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Executive Summary

In the last years the impact of malware has become a huge problem. Each year, more and more new
malware samples are discovered [2]. And the malware is becoming more sophisticated, for example
ransomware. Ransomware encrypts personal documents, such as photos and word documents, and
asks money to be able to decrypt these files, hence the name. Malware is not only used for financial
gain at the backs of consumers. Sophisticated targeted attacks at enterprise is not uncommon, for
example the Sony hack.

Although there are many security solutions which should protect endpoints, malware infections
still occur. The reason for this has to due with the way current security solutions work. Most of these
security solutions act upon known malware behavior and signatures. However when new malware is
released and the behavior and signature is still unknown the security solutions cannot protect the
endpoint against these infections.

To be able to overcome this problem a new method for malware detection should be developed. This
detection method should be able to detect malicious behavior without prior knowledge. In scientific
literature this type of detection is called anomaly detection [26,38,57,58]. Anomaly detection uses
the gathered data to construct a model for normal behavior. Any deviation from the defined normal
behavior is seen as an anomaly.

At Fox-IT, an IT security company based in the Netherlands, a new security solution is developed,
clled FoxGuard. This security solution has the ability to block and allow process activity based on a
set of rules. FoxGuard also has the ability to log very detailed low level information of all the processes
running on a system. This information include actions such as filesystem actions and registry actions.
For a more detailed explanation of the data FoxGuard can gather read section 4.1.

In this master thesis an explorative research is conducted on using anomaly detection to detect
malicious process on an endpoint by using the detailed process information FoxGuard can collect. The
main research question to be answered is:

How can anomaly based detection be used for detecting unknown malicious processes
based on the detailed process information gathered on a single endpoint?

To answer this question first a literature research was conducted on the use of anomaly detection
for detecting malicious process in scientific literature, see chapter 2. The main conclusion from the
literature study is that using process information combined with tree based representations, large
quantities of data can be stored in a compact representation. These compact representations can aid
the security officer in graphically analyzing the processes on an endpoint and hereby possibly spotting
deviations.

In chapter 3 the design requirements of the developed system are analyzed. The conclusion of this
analysis is that the amount of data used should be reduced. Not only does it prevent the chances of
generating a detection method in which overfitting occurs, reducing the data also reduces the need for
huge amounts of memory, storage, processing power and network data send.

The collection and preparation of the data is discussed in chapter 4. We have collected four clean
datasets, a complete dataset contains one complete bootcycle, and five malware datasets. To generate
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the malware dataset the following malware was used: a banking malware, a Remote Access Trojan
and a sample of Zeus.

The collected data is aggregated, such that a dataframe remains containing per process the number
of times it triggered the following activities: filesystem, registry, process create, thread create, object
callback and module load. Furthermore it contained the unique process id of the parent process.

As the difference between the number of times process activities were triggered the data was
normalized between 0 and 10, such that the data of the process activities becomes comparable between
each other. A k-means clustering algorithm was applied on the process activities to assign every process
to cluster with likewise processes.

The aggregated and processed data is used to generate process trees, section 5.1 and heatmaps,
section 5.3. These two tools provide a graphical representation of the processes. In a heatmap a security
officer can easily spot the processes with high number of process activities per second compared to
other processes.

In analyzing the process tree deviations were spotted in the top part of the tree, providing proof
that an expert can use the process tree to easily spot deviations in the top level. However due to
the huge number of nodes present in a tree and the difference in computer usage each day, finding
deviations in the lower levels of the tree proofed to be difficult.

Analyzing the process trees from the malware sets proofed again that the process tree can help in
finding deviations. The rat malware processes were clearly visible as deviations on the process tree.
Further more the analysis showed that all malware samples ran could be found in the same part of the
process tree.

Chapter 6 explains the three algorithms used to calculate the distances between processes in the
clean and malware set. These calculated distance are used for marking a process malicious or benign.
A process is marked malicious if it is above a set threshold value. To set these threshold values we
used the mean and 75%, 80%, 85%, 90% and 95% quantile.

All threshold values and algorithms were test and the True Postive Rate, False Negative Rate and
the Accuracy were calculated. The outcome of all experiments is shown in chapter 7. In figure 1 the
True Positive Rate, False Positive Rate and Accuracy for all algorithms is shown. As can be seen in
the figure the malicious processes of the banking malware and rat malware could partly be detect. The
highest True Positive rate gained is 0.917 using algorithm 1 and 3 on the banking malware. However
paired with this is a high False positive Rate. However the Zeus malware was not detect.

In chapter 8 the conclusion and recommendations of this thesis are presented. The main short-
coming for the conducted research is way in which the collection of the data was done. By using two
different machines differences in processes from the same executable were noticeable. This had to do
with the fact that the running times for these processes differs. For future research this experiment
should be repeated by collecting data on one machine. Although the shortcoming had its effects on
the collected data the proposed algorithms showed the ability to detect malicious processes from at
least two out of the three malware types. Furthermore the analysis of the process trees showed us
that, although limited, deviations can be detected.



0.20 -

o 0.15-
a8
Lo0.10-

0.05 -

0.75 -
@ B
a 0.50

0.25-

0.00 -

0.9-

ACC

0.8-

« algorithm1 A algorithm2 ®m algorithm 3

—— bank —— ratl — rat2 — zeusl —— zeus2

1 1 1
mean g0.75 q0.8 q0.85 q0.9
Threshold type

Figure 1: Plots of FPR, TPR and ACC of all malware and all methods






Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8
1.9

Introduction . . . . . . . . L
Malware detection in practice . . . . . . . . . .. L Lo
1.2.1 Methods used by anti-virus solutions . . . . . . . .. .. ... ... ..
1.2.2  Deceiving current anti-virus solutions . . . . . . . ... ... ... ... ... ..
Malware detection in scientific literature . . . . . . . . ... ... oL oL
Solution direction . . . . . . . . . L
TPM relevance . . . . . . . . . . Lo e
Knowledge gap: Difference between science and practice . . . . . . . ... .. ... ...
Research goal and questions . . . . . . . . .. oL Lo o
Research approach . . . . . . .. ..
Thesis outline . . . . . . . . . .

2 Literature research

2.1

2.2

2.3
24

Anomaly Detection . . . . . . . . . . .
2.1.1 Disadvantages of anomaly detection . . . . .. ... ... ... .. ........
Graph methods . . . . . . . . .
2.2.1 Graphs . . . . ..
2.2.2 Time based graphs . . . . . . . .. L
Graph comparison . . . . . . . ..o
Conclusion . . . . . . .. L

3 Design requirements and feature selection

3.1

3.2
3.3
3.4
3.5

Design requirements based on stakeholder analysis . . . . .. ... .. ... .. .....
3.1.1 Stakeholder analysis . . . . . . . .. . ... L
3.1.2 Implications for design requirements . . . . . . . .. ... ..o
Design requirements imposed by privacy law and regulation . . . . ... ... ... ...
Design requirements based on literature . . . . . . .. ... oo Lo
Design requirements based on thedata . . . . . .. .. .. ... 0oL
Conclusion . . . . . . . . e

XI

XV

11
11
11
14
18
19



VIII CONTENTS
4 Data collection and preparation 24
4.1 Thedata . . . . . . . . 24
4.1.1 Filesystem event . . . . . . . .. e 24
4.1.2 Registry event . . . . . . L 24
4.1.3 Process create event . . . . . . . ... L e 25
4.1.4 Processexit event . . . . . . .. e 25
4.1.5 Thread create event . . . . . . . . . ... e e 25
4.1.6 Thread exit event . . . . . . . . . .. e 25
4.1.7 Module load event . . . . . . . .. 25
4.1.8 Object callback events . . . . . . . . . ... L 25

4.2 Collecting the data . . . . . . . . . . e 25
4.2.1 Clean datasets . . . . . . . . . e e 25
4.2.2 Malware datasets . . . . . . . ... 26
4.2.3 Malware used . . . . . . .. 26
4.2.3.1 Bank malware: Dridex . . . . . . . . . . . . ... 27

4.2.3.2 Remote Access Trojan . . . . . . . . ... oL L 27

4.2.3.3 Zeus Trojan . . . . . . ..o e 27

4.3 Collected datasets . . . . . . . . . . e 27
4.3.1 Collected clean datasets . . . . . . . . . . . ... 27
4.3.2 Collected malware datasets . . . . . . . . . . . . ... 27

4.4 Dataselection . . . . . . . . L e e 27
4.5 Data preparation . . . . . . . . ... e 30
4.6 Malware proCesses . . . . . . . . it i e e e 31
4.6.1 Banking malware . . . . . . . ... Lo 31
4.6.2 Rat malware session 1 . . . . . . . . . . . ... e 32
4.6.3 Rat malware session 2 . . . . . . . ... 32
4.6.4 Zeusmalwaresession 1. . . . . . . . . . .. 32
4.6.5 Zeus malware session 2. . . . . . ... 36

5 Exploring the data 37
5.1 Process trees . . . . . . . .. e 37
5.1.1 Constructing the process trees . . . . . . . . . . ..o 37
5.1.2 Process trees from the clean datasets . . . . . . . . ... .. ... .. ....... 38
5.1.3 Process trees from the malware datasets . . . . . . ... .. .. ... ....... 40
5.1.4 Slimming the process trees . . . . . . . . . .. L 40
5.1.5  Analyzing the process trees . . . . . . . . ... Lo 40
5.1.5.1  Analysing the malicious parts of the process tree . . . . . . . .. . ... 44

5.1.6 Conclusion . . . . . . . . . e 44

5.2 Process activities . . . . . . . L e 54
5.2.1 Process activities clean data . . . . . . . .. .. ... 54
5.2.2 Process activities malware data . . . . . . ... ... oL 55
5.2.3 Conclusion . . . . . . . . . e 57

5.3 Heatmaps . . . . . . . . e e 57
5.3.1 Heatmaps from the clean datasets . . . . ... ... .. ... ... .. ...... 57
5.3.2 Heatmaps from the malware datasets. . . . . . . .. ... ... ... ... ... 58
5.3.3 Analyzing the heatmaps . . . . . . . . . ... L 58
5.3.4 Analyzing the malware heatmaps . . . . . . . . . . ... ... ... ... ..., 62
5.3.5 Conclusion . . . . . . . . . e e e 62

5.4 Possible benign process . . . . ... Lo 65
5.5 Conclusion . . . . . . . . e 66



CONTENTS IX

6 Building the detection method 67
6.1 Comparing methods . . . . . . . . .. 67
6.1.1 Compare method 1 . . . . . . . .. . .. . 68

6.1.2 Compare method 2 . . . . . . . . ... 68

6.1.3 Compare method 3 . . . . . . . . ... L 69

6.2 Ranking of malicious marked processes . . . . . . . .. ..o oo 69
6.3 Running times . . . . . . . . L. 69
6.4 Conclusion . . . . . . . . e 70

7 Evaluation 71
7.1 Evaluation Set-up . . . . . . . 71
7.2 Evaluation . . . . . .. e e 72
7.2.1 Algorithm 1. . . . . . . oo 72

7.2.1.1 Algorithm 1:Banking malware . . . .. ... ... .. ... ....... 72

7.2.1.2  Algorithm 1: Rat session 1 . . . . . ... ... ... ... ...... 79

7.2.1.3 Algorithm 1: Rat session 2 . . . . . . . .. ... ... ... ....... 85

7.2.1.4 Algorithm 1: Zeussession 1. . . . . . ... ... ... ... ...... 89

7.2.1.5 Algorithm 1: Zeus session 2. . . . . . . ... ... ..., 93

7.2.1.6  Conclusion Algorithm 1 . . . . ... . ... . ... ... ... ...... 97

7.2.2 Algorithm 2 . . . . . . .. 99

7.2.2.1 Algorithm 2: Banking malware . . . . . ... .. ... ... ...... 99

7.2.22 Algorithm 2: Rat 1 . . . . . ... .. .. 102

7.2.2.3 Algorithm 2: Rat 2 . . . ... ... ... ... . . . 105

7.2.24 Algorithm 2: Zeus 1 . . . . . . . ... 108

7.2.25 Algorithm 2: Zeus 2 . . . . . . . ... 111

7.2.2.6  Conclusion Algorithm 2 . . . . . ... ... ... ... ... ... 114

7.2.3 Algorithm 3 . . . . . . . .. 115

7.2.3.1 Algorithm 3:banking malware . . .. ... ... ... ... ...... 115

7.2.3.2 Algorithm 3: rat 1 . . . . . . . . . ... 116

7233 Algorithm 3: rat 2 . . . . . . . ... 116

7.2.3.4 Algorithm 3: Zeus 1 . . . . . . . ... 118

7.2.3.5 Algorithm 3: Zeus 2 . . . . . . . ... 118

7.2.3.6  Conclusion Algorithm method 3 . . . . .. ... ... ... ....... 121

7.3 Conclusion . . . . . . . .. e 121

8 Conclusion 124
8.1 Reflection on research questions . . . . . . . . . .. ... 124
8.2 Shortcomings and recommendations for future research . . . . . . ... ... .0 126

9 Bibliography 128
Appendices 133
A Collected data 134
A1l Filesystem event . . . . . . . . L 134
A2 RegiStry event . . . . . . . o o o e e 135
A3 Process create event . . . . .. ..o 136
A4 Processexit event . . ... 137
A5 Thread create event . . . . . . . . Lo 137
A6 Thread exit event . . . . . . . . . . . L e 138
A7 Module load event . . . . . . ... 138
A.8 Object callback events . . . . . . . . . . . 138



X CONTENTS
B Process trees 140
B.1 Cut Process trees from clean datasets . . . . . .. ... . ... ... ... 140
B.2 Cut process trees from malware datasets . . . . . . ... ... o oL 144
B.3 Merged process trees . . . . . . ..o Lo e e 149

C Process Activities 159
C.1 Process activities clean dataset . . . . . . . . . . . . ... ... 159
C.2 Process activities malware dataset . . . . . . . . . . ... .. 160

D Heatmaps 168
D.1 Heatmaps from the clean datasets . . . . . .. .. ... ... .. 168
D.1.1 Analyzing the heatmaps . . . . . . . . . . . . . ... ... 172

D.2 Benign process analysis . . . . . . . ..o L e 182

E INPUT IS HERE 185
F Evaluation Algorithm 1 186
F.1 Banking malware . . . . . . . . . . . e 187
F.2 Rat malware session 1 . . . . . . . . . . . e e 188
F.3 Rat malware session 2 . . . . . . . . ... e e 189
F.4 Zeus malware session 1 . . . . . . . . . . . e e e e 190
F.5 Zeus malware session 2 . . . . . . . . ... 191

G Evaluation Algorithm 2 192
G.1 Banking malware . . . . . . . . ... L 193
G.2 Rat malware session 1 . . . . . . . . . . L 194
G.3 Rat malware session 2 . . . . . . ... e e e 195
G.4 Zeus malware session 1 . . . . . . . ... e 196
G.5 Zeus malware Session 2 . . . . . . . ... e 197

H Evaluation Algorithm 3 198
H.1 Banking malware . . . . . . . . . . .. L e 199
H.2 Rat malware session 1 . . . . . . . . . . . . e 200
H.3 Rat malware session 2 . . . . . . . . . . . e e e e e e e e 201
H.4 Zeus malware session 1 . . . . . . . . . .. L 202
H.5 Zeus malware session 2 . . . . . . . . . L e e e e 203
H.5.1 Malicious heatmaps . . . . . . . . . . . . 204

I Ranked malicious processes 218
I[.L1 Algorithm 1: Ranked malicious marked processes . . . . . . . .. .. ... ... ..... 218
.2  Algorithm 2: Ranked malicious marked processes . . . . . . . .. ... .. ... ..... 229
[.3 Algorithm 3: Ranked malicious marked processes . . . . . .. .. ... ... .. ..... 239

J Algorithm 3: Process trees 249



1.1
1.2
1.3
14

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

4.1

5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

List of Figures

Plots of FPR, TPR and ACC of all malware and all methods . . . . ... ... ... .. \%
New malware samples per year [2] . . . . . . . .. L 2
Showing the problem of finding the malicious processes . . . . . . . . . . ... ... ... 6
A graphical presentation of the thesis layout . . . . . . .. ... ... ... L. 8
Thesis outline . . . . . . . . . . L e e e 8
An example of a traffic-dependency graph [70] . . . . . . ... ... oL 12
An example of a process tree [66] . . . . .. ... Lo 13
An example of a graph model [66] . . . . . .. ... . 14
An example of a honeypot hierarchical probabilistic automaton [63] . . . . . . . ... .. 14
Aggregated Tree for a destination profile [64]. . . . . . . . . .. .. .. L. 15
A traffic profile T;, compared to T;_1,T;—2 and T;_3 showing a DDoS UDP attack [64] . 15
Same DDoS UDP Flood attack with Phase Space Embedding Analysis [64] . . . . . .. 15
A partial view of an aggregated tree with a traffic volume threshold of & = 5% [35] . . . 16
The change in the entropy of H;, of a tree without and with anomaly [34] . . . . . . .. 17
K-means plot . . . . . . . e e e 32
First 5 levels of win® 1604 . . . . . . . . . . . e e e 39
First 5 levels of bank malware . . . . . . . . . ... L oL 42
Part of 1604 avond showing the mentioned processes which are only visible in the 1604

avond and 1804 datasets. . . . . . . . ... 44
Part of process tree containing the malicious processes of the banking malware . . . . . 45
Part of process tree containing the malicious processes of rat 1 . . . . . . . .. ... .. 46
Part of process tree containing the malicious processes of rat 2 . . . . . . . . ... ... 47
Part of process tree containing the malicious processes of zeus 1. . . . . . . . . ... .. 48
Part of process tree containing the malicious processes of zeus 2 . . . . . . . . ... ... 49
Part of process tree containing the same part as malicious 1604 avond . . . . . . . . .. 50
Part of process tree containing the same part as malicious 1604 . . . . . . ... ... .. 51
Part of process tree containing the same part as malicious 1704 . . . . . . . . . ... .. 52
Part of process tree containing the same part as malicious 1804 . . . . . . . . . ... .. 53
Part from the heatmap from dataset win8 1604 . . . . . . . ... ... ... ....... 58
Another Part from the heatmap from dataset win8 1604 . . . . . . . ... .. ... ... 58
Part from the heatmap from dataset zeus session 2 . . . . . .. ... ... ........ 59
Part 1 from the heatmap from 1604 avond with the malicious processes . . . ... ... 59
Part 3 from the heatmap from banking malware heatmap with the malicious processes . 63
Part 5 from the heatmap from rat session 1 with the malicious processes . . . . . . . . . 64
Heatmap showing process 243 . . . . . . . . . . .o 65



XII

LIST OF FIGURES

5.20

7.1
7.2

7.3
7.4

7.5
7.6

7.7
7.8

7.9
7.10

7.11
7.12
7.13

7.14
7.15

7.16
7.17

7.18
7.19

7.20
7.21

7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

Heatmap showing the processes . . . . . . . . . . . . ... 65
Plot of the ACC, FPR and TPR of banking malware . . . . ... ... ... ....... 73
The process tree of the banking malware set showing the malicious marked process ids,

using the 75% quantile as threshold, with a red label. . . . . . . ... ... ....... 78
Plot of the ACC, FPR and TPR of rat session 1 . . . . . . . ... ... ... ...... 79
The process tree of the rat session 1 set showing the malicious marked process ids, using

the 75% quantile as threshold, with ared label. . . . . . . . . ... ... ... ...... 84
Plot of the ACC, FPR and TPR of rat session 2 . . . . . . . ... ... ... ...... 85
The process tree of the rat session 2 dataset set showing the malicious marked process

ids, using the 75% quantile as threshold, with a red label. . . . . . . ... ... ... .. 88
Plot of the ACC, FPR and TPR of Zeus session 1 . . . . . . . .. ... ... ...... 89
The process tree of the Zeus session 1 dataset set showing the malicious marked process

ids, using the 75% quantile as threshold, with a red label. . . . . . . ... ... ... .. 92
Plot of the ACC, FPR and TPR of Zeus session 2 . . . . . ... ... ... ....... 93
The process tree of the Zeus session 2 dataset set showing the malicious marked process

ids, using the 75% quantile as threshold, with a red label. . . . . . . .. ... ... ... 96
Plot of the ACC, FPR and TPR of all malware sets using method 1 . . . . ... .. .. 98
Plot of the ACC, FPR and TPR of bank using method 2 . . . . ... ... ... .... 99
The process tree of the banking malware dataset set showing the malicious marked

process ids, using the 75% quantile as threshold, with a red label. . . . . . . . . ... .. 101
Plot of the ACC, FPR and TPR of rat session 1 using method 2 . . .. ... ... ... 102
The process tree of the rat session 1 dataset set showing the malicious marked process

ids, using the 75% quantile as threshold, with a red label. . . . . . . .. ... ... ... 104
Plot of the ACC, FPR and TPR of rat session 2 using method 2 . . . . ... ... ... 105
The process tree of the rat session 2 malware dataset set showing the malicious marked

process ids, using the 75% quantile as threshold, with a red label. . . . . . . ... .. .. 107
Plot of the ACC, FPR and TPR of Zeus session 1 using method 2 . . . . .. ... ... 108
The process tree of the Zeus session 1 dataset set showing the malicious marked process

ids, using the 75% quantile as threshold, with a red label. . . . . . . ... ... ... .. 110
Plot of the ACC, FPR and TPR of Zeus session 2 using method 2 . . . . .. ... ... 111
The process tree of the Zeus session 2 dataset set showing the malicious marked process

ids, using the 75% quantile as threshold, with a red label. . . . . . . ... ... ... .. 113
Plot of the ACC, FPR and TPR of all malware sets using algorithm 2 . . . . ... ... 114
Plot of the ACC, FPR and TPR of bank using method 3 . . . ... ... ... ..... 115
Plot of the ACC, FPR and TPR of rat session 1 using method 3 . . .. ... ... ... 117
Plot of the ACC, FPR and TPR of rat session 2 using method 3 . . . .. ... ... .. 118
Plot of the ACC, FPR and TPR of Zeus session 1 using method 3 . . . ... ... ... 119
Plot of the ACC, FPR and TPR of Zeus session 2 using method 3 . . . . .. ... ... 120
Plot of the ACC, FPR and TPR of all malware sets using method 3 . . . .. ... ... 121
Plots of FPR, TPR and ACC of all malware and all methods . . . . ... ... ... .. 122
First 5 levels of win8 1604 avond . . . . . . . . . . . . .. 141
First 5 levels of win® 1704 . . . . . . . . . . . e e e 142
First 5 levels of win8 1804 avond . . . . . . . . . . . . L 143
First 5 levels of rat malware session 1 . . . . . . . . ... ... L. 145
First 5 levels of rat malware session 2 . . . . . . . . . . ... L L o 146
First 5 levels of zeus malware session 1 . . . . . . . . ... ... L. 147
First 5 levels of zeus malware session 2 . . . . . . . . . . ... L L o 148
1604 avond merged tree . . . ... Lo e 150
1604 merged tree . . . . ..o e 151

B.10 1704 merged tree . . . . . . L e e e 152



LIST OF FIGURES XTI

B.11 1804 merged tree . . . . . . ..o e e 153
B.12 bank malware merged tree . . . . . . ... oL L 154
B.13 rat malware session 1 merged tree . . . . . . . .. Lo oo 155
B.14 rat malware session 2 merged tree . . . . . .. .. Lo L Lo 156
B.15 Zeus malware session 1 merged tree . . . . . . . . ... L oo 157
B.16 Zeus malware session 2 merged tree . . . . . . ... L Lo Lo 158
C.1 Boxplot win 8 1604 . . . . . . . . . . . 159
C.2 Boxplot win 8 1604 avond . . . . . . . . .. L 160
C.3 Boxplot win 8 1704 . . . . . . . . . e 161
C.4 Boxplot win 8 1804 . . . . . . . . e 162
C.5 Boxplot bank malware . . . . . . . ... 163
C.6 Boxplot Zeus malware session 1 . . . . . . .. ... L Lo 164
C.7 Boxplot Zeus malware session 2 . . . . . . . ..o 165
C.8 Boxplot Rat malware session 1 . . . . . . . . . . . . . 166
C.9 Boxplot Rat malware session 2 . . . . . . . . . . ... 167
D.1 Heatmap win8 1604 dataset . . . . . . . . . . . . . ... 169
D.2 Heatmap win8 1604 dataset split test . . . . . . . . . . . .. .o oL 170
D.3 Heatmap win8 1604 avond dataset . . . . . . . .. .. . ..o o 171
D.4 Heatmap win8 1704 dataset . . . . . . . . . . . . e 173
D.5 Heatmap win8 1804 dataset . . . . . . . . . . . . . . e 174
D.6 Part from 1604 avond . . . . . . . ... 175
D.7 Part from 1604 . . . . . . . . . e e 176
D.8 Part from 1704 . . . . . . . e 176
D9 Part from 1804 . . . . . . . . s 177
D.10 Part from bank malware . . . . . . . . ... 178
D.11 Part from rat 1 malware . . . . . . . . . . .. e 178
D.12 Part from rat 2 malware upper part . . . . . . . . Lo 179
D.13 Part from rat 2 malware bottom part . . . . . . . . ... oL 179
D.14 Part from zeus 1 malware bottom part . . . . . . .. . ... o000 180
D.15 Part from zeus 1 malware upper part . . . . . . . ... Lo 180
D.16 Part from zeus 2 malware bottom part . . . . . . . . .. ... ... 181
D.17 Heatmap showing the process . . . . . . . . . . . . . . 183
H.1 Part 1 from the heatmap from the banking malware with the malicious processes . . . . 204
H.2 Part 2 from the heatmap from banking malware with the malicious processes . . . . . . 205
H.3 Part 1 from the heatmap from rat session 1 with the malicious processes . . . . . . . .. 206
H.4 Part 2 from the heatmap from rat session 1 with the malicious processes . . . . . . . .. 207
H.5 Part 3 from the heatmap from rat session 1 with the malicious processes . . . . . . . .. 208
H.6 Part 4 from the heatmap from rat session 1 with the malicious processes . . . . . . . .. 209
H.7 Part 1 from the heatmap from rat session 2 with the malicious processes . . . . . . . .. 210
H.8 Part 2 from the heatmap from rat session 2 with the malicious processes . . . . . . . .. 211
H.9 Part 3 from the heatmap from rat session 2 with the malicious processes . . . . . . . .. 212
H.10 Part 4 from the heatmap from rat session 2 with the malicious processes . . . . . . . .. 213
H.11 Part 5 from the heatmap from from rat session 2 with the malicious processes . . . . . . 214
H.12 Part 1 from the heatmap from zeus session 1 with the malicious processes . . . . . . .. 215
H.13 Part 2 from the heatmap from zeus session 1 with the malicious processes . . . . . . .. 216
H.14 Part 1 from the heatmap from zeus session 2 with the malicious processes . . . . . . .. 217

J.1 The process tree of the banking malware dataset set showing the malicious marked
process ids, using the 75% quantile as threshold, with a red label. . . . . . . . .. .. .. 250



X1V LIST OF FIGURES

J.2 The process tree of the rat session 1 malware dataset set showing the malicious marked
process ids, using the 75% quantile as threshold, with a red label. . . . . . . . .. .. .. 251

J.3 The process tree of the rat session 2 malware dataset set showing the malicious marked
process ids, using the 75% quantile as threshold, with a red label. . . . . . . . . ... .. 252

J.4 The process tree of the zeus session 1 malware dataset set showing the malicious marked
process ids, using the 75% quantile as threshold, with a red label. . . . . . . ... .. .. 253

J.5  The process tree of the zeus session 1 malware dataset set showing the malicious marked

process ids, using the 75% quantile as threshold, with a red label. . . . . . . . .. .. .. 254



3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
9.5

5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

6.1

6.2

7.1
7.2
7.3

7.4

[ist of Tables

Overview of stakeholders . . . . . . . . . . . .. 21
Clean datasets . . . . . . . . . . . e 28
Malware datasets . . . . . . . . . . L 29
Malicious processes banking malware . . . . . . . . .. .. Lo 33
Malicious processes rat session 1 . . . . . . . . ..o L L 33
Malicious processes rat malware session 2 . . . . . . . .. ..ol 34
Zeus session 1 malware samples . . . . . . . ... 34
Zeus session 2 malware samples . . . . . ..o Lo 35
Number of nodes on each depth per clean dataset . . . . . . . ... ... ... ...... 38
Number of nodes on each depth per malware dataset . . . . . .. ... .. ... ..... 40
summary of strange pid 4 behaviour . . . . . ... ..o oL oL 43
Normalized number of events for processid 4 . . . . . .. ... .. ... ... ... 43
Some information on process 133 from the 1604 avond dataset. The comment line

options show that it is the F-secure program . . . . . .. ... .. .. .. ... ..... 43
Showing the summary of the activities of the 1604 dataset . . . . . . . . ... ... ... 54
Showing the summary of the activities of the 1604 avond dataset . . . . . ... ... .. 54
Showing the summary of the activities of the 1704 dataset . . . . . . . . ... ... ... 54
Showing the summary of the activities of the 1804 dataset . . . . . . .. .. .. ... .. 55
Showing the summary of the activities of the bank malware dataset . . . .. .. .. .. 55
Showing the summary of the activities of the rat session 1 malware dataset . . ... .. 56
Showing the summary of the activities of the rat session 2 malware dataset . . . .. .. 56
Showing the summary of the activities of the zeus session 1 malware dataset . . . . . . . 56
Showing the summary of the activities of the zeus session 2 malware dataset . . . . . . . 56
Starting of process 459 and 460 in win8 1604 avond . . . . . . . .. .. ... L. 61
Process 459 and 460 activity . . . . . . . . ..o L 61
Running times (in seconds) of comparison methods using large dataset and banking

malware . . . ... e e 69
Running times (in seconds) of comparison methods using large datasets . . . . . . . .. 70
Outcome using different threshold values for bank malware using methodl . . . . . . . . 72
The five highest ranked benign processes for banking malware using algorithm 1. . . . . 73
Showing the processes from other datasets from the same executable as process 27 from

the banking malware . . . . . . . . . Lo 74
Showing a selection the processes from other datasets from the same executable as

process 119 from the banking malware . . . . . . . . ... ... oL 0oL 75



XVI LIST OF TABLES

7.5 Calculate normalized values for the process activities for the same executable as process
119 in the banking malware set . . . . . . . .. ... oL Lo 76
7.6 Outcome using different threshold values for ratl malware using methodl . . . . .. .. 79
7.7 The five highest ranked benign processes for rat session 1 using algorithm 1. . . . . . .. 80

7.8 The calculated normalized values of processes with the same executable as process 109
in the rat session 1 data . . . . . . . . . . . L 81

7.9 Summary of the process activities of the processes with the same executable as process
95 and 204 in the rat session 1 dataset . . . . . . . ... .. Lo oL 82

7.10 Showing the processes from the same executable as process 95 and 204 in the rat session
Tdataset . . . . . . e 83
7.11 Outcome using different threshold values for rat2 malware using methodl . . . .. . .. 85
7.12 The five highest ranked benign processes for rat session 2 using algorithm 1. . . . . . . . 85
7.13 Summary of the process activities of the malicious processes of the rat session 2 dataset 86
7.14 Summary of the process activities of the malicious processes of the rat session 1 dataset 86

7.15 Process information from the executable belonging to process 161 of the rat session 2
malware dataset . . . . . .. oL 87

7.16 Process information from the executable belonging to process 206 of the rat session 2
malware dataset . . . . . .. L L e 87
7.17 Outcome using different threshold values for zeusl malware using methodl . . . . . .. 89

7.18 A summary of the process activities of the malicious processes of the Zeus session 1
malware dataset . . . . . .. L L 90
7.19 Summary of the process activity of the clean 1604 dataset for comparison. . . . . . . . . 90
7.20 The five highest ranked benign processes for zeus session 1 using algorithm 1. . . . . . . 90
7.21 Outcome using different threshold values for zeus2 malware using methodl . . . . . .. 93
7.22 Summary of the process activities of the zeus session 2 dataset . . . ... .. ... ... 94
7.23 The five highest ranked benign processes for zeus session 2 using algorithm 1. . . . . . . 94
7.24 Summary of process activity of process id 116 and 130 of the Zeus session 2 malware set 94

7.25 Summary of the process activities of the executable belonging to process 116 and 130
in the zeus session 2 data from all datasets . . . . . . ... ... ... ... ....... 94
7.26 Outcome using different threshold values for bank malware using method2 . . . . . . . . 99
7.27 The five highest ranked benign processes for banking malware using algorithm 2. . . . . 100
7.28 Outcome using different threshold values for ratl malware using method2 . . . . . . .. 102
7.29 The five highest ranked benign processes for rat session 1 using algorithm 2. . . . . . . . 103
7.30 Summary of normalized process activities for process id 110 from the rat session 1 . . . 103

7.31 Summary of the process activities of all processes from the same executable as process
110 in rat session 1 dataset. . . . . . . . . .. L 103
7.32 Outcome using different threshold values for rat2 malware using method2 . . . . . . .. 105
7.33 The five highest ranked benign processes for rat session 2 using algorithm 2. . . . . . . . 105
7.34 Overview of the normalized number of activities for the processes. . . . . ... .. ... 106
7.35 Outcome using different threshold values for zeusl malware using method2 . . . .. .. 108
7.36 The five highest ranked benign processes for zeus session 1 using algorithm 2. . . . . . . 108
7.37 Outcome using different threshold values for zeus2 malware using method2 . . ... .. 111
7.38 The five highest ranked benign processes for zeus session 2 using algorithm 2. . . . . . . 112
7.39 Outcome using different threshold values for bank malware using method3 . . . . . . . . 115
7.40 The five highest ranked benign processes for banking malware using algorithm 3. . . . . 116
7.41 Outcome using different threshold values for ratl malware using method3 . . . . . . .. 116
7.42 The five highest ranked benign processes for rat session 1 using algorithm 3. . . . . . . . 116
7.43 Outcome using different threshold values for rat2 malware using method3 . . . . . . .. 117
7.44 The five highest ranked benign processes for rat session 2 using algorithm 3. . . . . . . . 117
7.45 Outcome using different threshold values for zeusl malware using method3 . . . . . .. 118
7.46 The five highest ranked benign processes for zeus session 1 using algorithm 3. . . . . . . 119
7.47 Outcome using different threshold values for zeus2 malware using method3 . . . . . .. 119



LIST OF TABLES XVII
7.48 The five highest ranked benign processes for zeus session 2 using algorithm 3. . . . . . . 120
7.49 Overview of the number highest TPR and lowest FPRs . . . . . . ... ... ... ... 123
A.1 File system data fields . . . . . . . . .. 135
A2 Registry data fields . . . . . . . . . 136
A.3 Process create data fields . . . . . ... oL 137
A4 Processexit datafields . . . . . . .. L 137
A.5 Thread create data fields . . . . . . . . . . . ... 137
A.6 Thread exit data fields . . . . . . . . . . .. 138
A.7 Module load data fields . . . . . . . . . ... 138
A.8 Object callbacks data fields . . . . . . . .. ... 139
F.1 Outcome using different threshold values for bank malware using algorithm 1 . . . . . . 187
F.2 Outcome using different threshold values for ratl malware using algorithm 1. . . . . . . 188
F.3 Outcome using different threshold values for rat2 malware using algorithm 1. . . . . . . 189
F.4 Outcome using different threshold values for zeusl malware using algorithm 1 . . . . . . 190
F.5 Outcome using different threshold values for zeus2 malware using algorithm 1 . . . . . . 191
G.1 Outcome using different threshold values for bank malware using algorithm 2 . . . . . . 193
G.2 Outcome using different threshold values for ratl malware using algorithm 2. . . . . . . 194
G.3 Outcome using different threshold values for rat2 malware using algorithm 2. . . . . . . 195
G.4 Outcome using different threshold values for zeusl malware using algorithm 2 . . . . . . 196
G.5 Outcome using different threshold values for zeus2 malware using algorithm 2 . . . . . . 197
H.1 Outcome using different threshold values for bank malware using algorithm d3 . . . . . 199
H.2 Outcome using different threshold values for ratl malware using algorithm 3. . . . . . . 200
H.3 Outcome using different threshold values for rat2 malware using algorithm 3. . . . . . . 201
H.4 Outcome using different threshold values for zeusl malware using algorithm 3 . . . . . . 202
H.5 Outcome using different threshold values for zeus2 malware using algorithm 3 . . . . . . 203
I.1 Ranking of the processes based on the distance for banking malware using algorithm 1.

