)e-at}(k)l are smaller than a constant.ck,c < |(In)3+ a|. If
fhis cgndition of convergence is satisfied, series (7) is a solution of
2,1.2).

In the following we shall show that series (7) represents indeed the
external solution by proving that series (2.1.3) and (7 ) in their own
region of convergence equal one and the same function. So it will be proven
that

S e =2 g 0. (15)
=0

k=0




For this we need more knowledge about the relationship between the functions
Gk(x,a) and the polynomials gk(x). Differentiating both members of (10)

with respect to a gives

196 (x,a)
1 %%
Oper(m08) = 57 e 3k

With the help of this recurrent relation we can express Gk(x,a) into Go(x,a)-
Hence, the following identity is true

= g ol )k a%e (x,2)
f‘i 6, (x,8) (b - &)° = kZ . B = 6 _(xs); (17
=0 . =0 3

da

. This restriction can easily be understood
(b-2)t

provided [b- al| < |(Jn)2 + a

from the condition of convergence of series (4) by choosing a(t) = e
From (17) and (8) we conclude

sinhVb(1-x) _ S* 6 (xre) (b - o)k - o g ()b" , (18)
k=0

sinhyb k=t

provided Ib-a' <|(Jn)2 + al and |b| < n%, From the first condition it
follows that b must be inside the circle with centre a and that passes
through -(Jn)%. The second condition of (18) requires that b is inside
the circle with centre O and radius 7%, So b must be inside the common
part of both circles. It depends on the values of a if both circles do
intersect each other. The choice of Rea is already limited by (12) to
the interval (ai,az); however for the choice of Ima there are no limi-
tations. So for each value of J we find that both circles cut each other
by choosing IIma sufficiently large. In the common part of both cir-
cles the power series in (18) are absolutely and uniformly convergent.
Arranging both series in powers of b, we obtain

o0
i k+j )
g, (%) = JZ( )6, 5 (xi8)(-2)?, (19)
while arranging in powers of (b- a) results in

6, (x,8) = jf: (59)sy, ()l (20)
=0

Now we are able to prove (15). Arranging both series of (15) as v(k)(t),

k = 0,1,..., it follows from (19) that the coefficients of ¢ k (t) in both
series are the same. Hence, indeed relation (15) is valid inside the com-
mon region of convergence or in other words both series in (15) represent
one and the same function of x and t. Moreover from (18) it follows that

series (4) equals the external solution in the case 9(t) = ebt, n(t) = 0.
Hence we can define the external solution for the above restriction of



Im a by seriesexpansion (4) inside its region of convergence. It is not
difficult to show that this is true for each choice of a, excepted the

2
particular values a = -(jn)".

.
Now we will consider the special case, ¢(t) = e—(Jn) t, I P LD
We observe that for this ¢(t) series (4) does not converge for any value

of a and that ze(x,t) in (1) becomes infinite. From (1) we see that if
= -(jn)z, the behaviour of ze(x,t) as function of x and t becomes like

that of the j elementary solution. Together with the external solution
also the amplitude of the jth eleméntary solution in the internal solu-
tion becomes infinite. However the sum of both stays finite. For the phy-
sical system it means that it is forced via the boundary x = 0 in its

J eigenvibration and so there occurs some kind of resonance. This reso-
nance will be considered in more detail, if moreover the initial condition
of problem (2.1.1) is taken zero. Writing the initial value of the exter-
nal solution (1) as a Fourierseries, we obtain for the internal solution

=]

z,(x,t) = -2 EE: L - sin rnx e-(rn)zt. (21)
* r=1 (rn)“+a

From this we find as the limit of the sum of the external solution and the

3™ term of (21), if a— -(jn)2s

RY L2
(1 - x)cos jmx e-(Jn) v, 2jnt sin jnx e-(Jn) ¥

Finally we remark that it can be verified, just as has been done in
paragraph 2.1, that seriesexpansions (4) and (7) are related to & 2 points
expansion of a function f(x).

£(x) = EE: {Gk(x,a)off(o) + 6, (1 - x,a)off(1)}, where
k=0

0,2(x) = £ (x) - & (). (23)

2.7. External solution for boundary conditions of mixed type

In this paragraph we will discuss briefly the problem

2 _ 2 _
ot " 2
22(0 1
2(0,t) + u, —Eigiil = 9(t), z(1,t) +u, 2513;31 = n(t)
z(x,0) = v(x), (1)

which is a modification of problem (2.1.1), having boundary conditions of
the mixed type.
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By definition the externmal solution of (1) can be wrltten in its
simplest form as

k k
2 (x0t) = 2 (5, (20)(8) + 1, (MF ()] (2)
e = 1,k 2,k
From the formal substitution of this into (1) we find that both functions
1 k(x), h2 k(x) satisfy the same recurrent relation

m ) - ey () = 0, m(0) +u,m 0) < m(1) +u,m, (1) -0,

k215 (3)
while hl’o(x) and hz,o(x) prove to be
T+p, -x X=§
2 1
D(x) = 1+u _u ’ h2,0 el 1+u _u . (4)

Hence the functions h1 k(x) and h2 k(x) are polynomials in x, which can be

determined one after another from (3) and (4). We can also write them as
infinite series of the x-elementary solutions of (3), which are found to be

sin(a x+b,)
(- ) ——‘1—‘1— , where tg bj = - K8y and tg(aj+’bj)=-p2aj. (5)

.‘l

From this we see, that in general the constants a., are no multiples of jn
and so the functions h, k(x) and h, k(x), written as series of x-elementary
’ ’

solutions, are no Fourierseries.

Again series (2) is based on a 2 points expansion of a function f(x),

(==

£(x) = kZ {h1,k(x,u1,u2)of(u1)f(0) + hz.k(xmi.uz)of(uz)f(ﬂ} , Where
=0
of(We(x) = £(2)(x) 4 pe(BH) (), (6)

External solution for the inhomogeneous parabolic differential equation

In the preceding we have studied the x-external solution in the case
that the forcing of the considered physical system happened via the boun-
daries. Now we will consider that the forcing only occurs via the right
hand member of the differential equation, thus that z(x,t) satisfies

2

0z 0"z
9t ~ ax? = f(x,t)
x

z(0,t) = z(1,t) = 0

2(x,0) = v(x). (1)
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We assume that f can be differentiated infinitely often. By
means of f(x,t) the physical system is forced in each point x as function
of time t. We observe that if forcing via the boundaries also occurs, the
x-external solution can be found by superposing the x-external solutions
of (A1) amd (2105

By definition ze(x,t) should be a linear combination of f(x,t) and its

derivatives with respect to x and t. However in this way substitution in
the differential equation and the conditions on the x-boundaries of (1)
cannot give an identity, because in the differential equation of (1) a
term z(x,t) is absent. Obviously we can get out of this complication by
permitting derivatives to x or t of negative order in the linear combi-
nation. i

Now we will consider that f(x,t) can be written as

© 2k 2k X
2x,t) = 2 {g(x) 3-7513;11 + g (1-x) 9——51%;11} , (2)
=0 X X

First we will determine the contribution to the x-external solution of the
general term of (2). We denote this contribution by zek(x,t). If we take

82%2(1,1)/0x°* = 0 and abbreviate 3°5£(0,t)/0x°" by w, (%), then z_,(x,t)
has to satisfy 8

2

azek ) %k
T = axz - 8k(x)uk(t)1 zek(o't) - zek(1’t) = 0. (3)

Writing zek(x,t) in the form

e t) = 2 @ D(w), (4)
J=o
we obtain that the functions Qj(x), j Z 1 have to satisfy

Qj(z)(X) - Qj_1(X) = 0, 94(0) = Qj(1) = 0, while

2
Qo( )(x) = - gk(x). (5)
Comparing this with (2.1.8) we see immediately that
Qj(x) " - 8k+j+1(x). (6)

Substituting this into (4) gives

o0

2 () = = 2 g D). (1)

j=0
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So formally the x-external solution of (1) can be written in the form

(=) (=) 2k+j
3 £(0,t
z(xt) = -2 2> {g,.  (x) 0.8 .
e =0 j=o k+j+1 ax2kat3 k+j+1

2%¥+de(1,4) }
- x) R ’
ox

349
(8)

In the above we have considered the x-external solution. However,
although (1) is a two boundary value problem, the superposition principle
also allows us to consider the external solution as descended from £{x,t)
in a most convenient way. For instance it can be simplest for a given
f(x,t) to consider the t-external solution, satisfying

aze aaze
o axa = f(x,t), Ze(X,O) = 0. (9)

Then we can obtain in a similar way as above, writing f(x,t) as a Mac Laurin
series, that the external solution descended from f(x,t) conceived as t-ex-
ternal solution is

S k+j+1 k+2J
ZZ t Gl f(x,0)
z (x,t) = R et . (10)
e et das (k+3+1)1 axZJatk

External and internal solution in relation to the function of Green

Again we consider problems of type (2.1.1). Solving these problems
is often done with:the help of Laplace-transformation. The advantage
of this transformation is that the homogeneous partial differential
equation together with the initial condition are transformed into an
inhomogeneous ordinary differential equation. Denoting the Laplace-

oo

transform jﬁ z(x,t)e-ptdt by z(x,p), we can write the transformed pro-

o
blem as
2D (2,5) - pa(x,p) = - 7(x)
z(0,p) = o(p), z(1,p) = n(p). (1)

Utilizing the function of Green, belonging to boundary problem C1)5

sinhVpp sinhVp(1-x)
Vp sinhVp

G(x,u,p) = sy 0 =ps=x

_ sinhVpx sinhVp(1-p)
Vp sinhVp

the solution of (1) can be written in the form

1A
.
1A

!

1, (2)



B

i :
z(x,p) =[j1 G(x,u,p)v(u)du]4—[§i§?%§%i:51 ?(p)] +[§iﬁ§¥§* 7(p)].
b (3)

We see that in (3) the influence of y(x), o(p) and n(p) arises separately.
For instance the first term of the right hand member of (3) is the solu-
tion of z(x,p) if the boundary conditions are zero. From (3) we can obtain
the solution of (2.1.1) by transforming (3) to the t-region.

We remark that transforming the three terms of (3) separately to the
t-region can be inefficient, because each term has obtained one or two
discontinuities, which of course altogether cancel each other. We will
demonstrate this for the simple problem

2
B 220, 3(0,8) = 2(1,t) = 2(x,0) = 1, (4)
ox

having the solution z(x,t) = 1. Then expression (3) becomes

1
sinhVp(1-x) inhV;
2(x,9) = [ o(xw,pian] o[ 2nl20ox) y potmnlexy (5)
o

Transformation to the t-region yields

2(xrt) - [2 > 1-_(5.}3_3 sin gix oD L [(1mx)-2 S &nj&;t_xe-(a'nfth
J=1 J=1

o0 J . 2
#lxv2 2 0 atn g G940 (6)
j=

Indeed we see that transforming the three terms of (5) separately is
much more complicated than transforming all terms together.

If the concepts external and internal sélution are used, the solution
of (2.1.1) is also divided into parts, but now separate determination of
these parts is always efficient. For problem (4) we obtain

ze(x,t) = (1=x)+x = 1 —'zi(x,0)= 0 —'zi(x,t) =0 —z(x,t)=1. (7)

The solution of problem (1) can also be determined with the help of
the concepts external and internal solution instead of utilizing the
function of Green. Again we know a priori that no discontinuities are
introduced then. Because the external and internal solutions of (1) are
not the Laplace-transforms of the external and internal solutions of
(2.1.1), we will denote the first ones by z *(x,p) and zi*(x,p). Applying
the results of paragraph 1.2 we have e
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2 =) = > = ¥, (8)
k=0 p

*
Hence z, (x,p) is fixed by
*(2 *

z; ( )(X.p) - p z; (x,p) = 0,

= (%) * e (2k)
2, (0,0) = 9(p) - kZ T 0 o (,p)= n(p) - g_ T ) ()
=0 P =0 p

The solution of this problem can be found in the usual way, but we will
do it applying the 2 points expansion (2.6.23). From (9) we have

2 *
(Q_; -p)F z, (xyp) = 0, * 2 1 and so (2.6.23) yields
dx

el o (2k) o I(2k)( PV
z; (x,p)= {o(p) -E ﬁﬁl}% +{n(p)- kgo pk+11 }_‘5—8:?2}1{ ; .
(10)

From (8) and (10) again the solution of (2.1.1) can be found by trans-
formation to the t-region. Immediately we see, that the transform of (8)
is

20 k
ze*(x,t) = E;: iT Y(Zk)(x), (11)
=0

which is the t-external solution of problem (21,1} Mostly the trans-
formation of (10) is not simple and the result, zi*(x,t), is the solution
of a problem (2.1.1) which has still external forcing.

In figure 1 the division into parts of the solution of (4) is repre-
sented for the three considered ways.

Figure 1. Some ways of dividing the solution of (4) into parts.
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If ¢(p) and n(p) can be written as powerseries of l, then in (3) as
well as in (10) terms like sinhVp(1- x)/pr+1 sinh\p occur. We shall de-

termine the inverse Laplace-transform, L'1, of this term with the help
of the polynomials gk(x). From (2.6.18) we have

r oo
'nh!p“- ) k=r<1 K-r-1
i . > g (x)p > g (x)p T . (12)
p  sinhVp k=0 k=T+1
s K-r=1
Denoting :E: gk(x)p “T=1 vy £(x,p), it can easily be seen (look also
k=r+1

at paragraph 2.8) that
£ (x,) - p £(x,p) = £,(x)s £(0,p) = £(1,p) = O. (13)

The corresponding problem in the t-region is

3f(x,t) _ 3°£(x,t)
2

3 - 05 £(0,8) = £(1,8) = 03 £(x,0) = - g (x). (14)

9x

From (2.1.14) it follows

o0 R . 2
£(x,8) = (-1)T1 2 3 singme (W) (15)
3=1 (j=)
Hence
—1¢sinh _ r g (x)tr-k g 2 o d -(37)?
i pain Vp(1 x!}=Z k i (=1)7* 2Z§_M1_Ix__e Jn)*t
r+1 . r-k)! < .\ 2r+1 ‘
p  sinhVp k=0 =1 (jm) (16)

Finaelly we will determine G(x,t,t) formally from G(x,H,p) with the
help of the polynomials gk(x). Applying (3) to (13) yields

1

f G(xyusp)g (n)dp = - > g.(x)p9 ", xzo. (17)
: j=k+1 Y

We observe that this recurrent relation between the polynomials gk(x)

simplifies much for p = O; then we obtain again the recurrent relation
(2.2.7). If we write G(x,p,p) in (17) as power series in p, then inter-
changing the order of summation and integration yields

P

1
N 3" (x,1,0)
gk+m+1(x) ik j‘ m gk(u)du i (18)
o m! 3
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We see that this is a recurrent relation between gk+m+1(x) and gk(x). We

remark that the same relation would be obtained by applying transformation
(2.2.7) (m+1) times and so the kernel of the integral equation (18) is

equal to (-1)" Km+1(x,u). Substituting (2.1.14) into (18) and after that

interchanging the order of summation and integration yields

-1
m! dp (nn)2m+

1
o n

j‘ Q_QL&;E;QI sin nnp dp = ——L——l—a sin‘nmx, 0 =-1,255.. (19)

)

This means that the eigenvalues and normalized eigenfunctions of the
kernel amG(x,u,O)/m!apm occurring in (19) are
)2

( )2m+2 s V2 sin nnx, IR 1o TRl (20)
nn

Hence by virtue of a well-known theorem

m oo m . .
9 6(x,p,0) _ o :E: (-1)"sin rux sin rmp (21)

m!ap" r=1 (rn)2m+2

From this we have

00
2 E 8in r7ix sin rmp

G(xyk,p) = 2 . (22)
r=1 p+(rm)
Hence
(=] ( n)Zt
G(x,u,t) = 2 ZZ: sin rmx sin rape T . (23)
=

External and internal solution for two simultaneous partial differential

equations

In the preceding paragraphs of this chapter we have considered problems
concerning only one partial differential equation. Now we will treat brief-
ly the concepts external and internal solution for the following problem
with two simultaneous partial differential equations

3z 3%z
—I-_a—l——dz-d2=0, a >0
at 1 ax? 191 12 2 7

x
0z 3%z
-2 _ 4 2. _ 4 z -4 z = o, a >0
at 2 5x2 24 22 2 2

zi’z(ost) = vl,a(t); 21’2(1’t) - ﬂl’z(th zi,z(x’o) = 71 z(x)' (1)

’

For convenience sake we will take 1 (t) = 9_(t) = 5 (t) = O and denote
1 2 2
9, (%) by 9(%).
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By definition we have the x-external solution {z1e(x,t), z2e(x,t)} as

210(x08) = 2 0 (), 5, (1) - > 59w, (2)

It follows from substitution of (2) into (1) that Gk(x) and Hk(x) have
to satisfy

(2)
& G, =Gy q 4,6 + d,,H =0, ck(o) B Gk(1) =0
a H (2) -H +d,, G +d4 H =0, H(0)==H(1)=0 (3)
2k k=1 21k 227k ' Tk k ?
while Go(x) and Ho(x) are fixed by
(2) - -
8 G, +d G+ dizHo =0, co(o) = 1 G°(1) .
a H (2) +d G +d4 H =0, H(0)=H (0)=o0. (4)
20 210 22 0 % Sgr s
We shall write Hk(x) and Gk(x) as series of x-elementary solutions of
(3). It can easily be seen that
{g.k sin jnx, X.g ¥ sin jmx } (5)
J 373
is a x-elementary solution of (3) provided
. N2
ey, - =,(40%8, - 11+ 4, Ky = 0
/s 2 <1 .
d,, + [{622 - az\gﬁ) }gj - x}Kj = 0. (6)
Denoting the values of 859 for which (6) has a solution by 831 and &5p

and the corresponding values of K. by K, 19 K.2, we have the general solution
{6, (x), B (x)] of (3) as J 3%

o0
k ky .. By .o 4
{;é; (Ajgj1 +ngj? )sin jnx, ? : (A, KJ1gJ1 BjKngjZ )sin jnx}.
(7)
(= <]
Writing the solution of (4) as {G (x), H (x) :E: ; sin jnx ,

el
H . sin jnx}, from (7) the solution of (3) and (4) arises if

=1 %
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Aj + Bj = Goj

AjKj1 + BjKdz = Hoj. (8)

By definition the internal solution of (1) is the difference between
the solution itself and the external solution of (1) and so {z1i(x,t),

z21(x,t)} can be written as a series of x-elementary solutions of (1).
Trying an elementary solution of the form

p.t p.t
{sin jax e ¥, Ly sin jux e A S (9)

then substitution into (1) shows that this is true provided that the

in (6) by f— and L, gives an identity. This
J

substitution of gj and Kj j

means
B =—1-; L =K, . (10)
31,2 8j1’2 31,2 1,2

Hence the internal solution {z1i(x,t), ZZi(x,t)} can be written as

Bsat (T L) Bt Hsnt
{: (cy e - L D, e 92 yein jnx, 21 CR I L DK, 92"y g1n yd,
J= J=
(11)

where the constants C'j and Dj are such that (11) equals

[{1,(x) - 2, (0,0}, {7,(x), 3, (x,0)} ] for ¢ = O.

2.11, External solution for the deamped vibrating string

In this paragraph we will consider the concept x-external solution
for the damped vibrating string as an example of a nondiffusion problem.
The displacement of the string satisfies

2 2
a, 9—% + e, g% - 2—% =0,
ot ox

2(0,8) = 9,(t), 2(1,8) = 9, (+), 3(x,0) = n,(x), ZEL_ 5 (x). (1)

2

9
Denoting the operator (a, —— + a Jl) by Q,, we see comparing (1) with
1 542 2 0t 1

(2.1.1) that 0, occurs instead of %%. Thus the x-external solution of (1)

can be obtained from (2.1.3) by replacing the operator iL-by 0;. This re-

sults into at



- 38 -

2,(x, 1) kZ g (x)0 9, (+) + g, (1 - x)oky_(4)]. (2)
=0

We see that in the special case (31’32) =(0,1) and (a
(2) is the x-external solution of,
in elementary form and the hyperbol
damped vibrating string).

198,) = (1,0) series
respectively, the parabolic equation
ic equation in elementary form (un-

If we take for instance ¢1(t) - ebt, ¢2(t) = 0, then (2) becomes

2 (x,t) = {kZ g (x)(a,b % + a b)k] Pt
=0

sinh{ a1b2+azb(1-x)]

ot (3)

2
sinh alb +a2b



Chapter 3

INTERPRETATION OF A DIFFUSION PROBLEM AS A DIFFERENCE PROBLEM

Introduction

Assuming that the determination of the solution of a problem

2
0z 97z
'—‘_"Pz/=0
0t axz

Z(O,t) - q’(t)y Z(1,'t) = T](t)
z(x,0) = v(x) (1)

is done approximately by solving numerically a corresponding difference
problem with the help of a computer, we will consider in this chapter
some aspects of the accuracy of the (analytic) solution of the difference
problem with regard to the solution of (1).

We will limit ourselves to one class of difference equations, which
can be written as )

2 2
6_z(xm,tn) o ) z(xm,tn) ) 5 z(xm,tn_1)

At (Ax)2 (Ax)z

- apz(xm,tn)—(1- a)pz(xm ,tn_1)= 0,

(2)
where again 6,6_ mean the central and backward difference. We observe that

- the difference equations of Milne and of Laasonen, considered in paragraph
2.5, are special cases of (2).

For difference equation (2) the elementary solutions of problem (1) in
difference form prove to be

t
sin jrx, g, P o Amenlin Y, (3)
where
b5
At
& {1-(1-a)q At; q, = 2(1-cos jmAx) (4)
3 1+aq At ’ 3 (8x)° P.

The accuracy of the interpretation of the solution of (1) using dif-
ference equation (2) depends among other things on the choice of At and
Ax. The accuracy can be increased by reducing At and Ax. However, then
in general the cost of determining the solution increases. So it is im-
portant to choose At and Ax not too small. We will see that regarding this
choice it may be favourable to fit the given initial condition y(x) in a
special way before using it for the differeénce problem.
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Accuracy

Assuming p < 7%, we know from (2.4.6) that the internal solution of
(3.1.1) tends to zero if t — . So for large values of t the accuracy of
the representation of (1) by a difference problem only depends on the
difference between the external solutions. We restrict ourselves to pro-
blems of type (3.1.1), for which the external solution does not change
much as a function of x and t. This means that for large t also Ax and
At can be chosen large.

For small t in many cases the internal solution of (3.1.1) is not
small in comparison with the external solution and does change much as
function of x and t. So for small t the choice of At and Ax has often to
be done with regard to a good representation of the internal solution.

The accuracy of the interpretation of a differential problem by a dif-
ference problem will be better if the deviation in behaviour of the solu-
tions of both problems is less. This means that it is not primarily im-
portant to reduce the difference between both solutions itself as much
as possible, but that also the significant derivatives with respect to x
and t must be interpreted sufficiently accurate by the difference pro-
blem.

We remark that if the solution of a problem (3.1.1) has to be deter-
mined after a specified time T, it would be attractive to be able to
choose Ax and At such that the external solution as well as the elemen-
tary solutions, being present noticeably at t = T, are interpreted just
sufficiently accurate by the difference problem. We will denote these
optimum values of Ax and At by Axopt and Atopt'

Fitting the initial condition

From formula (3.1.3) we see that the elementary solutions of the dif-
ferential problem with j = M, so the high frequency elementary solutions,
are not recognized in the difference problem., However, if the same ini-
tial condition is used, the presence of high frequency elementary soluti-
ons in the differential problem does influence the solution of the dif-
ference problem by & change of the amplitudes of the low frequency ele-
mentary solutions. Even in the case of equal external solutions or in
other words of equal initial conditions of the internal solutions - wri-
ting these initial conditions as Fourier series - the coefficients c. and
d. of the obtained infinite and finite Fourier series differ from each

other. From (2.3,17) we have

=]
dj-°j=; e I )

Often this phenomenon of changing the amplitudes of the low frequency
elementary solutions is called "folding".

In many cases for At = At and Ax = Ax the error in the amplitudes
. opt opt

of the low frequency elementary solutions will be too large. This error
can be dininished in two ways.
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One way is by reducing Ax. Then, however, a number of the original
high frequency elementary solution become recognizable in the difference
problem. Of course these elementary solutions also have to be interpreted
by the difference problem. Because a right representation of higher fre-
quency elementary solutions demands a smaller At, reducing Ax often re-
sults inevitably in reducing At. The values of At and Ax for which the
amplitude error caused by folding is small enough and the recognizable
elementary solutions are interpreted sufficiently well are dependent on
the course of the Fourier coefficients cj as function of j.