The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth q85, the fifth q80 and the
bottom line is q75. . . . . . oL L e 219
[.2  The five highest ranked benign processes for banking malware using algorithm 1. Also
showing the clean datasets in which the executable is present. . . . . . . . . .. .. ... 220
[.3 Ranking of the processes based on the distance for rat session 1 using algorithm 1.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth 85, the fifth q80 and the
bottom line is q75. . . . . . oL L 221
I.4 The five highest ranked benign processes for rat session 1 using algorithm 1. Also
showing the clean datasets in which the executable is present. . . . . . . . . .. .. ... 222
.5 Ranking of the processes based on the distance for rat session 2 using algorithm 1.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third q85, fourth the mean, the fifth q80 and the
bottom line is q75. . . . . . oL L 223
[.6 The five highest ranked benign processes for rat session 2 using algorithm 1. Also
showing the clean datasets in which the executable is present. . . . . . . . ... ... .. 224
[.7 Ranking of the processes based on the distance for zeus session 1 using algorithm 1.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth q85, the fifth q80 and the
bottom line is q75. . . . . . . L L 225



XVIII

LIST OF TABLES

I.8

L9

I.10

L.12

I.13

I.14

I.15

I.16

L.17

I.18

I.19

I.20

I.21

1.22

I.23

I.24

The five highest ranked benign processes for zeus session 1 using algorithm 1. Also
showing the clean datasets in which the executable is present. . . . . . . ... ... ... 226
Ranking of the processes based on the distance for zeus session 2 using algorithm 1.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth q85, the fifth q80 and the
bottom line is q75. . . . . . . L L 227
The five highest ranked benign processes for zeus session 2 using algorithm 1. Also
showing the clean datasets in which the executable is present. . . . . . . . . .. .. ... 228
Ranking of the processes based on the distance for banking malware using algorithm 2.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third q85, fourth the mean, the fifth q80 and the
bottom line is q75. . . . . . oL L e 229
The five highest ranked benign processes for banking malware using algorithm 2. Also
showing the clean datasets in which the executable is present. . . . . . . ... ... ... 230
Ranking of the processes based on the distance for rat session 1 using algorithm 2.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90 and the mean, third ¢85, the fourth q80 and the
bottom line is q75. . . . . . . L L 231
The five highest ranked benign processes for rat session 1 using algorithm 2. Also
showing the clean datasets in which the executable is present. . . . . . . . .. ... ... 232
Ranking of the processes based on the distance for rat session 2 using algorithm 2.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth q85, the fifth q80 and the
bottom line is q75. . . . . . oL L 233
The five highest ranked benign processes for rat session 2 using algorithm 2. Also
showing the clean datasets in which the executable is present. . . . . . . . . . ... ... 234
Ranking of the processes based on the distance for zeus session 1 using algorithm 2.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth q85, the fifth q80 and the
bottom line is q75. . . . . . . L L 235
The five highest ranked benign processes for zeus session 1 using algorithm 2. Also
showing the clean datasets in which the executable is present. . . . . . . ... ... ... 236
Ranking of the processes based on the distance for zeus session 2 using algorithm 2.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth q85, the fifth q80 and the
bottom line is q75. . . . . . oL L e 237
The five highest ranked benign processes for zeus session 2 using algorithm 2. Also
showing the clean datasets in which the executable is present. . . . . . . . . .. ... .. 238
Ranking of the processes based on the distance for banking malware using algorithm 3.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth q85, the fifth q80 and the
bottom line is q75. . . . . . . L L 239
The five highest ranked benign processes for banking malware using algorithm 3. Also
showing the clean datasets in which the executable is present. . . . . . . . .. ... ... 240
Ranking of the processes based on the distance for rat session 1 using algorithm 3.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth q85, the fifth q80 and the
bottom line is q75. . . . . . oL L e 241
The five highest ranked benign processes for rat session 1 using algorithm 3. Also
showing the clean datasets in which the executable is present. . . . . . . . . .. ... .. 242



LIST OF TABLES

XIX

1.25

1.26

1.27

1.28

1.29

1.30

Ranking of the processes based on the distance for rat session 2 using algorithm 3. The
first dark line shows the q95 border. The second line is the 90, third q85, fourth is the
mean, the fifth q80 and the bottom lineis q75. . . . . . . ... ... ... .. ...
The five highest ranked benign processes for rat session 2 using algorithm 3. Also
showing the clean datasets in which the executable is present. . . . . . . . . ... ...
Ranking of the processes based on the distance for zeus session 1 using algorithm 3.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth 85, the fifth q80 and the
bottom line is q75. . . . . . oL L e
The five highest ranked benign processes for zeus session 1 using algorithm 3. Also
showing the clean datasets in which the executable is present. . . . . . . . . . . .. ..
Ranking of the processes based on the distance for zeus session 2 using algorithm 3.
The first dark line shows the q95 border. All processes above this line are marked as
malicious. The second line is the q90, third the mean, fourth q85, the fifth q80 and the
bottom line is q75. . . . . . oL oL e
The five highest ranked benign processes for zeus session 2 using algorithm 3. Also
showing the clean datasets in which the executable is present. . . . . . . . . . ... ..






1

Introduction

1.1 Introduction

In the last few decades the rise of internet has had a huge impact on our global society. Today’s
world is largely dependent on the use of information technology and the internet. The amount and
different types of devices interconnected by the internet is still rising. Not only our computer and
mobile phone are connected to the internet, but devices as televisions, smart-meters (for electricity)
and smartwatches as well. In the coming years more and more devices will be connected to the internet,
for example your thermostat [8] or your fridge [12], creating the internet of things.

All these internet connected devices create huge potentials for new functions, it has its downside as
well. All devices connected to the internet are the potential subjects of cyberattacks, which could end
up in a loss of data, money or other inconveniences. These cyberattacks and infections of computers
are a huge problem at the moment. This can be concluded from the vast amount of news headlines
stating malware infections at municipalities, companies and personal users [14-16,18,19,21].

Together with the rise of internet usage, the amount and characteristics of cyberattacks has changed.
Nowadays these threats are becoming more complex and serious. Mostly used for financial or infor-
mation gain. For example, in the last couple years malware threats were active, that used a compro-
mised device for mining digital currencies, which could then be converted in money with a monetary
value [50,51].

Since 2013, a lot of ransomware attacks are present [47]. Ransomware is a malware that infects
a users computer and persuades the owner to pay the malware author. This persuasion can be false
claims against the user of copyright infringement or owning child pornography, but also, and the most
common version, is to encrypt the users files. To be able to decrypt and gain access to the files, the
victim has to pay money.

In the last few years, the frequency of cyberattacks and the cost of these cybercrimes have risen [6]
and cybercrime has become a highly organized business [43]. Norton Security claims, that the damage
of cybercrime aimed at consumers in 2012 was around $113 billion [49]. In 2013 the economic damage
caused by cybercrime worldwide, consumer damage as well as damage done to companies, was roughly
estimated between $375 billion to $575 billion [11, pp. 6]. Moreover, the coming years the predictions
are that malware and cyberattacks will become more sophisticated and probably incur more damage
[5,7].

Not only consumer products are connected to the internet, but also critical infrastructures, such
as power and water plants. Disrupting these critical systems can have a huge disruptive effect on
daily life. Examples of recent attacks on critical infrastructure are: to gather information about [52]
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and disrupt [32] nuclear enrichment plants, gather information from the energy sector [59] or using
sophisticated malware to access telecom providers [44,46].

Although nowadays anti-virus and malware protection applications are commonly used, these types
of headlines still appear often. There are several possible explanations for this:

1. Software is not always up to date and the unpatched vulnerabilities are used as an attack
vector

2. A zero-day exploit is misused as an attack vector

3. The effectiveness of anti-virus and malware protection applications is depending on signatures
and know behavior of malware attacks. So any new attack type should be encountered first,
giving the malware exploiters a head start

1.2 Malware detection in practice

Although in 2014 more than 70% of the computers worldwide have real-time security software installed
[10, p. 90] still a lot of malware infections take place. The reason for this is the fact that the current
security products are one step behind the newest cyberthreats [45,56]. And this problem will continue
as the number of new malware samples seems to be rising each year. According to [13] 143 million
new malware samples where discovered in 2014, while in 2013 the number of new malware samples
was around 80 million (see Figure 1.1).
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Figure 1.1: New malware samples per year [2]
In the next paragraphs we provide an overview of the current methods used in anti-virus solutions.

This will give a better overview how current security solutions work, after which we will show, in
section 1.2.2, some examples of how the current used methods can be deceived.
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1.2.1 Methods used by anti-virus solutions

This section will explain several methods used in detecting malware. After gaining a better insight in
how current security products work and what their weaknesses are, discussed in section 1.2.2, we will
take a look at the methods proposed in scientific literature.

The most basic method for malware detection is the scanning of the files which reside on a computers
hard disk and compare hashes of the files to known hashes of malware files. These known hashes of
malware files are called signatures. Therefor this type of malware detection is called Signature-based
Detection [61]. These signatures can be based either on a checksum [60, 72] and byte sequences
[56,60,72].

A checksum signature is a value which is calculated based on the file. When changes are made to a
file the checksum will change as well. In checksum signature based detection the checksums of known
malware files are compared to the files scanned on a computer. The downside of this type of signature
based scanning is the fact that a small change in the file will change the checksum. To circumvent
this problem fuzzy hashing is used. Fuzzy hashing looks for hashes that are almost identical but not
completely [36].

To overcome this problem byte sequences signatures are created. In this type of detection the byte
sequence performing the malicious behavior is used to create a signature. In doing so changes to a file
will not fool the detection method as long as the malicious byte sequence is still present in the file.

Furthermore in [56] the following detection methods for malware detection are explained:

e Emulation is now a days used in many major anti-virus solutions. With the emulation
method the program’s code is broken down into commands. These commands are then
launched in a fully contained and controlled virtual environment to observe the programs
behavior. This virtual environment emulates a real operating system. The malware will
think it runs on the real operating system and will execute its malicious code.

e Sandbox is an extension of emulation. In the sandbox method, the executable is run on the
operating system. However the interaction the executable has with the operation system is
limited by strict rules to safeguard the security of the operating system. For example malware
in the sandbox gives the command to write a certain file and execute it. The sandbox will
receive this command and will acknowledge the command is successfully performed with
executing it.

e Monitoring system events is a method which is under rapid development. Statistics are
collected on the actions performed by the operation system components.

e Scanning for system anomalies is a classified and still emerging method. In this method the
system’s known status is used as a reference for the future status of a system. If the status
of the system has changed too much this might be an indicator of a malware infection.

As can be concluded from the above statement, the state-of-the-art malware detection method at
the moment is anomaly detection. This type of detection is still under heavy development.

The next section will explain how it is possible to deceive the currently used detection methods,
namely signature checking, emulation and sandboxing.

1.2.2 Deceiving current anti-virus solutions

Current malware has to possibility to circumvent many of these detection mechanisms. In [48] is
shown which techniques can be used to bypass a huge amount of the anti-virus software used today. It
discusses three types of anti-virus analysis methods: Static signature analysis, static heuristic analysis
and dynamic analysis.

Signature-based detection can be deceived by using code obfuscation or encryption techniques
[28,48,61,62]. Static signature analysis makes use of blacklisting signatures of known malware and
is in use since the first anti-virus solution. The signature of the malware is mostly based on the first
executed bytes of malicious code. The downside of this method is the malware must be known to
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create a signature, implying that it cannot detect new malware. Bypassing signature based analysis
can be done by making changes to the code so the signature will be different when calculated. Oligo-
morphic, polymorphic and metamorphic viruses use this weakness by automatically changing their
code or encrypt parts of their code to change their signatures [60]. In [61] the following obfuscation
techniques, which are used to change the signature of the malware to defeat signature-based detection,
are described:

e dead-code-insertion: Insert code that does nothing, so the signature will change.

e code transportation: shuffle the code and add jumps in the code, to the appropriate location
in the to keep the original flow of the program equal.

e register renaming: the instruction which normally is loaded into a register is replaced with
another instruction

e instruction substitution: replace an instruction with another instruction which has the same
effect but will create another signature

Static Heuristic analysis is based on checking for code patterns to be known as malicious behavior
found in malware. Hereby static heuristic analysis can detect new malware, as long as the malware
makes use of already known code patterns. Using these code patterns for detecting malicious behavior
can generate false positives. To bypass heuristic analysis the malicious part of the code should be
hidden, which can be done by the use of encrypting the code.

Dynamic analysis, according to [48], is used by most anti-virus solutions nowadays. This approach
will run an executable in a sandbox environment hereby performing signature-based and heuristic anal-
ysis and thus combines several detection methods. In running executables in a sandbox environment
possible malicious behavior can become evident without infecting the rest of the system.

Summarizing the information above it can be concluded that today’s anti-virus solutions use sev-
eral methods of detection. These methods are signature-based, heuristic-based, behavioral-based and
sandbox detection. However these detection methods can be circumvented. To overcome this problem
there is a trend in developing system monitoring methods which uses anomaly detection to detect de-
viations from the known or expected state. However at the moment such method of anomaly detection
is still in development.

In the next section an introduction on malicious behavior detection in scientific literature will be
presented. By looking at scientific literature on this subject we will get an insight of what is the current
state-of-the-art on malware detection being developed.

1.3 Malware detection in scientific literature

In scientific literature a lot is written about detecting malicious behavior on computers and networks.
There are two main types of detection methods present in scientific literature:misuse detection and
anomaly detection. As stated in [26], the difference between misuse detection and anomaly detection
can be defined as: misuse detection detects what is known and anomaly detection detects what differs
from what is known as normal. Misuse detection, mostly used in Intrusion Detection Systems (IDS)
and anti-virus software, makes use of data of known malicious behavior and categorizes the provided
data into the known subsets. New data will be compared to these subsets. Misuse detection has good
detection rates for known malicious behavior, but it is depending on this attack behavior information.
Therefor misuse detection is not sufficient for detecting new kinds of malicious behavior or 0-day
exploits [26,57, 58].

Misuse detection works by comparing measurable quantities, such as network traffic, to known
attack patterns. While misuse detection can quite successfully detect and prevent known attacks, it
could already fail to detect slight modifications to existing attacks. And the chance of detecting unseen
attacks is minimal [67].
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In anomaly detection, sometimes referred to as outlier detection, the data is used for building a
model describing normal behavior. This model is used for identifying deviations from this normal
behavior [26, 38,57, 58]. These deviations from normal behavior can be an indicator of malicious
behavior.

An overview of anomaly detection methods is presented in [27]. It gives the following definition
for anomaly detection: “Anomaly detection refers to the problem of finding patterns in data that
do not conform expected behavior”. The paper does not only focusing on the techniques used, e.g.
classification; clustering or nearest neighbor based, but on the possible applications as well. For
example, cyber-intrusion detection, image processing and fraud detection.

To be able to detect new kind of attacks, anomaly detection should provide a better detection
rate of unknown malicious behavior compared to misuse detection. As this master thesis focuses on
detecting unknown malicious behavior, anomaly detection shall be researched in depth in chapter 2.

1.4 Solution direction

At Fox-IT a new security solution is developed, to overcome the problem needing to know signatures
and behavior patterns from malware. Fox-IT is a Dutch based cybersecurity company developing and
using innovative solutions to prevent, solve and mitigate cyber threats [1]. This new type security
solution, called FoxGuard and is initially intended for enterprise environments. The main difference
between FoxGuard and current anti-malware solutions is the fact that FoxGuard does not scan files
for malicious characteristics or known signatures, but has the ability to block or allow behavior from
applications based on predefined rules. These rules can be used to prevent malicious malware behavior
from executing. The main advantage is that it does not need to know what malware is available as it
blocks predefined actions.

Because of how FoxGuard is programmed, it has the ability to log very detailed information of
the processes running and actions their actions triggered on an endpoint' and send this information
to a central server. These actions include events on the filesystem and registry or which processes
or threads are started by which process. For example FoxGuard is able to log that a process from a
browser is reading files on the filesystem. It does not only log if it is reading a file, but also what kind
of access it requested, was granted and more. A detailed explanation of the information logged will be
given in chapter 4.

As the endpoint application is capable of logging a huge amount of information on the behavior
of processes, this could provide new possibilities for developing an anomaly based malicious behavior
detection method.

In this masters thesis an explorative research is conducted to develop a proof of concept, of a
generic detection system which can detect unknown malicious processes, without prior knowledge on
how these malicious processes tend to behave. The problem hereby is, how to find and select these
processes from the huge amount of data. In figure 1.2 the problem is graphically presented. We need
to find a method to separate the malicious (blue dots) from the benign processes (red dots).

The outcome of the detection system should be list of processes, which perform malicious behavior.
Furthermore it should provide graphical tools to help the security officer in analyzing these malicious
marked processes.

1.5 TPM relevance

The detection of unknown malicious processes has several implications. The first implication is that a
working detection system can be implemented in security solutions, such that these malicious processes
can not execute their harmful code. This would prevent damage done by malware. As a result less

n this thesis, endpoint refers to an employees work computer, either desktop or laptop, running windows. However
an endpoint can be any smartphone, laptop or desktop.
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Figure 1.2: Showing the problem of finding the malicious processes

money is spend on restoring backups, cleaning up systems or paid to ransomware owners to decrypt
the encrypted files.

Implementing such a detection system in an enterprise environment will provide the security officer
with a tool to early detect deviating processes. Together with the graphical tools he is able to analyze
these deviating processes. The early detection of possible malware processes, gives the security officer
the possibility to prevent damage, or prevent the spreading of the malware on the enterprise network.
Hereby preventing more damage done by the malware to computers and indirectly creating monetary
loss.

If the detection system is implemented in a system, such as FoxGuard, in such a way that a security
officer could request all logged data belonging to the malicious marked process, we have to keep in
mind privacy regulations and laws. These laws and regulations are different for each country, but in
the Netherlands the type of information stored by FoxGuard are considered personal data, as it can
be traced back to a person [23]2. This implies that the Wet Bescherming Persoonsgegevens should be
enforced. This will be discussed in more detail in section 3.2.

An in depth analysis on the stakeholders is presented in 3.

1.6 Knowledge gap: Difference between science and practice

As stated the complexity of malware and attacks has risen in the last years. Although the anti-virus
vendors are developing and deploying new methods for detecting new malware, a lot of computers get
still infected by malware. One of the reasons for this is the dependence on malware signatures and

2 Artikel 1b WBP
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malware behavior. Malware which utilizes unknown methods for infecting an endpoint are mostly only
identified after the damage is done.

To overcome this problem it is important to find a method which can detect these new and complex
malware behavior, based on the actions it performs. Because misuse detection only works based on
known malware the focus will be on finding an anomaly detection method. This method should be
able to detect malicious behavior based on the hosts process information. This implies that a method
is researched, which can model normal behavior of system processes and detect deviations from this
normal behavior. These deviations should be an indication of malicious behavior. However using this
method of detection brings the problem of false positives into play.

As the detection method is developed to be used in FoxGuard, it is important to take into account
what the requirements are for implementing such a detection method in an enterprise solution. Hereby
taking into account the requirements the stakeholders of FoxGuard have. And what implications these
requirements have on developing such a detection method.

The knowledge gaps can be summarized by the following questions:

e Which detailed process information is usable for identifying malicious behavior?
e Which methods can be used for modeling normal behavior of the system processes?

e Is it possible to detect malicious behavior by deviations from the normal behavior model?

o How can we detect these deviations?

1.7 Research goal and questions

This master thesis is focused on exploring the possibilities of detecting unknown malicious behavior
on computers by analyzing detailed process information. As stated in previous sections, anomaly
detection is the method of choice. However using anomaly detection introduces the False Positives
problem. In exploring the possibilities of using the process information, we should keep in mind how
to reduce these false positives.

The problem statement is as follows:

At the moment most malicious behavior is detected based on known behavior. This imposes the
problem of not being able to automatically detect unknown malicious behavior and hereby preventing
damage done by new malware.

To be able to solve this problem the following research question will be answered in this master
thesis:

How can anomaly based detection be used for detecting unknown malicious processes
based on the detailed process information gathered on a single endpoint?

The research question can be split into the following sub-questions:

1. What are the current state-of-the-art anomaly detection methods for malicious behavior?

2. Which design requirements should be taken into account when developing an anomaly de-
tection method?

3. Which data can be used for modeling benign process behavior?
4. How well does the constructed method detect malicious behavior?

5. What graphical presentations of the malicious marked processes can aid a security officer?
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1.8 Research approach

The first step in answering the main research question is to conduct a literature study on the current
state of scientific research concerning detection of unknown malware. Concluding from the literature
research the design requirements will be drafted. These design requirements will help in selecting the
appropriate features for the data to be collected. The collected data will then be used to explore the
possibilities of using the process information in malicious behavior detection. A proof of concept will
be developed and will then be tested and evaluated, after which the conclusion can be drawn and
recommendations for further research can be given.

1.9 Thesis outline

To answer the main research question the following outline will be used. In the next chapter a
scientific literature research will be conducted. This chapter is split into four sections. In the first
section anomaly detection will be discussed, after which research on the use of graphs in anomaly
detection will be explained. In chapter three, the design requirements will be discussed. First, the
design implications from a stakeholder analysis will be stated. Afterwards the design requirements
extracted from the literature will be presented. Chapter four will explain the process of collecting and
preparing the data to be used in building and testing the malicious behavior detection method.

In chapter five, the prepared data will be used to create process graphs. These process graphs show
the connection between processes and provide information on process characteristics. Thereafter the
data will be used in creating heatmaps. The heatmaps can be used to spot processes with deviating
process activities. Furthermore the heatmaps are used to proof the clustering possibilities and the
assumption that process from the same executable tend to behave the same.

In chapter six possible detection algorithms are introduced. In chapter seven, the detection algo-
rithms build in the previous chapter shall be tested on data containing malicious behavior. The setup
of testing will be presented after which the outcome of these tests is discussed. Chapter eight will
conclude this master thesis and provide recommendations for future future research. IN figure 7?7 a
graphical presentation to the thesis outline is given.

Figure 1.3: A graphical presentation of the thesis layout
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endpoint, log sensor events is collected, is taken through the researched methods, delivers heatmaps
and process trees for security officer to easily spot deviations. And is put through compare method
and delivers processes marked as malicious, non-malicious and is ”delivered” to the security officer.
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Literature research

In this chapter the literature research conducted is presented. The first section will provide a summary
of the scientific literature on anomaly detection. In this part of the research we searched especially for
anomaly detection in the IT field. During the search for anomaly detection we found the use of graphs
in anomaly detection on network traffic. As the interaction between the processes can be drawn as
graphs, the next part of the literature research was based on using graphs in anomaly detection.

Besides the possibility of building process graphs we would have access to very detailed information
per process. As we would look at the events triggered per process our graph would be extended with
additional process information. As we would need to compare the graphs from a clean and malicious
datasets a research was conducted on graph comparison.

The last section is the conclusion which will summarize this chapter.

2.1 Anomaly Detection

As stated in the previous chapter, in order to detect unknown malicious behavior on end-points,
anomaly detection is necessary. In this section the current state of research on anomaly detection
will be described. Although this master thesis focuses on finding malicious behavior by analyzing
information from the processes running on end-points, the conducted literature research will start
from a broader perspective. First we will start to look at anomaly detection in I'T environments, such
as malware and intrusion detection. Thereafter we will narrow done our scope.

In [38] several machine learning techniques for anomaly detection are discussed. Anomaly based
detection systems are defined as systems analyzing current activity against a ”baseline” of normal
behavior and searching for deviations outside of the normal considered behavior. The advantage of
anomaly detection is the ability to detect unknown misuse types. However the disadvantage is the
number of false alarms that can be triggered by anomaly detection.

The following machine learning techniques for anomaly detection in intrusion detection systems
are summarized:

e Fuzzy Logic is used in anomaly detection as often the features used can be seen as fuzzy
variables. Fuzzy logic is proven to be effective in anomaly detection against port scans and
probes. However the resource consumption in using it is high.

e Bayesian Network uses probabilistic relationships between the variables of interest. It is
generally used for intrusion detection as it has the ability to incorporate prior knowledge.

e Genetic Algorithms are inspired on biological principles, such as inheritance, selection,
mutation and crossover.



10 CHAPTER 2. LITERATURE RESEARCH

e Neural Networks can be used on noisy and incomplete data. This algorithm tries to
generalize the data and has the ability to recognize future unseen patterns.

Based on this assumption and the assumption that malware will phone home, a technique is pro-
posed in [24,25], in which they inspect the mouse and keyboard activity from a user and correlate this
with the network traffic. The time between an user event and traffic flow is evaluated, whenever a
traffic flow appears without an user event happening shortly before it is classified as an anomaly. This
concept is also used in [29] and is called BINDER. BINDER consists of four components: User Mon-
itor, Process Monitor, Network Monitor and Extrusion Detector. The first three components collect
information on user activity, keyboard and mouse usage, network activity and process information.
This collected information is send to the extrusion detector, which should be able to detect malware.
The downside of BINDER is that it cannot detect malware when malware is hidden inside another
process.

In [41] uses a collection of system calls of processes and convert these input sequences into a bag
of system calls hereby removing the sequence of the system calls but preserving the frequency of the
system calls. For the unsupervised machine learning k-means with k set to two for clustering in normal
behavior and intrusion behavior.

OS-level information is used for clustering the objects of a program together in a cluster n [55] .
After which the composed clusters will be compared with predefined behavior templates for malicious
behavior. If the cluster matches with these templates a process will be defined as malicious. The
problem is the fact that still known malicious behavior is used to detect malicious behavior and does
not suffice in detecting new kind of malicious behavior.

In [53] the following information is used for their classification of malware behavior: changes to the
file system, changes to the Windows registry, infection of running processes, creation and acquiring
of mutexes, network activity and transfer, starting and stopping of Windows services. This data was
collected using CWSandbox and after classifying, 88% of the malware was assigned to the correct
malware family. As well in [30] they make use use of a sandbox to monitor program executions and
train different machine learning classifiers for detecting unknown malware instances. However the use
of a sandbox might not provide the correct data, as some malware has the capability to detect if it is
ran inside of a sandbox and will not run its malicious code [48].

Another method for malicious behavior detection described in scientific literature is making use of
the call stack [33]. The call stack stores the information about the active subroutines of a process and
provides information to which subroutine it should return control after running. In [33] the return
address of the system calls from a process are analyzed to detect possible malicious behavior. The
training here for is done by running the processes many times and building a list with the return
addresses used by the process.

Unsupervised, supervised and semi-supervised machine learning approaches are used to detect
anomalous data in system log files using outlier detection with classification algorithms in [42] .

In [65] a method of anomaly detection on network traffic is discussed. The network data used is
gathered by using Netflow. This data can be collected from networking equipment and provides the IP
flow information going through this equipment [3]. The IP flow contains information such as: source
and destination IP addresses, packets and byte counts, timestamps, Type of Service, application ports,
input and output interfaces.

From the Netflow data, which will be divided in time windows of 5 seconds, the IP addresses and
number bytes are used are converted to metrics used in anomaly detection. The source and destination
IP addresses are converted to the Classless Inter-domain Routing (CIDR) format!. Defining IP =
(prefiz, suf fizlength) where the prefix is the longest common sequence of two IP addresses and the

IThe CIDR format is a standard system for IP address allocation and IP packet routing. The IP address consists
of two blocks of bits, the most significant bits and the least significant. The most significant bits identifies the network
block. The number of these bits are appended behind the IP address with a slash [4]. For example the CIDR notation
of a host IP address is 192.168.1.10/32. The 32 defines that all the 32 bits in the IP address are significant, so only one
address is available in this IP block. An CIDR notation of 192.168.1.0/24 defines an IP subnet from all IP addresses in
the range of 192.168.1.0 - 192.168.1.255.
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suffixlength is the remaining part of the IP addresses. This will define an IP flow as f; = (prefiz(src);,
suf fixlength(sre);, prefix(dst);, suf fizlength(dst);, vol;). And every time window will be defined
as W = {fla EES) fn}

The constructed time windows will be used in a kernel function which compares two sequential time
windows and calculates the similarity of these time windows. A higher value means the more similar
the two windows are. On the calculated similarity values the One-Class SVM (OCVSM) algorithm is
applied. The reason for using the OCSVM algorithm is the ability to detect unknown anomalies.

The proposed setup is evaluated with several different types of attacks, e.g. Netbios scan and
DDOS TCP flood. The results are promising with an average accuracy of 92% and a False Positive
rate between 0% and 3.3%.

2.1.1 Disadvantages of anomaly detection

Although anomaly detection seems very promising in scientific literature in practice it is still not that
commonly used [57]. One of the main problems with anomaly detection is the introduction of false
alarms, or better known as false positives [38]. If the test data does not have enough similar normal
instances in the training data, the false positive rate becomes much higher [27].

Another disadvantage is that the strength of an anomaly detection model is depending on the input
data. The training data needs to be attack free, otherwise the detection model will learn anomalies
behavior as normal behavior [57]. Gathering attack free data, especially in the IT field is quite difficult.

2.2  Graph methods

As stated earlier, the data used contains process properties. Computer processes interact with each
other and invoke other system actions. This information might provide useful insights into process
behavior. For example one type of process, a file explorer, might perform a lot of file system actions,
whilst a internet browser would trigger a significant lower amount of file system actions but will interact
more often with other processes. In this section scientific literature will be discussed, in which these
process interactions are used for detection of malicious behavior. In the next subsection the usage of
graphs and trees in anomaly detection will be discussed.

2.2.1 Graphs

In this part the use of trees and graphs in malicious behavior detection is discussed. The scientific
information on this subject is not limited to the use of process information. Literature in which
malicious behavior in internet data is detected is presented as well.

An approach of finding unknown malware without any prior knowledge is described in [70]. The
information of a user’s input activities and the host’s outbound network activity is combined, to detect
malicious traffic. Using the combined information a traffic-dependency graph is constructed, as shown
in Figure 2.1. A traffic-dependency graph consists of several trees of an undefined depth. In which
the root of each tree is an user event, user’s input to the application through an input device, and
the internal and external nodes consists of traffic events. The node with traffic events corresponding
directly to the user’s input is the subroot. The subroot can trigger other traffic events, for example
images loaded on the webpage.

In this model legitimate traffic events are traffic events which are triggered by a legitimate user
event. To build the traffic dependency graph, breadth-first search algorithm is used. This algorithm
helps in quickly identifying the parent node of a new network request, starting from the most recent
sub-root. In the case no dependence is found with the sub-root, the sub-root’s childs will be compared.

Using process related information, including relationships among processes, for malicious behavior
detection, is done in [66]. The use of this information can help in building a better real time host-level
intrusion detection. In the first part of the paper is discussed how the collected process information
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Figure 2.1: An example of a traffic-dependency graph [70]

can be modeled into tree-based structures and how to evaluate the constructed process trees by using
tree-based kernels. The second part of the paper describes how to build a labeled graph.

In the constructed process trees the following nodes can be present: PID, Process name (pn) and
system call (sc). The PID is a numerical process identifier used in Linux, assigned when the process
is started. A system call refers to the number assigned by the Linux kernel to a specific system call
type. System calls are used to by processes to request a service from the systems kernel. If a process
wants access to a file it will use a system call to request the kernel access to the file. The process name
is derived from the first argument of the system call, which is the name of the program.

Between these three different node types the following types of edges are possible:

e A PID-to-PID edge, which presents the creation of one process by another process. The
edge indicates the time difference between the two nodes. The monitoring of this is possible
by the PPID (parent process identifier) in linux systems, which is an identification of the
source process.

e A PID-to-pn edge, showing the program started by the process. Here the edge indicates the
time difference as well.

o A PID-to-sc edge, referring to the frequency the system call is called.

With these nodes and edges a process tree T' can be constructed which consists of and ordered pair
T = (V, E) where the set of nodes is described by V = (p1,...,pn). The set of edges is represented by
E = (t1,...,t;). An example of the process tree is shown in Figure 2.2.

The second model discussed in this paper is a labeled graph G which is described as a pair T =
(V, E). And where V consists of a set of nodes p which is composed by two parameters: name_proc,
the process name and stat_d the probability distribution of system calls, where Stat_d is stat-d =
(x1,...,2y). So V can be presented as V = (pi(name_proc, stat_d), ..., p;, (name_proc, stat_d)). See
Figure 2.3 for an example of a graph model. By using stat_d the distance between the nodes can
be calculated. This distance will provide the ability to compare how similar or distinguishable the
processes are. When a process with the same name has a higher distance it could be an indication of
a malicious processes using a legacy name.

The proposed techniques is evaluated by collecting data through a SSH? honeypot, because SSH
is a popular attack vector. The data collected consisted of 75% attack related data and 25% ordinary
behavior data. In the training data, the attack data was labeled positive and the normal behavior

28SH (Secure Shell) is used for a secure connection to a remote machine and execute commands on the remote
machine.
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Figure 2.2: An example of a process tree [66]

The figure above shows an example of a constructed process tree. The process with PID 534
starts the program sshd and process 1031 within zero seconds. After three seconds it starts
the process 1038. The process 1038 invokes the system calls 4, 3 and 11, respectively one, two
and one time.

data was labeled negative. To train the supervised SVM with tree kernel, 75% from the data was
randomly selected. The remaining 25% is used for testing the prediction accuracy. The experiment
was conducted nine times with an accuracy between 0.71 and 0.87.

The use of SSH honeypots for collecting data and creating a process tree, are proposed in [63] as
well, although this information is used for a game theory concept to keep the attackers as long as
possible busy. In the process tree presented in this paper the system calls are replaced by command
line arguments. In Linux on the command line interface programs can be started with an argument,
to invoke a specific function of the program, e.g. the ls command is used to show an overview of the
files in a directory. By adding the -l argument, the ownership and user access rights are presented as
well.

As the PID for a program is different the next time the process is started the process tree is
converted to a process vector. This vector describes the sequence of the programs executed, e.g.
</bin/bash, /usr/bin/wget, /usr/bin/tar >. Using these process vectors enables the comparison of
different attacks recorded on the honeypot system.