Another possibility of reducing the folding-error is removing the high
frequency components in the initial condition of the internal solution
of the differential problem before using it in the difference problem.
We will call this transformation of the initial condition "fitting the
initial condition". If the initial condition is fitted, then we can take
Ax = Axo £ and At = Atopt' This means that in this way solving the dif-

ference problem takes no more computing time and memory capacity than
strictly necessary. Of course fitting the initial condition takes also
computing time. However roughly we can say that fitting the initial con-
dition will be the best way of reducing the folding-error, if the initial
condition of the internal solution contains many high frequency compo-
nents.

Sometimes it may also be sensible to fit the boundary conditions 9(t)
and 7(t) by means of smoothing, for instance if 9 and 7 contain high fre-
quency noise.

The effect of fitting the initial condition can only be predicted
precisely for linear problems, because only then do the elementary solu-
tions not influence each other. It depends on the measure of nonlinearity
as to whether or not fitting the initial condition can be applied. If a
problem is very nonlinear then small values of At and Ax must be taken
because of the interaction between the elementary solutions and so there
is no need of fitting the initial condition.

‘In meny cases the solution of a problem (3.1.1) has to be determined
a number of successive times. For each next time more high frequency
components- can be omitted out of the initial condition. Gradually At and
Ax can be enlarged to the values necessary for determining the external
solution,

Behaviour of the elementary solutions as function of time

In the last paragraph we have already discussed the effect of the
discretization of x with regard to the interpretation of the amplitudes
of the elementary solutions. Now we will consider the effect of dis-
cretizing x and ¥ on the behaviour of the elementary solutions as function
of t.

The discretization of x does change the growthfactor of the jth elemen-

e
tary solution of the differential problem ep-(Jx) by the replacement of
2 2
¥y = - (jn)” in the exponent by Yo = 2(cos jmnAx - 1)/(Ax)". In figure 1both
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Figure 1. Influence of the discretization of x.

of these expressions are given as function of j. The folding reflects
itself in the symmetry of the second one with regard to the values

j = k/Ax, k = 1,2, etc.. For smaller values of Ax both expressions are
approximately equal over a larger j-range.

Y ]

The discretization of t does change the e-power itself of ep-(;n) .
The effect of discretizing both x and t is already given in paragraph
3,1, In order to obtain a quantity containing Ax as well as At implicitly
we replace the growthfactor gj,At of the difference problem by

_ 1+(1-a)u a={p- 2(1-cos jnAx) jat. (1)

= = , o
u 1-au (x)

From this we have
g =1+u+ aul + ...+ o ® 4 .. ,  Jau] <1. (2)

u

In the figures 2 and 3 the graph of g, @s function of u is given. This

has been done for the difference equation of Milne (a=0,b=0), Laasonen
(a=1,5=0) and of Crank-Nicolson (a=%,b=0) and also for a difference

equation (a = %, b == %) which will be discussed in the next paragraph.

Figure 2 has linear scales while in figure 3 the u-scale is a logarithmic
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u for a number of difference equations.

W m e ® o=1,b=0

2 22 Bk Bk

Figure 3. Curve of g, @s a function of log u for a number of difference

equations.
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one and so values of u differing an octéve have equal distances along
the u-axis,

In the next we will only consider problems of type (3.1.1) for p = O.
First we will compare the growthfactors per step of the jth elementary
solutions for small values of At and Ax., Then the difference between
these growthfactors can be written as

@ oy 2 8 3
g, = e-(Jn) ol fu+ (3n)%at) + {auz-bﬂ—é'—A-t-)—} - {a2u5_ﬂﬂ§_'Au)_} ¥ e

- {ﬁ-ﬂ—)—(—)———’t 4123( "t R {(a-';—!')(jn)A(At)z...} +{- (az-;—!)(jﬂ)s(ﬁt)a---} teoe o
(3)

So the difference between the growthfactors per step is, for small At and
bx, linearly dependent on (Ax)°At and in general also on (at)%. We see

that for small values of At and Ax the best choice of a that can be made

is & = & or in other words the best results will be obtained for the dif-
ference equation of Crank-Nicolson. For a = 5 and arbitrary choice of At/Ax
the difference between the growthfactors per step is in first order approxi-
mation proportional to (jn)4{(Ax)2 - (jn)z(At)z}At. So if we want to inter-
prete the j elementary solution as good as possible then At and Ax have

to satisfy:

& g (4)

In this case (3) becomes

-(3n)? 1. in
gu_e(au) Atgm(JnAx)s... ) | (5)

The difference in amplitudes of the jth elementary solutions
t
— 2
A -(J
t_ om0
u

can easily be shown that for small At and Ax this difference in ampli-
tudes has an extremum occurring at

is a function of time. If we take t continuously it

1

t =~ = (6)
(§m)
For this value of t the difference in amplitudes equals
In g -1
-1
e e == s Wt (e - Pt ]
(3m)"at (gn)" At
=1 in Ax " 1 2
% 8 [{ LBy (e - D) (W) At...]+...:| . (7)

So, in general, the extremum is
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2
~ e"un)z{ﬂ;g— + (a - D)ot} (8)

but in the special case a = = it becomes

[(S] =Y

ke Sl
~ U ((ax)? - (gmot)?) (9)

and if, moreover, At and Ax satisfy (4) then the extremum is

e-1 4
~ Tgo (Imex) " . (10)

Above we have seen that the difference equation of Crank-Nicolson is
the best one for small values of u. Now, however, we will show that it is
not the best one for large values of |u|. From (1) we have

1-a
limn g = « — , (11)
E

Large values of -u correspond with large values of j and At and thus also

42
with small values of e-(Jn) At. So we see that for large values of-u the

best choice is a = 1,

In the case a = % the growthfactor &, '~ -1 for large negative

values of u, This means if At is not small enough that for the difference
equation of Crank-Nicolson the high frequency elementary solutions alternate
nearly undamped while they do not alternate and are very damped in the dif-
ferential problem. As already said before without fitting the initial con-
dition Ax has to be chosen such that the folding error is sufficiently small
and At such that all recognizable frequencies are interpreted sufficiently
well., From the above it will be clear that without fitting it can happen that
At and Ax have to be chosen because of a good interpretation of the high

frequency elementary solutions and so much larger than Ato % and Axopt' Then
the advantage has been lost that regarding the low frequency elementary

solutions the largest values of At and Ax can be applied if a = %,

frequency elementary solutions

3.5. A difference equation interpreting good low frequency as well as high

We have seen that the difference equation of Crank-Nicolson has a
growthfactor which tends to -1 for the high frequency elementary solutions,
if At is not small enough. The reason for this is that numerator and de-
numerator of g, a8 given in (3.4.1) are polynomials in u of the same degree.

It can easily be seen that for P = 0 we can obtain also a second
4 4
power of u in the denumerator of g, by adding a term bAt {3 z(xm,tn)/(Ax) !,
b = constant, to the difference equation (3.1,2) which passes then into



- 46 -

2 2 4
6_z(xm,tn) g ) z(xm,tn) iy d z(xm,tn) i ) z(xm,tn) "
i (ax)* (ax)* (ax)*

(1)

while the formula for &, becomes

g = 1+(1-a)u . (C,)

b 1-au-bu

From this we have

2 2 3 2
g, =1 +u+ (& +b)u + (& + ab + b)u +..., if |au+dbu]<1. (3)

Comparing this with (3.4.2) we see that for small values of u the best
choice of (a +b) is done if (2 +b) = 4. Then we can still choose freely
one of the constants a and b. For instance this choice can be made in
order to make the third term of (3.4.3) vanishes in first order approxi-
mation. Then a = 3, b= - g However in this case g, becomes negative for

u € -3 and reaches a minimum of about - 0,1 for u = - 8, Sometimes it may
be better if we take a and b such that g_ cannot become negative. From

(2) we see that for that purpose a *=1. An attractive choice is a = 1

b = - %, because then the numerator does no longer contain u. For this
choice of a and b difference equation (1) becomes

2 4
b_z(xm,tn) ) ) z(xm,tn) LAt > z(xm,tn)

av (ax)* 2 (ax)*

=0, (4)
and 8, is

1
g, = . (5)
u 1-u+%u2

In fig. 1 for some values of a and b the course of g, as function of u
is given.
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Figure 1. Curve g as a function of log u for difference equation (1) for
some values of a and b.




Chapter 4

A SPECIAL ANALOGUE COMPUTER

4.1. Design of the special analogue computer

In this chapter a special analogue computer that can solve problems
of the following type (1) will be briefly discussed

%% -a fi% = f(x,t,z), a >0
2(0,t) = 9(t), 2z(1,t) = n(t); 2z(x,0) = y(x), (1)

where a does not need to be a constant [5], [6], L]

The discussion will be limited to the principal and technical design
of this computer and so here we will not enter into the general question
when it will be sensible to design and apply a special analogue computer.

In the special analogue computer a problem (1) is interpreted by &
difference problem. Figure 1 represents the blockdiagram of the computer
in the case that the difference equation of Laasonen is used.

B L

Figure 1. Blockdiagram of the special analogue computer.
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The part of the difference equation, {&_z(x ,t )/At - baz(xm,tn)/(Ax)zl

is realized in the computer by means of a resistance network, which is
given in figure 2 in more detail.

ug Uha Ry UM / Ry Ut un

1
Uma Um

Figure 2. Resistance network for the difference equation of Laasonen.

We see that the balance of the currents in the resistance network itself
agrees with {b_z(xm,tn)/At - 6zz(xm,tn)/(Ax)2} = 0, In order that the vol-
tages U(xm,tn) in the internal nodes satisfy the difference equation as a
consequence of the balance of currents the term f(x,t,z) is realized by

means of injection currents 12 flowing to the internal nodes.

From the figures 1 and 2 it will be clear that we must still have
available U(xm,tn_1) during the computation of U(xm,tn). Therefore, un-

till this computation has been finished the voltages obtained from the
preceding computation are kept with the help of a set of analogue memo-
ries G1' Each of these memories has two locations, During the computation
of the solution at tn the memories G1 deliver the solution at tn-1 to

the resistance network from the one half of their locations, while the
other half is set to the voltages present in the network. So at the end
of the computation these locations are already adjusted to the obtained
solution. Passing from tn to tn+1 in each memory G1 the function of its

locations are interchanged by means of the set of switches S1 and 52.

Often the injection currents Ig cannot be obtained from the voltages
U(xm.tn) in a simple way because of the nonlinear relation between f and
z, From figure 2 we see that
.
m

n 1
. Um+1) * R, (v

n

1] n
R, (Um - Um-1) i (v

B

n-1 n
m - Um-1) = Im i (2)

So Ug satisfies problem (1) in difference form, if we take care that the
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injection voltage V: satisfies

At 3 1
- U(Xmstn) + f{xmvtn'U(Xm’tn)} H 'R—2 - PN - Sn . (3)

1 (ax) (Ax)2

™

The boundary conditions U(O,tn) = z(O,tn) and U(1,tn) = z(‘l,tn) are
obtained from the analogue function generators F2 and Fa‘

The solution at tn can only be calculated straightforward without

an iteration processif as many function generators F, are used as there
are internal nodes [8]. However then the computer will often be too ex-
pensive. Therefore only one function generator F, is used to create the
injection voltages for all nodes. As a consequence the solution at each
tn can only be obtained by means of an iteration process. During this

iteration process the function generator F1 is utilized in each itera-
tion cycle one after another for all internal nodes. If the iteration
process is convergent, then the injection voltages V2 will gradually
become equal to U(xm,tn) + f{xm,tn,U(xm,tn)}. We still remark that if
f(x,t,2) = g(x)h(x,t,2), the function g(x) can be interpreted by chosing
R, = R /(ax)*g(x).

During the iteration process the last calculated injection voltage
of each node has to be maintained untill the next calculation of this
injection voltage. Keeping of the injection voltages is realized with the
help of a set of analogue memories Gz' The switching of the function

generator F'1 is performed by means of the set of switches S3 and S4.