The work is extended by introducing a honeypot hierarchical probabilistic automaton. The proba-
bilistic is based on the argument that attackers will mostly follow a certain pattern of running processes.
If an attackers gains access to SSH it will mostly start bash or run uname, which provides system in-
formation such as the running kernel. These patterns of program usage during attacks can have a
certain probability. For example after the attackers gained access the chance of starting bash or uname
is respectively 50% and 50%. These probabilities are shown on the edges, see Figure 2.4.

These probabilities are used to create the homeypot game. During this game, executions of the
attackers will be blocked on a predefined probability. If an action is blocked the attacker might retry
the execution or try another kind of attack and hereby providing extra information for analyzing the
types of attacks used.

Although the information presented above is not used for real-time detection of malicious behavior,
it provides some useful insights how to model and use system process information.
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Figure 2.3: An example of a graph model [66]

Figure 2.4: An example of a honeypot hierarchical probabilistic automaton [63]

2.2.2 Time based graphs

In [64] the method discussed in [65] in section 2.1 is extended. Based on the extended method, a
monitoring framework, called DANAK (Detecting Anomalies in Netflow records by spatial Aggregation
and Kernel methods), is proposed.

The first addition is spatial aggregation. Collected data is now aggregated on a spatial and temporal
level, which will create an tree-like overview based on aggregated IP prefixes instead of complete IP
flows, see figure 2.5. Per time window separate profiles will be created for source and destination data.
The CIDR notation is used, grouping IP addresses from the same subnet together, as well subnets on
higher levels, only showing nodes with a volume higher than a threshold of a. For each sequential
time windows the similarity value (s) is calculated, as discussed before, however the similarity value
is now based on the similarity of the source trees from both time windows and the destination trees
from both time windows.

The second addition in this paper is the Phase Space Analysis with delayed coordinates. As the
time windows are set at 5 seconds and attacks mostly have a longer duration, useful information can
be missed. To overcome this problem Phase Space Analysis creates a three-dimensional representation
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Total = 11008757
0.0.0.0/0 540220 (4.91% / 100.00%)
96.0.0.0/3 560312 (5.09% / 27.21%)
101.0.0.0/8 550880 (5.00% / 22.12%)
101.138.64.0/20 754834 (6.86% / 11.99%)
101.138.74.115/32 564682 (5.13% / 5.13%)
101.176.128.0/19 564851 (5.13% / 5.13%)
144.0.0.0/4 771170 (7.01% / 67.88%)
144.115.176.0/20 552664 (5.02% / 5.02%)
145.213.132.0/22 590328 (5.36% / 5.36%)
145.213.144,0/20 712268 (6.47% / 6.47%)
147.186.128.0/18 737222 (6.70% / 17.24%)
147.186.144.0/21 599586 (5.45% / 5.45%)
147.186.160.0/21 561074 (5.10% / 5.10%)
147.186.192.0/18 559543 (5.08% / 26.78%)
147.186.192.0/20 629860 (5.72% / 5.72%)
147.186.208.0/21 561773 (5.10% / 5.10%)
147.186.240.0/21 608873 (5.53% / 5.53%)
147.186.248.0/21 588617 (5.35% / 5.35%)

Figure 2.5: Aggregated Tree for a destination profile [64].

of the one-dimensional data s. The equations for a sample n are:

z[n] = s[n — 2] — s[n — 3] (2.1)
yln] = s[n — 1] — s[n — 2] (2.2)
z[n] = s[n] — s[n — 1] (2.3)

Where s[n| is the similarity value of Tree, and Tree,_1. The effect of the Phase Space Analysis is
shown in figures 2.6 and 2.7.
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Figure 2.6: A traffic profile T;, compared to Figure 2.7: Same DDoS UDP Flood attack
T;_1,T;_o and T;_3 showing a DDoS UDP at- with Phase Space Embedding Analysis [64]
tack [64]

The classification is performed by using the Classification and Regression Trees (CART) algorithm.
This supervised algorithm uses a binary tree building algorithm to find an optimal splitting parameter
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for binary splitting. Training the model is done on the attack free data sets. To assess the performance
the different data sets with different attack type data injected were used. Performing the classification
resulted in a True Positive Rate between 88% and 94%, with a False Positive Rate of 3% and 36%.

In this paper is shown that aggregating huge volumes of data still can be used for anomaly detection.
The advantage of aggregating the collected data is the reduced amount of computation needed. This
advantage creates the possibility of building a near real-time anomaly detection.

In [35] a prototype of a malicious behavior detection on network traffic is discussed. The prototype
is called SAFEM, which is an abbreviation for Scalable Analysis of Flows with Entropic Measures.
Here again Netflow data is used.

The SAFEM prototype consists of three components, respectively the S-aggregation module, the
Entropy module and the Classifier module. In this paper only the first two modules, S-aggregation
module and entropy module, are discussed. The first module will aggregate the Netflow data on
the space and time dimensions. The spatial aggregation is done on the IP addresses from the Netflow
records. The IP addresses is extracted together with the amount traffic generated, in- and outbound, as
a proportion from the total volume of traffic. The collected IP addresses are presented in a hierarchical
tree according to the CIDR format. Using the CIDR notation IP addresses from the same subnet are
grouped together, as well subnets on higher levels, only showing nodes with a volume higher than a
threshold of a. Creating an hierarchical aggregation tree as shown in Figure 2.8.

0.0.0.0/0 4.91%

4 144.0.0.0/4 7.01%
144.115.176.0/20 5.02% 144.213.132.0 / 22 5.36%

101.176.128.0/19 5.18%

96.0.0.0/3 5.09%
101.0.0.0/8 5.00%
101.138.64.0/20 6.86%

.138.74. 13% @ An end-host Nmn
101.138.74.115/32 5.13% @ _Ap end-hos
Figure 2.8: A partial view of an aggregated tree with a traffic volume threshold of o = 5% [35]

The temporal aggregation is performed to create time windows, with a time size specified by S.
Within these time windows the data will be aggregated to the spatial dimension described in the
previous paragraph. Splitting the time into periods enables the ability to track changes of behavior
over sequence of time windows.

After aggregating the data profiles can be constructed. There are two possibilities for constructing
these profiles:

1. Observe anomaly free traffic for a limited period of time to construct a profile.

2. Make use of moving profiles, in which the data is compared to recent past time windows.

However the drawback of the first option is, the need for constructing a profile for every potential
pattern and keeping these patterns up to date as user activities might change over time. These potential
patterns are related to human activity patterns such as night or day time and weekdays or weekend.
The use of moving profiles removes the need for creating and updating all the potential patterns and
does not need anomaly free data to construct these initial profiles.

Although a tree based representation allows for a compact presentation of a large quantity of data,
it lessens the ability to provide useful and relevant information. Therefor the entropy module of the
SAFEM prototype is used to calculate the Shannon entropy of the subnets present in the tree. The
entropy provides a measure for the quantity of information in the data and the dispersion of the data
distribution. If an attack to a host is present in the data the amount of traffic to this host will change
and so will the entropy change as well. In the conducted experiments the use of the aggregated trees
and entropy proofed to be able to detect anomalies in network traffic.
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The scientific research on using aggregated trees and entropic metrics in anomaly detection is
extended in [34]. This paper builds upon the concept of spatial and temporal aggregated Netflow data
as presented in [35]. Using spatial aggregation is useful, as it discards small proportions of traffic that
are highly variable and temporal aggregation avoids baised results from short-duration traffic patterns,
which are not representative for the overall traffic. Although both aggregations are useful using the
wrong level of aggregation could impose a bias due to localized behavior or scattering of local behavior
of attacks.

The construction of the aggregated trees is extended by using pre-order traversal to find the position
in the tree where an IP address has the highest similarity to other IP addresses, in other words to find
the subnet to which the IP belongs in the tree. Furthermore they introduce the usage of Patricia trees
in which the tree size has a fixed number of nodes. When all nodes are used and a new node is need,
the least recently used (LRU) node is replaced. The use of Patrica trees does not have a significant
impact on the quality of aggregation and reduces the post processing analysis. This produces a set of
N nodes with T' = {n1,...,ny} and n; =< prefiz;, prefiz_length;,vol; >. Here again the aggregation
threshold «, the minimum percentage of traffic (vol;) from total volume of traffic generated by the
node, is used to control the granularity of the traffic profiles. And  is used to define the time window
size in seconds, creating the following traffic profiles over time: {<T7 PVt qdst.but psrepkt ipdst.pht
>,...,<Tﬂc’byte, Tijt’byt, Tﬂc’pkt7 T]‘\ijt’pkt >}. Where Ti”c’byt and TidSt’byt are for the % of bytes based
on respectively the source and destination information and TP and T**"** are used for the number
of packets.

To be able to perform pair-wise comparison between time windows this paper suggest two different
types of entropic metrics to be used, eliminating the variable number of nodes or flows. The two
entropic metrics are:

1. IP address distribution entropy
2. Markov Chain entropy

The IP address distribution entropy is again based on the Shannon Entropy, however adopted to
take only into account the subspace of IP addresses contained in the tree. Eliminating the use of the
whole range of available IP addresses. The Shannon Entropy based on the IP distribution is: H;,. See
Figure 2.9 for an example of change in entropy with change in the IP distribution in this case labeled
as an anomaly. However the IP address distribution entropy fails to detect IP traffic differences, due
to the fact that the underlying IP distribution is discarded by the aggregation.

H; =4, H;(T) =4.T8

;p(T) 93 'F( } 182.168.0.0/16
192.168.0.0/16 25%
50%
192.168.0.0/17 2.168.0.0/17 192.168.16.0/20
0% 0% 25%

192.168.88.0/2 192.168.88.0/21
10% 10%

{a) The profile tree (h) The tree having an anomaly

92.168.72.0/21

10% 10%

Figure 2.9: The change in the entropy of H;, of a tree without and with anomaly [34]

To solve this the failed detection of IP traffic differences the Markov Chain Entropy is used. The
Markov Chain Entropy is the entropy of the tree structure itself and defines the transition probability
between to nodes. The Markov Chain entropy is named Hie.(T) . By using both entropies the data
can be described as a set H = {hy,...,hpr} in which h; is a single time window and is defined as an
8-tuple representing the different entropies:

hi _ <Hip(T§rc,byt)’ Htree (Tisrc,byt), Hip (Tidst,byt)’ Htree (Tidst,byt)’

K2

Hip (T'Src’pkt )7 Htree (TS”‘Cypkt)’ Hip (T'dSt’pkt )7 Htree (TdSt’pkt) >

i % i %

(2.4)
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An One Class SVM (OCSVM) was used on the data, as OCVSM performs better on no prior
knowledge. The OCSVM was trained on attack free data and tested on several different data sets
containing different attacks. The result true positive rate was between the 84.6% and 92.3% and the
false positive rate was between the 0.2% and 5%. Although in this experiment they used supervised
data, the concept of building trees and using entropies to minimize the amount of data to be fed into
a machine learning algorithm proofs to be promising.

In [31] the previous explained concept of an aggregated tree is used in the detection of malicious
DNS? names. They assume that malicious domain names are used with a high intensity for a short
period of time and the associated IP addresses are highly variable.

The following tuples are collected: <timestamp, FQDN, IP address >*. The collected data is
divided into time windows, specified by 7 in seconds. The data within each time window is aggregated
into a tree-based view of the DNS data. The aggregated tree is limited by 3000 nodes, using Least
Recently Used, to keep memory consumption low. Each node contains:

e the domain name (e.g.: tudelft.nl)
e the ip block (e.g.: 145.94.0.0/22)
e percentage of aggregated activity for the current node, defined as volume

e cumulative percentage of activity of the current node and its subtree, defined as accumulative
volume

Where only the nodes with a volume higher then a are retained. Nodes with a volume lower than «
are aggregated into their parents.

To be able to perform anomaly detection, a steadiness metric is used. This metric characterizes
the steadiness of the mapping between IP and DNS spaces over several time windows. To evaluate the
steadiness metric, the most similar node to node ny from tree T; will be searched for in tree T;_;. The
similarity is calculated by using the IP, DNS and volume features.

The proposed method was tested on a data from which they knew the malicious domains and
benign domains and their corresponding IP spaces. Several different datasets were created containing
100%, 10%, 0.1%, 0.01% and 0% malicious domains. Concluding from several tests malicious domains
appear to have a steadiness around 0.5, whilst benign domains have a steadiness of around 0.75. Using
the 0.5 as an threshold for malicious domains 73% of the malicious domains could be detected with a
false positive rate of 1.6%.

Although the percentage of malicious domains detected is not really high, the proposed method
shows that using aggregated trees combined with time sequences proves to be useful for anomaly
detection.

2.3 Graph comparison

As stated before we would like to explore the possibility of building a process tree combined with
the additional process information. In [74] comparing graphs with additional information is discussed.
However the additional information connected with the nodes in the graph was pre-labeled information.
As our data does not consists of pre-labeled information, the proposed comparing algorithm is not that
useful four our purposes.

The tree edit distance is discussed in [68]. The idea behind this method is that every change needed
to graph B to get to graph A will have its edit cost. The higher the edit cost, the bigger the difference
between both graphs.

3Domain Name System is used for translating domain names, e.g. www.google.com to an IP address.
4The fully qualified domain name (FQDN) is the complete domain name specifying a specific host e.g. web-
mail.tudelft.nl
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Although a lot of literature is written on different methods of matching on different types of graphs,
for example, finding the best matching nodes in phylogenetic trees [71] and comparing taxonomy
trees [73]. However either the comparison of graphs with additional data is of the pre-labeled kind, or
the tree comparing methods are not suitable for the type of tree and additional information we will
construct in chapter four.

2.4  Conclusion

In this literature research a lot of interesting concepts of anomaly detection and graph comparison have
been discussed. In several papers malicious behavior was detected using process information [53, 66],
however they needed labeled data to train their detection method. In [30] process behavior was
recorded in a sandbox environment to train machine learning classifiers to detect unknown malware.
It can be concluded that process information can be used for detecting malicious behavior.

In [35] a tree based representation is used as it allows to store a large quantity of data into a
compact representation. This reduces storage needs and processing time of the data. The use of
graphs to detect unknown malicious behavior is also done in [70]. A combination of using graphs and
process information to detect malicious behavior can be found in [66]. Our work will be based on these
presented methods.

The main conclusion from the literature study is the fact that using process information in detecting
malicious behavior is viable. If it is combined with tree based representations large quantities of data
can be stored in a compact representation.
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Design requirements and
feature selection

In this chapter the requirements for the design of the malicious behavior detection are collected. To
compose these requirements several aspects of the system and environment in which it is operating,
should be analyzed. First the design requirements based on a stakeholder analysis are introduced. In
the second section the design requirements based on the literature discussed in the previous chapter
will be presented. Hereafter the selection of features, taking into account the design requirements, are
presented after which the chapter is concluded with a summary of the design requirements.

3.1 Design requirements based on stakeholder analysis

In this section the design requirements from the stakeholders perspective will be identified. As this
detection method is developed for incorporating into an endpoint security application to detect real-
time unknown malicious behavior in an enterprise environment, the system can be constraint by
enterprise environments. In the next section the stakeholder analysis will be conducted.

3.1.1 Stakeholder analysis

As stated in the previous section the system is constraint by enterprise environments. The stakeholders
and their implications and requirements are presented in table 3.1.

In the next section the implications of the stakeholders requirements on the design requirements
will be explained.

3.1.2 Implications for design requirements

If we take into account the requirements of the end user it means the designed detection model should
have a minimal impact if run on the end users computer. When performing the detection model does
have a noticeable impact on the end users system, the detection model should be performed on an
external system.

To safeguard the privacy concerns of the end user should make sure that the data that could trace
back to the end-user is never send to an external server. So either the detection should be performed

on the end users computer or when sending data to a server the privacy-sensitive data should be
discarded.
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Table 3.1: Overview of stakeholders

Stakeholder Role Implications Requirements
End user Employee of an enterprise The end user’s data is collected
using the computer with and send to the server. Data e Privacy safeguarded
FoxGuard installed on it.  could contain information such )
as file paths or file names. e Low impact on system
usability
IT Manager Responsible for managing New system, sends information, Does not want to buy ex-

System Admin

CISO

Security Officer

the IT systems and appli-
cations

Responsible for installing
and maintaining applica-
tions

Is responsible for the IT
security of a company.
Prevent, detect and solve
security incidents.

Monitor the FoxGuard
system to see if any

needs storage

Install and maintain endpoint
applications and server

Should provide the CISO with
useful information on possible
malware infections

Will see the possible detections
of malicious behavior

pensive servers for per-
forming the real-time de-
tection

Low impact of the sys-
tems of the end users and
low server and network re-
quirements

e Fast and reliable detec-
tion of malicious behav-
ior

e Comply with privacy
laws and regulations

o Clear information on
detected malicious be-
havior.

e Should be able to react
to a possible infection.

e Does not want to be
bothered with false
alarms
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The IT manager does not want to spend a lot of money to be able to run real-time detection. This
implicates that both the processing power as well as the required storage should be minimized as much
as possible.

For the system admin using real-time detection should not have a noticeable impact the current
infrastructure. This implies that the data send to a server should be held at a minimum to unburden
the network. Furthermore the storage needs and processing power needed to perform the real-time
detection should be kept at a minimum.

The CISO wants a secure IT environment as possible. To be able to deliver this the detection
model should detect all malicious processes.

The security officer wants to get clear information on detected malicious behavior but does not
want to be bothered with false positives. This implies that when malicious behavior is detected we
should be able to pin point which process it is that is malicious and on which host.

Further more the number of false positives must be very low, even with a 0.001% false positive rate
the security officer will receive a high number of false positives a day in an enterprise environment. For
example 500 end users which have about 800 processes running a day means still 400 false positives
are shown.

3.2 Design requirements imposed by privacy law and regulation

As mentioned in section 1.5 storing and using the information that can be logged by FoxGuard has to
confirm to privacy law and regulations. The laws and regulations which need to be enforced do depend
on the country in which the system is used. In this section the applicable Dutch laws and regulations
will be discussed.

According to Artikel 8 WBP [?] personal data can only be processed in the following cases:

(a) The concerned has agreed to the processing of his data

(b) The processing of the data is required for the execution of an agreement in which the con-
cerned is involved

) Processing the data is required to comply with a lawfully obligation
d) Processing the data is a necessity to protect a vital interest of the concerned
) Processing the is needed to fulfill a public task
(f) Processing the data is required to fulfill a justified interest
According to item f the processing of personal data is allowed when it fulfills a justified interest. In

the case of malware detection and preventing malware infections, this can be justified. If the detection
system makes use of stored personal data it has to comply with the following rules as well:

1. The personal data must be stored in compliance with the law and should be processed
carefully!

2. Personal data can only be used for justified cases which should be described beforehand 2

3. The person from whom the personal data is processed, should be notified who is processing
the data and why 3
4. The processing of the data should be done secure 4
This implies for our design requirements, when data which can be identified as personal data is
used the right security measures should be taken to safeguard the data and the concerned should be
notified about why this data is collected and processed.

L Artikel 6 WBP
2 Artikel 9 WBP
3 Artikel 33 WB
4 Artikel 13 WBP
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3.3 Design requirements based on literature

A tree based representation allows to store large quantities of data, which reduces the storage needs.
Furthermore aggregating data will reduce this even more. But not only the storage needs will be
reduced [35]. If less data is used to perform the detection model, less processing power is need, so the
calculations can be done faster. This enables the option to create a real-time detection model.

3.4 Design requirements based on the data

The amount of data generated by one host on a normal working day is huge. In eight hours about
20 million events are created. When using R to perform computations this takes up a lot of memory.
Therefore selecting only the needed data will not only reduce the memory usage but will decrease
processing time and storage needs.

3.5 Conclusion

One of the main themes present in all design requirement analysis is the need to reduce the amount of
data. Reducing the data needed to perform the malicious behavior detection, will reduce the amount
of memory, storage and processing power needed. Furthermore if the data is send over the network
sending less data will reduce the chance of congestion on the network. This will reduce the burden on
the IT manager in buying new equipment to perform real-time detection.

To be able to reduce the data needed we will construct process trees, as is suggested in [35].
Furthermore the amount of data every event type sends, is not all useful. When all this data would be
used in building a detection model the chances of over fitting are becoming larger and hereby loosing
the generic character of the detection method.
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Data collection and
preparation

In this chapter the process of collecting and preparing the data for further analysis is explained. The
first section will explain how the data is collected and what type of information is included in the
collected data. Section two will explain which data will be used and section three will explain what
actions are performed to get the desired data.

4.1 The data

As stated earlier the data collected by the FoxGuard endpoint is very detailed and low level system
information. The ability to record this low level system information is called sensor log. The type of
information collected by the sensor log is divided into eight different event types, namely: registry,
file system, process create, process exit, thread create, thread exit, module load and object callbacks.
Besides the time and sensor event type field, each sensor event type has different required and optional
data fields defined. In the following paragraphs each event type will be described shortly. For a more
detailed overview of what is included see appendix A.

As the process id and thread assigned by Windows can be recycled after a process or thread is
closed, FoxGuard will assign an unique id to each process. This unique process id or thread id will
not be recycled during a complete cycles. After rebooting the system, the unique ids will be assigned
again, starting from 1. Furthermore is each sensor event contains a timestamp.

4.1.1 Filesystem event

Filesystem events provide detailed information on the actions performed on the filesystem. Such as,
what kind of filesystem action, the process triggering the event and the size of the performed action.
After the registry event, the filesystem events produces the most sensor events, around 5 to 10% of
the data.

4.1.2 Registry event

A registry event is triggered when a process tries to perform an action on the Windows registry.
The Windows registry is mostly used for storing configuration settings of Windows and applications.
Examples of registry events are, when a process tries to read a certain registry entry the desired access
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mask, the granted access mask, the type of operation and the result of the operation is logged. Besides
the information on the registry action performed information is included on which source process and
source thread did trigger the event. About 80 to 90% of the logged events are registry events.

4.1.3 Process create event

In the process create event, information can be found on the starting of a new process. This information
contains the source process starting the new process, a tokenized string of the location of the executable
executed, called the executable path hash. If a process has the same executable path hash, it means
the same executable is started. This information can be used during the analysis to see which processes
are originating from the same executable. Furthermore optional command line parameters are logged
as well.

4.1.4 Process exit event

Besides the usual information such as the timestamp, the process exit event only provides the process
id and unique process id of the process closed.

4.1.5 Thread create event

A thread create event provides the information of the source process and thread starting a thread, into
which process the thread is started and the location of memory in which the thread is loaded.

4.1.6 Thread exit event

The same as the process exit event, it provides the thread id and unique thread id of the thread closing.

4.1.7 Module load event

When a DLL is load a module load event is triggered. Module load events contains the size of the
loaded module, the start address of the memory into which the module is load as well as the path
location where the module can be found.

4.1.8 Object callback events

An object callback is an executable code which is passed into another program to be executed. The
object callback event contains information on the source process and thread id as well, as the unique
source process and thread id, executing this event type. Furthermore it contains the process id and
unique process id of the target which must execute the given code.

4.2 Collecting the data

Before any research can be done on finding an anomaly detection method for malicious processes, data
needs to be collected. The next two subsections will be described how the clean datasets and infected
datasets were collected. Furthermore possible implications of the manner of data collecting on the
collected data are explained.

4.2.1 Clean datasets

To collect the clean datasets FoxGuard was installed on the laptop, running Windows 8.1, of an
employee of a small and medium-sized business (SMB). By turning on the capability of logging the
sensor events all process information is gathered and send to the server. The clean data collected
consists out of four different datasets. Two of the datasets are gathered during a workday, the other
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two datasets are collected during some evening and weekend usage of the laptop and are of a shorter
duration.

As the laptop was freshly installed the week before collecting the data and the needed anti-virus
and anti-malware software was installed and running on the laptop, the laptop is considered malware
free.

4.2.2 Malware datasets

Unfortunately the collection of the malware data could not be performed on the same machine as the
clean data. The reason for this, the possible access to personal and company information, such as
documents or passwords. To be able to collect sensor log data with malware a virtual machine running
Windows 8 was set-up. On this virtual machine Office 2013, Firefox and Chrome was installed in an
attempt to simulate a comparable environment as in which the clean data was collected. During the
logging of the data, Chrome and\or Firefox were used for browsing and Word and Excel were used to
perform office tasks in simulating a working employee.

Most malware will try to phone home after being installed. This functionality is used to send
over collected data, receive commands to perform or receive and install new malware. To ensure the
installed malware could call home, the VM was conntect to the internet without a firewall.

For every type of malware collected, the clean virtual machine was first used normally. This usage
means using internet browsers, doing some office work and browsing the computer. After a certain
period, the malware was executed from a folder containing the executable.

Infecting the VM this way is comparable to receiving an e-mail with a malicious attachment which
needs to be extracted and executed. However opening a zip file from outlook and executing the
malicious file, might appear on a different location in the process tree compared to the above described
manner.

Another popular method of infecting a computer is done by exploiting vulnerabilities in the installed
software, e.g. Adobe Flash, and downloading and executing malicious software, such as done with
malicious advertisements [9,20,22].

As this type of attack is difficult to set-up it is not taken into account during this thesis research.
For further research we would advice to look into the different methods of how the malware is installed
and include these in testing and evaluating.

After the execution of the malware some more simulated work was done, before restarting the
computer. When rebooted the computer was again used for some time to perform office tasks and
browse the internet. Subsequently the computer was rebooted again and cleaned.

Due to the fact the machine was infected with malware, complete and long term usage of the virtual
Windows 8.1 machine was not feasible, as no real work could be done on the machine, as well long
term running of the malware on the company network was not desirable. Therefor the running time
of the collected datasets with malware infections are shorter than the datasets collected on the SMB’s
employee’s computer. More information on the duration of both the clean and infected datasets can
be found in section 4.3.

4.2.3 Malware used

For the creation of the malware data samples three different types of malware were used: a banking
malware, a Remote Acces Trojan (rat) and a Zeus malware. These malware types are, together with
cryptolocker /ransomware, the most common malware infections. Although we would like to have
tested the cryptolocker malware, as we suspect that it generates a lot of filesystem activity, however
due to the fact the malware encrypts files on the computer, we were not sure if we could extract the
log files. Together with the time constraints we did not test it.

The banking malware and Remote Acces Trojan were both discovered in the week before running
the malware. In this subsection the three different malware samples used will be discussed.
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4.2.3.1 Bank malware: Dridex

The fist malware was a banking malware called Dridex, however it is capable of more than only stealing
bank account information. It is capable of uploading, downloading and executing files, communicating
with peer to peer networks to receive new commands or be added to a botnet [54]. As stated in the
previous section the running time of the malware was limited. This could imply that some of the
possible actions of the malware where not performed as it might not have received any comments from
the central server.

4.2.3.2 Remote Access Trojan

The second malware is a Remote Access Trojan (RAT). This malware installs a backdoor on the com-
puter giving the attacker administrative control. This can be used to control the computer, distribute
the RAT to other victims or install other malware. Here again the elapsed time while running the
malware was limited, so it might not have performed any additional operations to installing itself.

4.2.3.3 Zeus Trojan

The aim of a Zeus Trojan is to steal personal data from the computer, such as log in data from online
accounts. The collected information is send to remote servers. The Zeus malware makes use of stealth
techniques to impede detection and removal. For this malware sample the same limitation of time
applies and therefore might not have shown any additional activity besides installing itself.

4.3 Collected datasets

In the first subsection the collected clean data is presented. Hereby giving the datasets name, which
will be used for further reference in this thesis, a short description of the dataset, the number of
minutes the dataset encloses and the number of events present in the dataset per event type.

4.3.1 Collected clean datasets

Table 4.1 gives an overview of the four clean datasets collected. The overview includes information
such as the time between start and shutdown of the computer and the number of events for each event

type.

4.3.2 Collected malware datasets

In table 4.2 an overview is given of the malware datasets. In the description is some additional
information about the time the malicious file was opened. Hereby providing some reference points
for find the possible malicious processes by hand. As mentioned in 4.2.2, the running times are short
compared to the clean datasets. For future recommendations we would advise to try to create larger
datasets containg malware.

4.4 Data selection

The previous section provided an overview of all the collected datasets. As can be seen in the tables
4.1 and 4.2 the number of events, especially for the working day datasets, are rather high. For a full
working day around 30 million events are logged. These amounts of data are a heavy strain on the
memory usage of the computer.

Concluding from the literature study and the design requirements we do not need all available data.
First of all the use of a lot of data creates a high chance of introducing overfitting. Furthermore for
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Table 4.1: Clean datasets
Dataset Description Running time Event type Event numbers
file system 3545608
registry 26556541
process create 924
. The data logged from a . process exit 884
RS full working day. (it thread create 61912
thread exit 61377
module load 39551
ob 492528
file system 542707
registry 11105607
Data from the usage of process cr(?ate 461
win8_1604_avond the computer during 2h 6 min process exit 422
off-work hours thread create 18936
thread exit 18406
module load 17080
ob 141110
file system 2128619
registry 25644005
process create 880
. Another full day of work . process exit 839
RS data logged (et thread create 58928
thread exit 58331
module load 35971
ob 447948
file system 495925
registry 7097579
process create 331
. The computer used . process exit 257
win8 1804 during the weekend 48 min thread create 8861
thread exit 7826
module load 12150
ob 83304
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Table 4.2: Malware datasets

Dataset Description Running time Event type Event numbers
file system 183405

registry 2067666

The VM was started process create 160

malware bank clean. At 16:44 the 39 min process exit 139
banking malware Didrex thread create 3786

was started thread exit 3494

module load 6794

ob 30791

file system 173334

registry 4683261

Started at 13:37. At process create 223

malware_rat_sessionl 14:03 the machine was 44 min process exit 202
o infected by running the thread create 4827

rat malware. thread exit 4524

module load 8959

ob 97871

file system 211686

registry 2153338

process create 212

malware rat_session? After reboot the machine 19 min process exit 190
is still infected thread create 3083

thread exit 2779

module load 7846

ob 52508

file system 100213

registry 1842066

The machine was cleanly process create 155

malware. zeus.session] started. Around 17 min process exit 135
16:50/16:55 the Zeus thread create 2907

malware was started. thread exit 2613

module load 6579

ob 44059

file system 153253

registry 1815547

process create 190

malware.zeus.session? Run after reboot with the 19 min process exit 170
- Zeus malware thread create 3498

thread exit 3207

module load 9230

ob 97084
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constructing process trees and describing the processes by the number of events per second a process
triggers we do not need all the data as well.

To construct the process trees we will need the unique source process id and the unique process id
present in the process create sensor event type. Each of these rows represents a parent node with its
child node. Furthermore the executable path token will be selected. With the help of the executable
path token it is possible to find find the processes which are started by the same executable.

For the second data selection we do not need all the additional information from the sensor event
types, such as filesystem, registry, module load, ob process create and thread create to calculate the
number of events per second trigger by the process. The next chapter will explain how the wanted
data is extracted, created and prepared.

4.5 Data preparation

To be able to use the data, it first needs to be altered and prepared. This section will explain the steps
taken to get from the raw data to the desired datasets containing all the information needed.

The raw data is extracted from the server in Protocol Buffer format. Protocol Buffer is a mechanism
for serializing structured data into a small footprint [37]. First the data is convert from Protocol Buffer
format to JSON format. After which the data can be loaded into R. As not all data is needed, while
importing the not needed variables will be discarded. The variables that are imported are:

sensor_event_type, time, source_process_id.id, source_process_id.unique_id, process_id.id, pro-
cess_id.unique_id, process_create_event.command_line.data, process_create_event.command_line.token,
process_create_event.process_exe_path.token

During the import the variable time is converted to a human readable time annotation in time_date,
as the time variable is in filetime, which is the number of 100 nanoseconds since first of january 1601.

After importing the data it can be used to construct for every dataset a dataframe with the
needed information. In every data set there are two process_id and process_id unique_id which have an
unknown unique ID. These id’s are assigned 9999, the kernel process and 9998, the user land process.
Hereafter the source_process_id.id and process_id.id can be discarded as these values are reusable by
Windows and will only cause confusion.

Next for every process ran in the dataset we will count the number of events, filesystem; registry;
process create; thread create; module load and object callback (OB), they have triggered and calculate
the number of events per second. The reason here for is the fact that not every process is running the
same amount of time. This calculation is done on the time provided by the process create events and
the process exit events. If no process create event can be found the start time of the dataset will be
used. In the case no process exit can be found the end time of the dataset will be used.

The events per seconds variables will be normalized between 0 and 10, see equation 4.1. In which x
is the value to be normalized, A and B are the minimum respectively maximum value of the variable
to be normalized and a and b provide the range for the normalization.

(x—A)*(b—a)
(B—-A4)

(4.1)

As the number of filesystem and registry events are a lot higher during the same period, scaling will
provide values which are comparable with each other. To normalize all the datasets with same min
and max values, all datasets will be combined first, normalized and split again. Now for every dataset
the normalized values for the events per second are the same.

The used method for normalizing the data, creates implications for usage in a malicious process
detection system, as for every new data collected all datasets need to be combined to normalize the
data. To avert this, the maximum and minimum non-normalized values for every event type variable
of the already collected data can be stored. The newly collected data can then be checked to see if
new minimum or maximum values are present. If not the case, the data can be normalized by using
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the known values for A and B. When a new maximum or minimum is present in the newly collected
data, all data, used for the detection, should be normalized again with the new A and B values.

In this research we chosen to use to normalize the data between 0 and 10. However using other
methods for normalization should be tested in future research, such as for example Z-scores.

In the dataframes we have the six event type variables which provide information on the behavior
of the process. Further more the unique process ids and unique ids the source process, the executable
path token, commandline data and command line token are included.

As will be discussed in chapter 5 the processes with similar process activities, such as filesystem
actions per second, tend to group together. As k-means is an often used clustering method in anomaly
detection, to group similar entities together. As we assume that malicious processes perform behavior
deviates from normal process behavior we expect that the processes will have a larger distance to these
cluster centers.

First all the clean datasets are combined into one dataset. To find the appropriate amount of
clusters we analyze the within group sum of squares for the number of clusters from two to fourteen.
As there is a elbow at the cluster size of eight, see figure 4.1, this number will be used for clustering.
K-means ”Hartigan-Wong” algorithm is used to cluster the clean dataset with a cluster size of eight.
The clustering is done on the six event variables by minimizing the within-cluster sum of squares,
see equation 4.2 [39]. In which ¢ = 1,2,...n, with n defining the number of events, so the number of
processes in the dataset. j is defined as j = 1,2, ..., p, in which p is the number of variables, so in our
case six. x(k,7) is the mean of the variable j of all elements in a cluster k.

Sum(k ZZ i,7) — x(k,7))? (4.2)

=0 j=0

The cluster centers found are now used to cluster the malware datasets. Due to not every cluster
being present in the malware datasets the k-means function in R ! could not be used. A own written
function was used to cluster each processes to the closest cluster center using the euclidean distance
measure.

The data is now ready to be used for further analyses and to test the possible detection methods.
In the next section we will identify the malicious processes for each malware dataset.

4.6 Malware processes

To be able to evaluate the detection methods, the malicious processes need to be identified. In this
section we try to identify for every malware dataset the malicious processes. These will be used in
chapter 7 during the evaluation.