In an analogue computer the calculations are often performed with
a level of accuracy where the limit of the physical discrimination of
the computer is nearly reached, because then the computer is used most
efficiently. This means that the above iteration process has to be con-
tinued untill physically the voltages in the internal nodes of the net-
work no longer change noticeably. So it is not possible to mark very
accurately by observing when the iteration process is finished. More-
over an accurate check about the state of the iteration process by
means of measuring is not attractive technically. Therefore, the itera-
tion process is finished after a specified number of iteration cycles
by a logical decision.

The computer is controlled by means of a central control unit B.
This unit realizes all logic manipulations, e.g., the switching of the
switches S ,...,S . The programming of the control unit is meinly a
fixed one, but for instance the number of cycles per iteration process
is adjustable.

We remark that if the differential equation in problem (1) is changed
by adding a term 1] then in the special analogue computer only the

ox
resistance network has to be changed. Also other types of boundary con-
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ditions can easily be realized. So we see that the described special
analogue computer can also be used for other types of boundary and
intial value problems with only few modifications.

Some technical details

The presence of many '"parallel" arithmetic units in an analogue
computer is no guarantee that the computing speed will be larger than
that of a digital computer. This depends very much on the dynamic pro-
perties of the applied components.

In the special analogue computer a large number of analogue swit-
ches is used. These switches are closed and opened many times during
the computation of the solution of a problem (4.1.1). The switching
times contribute to the computing time. This means that the computing
time can only be small if the switching times are also small., There=-
fore in the special analogue computer only analogue switches of elec-
tronic type have been applied [9 W

An important demand for the technical design of the above special
analogue computer has been to make the different kinds of analogue
electronic circuits as simple as possible. The reason for this is that
each of these circuits appears in a large number and so they form an
important part of the cost of the special analogue computer. This
demand included that no high accuracy could be the aim. In order to
obtain a total accuracy of the computer of about one percent, all ty-
pes of electronic circuits are designed for this accuracy. Because
of the large number of electronic circuits, we can expect the sum of
the individual errors not to differ much from the individual error it-
self if there are no important systematic errors.

All analogue and digital electronic circuits of the computer are
transistorized.

In principle each of the analogue memory locations is a capacitor,
which is read into and read out from the resistance network via buffer
amplifiers.

Bach analogue switch consists of one transistor which is used in
voltage saturation or in current saturation. The time for opening or
closing the applied switches is about 2 psec.
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Chapter 5

DIGITAL ITERATIVE METHODS FOR SOLVING DIFFUSION PROBLEMS

Introduction

Again we consider problems of type (4.1.1) and it will be assumed
that such a problem will be interpreted by a difference problem in the
same way as in chapter 3 before solving numerically.

At each time t_ the solution of a difference problem is fixed by
z(O,tn), z(1,tn) and z(xm,tn_1), m=1,...,M=1, as a set of equations.

The special analogue computer described before determines the solutions
at succeeding.times t_ by solving these sets of equations one after

another starting with the set of equations at t = At, Generally the
equations of these sets are nonlinear as a consequence of the presence
of the terms f{xm,tn,z(xm,tn)}, m=1,...,M=1. As exposed in the last

chapter the special analogue computer determines the solution of each
set of equations by means of an iteration process.

This iteration process differs much with that one that occurs if the
above mentioned sets of equations are solved iteratively with the help
of a digital computer. For the special analogue computer we have that th
during the time in which the function generator is connected with the m
node of the resistance network a set of equations is solved in parallel,
However, for 2 digital computer we have that during the time of an ite-
ration cycle in which computations are executed for the point x only
one equation is solved.

We remark that before starting the iteration process concerning the
time t it can be sensible to predict the solution as good as possible
by means of the already determined solution at preceding times. In this
chapter we assume that the prediction is such that only small changes
of z occur during an iteration process so that it is allowed to linea-
rize the iteration problem as for the behaviour of the iteration error
as function of the number of iterations s.

In this chapter we will examine some digital iterative methods. We
will see that the behaviour of the iteration processes is dependent on
%g. We assume that %f = p is independent of x in order that the x-elemen-

tary solutions of the iteration problems are simple functions of x.

First the general properties of the iteration processes will be
examined. Only in paragraph 4 will we enter into more details for one
special iteration process where we will also refer to the demand that At
and Ax have to be small enough in order to obtain a sufficiently accu-
rate interpretation of the differential problem,-

Some iteration processes

We will restrict ourselves to those iteration processes for which in
each iteration cycle only those values of z are used obtained in this
cycle and in the preceding one. The order in each iteration cycle will
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. We will denote the value of z in the point (xm,tn) obtai-

M-1
ned in the s iteration cycle by z(xm,tn,s), while the iteration error

{z(xm,tn,s) - z(xm,tn)} will be denoted by e(xm,a).

We observe that in advance it is not fixed uniquely which relations
e(xm,s) has to satisfy because of the free choice of the way in which

the results of the (s- 1)th iteration cycle are utilized in the o 0 cycle.
As already said, during an iteration cycle the digital computer solves one

after another (M=-1) equations. In the 2*® one of these equations the va-

lues of z in the points X% and x appear. As for z in x we can

m+1 m+1

only choose z(xm+1,tn,s-1), but in x we have choice between

z(xm_1,tn,s-1) and z(xm_1,tn,s). We 3111 not limit ourselves to one spe-
cial case now. In order to be able to consider the general case we intro-
duce the symbol s* having the meaning that for each term of the iteration
equation containing s*,s* can be equal to s or (s-1) dependent on the
final choice of the iteration equation.

In this way it follows from (3.1.2) thet the iteration problem that is
solved during an iteration process can be written as

* * *
z(xm,tn,s1 )-z(xm,tn_1) . z(xm_1,tn,s2 )-2z(xm,tn,s3 )+z(xm+1,tn,s-1)

At (AX)Z

6az(xm,tn_1) *
- (1 -2a) -—?z;;;—"-— = &f{xm,tn,Z(xm,tn,s4 )+

)R

2(0,t,) = o(t ), 2(1,t)) = n(t))

+ (1 - a)f{xm,tn_1,z(xm,tn_1
z(xmvtnyo) - Y(xm’tn)’ (1)

where Y(xm,tn) is the predicted solution at t.

*
Because at least one of the quantities s occurring in (1) has to be
equal to s, there are 15 different kinds of iteration processes.

Linearizing iteration problem (1) gives

e(xm,si*) e(xm_1,sa*)—ZS(xm,sa*)+e(xm+1,s-1) *

—— - < - ap s(xm,s4 ) =0
(8x)

€(0,8) = €(1,8) = 0, £(x,,0) = ¥(x ot ) = (gt ). (2)
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It will be clear that we do not know e(xm,O) in advance.

By definition the x-elementary solutions of (2) are a(x )e®, g =
constant # 0, provided a(x ) satisfies the following set of linear equa-
tions

ba(xm_1) + ca(xm) +a(x . ,) =0, a(0) = af1) =0

m+1
2
* (Ax) * * 2 *
b=g,30=-"58 -2, +p(dx)eg, , (3)

* * *
where 8; s i=1,00e94, is equal to g if B mis and equal to 1 if 8, =8~ 8

Denoting the matrix of the set of equations (3) by A, we can also write

(3) as
Au = 0, u = {a(xi),...,a@M_1)] . (4)

There is only a nontrivial solution of (3) and (4), if the determinant of

A, denoted by A, vanishes. In general Ay = 0 is equivalent whith a (M=-1)

power equation in g. If all vectors u belonging to the (M- 1) roots g of
this power equation are independent, then we can write e(xm,s) as

M
s
e(x_,8) = K, o, (x 2 /e
Gpre) = 2Ky ay(x)sy (5)
In an elementary way we can easily prove that the x-elementary solu-
tions of (2) are
p
b,° sin jnx i (6)
i m 8

provided gj satisfies
$, ZVEE cos jnlx = 0. (1)

From this we can conclude immediately that for arbitrary constants b and
¢ the eigenvalues b and eigenvectors M of A are

Wo=c+ 2Vb cos %f

s

4 jnm
- (wr1""’wr,M—1)’ V=P osin oS, (8)
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5.3. Components of the iteration error

In this paragraph we will discuss briefly the possibilities for the
components of the iteration error.

As already said in general Ad = 0 is equivalent with a (M power
* *

*
equation in g. The only exception occurs if 8, 184 and s, are equal to
(s-1), However, from (5.2.2) we see that in this case ¢ in xy._q does not

change at all during the iteration process and so we can not obtain the
solution of (4.1.1) in difference form by means of this type of iteration
process. Therefore we will leave this case out of consideration.

Concerning b there are two possibilities; b can be equal to 1 or equal
to g. In the first case (5.2.7) yields one root g for each j. This means
that the solution of (5.2.2) can be written as

M-1
s .
S(Xm,s) = %g; Kjgs sin jix . (1)

If b = g, then (5.2.7) is a square equation in \g, which for any choice
of ¢ can be written as

2
(ng) +2d cos juix (VE;) + e=0,d,e= real constants. (2)

In the usual way we denote the roots of (2) by (VE;)1 and (ng)2, while
the squares of (VE;)1 and (VE;)Z will be denoted by 851 and 8y From
(5.2.8) we have that the contribution to the iteration error belonging
to j can be written as
m+2s m+2s " .
gy (V)70 ¢y, (Va))57°) st gmx,. (3)
It can easily be shown that in the case do < 0 the sum of the con-

tributions belonging to j and M= j,j < % can be written as

%-ﬁs %+s
K1gj1 sin jux  —+ Kégjz sin(M - j)nxm, if e < 03 (4)
S+s 2+ . a
L . -
(K1gj1 +K2gj2 ) sin jnx , if 0 <e <4 cos®jnix (5)
m %4_3 2 2
{K1 + Kz(E +8)} &3 sin jnx , if e = d “cos jndx; (6)
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S+8
2 . m TR : 2 2,
Kllgil 51n{(2 + 8)arg Sj1 + K2}81n jnx_, if e > do cos jnlx,
(7)
where K1 and K2 are arbitrary constants. If do > 0 then j and M- j have

to be interchanged in the above expressions.

A special case arises if e = 0, Now we will consider this case in

*
more detail. If e = O, then all quantities s. are equal to s and so we
can write the system equation of (5.2.2) as

s =1) = = {1+ a1 8 e o)
2
q =il L%%%— - p(Ax)2}, (8

where again b+ denotes the forward difference.

From (2) we see that gj1 = 0 and so there are left only approximately
=~ x-elementary solutions. This means that e(xm,s) cannot be written as a

linear combination of only x-elementary solutions. We shall show in the
following that besides the x-elementary solutions there are still other
functions of X0 and s satisfying the difference equation (8) and the

boundary conditions e(0,s) = e(1,s) = O.

We observe that for given e(xm,s), m=1,...,M=1 the value of
e(xi,s-1) is not fixed uniquely by (8). This means that we can choose
c(xi,s-1) arbitrarily without changing e(xm,s), v ARSI O (R )
figure 1 a table shows the influence of the choice a(xi,s-1) =1,
e(x,,8-i) = 0, i Z 2 on the behaviour of e(xm,s-i) as function of x
and i, if, moreover, we have taken e(xm,s) w Oyumtim 150 vasll=1s IE
e(xm,O) is taken equal to row i of this table, then the behaviour of
e(xm,s) as a function of X for s = 1,2,..,., is represented by the rows

(1 = 1), (£ - 2),... of the table. We see that for this choice of E(xm,O)

the iteration error vanishes if s Z i. From (8) it can easily be derived
that if s =i - 1 this iteration error can be written as

(ot o« a1 2 e L T T Uy 054090} (9)

where U(x) = 0, if x < 0 and U(x) = 1, if x 2 0.
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row iteration | x=0 x 2Ax 30x | 4Ax 5Ax 6Ax Thx 8Ax 9Ax
0 s 0 0 0 0 (6] 0 0 0
1 s-1 . 1 . . ‘ . . .
2 s=2 ¥ 0 -q -1 0 0 o . % .
3 -3 . .l o | 2q 1 0 0 ) :
4 s-4 0 o| o 0 | -a®| -30®| -3q | -1 o | o

Figure 1. Table of iteration errors becoming identically zero after a finite
number of iterations.

All functions of type (9) are independent of each other. Because the
total number of x-elementary solutions and functions of type (9) is equal
to (M-1), we conclude that in the case e = O the iteration error e(x_,s)
can be written as & linear combination of x-elementary solutions and
functions of type (9).