Identifying the malicious processes is done based on the known starting time of the malware exe-
cutable and inspecting the command line options and the processes started by the malware process.

4.6.1 Banking malware

After analyzing the process create events from the banking malware twelve malicious processes where
found. The starting of the malicious executable has the process id 111 after which the processes 112,
116, 117, 118, 120, 121, 122, 123, 124, 125, 126 are started.

By taking the path tokens of the processes marked as malicious and check if these path tokens
are found in any of the other datasets, we found that the processes 117 and 121 can be found all the
collected datasets. This means the process itself is not a malicious executable however it is used to
perform actions with malicious intent. A further investigation into these processes will be done in
section 5.4.

1The statistical software used for working with the collected the data in this Master Thesis. R is a language for
statistical computing and graphics [17]
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Figure 4.1: K-means plot

4.6.2 Rat malware session 1

In the rat malware session 1 there are twenty processes found which are market as malicious. Their
corresponding process ids are: 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,
182, 183, 184, 185 and 186. In table 4.4 we can see that process 167 starts process 168, which spawns
the other eighteen processes.

4.6.3 Rat malware session 2

If we take the path tokens from session 1 and look for these path tokens in session two we find eighteen
processes which match . These processes ids are 64, 66, 70, 71, 72, 73,74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84 and 85. However if we look at which process has started these processes we find that process 62
spawns all these processes. Process 62 is started by process 60 which has the same path token. This
executable is written to disk before reboot and set as start process after reboot. Here again we have
marked twenty processes as malicious. See table 4.5 for more in depth information.

4.6.4 Zeus malware session 1

In the first session of the Zeus malware, the session where the malware executable is executed, the
process with id 114 is the starting of the malware. Hereafter four other process are started, namely
116, 122, 125 and 126, making a total of five processes marked as malicious. See table 4.6 for detailed
information on the processes.

Here again there is a process present with a path token which can be found in all other datasets.
As stated in the previous section this will be discussed in section 5.4.



Table 4.3: Malicious processes banking malware

e o T T T B T S A —

111 2015-06-11 16:44:49 0.031 112 1,668, 767,127,550, 293, 248 2,8 /Q "C:\USERS\LAB2\APPDATA\LOCALLOW\NGPBJPQG.SDB”

111 2015-06-11 16:44:50 0.453 116 1,668, 767, 127, 550, 293, 248

116 2015-06-11 16:44:50 0.500 17 —9,086,252, 108, 385, 885, 184

111 2015-06-11 16:44:50 0.547 118 T66.

111 2015-06-11 16:44:50 0.188 120 3,371,955, 335, 670, 766, 592

120 2015-06-11 16:44:50 0.203 121 —9, 086,252, 108, 385,885,184 —5,932, 391, 742, 018, 334, 720

120 2015-06-11 16:44:50 0.297 122 4,619, 302,961,630, 733, 312 5,992,314, 292, 155, 399, 168 /C C:\USERS\LAB2\APPDATA\LOCALLOW\NGPBJPQG.BAT

122 2015-06-11 16:44:50 0.366 123 —847, 390, 535, 022, 933, 504 2,239,221, 228,479, 690, 752 C:\USERS\LAB2\DOWNLO™1'\BANKING\DRIDEX"1.EXE 3

122 2015-06-11 16:44:50 0.377 124 —6,720, 181,090, 770,503,680 2,853,641, 700,518, 833, 664 /Q /U "C:\USERS\LAB2\APPDATA\LOCALLOW\NGPBJPQG.SDB”

122 2015-06-11 16:44:51 0.703 125 841,275, 868, 143, 678, 208 1,113,762,613, 334, 646, 528 DELETE "HKLM\SOFTWARE\MICROSOFT\WINDOWS NT\CURRENTVERSION\APPCOMPATFLAGS\CUSTOM\ISCSICLLEXE" /F

122 2015-06-11 16:44:51 0.844 126 —1,979, 144, 317, 536, 490, 752 1,113,762, 613,334,646,528 DELETE "HKLM\SOFTWARE\MICROSOFT\WINDOWS NT\CURRENTVERSION\APPCOMPATFLAGS\INSTALLEDSDB\ {F48A0C57-7C48-461C-9957-AB255DDC986E}" /F

Table 4.4: Malicious processes rat session 1
source process unique id time date time run  process unique id command line token process exe path token command line.data

38 2015-06-11 14:03:21 0.110 167 —477,687,000, 000,000, 000
167 2015-06-11 14:03:22 0.227 168 —477,687,000, 000,000, 000
168 2015-06-11 14:03:22 0.436 169 1,941,070, 787,904,570, 112
168 2015-06-11 14:03:22 0.580 170 —8, 392, 900, 000, 000, 000, 000
168 2015-06-11 14:03:23 1.693 171 —38, 392,900, 000, 000, 000, 000
168 2015-06-11 14:03:23 1.795 172 —8, 392,900, 000, 000, 000, 000
168 2015-06-11 14:03:24 2.398 173 -8, 392, 900, 000, 000, 000, 000
168 2015-06-11 14:03:24 2.500 174 —8, 392, 900, 000, 000, 000, 000
168 2015-06-11 14:03:24 3.103 175 —38, 392,900, 000, 000, 000, 000
168 2015-06-11 14:03:24 3.205 176 —8, 392, 900, 000, 000, 000, 000
168 2015-06-11 14:03:25 3.808 177 -8, 392, 900, 000, 000, 000, 000
168 2015-06-11 14:03:25 3.910 178 —8, 392, 900, 000, 000, 000, 000
168 2015-06-11 14:03:26 4.513 179 -8, 392, 900, 000, 000, 000, 000
168 2015-06-11 14:03:26 4.615 180 —8, 392, 900, 000, 000, 000, 000
168 2015-06-11 14:03:27 5.218 181 —38, 392,900, 000, 000, 000, 000
168 2015-06-11 14:03:27 5.320 182 —8, 392, 900, 000, 000, 000, 000
168 2015-06-11 14:03:27 5.923 183 -8, 392, 900, 000, 000, 000, 000
168 2015-06-11 14:03:27 6.025 184 —8, 392,900, 000, 000, 000, 000
168 2015-06-11 14:03:28 6.629 185 —8, 392,900, 000, 000, 000, 000
168 2015-06-11 14:03:28 6.732 186 —8, 392, 900, 000, 000, 000, 000




Table 4.5: Malicious processes rat malware session 2

source process unique id time date time run  process unique id command line token process exe path token command line.data
39 2015-06-11 14:23:04 1.844 60 —1775, 034, 000, 000, 000, 000
60 2015-06-11 14:23:06 3.891 62 —1775,034, 000, 000, 000, 000
62 2015-06-11 14:23:07 0.438 64 1,941,070, 787,904, 570, 112
62 2015-06-11 14:23:07 0.625 66 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:08 0.203 70 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:08 0.312 71 —8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:09 0.938 72 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:09 1.047 73 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:10  1.672 74 —8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:10 1.781 75 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:11 2.406 76 —8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:11 2.516 7 —8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:11 3.141 78 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:11 3.250 79 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:12 3.875 80 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:12 3.984 81 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:13 4.609 82 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:13  4.719 83 —8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:14 5.344 84 -8, 392,900, 000, 000, 000, 000
62 2015-06-11 14:23:14 5.453 85 -8, 392,900, 000, 000, 000, 000
Table 4.6: Zeus session 1 malware samples
source process unique id time date time run  process unique id command line token process exe path token command line.data

30
114
116
114
125

2015-06-08 16:59:33  20.411
2015-06-08 16:59:44 1.547
2015-06-08 16:59:55 1.422
2015-06-08 17:00:25 4.097
2015-06-08 17:00:25 4.456

114
116
122
125
126

5,736,196, 424, 232, 519, 680
—9, 086, 250, 000, 000, 000, 000

—4, 288,820,000, 000, 000, 000
—8, 945, 540, 000, 000, 000, 000
8,283,374, 322, 564, 070, 400
5,992, 314, 292, 155, 400, 192
—5,932, 390, 000, 000, 000, 000

/C ?C:\USERS\LAB2\APPDATA\LOCAL\TEMP\TMP8597B6A9.BAT”




Table 4.7: Zeus session 2 malware samples

source process unique id time date time run  process unique id command line token process exe path token command line.data

30 2015-06-08 17:06:24 0.281 69 8,945, 540, 000, 000, 000, 000
69 2015-06-08 17:06:41 6.656 71 8,283,374, 322, 564, 070, 400
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4.6.5 Zeus malware session 2

To find the malicious processes in this dataset we used the path tokens of the malicious processes from
the session 1 dataset. This gives us the following process ids 37 , 69, 71, 104 and 113. However process
37, 104, and 113 are coming from the path token present in all datasets. As these are not connected
in anyway, by starting or getting started, by malicious processes we exclude them from the identified
malicious processes.



D
Exploring the data

As the data is prepared, we are able to perform our exploratory research. The aim of this analysis
is to confirm if the use of a process tree, combined with the events per second triggerd by a process
could provide insight in the behavior of a process.

This chapter will describe the steps taken and the conclusions that can be drawn from the conducted
research. In the previous chapters is mentioned that the behavior of starting processes can be modeled
in a process tree, this will be done in section 5.1. The next section, Process activities, an in depth
look will be given on the characteristics of the activities a process performs. After which in section 5.3
heatmaps are constructed, to provide a graphical overview of the possibility of grouping together same
type of processes based on the process properties. Furthermore we look into the process appearing
in all datasets but marked as possible malicious in the previous chapter. Section 5.5 will provide the
conclusion of the explorative data analysis.

5.1 Process trees

As stated before we are able to construct process trees from the collected datasets. These trees provide
a graphical representation of which processes started an other process or processes. In constructing
the trees, we aim to find certain regularities or matching patterns. By constructing the trees we find
the depth of each node. This information is added to all the processes in each dataset and shall later
be used in the comparing methods, explained in chapter 6.

First we will explain how the trees are constructed. In subsection 5.1.2 the process trees from the
clean datasets are shown and analyzed, after which we will look at the trees from the malware sets.
This section will be finalized in subsection 5.1.6.

5.1.1 Constructing the process trees

To be able to construct the process trees, we will use the process create event type from the datasets.
As explained in chapter 4 this event type contains information on the starting of a new process. The
information used to build the trees are the unique source process id, the unique process id and the
executable path token. As the names suggests, the unique source process id is the identification number
of the parent process. The unique process id provides the identification number of the process started.
This relationship can be transformed to the edges of the process tree.

The executable path token is a tokenized string of the path from which the executable, and thus
the process, is started. As explained previously the processes with the same executable path token
are in the same executables being executed. The token is used to color the outside of every process,

37
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a node in the tree. Each process with the same executable path token has the same outer color. In
doing so we can easily see which processes are started from the same executable.

The inside of the node will be colored by the cluster it is belong to. In doing so we can possibly
identify same executables with same or different cluster color.

5.1.2 Process trees from the clean datasets

First we will analyze the process trees constructed from the four clean datasets. As the amount of
nodes per dataset are rather high, ranging between 332 and 925 nodes, we only present the first six
depths in figures 5.1 B.1, B.2 and B.3. The first figure can be found in this chapter, the latter can
be found in appendix B.1. In table 5.1 is an overview of the number of nodes per depth of the tree.
Analyzing this table we can conclude that the number of nodes per level of the tree starts to rise
significantly from depth 5 until depth 9.

Table 5.1: Number of nodes on each depth per clean dataset

Depth  win8 1604 avond win8 1604 win8 1704 win8 1804

0 1 1 1 1
1 1 1 1 1
2 3 3 3 3
3 4 4 4 4
4 9 12 12 9
5 39 62 73 41
6 218 366 373 163
7 110 132 108 76
8 56 256 210 14
9 6 T 86 7
10 2 11 10 3
11 3 0 0 4
12 4 0 0 6
13 6 0 0 0

In figure 5.1 the first node, at the top of the tree, is the kernel process from Windows. This process
will start the userland process, which will spawn another three processes. If we look at the colors of
the nodes we can see that the processes with unique ids 9998, 2 and 4 have the same executable path
token. If we compare the four process trees we see that the first four levels of the tree are the same.
From the fifth level onward differences between the trees start to occur. However on every level of the
presented parts of the trees in this section we see comparable behavior. For example in all four trees,
the node with unique id 7 starts most of the processes in last shown level.

Analyzing the presented data, we can conclude there are similarities present between the different
process trees, the first four levels are completely the same if we look at the has. However going deeper
down the tree the differences start show. This can be concluded from the graphical presentation as
well from table 5.1 showing the number of nodes per level.



Figure 5.1: First 5 levels of win8 1604
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5.1.3 Process trees from the malware datasets

After analyzing the process trees from the clean datasets, we will now analyze the process trees
generated from the malware datasets. In figure 5.2 and the figures in section B.1 the upper part
of the trees are shown.

Here again the first four levels of the process tree are exactly the same. From the fifth level onward
differences start to occur. In table 5.2 the number of nodes per level of the process tree are shown.
Here again the number of nodes rise significantly from depth 5 onward. However the significantly rise
of number of nodes per level stops at depth 8 instead of depth 9 as could be seen in trees from the
clean datasets.

Table 5.2: Number of nodes on each depth per malware dataset

Depth bank rat session 1 rat session 2 zeus session 1  zeus session 2

0 1 1 1 1 1
1 1 1 1 1 1
2 3 3 3 3 3
3 4 4 4 4 4
4 7 6 8 6 6
5 26 31 32 26 27
6 74 105 81 75 59
7 12 16 23 14 16
8 29 o7 o1 26 74
9 4 0 9 0 0

5.1.4 Slimming the process trees

As can be seen in in the previous sections, the process trees tend to grow very big. To create a better
overview, nodes with similar cluster, executable path token, at the same depth and the same parent
will be merged together. By doing this the size of the trees is considerably reduced. The number of
nodes merged together is put into the edge. See figures B.8, B.9, B.10,B.11, B.12, B.13, B.14, B.15
and B.16 in appendix B.3.

5.1.5 Analyzing the process trees

The first difference that is visible is the blue node with process id 4 in the malware trees, which is
brown in the clean datasets trees. This indicates this process is fit to another cluster in the malware
sets compared to the clean datasets.

In table 5.3 the process activities and additional information for process id 4 in all datasets is
presented. As can be seen the values on the process activities variables for the malware sets are higher
than the clean datasets. This means that the number events per second is higher. If we look at the
the running time for the processes it can be concluded that process 4 has a shorter running time in
the malware sets.

By using the running time, it is possible to calculate a normalized value for the number of actions
performed by the processes. In table 5.4 this calculated value is shown. If we look closely at this we
can see that the normalized values are the same for all. It performs the same actions however, probably
due to different ”machines”, the running time is different and hereby generating different values for
events per second.

Although there is a difference between the machines on which the clean and malware datasets are
recorded this shows a shortcoming for the method used for showing and using the process activities.
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In this specific case the process in both datasets performed the exact same number of activities and
so does not show any deviating behavior except for the running time.



Figure 5.2: First 5 levels of bank malware



Table 5.3: summary of strange pid 4 behaviour

filesystem registry process create thread create module load ob unique ids df path token parent unique id  parent path token depth nr childs fit cluster running time
0.195 0.209 6.656 1.664 0.070 1.743 4 malware bank event —2,571,170 * 10*2 9,998 —2,571,170 * 10*2 2 2 8 0.047
0.117 0.125 3.995 0.999 0.042 1.046 4 malware rat sessionl event  —2,571,170 * 10'2 9,998 —2,571,170 * 10'2 2 2 8 0.078
0.146 0.156 4.992 1.248 0.052 1.307 4 malware rat session2 event  —2, 571,170 * 10'2 9,998 —2,571,170 x 10'2 2 2 8 0.062
0.194 0.209 6.653 1.663 0.070 1.742 4 malware zeus sessionl event —2,571,170 % 1012 9,998 —2,571,170 * 10*2 2 2 8 0.047
0.194 0.209 6.653 1.663 0.070 1.742 4 malware zeus session2 event —2,571,170 % 102 9,998 —2,571,170 % 1012 2 2 8 0.047
0.008 0.008 0.266 0.067 0.003 0.070 4 win8 1604 avond event —2,571,170 * 10*2 9,998 —2,571,170 % 10'2 2 2 3 1.172
0.007 0.007 0.230 0.057 0.002 0.060 4 win8 1604 event —2,571,170 * 102 9,998 —2,571,170 * 10'2 2 2 3 1.359
0.007 0.007 0.227 0.057 0.002 0.059 4 win8 1704 event —2,571,170  10*2 9,998 —2,571,170 * 10*2 2 2 3 1.375
0.007 0.008 0.241 0.060 0.003 0.063 4 zz-win8_1804_event —2,571,170 * 10*2 9,998 —2,571,170 * 10'? 2 2 3 1.297

Table 5.4: Normalized number of events for process id 4

df filesystem calc registry_calc process.create_calc thread.create_calc module.load calc ob_calc
malware_bank_event 0.009 0.010 0.312 0.078 0.003 0.082
malware_rat_sessionl_event 0.009 0.010 0.312 0.078 0.003 0.082
malware_rat_session2_event 0.009 0.010 0.312 0.078 0.003 0.082
malware_zeus_sessionl_event 0.009 0.010 0.312 0.078 0.003 0.082
malware_zeus_session2_event 0.009 0.010 0.312 0.078 0.003 0.082
zz-win8_1604_avond_event 0.009 0.010 0.312 0.078 0.003 0.082
zz-win8_1604_event 0.009 0.010 0.312 0.078 0.003 0.082
zz-win8_1704_event 0.009 0.010 0.312 0.078 0.003 0.082
zz_win8_1804_event 0.009 0.010 0.312 0.078 0.003 0.082

Table 5.5: Some information on process 133 from the 1604 avond dataset. The comment line options show that it is the F-secure program

source time time  process process create process create event command line data
process id date run id event process exe
unique id unique path token
id
48 2015-04- 0.832 133 -8, 264,910,000, 000 /APP=FW /R 7 /DISP=F-SECURE CLIENT SECURITY 11.60”
16 7 /JREMEXE=C:\PROGRAM FILES

21:44:35 (X86)\F-SECURE\FWES\PROGRAM\FSFWWSCH.EXE”
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By comparing the process trees the following that catches our attention is a pattern of light blue
and pink processes in the 1604 avond and 1804 dataset which are not present in the 1604 and 1704
datasets. See figure 5.3 for a part of the 1604 avond process tree containing these processes. If we
analyse one the process present in the screenshot, for example process 133 we see in the command line
options that it is F-secury, table 5.5.

£ 00 ) L O g
I
® . 00 00.6.0006.00¢ . 00000000 |

Figure 5.3: Part of 1604 avond showing the mentioned processes which are only visible in the 1604
avond and 1804 datasets.

During further analyzing of the merged process trees it was difficult to find any notable difference.
The process tree shows that it is useful in graphically presenting the starting of and parent - child
relation of the processes and some striking difference can be spotted by humans. It also proves that
differences are present, as shown by the process id 4 discussed above, and including this information
in the detection models could be useful.

5.1.5.1 Analysing the malicious parts of the process tree

In this section we will show the part of the process tree in which the malicious processes are present.
First we will present the parts from the five malware datasets, see figures 5.4 to 5.8.

Looking at these figures we see that the malware in every dataset is visible in a certain part of the
tree, namely the left side of the tree. To check if it is possible for an expert to spot anomalies in the
process trees the same part of the process trees from the clean datasets are shown in figure 5.9 to 5.12.

If we compare the parts from the malware trees with the parts of the clean process trees, the
process trees from both rat datasets catch our attention. The process 38 in the rat session 1 process
tree spawns a lot of new processes. The same beholds for process 39 in the rat session 2 process tree.
This type of behavior is not spotted in any of the other trees.

The malicious processes from the banking malware do attract attention however if we compare the
banking malware processes see a comparable structure in the process tree of 1604 avond dataset.

5.1.6 Conclusion

In this section we analyzed the created process trees from the clean and malware datasets. By looking
at the process trees we easily spotted the difference in behavior for process id 4 between the malware
datasets and the clean datasets. As the fill color is based upon the cluster of the process a difference in
color indicates different process behavior. After investigating this behavior we concluded that process
4 performs a certain number of activities. In the clean dataset the running time is longer than the
malware dataset hereby creating another value for the number of process activities per second.

Likewise we spotted a difference in between the clean datasets 1604 avond and 1804 and 1604
and 1704. In the datasets 1604 avond and 1804 F-secure performed some actions spawning a lot of
processes.

By looking at the process trees it can be concluded that from all presented trees the first four
levels are exactly the same structure. Thereafter deviations start to occur. These deviations can be
explained by the difference in computer usage per day. A colored node present in process tree A but
not in process tree B can be explained by the fact a program was not used during that day or a new
application was installed, as explained above with the F-secure application.

Due to the differences present between the process trees, because of different computer usage every
day it is difficult to spot small anomalies. The small anomalies that can easily be detect by human eye,
are those present in the first four levels of the tree, as shown with process 4, which got another cluster
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Figure 5.4: Part of process tree containing the malicious processes of the banking malware

As explained in the previous chapter process 111 is the malicious executable being executed.
The child processes and their child processes all belong to the malware being executed. The
process ids of these processes are 112, 116, 117, 118, 120, 121, 122, 123, 124, 125 and 126

color. However on the lower levels the number of nodes, processes, rise significantly and contain more
differences.

However from analyzing the malware parts of the processes trees to their corresponding parts of
the clean dataset we easily spotted the rat processes in both datasets.

Additionally the analysis of the malware parts of the process trees provided us with the insight
that all malicious processes can be found at the same point in the process trees. However we must
note that this might also be the effect of how we infected the computers as explained in section 4.2.2.

The main conclusion is that the process trees can be used by experts to spot anomalies, however
in large trees small anomalies are rather difficult to detect.



46

CHAPTER 5. EXPLORING THE DATA

213§ 191 ; 187 165 ; 158 | 136 133, 80

(05 15 ) (23 a2 31 om0 a7 (370 a7 ) 075 1) (73 072 () 070 0
Figure 5.5: Part of process tree containing the malicious processes of rat 1

The malware executing is is shown by process id 167. The processes with ids 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185 and 186 are all child
processes of the malicious executable.
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Figure 5.6: Part of process tree containing the malicious processes of rat 2

When the infected computer is restarted the malicious process has an id of 60, which starts
the following child processes 62, 64, 66, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84
and 85.
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Figure 5.7: Part of process tree containing the malicious processes of zeus 1

Process id 114 is the malicious executable started, which spawns the following child process:
116, 122, 125 and 126.
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Figure 5.8: Part of process tree containing the malicious processes of zeus 2

Restarting the infected computer the Zeus malware is started by processes 69 after which the
malicious process 71 is started.
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Figure 5.9: Part of process tree containing the same part as malicious 1604 avond
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Figure 5.10: Part of process tree containing the same part as malicious 1604
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Figure 5.11: Part of process tree containing the same part as malicious 1704
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Figure 5.12: Part of process tree containing the same part as malicious 1804
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5.2 Process activities

In this section a closer look will be taken on the event types triggered by the processes. These event
types are described in section 4.1. Although eight different event types were discussed there, as stated
in section 4.4 only six of these event types are used in the analysis, namely registry, filesystem, process
create, thread create, module load and object callback events. In section 4.5 Data preparation we
explained that all the data event types are normalized from zero to ten.

The first subsection will present an analysis on the clean dataset. Subsection 5.2.2 will provide an
analysis on the malware datasets. The last subsection will conclude this section.

5.2.1 Process activities clean data

In the tables 5.6 to 5.9 a summary is shown of the normalized event types per second performed by the
processes. The reason for looking at this data, is that we believe that the same processes will behave
more or less the same. This will be explored more in depth in the next section, 5.3. In this subsection
and the next the focus is on looking at the spread of the data and the presence of outliers.

Table 5.6: Showing the summary of the activities of the 1604 dataset

summary filesystem registry  process create thread create module load ob
Min. : 0.000000  0.000000 0.00000 0.000000 0.0000000  0.000000
1st Qu.:  0.002168  0.000988 0.00000 0.000976 0.0005982  0.003218
Median :  0.024149  0.006895 0.00000 0.023733 0.0072140  0.031365
Mean : 0.328462  0.142610 0.08256 0.225443 0.1223209  0.292571
3rd Qu.:  0.303608  0.137681 0.00000 0.218688 0.1121780  0.264174
Max. : 4.676923  6.980502 5.00000 5.000000 2.8284983  5.485232

Table 5.7: Showing the summary of the activities of the 1604 avond dataset

summary filesystem registry  process create thread create module load ob
Min. : 0.000000  0.000000 0.000000 0.000000 0.0000000 0.000001
1st Qu.:  0.002056  0.001266 0.000000 0.001362 0.0004488 0.002659
Median :  0.083853  0.033217 0.000000 0.030531 0.0159009 0.043198
Mean : 0.369895  0.178338 0.419629 0.688484 0.2329262 0.701378
3rd Qu.:  0.442886  0.217050 0.000369 1.085580 0.3225061 1.188556
Max. : 8.080727  3.118524 10.000000 10.000000 3.1384615 10.000000

Table 5.8: Showing the summary of the activities of the 1704 dataset

summary filesystem  registry  process create thread create module load ob
Min. : 0.000000  0.000000 0.0000 0.000000 0.000000 0.000000
1st Qu.:  0.003239  0.001653 0.0000 0.001297 0.000927 0.005414
Median :  0.058352  0.018427 0.0000 0.025952 0.009187 0.031685
Mean : 0.438194  0.201396 0.1177 0.278942 0.166397 0.360093
3rd Qu.:  0.566566  0.184636 0.0000 0.285714 0.151903 0.370418
Max. : 10.000000  6.980502 5.0000 4.984153 10.000000  6.566857
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Table 5.9: Showing the summary of the activities of the 1804 dataset

summary filesystem  registry  process create thread create module load ob
Min. : 0.000000  0.000000 0.000000 0.000000 0.0000000 0.000003
1st Qu.:  0.002356  0.001566 0.000000 0.001269 0.0002632 0.003285
Median :  0.099642  0.041555 0.000000 0.040091 0.0293409 0.063676
Mean : 0.386103  0.199861 0.485468 0.760402 0.2491352 0.764166
3rd Qu.:  0.482791  0.202927 0.000274 0.997774 0.2507580 0.950261
Max. : 4.560000  3.226149 10.000000 10.000000 3.1384615 10.000000

If we look at the data presented in the summarizing tables we can conclude that three out of the
four datasets contain processes that have a maximum value two or three of the event types. Both
the datasets with a shorter time span, win8 1604 avond and win8 1804 contain a maximum value of
ten on the process create, thread create and object callback event types. If we look at the boxplot of
both datasets in appendix C.1 it can be seen that these values are outliers compared to the rest of the
datapoints.

Dataset win8 1704 contains the maximum values on the event types filesystem and module load.
Here again we can conclude from analyzing the boxplot from this dataset that these values are outliers
as well, compared to the remaining datapoints. In finding an explanation for these high values we
looked into the belonging processes. From the analysis we could conclude the one of the possible
reasons here for, might be the very short running time, smaller than 0.1 seconds, of these processes.

Although the values can be considered outliers, they are still included in our futher analysis. The
reasoning behind this decision, is the fact that these kind of processes are present in three out of the
four datasets and could be considered normal behavior. However we must note that these kind of
values might trigger false positives.

5.2.2 Process activities malware data

The summary of the event types per second of the malware datasets are presented in the tables 5.10
to 5.12. The corresponding boxplots can be found in appendix C.2.

Table 5.10: Showing the summary of the activities of the bank malware dataset

summary filesystem  registry = process create thread create module load ob
Min. : 0.000000  0.000000 0.00000 0.0000000 0.000000 0.0000039
1st Qu.:  0.001297  0.000630 0.00000 0.0007964 0.000140 0.0016364
Median :  0.005858  0.002136 0.00000 0.0025946 0.001486 0.0053005
Mean : 0.128868  0.116939 0.08236 0.0720551 0.058645 0.0874600
3rd Qu.:  0.031734  0.007615 0.00000 0.0234175 0.008731 0.0391851
Max. : 2.780663  10.000000 6.65597 2.9041070 1.984029 2.9238629

Investigating these tables, only the bank malware of the five datasets contains a sensor event type
with a maximum value of ten, namely the registry event type. If we compare this to the highest
values on the registry event type from the other malware dataframes, it can be concluded it is sig-
nificantly higher. The maximum values of the registry event type on the other malware dataframes
ranges from 1.35 up to 1.54. Comparing it to the maximum registry values from the clean dataframes
the difference is a lot smaller, as their maximum values range from 3.12 up 6.98. Looking into the
data the process creating this spike in registry events we find the following command line option
”AEINV.DLL,UPDATESOFTWAREINVENTORY”, this process is part of Application Experience
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Table 5.11: Showing the summary of the activities of the rat session 1 malware dataset

summary filesystem  registry = process create thread create module load ob
Min. : 0.000000  0.0000000 0.00000 0.000000 0.0000000  0.000003
1st Qu.:  0.000944  0.0003643 0.00000 0.000565 0.0002172  0.001801
Median :  0.005635 0.0022398 0.00000 0.003090 0.0026207  0.008487
Mean : 0.124576  0.0452931 0.05884 0.088486 0.0608884  0.106372
3rd Qu.:  0.036205  0.0155300 0.00000 0.031225 0.0169519  0.050645
Max. : 3.830400  1.3770067 5.20000 3.490977 2.1685129  3.514725

Table 5.12: Showing the summary of the activities of the rat session 2 malware dataset

summary filesystemm  registry  process create thread create module load ob
Min. : 0.000000  0.0000000 0.00000 0.0000000 0.0000000  0.000007
1st Qu.:  0.000719  0.0002402 0.00000 0.0002582 0.0001877  0.001417
Median :  0.003840 0.0017536 0.00000 0.0017400 0.0015653  0.005850
Mean : 0.111748  0.0509413 0.05237 0.0633187 0.0445139  0.096124
3rd Qu.:  0.033066  0.0157437 0.00000 0.0111227 0.0168763  0.038554
Max. : 1.909957  1.4669178 4.99206 2.1839720 0.6778102  4.167604

Table 5.13: Showing the summary of the activities of the zeus session 1 malware dataset

summary filesystem registry  process create thread create module load ob
Min. : 0.000000  0.000000 0.0000 0.000000 0.0000000  0.0000075
1st Qu.:  0.001549  0.000641 0.0000 0.001198 0.0001521  0.0019734
Median :  0.008152  0.003062 0.0000 0.003672 0.0020162  0.0083775
Mean : 0.143989  0.058154 0.1123 0.105147 0.0685082  0.1254814
3rd Qu.:  0.065687  0.016291 0.0000 0.035294 0.0149633  0.0415372
Max. : 4.852308 1.511173 6.6526 2.500000 1.8307692  3.0952381

Table 5.14: Showing the summary of the activities of the zeus session 2 malware dataset

summary filesystemm  registry  process create thread create module load ob
Min. : 0.000000  0.0000000 0.00000 0.000000 0.0000000  0.0000066
1st Qu.:  0.001816  0.0008168 0.00000 0.001389 0.0003483  0.0027285
Median :  0.018244  0.0050704 0.00000 0.007808 0.0025791  0.0118176
Mean : 0.216552  0.0556587 0.08997 0.107069 0.0669981  0.1193144
3rd Qu.:  0.122717  0.0464325 0.00000 0.060274 0.0313125  0.0742206

Max. : 4.836681  1.3515012 6.66667 2.491949 1.9380000  3.0852703
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Program Inventory Component from Microsoft.

If we look closer to the differences in the maximum values from the clean datasets and the malware
sets, the following can be concluded: filesystem ranges from 1.91 up to 4.85 in the malware set and
4.56 up to 10 in the clean set. The process create range is 4.99 to 6.67 versus 5 to 10 in the clean
datasets. In the clean dataset the maximum thread create value ranges from 4.98 to 10 while in the
malware set it ranges from 2.18 to 3.49. For the module load it respectively 0.68 to 2.17 and 3.14 up
to 10. The lowest value for the object callback in the malware sets is 2.92 and the highest is 4.17,
while in the clean sets it ranges from 5.49 to 10.

5.2.3 Conclusion

By examining the summarized information in the tables and the graphical presentation in the boxplots
it is shown that the events per second on each event type are unevenly spread. Although we would
have expected more high values on the events in the malware datasets, only the registry event type has
the maximum normalized value in the malware datasets. However these differences might be explained
by the limitation we had in collecting the malware datasets, as stated in section 4.1. As we could not
run the malware samples on the same computer as the clean datasets were collected, the lack of some
of the used applications could explain these deviations.

Although the malware datasets do not contain as many outliers as the clean datasets. Analyzing
this data shows that there are deviations in the number of events triggered per process. In this
analysis a summarized view was presented and it was not possible to see if the processes from the
same executable, show comparable number of events per second. To be able to analyze this, the next
section will focus on constructing heatmaps, to give a graphical presentation of which processes are
sharing almost the same number of events per second.

5.3 Heatmaps

In the previous section an overall analysis on the event types per second was conducted. The conclusion
from this analysis was that there is quite large spread between the processes. There for in this section
the focus will be on finding possible grouping of processes based on the events per second. This will
be done by creating for each dataset a heatmap. In a heatmap the processes will be grouped together
based on the distances between the events per second of the processes. To calculate these distances
the Euclidean method is used.

To be able to see if processes with the same executable path are being grouped together the colors
for every unique executable path token will be used again. At the left side of the heatmaps a matching
color means it has the same executable path.

The heatmap can be used to easily spot processes which have high values on certain process
variables. In a heatmap the coloring will be done based on the values present in the column. The
higher the value the whiter the cell becomes, the lower the value the more yellow a cell is colored. This
can be used to easily spot the processes with high process activities.

However a high process activity does not imply that a process is malicious, as it could be normal
behavior for such a process.

5.3.1 Heatmaps from the clean datasets

In figure 5.13 and 5.14 a small part from the heatmap from the win8 1604 dataset is shown. The full
heatmaps can be found in appendix C.1. The first figure shows that the processes, at least some, with
the same executable path seem to group together with processes that have a similar events per second
characteristic. However the second figure shows a part from the same heatmap where processes with
the same executable token don not group as nicely together as in the first figure.

Examining the heatmaps from all clean datasets, it can be concluded that from the process exe-
cutable tokens that appear several times are grouping together. However not all similar tokens are
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Figure 5.13: Part from the heatmap from dataset win8 1604
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Figure 5.14: Another Part from the heatmap from dataset win8 1604

grouped together. In the heatmap from win8 1704 dataset, for example, several groups of white process
executable tokens can be found on different places of the heatmap.

5.3.2 Heatmaps from the malware datasets

In figure 5.15 a cut from the malware dataset zeus session2 is shown. The heatmaps from the malware
datasets do perform according to the same description as provided for the clean datasets. As can be
seen, a rise in the normalized values changes the color of the cell. The higher the value the more yellow
to white the cells become. Better examples will be shown in the next section.