A special iteration process

In this paragraph we will consider iteration problem (5.2.1) in the
case that the most recent data are used in the iteration process. Because
of the nonlinearity of f(x,t,z) in general the only possibility is to
take the value of z in this function equal to z(xm,tn,s- 1) unless sol-
ving of each i%eration equation 1is done by meins ofig secgpd iteration
prgcess. Excluding this possibility we have s, =8 =8 = s and
s, =8 - 1, For shortness sake we denote z(xm,tn), z(x ,tn,s), f{xm,tn,z(xmnhﬂ
and f{xm,tn,z(xm,t /s)} respectively, by z(m,n), zs(m,n?, f(m,n,2z) and
f(m,n,zs). Then from (5.2.1) the iteration formula can be obtained as

/

z (myn) = Cl{zs(m -1,n)4»zs_1(m +1,n)} + sz(m,n,zs_1)i-F(m,n), (1)

where

F(m,n) = Caz(m,n.-1) + C4{z(m- 1,n-1)+z(m+1,n=-1)} + csf(m,n— 1,2),

¢ = ay alAt c - 1-2(1-a)y c (1-a)y

1 7 1+2ay ’ Cp= 1+2ay ’ 3 1+2ay ! 47 1+2ay

ay (Ax)z

The corresponding iteration formula for the iteration error is

e(xg08) = 0 {e(x,_1y8) + elxy, s =-1)] + C pe(x_,5-1) . (3)
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From this it follows that the constants d° and e in (5.3.2) are
e =-C,p. (4)

We see that e is proportional to p, so the behaviour of the iteration
process depends much on the value of p.

pP>0

If p >0 it follows from (5.3.4), that s(xm,a) can be written as

m
=4+8

e(x y8) = :E: D g #

: 51 sin jnx , (5)
Jz

where the constants D, are such that (5) also holds for s = 0. From
(5.3.2) it follows that & 4 is the largest growthfactor and so the
iteration process is convergent if 8, " < 1. This means by virtue of

(5.3.2), (2) and (4) that for p > 0 the iteration process is conver-
gent if

e 1 e (1-cos ®Ax) )

alt (Ax)z

. (6)

p(ax)® < - Cicoszqu

The diacriminant of the square equation (5.3.2) is negative for each

PR p(Ax) < - ¢ cos nAx. Then all growthfactors are complex, except
By =t if M = even. Considering only the case M = odd from (5.3.7) we

2
have that in this p-region e(xm,s) can be written as

M-1
== n
5+s

2
e(xm,s) = %i1 Dj|g3’1| sin{(% + s)arg g5 * ¢j}sin nx_, (1)

where again the constants D. and ¢ are fixed by e(x ,0). Because

lg I = e for each j, we have that the iteration process is convergent
in this p-region, if

_ l+2ay _
p> adt - Pg¢ (8)

p=20

In the case p = O for each j one of the roots vanishes and so c(xm,s)




&5

m
gt y
is a linear combination of x-elementary solutions gj1 sin jnxm, = sty
Mél and of functions of type (5.3.9).

- CicosznAx < p(Ax)2 <0

In the p-interval - CicosanAx <p(Ax)® < 0 there can arise three
possibilities for the component of the iteration error belonging to
some value of j. Firstly, if the discriminant of (5.3.2) is positive
then the contribution belonging to j is given by (5.3.5). Secondly, if
the discriminant is negative then this contribution is given by (5+3.7).
The third possibility is that the discriminant vanishes for one value of
j. Then for this value of j the contribution belonging to j is given by
(5.%.6). Leaving out of consideration the third possibility, e(xm,s) can

be written in the p-interval - 01COSZNAx < p(Ax)2 <0 as

%+s %+s
e(x_,8) = E{: (Dj1gj1 D32g32 )sin jTx_ +
M-1
2 5+8 o
+ S Djlgj1| szn{(E + 8)arg €59 * ¢j}51n Inx . (9)

Again gi . is the in absolute value largest growthfactor and so from (6)
’

it follows that in the last considered p-interval the iteration process

is convergent for each p.

From the above we can conclude that the considered iteration process
is convergent if p satisfies (6) as well as (8), so if

_ 1+2ay 1 §1-cos nAx)
alt <p <« alAt # 2 (Ax)2 ‘ (10)

We observe that the iteration process can always be made convergent by
choosing At small enough.

In the next chapter it will prove that p, as given in (6) is also a
bound for the convergence of the iteration process occurring in the
special analogue computer described in chapter 4.

In the preceding we have examined the iteration processes without
paying much attention to a good interpretation of the given differential
problem by the corresponding difference problem, Now we will consider
this aspect in relation to the choice of the type of the iteration pro-

cess., For a good interpretation at least the growthfactors of the 1St
elementary solutions of the differential and corresponding difference
problem must be nearly equal. From (2.4.6) and (3.4.1) it follows that
for that purpose at least pAt has to satisfy if a = +
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-1+ ¥(1 - cos mAx) << BEE (<1 4 y(1 - cos mAx). (11)

This condition can be satisfied for each value of P by choosing At
sufficiently small,

Regardless of the choice of Y, it can be shown that in the p-interval
given by (11) only the iteration Processes are convergent for which

gsl*,s2 tsa fs‘*) equals (s,s,s,s), (s,8,8,8-1), (s-1,8,8,8) or

s-1,s,s,8-1), For P = 0 in the same order the in absolute value largest
growthfactor of these iteration pProcesses prove to be if a = %

2 21[A 2 2 % Aot A
Y cos X r Y cos EAx . YCOoS T. ; Y cos X 5 (12)
(1+7)2 (1+v)2 L5 oy

From this we see that the iteration processes (s,s,s,s) and (sy8,8,8-1)
are much more favourable than the other two. This is also true if p £ 0.
As already said the iteration process (s,s,s,s) cannot be applied with-
out introducing a second iteration process. So the iteration process
Sy8,8,8-1) is the best one which can be chosen for = digital computer
if a difference problem of the considered type has to interpre iven
aph Tgr

a g
differential problem. For this iteration process the gr CINURL T
function of p is given in figure 1 for At = 0,1 and Ax = Z

Figure 1. Curve Iglmax as function of p for At = 0,1 and Ax = %



Chapter 6

ITERATION PROCESS APPLIED IN THE SPECIAL ANALOGUE COMPUTER

6.1. Introduction

In this chapter we will discuss the iteration process for the special
analogue computer described in chapter 4.
We will use zr(m,s) to denote the value of z in the point (xm,tn)

obtained during the sth iteration cycle in the time that the analogue
function generator is connected with the node x_ of the resistance net-

work. The difference zr(m,s) - z(xm,tn) will be called the iteration error
er(m,s). We will restrict ourselves to the iteration process in which the

most recent data are used.‘In that case during the time that the function
generator is used in node X, the special analogue computer solves simul-

taneously the following set of equations.
- Clzr(m-1,s)+ zr(m,s)- Clzr(m+1,s)- sz{xm,zm(m,s)}=F(m,n), 0<m=r |
= Cizr(m-1,s)+-zr(m,s)- Clzr(m+1,s)- sz{xm,zm(m,s-1)}=F(m,n), r<m <M
3 (xg08) = 9(t))s 2_(x8) = (), (1)

where F(m,n) and the constants C,,C, have the same meaning as in (5.4.2).

From this we can derive by linearizing that the iteration error satis-
fies

C,p
2
A Mg =~ T TIEI‘S; Hog = {Er(115)9---’5r(M‘ 1,8)},

Rog = {51(1vs)7--',€r(rvs)t Er+1(r+ 1ss‘1.),00-95M_1(M'1’5' 1)}1

=r

(2)
where A is a tridiagonal matrix, having coefficients ai+1,i = ai,i+1 =
and 8y, = - 1/C1 = C.

In one iteration cycle the set of equation (1) is solved one after
another for r = 1,,..,M-1. These (M- 1) sets of equations form together

the following set of (I - 1)2 equations:
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7 T i %15 ?\\Ez Bs EM— %15-1
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! i 1 SRR | | i : 1
1 ] A N 1 | » i !
ot e L i | B/ |
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E, E, AdEy -1, 9 I-1,5-1

(3)

where all coefficients eij of Ek, k=1,...,n, vanish except Sk which

is equal to Czp/Ci. From this we see that the above iteration process

is equivalent with a successive block iteration process for the determi-
nation of the solution of the following set of equations

A+E1 B, EM-1 L ?
1

A l ! !
: ?2\ : : - : . (4)

i RS I \ |

: : o 1 1 1

1

| ' N : |

By E, A+EM-1 pia ‘0

We observe that the solution itself of (1) is not utilized at all in
a direct way. When the analogue function generator is switched to node
(r + 1) of the resistance network, only the value of f x,t,zr(r,s)} is

hold. This means that indirectly from the solution of (1) only zr(r,s)
is utilized. Therefore we will restrict ourselves to the determination
of em(m,s), m=1,...,M=- 1, Denoting the coefficients of A-1, the in-
verse of A, by dij and writing (m,s) instead of em(m,s) we find from

(2) that e(m,s), m = 1,...,M~1 satisfies

dm1e(1,s)+ e (dmm + d)e(m,s) +a e(mtl,8=1)+ ...+ d

m,m+1 m,M=1

(5)
v
where d = o5 Denoting the vector {&(1,s),...;e(M~1,s)} by &,y the set
of equations (5) can also be written as

B£s+C£S—1=g’ (6)

e(M-1,s8-1)= 0,



where the coefficients of the matrices B and C are

byy=0, 3245 byy=dyg,

2 R &
cij = O o= '3y cij dij’ A U (1)

LML B e A

By definition the elementary solutions of (6) are of the form gsx,
provided g and v satisfy

Cv=-gByv. (8)

This means that -g and v have to be an eigenvalue and an eigenvector of
a general eigenvalue problem. From (7) and (8) we have that g is & root of

(d11+d)g\\ dfzz ___________ ?1,M-1

~ ~
g \\ \\
=0 . (9)

RN S M=2,M=1
~.

~

(a

M-1,3-1"0)E

We see that always one of the roots of (9) vanishes, which root will

be denoted by g 1 For some special cases it is possible to determine
the roots of (9) analyticly. However, we will not discuss these special
cases and limit ourselves in the next paragraphs to find the region of
convergence of the iteration process and the approximated behaviour of
g as function of p.

Coefficients of matrix A—1

It will be clear that before the roots of (6.1.9) can be determined,
first we have to find the coefficients d of matrix A” ',

ij
By definition it must hold

-1
AA" =1, I =identical matrix. (1)

From the coefficients of A, look at (6.1.2), we can easily derive by

multiplying the ith row of A and the jth column of A-1 that the coeffi-

cients dij of A-1 satisfy

di-1,j + c?.j + di+1,j =0 if 143

=1 ifi=j, (2)

provided d . and d,, . are assumed to be zero.
0,yJ M, J
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The elementary solutions of (2) are ol , where G, and G_ are the
; 1,2 1 2
roots of the square equation

P S ) (3)

For problem (2) the homogeneous system equation is valid in two dif-

ferent i-intervals, namely 0 < i < j and j < i < M. So problem (2) can

be conceived to be the mathematical description of the state of two boun-

ded physical systems of equal construction but of different length, ha-

ving interaction in the point i = j. The interaction condition is

(e 1§ L et i d : = 1. The conditions d , = d4,.. = 0 are boundary
J=1,3 JJ J+1,3+1 0J Mj

conditions of the first respectively the second syste?. The general so-

lutions of both systems are linear combinations of G and G_,~. So the

: X 1 2
solution of (2) can be written as

o gl gdnd i-j L5 s
a5 = kj1G1 * k% 0S4 =
~ i-j i-j e o
= Kj1G1 + szcz o ke S A T (4)
provided
=J ~d
G1 k31 + G2 kJ2 =0
o Ko = o i ot 78
-1 -1
c + G k., + (¢ + G Ko itn e e + G = 1
( 1 ) 31 ( 2 ) J2 1793 2K32
M- M-3 i
6, K4y + 6, Ky, = 0. (5)
Introducing as abbreviation
i -3
P T (6)
it can easily be derived that the solution of (4) and (5) is
N Wt
d________l_h, i§J;d.=——j¢£, o (7
ij V1VM 1] VIVM

From (5.4.2) because of the relation cC1 = =1 we see that always
¢ < -2 and that ¢ becomes more negative the smaller ay is. In the case
¢ < -2, we have from (3) that 61-1 ~ 0 and so it follows from (6) and

(1)
-1
dij ~ G'—ri_—am . (8)

1
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This means that dij is approximately constant on each of the diagonals

i - j = constant. The coefficients of a diagonal decrease by choosing the
diagonal more far away from the principal diagonal i = j. This reduction
is about a factor éL per diagonal,

5

As illustration in figure 1 the behaviour of Vi is given as function
of i for ay = 5. We observe that even for this large value of ay the ap~-
proximation (8) can already be applied for small values of i and J.