5.3.3 Analyzing the heatmaps

In appendix D.1.1 several cutouts from the created heatmaps are shown. These figures show clearly
that processes with almost the same normalized values for the process events tend to group together.
For example figure D.6. In figure D.7 we can clearly see that processes that have a deviation in the
events per second value are clearly visible. Furthermore the early explained outliers on process create,
thread create and ob can clearly be seen in figure D.9. Also the dataset from the banking malware
shows some deviations in the process activies, see figure D.10, as wel the zeus session 1 malware set,
figure D.14.
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Figure 5.15: Part from the heatmap from dataset zeus session 2
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Figure 5.16: Part 1 from the heatmap from 1604 avond with the malicious processes

filesystem, registry, module load, process create, thread create, ob
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In figure 5.16 we see that filesystem for process 460 is really different from other processes around.
Comparable process is 459 see table 5.15 and 5.16.



Table 5.15: Starting of process 459 and 460 in win8 1604 avond

source process time date time process process exe path command line command line token
unique id run unique id token data
47 2015-04-16 2.641 459 1,294,089, 667,656, 76( -U -P 2080 -S  5,042,687,691, 843,479, 552
23:48:09.108863 716
47 2015-04-16 2.656 460 1,294,089, 667, 656, 76( 5,042, 687,691, 843,479, 552

23:48:09.124435

Table 5.16: Process 459 and 460 activity

filesys- reg- pro- thread mod- ob unique df path token parent parent path  depth nr  fit.clusterun-
tem  istry  cess create ule ids unique token childs ning
create load id time
2.105 0.533 0 0 1.569 1.66 459 win8 1604 1,294,089, 667, 47 7,932,894,714, 6 0 7 0.031
avond
event
8.081 0.225 0 0.242  0.138 0.53 460 win8 1604 1,294,089, 667, 47 7,932,894,714, 6 0 7 0.484
avond

event
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5.3.4 Analyzing the malware heatmaps

Analyzing the heatmap cutouts with the malware present, visible by the red process ids, we see in the
following heatmaps processes start to show deviating behavior: Bank 5.17, rat 1 5.18. However still
other processes there are interesting as they show deviating values. Important to note is that in all
the malware heatmaps process id 4 is showing deviating behavior. However this could be connected
to the behavior explained in 5.4. More heatmap cutouts can be found in appendix H.5.1

5.3.5 Conclusion

In this section a graphical presentation was given of the possibility of the processes grouping together.
To present this heatmaps were used. It can be concluded that the there is tendency of similar processes
and processes with the same executable path token to group together. However not all processes with
the same token tend to cluster in one group. It still provides evidence that clustering of the data might
provide new insights.
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Figure 5.17: Part 3 from the heatmap from banking malware heatmap with the malicious processes

With the following column order:Registry, process create, thread create, ob, module load,

filesystem



64 CHAPTER 5. EXPLORING THE DATA

222
208
201

o7

122
203
123

102
110
188
159
192
167
124
204

Figure 5.18: Part 5 from the heatmap from rat session 1 with the malicious processes

With the following column order:process create, thread create, ob, registry, module load,
filesystem
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5.4 Possible benign process

As stated in the previous chapter a path token was marked as malicious, which is present in every
dataset. In this section we will explore if the malicious marked processes in the Zeus session 1 dataset
shows a deviation from the other processes. Furthermore we will check if the processes in zeus session
2 show a deviation.

In figure D.17 in appendix D.2 the heatmap is shown of the path token in all the datasets. The first
striking color is for the process create event of process 243 in the win8 1704 dataset, see figure 5.19. This
is the only process that creates another process. Furthermore at the bottom of the heatmap a change in
color is detectable, however all these processes belong to clean datasets, figure 5.20. Concluding from
this analysis the process marked as malicious in zeus session 1 does not show any noticable deviations
from the other process. What is striking is that only the processes from the clean datasets seem to
show a deviation.
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Figure 5.19: Heatmap showing process 243
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Figure 5.20: Heatmap showing the processes
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5.5 Conclusion

In this chapter an explorative analysis was performed. Hereby we analyzed whether process trees and
the activities of processes per second could provide useful information to characterize a process. The
process tree analysis showed that there are recognizable patterns present in the trees. In all constructed
trees the first four levels of the tree matched with each other, except for the color of process 4 in the
malware datasets. From there on the trees started to branch widely and dissimilarities could be found.
These differences between trees can probably be ascribed to the fact of different usage of applications
between the datasets. However these different usage patterns will mostly be the case.

The second section of the chapter showed an in depth look on the process activities. The conclusion
from this analysis was that the clean datasamples showed a wider range in the normalized events per
second values in comparison to the malware datasets. However both collections of datasets contained
outliers in the data, this shows the possibility of detecting deviations in behavior.

The last section of this chapter analyzed if the grouping of the same kind of processes would happen.
By using heatmaps the evidence was provided that processes with the same executable path token, so
the same type of application, have the tendency to group together.

To summarize this chapter we can conclude that the proposed variables, events per second, location
in the process tree and clustering, can be used to describe process characteristics.

In the next chapter three algorithms will be proposed to compare the malware datasets against the
clean datasets. The proposed algorithms will be evaluated in chapter 7.
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Building the detection
method

In the previous chapter it was proven that the use of process tree information, events per second
triggered by a process and cluster information are viable variables for comparing malware datasets
against the clean datasets. In this chapter, three different algorithms will be described that can
be used for the detection of malicious processes. These three algorithms will compare the datasets
containing the malicious processes against the clean datasets.

In the first section we will describe the basic setup of the algorithms after which each algorithm
will be discussed separately in sections 6.1.1, 6.1.2 and 6.1.3. The section thereafter will discussing a
method for ranking the malicious marked processes. Section 6.3 will show an overview of the running
times of each comparing method, after which this chapter will end with the conclusion.

6.1 Comparing methods

Before the three different algorithms will be explained in detail, this section will described the steps
that are general for all three algorithms. Such as calculating a distance matrix and the selection of
processes to be marked as malicious.

All three algorithms make use of a distance matrix. As stated earlier in this master thesis we
assume that malicious processes show deviations in the number of process activities performed per
second. Therefor calculating the distance between the processes, based on the variables below, will
give a higher distance when the process activities of the processes deviate from each other. The
distance matrices in all three methods are calculated with the Euclidean distance, see equation 6.1, on
the following variables:

o filesystem

o registry

e process create
o thread create
e module load
e ob

e depth
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o fit cluster

Z (i — yi)? (6.1)

The Euclidean distance is calculated between two vectors 2 and y with the dimension 7 [40, pp.509).
In this case the dimensions are the eight variables mentioned above. A distance matrix contains the
distance of every combination of processes between both datasets.

As the usage of a programs can differ every day, comparing a dataset in which program A is used
to a dataset where program A is not used might result in the marking of program A as malicious.
However when comparing to a dataset in which program A the processes will be matched together.

To overcome this problem we will run the comparing methods, described in the following subsec-
tions, on each malware set against every clean dataset. As mentioned before the outcome of each
comparison gives each process a distance between the process of the malware set and a matched pro-
cess of the clean dataset. By using a threshold value, explained in the next chapter, processes above
this threshold value will be marked as malicious. For every malwareset compared to the four clean sets
by a comparing algorithm, the processes above the threshold value will be gathered. When a process
is marked in all four comparisons as malicious, it will be marked as malicious. If a process is set to
malicious in only three or less comparisons it will not be marked as malicious.

In the next three subsections the three different algorithms will be described.

6.1.1 Compare method 1

This method is the loosest method and will probably be the fastest. It generates one distance matrix
and will each time take the lowest distance. The method can be described as follow:

1. Create a distance matrix between between all the nodes from dataframe A (one of the four
clean datasets) and dataframe B

2. select the lowest distance present in the distance matrix and match node B with the corre-
sponding node A from dataframe A

3. set the distance to NA

N

. repeat step 2 and 3 until all nodes from dataframe B are matched to a node in A

6.1.2 Compare method 2

Compare method 2 is the most strict comparing method. In this method we try firstly to match all
nodes on each depth if they have the same path token and their parent has the same path token.
There after we will loop again through all depths except this time there is no check on the path tokens.
By doing this the we have to loop two times through the whole tree structure, making this method
probably the slowest method.

The steps of compare method 2 are:

1. Loop through all depths from dataframe B

select all nodes in datafram A and B on depth ¢

(a)
(b) create a distance matrix with these nodes
) select lowest distance

)

check whether node B and node A both have the same executable token, as well
as the same parent executable token if this is the case match node B with corre-
sponding node A and set distance to NA. If this is not the case set distance to NA

without matching
(e) repeat step la to 1d until all depths have been reached
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(f) select all nodes in dataframe B not matched

(g) loop through all depths again and select lowest distance, however do not match on
executable path token

(h) select still unmatched nodes in dataframe B

—~

i) create a distance matrix with all nodes from dataframe A

—

j) select lowest distance and set as matched

6.1.3 Compare method 3

The last method also tries to match per depth first, however without the strict rule of matching path
tokens. Below are the steps from compare method 3.

1. Loop through all depths from dataframe B
select all nodes in datafram A and B on depth ¢
select lowest distance and match A to node B

set distance NA
(e) perform step la to 1d again

(a)

(b) create a distance matrix with these nodes
)
)

select all unmatched nodes from dataframe B
create distance matrix

select lowest distance and match A to node B

o W

repeat 4 until all nodes are matched

6.2 Ranking of malicious marked processes

After a malware set is compared to every clean set by using one of the three proposed algorithms and
the processes above the threshold are marked as malicious the ranking of the process can be calculated.
The ranking is based upon distances of the malicious marked process to the matched process in all the
four clean sets.

6.3 Running times

As stated in the design requirements the speed of the algorithm is of importance. Therefor we recorded
the running time of 10 runs for each algorithm. This is done by comparing two large datasets and a
malwareset against a large dataset. The outcome of the large datasets are presented in 6.2 and the
outcome of the malware against the large set are presented in 6.1.

As we can see in these tables algorithm 3 is almost 10 times as fast as algorithm 1 and 100 times
as fast as algorithm 2. Depending on the outcome of the evaluation, algorithm 3 would be prefered.

Table 6.1: Running times (in seconds) of comparison methods using large dataset and banking malware

expr min lq mean  median uq max neval

Algorithm 1 13.554  13.625 14.135  13.723  14.856  15.328 10
Algorithm 2 197.314 197.544 197.787 197.825 198.046 198.243 10
Algorithm 3 1.481 1.495 1.500 1.505 1.507 1.509 10
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Table 6.2: Running times (in seconds) of comparison methods using large datasets

expr min lq mean  median uq max neval

Algorithm 1 220.065 221.157 225.188 223.458 226.023 239.979 10
Algorithm 2 784.511 788.251 789.519 789.177 791.402 795.422 10
Algorithm 3 21.830  22.027  22.235 22,173  22.493  22.631 10

6.4 Conclusion

The above described algorithms will be run by using the clean malware datasets as dataframe A and the
malware dataframes will be used as dataframe B. This implies that a malware set will be compared
with 4 clean sets. Giving twenty constructed data frames per comparing method, so a total of 60

constructed dataframes.
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Evaluation

In this chapter we will evaluate the proposed algorithms described in the previous chapter.

7.1 Evaluation Set-up

The evaluation will test if the algorithm can be used in detecting malicious processes. As explained
in the previous chapter for every matched process the distance between the two processes will be
calculated. In the beginning of this research thesis we already stated the assumption that we expect
malicious processes to deviate their event activities from the normal behavior of benign processes. This
will as well influence the distance between the matched nodes. Based on this assumption we will test
if using the distance measure and using a threshold measure, the distance mean and 75, 80, 85, 90 and
95% quantile.

As explained in the previous chapter, the processes above the threshold value will be checked for
presence in all four comparisons. If this is not the case the process will not be marked malicious. We
will end up with a list of processes above the threshold in all comparisons with the clean datasets.

As we will be evaluating six threshold, this means that for every malware dataset we will run 6
tests on all four matched dataframes. For every matched dataframe we will analyze if the processes
above the set threshold measure include the malicious processes. We will calculate the True Positive
Rate, see equation 7.1, the number of malicious processes marked as malicious, the False Positive Rate,
equation 7.2, the number of non malicious processes marked as malicious and the Accurency 7.3, the
total number of process marked correct [69, p.7].

TPR=TP/(TP + FN) (7.1)
FPR=FP/(FP+TN) (7.2)
ACC = (TP +TN)/(TP+TN + FP + FN) (7.3)

The aim is to have a high TPR and a low FPR. When there are to much processes falsely marked as
malicious the detection system would invoke to much time from a security manager to check whether
the processes are really false or not.

Furthermore we will analyze if using a distance ranking, as described in the previous chapter, would
help a security officer. In other words will the malicious processes be ranked high enough to say that
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checking the first few process would suffice. During the evaluation of the algorithms we will analyze the
top five non-malicious processes from the ranking, to evaluate why these processes are highly ranked.

During the analysis of the process trees we found that all malware was in the same area, although
we are not sure if this is because of the way we executed it, so we could look at the process trees to
see which process are marked malicious are in this area. Besides we will try to see if we can find any
pattern for the malicious marked processes in the process tree.

7.2 Evaluation

The evaluation will be done by the following steps:

1. Analyze the TPR, FPR and ACC values
2. Analyze the top five ranked benign process from the distance ranking

3. Analyze the process tree

7.2.1 Algorithm 1

In the next sections the above described steps will be performed for algorithm 1.

7.2.1.1 Algorithm 1:Banking malware

As stated in section 4.6.1 the following twelve process ids of the 161 processes are malicious: 111, 112,
116, 117, 118, 120, 121, 122, 123, 124, 125, 126, from which the path tokens from process 117 and
121 appear in all datasets. This might imply that the malware is using non-malicious applications to
perform malicious actions.

In table 7.1 an overview is presented of the number of processes marked as malicious, the number
of processes above the threshold which are malicious and the FPR, TPR and ACC for the six different
threshold types. An overview including the process ids marked as malicious and the real malicious
process ids marked as malicious are shown in appendix F.1.

The data of table 7.1 is plot in figure 7.1 to provide an graphical overview of the TPR, FPR, ACC,
number of processes marked malicious and number of processes which are marked malicious and are
malicious.

Table 7.1: Outcome using different threshold values for bank malware using method1

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 19 8 0.074 0.667 0.907
q0.75 35 11 0.161 0.917 0.845
q0.8 27 8 0.128 0.667 0.857
q0.85 21 8 0.087 0.667 0.894
q0.9 13 3 0.067 0.250 0.882
q0.95 3 1 0.013 0.083 0.919

Looking at the FPR, TPR and ACC rates in the table, it can be concluded that different threshold
values give different number of processes marked as malicious and number of malicious processes
marked as malicious. This is reflected in the values for FPR, TPR and ACC. The highest TPR, 0.917,
is reached by using the 75% quantile. However it also has the highest FPR (0.161) and lowest ACC, as
24 benign processes are marked as malicious. A FPR of 0.161 means that 16.1% of the non-malicious
processes are wrongly marked as malicious.



7.2. EVALUATION 73

FPR — TPR ACC

Q
+0.50 -
a4
0.25-
L=
2
g0.00' | | | | | |
S 30-
2 20-
=}
g 10-
5 0- 1 1 1 1 1 1
-g mean g0.75 0.8 g0.85 g0.9 g0.95
S Threshold type
P

total nr above threshold — number malicious above threshold

Figure 7.1: Plot of the ACC, FPR and TPR of banking malware

This high value of wrongly marked benign processes might be the consequence of the short running
times for generating the malware datasets. The effect of this short data generating period needs to be
tested in future research.

Using higher thresholds values gives a higher ACC, a lower FPR but the TPR will become lower
as well. Using the highest threshold value only three processes will be marked malicious, of which one
process is really malicious and giving FPR of 0.013, TPR of 0.083 and an ACC of 0.919.

From the data shown, it can be concluded that using algorithm 1 is capable to detect the banking
malware. Even with the highest threshold value, at least one of the malicious processes from the
banking malware is marked as malicious and only two benign processes are marked as malicious.

In chapter 6, ranking of the malicious marked processes was explained. Table I.1in appendix I.1
shows these processes. The lines in the table represent the border for a threshold type. So all process
above the first dark colored line are marked as malicious using the 95% quantile threshold value. In
addition the processes which are really malicious are indicated.

Table 7.2: The five highest ranked benign processes for banking malware using algorithm 1.

unique ids  distance sum malicious

4 23.489 No
135 21.236 No
27 5.383 No
119 4.587 No
143 4.584 No

Analyzing table 1.1 we can see the first two processes marked as malicious, process id 4 and 135,
are benign processes. These two processes are already discussed in 5.1.5 and 5.2.2. As stated the
process with process id 4 has a shorter running time in the malware datasets, however performing
the same amount of actions, therefor the process activities per second are higher. Although it is a
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benign process marked as malicious, it proofs that using this comparison method the deviation from
the known behavior is detected. However it also shows that certain processes perform a certain number
of activities and different running times have an impact on the process activities per second.

The executable of process 135 can only be found in the malware datasets and is a software inventory
service from Microsoft.

A short analysis was done on the top five of the benign processes marked as malicious and is
presented in table I.2. As we can see all the processes, except process 135, were present in all the clean
datasets.

Table 7.3 shows the processes from the same executable as process 27 in the banking malware. As
can be seen, the process activities differ significantly especially on the registry activities. Here again if
we calculate the normalized activities per second back to normalized activities we see that the range
between the values decreases. This proofs again that some of the processes perform a certain number
of activities and the running time influences the process activities per second. This is something that
should be researched in more depth in future work, which will be discussed in section 8.2.

A short analysis on the processes belonging to the executable of the process 119in the banking
malware dataset, we can conclude again that the running time is of influence on the process activities.
Moreover there is a difference noticeable between the processes belonging to the malware dataset and
the processes of the clean datasets. Calculating the normalized values instead of the normalized activi-
ties per second the malware datasets activities are close to each other, whilst the clean datasets have a
little higher normalized value, see table 7.5. As mentioned earlier these difference might be forthcoming
from the fact that the clean data was collected on a different system than the malicious datasets. In
future research the collection of both datasets on the same machine will take this shortcoming away.

Table 7.3: Showing the processes from other datasets from the same executable as process 27 from the
banking malware

filesys- reg- process thread module ob df depth fit running
tem istry create create load clus- time
ter
0.467 1.017 0 0 0.418 0.119 malware 4 6 0.062
bank
0.267 0.582 0 0 0.239 0.136  malware rat 4 3 0.109
session?2
0.004  0.007 0 0 0.003 0.001 win8 1604 4 3 9.203
avond
0.088 0.152 0 0 0.067 0.017 win8 1604 4 3 0.437
0.622  1.397 0 0 0.557 0.158 win8 1704 4 6 0.047
0.128 0.142 0 0 0.063 0.016 win8 1804 4 3 0.469

As stated in the beginning of the chapter the malware we analyzed did only occur in a specific part
of the process tree. In figure 7.2 the process tree of the banking malware is shown, with all the process
marked malicious using the 75% quantile threshold having a red label. Analyzing the tree shows us
that the malicious marked processes are present throughout the whole tree. However in chapter 5.1.5
it is shown that all malicious processes take place in a specific part of the tree at the left.

By assuming that all malware will be present in the left part of the tree we could eliminate a
number of processes and would only leave us with the following processes 4, 157, 27, 13, 159, 146, 134,
111, 120, 118, 116, 112, 117, 121, 122, 126, 125 and 124. This brings down the number of processes
that need to be checked by the security officer to 18 processes instead of 35.

If the security officer checked the marked processes and found the marked malware processes the
tree can also be used to find the remaining not marked malicious malware processes.

However we need to emphasize that the assumption used here is based on three different malware
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Table 7.4: Showing a selection the processes from other datasets from the same executable as process

119 from the banking malware

filesys- reg- process thread  module ob df depth fit running
tem istry create create load clus- time
ter
1.295 1.122 0 0.454 0.456 0.475 malware bank 6 6 0.172
1.737  1.543 0 0.624 0.627 0.654 malware bank 6 7 0.125
0.088  0.078 0 0.032 0.032 0.033 malware bank 6 3 2.472
1.736  1.542 0 0.624 0.627 0.654 malware bank 6 7 0.125
1.455 1.301 0 0.479 0.491 0.547  malware rat 6 7 0.163
sessionl
1.584 1.377 0 0.569 0.572 0.651 malware rat 6 7 0.137
session1
0.419 0.356 0 0.147 0.147 0.154  malware rat 6 6 0.531
session2
0.128  0.079 0 0.133 0.043 0.127  malware rat 6 3 2.053
session2
0.141  0.119 0 0.049 0.050 0.052 malware zeus 6 3 1.579
sessionl
0.502  0.452 0 0.166 0.171 0.174  malware zeus 6 6 0.469
sessionl
0.162  0.160 0 0.152 0.051 0.145 malware zeus 6 3 1.797
sessionl
1.736  1.511 0 0.624 0.627 0.654 malware zeus 6 7 0.125
sessionl
0.066  0.057 0 0.024 0.024 0.025 malware zeus 6 3 3.312
session2
0.065  0.056 0 0.023 0.023 0.024 malware zeus 6 3 3.374
session2
2.145  3.119 0 0.454 0.484 0.476 win8 1604 6 4 0.172
avond
0.338  0.437 0 0.306 0.077 0.274 win8 1604 6 6 1.656
avond
0.194 0.308 0 0.232 0.056 0.211 win8 1604 6 3 2.186
avond
0.983  1.427 0 0.208 0.222 0.238 win8 1604 6 6 0.375
0.238 0.372 0 0.280 0.068 0.251 win8 1604 6 6 1.809
0.243 0.387 0 0.292 0.070 0.261 win8 1604 6 6 1.738
0.241  0.382 0 0.288 0.070 0.258 win8 1604 6 6 1.759
0.236  0.376 0 0.283 0.068 0.253 win8 1604 6 6 1.790
0.658  0.952 0 0.139 0.148 0.145 win8 1704 6 6 0.562
0.608  0.879 0 0.128 0.137 0.134 win8 1804 6 6 0.609
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Table 7.5: Calculate normalized values for the process activities for the same executable as process

119 in the banking malware set

filesys- reg- process thread module ob df running
tem istry create create load time
0.223 0.193 0 0.078 0.078 0.082  malware bank 0.172
0.217 0.193 0 0.078 0.078 0.082  malware bank 0.125
0.217 0.193 0 0.078 0.078 0.082  malware bank 2.472
0.217 0.193 0 0.078 0.078 0.082  malware bank 0.125
0.237 0.212 0 0.078 0.080 0.089 malware rat 0.163
sessionl
0.217 0.189 0 0.078 0.078 0.089 malware rat 0.137
session1
0.223 0.189 0 0.078 0.078 0.082 malware rat 0.531
session2
0.263 0.162 0 0.273 0.088 0.260 malware rat 2.053
session2
0.223 0.189 0 0.078 0.078 0.082 malware zeus 1.579
session1
0.235 0.212 0 0.078 0.080 0.082 malware zeus 0.469
sessionl
0.292 0.287 0 0.273 0.091 0.260 malware zeus 1.797
sessionl
0.217 0.189 0 0.078 0.078 0.082 malware zeus 0.125
session1
0.219 0.189 0 0.078 0.078 0.082 malware zeus 3.312
session2
0.221 0.189 0 0.078 0.078 0.082 malware zeus 3.374
session2
0.368 0.536 0 0.078 0.083 0.082 win8 1604 avond 0.172
0.560 0.723 0 0.507 0.127 0.453 win8 1604 avond 1.656
0.423 0.674 0 0.507 0.122 0.461 win8 1604 avond 2.186
0.368 0.535 0 0.078 0.083 0.089 win8 1604 0.375
0.430 0.673 0 0.507 0.122 0.453 win8 1604 1.809
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.752
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.545
0.423 0.673 0 0.507 0.122 0.453 win8 1604 2.106
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.637
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.709
0.427 0.673 0 0.507 0.122 0.453 win8 1604 1.931
0.423 0.673 0 0.507 0.122 0.453 win8 1604 2.002
0.423 0.673 0 0.507 0.122 0.453 win8 1604 2.058
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.786
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.853
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.695
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.887
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.856
0.423 0.673 0 0.507 0.122 0.453 win8 1604 2.118
0.423 0.673 0 0.507 0.122 0.453 win8 1604 2.050
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.738
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.759
0.423 0.673 0 0.507 0.122 0.453 win8 1604 1.790
0.370 0.536 0 0.078 0.083 0.082 win8 1704 0.562
0.370 0.536 0 0.078 0.083 0.082 win8 1804 0.609
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samples tested for a short period of time, as already mentioned in section 4.2.2 this assumption must
be checked in future research. Furthermore using this assumption creates a dangerous trade-off as the
security officer will now use known malicious behavior, always present in a certain part of the tree, to
investigate malicious marked processes.



Figure 7.2: The process tree of the banking malware set showing the malicious marked process ids, using the 75% quantile as threshold, with a
red label.
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Figure 7.3: Plot of the ACC, FPR and TPR of rat session 1

7.2.1.2 Algorithm 1: Rat session 1

In the rat session 1 dataset 20 processes from the 224 processes are malicious processes, which were
identified in section 4.6.2. The outcome of using algorithm 1 on the rat session 1 dataset and using the
different threshold values, is shown in table 7.6. Here again malicious processes are correctly marked
as malicious. However the highest TPR, 0.5, is significantly lower than seen in the previous section.
And again in this case the number of benign processes marked as malicious, is quite high, namely
14.7%. However as concluded before this could be brought down by using longer time periods to
collect malware datasets.

Table 7.6: Outcome using different threshold values for ratl malware using method1

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 21 1 0.098 0.050 0.826
q0.75 40 10 0.147 0.500 0.821
q0.8 27 2 0.123 0.100 0.808
q0.85 23 1 0.108 0.050 0.817
q0.9 16 1 0.074 0.050 0.848
q0.95 9 1 0.039 0.050 0.879

Analyzing table 1.3, we can see that the non malicious process with process id 4 is again ranked
highest. Normally an equal process id between sets, is not automatically the same executable being
executed. However, as mentioned in previous chapters, process id is in all datasets, clean and malware,
the same process. The reason this process is again ranked highest is already discussed in the previous
section and section 5.1.5.

The second highest process has id 109, and its executable is present in all clean datasets and in
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Table 7.7: The five highest ranked benign processes for rat session 1 using algorithm 1.

unique ids  distance sum malicious

4 18.626 No
109 10.674 No
111 8.6952 No

95 7.347 No
204 6.634 No

Zeus session 1 and Zeus session 2 1.4. Taking a closer look at the process activities of this executable,
it can be concluded that a comparable situation is present as with previously analyzed processes 7.8,
and strengthens the previously mention recommendations for future work. Running the collecting of
clean and malware datasets on the same host and investigate the effect of how the normalized activity
values per second are calculated.

Analyzing process 111 we can conclude the same as for process 109. However process 95 and
204, which have are processes from the same executable, look different if we analyze their normalized
values, table 7.10 and 7.9, and is only present in the malware datasets (table 1.4). The fact that the
executable is only present in the malware datasets again shows that collecting both data types on the
same system could prevent these type of problems. Thereby the tables show that this process does
behave differently every time it is started, running times differ greatly and the recalculated normalized
values show a bigger range.

From the information presented above we can conclude that in the top of the ranked malicious
processes their can be processes from the same executable. This information can be incorporated in
the calculation of the ranking or the list of malicious processes. However due to time constraints this
is not explored during this master thesis and will be given as a recommendation for future work.

Analyzing the process tree for the rat session 1 data the following processes are in the left part
of the tree: 4, 222, 191, 187, 167, 186, 185, 183, 181, 179, 177, 175, 173, 171. This brings down the
number of process from 40 to 14.
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Table 7.8: The calculated normalized values of processes with the same executable as process 109 in
the rat session 1 data

filesys- reg- pro- thread.create  mod- ob df running
tem istry cess.create ule.load time
0.069 0.018 0.312 0.078 0.038 0.082 malware rat 0.281
sessionl
0.151 0.042 0 0.078 0.057 0.104 malware rat 1.266
sessionl
0.071 0.018 0.312 0.078 0.038 0.082 malware rat 0.060
sessionl
0.153 0.042 0 0.078 0.057 0.097 malware rat 0.040
sessionl
0.069 0.012 0.156 0.039 0.038 0.052 malware rat 3.150
sessionl
0.071 0.018 0.312 0.078 0.038 0.082 malware zeus 0.352
sessionl
0.153 0.042 0 0.078 0.057 0.104 malware zeus 21.375
sessionl
0.069 0.018 0.312 0.078 0.038 0.082 malware zeus 0.047
sessionl
0.151 0.042 0 0.078 0.057 0.097 malware zeus 0.031
sessionl
0.071 0.018 0.312 0.078 0.038 0.082 malware zeus 0.266
session2
0.155 0.042 0 0.078 0.057 0.111 malware zeus 52.875
session?2
0.071 0.018 0.312 0.078 0.038 0.082 malware zeus 0.047
session2
0.151 0.042 0 0.078 0.057 0.097 malware zeus 0.031
session?2
0.181 0.454 0.156 0.117 0.055 0.104 win8 1604 avond 0.776
0.181 0.454 0.156 0.117 0.055 0.104 win8 1604 avond 0.151
0.181 0.454 0.156 0.117 0.055 0.104 win8 1604 0.172
0.181 0.454 0.156 0.117 0.055 0.104 win8 1604 0.141
0.182 0.454 0.156 0.117 0.055 0.104 win8 1704 0.203
0.181 0.454 0.156 0.117 0.055 0.104 win8 1704 0.156
0.181 0.454 0.156 0.117 0.055 0.104 win8 1804 0.891

0.181 0.454 0.156 0.117 0.055 0.104 win8 1804 0.141
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Table 7.9: Summary of the process activities of the processes with the same executable as process 95

and 204 in the rat session 1 dataset

Statistic N Mean St. Dev. Min Max
filesystem 47  0.253 0.226 0.064  0.998
registry 47  0.042 0.030 0.017  0.197
process.create 47  0.007 0.046 0.000 0.312
thread.create 47  0.264 0.174 0.039  0.780
module.load 47  0.053 0.014 0.029  0.085
ob 47  0.284 0.175 0.067  0.780
running time 47 68.592 101.511 0.078 370.360
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Table 7.10: Showing the processes from the same executable as process 95 and 204 in the rat session
1 dataset

filesys- reg- process thread module ob df running
tem istry create create load time
0.064 0.017 0 0.039 0.029 0.067 malware bank 4.984
0.102 0.019 0 0.078 0.044 0.097 malware bank 3.219
0.228 0.068 0 0.351 0.080 0.357 malware bank 32.701
0.131 0.040 0 0.156 0.051 0.178 malware bank 27.938
0.106 0.020 0 0.078 0.046 0.111 malware bank 16.438
0.653 0.049 0 0.429 0.062 0.505 malware bank 243.356
0.111 0.028 0 0.273 0.047 0.275 malware bank 0.818
0.562 0.048 0 0.429 0.062 0.475 malware bank 146.644
0.111 0.028 0 0.273 0.047 0.275 malware bank 0.094
0.069 0.018 0 0.078 0.029 0.097 malware rat sessionl 0.857
0.102 0.019 0 0.078 0.044 0.097 malware rat sessionl 0.479
0.106 0.020 0 0.078 0.046 0.097 malware rat sessionl 18.494
0.133 0.040 0 0.156 0.051 0.178 malware rat sessionl 19.747
0.193 0.052 0 0.273 0.072 0.290 malware rat sessionl 15.719
0.111 0.028 0 0.273 0.047 0.275 malware rat sessionl 0.084
0.998 0.060 0 0.429 0.062 0.475 malware rat sessionl 129.554
0.560 0.048 0 0.429 0.062 0.461 malware rat sessionl 123.551
0.589 0.049 0 0.429 0.062 0.468 malware rat sessionl 125.213
0.111 0.028 0 0.273 0.047 0.275 malware rat sessionl 0.078
0.069 0.018 0 0.078 0.029 0.097 malware rat session2 0.297
0.102 0.019 0 0.078 0.044 0.097 malware rat session2 0.094
0.131 0.040 0 0.156 0.051 0.178 malware rat session2 14.025
0.106 0.020 0 0.078 0.046 0.097 malware rat session2 11.141
0.193 0.052 0 0.273 0.072 0.282 malware rat session2 10.547
0.111 0.028 0 0.273 0.047 0.275 malware rat session2 0.996
0.584 0.048 0 0.429 0.062 0.468 malware rat session2 330.363
0.219 0.073 0 0.546 0.085 0.550 malware rat session2 61.313
0.266 0.078 0.312 0.780 0.054 0.780 malware rat session2 370.360
0.241 0.089 0 0.351 0.059 0.364 malware rat session2 43.297
0.686 0.197 0 0.624 0.070 0.624 malware rat session2 366.345
0.440 0.048 0 0.429 0.062 0.431 malware rat session2 246.555
0.069 0.018 0 0.078 0.029 0.097 malware zeus sessionl 1.984
0.102 0.019 0 0.078 0.044 0.097 malware zeus sessionl 0.344
0.232 0.068 0 0.351 0.080 0.386 malware zeus sessionl 36.109
0.133 0.040 0 0.156 0.051 0.178 malware zeus sessionl 31.723
0.106 0.020 0 0.078 0.046 0.097 malware zeus sessionl 6.687
0.569 0.048 0 0.429 0.062 0.475 malware zeus sessionl 137.233
0.111 0.028 0 0.273 0.047 0.275 malware zeus sessionl 0.137
0.443 0.048 0 0.390 0.062 0.394 malware zeus sessionl 87.280
0.069 0.018 0 0.078 0.029 0.097 malware zeus session2 0.695
0.102 0.019 0 0.078 0.044 0.097 malware zeus session2 0.351
0.224 0.068 0 0.351 0.080 0.379 malware zeus session2 78.625
0.135 0.040 0 0.156 0.051 0.186 malware zeus session2 80.500
0.108 0.020 0 0.078 0.046 0.097 malware zeus session2 28.922
0.648 0.049 0 0.429 0.062 0.468 malware Zeus session2 240.576
0.111 0.028 0 0.273 0.047 0.275 malware Zeus session2 0.899
0.560 0.048 0 0.429 0.062 0.468 malware Zeus session2 126.438
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Figure 7.4: The process tree of the rat session 1 set showing the malicious marked process ids, using the 75% quantile as threshold, with a red
label.
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Figure 7.5: Plot of the ACC, FPR and TPR of rat session 2

7.2.1.3 Algorithm 1: Rat session 2

Table 7.11: Outcome using different threshold values for rat2 malware using method1

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 30 0 0.155 0 0.765
q0.75 47 8 0.202 0.400 0.761
q0.8 38 0 0.197 0 0.728
q0.85 25 0 0.130 0 0.789
q0.9 11 0 0.057 0 0.854
q0.95 4 0 0.021 0 0.887

Table 7.12: The five highest ranked benign processes for rat session 2 using algorithm 1.

unique ids  distance sum malicious

4 20.393 No
111 8.395 No
161 4.538 No
206 4.142 No
194 3.791 No

The rat session 2 dataset consists of twenty malicious processes out of the 213 process in total. In
table 7.6 and figure 7.5 an overview is given of the outcome of algorithm 1. Although we could spot
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the malicious processes in the process tree, discussed in chapter/section 5.1.5.1, the algorithm was only
possible to mark eight malicious processes using the 75% quantile.