Vi

Figure 1. Curve of Vi as function of i for At = 0,1 and a = % .

6.3. Convergence of the iteration process

Now we will determine the region of convergence of the iteration
process applied in the special analogue computer.

For one part of this region of convergence it can the most easily be
done by regarding the iteration process from a physical point of view.
Let us consider a physical system with unknown z of which the steady state
is described by the analogue circuitry of figure 1.

Rq=(ax)?
Rp=oat A=gain of the amplifiers
Ry=1

Figure 1. A fundamental system belonging to the analogue iteration process.




Figure 2. A way of coupling two fundamental systems.

The condition of stability of this circuitry can easily be obtained by
conceiving the physical system to be time dependent in the way of (3.1.2)
for a = 1. Then it follows from (3.1.4) that the physical system of fi-
gure 1 is stable if

A< +-—a1M+21"’°E’"2Ax =4, . (1)
(ax)

In the special case A = A, the open loop gain in each of the points P_,
i=1,.004M=1, is equal éo 1. This means that a system consisting

of some systems of the type of figure 1 coupled by replacing in some
way outputs of amplifiers by the output of a corresponding one is also
stable. Taking for instance the coupled system of figure 2, the open
loop gain in P11 as well as P21 is equal to 1, because both are the

squares of the open loop gain in Pz of the fundamental system.

If in the above mentioned type of a coupled system the amplifiers
have input-memories and the interconnections between the individual
systems are only realized for a while periodicly one after another as
closed loops by means of switches at the inputs of the amplifiers,
then only the transient will change, but the new physical system re-
mains stable for A = Al. We observe that the iteration process applied

in the special analogue computer is such a physicael system, what is
illustrated in figure 3 for M = 3,
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Sy close:

—— time

Figure 3. The analogue iteration process as a time-dependent coupling of
two fundamental systems.

In the case A = A1 we can say that regarded from one individual sys-
tem all other ones are non-active. If IA, < A, then surely all individual

systems are passive and so each of the above class of coupled systems is
stable. Thus we know in advance that the iteration process applied in the
special analogue computer is convergent if

1 2(1-cos nAx) 1 2(1-cos nAx) \
-2 - {— J<p< == + =D . (2)
alt (AX)Z aAt (Ax)g 1

The remaining part of the region of convergence can only be deter-
mined by utilizing the special proporties of the considered iteration
process. Now we will outline how convergence can be proven for -«¢ p ¢ 0.
From (6.2.7) it follows that all coefficients of the first column of
(6.1.9) except the first two will vanish by substracting (ﬁjfv ) . ond

column. Likewise all coefficients of the first row of (6.1.9) can be made
equal to zero except the first two. Continuing in this way we find, if
Dy_y 1s used to denote the determinant arising from that of (6.1.9) by

omitting the first (i - 1) rows and columns, as recurrent relation be-
tween three successive D's

D - P.D. +Q

M-1i 1 M=i=1 =0, 1=1,...,0-3, (3)

where




g 4

2

: v, v, v,
i W C gl A
Pyow ey, +a01s )lemgiteay s O m d el n g p e8]
2 i+1 i1 d+1
i+
(4)

We see that for d = O or in other words p = +% all Q.'s vanish, In this
case we can easily find thet the roots g of (6.1.9) are

V.V

& =_:‘L——‘]_'M-.-1 = LS o ! i
$5 7 Bt T 0 ST R B M/ ey 0 X - oet,
3+1 70 2 g e
A
Me =1 M=2 .
e A e = 9 J = 1yeeey=5— if M = even. (5)
37 By TV 2

J

From (6.2.3) and (6.2.6) it follows that all these roots are positive
and smaller than 1. So the iteration process is convergent for Pl A @Oy
All these roots are approximately equal to-lg .

G

Now we will ‘prove that the iteration process is convergent for each
p < O by showing that in this p-interval the rate of convergence in-
creases by enlarging p. From (6.1.7) we see that for given £ _q the
solution g  of (6.1.6) depends on the value of d. Diminishing d by a
small quantity -4, ﬁ < 0, the solution of (6.1.6) will change. Denoting
this solution by Es and introducing as abbreviations

eg e i o D - Vyod g *. _d+a
y W ') g U R — 9 E  TTE—
R Rgghaes LT T AT P
gl di-1i H A F* dii (6)
2 I TERDN-———— 9 WP TR — 9 o e o
i dii+d+A i dii+d+A i dii+d+A
it can easily be found from (6.1.6) that
£ i=1 i
e (i,8) = Gy e(i,s) + §i1 Fd+1Ej+2 S EiHj e(3s8). (7)

By squaring (7) if we apply 2|s(i,s)e(j,s)| = e®(i,s) + €®(j,8) eand ne-
glect terms proportional to A% we can obtain

M-l . M1 4
2_{e(1,8)) =23 {e(1,0)}", (8)
i=1 i=1

We see that the length of the vector solution Es of (6.1.6) decreases

for given £,_q if d is diminished. This means because this holds for



6.4.

arbitrary 53-1 that for negative p the rate of convergence increases

if p is enlarged. From this and (2) it follows that the iteration pro-
cess applied in the special analogue computer is convergent if D p, .

From the convergence for p = +eo it follows that the iteration pro-
cess will also be convergent for large values of p, but this region of
convergence will be left out of consideration here.

Approximation of g(p)

The coefficients P, and Q of the recurrent relation (6.3.3) are func-

i

tions of i, However at the end of paragraph 6.2 we have seen that in prac-

tice these coefficients are nearly constant. This means that it has sense

to consider (6.3.3) in the case that P, and Q. are replaced by P and Q, be-
¥ ;. :

ing the averages in some meaning of P and Qi over the interval i = 1,...,

M-3.

For convenience sake we divide all rows of DVI 1 by V—-before evalua—

ting this determinant. Denoting the thus obtained determinant by D
we obtain a normalized recurrent relation

M-1

%* *_* *

Dn - P Dn-1 + Dn-2 =0, n=3,,..,M=1, (1)
* *
where P = = P/V—-. The determinant DM 1 is a polynomial in P of degree
s
M-1. So D = 0 has M- 1 roots P . Each root P represents an equa-

M=1
tion in g. The roots g of all these equations together will be used as
approximations of the roots g of (6.1.9).

*
The determinants D are tridiagonal ones of which the coefficients

on one and the same dlagonal are constant except the last coefficient
of the main diagonal., So it will be clear that we can adjoin a boundary

and initial value problem to D£'1 = 0 in the same way as is mentioned in
paragraph 2,3 for the determination of thp functions 8, (x ). However,
we will not do this here because above DM 1 is already deflned as the
solution inn = M = 1 of an initial value problem given by difference

equation (1) and the initial values D and D2 "

The elementary solutions of (1) are An, provided A is equal to one of
the roots A, and A2 of

*
P, PR (2)

From this we find the solution of (1) as
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* z *
A -D1 1-D1

2
K = ————z——————7 y K = ————z—-f?——j . (5)
1 Alkz Xz- A, 2 Aikz A, kz

*
Vanishing of DM_1 is aequivalent with

(}\—) =-K—2=;~;- (4)

This equality is satisfied by A, = ele, 0 < 6 <mn, provided

sin(M - 2)6 - Dl*sin(M Sl o TS (5)

*
We observe that D, is a function of 6, So it will be clear that the

transcedental equatlon (5) cannot be solved in general. But it can easi-
ly be shown that the roots 6,, k = 1,...,M=-2 of (5) satisfy the uneque-
lity

k-1)n k+1)7n
= ot R ©

*
From Xi = eie it follows that P = 2 cos © or in other words

PE LG e ot 0, (7

From (6.3.4) it follows that P and Q can be written in the form

= (0,d + a)g+a,, Q= (pa®+p,ae”+p,dg, (8)

where o,...,0, and Bl,...,Ba are the averages of the corresponding

quantities of (6.3.4). Substituting (8) into (7) yields
2 2 2 2 2 2
{(a," - 4B, cos™0)a" + (2a,0a,=- 4B,cos 0)d + a, g™ +

+ {(2a1a3- 4Bscosae)d + 2a2aa}g + aaz = 0. (9)

The values of ©, satisfying (5), are functlons of d which contain M
as parameter. But 1t is sure that 0 = cos®® =1 1ndependent on M. This
means that for each M the maximum in the interval O = cos 29 =1 of the
in absolute value largest root g of (9) is an upper bound of the abso-
lute values of the roots g of (9) for the right values of cos®6. For lar-
ge values of M this upper bound is nearly the lowest upper bound.

It will be clear that for small M this upper bound is only a rough
one. In this case we can better apply the following approximation. First
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the coefficients dij of (6.1.9) are approximated as given in (6.2.8).

Then the contribution to the left member of (6.1.9) descended from those
terms of the determinant containing the same coefficients of the princi-
pal diagonal can be written as a polynom1a1 in 1/G multiplied by these

coefficients. The:lowest power of L in this polynomial occurs for those

terms only containing coeff1cients of the three inner diagonals. Secondly
we limit the above polynomials in 1/G to the lowest power of 1/G In
fact this means that we equate all coefficients to zero except those of
the three inner diagonals. By these approximations (6.1.9) is passed into
a special case of (5 2.3). From (5.2.7) we find that about the half of
the roots g of (6.1.9) can be written as

2
c A 2 *
L v e I N LR PRPTLE (10)
(m%6, -p)

=

while the other roots vanish approximately. We see that the in absolute
largest growthfactor occurs for j =*1. As illustration in figure 1 the

curve gi(p) as well as the curve g, (p) is given for At = 0,1 and Ax =

so for the same parameters as in figure (5.4.1). In figure 2 for the same
case all roots of (6.1.9) are represented as function of p.

10|
19Imax.
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Figure 1. Exact and approximate curve of Igl

0t = 0,1 and Ax = %.
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Figure 2, Growth factors g as function of p for At = 0,1 and Ax = % .
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Figure 3. A sketch of Iglmax as function of p for the analogue iteration

process as well as for a digital one.

In figure 3 the behaviour of the iteration process for a digital as
well as for the special analogue computer is characterized by means of
sketches of the in absolute value largest growthfactor as function of
P. We see that the region of convergence for the analogue computer is
much larger than for a digital computer. Moreover within the common re-
gion of convergence the rate of convergence for the analogue computer
is considerably larger than for a digital computer.
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Chapter VII

NUMERICAL RESULTS

Introduction

In this chapter we will only discuss some numerical calculations
performed to check analytic results. All these calculation have
been executed on the digital computer of the Technical University
of Delft.

One after another we will consider the following aspects of solving
numerically a boundary and initial value problem.

1) Stability of a problem described by a pair of simultaneous "para-
bolic" differential equations,

2) Convergence of the iteration process occurring for this problem,

3) Fitting of a difference problem to a differential problem.

Flowdiagram for digital solving of "diffusion" problems having a set of
differential equations

In figure 1 the flow diagram is represented according to which some
programs have been made for digital solving of problems of the fol-
lowing type

Bzi azzi
el ;—;— = fi(x,t,z ,...,zN), i=1,...,N
x

2,(0,%) = 9,(t), 2,(1,%) = n, ()5 2,(x,0) = v,(x). (1)

We remark that no efforts have been made to obtain an optimum effi-
ciency of the flowdiagram and the corresponding programs because they
were destined for research calculations.
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g
Punch solution

AN OM  [Zilxm )= zilxm.tn=1)

ditto for f,
Calculation ready ?

Punch data ., LN

Figure 1. Flow diagram of a digital method of solving diffusion problems
of type (1).