Apparently the behavior of the malicious processes does not deviate enough to be detected. In
table 7.13 a summary is given of the process activities of the malicious processes in the rat session 2
dataset. If we compare the activities summary to that of the rat session 1, see table 7.14, it can be
concluded that the activities of malicious processes in rat session 1 dataset is higher.

There could be several reasons for this, in the rat session 1 set the malware was installed, this means
filesystem and registry actions are executed to install itself and make sure it is booted after reboot.
After reboot the malware only needs to be started and waiting for orders, as discussed in chapter 4.
As we did not monitor the internet connection we do not know if it received any commands from the
command and control server and thus it might have been idling, waiting for commands. The fact it
might not have received any commands could be because of the short running time of the malware
dataset collection. In future research a better setup should be used to collect all the actions performed
by the malware.

Table 7.13: Summary of the process activities of the malicious processes of the rat session 2 dataset

Statistic N Mean St. Dev. Min Max
filesystem 20 0.006 0.026 0.000 0.115
registry 20 0.001 0.002 0.000 0.010

process.create 20  0.004 0.016 0.000  0.071
thread.create 20 0.001 0.004 0.000 0.018
module.load 20 0.023 0.018 0.00004 0.045
ob 20 0.033 0.028 0.00002 0.068

Table 7.14: Summary of the process activities of the malicious processes of the rat session 1 dataset

Statistic N Mean St. Dev. Min Max
filesystem 20 0.091 0.408 0.000  1.824
registry 20 0.008 0.037 0.000  0.165

process.create 20 0.062 0.277 0.000 1.238
thread.create 20 0.016 0.069 0.000  0.310
module.load 20 0.047 0.098 0.00004 0.453
ob 20 0.063 0.114 0.00001 0.531

In analyzing the top ranked bening processes, process 4 is again ranked as first. Hereby the same
applies as in the previously evaluated malware sets. Process with id 111 is again only present in the
malware datasets.

Processes 161 and 206 are only present in this dataset. Both executables are started two times
during the data collection, but show differences in activity, see tables 7.15 and 7.16. It is not strange
that these processes are marked as malicious, as they do not appear in any other dataset. This
provides proof that unknown processes can be detected. However due to the shortcomings of recording
the malicious processes it could be the case that these processes are malicious, coming from the rat
malware, but could not be found using the log sensor information we used.

The last process from the top five ranking is 194. This process is available in the rat session 2
dataset and in the clean 1604 and 1704 dataset. Here again the process has a little higher activity in
comparison to the clean datasets, which probably is cause by using different systems for collecting the
malware and clean datasets.
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Table 7.15: Process information from the executable belonging to process 161 of the rat session 2
malware dataset

filesystem registry process.create thread.create module.load ob unique ids  depth fit.cluster

1.049 1.465 0 0 0.678 0.712 161 7 6
0.004 0.005 0 0.004 0.003 0.008 162 7 3

Table 7.16: Process information from the executable belonging to process 206 of the rat session 2
malware dataset

filesystem registry process.create thread.create module.load ob unique ids depth fit.cluster

1.910 0.201 0 0 0.465 0.043 206 8 6
0.443 0.126 0 0.063 0.078 0.084 210 6 3

Using the process tree, figure 7.6, to eliminate processes for further analysis by the security officer,
the following processes will be left: 4, 34, 202, 69, 60, 85, 84, 82, 80, 76, 74 and 72. This means only
12 of the 47 malicious marked processes need to be investigated thoroughly.



Figure 7.6: The process tree of the rat session 2 dataset set showing the malicious marked process ids, using the 75% quantile as threshold,
with a red label.
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Figure 7.7: Plot of the ACC, FPR and TPR of Zeus session 1

7.2.1.4 Algorithm 1: Zeus session 1

The Zeus session 1 data set consists of 156 processes of which five are malicious. In table 7.17 the
summary of the outcome of algorithm 1 is given. However none of the malicious processes is marked
as malicious, giving a TPR of 0 for all threshold values used.

Table 7.17: Outcome using different threshold values for zeusl malware using methodl

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 17 0 0.113 0 0.859
q0.75 35 0 0.232 0 0.744
q0.8 26 0 0.172 0 0.801
q0.85 19 0 0.126 0 0.846
q0.9 8 0 0.053 0 0.917
q0.95 5 0 0.033 0 0.936

In table 7.18 and 7.19 the process activities of the malicious processes in the Zeus session 1 dataset
and the clean dataset 1604 are summarized. If we compare these values, we see that the activity of the
malicious processes in the Zeus dataset is quite low and should probably find a match with a process in
the clean dataset with a low distance. Apparently installing the Zeus malware shows a low amount of
activities per second. Again due to shortcomings in our test setup we do not know if the Zeus malware
did receive any instructions from the malware’s owner.

Again the process with id 4 is the highest ranked process. The next two process in the top five are
processes 111 and 114, which are the same executable as processes 109 and 111 in the rat session 1
malware dataset. The probable causes for being marked as malicious are data is collected on a different
host and therefor the running times differ to perform the same number of activities.
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Table 7.18: A summary of the process activities of the malicious processes of the Zeus session 1 malware
dataset

Statistic Mean St. Dev.  Min  Pctl(25) Median Pectl(75) Max
filesystem 0.006 0.004 0.002 0.003 0.005 0.007 0.012
registry 0.002 0.001 0.001 0.001 0.002 0.003 0.004

0.003 0.003 0.000 0.000 0.004 0.005 0.006
0.006 0.004 0.002 0.003 0.006 0.006 0.012
0.001 0.001 0.0004 0.001 0.002 0.002 0.002
0.007 0.005 0.002 0.003 0.006 0.006 0.015

process.create
thread.create
module.load
ob
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Table 7.19: Summary of the process activity of the clean 1604 dataset for comparison.

Statistic N  Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
filesystem 925 0.328 0.607 0.000 0.002 0.024 0.304 4.677
registry 925 0.143 0.400 0.000 0.001 0.007 0.138 6.981

process.create 925  0.083 0.362 0.000 0.000 0.000 0.000 5.000
thread.create 925 0.225 0.497 0.000 0.001 0.024 0.219 5.000
module.load 925 0.122 0.324 0.000 0.001 0.007 0.112 2.828
ob 925 0.293 0.657 0.000 0.003 0.031 0.264 5.485

Table 7.20: The five highest ranked benign processes for zeus session 1 using algorithm 1.

unique ids  distance sum malicious

4 23.482 No
111 14.668 No
113 12.345 No
147 4.503 No

107 4.418 No
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Process 147 is the same executable as process 119 in the banking malware and here again is the
running time and the number of activities performed of influence. In future research it is important to
find a method which takes into account the fact that some processes only perform a certain number of
actions and the influence of the running time. Although this can probably be eliminated by collecting
all data on the same machine these type of process differences are important to keep in mind.

The last process, 107, is the same executable as the analyzed process 95 in the rat session 1 data,
and is only present in malware datasets.

Although none of the malicious processes were marked as malicious the process tree, figure 7.8 can
still be used to shrink the number of processes the security officer needs to investigate. In using the
process tree only six processes (4, 152, 12, 150, 134, 121, 117) instead of 35 needs to be checked.



Figure 7.8: The process tree of the Zeus session 1 dataset set showing the malicious marked process ids, using the 75% quantile as threshold,
with a red label.
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Figure 7.9: Plot of the ACC, FPR and TPR of Zeus session 2

7.2.1.5 Algorithm 1: Zeus session 2

The dataset Zeus session 2 contains 191 processes from which two are marked as malicious. Here again
the TPR for all comparisons is zero. It might be that the Zeus malware was only started to listen to
receive commands. However as we did not track the network traffic, we do not know if the malware
did receive any commands.

Table 7.21: Outcome using different threshold values for zeus2 malware using methodl

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 20 0 0.106 0 0.885
q0.75 38 0 0.201 0 0.791
q0.8 28 0 0.148 0 0.843
q0.85 21 0 0.111 0 0.880
q0.9 13 0 0.069 0 0.921
q0.95 6 0 0.032 0 0.958

For the two malicious processes of Zeus session 2 the same beholds as for the malicious processes
of the Zeus malware in session 1 as we can see from table 7.22 and table 7.19 in the previous chapter.

The top three of the ranked non-malicious processes were already discussed in previous sections.
This leaves only processes 116 and 130 and are present in all datasets 1.10. If the summary of the
process activity of the two processes, shown in table 7.24, are compared to the summary of all the
same executables, table 7.25, it can be concluded that the process activity per second of the processes
from the Zeus malware are high. For this reason the distance between the matched processes is high
as well.

Analyzing the process tree in figure 7.10, only four processes, namely, 4; 187; 59; 139, will be left
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Table 7.22: Summary of the process activities of the zeus session 2 dataset

Statistic Mean St. Dev.  Min  Pctl(25) Median Pctl(75) Max
filesystem 0.004 0.005 0.0004 0.002 0.004 0.006 0.007
registry 0.002 0.002 0.0003 0.001 0.002 0.003 0.003

0.004 0.006 0.000 0.002 0.004 0.006 0.008
0.005 0.005 0.001 0.003 0.005 0.007  0.008
0.002 0.003 0.0001 0.001 0.002 0.003 0.004
0.010 0.001 0.010 0.010 0.010 0.011 0.011

process.create
thread.create
module.load
ob

NN NN N2

Table 7.23: The five highest ranked benign processes for zeus session 2 using algorithm 1.

unique ids distance sum malicious

4 23.482 No
112 14.718 No
114 12.306 No
116 5.340 No
130 5.331 No

Table 7.24: Summary of process activity of process id 116 and 130 of the Zeus session 2 malware set

Statistic Mean St. Dev. Min  Pctl(25) Median Pctl(75) Max
filesystem 1.754 0.081 1.696 1.725 1.754 1.783 1.812
registry 0.274 0.013 0.265 0.270 0.274 0.279 0.283

0.000 0.000 0 0 0 0 0

0.540 0.025 0.522 0.531 0.540 0.548 0.557
0.161 0.007 0.156 0.158 0.161 0.164 0.166
0.514 0.024 0.497 0.505 0.514 0.522 0.531

process.create
thread.create
module.load
ob

NN N2

Table 7.25: Summary of the process activities of the executable belonging to process 116 and 130 in
the zeus session 2 data from all datasets

Statistic N  Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
filesystem 492 0.227 0.488 0.000 0.003 0.045 0.181  2.797
registry 492 0.045 0.099 0.000 0.001 0.007 0.033  0.626

process.create 492  0.0001 0.001 0.000 0.000 0.000 0.000 0.018
thread.create 492  0.075 0.182 0.000 0.001 0.013 0.056 1.446
module.load 492 0.042 0.133 0.00000  0.0003 0.004 0.017 1.110
ob 492  0.176 0.591 0.00002 0.002 0.019 0.092 6.428
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for further analysis. This brings down the number significantly from 38 to 4. However none of the
malicious marked processes is really malicious.
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Figure 7.10: The process tree of the Zeus session 2 dataset set showing the malicious marked process ids, using the 75% quantile as threshold,
with a red label.
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7.2.1.6 Conclusion Algorithm 1

In this section we will conclude the evaluation of the algorithm 1, done in the previous five sections.
Figure 7.11 gives a graphical presentation of the FPR, TPR and ACC of using algorithm 1 on the five
malware sets.

Looking at the grahpical overview we can see that using the 75% quantile threshold gives the highest
TPR for the banking malware, rat session 1 and rat session 2, where the bank malware the highest
TPR. However the downside is that the FPR is going up and the ACC goes down. Disappointingly
using algorithm 1, we could not detect any of the malicious processes in the Zeus datasets.

By analyzing the the top five non-malicious ranked processes several shortcomings and recommen-
dations were for future research were found, these will be elaborated in chapter 8. One of the main
shortcomings is the fact that a non-malicious process, process id 4, was first ranked in all five rankings.
The reason for this is the usage of different systems to collect the data. Nevertheless algorithm 1
showed a positively the ability to detect malware. Although the outcome at the moment is not usable
for security officers in enterprise environments it still looks promising.
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Figure 7.11: Plot of the ACC, FPR and TPR of all malware sets using method 1
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Figure 7.12: Plot of the ACC, FPR and TPR of bank using method 2

7.2.2 Algorithm 2

Algorithm 2 is the strict algorithm. Here again we will follow the steps as described in the evaluation

set-up.

7.2.2.1 Algorithm 2: Banking malware

Table 7.26 and 7.12 show the outcome of using algorithm 2 on the banking malware dataset. As can
bee seen algorithm 2 is able to correctly mark malicious processes, however the FPR is still high.
In contrast with algorithm 1, the highest threshold value, 95% quantile, does not mark any of the
malicious processes as malicious.

Table 7.26: Outcome using different threshold values for bank malware using method2

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 18 5 0.087 0.417 0.876
q0.75 32 9 0.154 0.750 0.839
q0.8 24 8 0.107 0.667 0.876
q0.85 17 4 0.087 0.333 0.870
q0.9 10 3 0.047 0.250 0.901
q0.95 3 0 0.020 0 0.907

In the ranking of the benign processes marked incorrectly, table I1.11, two different process showed
up in comparison with the top five of algorithm 1. These processes are 159 and 153. As can be seen
in table [.12 both processes are only available in the malware datasets. Which probably means these
executables are not existing on the system used collecting clean data. As stated during the analysis
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Table 7.27: The five highest ranked benign processes for banking malware using algorithm 2.

unique ids  distance sum malicious

4 32.514 No
135 24.814 No
159 10.431 No
27 9.995 No
153 9.905 No

of algorithm 1 this is caused by the shortcoming that two different systems where used during data
collection.

Applying the same technique as used in analyzing algorithm 1 on the process tree, figure 7.13 the
following processes remain: 4, 157, 27, 13, 159, 146, 134, 111, 120, 118, 116, 112, 122, 121, 117, 126,
125 and 124. Thus reducing the number of processes from 32 to 18.



Figure 7.13: The process tree of the banking malware dataset set showing the malicious marked process ids, using the 75% quantile as threshold,
with a red label.
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Figure 7.14: Plot of the ACC, FPR and TPR of rat session 1 using method 2

7.2.2.2 Algorithm 2: Rat 1

Looking at the summary of the outcome of using algorithm 2 on the rat session 1 data, table 7.28 and
figure 7.14, we see that again at the 75% quantile the most malicious processes are marked correctly.
However the other threshold limits marked less malicious processes as being malicious.

Table 7.28: Outcome using different threshold values for rat1l malware using method?2

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 17 1 0.078 0.050 0.844
q0.75 46 10 0.176  0.500 0.795
q0.8 36 1 0.172 0.050 0.759
q0.85 25 1 0.118 0.050 0.808
q0.9 17 1 0.078 0.050 0.844
q0.95 4 0 0.020 0 0.893

In the top five presented in table 1.13 only process is shown which is not already analyzed, namely
process 110. The executable of this process can be found in all datasets, as can bee seen in table 1.14.
However here again the process performs a certain set of activities, but due to different running times
the normalized activities performed per second is higher than in the clean datasets. If we calculate
the normalized values, so not per second we can see they are in the same range as other datasets, see
tables 7.30 and 7.31.

The following 14 processes are placed at the left side of the process tree, figure 7.15: 4, 222, 191,
187, 167, 185, 183, 181, 179, 177, 175, 173 and 171. Leaving only 14 of the 64 processes to be analyzed
by the security officer.
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Table 7.29: The five highest ranked benign processes for rat session 1 using algorithm 2.

unique ids distance sum malicious

109 25.014 No

4 24.599 No
111 20.723 No
110 15.170 No
204 11.975 No

Table 7.30: Summary of normalized process activities for process id 110 from the rat session 1

Statistic Mean St. Dev. Min  Pctl(25) Median Pctl(75) Max
filesystem 0.026 0.010 0.020 0.020 0.022 0.024 0.044
registry 0.010  0.0002 0.010  0.010 0.010 0.010  0.010

0.000 0.000 0 0 0 0 0

0.070 0.017 0.039 0.078 0.078 0.078 0.078
0.020 0.000 0.020 0.020 0.020 0.020 0.020
0.068 0.014 0.045 0.067 0.074 0.074 0.082

process.create
thread.create
module.load
ob
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Table 7.31: Summary of the process activities of all processes from the same executable as process 110
in rat session 1 dataset.

Statistic N  Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
filesystem 286 0.028 0.014 0.016 0.024 0.024 0.024 0.091
registry 286 0.013 0.003 0.010 0.011 0.011 0.017  0.024

process.create 286  0.001 0.009 0.000 0.000 0.000 0.000 0.156
thread.create 286 0.075 0.011 0.039 0.078 0.078 0.078 0.117
module.load 286 0.021 0.003 0.020 0.020 0.020 0.020 0.034
ob 286 0.076 0.023 0.045 0.074 0.074 0.074 0.327
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Figure 7.15: The process tree of the rat session 1 dataset set showing the malicious marked process ids, using the 75% quantile as threshold,
with a red label.
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Figure 7.16: Plot of the ACC, FPR and TPR of rat session 2 using method 2

7.2.2.3 Algorithm 2: Rat 2

Only one of the twenty malicious processes is marked correctly in the rat session 2 dataset. This is
reached by using the 75% quantile, as can be seen in table 7.32 and figure 7.16.

Table 7.32: Outcome using different threshold values for rat2 malware using method?2

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 20 0 0.104 0 0.812
q0.75 41 1 0.207 0.050 0.723
q0.8 33 0 0.171 0 0.751
q0.85 22 0 0.114 0 0.803
q0.9 9 0 0.047 0 0.864
q0.95 3 0 0.016 0 0.892

Table 7.33: The five highest ranked benign processes for rat session 2 using algorithm 2.

unique ids  distance sum malicious
4 27.284 No
111 8.395 No
199 6.871 No
125 6.690 No
124 6.588 No

If we look at table I.13 we see other processes, than analyzed during the analysis of algorithm
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1. These processes are 199, 125 and 124. Process 199 is the same executable as 119 in the banking
malware. The following process 125, is as can be seen in table .16, is present in all datasets. Here again
early discussed shortcomings due to using different machines is probably the reason for differences in
process activities. The same is the case for process 124, as can be seen in the calculated normalized
number of process activities in table 7.34.

Table 7.34: Overview of the normalized number of activities for the processes.

filesystem registry process.create thread.create module.load ob df running time
0.069 0.019 0.156 0.039 0.034 0.045 malware bank 9.748
0.069 0.019 0.156 0.039 0.034 0.045 malware rat sessionl 0.293
0.069 0.019 0.156 0.039 0.034 0.045 malware rat session2 0.593
0.069 0.019 0.156 0.039 0.034 0.045 malware zeus sessionl 0.277
0.069 0.019 0.156 0.039 0.034 0.045 malware zeus session2 18.850
0.080 0.024 0.156 0.039 0.039 0.045 win8 1604 0.203
0.080 0.024 0.156 0.039 0.039 0.045 win8 1704 0.313
0.080 0.024 0.156 0.039 0.039 0.045 win8 1804 0.266

Using the process tree shown in figure 7.17 the number of processes can be reduced to 12 of the 41
malicious marked processes. The remaining processes are: 4, 34, 202, 69, 60, 85, 84, 82, 80, 76, 74 and
72.



Figure 7.17: The process tree of the rat session 2 malware dataset set showing the malicious marked process ids, using the 75% quantile as
threshold, with a red label.
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Figure 7.18: Plot of the ACC, FPR and TPR of Zeus session 1 using method 2

7.2.2.4 Algorithm 2: Zeus 1

Algorithm 2 did as well not succeed in marking any of the malicious processes of the Zeus malware
correctly, hereby generating a TPR, of zero for every threshold type as can be seen in the table and
figure below.

Table 7.35: Outcome using different threshold values for zeusl malware using method2

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 10 0 0.066 0 0.904
q0.75 34 0 0.225 0 0.750
q0.8 21 0 0.139 0 0.833
q0.85 14 0 0.093 0 0.878
q0.9 8 0 0.053 0 0.917
q0.95 4 0 0.026 0 0.942

Table 7.36: The five highest ranked benign processes for zeus session 1 using algorithm 2.

unique ids  distance sum malicious

4 32.503 No
111 29.827 No
113 21.907 No
112 15.990 No

40 10.839 No
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There are two processes of the zeus session 1 dataset in top five, which were not analyzed previously.
These processes are 112 and 40. Process 40 is from the same executable as the process 109 of the rat
session 1 malware dataset. For process 112 the same shortcoming of the calculated process activities
becomes evident.

Only the following seven processes are left using the process tree elimination technique: 4, 152,
12, 150, 134, 121 and 117. This reduces the number significantly from 34. However still no malicious
process is marked as malicious.



Figure 7.19: The process tree of the Zeus session 1 dataset set showing the malicious marked process ids, using the 75% quantile as threshold,
with a red label.
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Figure 7.20: Plot of the ACC, FPR and TPR of Zeus session 2 using method 2

7.2.2.5 Algorithm 2: Zeus 2

In this dataset none of the two malicious processes is marked as malicious, hereby again generating a
TPR of zero. If we look at the processes in the distribution ranking two not earlier analyzed process
can be seen. These processes are 113 and 38. Analyzing these processes shows that process 113 is the
same executable as 112 in zeus session 1 data set and process 38 is the same as process 38 in the zeus
session 1 dataset and process 109 in the rat session 1 dataset.

Table 7.37: Outcome using different threshold values for zeus2 malware using method?2

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 20 0 0.106 0 0.885
q0.75 37 0 0.196 0 0.796
q0.8 30 0 0.159 0 0.832
q0.85 22 0 0.116 0 0.874
q0.9 12 0 0.063 0 0.927
q0.95 5 0 0.026 0 0.963

Only 4, 4; 187; 59; 139, of the 37 process marked as malicious are left by using the process tree
shown in figure 7.21
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Table 7.38: The five highest ranked benign processes for zeus session 2 using algorithm 2.

unique ids

distance sum malicious

4
112
114
113

38

32.503
29.887
21.837
14.955
10.848

No




Figure 7.21: The process tree of the Zeus session 2 dataset set showing the malicious marked process ids, using the 75% quantile as threshold,
with a red label.
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7.2.2.6 Conclusion Algorithm 2

Figure 7.22 shows the FPR, TPR and ACC of all malware sets using algorithm 2. Compared to the
first algorithm this one does less of a job in marking malicious processes correctly as malicious. This
shows that using a strict logarithm for matching does not provide a better outcome.
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Figure 7.22: Plot of the ACC, FPR and TPR of all malware sets using algorithm 2
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7.2.3 Algorithm 3

In the previous two conducted analysis of the algorithms, the usage of the process tree has shown it
could drastically reduce the number of processes to analyse for the security officer. However analyzing
ten process trees provided no new insights. Therefor we will not include the analysis of these process
trees in the coming analysis. However the trees are included in appendix J.

7.2.3.1 Algorithm 3:banking malware

Concluding from table 7.39 and figure 7.23 algorithm 3 is also capable of marking some of the malicious
processes from the banking malware correctly as malicious. The outcome is does not differ much from
using algorithm 1, expect that it does only marks seven malicious processes compared to the eight
processes marked by using algorithm 1.

FPR — TPR — ACC
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e
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Figure 7.23: Plot of the ACC, FPR and TPR of bank using method 3
Table 7.39: Outcome using different threshold values for bank malware using method3
threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 18 7 0.074 0.583 0.901
q0.75 35 11 0.161 0.917 0.845
q0.8 27 8 0.128 0.667 0.857
q0.85 21 8 0.087 0.667 0.894
q0.9 13 3 0.067 0.250 0.882
q0.95 3 1 0.013 0.083 0.919

From the ranking top in table 1.21 only one process shows up which is not already analysed. As
can be seen in table 1.12 this executable is only present in the malware datasets.
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Table 7.40: The five highest ranked benign processes for banking malware using algorithm 3.

unique ids  distance sum malicious

4 32.514 No
135 24.814 No
27 7.616 No
153 6.880 No
73 6.591 No

7.2.3.2 Algorithm 3: rat 1

Using algorithm 3 on the rat session 1 dataset provides a comparable outcome as using algorithm 1.
As can be seen in the table and figure below. The only difference is a lower FPR using the mean
threshold value.

Table 7.41: Outcome using different threshold values for ratl malware using method3

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 18 1 0.083 0.050 0.839
q0.75 40 10 0.147 0.500 0.821
q0.8 27 2 0.123 0.100 0.808
q0.85 23 1 0.108 0.050 0.817
q0.9 16 1 0.074 0.050 0.848
q0.95 9 1 0.039 0.050 0.879

In the ranking no new processes were in the top five, there analyzing these processes would not
provide any new insights.

Table 7.42: The five highest ranked benign processes for rat session 1 using algorithm 3.

unique ids  distance sum malicious

4 24.599 No
109 12.328 No
95 10.132 No
204 10.043 No
111 8.817 No

7.2.3.3 Algorithm 3: rat 2

Here again only using the 75% quantile threshold value marked some of the malicious processes correctly
and generates a lower FPR by using the mean as threshold value.

Only one new process was present in the top five of the wrongly marked non-malicious processes,
namely process 191. This process is the same executable as process 194 in the rat session 2 data set
as well, using algorithm 1.
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Figure 7.24: Plot of the ACC, FPR and TPR of rat session 1 using method 3
Table 7.43: Outcome using different threshold values for rat2 malware using method3
threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 28 0 0.145 0 0.775
q0.75 47 8 0.202 0.400 0.761
q0.8 38 0 0.197 0 0.728
q0.85 25 0 0.130 0 0.789
q0.9 11 0 0.057 0 0.854
q0.95 4 0 0.021 0 0.887

Table 7.44: The five highest ranked benign processes for rat session 2 using algorithm 3.

unique ids  distance sum malicious
4 27.284 No
111 11.374 No
191 4.836 No
161 4.538 No
206 4.142 No




118 CHAPTER 7. EVALUATION

FPR — TPR — ACC

0.75 - \_/ //

% 0.50 -

R
o
N
al
1

©

o

o
1

I I I I I
mean g0.75 q0.8 g0.85 g0.9 g0.95
Threshold type

Number above threshold
P NWS
[eNoloNoNe)
1 1 1 1 1

total nr above threshold — number malicious above threshold

Figure 7.25: Plot of the ACC, FPR and TPR of rat session 2 using method 3

7.2.3.4 Algorithm 3: Zeus 1

Also algorithm 3 is not able to mark any of the malicious processes from the Zeus malware correctly.
Here again a TPR of zero is the maximum reached.
appendix H.4

Table 7.45: Outcome using different threshold values for zeusl malware using method3

threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 12 0 0.079 0 0.891
q0.75 35 0 0.232 0 0.744
q0.8 26 0 0.172 0 0.801
q0.85 19 0 0.126 0 0.846
q0.9 8 0 0.053 0 0.917
q0.95 5 0 0.033 0 0.936

The not already analyzed process 80 from the top five ranking, is the same executable as process
73 from the banking malware discussed in the first section of this analysis.

7.2.3.5 Algorithm 3: Zeus 2

As can be seen in figure 7.27 and table 7.47 here again none of the malicious processes is marked as
malicious.

In table 1.29 one new process is present, namely 79. This process is only ran in the malware
datasets as can be seen from table 1.30. The executable belonging to process 79 is the same as the
earlier discussed process 80 in zeus session 1 and process 73 in the banking malware set.
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Figure 7.26: Plot of the ACC, FPR and TPR of Zeus session 1 using method 3
Table 7.46: The five highest ranked benign processes for zeus session 1 using algorithm 3.
unique ids  distance sum malicious
4 32.503 No
111 15.913 No
113 15.806 No
80 6.663 No
107 6.191 No
Table 7.47: Outcome using different threshold values for zeus2 malware using method3
threshold total nr above number malicious above FPR TPR ACC
type threshold threshold
mean 19 0 0.101 0 0.890
q0.75 38 0 0.201 0 0.791
q0.8 28 0 0.148 0 0.843
q0.85 21 0 0.111 0 0.880
q0.9 13 0 0.069 0 0.921
q0.95 6 0 0.032 0 0.958
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Figure 7.27: Plot of the ACC, FPR and TPR of Zeus session 2 using method 3

Table 7.48: The five highest ranked benign processes for zeus session 2 using algorithm 3.

unique ids distance sum malicious

4 32.503 No
112 15.942 No
114 15.749 No
79 6.511 No

130 5.498 No
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Figure 7.28: Plot of the ACC, FPR and TPR of all malware sets using method 3

7.2.3.6 Conclusion Algorithm method 3

The evaluation of algorithm 3 showed that it performed quite comparable to algorithm 1. Using
algorithm 3 on the banking malware dataset it had one less malicious process correctly marked. On
the other hand algorithm 3 provided a lower FPR for some of the datasets. Figure 7.28 provides a
graphical overview of the FPR, TPR and ACC of the analyzed malware datasets.

7.3 Conclusion

In the previous sections we have evaluated the three proposed algorithms, which showed positive
results. All the three proposed algorithms were able to mark malicious processes correctly. However
not every malware types was detectable using these algorithms. None of the algorithms could detect
any of the malicious processes in both Zeus malware datasets. To evaluate which algorithm performed
the best, the TPR, FPR and ACC was calculated for every algorithm on every dataset. In figure 7.29
for every dataset and algorithm the TPR, FPR and ACC are presented. Concluding from the graphical
presentation we see that the TPR for the banking malware set is the highest on all algorithms.

In table 7.49 the summary is given for the count of highest TPR and ACC and lowest FPR. As
we can see algorithm 1 and 3 score on all three evaluation measure almost the same. The TPR score
of algorithm 2 is lower than the scores of algorithm 1 and 3. However algorithm 2 has a better score
on the FPR and ACC. The main reason for this is the fact that algorithm 2 marks less processes as
malicious. Taking into account the time algorithm 2 needs to run, as discussed in the previous chapter,
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Figure 7.29: Plots of FPR, TPR and ACC of all malware and all methods
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and that our focus is on gaining a high TPR, algorithm 2 should be discarded for future work.

In related work discussed in chapter 2 the TPR ranges mostly between 0.7 and up to 0.99 and the
FPR ranges from 0.0 up to 0.32 [55,69]. The values we have evaluated range from a TPR of 0.0 up
to 0.917 and FPR of 0.013 up to 0.232. So we can conclude that these rates are not to strange for a
novelty research.

Furthermore during the evaluation several shortcomings and recommendations for future work
were discussed. These recommendations will be explained in more detail in the next chapter which
will conclude this thesis.

Table 7.49: Overview of the number highest TPR and lowest FPRs

Algorithm  nr of times highest TPR  nr of times lowest FPR  nr of times highest ACC

Algorithm 1 30 11 12
Algorithm 2 23 20 18
Algorithm 3 29 12 12
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Conclusion

In this chapter we provide the conclusion of this master thesis research. We will first evaluate the
answers to sub questions, after which we will answer the main research question. This chapter will
conclude with shortcomings and recommendations for future research.

8.1 Reflection on research questions
This section will provide the answers found during the research conducted for this master thesis. What
are the current state-of-the-art anomaly detection methods for malicious behavior?

In chapter 2 this question was answered. The conclusion of the literature research conducted is
described below.

In [66] 66 a tree is created showing the relations between processes and process, process and
programs and processes and system calls. To train the detection model a supervised SVM was used.
The use of trees to show process activity is done in [63] as well. The use of filesystem activity, changes
to registry, infection of running processes, network activity and starting and stopping of services for
detection malware is presented in [53].

We have extended upon this work by creating process trees which presents information on the
process activities as well adding process tree information to the data to be used in the detection
model.

Which design requirements should be taken into account when developing an anomaly detection
method?

The answer to this question is given in chapter 3. Concluding from this chapter we have found that
when we are dealing with data that can be traced back to a person in the Netherlands the law Wet
bescherming persoonsgegevens. Although the data collected in this thesis could contain information
that traces back to a person. However the processed data used for creating the process trees and
heatmaps and on which the algorithms were deployed does not contain any personal data. So depending
on which data will be collected in the final implementation, privacy laws and regulations should be
kept in mind.

Another design requirement is the limitation of processing power and storage capacity. As shown
in chapter 4 the amount of data collected during one working day contained about 9 to 10 million

124
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events with about 50 variables. By processing the data this was reduced to only 900 events with about
18 variables.

In chapter 6 the running times of the three algorithms are shown. Concluding from this, algorithm
3 has the shortest running time, of about 22 seconds to compare two datasets with about 800 to 900
events.

Which data can be used for modeling benign process behavior?

As explained in section 4.5 the following events are used: filesystem, registry, process create, thread
create, object callback and module load. For these events we calculated the number of times such an
event is trigger per second by a process. Furthermore we use the unique id of the parent process and
use the timestamp of the process create and process exit to calculate the running time of a process.
Based on the information from the process tree the depth of each process in the tree is added to the
data, as well as the cluster to which the process belongs.

How well does the constructed method detect malicious behavior?

Malicious processes from two out of the three malware samples were detected using the algorithms
and threshold value to mark processes malicious. In figure 7.29 in section 7.3 a graphical overview is
given of the TPR, FPR and ACC of all three algorithms on all malware sets. The TPR ranges between
0 and 0.917, the FPR is between 0.013 up to 0.232. For a novelty research these values are not strange.

What graphical presentations of the malicious marked processes can aid a security officer?

In this thesis we showed heatmaps and process trees as graphical tools to aid security officers in
analyzing malicious processes. As shown in chapter 5 the process trees aided in detecting process with
deviations. However the this deviation was in the upper part of the process tree. Going deeper down
the process tree the number of nodes becomes huge and small deviations can easily be missed.

The heatmap showed the possibility to pin point processes with higher process activities compared
to the other processes in the dataset. Whenever a cell is colored more yellow to white the number of
events trigger per second for that process activity is higher than other processes.

We can conclude that all sub questions are answered. Below we will provide an answer to our main
question.

How can anomaly based detection be used for detecting unknown malicious processes based on the
detailed process information gathered on a single endpoint?

The focus of this master thesis research was to do an explorative research on the possibility of
using process activities as input for an anomaly detection method to detect malicious processes. These
process activities enclose filesystem, registry, process create, process exit, thread create, thread exit,
module load and ob activities. We assume that malicious process activities would deviate from benign
process activities.

During the research project we proved that processes perform different number of activities per
time unit and herein differ from each other. Some processes do not create new process whilst other
process, such as for example Google Chrome do create a lot of new processes.

We calculated the amount of events, such as filesystem activities, triggered per second by a process.
Using this measure we showed by using heatmaps that processes started by the same executable tend
to group together. However not every process from the same executable would group with its fellow
processes. As the heatmaps proved processes could be grouped a k-means clustering with, eight
clusters, was applied to the collected data set.

As the data logged provided the first process started by Windows, which would spawn new processes
we were able to construct a process tree. These process trees showed that the first few nodes where
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always the same in all datasets. Based on this information we concluded that certain process mostly
tend to be started at a certain depth in the tree.

This information combined with the clustering of the processes based on the process activities, was
used as input for developing three comparing algorithms, to compare the datasets containing malicious
processes with clean datasets. In these comparing methods the Euclidean distance measure was used
to match the nodes together based on the six event activities and their depth and cluster.

As we assume that malicious processes would have deviating behavior from benign processes, we
expect that malware processes would have a higher distance with a matching node. Therefor in
evaluating the compare methods a border values was set. Every process with a distance higher than
the border measure was marked as malicious. We have tested several limit values: using the distance
mean and the 75, 80, 85, 90, 95% quantile.

The malicious processes were identified in a earlier stage of the research, so we could calculate the
False Positive Rate and True Positive Rate. In analyzing the outcome of the three algorithms we found
that mostly the malicious processes of the banking malware were detected. Even getting up to a TPR
of 0.917. However the downside was the fact that the FPR was 0.161.

For the other malware sets the algorithms seemed to perform less, for the zeus malware none of
the malicious processes was detected. The rat malware gained higher TPR, namely 0.5.

8.2 Shortcomings and recommendations for future research

While conducting this research several shortcomings and recommendations were mentioned. These are
summarized below:

The first and most influential shortcoming is the set-up for collecting the data. Due to security
constraints the collection of malware data was done on a different machine than the clean data.
Although the effort was made to construct an identical system as possible, not all software was identical.
This became clear in executables which were only present on the system used for collecting the malware
data or vice versa. This would generate false positives as the normal behavior of the applications on
the malware system were not available in the clean data. Therefor we would recommend that for future
research one system is used to collect the data.

A second important deficiency is the amount of data collect, which is especially true for the collec-
tion of the malware data. The short time periods used for collecting the malware data was imposed
by both security and time restrictions. As the malware was installed on a system on the company
network, the amount of time the malware was allowed to run was limited. Furthermore as the malware
is installed it can gather information from the system, to prevent leakage of any personal or company
information we could not do any real work, and had to imitate it during the infected period.

Another shortcoming encountered during this master thesis research was the problem of different
running times creating different normalized values for the number of events per second, mentioned and
analyzed in chapter 5.1.5. Apparently some processes perform a certain set of actions, which would
give different per second values if the running time is different. Therefor it is important that a more
robust calculation method should be constructed to create a value which can be compared.

In this thesis the data was normalized between 0 and 10. However other normalization algorithms
can be used. For example the Z-score might be a viable option.

Furthermore during this research only k-means clustering was used with eight clusters. However it
could be that using less or more clusters would provide a better basis for finding malicious processes.
Other clustering methods could be researched as well. Some of the papers analyzed during the literature
research mentioned the use of a one-class SVM for clustering.

Analyzing the process trees, showed us that all malware happens in a particular place in the process
tree, namely the left side. As the malware samples were extracted from a zip and executed, this might
have an implication on the place in the process tree where the malware is executed. Tests with infection
via malicious advertisement and other methods of getting infected should be tested as well. It could
well be that malware is always running at a specific place in the process tree.
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In evaluation none of the algorithms detected the malicious processes of the Zeus malware. As we
did not monitor the outgoing traffic we do not know if the Zeus malware received any commands from
the command and control centers. In future research combining the logging of process information
with the logging of network data might provide viable information.

The ranking of the malicious processes is done on the distance. However other ranking methods are
possible as well. We assume that a process started by a malicious process is malicious as well. If the
detection method works it should mark both processes as malicious. If we add the summed distance
of the child process to the distance of the parent process it will move up in the ranking and will be
investigated earlier by the security officer.

During this research we used only datasets from complete boot procedures, which we would analyse
afterwards. When implementing a malicious behavior detection system you would like to know as fast
was possible if there is a possible infection. To overcome this problem the method should be rewritten
in such a way that it could in real time add new processes to the process tree, assign the appropriate
cluster and analyze if it has such a deviation it would be marked as benign or malicious.
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Collected data

A.1 File system event

File system information

Data field Required/ Information
Optional
filesystem_event.requestor_mode Required Operation initiated from kernel or user land
filesystem_event.minor_function Required Subfunction for major function, used by
some processes
filesystem_event.major_function Required What kind of filesystem event was triggered
filesystem_event.operation_id Required Unique ID per filesystem event to track post
and pre events
filesystem_event.is_network _operation Required Operation over the network yes or no
filesystem_event.parameters. Required Create options
create_parameters.create_options
filesystem_event.parameters. Required Desired access mask
create_parameters.desired_access_mask
filesystem_event.parameters. Required Create options
create_parameters.full_create_options
filesystem_event.parameters. Required How the file is shared (read/write/locked)
create_parameters.share_access
filesystem_event.parameters. Required Defines the file attributes values
create_parameters.file_attributes
filesystem_event.parameters. Optional Size of created file
create_parameters.allocation_size

Table A.1 — continues on next page
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Table A.1 — continued from previous page

Data field Required/ Information
Optional
filesystem_event.parameters. Required Offset where to start reading/writing
read_write_parameters.byte_offset
filesystem_event.parameters. Required Length of read/write
read_write_parameters.length
filesystem_event.parameters. Required Information requested from the filesystem
file_information_parameters.file_information_class
filesystem_event.parameters. Required Requested memory access for a file mapped
section_sync_parameters.page_protection in memory
filesystem_event.parameters. Required New memory map was created if enum=1
section_sync_parameters.sync_type
filesystem_event.source_process_id.id Required The process ID of the process initiating the
filesystem event
filesystem_event.source_process_id.unique_id Required The unique process ID of the process initi-
ating the filesystem event
filesystem_event.source_thread_id.id Required The thread ID of the process initiating the
filesystem event
filesystem_event.source_thread_id.unique_id Required The unique thread ID of the process initiat-
ing the filesystem event
filesystem_event.file_path.token Required Tokenized path to the file
filesystem_event.file_path.data Required Path to the file
filesystem_event.operation_result.information Required Information depending on the performed
major operation for a file create
filesystem_event.operation_result.status Required The operation result status
filesystem_event.rename_file_path.token Optional The tokenized renamed file path
filesystem_event.rename_file_path.data Optional The renamed file path String
filesystem_event.file_hash Optional The hash of a file

Table A.1: File system data fields

A.2 Registry event

A detail overview of the information in a registry event.

Data field Required/ Information
Optional
registry_event.desired_access_mask | Required Requested access mask (read, write )
registry_event.granted_access_mask | Required Granted access mask (read, write)
registry_event.registry_operation Required What kind of registry operation was per-
formed

Table A.2 — continues on next page
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Table A.2 — continued from previous page

Data field Required/ Information
Optional
registry_event.result_status Required Result of the operation
registry_event.registry_value_type Optional Type of registry information saved in the key
registry_event.registry_path.token Required Tokenized registry path
registry_event.registry_path.data Optional Registry key path
registry_event.registry_value_data Optional The registry key value data
registry_event.registry_value_name.data Optional Registry value name when an operation affects
a registry key value
registry_event.registry_value_name.token Optional Tokenized Registry value name
registry_event.registry_value_index Optional Index into the registry key value names
registry_event.new_registry_path.data Optional New Registry key path when renaming a key
registry_event.new_registry_path.token Optional Tokenized new Registry key path when renam-
ing a key
registry_event.registry_filepath.data Optional File path to the registry file when saving/load-
ing the registry from/to file
registry_event.registry_filepath.token Optional Tokenized File path to the registry file when
saving/loading the registry from/to file
registry_event.source_process_id.id Required Source process id
registry_event.source_process_id.unique_id | Required Source process unique id
registry_event.source_thread_id.id Required Thread process id
registry_event.source_thread_id.unique_id | Required Thread process unique id

Table A.2: Registry data fields

Registry information Information on the registry numbers in sensor events Information. Registry
events will provide information containing what kind of registry access is asked for, which type is

granted.

A.3 Process create event

Data field Required/ Information

Optional
process_create_event.session_id Required Windows session id
process_create_event.command_line.data Optional The command line arguments
process_create_event.command_line.token Required The tokenized command line arguments
process_create_event.process_exe_path.token Required The tokenized path of the process exe-

cutable

process_create_event.process_exe_path.data Optional The path of the started process executable
process_create_event.process_id.id Required The process id
process_create_event.process_id.unique_id Required The unique process id

Table A.3 — continues on next page
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Table A.3 — continued from previous page

Data field Required/ Information

Optional
process_create_event.source_process_id.id Required Parent process id
process_create_event.source_process_id.unique_id | Required Unique parent process id
process_create_event.source_thread_id.id Required Parent thread id
process_create_event.source_thread_id.unique_id | Required Unique parent thread id

Table A.3: Process create data fields

A.4 Process exit event

Data field Required/ Information
Optional

process_exit_event.process_id.id Required Process id

process_exit_event.process_id.unique_id Required Unique process id

Table A.4: Process exit data fields

A.5 Thread create event

Data field Required/ Information
Optional
thread_create_event.start_address Required The thread memory start address
thread_create_event.process_id.id Required The process id in which the new thread is
created
thread_create_event.process_id.unique_id Required The unique process id in which the new
thread is created
thread_create_event.source_process_id.id Required The source process id
thread_create_event.source_process_id.unique_id | Required The unique source process id
thread_create_event.source_thread.id.id Required The source thread id
thread_create_event.source_thread_id.unique_id Required The unique source thread id
thread_create_event.thread_id.id Required the created thread id
thread _create_event.thread_id.unique_id Required The unique created thread id

Table A.5: Thread create data fields
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A.6 Thread exit event

Data field Required/ Information
Optional

thread_exit_event.thread_id.id Required The thread id

thread_exit_event.thread_id.unique_id Required The unique thread id

Table A.6: Thread exit data fields

A.7 Module load event

Data field Required/ Information

Optional
module_load_event.entry_point Required The entrypoint of the module
module_load_event.image_base Required The base address in memory
module_load_event.image_size Required The size of the module in memory
module_load_event.module_hash Required The hash of the loaded module file
module_load_event.module_path.token Required The tokenized path of the loaded module
module_load_event.module_path.data Optional The path of the loaded module
module_load_event.source_process_id.id Required The source process id
module_load_event.source_process_id.unique_id | Required The unique source process id
module_load_event.source_thread_id.id Required The source thread id
module_load_event.source_thread_id.unique_id | Required The unique source thread id

Table A.7: Module load data fields

A.8 Object callback events

Data field Required/ Information
Optional
ob_event.desired_access_mask | Required Desired access mask
ob_event.granted_access_mask | Required Granted access mask
ob_event.object_type Required The type of object the operation is performed on
(none, thread or process)
ob_event.operation Required Kind of object operation logged
ob_event.operation_result Required The result of the operation
ob_event.object_id.id Required The id of the object defined in ob_event.object_type
ob_event.object_id.unique_id Required The wunique id of the object defined in

ob_event.object_type

Table A.8 — continues on next page
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Table A.8 — continued from previous page

Data field Required/ Information
Optional
ob_event.source_process_id.id Required The source process id

ob_event.source_process_id.unique_id | Required

The unique source process id

ob_event.source_thread_id.id

Required

The source thread id

ob_event.source_thread_id.unique_id | Required

The unique source thread id

ob_event.target_process_id.id

Required

The target process id

ob_event.target_process_id.unique_id | Required

The unique target process id

Table A.8: Object callbacks data fields
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Process trees

B.1 Cut Process trees from clean datasets
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Figure B.1: First 5 levels of win8 1604 avond



Figure B.2: First 5 levels of win8 1704
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Figure B.3: First 5 levels of win8 1804 avond
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B.2 Cut process trees from malware datasets
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B.4: First 5 levels of rat malware ses

Figure
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sion 2

Figure B.5: First 5 levels of rat malware ses







Figure B.7: First 5 levels of zeus malware session 2
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B.3 Merged process trees
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Figure B.8: 1604 avond merged tree
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Figure B.12: bank malware merged tree
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Figure B.13: rat malware session 1 merged tree
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Figure B.14: rat malware session 2 merged tree
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Figure B.15: Zeus malware session 1 merged tree



158

APPENDIX B. PROCESS TREES

901} POSIOW g UOISSOS OIBRM[RUIL SNy 9T'¢ 9INSI]




Process Activities

C.1 Process activities clean dataset
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Figure C.1: Boxplot win 8 1604
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Figure C.2: Boxplot win 8 1604 avond

C.2 Process activities malware dataset
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Figure C.3: Boxplot win 8 1704
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Figure C.4: Boxplot win 8 1804
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Figure C.6: Boxplot Zeus malware session 1
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Figure C.8: Boxplot Rat malware session 1



C.2. PROCESS ACTIVITIES MALWARE DATASET

167

Normalized values

rat_session2

5 -

4 -
ind

3- EI filesystem
EI module.load
B ob
EI process.create

registr:

2- £ registry

EI thread.create
H
1- .

¢ 1 i

0- e —|— # ! i I

1 1 1 1 1 1
filesystem module.load ob  process.create registry thread.create

Event types

Figure C.9: Boxplot Rat malware session 2



D

Heatmaps

D.1 Heatmaps from the clean datasets

See seperate files for heatmaps
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D.1. HEATMAPS FROM THE CLEAN DATASETS

win8_1604_event_k8

O—LHCOWOLOM M NOMODOLN0OMLOT TOIDDN0OOTNHOONTOO  ANOOCO—HALOMMLOOIN NI —IN-O O ONTAN-M ST 0O MLOLOO 00 =M SFOOLOM S LN —H00WONO0 L0  NSTAINANSTOO ST NOMANDMOONINDIMIN-ONON
OOLO—HOLONMMOLD—HOOTAINNONO DM MNLO—OON-N-00O OO NO 00N FONDH OO FLOMOOLONNO00 TN N0 T ONANINTRALOO0DNCO—HANNT ONOLO T FONNN-—HOON-OMLOWO T M- OLO00 00 M —NO MO 0N
SENIIP-SENPII NSNS SE ST 00O AN AN MLO NGO D +—HLOLOLOO ANLOLO AN M ALO NN O 00 00O O 00 00O LN LN OO 00 O OLNO <t +LOMN- 00NN 0000 NLN 00O v+ =00 =M ON- S EHN IS OO FLOLOLN 00O LOWOLOK




0.705

0.779

0 0.941 2.046 0.818
0 0.897 0.672 1.95 0.779 0.742
0 0.94 0.639 2.022 0.832 0.95
0 1.186 0.815 1.91 0.833 0.952
0 1.119 0.838 2.434 0.973 0.926
0 0.535 0.84 2539 1.56 1.664
0.908 0.598 0.976 1.699 1.362 1.47
0 0.239 0.492 2.779 0.713 1.747
0 0.23 0.475 2682 0.687 1.683
0 0.234 0.482 2.722 0.699 1.141
0 0.24 0.495 2.797 0.205 0.995
0 0.204 0.42 2.374 0.174 1.258
0 0.534 0.448 3.386 0.277 0.37
0 1.098 0.513 2.338 0 0.238
0 1.098 0.513 2.338 0 0.238
0 1.098 0.498 2.338 0 0.238
0 1.098 0.498 2.338 0 0.238
0 1.095 0.512 2.448 0 0.237
0 1.988 0.564 1.988 0 0.476
0 1.988 0.564 1.988 0 0.476
0 0.539 0.353 1.225 2.495 2.534
0 0.628 0.364 0.76 2.5 2.381
0 0.641 0.425 1.684 2.139 2.173
0 0.418 0.24 0.429 1.667 1.587
0 0.418 0.24 0.428 1.663 1.584
0 0.418 0.242 0.506 1.663 1.584
0 0.389 0.226 0.47 1.548 1.474
0 2197 1.027 4.677 0 0.476
0 2.72 1.583 1.871 2.5 4.286
0 2.72 1.583 1.871 2.5 4.286
0 2.72 1.583 1.871 2.5 4.286
0 2.703 1573 1.859 2.484 4.258
0 2.828 1.646 1.945 2.6 4.457
0 2.603 1515 1.79 2.393 4101
0 2.496 1.453 1717 2.294 3.933
0 2.357 1372 1.621 2.167 3.714
0 0.94 1.408 3.881 3.12 3.09
0 0.333 2.042 0.886 0.828 4.218
0 0.298 1.822 0.791 0.647 4.384
0 0.947 0.449 2.136 1.234 5.485
111 0.395 3.226 1.284 0.832 0.74
0.908 0.323 2.64 1.051 0.681 0.605
0 0.275 4177 0.853 0 0.114
0 0.323 3.802 0.748 0 0.101
0 0.46 6.981 1.331 0 0.19
3.333 1.046 0.737 1.559 3.333 3.333
3.326 1.044 0.738 1.556 3.326 3.326
3.326 1.044 0.74 1.517 3.326 3.485
2.889 0.907 0.641 1.317 2.889 3.026
5 1.569 1.105 2.28 5 5
L k! > £ 8 8
© 8 s o © ©
o = =) 1% o
Q 2 ) > o
S
A 3 2 K
() (@] Y= Q
O e =
o £
S

Figure D.2: Heatmap win8 1604 dataset split test

event types

A~NO~NONOHI~NOWO0UT™ 00WO~00U10X

N~NFPOOO~ROONWWOY o

[epepId)

mahbommmf\)mlﬂ@l—‘@\l\IOOLOCOOI\JOU'IOU'IU'IHCD\IOI—‘\J-bU'ICDU'IO?COO-hI—‘OOOOOOU‘IU‘IOOI\JI—‘J

DO ~I0UWNIN~I~00N-AULWHOOUIUTRCONI U OO ~N00WD BN W R R 00UTR Y OYU1LWU OO 000)



D.1. HEATMAPS FROM THE CLEAN DATASETS

171

win8_1604_avond_event_k8
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D.1.1 Analyzing the heatmaps
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win8_1804_event_k8

249
247
258
262
267
271
278
305
309
318
322
269
251
273
290
297
301
303
307
311
255
237
292
299
260
241
229
224
231
243

125
253
137
120
121
329
189
291
282
142
236
315

246
128
226
250
248
259
2R




D.1. HEATMAPS FROM THE CLEAN DATASETS

175

8.08072667217176

2.71494870542257

2.99957681260235

3.11852362107121

1.58315176932107

272

1.58315176932107

272

1.8685881776212

4.76190476190476.

4.76190476190476.

4.76190476190476.

4.61820937281418

1.2961424913566

1.72417813010026

456

2.21014256905218

3.13846153846154

456

2.21014256905218

3.13846153846154

456

2.21014256805218

3.13846153846154

filesystem

registry

module.load

process.create

Figure D.6: Part from 1604 avond

144
223
133
231

354
146
74

460
297
283
301
374
406
383
202
412
285
163
313

317
194
233
363
300
365
310
356
188
452
148



176

APPENDIX D. HEATMAP

0.7 TU4BEET 2245086 578253767 150622 TET5250298T 104 U BEU523 2004082 L SNC3
0 769156343663 71 057622300128 1604 T67240271012655 0 6553050446275 0636357 185350576
5]
0.940850503 144654 0,748 71732402119 Z04578616352201 0.§17610062893062 07786762503 14364
T 07
0 93951489 1003991 0 535677494992709 Z.02231092006959 0.831547319107563 0 9503340783B0077
L T1920199501247 0 535453367233443 24335 1620947631 0.972568578553616 0.926255789098657
00080221394 77508 0598457 755023111 0.97567691659516 69670362097088 T36203620020878 TAT0TA 32105073
T X
0.230090634441085 474501055604538 GE1B 1268562175 0.6B7311176247754 6B TI04B76956
022 495245467116919 0 204831932773109 i
0.203682110420522 4703060651 19178 37400313574172 0.173835834766473 125524032797792_
0Z77375aB528035_
1. O0BIET538AE 15, 0.513348717270851 F3EIBT53RAET5E
33B45153646154
1.09646 15384615 0.497673947285573 3364615384615
1,0949800633682 0.511721704580354 44750248463245
1.56760230760031 0.564251 /19756004 5676023076923 4761904 76160476
A04BE000050488
0 627692307592308 0.364438402343711 076 25 3B005038095038
0.313451538261535 0.720346473730261 0.378717945717949 BEREREREBEERET 58730158730150
0.3175/6419213974 6631413754585 K
0 AT75/64102 13074 E
0 33357147857 1420 02756047 75260392 4704761907615 54761004 767905 4739000749433
272 T58315176932107 7076923076923 25 28571428571429
2
777 1 58315176932107 87076923076923 25 8571428571429
X T i
7 57549829351536 EAB30273457773 94536740 146758 SCSTZ2606245T3 4566674792754
2458 A5277ASEATERTE T1670588235004 252 T1764705882 R
ST2064B6574497 1 BBEBEEBEGEE0T 71428571428571
0.940019967744413 4084541043034 8814223177943 1996006451117 3090246 15913488
4317858613498
0.946835443037975 4451430031385 2 1356562025316 123417721518987 5 43523206751055
G 135 e P X . i 3 X
0.908024139472508. 032297 7201609295 640234 39866378 105107286544479 0681015104604351 0.605349426315005
T 0.37377558852459 B0235229972787 0 747540983606558 0 0.101483716237315
T T T
333333333333333 T 04615382615385 736 1ATROGEA0E T 55A07430697436 333333333333333 333333333333333
il 1 3326062 7510917_ X
3367827510917 0.7403607B2 194774 T 5167BAG3AAT7ET 3 5467716781035
: ) T31733533333333 3 02645502645503
5697307692307 T 10507 128252609 728
process.create module.load registry filesystem thread.create ob
1.24801507460448 0639752188828017 0 2.80169986175623 0.312003993651119 297146660620113
1248 0539724 0 275542404591 105 2 501664 0317 0797147857142857
TIGE5305637 1470 565762446657 163 0 200873405757213 T50B 1081061081 G Z77352645603600 0.764173945384475
1425050 78062157 0.730965921389397 60882759450 2011700162875% 0.356459945155393 0.330514233481327
147503660503893 0 730956230056231 0 258157107 152803 2011232011232 0 356454731284732
T 307349666 5 z3 006815145 0Z37711243010375
0 756751246715022 0 511076715068547 67633764 0.732050511534933
109696163846 154 0.513345717279851 33646153646 154 0.238095238095238
0 511721 70468035% 331040G54RER05 02373406 16647436
1.00457400139705 0 96071755537912 3300308388784 023732
1.06846153646154 0 513348717275851 il
0.83792082044361 0.379536270081 TE382518917067 0.181624110740412
1.97513245082756 056072607 7011877 [97513299082756. 0473151526983186
1.1492B200221253 26347885348 AGAGPAARERA285 099870936021 1419 0951151771629923
1 1492BA00221253 0.8672614B6934203 AGAGRAAREBA285 099870936021 1419 0.951151771629023
17478 394924006 AT57GHAT5T0332 0.997442455242967 0.949945195469492
0.97489995155393. 12807 461575860% 3134478976234 0.712975890310786 0.745931313656919
177885 153845155 L i 7 BB4B153B4B1538. 125 1.82857142857143
T 41730765230765 0 967917047082500 304 125 42857 14285T143
269875267 733401 1.26121960274122 5.74524379488472 [] 0.5849637 32248601
) 76635418267 5068 ¥ 5002B1747861276 OAT6218431432816
0 450723018929771 9805021 7313626 133123002580359 0 0.190234751530654
0.0584514077512084 0 2788656622107 1 0.0143438410453516 |
0.08243823 19423902 _1.63380342837077 U.18762200647953
_04713507B0894374 1 (2038126282473 0.175008086602327
72 (870760230 76923
72 [B707E5230 76523 FB57 1428571425
77 (7076023076923 2557142857 1429
77 [ 87076973076523 28571428571479
77 7076023076523 ZE5T142857 1429
272 57076923076023 28571428571429
T 07537450321 [ 85875578936105 258 10076416124
3 1669453069023 1781705278247 7910795318B2404 LSRRI
0 731145356660501 5386155342788 £ 3680559111156 F7E 1191257963
0714 17955 365625 T142857 1428571
12473520504 00 T G584 0603342545 515065631
3 BBT5716B34 7755 7 496031 G7126660620113
TAZ5558TB0RZT5T 09308 1716464351 7 66TBATBBT00125. 53 24075354067
0. i 1 T03816176107417 27320250847 199
0 3634012843166 0 2520671568033
U31677274157249. 0 821420032427257 0683176076277134 625004569115
1.10950695172359 7 50762045324605 14462 1561220655 7762454314024
X 21 093 566857 14265714
T95415204959616 554257230411 T2 TT2IT3TA501585 T 9541529495916 964162949696 16
4.98389817512652 56417727342832 7265756185769 2 9B389617512652 GE3B0B17512657
4.95415704959616 5642573341172 Z7ZTTATAS01585 4 95415754959616. 564157545596 16
3989688 19052296 2101001718535 2920820034372 199464400526 145 89985 151920665
5 1507692307692 Gz %5 43857142651 143
] 10 7 3897693067107 [ 35560512015332
process.create module.load registry filesystem thread.create ob

Figure D.8:

Part from 1704

S RO KOO X0 GXO~BO0OXBOG




D.1. HEATMAPS FROM THE CLEAN DATASETS 177

e

1.56425723341172
1.56425723341172
1.56425723341172
458 2.21014256905218 3.13845153845154 10 10 10 239
456 2.21014256905218 3.13845153846154 10 10 10 191
458 221014256905218 3.13845153846154. 10 10 10 275
456 2.21014256905218 3.13845153846154 10 10 10 281
458 221014256905218 3.13845153846154. 10 10 10 283
456 2.21797995404862 3.13845153846154 10 10 10 135
456 2.22581733904546 3.13846153846154 10 10 10 222
filesystem registry module.load process.create thread.create ob

Figure D.9: Part from 1804



178 APPENDIX D. HEATMAPS

‘module.load

Figure D.10: Part from bank malware
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Figure D.11: Part from rat 1 malware
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Figure D.12: Part from rat 2 malware upper part
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Figure D.13: Part from rat 2 malware bottom part
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D.2 Benign process analysis
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Figure D.17: Heatmap showing the process
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Evaluation Algorithm 1




F.1 Banking malware

Table F.1: Outcome using different threshold values for bank malware using algorithm 1

thresh-total  total nr total number FPR TPR ACC process ids all processes
old nr mali- nr malicious
type  pro- cious above above

cesses pro- thresh-  threshold

cesses old
mean 161 12 19 8 0.074 0.667 0.907  111; 116; 117; 4; 27; 73; 74; 111; 113; 116; 117; 119; 120;
120; 122; 124;  122; 124; 125; 126; 135; 143; 146; 153; 159
125; 126

q0.75 161 12 35 11 0.161 0917 0.845 111; 112; 116;  1; 2; 4; 13; 27; 58; 65; 73; 74; 75; 76; 90; 111;

117; 118; 120;  112; 113; 116; 117; 118; 119; 120; 121; 122;
121; 122; 124;  124; 125; 126; 131; 134; 135; 143; 146; 150;

125; 126 153; 154; 157; 159
q0.8 161 12 27 8 0.128 0.667 0.857 111; 116; 117;  1; 2; 4; 27; 65; 73; 74; 76; 90; 111; 113; 116
120; 122; 124;  117; 119; 120; 122; 124; 125; 126; 135; 143;
125; 126 146; 150; 153; 154; 157; 159
q0.85 161 12 21 8 0.087 0.667 0.894 111;116; 117;  4; 27; 73; 74; 111; 113; 116; 117; 119; 120;
120; 122; 124;  122; 124; 125; 126; 135; 143; 146; 150; 153;
125; 126 154; 159
q0.9 161 12 13 3 0.067 0.250 0.882  116; 120; 122  4; 27; 73; 74; 113; 116; 119; 120; 122; 135;
143; 153; 159
q0.95 161 12 3 1 0.013 0.083 0.919 120 4; 120; 135

T
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F.2 Rat malware session 1

Table F.2: Outcome using different threshold values for ratl malware using algorithm 1

thresh-total total nr  total number FPR TPR ACC process ids all processes

old nr mali- nr malicious

type pro- cious above above

cesses  pro- thresh- threshold
cesses old
mean 224 20 21 1 0.098 0.050 0.826 167 1; 4; 43; 56; 57; 95; 109; 111; 120; 122; 124; 159;
167; 187; 188; 191; 192; 204; 203; 208; 222

q0.75 224 20 40 10 0.147 0.500 0.821 167; 171; 1; 4; 26; 27; 43; 56; 57; 72; 86; 95; 97; 102; 107;
173; 175; 109; 111; 115; 120; 122; 123; 124; 159; 167; 171;
177; 179; 173; 175; 177; 179; 181; 183; 185; 186; 187; 188;
181; 183; 191; 192; 201; 204; 203; 208; 222
185; 186

q0.8 224 20 27 2 0.123 0.100 0.808 167; 186 1; 4; 26; 43; 56; 57; 86; 95; 109; 111; 115; 120;

122; 123; 124; 159; 167; 186; 187; 188; 191; 192;
201; 204; 203; 208; 222
q0.85 224 20 23 1 0.108 0.050 0.817 167 1; 4; 43; 56; 57; 95; 109; 111; 120; 122; 123; 124;
159; 167; 187; 188; 191; 192; 201; 204; 203; 208;
222
q0.9 224 20 16 1 0.074 0.050 0.848 167 4; 43; 56; 57; 95; 109; 111; 124; 159; 167; 187,
188; 192; 204; 203; 208
q0.95 224 20 9 1 0.039 0.050 0.879 167 4; 95; 109; 111; 159; 167; 188; 192; 204
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F.3 Rat malware session 2

Table F.3: Outcome using different threshold values for rat2 malware using algorithm 1

thresh-total total nr  total number FPR TPR ACC process all processes
old nr mali- nr malicious ids
type pro- cious above above
cesses  pro- thresh- threshold
cesses old
mean 213 20 30 0 0.155 0 0.765 2; 4; 24; 34; 51; 52; 53; 65; 95; 96; 97; 101; 111; 124;
125; 141; 160; 161; 164; 171; 187; 189; 190; 191; 192;
193; 194; 202; 206; 207
q0.75 213 20 47 8 0.202 0.400 0.761 60; 72; 1; 2; 4; 20; 24; 34; 51; 52; 53; 60; 65; 69; 72; 74; 76;
74; 76; 80; 82; 84; 85; 91; 94; 95; 96; 97; 101; 111; 114; 116;
80; 82; 124; 125; 141; 160; 161; 164; 165; 171; 187; 188; 189;
84; 85 190; 191; 192; 193; 194; 202; 206; 207
q0.8 213 20 38 0 0.197 0 0.728 1; 2; 4; 24; 34; 51; 52; 53; 65; 69; 91; 94; 95; 96; 97;
101; 111; 114; 116; 124; 125; 141; 160; 161; 164; 165;
171; 187; 188; 189; 190; 191; 192; 193; 194; 202; 206;
207
q0.85 213 20 25 0 0.130 0 0.789 2; 4; 24; 34; 51; 52; 53; 95; 96; 97; 111; 124; 141; 160;
161; 164; 187; 189; 190; 192; 193; 194; 202; 206; 207
q0.9 213 20 11 0 0.057 0 0.854 4; 24; 34; 51; 111; 161; 187; 192; 194; 202; 206
q0.95 213 20 4 0 0.021 0 0.887 4; 24; 111; 161

¢ NOISSHS HUHVMWIVIN LVY

68T



F.4 Zeus malware session 1

Table F.4: Outcome using different threshold values for zeusl malware using algorithm 1

thresh- total total nr total nr number FPR TPR ACC pro- all processes
old nr malicious above malicious cess
type pro- processes  thresh- above ids
cesses old threshold
mean 156 5 17 0 0.113 0 0.859 4; 38; 41; 43; 80; 81; 82; 83; 107; 111; 113; 121;
127; 134; 140; 147; 150
q0.75 156 5 35 0 0.232 0 0.744 1; 2; 4; 12; 38; 39; 41; 42; 43; 73; 75; 80; 81; 82; 83;

84; 91; 97; 107; 111; 112; 113; 117; 118; 121; 127;
130; 132; 134; 135; 140; 141; 147; 150; 152

q0.8 156 5 26 0 0172 0  0.801 2; 4; 38; 39; 41; 42; 43; 80; 81; 82; 83; 84; 107; 111;
112; 113; 117; 121; 127; 130; 132; 134; 140; 147;
150; 152
q0.85 156 5 19 0 0126 0  0.846 4; 38; 39; 41; 43; 80; 81; 82; 83; 84; 107; 111; 113
121; 127; 134; 140; 147; 150
q0.9 156 5 8 0 0053 0 0917 4; 38; 41; 80; 107; 111; 113; 147
q0.95 156 5 5 0 0033 0 0936 4; 107; 111; 113; 147
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F.5 Zeus malware session 2

Table F.5: Outcome using different threshold values for zeus2 malware using algorithm 1

‘o'

thresh- total  total nr  total nr number FPR TPR ACC pro- all processes

old nr mali- above malicious cess

type  pro- cious thresh- above ids

cesses pro- old threshold
cesses
mean 191 2 20 0 0.106 0 0.885 4; 59; 79; 80; 81; 112; 114; 115; 116; 117; 118; 119;
120; 123; 129; 130; 140; 154; 160; 164

q0.75 191 2 38 0 0.201 0 0.791 1; 4; 26; 36; 37; 40; 59; 79; 80; 81; 82; 85; 92; 112;

114; 115; 116; 117; 118; 119; 120; 121; 123; 127; 129;
130; 137; 139; 140; 148; 151; 154; 160; 163; 164; 167;

176; 187
q0.8 191 2 28 0 0.148 0 0.843 1; 4; 36; 37; 40; 59; 79; 80; 81; 82; 112; 114; 115; 116;
117; 118; 119; 120; 121; 123; 127; 129; 130; 139; 140;
154; 160; 164
q0.85 191 2 21 0 0.111 0 0.880 4; 79; 80; 81; 82; 112; 114; 115; 116; 117; 118; 119;
120; 121; 123; 129; 130; 140; 154; 160; 164
q0.9 191 2 13 0 0.069 0 0.921 4; 112; 114; 116; 117; 118; 119; 120; 123; 129; 130;
154; 160

q0.95 191 2 6 0 0032 0 0958 4; 112; 114; 116; 117; 130
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Evaluation Algorithm 2




G.1

Banking malware

Table G.1: Outcome using different threshold values for bank malware using algorithm 2

thresh- total  total nr  total nr number FPR TPR ACC process ids all processes
old nr mali- above malicious
type  pro- cious thresh- above
cesses pro- old threshold
cesses
mean 161 12 18 5 0.087 0.417 0.876 111; 116; 4; 27, 73; 74; 111; 113; 116; 119; 120; 122;
120; 122; 126 126; 131; 135; 143; 146; 153; 154; 159
q0.75 161 12 32 9 0.154 0.750 0.839 111; 116; 1; 2; 4; 27; 65; 73; 74; 76; 84; 90; 111; 113;
117; 118; 116; 117; 118; 119; 120; 122; 124; 125; 126;
120; 122; 131; 134; 135; 143; 146; 147; 150; 153; 154;
124; 125; 126 157; 159
q0.8 161 12 24 8 0.107 0.667 0.876  111; 116; 1; 4; 27; 65; 73; 74; 111; 113; 116; 117; 119;
117; 120; 120; 122; 124; 125; 126; 131; 135; 143; 146;
122; 124; 150; 153; 154; 159
125; 126
q0.85 161 12 17 4 0.087 0.333 0.870 111; 116; 4; 27; 73; 74; 111; 113; 116; 119; 120; 122;
120; 122 131; 135; 143; 146; 153; 154; 159
q0.9 161 12 10 3 0.047 0.250 0.901 111; 120; 122  4; 111; 113; 119; 120; 122; 135; 143; 153; 159
q0.95 161 12 3 0 0.020 0 0.907 4; 135; 159
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G.2 Rat malware session 1