On behalf of the calculation of the solution at time tn for each
unknown Zsy i=1,...,N and for each Xy W= 19¢¢e,M =1 a quintet of

quantities have to be kept. Moreover the total number of sub-programs
is proportional to N. It is evident that a demand for the design of the
main program had to be that the number of unknowns N and the number of
x-intervals M can be chosen arbitrarily without changing the main pro-
gram itself. We remark that for that purpose the holding of the men-
tioned set of quintets and the labeling of the sub-programs had to be
arranged in a special way.
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o,

Now we will discuss what happens if switch U1 is in position 0, After

starting the calculation first & number of constants are calculated and
kept. Purther, some quantities relating to the initial time to are pun-

ched and the time is enlarged with At. Then successively the left and
right boundary conditions, the prediction of the solution, and the terms
f(x,t,zl,...,zN) corresponding to the predicted solution are calculated.

After this the iteration process starts where the predicted solution
is the initial condition of the iteration process. With the help of an
iteration formula (corrector) in each iteration cycle z; and f,, i =1,
«..4N are corrected. Next it is checked if this corrected solution zy
for each Xpo B = 1y060e9M=1 differs less than d from the solution z4 cal-
culated in the preceding iteration. If the check is negative then one
more iteration cycle is executed. The iteration process is stopped as
soon as the check is positive. The results of the iteration process are
punched and moreover they are read into the memory locations reserved
for the solution of the preceding time.

Next the check "ready" is performed. If this check is negative then
the main program is repeated from the instruction which enlarges the
time with At.

Stability of a problem described by two simultaneous "diffusion"
equations

In paragraph 2.10 we have discussed briefly the mathematical formu-
lation of the external and internal solution for problems having two
simultaneous "diffusion" equations. Now we will consider the analytic
and numerical solution of the following example

2

0z 0z

5= - 4 +19,97%z, - 18n°z_ = - 13,025%°x° + 3,81t
P e 1 2

azz 6222 2 2 2 2 2
% P + 187 z, - 13,17 z, = - 8,6n°x" + 9,8n°¢

zl(O,t) = 2t 21(1,t) =5 + 2t zi(x,O) = x% + sin 2mx

z2,(0,t) = 2% 2,(1,t) = 1 + 2t  2z,(x,0) = x2 + 2 sin 27mx. (1)

In paragraph 2.4 we have seen that for problems with one diffusion

equation the 15 x-elementary solution has always the smallest stabili-
ty. For problems with two simultaneous "diffusion" equations this is no
longer true in general,

Denoting the largest root of (2.10.10) by b, and (jn)2 by y, it can

easily be shown that the possibilities of the behaviour of B, as function
of y are as represented in figure 1.
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Figure 1. Different possibilities of b, (y).

In the sketches of figure 1 the curve ul(y) is only of interest for
¥ 2 0. In each sketch the straight lines are the asymptotes of ul(y)

if y — + », For the sketches 1500094 one of the 1St elementary solutions
has' the largest growthfactor. This is not always true for the sketches
5 and 6, dependent on the choice of the constants a and 4.

For problem (1) it holds g <l (a1 - az)(dn - dzz) > 0. So the
behaviour of B, as function of y is as given in sketch 5. The constants
& and d have been chosen such that the relative maximum is positive and
occurs for y = 4%%, so for J = 2. In figure 2 for problem (1) we have
drawn Reu1 as function of y.



Figure 2. Reu, as function of y for problem (1).

The maximum of Reu1 is equal to O,1n2, so the asymptotic stability is

2
equal to g1 s . Obviously problem (1) is unstable. For large values of t

in general one of the an elementary solutions will become dominating.
From (2,10,10) this an elementary solution proves to be

2 2
0,1m t’g sin 2nx 0017 t}

gein 21X e

The numerical calculation of the solution of problem (1) has been done
in the case that the differential equations of (1) have been replaced by
difference equations of Crank-Nicolson. For this choice of difference e-
quation it holds that g,, = (1 + £cAt)/(1 - % cAt) where ¢ satisfies

(2.10.10) provided in this p and (jn)2 are replaced by respectively c and
2(1 - cos jnax)/(sx)2.

The right hand members of the differential equations as well as the
boundary conditions of (1) are chosen such that the external solutions of
differential problem (1) and the corresponding difference problem are e-
qual. Moreover, the initial conditions are taken such that the internal
solution only consists of the above mentioned 214 elementary solution. It
can easily be found that the analytic solution of (1) is

2
2 Q10 ¢
’

z, (x,1) + 2%) + sin 2nx e

1

2
0,1m t. (2)

2
z,(x,t) =(x" + 2t) + 2 sin 2nx e
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Problem (1) in difference form has been solved for At = 0,01, Ax = 0,1
and & = 0,001, Herewith from (2.10.10) we find that again the in absolute
value largest growthfactors occurs for one of the 2nd elementary solutions,

t /At t_ /At
}. (3)

{sin 2nx_ 1,0097 Al e giy 2rx_ 1,0097 2

The initial conditions of the internal solution of the difference pro-

blem are zl(xm,o) = sin 2nx and za(xm,o) = 2 sin 2rx_, The ratio of these

conditions is 2, This differs a bit from the ratio L = 1,97 of the compo-
nents of the above an elementary solution. This means that also the other

2nd elementary solution will give a small contribution to the internal
solution of the difference problem., However, the growthfactor Ext of this

elementary solution is =~ - 0,13 and so its contribution to the internal
solution tends rapidly to 0. This means that the ratio of the amplitudes
of sin 2nxm in the solution will change in a few times from 2 into 1,97.

In figure 3 the numerical solution of problem (1) is given for a num-
ber of times.

zi(xm,tn)

.0 o1 .2 3 4 ) .6 o T .8 «9 1.0

.00 1.00 .59 .96 «97 /63 .06 =350 -,83% .79 ~,30 25
LO1.71502 .63 1,01 1,02 .67 .08 -/50" -.84 -.80 .38 ,27
.02 .04 .65 1.04 1,05 .69 .10 =-.48 =.83 -.79 =-.37 .29
$DFR064 G687 1007 1508 .72 (G2 =AY B2 T8 L <35 8
204108 71 .10 “1.11 T4 14 =.45 =.81 - 77 =34 <33

zz(xm,tn)

X

0 S e 1 o2 .3 A=05 .6 ST .8 SO0 0

200 .00 1,19 1.94 1,99, 1.34 . .25 =:82 <1,41 =1,26 +=23T7 1,00
2O 02 T 22 TS99 e 08 TV T 2T S8 S AR <A, 3611 .02
.02°[.04 1.26 2.03 2,08 1.40 .29 -.81 -1.42 -1,27 -.35 1.04
SOSNIS06° 1529 2007 22 1 0 23 2080 P YRl o127 =055 - 1106
+04° 1,08 1,32 2,41 2016 ALAT SB35 =e79 0 =1.42 0 -1.27 =.34  1.08

Figure 3. Numerical solution of problem (1) for At = 0,01 and Ax = 0,1.
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7.4. Iteration process for a problem described by two simultaneous "diffusion"

equations

First we will consider problem (2.10.1), if in this the differential
quotients are replaced by difference quotients in the way of Crank-Nicol-
son. If (2.10.1) is solved iteratively then during the iteration process
at tn in fact the solution of a boundary and initial value problem is de-

termined which problem we will call iteration problem. The boundary con-
ditions of the iteration problem are equal to those of (2.10.1) at t_,

while its initial condition is equal to the predicted solution of (2.10.1)
at tn‘ We remark that convergence of the iteration process has the same

meaning as stability of the iteration problem. The solution of (2.10.1) at
tn is equal to the external solution or what is the same the steady state
solution of the iteration problem.

The x-elementary solutions of the iteration problem are {al(xm)gs,
s .
az(xm)g }, provided

biai(xm_1) + clai(xm) + ai(xm+1) + diau(xm) =0

baaz(xm_1) + czaz(xm) + az(xm+1) + dzai(xm) =0

2,(0) = a,(1) = a,(0) = a,(1) = 0, (1)

where

* 2 * * At * At *
by = 840 Oy ="

* 2 * * At * At *
b, = 840 ¢ =-3 y 822 28y5 * a,Y 8248220 945 = a,Y g25d21'(2)

* *
Again 813 and 8547 i =1,.0.45 can be equal to g or equal to 1 dependent
on the final choice of the iteration formulas.

( )It can easily be found that in the case b1 = b2 = b the solution of
1) is

=]
1=

2 . 2 . <
a1j(xm) E bj sin jmx , azj(xm) = Kj bj sin jnx (3)
provided
(oqy * 2V§; cos jmAx) + a4, Ky =0
d2J + (°2j + 2V§; cos jmAx) Kj = 0, (4)
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Now we will discuss some numerical calculations concerning problem
(7.5.1) which are performed in the case that the difference equation
of Milne is used as a predictor and the iteration process is applied
for which

1+a, v
1 Syt At
bj = gj, G1J. = = 2 alY g.] e aiY dll' d1 = a-lY d12’
i 4 At I
' ey 8, Y o a,Y dppr 4y = a,y e (5)

First we will take At = Ax = 0,1. Then from (4) and (5) it follows that g
satisfies

45100(Ve)* - 80840(Ve)® + 20479(VZ)? + 15256V% + 1542

"

0 for j =1

45100(Ve)* - 68765(Ve)® + 10476(V5)? + 12976V7 + 1542

0 Tor J = 2,
(6)

From this we obtain that the in absolute value largest growthfactors
are

_225i
1,162 e 349 for j =1

1]
(]

16, 1ni

0,950 0 T Sl e (1)

g

It can be shown that the absolute value of the stability of an elemen-
tary solution of the above iteration problem increases with j. So the
iteration problem is only unstable for J = 1. We observe that the error
in the predicted solution at t, is a constant times sin 2mx and that

the contributions to the internal solution of the iteration problem for
J = 2 are damped sin-functions into the x-direction of the same frequen-
cy as can be understood from (3) and (7). This includes that the inter-
nal solution of the iteration problem also contains the 18% elementary
solutions and so the iteration process does not converge. It can easily
be derived that for large values of s the internal solution {z i(xm,s),
ZZi(xm,s)} of the iteration problem will approach a constant tides

'{fl(xm,s),fz(xm,s)} where

m
210 oy
(1,162) s1n{23’9

b o
fi(xm’s) (2 + 8 + wl)} sin 35 »

27

%-+s
fz(xm,s) = 1,885(1,162) sin{Egjg

; n
(% tstog, + 1,65)}sin %5 s

(8)
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Figure 1. Numerical solution of the iteration problem for At = Ax = 0,1.

In figure 1 the numerical values of zi(xm,s) are represented as func-
tion of x for s = 102,...,107. Moreover for s = 102 in this figure the
curve 2z (xm,s) is given as a dotted line. From the zero passings of

1(x ,s) and z (x ,8)we have & phase shift between 2z (xm,s) and z (xm,s)

to the value of 1 ,65. From CD/CE we can calculate the absolute value
of the growthfaetor per step into the s-direction. In this way we find

1,16. From FG/FH we can determine the period of the factor sin{23 9(—-+s-+¢1)}

occurring in (8). The result is a period of 24 instead of the theoretical
value 23,9, The —.— line represented in figure 1 seems to be proportio-
nal to sin f% which can easily be verified theoretically. Calculating
finally K1 from the ratio i we find K = 1,87. All together we can say

MP
that the numerical results agree well w1th (8).

In order to obtain a convergent iteration process At has to be chosen
sufficiently smaller than O,1. For small values of At the power equation

of the 4th degree in V—.given by (6) can be approximated by a square equa-
tion in g. The roots of this square equation in absolute value are smal-
ler than 1, if At < == 4 . Taking At = 0,01 indeed the iteration process is
convergent.
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In figure 2 the solution of the thus obtained iteration problem
in x = 0,1 is given for t = 0,01,...,0,05. From the final results for
z, of the iteration processes at times 0,03, 0,04 and 0,05 we obtain

at time 0,05 it fol-
lows that the ratio of the components of the internal solution 221/21i
is equal to 1,972. We see that thése results agree well with (7.3.3).

€y = 1,0097. From the final results for z,

and z

$=0,01 $=0,02 $=0,05
s=1 0,638.412.604  s=1 0,651.660.801  s=1 0,731.191.158
1,222,354,26 1,254.314.86 1,349.767.69
2 0,631.884.902 2 0,652.734.419 2 0,731.559.496
1,218.010.05 1,255.075.44 1,350.309.07
3 0,628.245.608 3 0,653.346.564
1,218.202.77 ' 1,255.068.01
4 0,627.217.676
1,220.417.33 0,05
5 0,627.695.21 s=1 0,680.040.899
1,222.648.79 1,286.692.46
6 0,628.597.799 2 0,679.719.617
1,223.973.96 1,286.393.56
7 0,629.277.917
1,224.352,91 Ve 04
8 0,629.551.972  s=1 0,705.467.092
1,224.166.86 1,318.725.70
9 0,629.519.381 2 0,705.583.648
1,223.827.11 1,318.435.06

Figure 2. Numerical solution of

Ax = 0,7,

the iteration problem for At = 0,01 and

Fitting a difference problem to a differential problem

In paragraph 3.3 we have shown if a given differential problem is
interpreted by a difference problem that it can be sensible to fit the
given initial condition before using it in the difference problem. Now
we will illustrate this for the fellowing problem
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2
%% - 2—% + 2z = 0.
ox
: sinh x + sinh(1-x)
z(0,t) = z(1,t) = 1, z(x,0) = 10 - 1,1 sin nx = 9 R ’
(1)
Applying (2.6.4) and (2.6.8) yields the external solution as
sinh x +sinh(1-x)
ze(x,t) - sinh 1 . (2)
It can easily be shown that the internal solution is
) 2
. - {1+(3
zi(x,t) = .21 bj sin jmx e {1+(3m)" Je . (3)
J=
where
b= —20— 11, b, =0, b, - 40 — , 321,
n(1+n°) J J (23+1) 7 {1+(23+1)°="} W
4

Replacing the differential equation of (1) by the difference equation of
Crank-Nicolson the external solution becomes

sinh Ax_+sinh A(1-x_) 2
_ m m (ax)
ze(xm,tn) = 3 y cosh Abx = 1 + 55— . (5)

Without fitting the initial condition the internal solution is

) t_ /At
. n
zi(xm,tn) = :E °y sin Jnxm(ngt)

J=1
M-1 t_/At
» ;%_1 a  sin jnx (g5,,) o, (6)
where
2
e, = 36 + 44 - 1,1, Cos = o,
bom(14x®)  m(a%+n?) J
1 36 44
2541 = [23+1)% { * } (7)

1+(23+1)% 7% 14a%(23+41) %2
and the constants ¢ and d satisfy (3.3.1).

Now we will determine the values of At and Ax for which at t = 0,1 the

solution of the difference problem differs about 10-4 from that of the
differential problem. From figure 1 we see that the external solution dif-

L




a8 o

fer about 10_4 if Ax = l. As a consequence the initial conditions of the

9

internal solutions are nearly the same (see figure 2). Because problem
{4):1s symmetric with respect to x = % the internal solution only con-
tains elementary solutions with odd values of j. In figure 3 the growth-
factors per 0,1 time-unit of these elementary solutions are represented.

x ze(x,t) ze(xm,tn)
0,1 1,000.00 1,000.00
48 :
9°'9 9954.73 0,954.77
% ; % 0,921.25 0,921.33
% . g 0,899.16 0,899.26
% ; 3 0,888.19 0,888.29
Figure 1. External solutions for Ax = % .

11 13 15 17 19

b ,0714 . ,0472 ,0103 ,0038 ,0018

e. | ,0713 ,0472 ,0103 ,0037 ,0018

d, ,0712 ,0470 ,0098 ,0028

,0010 ,0006 ,0004 ,0003 ,0002

,0010 ,0006 ,0004 ,0003 ,0002

Figure 2, Fourier-coefficients of the initial conditions of the internal

solutions for Ax = 1 .

9
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Da1

2l Q.1

=0,1(1+j = At

i |e (85, a¢)

1 1 1 1 1
At=10 At=2o At=30 At=4o Ataso
1 9337 4300 9331 9337 »338 | 0,340
3 ,000 -,608 | ,119 | -,005 | ,000 | 0,000
5 ,000 -,811 ,428 -,142 ,028 0,000
i ,000 -,870 571 -,280 ,101 0,005

Figure 3. Growth-factors per 0,1 time-unit of the odd elementary solutions

for Ax = % .

From the figures 2 and 3 it follows that at t = 0,1 only the 1St
elementary solution of the differential problem has a noticeable value.
So fitting of the initial condition means omitting the elementary solu-
tions with j > 1. From figure 3 we see that At = %6 is the best one for
a good interpretation of the 1St elementary solution by the difference
problem. This agrees with relation (3.4.4).

Tt will be clear from the figures 2 and 3 that we cannot apply At = ga
if the initial condition is not fitted because for the difference
problem the higher frequency elementary solutions are not damped enough.
Therefore without fitting we have to reduce At, but this means that the
elementary solution is no longer interpreted accurately enough unless Ax
is also reduced.

1st

In figure 4 the difference between the solutions of the differential
problem and the difference problem is represented for a number of choices
of At and Ax. From this figure it can be concluded that without fitting
the initial condition At and Ax have to be chosen equal to, respectively,

1 1
720 2™ T8
for problem (1) the ratio of the numbers of values of z(xm,tn) which have
to be calculated for the nonfitted difference problem and for the fitted
one is equal to 8.

in order to obtain an error of about 10-4. This means that
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Figure 4. Error as function of x and t for a number of choices of
Ax and At.

Finally we remark that the above example is not one for which fitting
has an extravagant effect because the amplitudes of the higher frequency
elementary solutions are small compared with the amplitude of the 18
elementary solution.
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SUMMARY

This thesis has arisen from an investigation concerning the design
and application of a special analogue computer for solving such pro-
blems as

- - ¥

= fi(x,t,zi,...,zn), S04

:
2,(0,%) = 9,(¢), 2,(1,8) = n (%), 2,(x,0) = v,(x), i=1,...,mn.

In the thesis some aspects of analytic and numerical solving of pro-
blems of the above type are discussed.

In chapter I some notions are defined two of which we will call
"external solution” and "internal solution". The first one is a ge-
nearalization of the "steady state solution", while the internal solu-
tion is aequivalent to the "transient". These concepts are illustrated
in this chapter for ordinary differential and difference equations.

Chapter II deals with these concepts for diffusion problems in dif-
ferential as well as in difference form. Mathematically, the external
solution is constructed as a series expansion with respect to the de-
rivatives of the boundary conditions. It proves that these series re-
late to 2 points series expansions of a function f(x) like

L] 2k 2k
f(x) = kgo ggk(x) d_dx—gl(tm + gk(‘l - x) L%.Ll} ’

dx
where the functions gk(x) are simple polynomials,

In chapter III a way is discussed in which the initial condition of
a diffusion problem in differential form can be fitted in order to in-
crease the accuracy of the solution of the corresponding difference
problem,

In chapter IV a brief description is given of the designed special
analogue computer.

Chapter V deals with the rate of convergence of digital iteration
Processes as can be applied for solving the above mentioned problems.

In chapter VI the same is done as in chapter V but for the itera-
tion process as occurs with the special analogue computer.

In chapter VII some numerical results are discussed.



SAMENVATTING

Dit proefschrift is voortgekomen uit een onderzoek betreffende
de ontwikkeling en toepassing van een speciale analoge rekenmachine
bestemd voor het oplossen van problemen van het type

2
0z 0°z
e WD By
2t -~ %1 i £(xs%02,500002)), 85 >0,

zi(O,t) = ?i(t)’ zi(1st) » ﬂi(t)y zi(xio) - Yi(x)v i=1,000yn

In het proefschrift worden enige aspecten besproken van analytisch
en numeriek oplossen van deze problemen.

In hoofdstuk I worden enige begrippen gedefiniéerd waarvan we er
hier twee noemen: de uitwendige oplossing en de inwendige oplossing.
De eerste is een generalisatie van het begrip blijvende oplossing, ter-
wijl de inwendige oplossing overeenstemt met het begrip inschakelver-
schijnsel, Deze twee begrippen worden in dit hoofdstuk toegelicht voor
gewone differentiaal- en differentievergelijkingen.,

Hoofdstuk II handelt over deze begrippen voor diffusieproblemen in
zowel differentiaal- als differentievorm. Wiskundig wordt de uitwen-
dige oplossing geconstrueerd als een reeksontwikkeling naar de afge-
leiden van de randvoorwaarden, Het blijkt dat zulke reeksontwikkelin-
gen verband houden met 2-puntsontwikkelingen van een functie f(x) zo-
als

-] 2k 2k
1) = 2 {g () S + g (1 - ) ol

waarbij de functies gk(x) eenvoudige polynomen zijn.

In hoofdstuk ITII wordt een manier besproken waarop de beginvoor-
waarde van een diffusieprobleem in differentiaalvorm kan worden aan-
gepast teneinde de nauwkeurigheid van de oplossing van het bijbeho-
rende differentieprobleem te verbeteren.

In hoofdstuk IV wordt een korte beschrijving gegeven van de ont-
wikkelde speciale analoge rekenmachine.

Hoofdstuk V heeft betrekking op de convergentiesnelheid van digi-
tale iteratieprocessen zoals kunnen worden toegepast voor het oplos-
sen van de voornoemde problemen.

In hoofdstuk VI gebeurt hetzelfde als in hoofdstuk V, maar nu voor
het iteratieprocess zoals het optreedt bij de speciale analoge reken-
machine.

In hoofdstuk VII worden enige numerieke resultaten besproken.



1.

STELLINGEN

De begrippen uitwendige en inwendige oplossing zijn ook bruikbaar bij
andere dan in dit proefschrift beschreven problemen.

De in dit proefschrift beschouwde reeksontwikkeling van een functie f(x),
2k 2k
a="f(0) af(1)
{g (x) + g (1 - x) )
k 2k k 2k
k=0 dx dx

heeft voorzﬁlke x als som f(x), indien in het interval 0 = x =1 voor grote
k geldt |d_12“_1((£l| < ¢ %% pet o = constante
dx

Met behulp van de in dit-proefschrift gedefiniderde polynomen gk(x) kan een

functie f(x) formeel worden uitgedrukt in de even afgeleiden in x = 0 en de
oneven afgeleiden in x = 1 door de reeksontwikkeling

1+x

e 2k afg, . (Z5)-g (2D) 2+
£(x) = kz [zzk{gk(§)+ gk“__;_)}dd gk(o) 42kt ZEe11 72 dxgk+1 2 dd 2k£51)
=0 X

.

Bij een probleem, beschreven door

0z 3221 n
ay 2 = g%; dij 239 zi(O,t) = ?i(t)v 21(1’t) = ni(t)s zi(x,O) =Yi(x)'

=3

ot

Ox

&, = positieve constante, i = 1,...,n,

zal bij gelijke ai’s de kleinste stabiliteit optreden voor één van de 1°
x-elementaire oplossingen.

Zowel bij het onderwijs als bij het speurwerk in de numerieke wiskunde is
tot op heden te weinig aandacht geschonken aan rekenmethoden, die worden
toegepast bij analoge rekenmachines.,

Een duidelijk inzicht in de stabiliteit van een differentievergelijking
kan vaak worden verkregen door de differentievergelijking op te vatten
als de beschrijving van een evenwicht van elektrische stromen.

Indien een numerieke berekening betrekking heeft op het gedrag van een
fysisch systeem, dient een maat voor de nauwkeurigheid van de berekening
zodanig te zijn dat een grotere nauwkeurigheid overeenstemt met een be-




9.

10.

11,

tere beschrijving van het fysische systeem.

Het is te betreuren dat de ontwikkeling van hybride rekenmachines vrij-
wel uitsluitend geschiedt door producenten en gebruikers van analoge
rekenmachines.

Het bepalen van de eigenwaarden en eigenvectoren van een eenvoudige band-
matrix alsook het inverteren hiervan kan vaak zinvol worden teruggebracht
tot het bepalen van de oplossingen ven een randwaardeprobleem.

Indien een tijdsignaal f(t) moet worden vastgelegd in een geheugen en
hierbij vereist is dat signaalwaarden met een verschil € nog juist van
elkaar moeten kunnen worden onderscheiden, dan verdient registratie van

de tijdstippen t, waarop |f(ti) - f(ti_1)| = € vaak de voorkeur boven
registratie van de signaalwaarden op gelijke tijdsafstanden.

Een zinvolle toepassing van de in dit proefschrift beschreven speciale
analoge rekenmachine is het gebruik als snelle voorspellende rekenmachine
bij het optimaliseren van diffusieprocessen