Table G.2: Outcome using different threshold values for ratl malware using algorithm 2

thresh- to- total total number FPR TPR ACC process ids all processes
old tal nr ma- nr mali-
type nr licious  above cious
pro- pro- thresh-  above
cesses  cesses old thresh-
old
mean 224 20 17 1 0.078 0.050 0.844 167 4; 43; 45; 56; 95; 109; 110; 111; 159; 162; 163; 167;
188; 192; 204; 203; 208
q0.75 224 20 46 10 0.176  0.500 0.795 167; 171; 1; 4; 26; 43; 45; 56; 57; 72; 75; 86; 93; 95; 96; 103;
173; 175; 109; 110; 111; 115; 120; 122; 123; 124; 159; 162; 163;
177; 179; 167; 171; 173; 175; 177; 179; 181; 183; 185; 186;
181; 183; 187; 188; 191; 192; 194; 201; 204; 203; 208; 213; 222
185; 186
q0.8 224 20 36 1 0.172  0.050 0.759 167 1; 4; 26; 43; 45; 56; 57; 72; 75; 86; 93; 95; 103; 109;
110; 1115 115; 120; 122; 123; 124; 159; 162; 163; 167;
187; 188; 191; 192; 194; 201; 204; 203; 208; 213; 222
q0.85 224 20 25 1 0.118 0.050 0.808 167 1; 4; 43; 45; 56; 57; 95; 109; 110; 111; 120; 124; 159;
162; 163; 167; 187; 188; 191; 192; 194; 204; 203;
208; 222
q0.9 224 20 17 1 0.078 0.050 0.844 167 4; 43; 45; 56; 95; 109; 110; 111; 159; 162; 163; 167;
188; 192; 204; 203; 208
q0.95 224 20 4 0 0.020 0 0.893 4; 109; 110; 111
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G.3 Rat malware session 2

Table G.3: Outcome using different threshold values for rat2 malware using algorithm 2
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thresh- total  total nr  total nr number FPR TPR ACC pro- all processes

old nr mali- above malicious cess

type  pro- cious thresh- above ids

cesses pro- old threshold
cesses
mean 213 20 20 0 0.104 0 0.812 4; 24; 34; 51; 53; 65; 95; 111; 124; 125; 161; 164; 187;
189; 192; 194; 199; 202; 206; 207
q0.75 213 20 41 1 0.207 0.050 0.723 60 1; 2; 4; 24; 34; 51; 52; 53; 60; 65; 69; 91; 94; 95; 96; 97;

101; 105; 111; 116; 124; 125; 141; 160; 161; 164; 165;
171; 187; 188; 189; 190; 191; 192; 193; 194; 195; 199;
202; 206; 207
q0.8 213 20 33 0 0171 0  0.751 15 2; 4; 24; 34; 51; 52; 53; 65; 69; 95; 96; 97; 101; 111;
124; 125; 141; 160; 161; 164; 165; 187; 188; 189; 190;
192; 193; 194; 199; 202; 206; 207

q0.85 213 20 22 0 0114 0  0.803 4; 24; 34; 51; 53; 65; 95; 96; 111; 124; 125; 161; 164;
187; 189; 190; 192; 194; 199; 202; 206; 207
q0.9 213 20 9 0 0.047 0  0.864 4; 24; 34; 111; 161; 192; 194; 202; 206

q0.95 213 20 3 0 0.016 0 0.892 4; 111; 206
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G.4 Zeus malware session 1

Table G.4: Outcome using different threshold values for zeusl malware using algorithm 2

thresh- total total nr total nr number FPR TPR ACC pro- all processes
old nr malicious above malicious cess
type pro- processes  thresh- above ids
cesses old threshold
mean 156 5 10 0 0.066 0 0.904 4; 38; 40; 80; 107; 111; 112; 113; 134; 147
q0.75 156 5 34 0 0.225 0 0.750 1; 2; 4; 38; 39; 40; 41; 42; 43; 75; 80; 81; 82; 83;

84; 92; 107; 111; 112; 113; 117; 118; 121; 127; 130;
132; 134; 135; 140; 142; 147; 150; 152; 153

q0.8 156 5 21 0 0.139 0 0.833 4; 38; 39; 40; 41; 43; 75; 80; 81; 82; 107; 111; 112;
113; 118; 121; 127; 134; 135; 147; 150
q0.85 156 5 14 0 0.093 0 0.878 4; 38; 40; 41; 80; 107; 111; 112; 113; 118; 127; 134;
147; 150
q0.9 156 5 8 0 0.053 0 0.917 4; 38; 40; 107; 111; 112; 113; 147
q0.95 156 5 4 0 0.026 0 0.942 4; 111; 112; 113
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G.5 Zeus malware session 2

Table G.5: Outcome using different threshold values for zeus2 malware using algorithm 2

thresh- total total nr  total nr number FPR TPR ACC pro- all processes

old nr mali- above malicious cess

type  pro- cious thresh- above ids

cesses  processes old threshold
mean 191 2 20 0 0.106 0.885 4; 36; 38; 53; 54; 79; 80; 112; 113; 114; 116; 117; 118;
119; 120; 123; 129; 130; 154; 160

q0.75 191 2 37 0 0.196 0.796 1; 4; 36; 37; 38; 40; 53; 54; 59; 79; 80; 81; 82; 92; 109;
112; 113; 114; 115; 116; 117; 118; 119; 120; 121; 123;
127; 129; 130; 139; 140; 154; 160; 164; 167; 176; 188

q0.8 191 2 30 0 0.159 0.832 4; 36; 37; 38; 53; 54; 79; 80; 81; 82; 112; 113; 114;
115; 116; 117; 118; 119; 120; 121; 123; 127; 129; 130;

139; 140; 154; 160; 164; 167
q0.85 191 2 22 0 0.116 0.874 4; 36; 38; 53; 54; 79; 80; 81; 112; 113; 114; 116; 117;
118; 119; 120; 123; 129; 130; 140; 154; 160
q0.9 191 2 12 0 0.063 0.927 4; 36; 38; 112; 113; 114; 116; 117; 119; 123; 130; 154
q0.95 191 2 5 0 0.026 0.963 4; 36; 112; 113; 114
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Evaluation Algorithm 3




H.1 Banking malware

Table H.1: Outcome using different threshold values for bank malware using algorithm d3

thresh-total  total nr total number FPR TPR ACC process ids all processes
old nr mali- nr malicious
type  pro- cious above above

cesses pro- thresh-  threshold

cesses old
mean 161 12 18 7 0.074 0.583 0.901 116; 117; 120; 4; 27; 73; 74; 113; 116; 117; 119; 120; 122;
122; 124; 125; 124; 125; 126; 135; 143; 146; 153; 159
126

q0.75 161 12 35 11 0.161 0917 0.845 111; 112; 116;  1; 2; 4; 13; 27; 58; 65; 73; 74; 75; 76; 90; 111;

117; 118; 120;  112; 113; 116; 117; 118; 119; 120; 121; 122;
121; 122; 124;  124; 125; 126; 131; 134; 135; 143; 146; 150;

125; 126 153; 154; 157; 159
q0.8 161 12 27 8 0.128 0.667 0.857 111; 116; 117;  1; 2; 4; 27; 65; 73; 74; 76; 90; 111; 113; 116
120; 122; 124;  117; 119; 120; 122; 124; 125; 126; 135; 143;
125; 126 146; 150; 153; 154; 157; 159
q0.85 161 12 21 8 0.087 0.667 0.894 111;116; 117;  4; 27; 73; 74; 111; 113; 116; 117; 119; 120;
120; 122; 124;  122; 124; 125; 126; 135; 143; 146; 150; 153;
125; 126 154; 159
q0.9 161 12 13 3 0.067 0.250 0.882  116; 120; 122  4; 27; 73; 74; 113; 116; 119; 120; 122; 135;
143; 153; 159

q0.95 161 12 3 1 0.013 0.083 0.919 120 4; 120; 135

TH

HYVMWIVIN DONDINVI

661



H.2 Rat malware session 1

Table H.2: Outcome using different threshold values for ratl malware using algorithm 3

thresh-total total nr  total number FPR TPR ACC process ids all processes

old nr mali- nr malicious

type pro- cious above above

cesses  pro- thresh- threshold
cesses old
mean 224 20 18 1 0.083 0.050 0.839 167 4; 43; 56; 57; 95; 109; 111; 124; 159; 167; 187,
188; 191; 192; 204; 203; 208; 222

q0.75 224 20 40 10 0.147 0.500 0.821 167; 171; 1; 4; 26; 27; 43; 56; 57; 72; 86; 95; 97; 102; 107;
173; 175; 109; 111; 115; 120; 122; 123; 124; 159; 167; 171;
177; 179; 173; 175; 177; 179; 181; 183; 185; 186; 187; 188;
181; 183; 191; 192; 201; 204; 203; 208; 222
185; 186

q0.8 224 20 27 2 0.123 0.100 0.808 167; 186 1; 4; 26; 43; 56; 57; 86; 95; 109; 111; 115; 120;

122; 123; 124; 159; 167; 186; 187; 188; 191; 192;
201; 204; 203; 208; 222
q0.85 224 20 23 1 0.108 0.050 0.817 167 1; 4; 43; 56; 57; 95; 109; 111; 120; 122; 123; 124;
159; 167; 187; 188; 191; 192; 201; 204; 203; 208;
222
q0.9 224 20 16 1 0.074 0.050 0.848 167 4; 43; 56; 57; 95; 109; 111; 124; 159; 167; 187,
188; 192; 204; 203; 208
q0.95 224 20 9 1 0.039 0.050 0.879 167 4; 95; 109; 111; 159; 167; 188; 192; 204
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H.3 Rat malware session 2

Table H.3: Outcome using different threshold values for rat2 malware using algorithm 3

thresh-total total nr  total number FPR TPR ACC process all processes
old nr mali- nr malicious ids
type pro- cious above above
cesses  pro- thresh- threshold
cesses old
mean 213 20 28 0 0.145 0 0.775 2; 4; 24; 34; 51; 52; 53; 65; 95; 96; 97; 111; 124; 141,
160; 161; 164; 171; 187; 189; 190; 191; 192; 193; 194
202; 206; 207
q0.75 213 20 47 8 0.202 0.400 0.761 60; 72; 1; 2; 4; 20; 24; 34; 51; 52; 53; 60; 65; 69; 72; 74; 76;
74; 76; 80; 82; 84; 85; 91; 94; 95; 96; 97; 101; 111; 114; 116;
80; 82; 124; 125; 141; 160; 161; 164; 165; 171; 187; 188; 189;
84; 85 190; 191; 192; 193; 194; 202; 206; 207
q0.8 213 20 38 0 0.197 0 0.728 1; 2; 4; 24; 34; 51; 52; 53; 65; 69; 91; 94; 95; 96; 97;
101; 111; 114; 116; 124; 125; 141; 160; 161; 164; 165;
171; 187; 188; 189; 190; 191; 192; 193; 194; 202; 206;
207
q0.85 213 20 25 0 0.130 0 0.789 2; 4; 24; 34; 51; 52; 53; 95; 96; 97; 111; 124; 141; 160;
161; 164; 187; 189; 190; 192; 193; 194; 202; 206; 207
q0.9 213 20 11 0 0.057 0 0.854 4; 24; 34; 51; 111; 161; 187; 192; 194; 202; 206
q0.95 213 20 4 0 0.021 0 0.887 4; 24; 111; 161
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H.4 Zeus malware session 1

Table H.4: Outcome using different threshold values for zeusl malware using algorithm 3

02
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thresh- total total nr total nr number FPR TPR ACC pro- all processes
old nr malicious above malicious cess
type pro- processes  thresh- above ids
cesses old threshold
mean 156 5 12 0 0.079 0 0.891 4; 38; 41; 80; 81; 82; 107; 111; 113; 121; 134; 147
q0.75 156 5 35 0 0.232 0 0.744 1; 2; 4; 12; 38; 39; 41; 42; 43; 73; 75; 80; 81; 82; 83;

84; 91; 97; 107; 111; 112; 113; 117; 118; 121; 127;
130; 132; 134; 135; 140; 141; 147; 150; 152

q0.8 156 5 26 0 0172 0  0.801 2; 4; 38; 39; 41; 42; 43; 80; 81; 82; 83; 84; 107; 111;
112; 113; 117; 121; 127; 130; 132; 134; 140; 147;
150; 152
q0.85 156 5 19 0 0126 0  0.846 4; 38; 39; 41; 43; 80; 81; 82; 83; 84; 107; 111; 113
121; 127; 134; 140; 147; 150
q0.9 156 5 8 0 0.053 0  0.917 4; 38; 41; 80; 107; 111; 113; 147
q0.95 156 5 5 0 0033 0 0936 4; 107; 111; 113; 147
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H.5 Zeus malware session 2

Table H.5: Outcome using different threshold values for zeus2 malware using algorithm 3

thresh- total  total nr  total nr number FPR TPR ACC pro- all processes
old nr mali- above malicious cess
type  pro- cious thresh- above ids
cesses pro- old threshold
cesses
mean 191 2 19 0 0.101 0.890 4; 79: 80; 81; 112; 114; 115; 116; 117; 118; 119; 120;
123; 129; 130; 140; 154; 160; 164
q0.75 191 2 38 0 0.201 0.791 1; 4; 26; 36; 37; 40; 59; 79; 80; 81; 82; 85; 92; 112;
114; 115; 116; 117; 118; 119; 120; 121; 123; 127; 129;
130; 137; 139; 140; 148; 151; 154; 160; 163; 164; 167;
176; 187
q0.8 191 2 28 0 0.148 0.843 1; 4; 36; 37; 40; 59; 79; 80; 81; 82; 112; 114; 115; 116;
117; 118; 119; 120; 121; 123; 127; 129; 130; 139; 140;
154; 160; 164
q0.85 191 2 21 0 0.111 0.880 4; 79; 80; 81; 82; 112; 114; 115; 116; 117; 118; 119;
120; 121; 123; 129; 130; 140; 154; 160; 164
q0.9 191 3 13 0 0.069 0.921 4; 112; 114; 116; 117; 118; 119; 120; 123; 129; 130;
154; 160
q0.95 191 2 6 0 0.032 0.958 4; 112; 114; 116; 117; 130
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204 APPENDIX H. EVALUATION ALGORITHM 3

H.5.1 Malicious heatmaps

129

123

9998

Figure H.1: Part 1 from the heatmap from the banking malware with the malicious processes

With the following column order: Registry, process create, thread create, ob, module load,
filesystem



H.5. ZEUS MALWARE SESSION 2
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Figure H.2: Part 2 from the heatmap from banking malware with the malicious processes

With the following column order:Registry, process create, thread create, ob, module load,
filesystem




206 APPENDIX H. EVALUATION ALGORITHM 3
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Figure H.3: Part 1 from the heatmap from rat session 1 with the malicious processes

With the following column order:process create, thread create, ob, registry, module load,
filesystem
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Figure H.4: Part 2 from the heatmap from rat session 1 with the malicious processes

With the following column order:process create, thread create, ob, registry, module load,
filesystem
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Figure H.5: Part 3 from the heatmap from rat session 1 with the malicious processes

With the following column order:process create, thread create, ob, registry, module load,
filesystem
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Figure H.6: Part 4 from the heatmap from rat session 1 with the malicious processes

With the following column order:process create, thread create, ob, registry, module load,
filesystem
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Figure H.7: Part 1 from the heatmap from rat session 2 with the malicious processes

With the following column order:process create, ob, filesystem, thread create, module load,
registry
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Figure H.8: Part 2 from the heatmap from rat session 2 with the malicious processes

With the following column order:process create, ob, filesystem, thread create, module load,
registry
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Figure H.9: Part 3 from the heatmap from rat session 2 with the malicious processes

With the following column order: process create, ob, filesystem, thread create, module load,
registry
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Figure H.10: Part 4 from the heatmap from rat session 2 with the malicious processes

With the following column order: process create, ob, filesystem, thread create, module load,
registry
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Figure H.11: Part 5 from the heatmap from from rat session 2 with the malicious processes

With the following column order: process create, ob, filesystem, thread create, module load,
registry
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Figure H.12: Part 1 from the heatmap from zeus session 1 with the malicious processes

With the following column order:process create, filesystem, registry, module load, thread cre-
ate, ob
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Figure H.13: Part 2 from the heatmap from zeus session 1 with the malicious processes

With the following column order: process create, filesystem, registry, module load, thread
create, ob
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Figure H.14: Part 1 from the heatmap from zeus session 2 with the malicious processes

process create, filesystem, registry, module load, thread create, ob
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Ranked malicious processes

The tables in this chapter show for every malware dataset and all three algorithms the process which
are marked malicious, the sum of the distances and if the process is really malicious. In every table
lines are drawn for each threshold type. Furthermore for every ranking the top five non-malicious are
taken and shown in which datasets the executable is present.

I.1  Algorithm 1: Ranked malicious marked processes
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[.L1. ALGORITHM 1: RANKED MALICIOUS MARKED PROCESSES
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Table I.1: Ranking of the processes based on the distance for banking malware using algorithm 1. The
first dark line shows the q95 border. All processes above this line are marked as malicious. The second

line is the q90, third the mean, fourth 85, the fifth 80 and the bottom line is q75.

unique ids distance sum malicious

1 4 23.489 No
2 135 21.236 No
3 120 7.946 Yes
4 27 5.383 No
5 119 4.587 No
6 143 4.584 No
7 153 4.438 No
8 159 4.007 No
9 73 3.600 No
10 122 3.293 Yes
11 113 2.770 No
12 74 2.471 No
13 116 2.378 Yes
14 111 1.613 Yes
15 126 1.426 Yes
16 124 1.338 Yes
17 125 1.013 Yes
18 146 0.987 No
19 150 0.968 No
20 117 0.960 Yes
21 76 0.938 No
22 75 0.922 No
23 1 0.755 No
24 154 0.692 No
25 90 0.480 No
26 157 0.435 No
27 2 0.422 No
28 121 0.407 Yes
29 65 0.402 No
30 118 0.399 Yes
31 58 0.289 No
32 112 0.265 Yes
33 13 0.238 No
34 131 0.183 No
35 134 0.151 No
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Table 1.2: The five highest ranked benign processes for banking malware using algorithm 1. Also
showing the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious

4 23.489 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
135 21.236 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2
27 5.383 No malware_rat_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
119 4.587 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
143 4.584 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
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Table I.3: Ranking of the processes based on the distance for rat session 1 using algorithm 1. The first
dark line shows the q95 border. All processes above this line are marked as malicious. The second line
is the 90, third the mean, fourth q85, the fifth q80 and the bottom line is q75.

unique ids distance sum malicious

1 4 18.626 No
2 109 10.674 No
3 111 8.652 No
4 95 7.347 No
5 204 6.634 No
6 167 4.996 Yes
7 192 4.535 No
8 188 4.051 No
9 159 3.804 No
10 124 3.709 No
11 43 2.562 No
12 56 1.429 No
13 208 1.386 No
14 122 1.315 No
15 123 1.266 No
16 57 1.130 No
17 203 1.126 No
18 102 1.095 No
19 191 0.927 No
20 187 0.896 No
21 201 0.830 No
22 222 0.789 No
23 1 0.720 No
24 120 0.662 No
25 27 0.656 No
26 72 0.590 No
27 115 0.494 No
28 86 0.394 No
29 26 0.361 No
30 107 0.328 No
31 186 0.272 Yes
32 171 0.267 Yes
33 173 0.267 Yes
34 175 0.267 Yes
35 177 0.267 Yes
36 179 0.267 Yes
37 181 0.267 Yes
38 185 0.267 Yes
39 183 0.264 Yes

40 97 0.230 No
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Table 1.4: The five highest ranked benign processes for rat session 1 using algorithm 1. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious
4 18.626 No malware_bank malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804

109 10.674 No malware_zeus_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804

111 8.652 No malware_zeus_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804

95 7.347 No malware_bank malware_rat_session2 malware_zeus_sessionl

malware_zeus_session2
204 6.634 No malware_bank malware_rat_session2 malware_zeus_sessionl

malware_zeus_session2
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Table I.5: Ranking of the processes based on the distance for rat session 2 using algorithm 1. The first
dark line shows the q95 border. All processes above this line are marked as malicious. The second line

is the 90, third 85, fourth the mean, the fifth q80 and the bottom line is q75.

unique ids distance sum malicious
1 4 20.393 No
2 111 8.395 No
3 161 4.538 No
4 206 4.142 No
5 194 3.791 No
6 193 3.480 No
7 24 3.464 No
8 95 3.126 No
9 191 2.780 No
10 207 2.615 No
11 192 2.438 No
12 34 2.156 No
13 141 1.750 No
14 189 1.711 No
15 51 1.640 No
16 202 1.639 No
17 190 1.632 No
18 187 1.488 No
19 97 1.361 No
20 171 1.361 No
21 96 1.360 No
22 164 1.162 No
23 53 1.048 No
24 65 0.941 No
25 52 0.939 No
26 160 0.927 No
27 2 0.802 No
28 101 0.795 No
29 1 0.740 No
30 124 0.700 No
31 165 0.662 No
32 125 0.584 No
33 188 0.533 No
34 69 0.485 No
35 91 0.379 No
36 94 0.348 No
37 116 0.342 No
38 114 0.337 No
39 60 0.313 Yes
40 20 0.287 No
41 84 0.253 Yes
42 80 0.252 Yes
43 82 0.252 Yes
44 72 0.252 Yes
45 74 0.252 Yes
46 85 0.252 Yes
47 76 0.218 Yes




224 APPENDIX I. RANKED MALICIOUS PROCESSES

Table 1.6: The five highest ranked benign processes for rat session 2 using algorithm 1. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious

4 20.393 No malware_bank malware_rat_sessionl malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804

111 8.395 No malware_bank malware_rat_sessionl malware_zeus_sessionl
malware_zeus_session2

161 4.538 No no

206 4.142 No no

194 3.791 No zz_-win8_1604 zz_win8_1704
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Table 1.7: Ranking of the processes based on the distance for zeus session 1 using algorithm 1. The
first dark line shows the q95 border. All processes above this line are marked as malicious. The second
line is the q90, third the mean, fourth 85, the fifth 80 and the bottom line is q75.

unique ids distance sum malicious

1 4 23.482 No
2 111 14.668 No
3 113 12.345 No
4 147 4.503 No
5 107 4.418 No
6 81 3.265 No
7 80 3.196 No
8 42 2.784 No
9 38 2.616 No
10 82 2.035 No
11 41 1.690 No
12 132 1.507 No
13 141 1.484 No
14 83 1.387 No
15 140 1.375 No
16 134 1.341 No
17 91 1.121 No
18 121 1.023 No
19 43 1.002 No
20 127 0.980 No
21 150 0.841 No
22 112 0.831 No
23 84 0.799 No
24 39 0.670 No
25 1 0.669 No
26 2 0.553 No
27 117 0.506 No
28 75 0.405 No
29 152 0.389 No
30 130 0.381 No
31 97 0.310 No
32 73 0.301 No
33 135 0.291 No
34 118 0.273 No

35 12 0.263 No
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Table 1.8: The five highest ranked benign processes for zeus session 1 using algorithm 1. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious
4 23.482 No malware_bank malware_rat_sessionl malware_rat_session2
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
111 14.668 No malware_rat_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804
113 12.345 No malware_rat_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804
147 4.503 No malware_bank malware_rat_sessionl malware_rat_session2
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
107 4.418 No malware_bank malware_rat_sessionl malware_rat_session2

malware_zeus_session2
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Table 1.9: Ranking of the processes based on the distance for zeus session 2 using algorithm 1. The
first dark line shows the q95 border. All processes above this line are marked as malicious. The second
line is the q90, third the mean, fourth 85, the fifth q80 and the bottom line is q75.

unique ids  distance sum malicious

1 4 23.482 No
2 112 14.718 No
3 114 12.306 No
4 116 5.340 No
) 130 5.331 No
6 117 3.692 No
7 82 3.517 No
8 79 3.310 No
9 119 3.250 No
10 163 3.092 No
11 154 2.985 No
12 81 2.970 No
13 123 2.889 No
14 80 2.786 No
15 118 2.670 No
16 40 2.652 No
17 36 2.550 No
18 120 2.342 No
19 160 2.091 No
20 129 2.019 No
21 140 1.845 No
22 115 1.619 No
23 164 1.196 No
24 99 0.957 No
25 139 0.930 No
26 121 0.858 No
27 37 0.781 No
28 1 0.683 No
29 137 0.679 No
30 127 0.676 No
31 151 0.550 No
32 167 0.548 No
33 92 0.533 No
34 26 0.518 No
35 176 0.509 No
36 85 0.453 No
37 187 0.432 No

38 148 0.409 No
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Table 1.10: The five highest ranked benign processes for zeus session 2 using algorithm 1. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious
4 23.482 No malware_bank malware_rat_sessionl malware_rat_session2
malware_zeus_sessionl zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
112 14.718 No malware_rat_sessionl malware_zeus_sessionl zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804
114 12.306 No malware_rat_sessionl malware_zeus_sessionl zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804
116 5.340 No malware_bank malware_rat_sessionl malware_rat_session?2
malware_zeus_sessionl zz_win8_1604_avond zz_win8_1604 zz_win8_1704
130 5.331 No malware_bank malware_rat_sessionl malware_rat_session2

malware_zeus_sessionl zz_win8_1604_avond zz_win8_1604 zz_win8_1704
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I.2 Algorithm 2: Ranked malicious marked processes

Table I.11: Ranking of the processes based on the distance for banking malware using algorithm 2.
The first dark line shows the q95 border. All processes above this line are marked as malicious. The

second line is the q90, third ¢85, fourth the mean, the fifth q80 and the bottom line is q75.

unique ids  distance sum malicious
1 4 32.514 No
2 135 24.814 No
3 159 10.431 No
4 27 9.995 No
5 153 9.905 No
6 120 7.946 Yes
7 119 7.285 No
8 143 7.281 No
9 131 7.088 No
10 111 5.875 Yes
11 84 4.023 No
12 113 3.646 No
13 73 3.600 No
14 122 3.293 Yes
15 74 2471 No
16 116 2.378 Yes
17 146 2.041 No
18 154 1.523 No
19 126 1.426 Yes
20 124 1.338 Yes
21 117 1.079 Yes
22 125 1.013 Yes
23 150 0.968 No
24 76 0.938 No
25 1 0.934 No
26 65 0.501 No
27 157 0.482 No
28 90 0.480 No
29 147 0.451 No
30 2 0.422 No
31 118 0.399 Yes
32 134 0.304 No
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Table 1.12: The five highest ranked benign processes for banking malware using algorithm 2. Also
showing the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious
4 32.514 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
z7_win8_1804
135 24.814 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2
159 10.431 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl
malware_zeus_session?2
27 9.995 No malware_rat_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
153 9.905 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl

malware_zeus_session2
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Table 1.13: Ranking of the processes based on the distance for rat session 1 using algorithm 2. The
first dark line shows the q95 border. All processes above this line are marked as malicious. The second
line is the q90 and the mean, third q85, the fourth q80 and the bottom line is q75.

unique ids distance sum malicious

1 109 25.014 No
2 4 24.599 No
3 111 20.723 No
4 110 15.170 No
5 204 11.975 No
6 95 11.378 No
7 43 10.722 No
8 45 10.618 No
9 162 9.716 No
10 167 8.773 Yes
11 163 7.118 No
12 188 6.630 No
13 124 6.248 No
14 159 6.012 No
15 192 5.543 No
16 93 3.643 No
17 103 3.488 No
18 203 2.131 No
19 122 1.775 No
20 208 1.521 No
21 56 1.429 No
22 222 1.284 No
23 123 1.266 No
24 187 1.198 No
25 57 1.130 No
26 191 1.100 No
27 1 0.885 No
28 201 0.830 No
29 72 0.718 No
30 213 0.695 No
31 120 0.671 No
32 75 0.657 No
33 115 0.636 No
34 194 0.611 No
35 86 0.453 No
36 96 0.405 No
37 26 0.361 No
38 186 0.272 Yes
39 171 0.267 Yes
40 173 0.267 Yes
41 175 0.267 Yes
42 177 0.267 Yes
43 179 0.267 Yes
44 181 0.267 Yes
45 185 0.267 Yes

46 183 0.264 Yes
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Table 1.14: The five highest ranked benign processes for rat session 1 using algorithm 2. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious
109 25.014 No malware_zeus_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804
4 24.599 No malware_bank malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
111 20.723 No malware_zeus_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804
110 15.170 No malware_bank malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
204 11.975 No malware_bank malware_rat_session2 malware_zeus_sessionl

malware_zeus_session2
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Table 1.15: Ranking of the processes based on the distance for rat session 2 using algorithm 2. The
first dark line shows the q95 border. All processes above this line are marked as malicious. The second

line is the q90, third the mean, fourth q85, the fifth q80 and the bottom line is q75.

unique ids distance sum malicious
1 4 27.284 No
2 111 8.395 No
3 199 6.871 No
4 125 6.690 No
5 124 6.588 No
6 165 6.279 No
7 202 5.817 No
8 206 5.254 No
9 34 4.852 No
10 24 4.572 No
11 161 4.538 No
12 105 4.019 No
13 194 3.791 No
14 193 3.480 No
15 207 3.293 No
16 95 3.126 No
17 192 3.059 No
18 191 2.780 No
19 141 2.747 No
20 187 1.892 No
21 171 1.775 No
22 189 1.711 No
23 65 1.699 No
24 51 1.640 No
25 190 1.632 No
26 97 1.361 No
27 96 1.360 No
28 164 1.212 No
29 53 1.048 No
30 52 0.939 No
31 160 0.927 No
32 1 0.914 No
33 2 0.802 No
34 101 0.795 No
35 69 0.592 No
36 188 0.533 No
37 91 0.396 No
38 60 0.390 Yes
39 116 0.357 No
40 195 0.349 No
41 94 0.348 No
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Table 1.16: The five highest ranked benign processes for rat session 2 using algorithm 2. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious

4 27.284  No malware_bank malware_rat_sessionl malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_.1604 zz_win8_1704
zz_-win8_1804

111 8.395 No malware_bank malware_rat_sessionl malware_zeus_sessionl
malware_zeus_session2
199 6.871 No malware_bank malware_rat_sessionl malware_zeus_sessionl

malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
125 6.690 No malware_bank malware_rat_sessionl malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
124 6.588 No malware_bank malware_rat_sessionl malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604 zz_win8_1704 zz_win8_1804
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Table I.17: Ranking of the processes based on the distance for zeus session 1 using algorithm 2. The
first dark line shows the q95 border. All processes above this line are marked as malicious. The second
line is the q90, third the mean, fourth 85, the fifth 80 and the bottom line is q75.

unique ids distance sum malicious

1 4 32.503 No
2 111 29.827 No
3 113 21.907 No
4 112 15.990 No
) 40 10.839 No
6 38 10.514 No
7 107 7.764 No
8 147 7.242 No
9 118 6.929 No
10 134 6.744 No
11 135 6.643 No
12 92 3.523 No
13 81 3.265 No
14 80 3.196 No
15 42 2.784 No
16 132 2.092 No
17 82 2.035 No
18 41 1.690 No
19 127 1.543 No
20 83 1.387 No
21 140 1.375 No
22 121 1.246 No
23 150 1.206 No
24 43 1.002 No
25 1 0.810 No
26 84 0.799 No
27 39 0.779 No
28 75 0.729 No
29 142 0.719 No
30 117 0.669 No
31 2 0.553 No
32 153 0.473 No
33 152 0.407 No

34 130 0.381 No
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Table 1.18: The five highest ranked benign processes for zeus session 1 using algorithm 2. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious
4 32.503 No malware_bank malware_rat_sessionl malware_rat_session2
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
111 29.827  No malware_rat_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804
113 21.907 No malware_rat_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804
112 15.990 No malware_bank malware_rat_sessionl malware_rat_session2
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
40 10.839  No malware_rat_sessionl malware_zeus_session2 zz_win8_1604_avond

zz_-win8_1604 zz_win8_1704 zz_win8_1804
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Table 1.19: Ranking of the processes based on the distance for zeus session 2 using algorithm 2. The
first dark line shows the q95 border. All processes above this line are marked as malicious. The second
line is the q90, third the mean, fourth 85, the fifth q80 and the bottom line is q75.

unique ids  distance sum malicious

1 4 32.503 No
2 112 29.887 No
3 114 21.837 No
4 113 14.955 No
) 38 10.848 No
6 36 10.794 No
7 o4 7.169 No
8 93 7.166 No
9 116 5.355 No
10 130 5.331 No
11 117 3.810 No
12 82 3.517 No
13 79 3.310 No
14 119 3.274 No
15 154 2.988 No
16 81 2.970 No
17 123 2.939 No
18 80 2.786 No
19 118 2.670 No
20 40 2.652 No
21 120 2.342 No
22 160 2.091 No
23 129 2.019 No
24 140 1.845 No
25 115 1.619 No
26 164 1.206 No
27 99 1.143 No
28 37 0.930 No
29 139 0.930 No
30 121 0.892 No
31 109 0.860 No
32 1 0.830 No
33 127 0.795 No
34 167 0.699 No
35 92 0.651 No
36 176 0.597 No

37 188 0.596 No
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Table 1.20: The five highest ranked benign processes for zeus session 2 using algorithm 2. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious
4 32.503 No malware_bank malware_rat_sessionl malware_rat_session2
malware_zeus_sessionl zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
112 29.887 No malware_rat_sessionl malware_zeus_sessionl zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804
114 21.837 No malware_rat_sessionl malware_zeus_sessionl zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804
113 14.955 No malware_bank malware_rat_sessionl malware_rat_session2
malware_zeus_sessionl zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
38 10.848  No malware_rat_sessionl malware_zeus_sessionl zz_win8_1604_avond

zz_-win8_1604 zz_win8_1704 zz_win8_1804
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I.3 Algorithm 3: Ranked malicious marked processes

Table 1.21: Ranking of the processes based on the distance for banking malware using algorithm 3.
The first dark line shows the q95 border. All processes above this line are marked as malicious. The

second line is the q90, third the mean, fourth 85, the fifth q80 and the bottom line is q75.

unique ids  distance sum malicious

1 4 32.514 No
2 135 24.814 No
3 120 8.284 Yes
4 27 7.616 No
5 153 6.880 No
6 73 6.591 No
7 119 4.606 No
8 143 4.603 No
9 159 4.007 No
10 122 3.413 Yes
11 113 2.770 No
12 74 2.471 No
13 116 2.378 Yes
14 111 1.613 Yes
15 126 1.426 Yes
16 124 1.338 Yes
17 125 1.013 Yes
18 146 0.987 No
19 150 0.968 No
20 117 0.960 Yes
21 76 0.938 No
22 75 0.922 No
23 1 0.755 No
24 154 0.692 No
25 90 0.480 No
26 157 0.435 No
27 2 0.422 No
28 121 0.407 Yes
29 65 0.402 No
30 118 0.399 Yes
31 58 0.289 No
32 112 0.265 Yes
33 13 0.238 No
34 131 0.183 No
35 134 0.151 No
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Table 1.22: The five highest ranked benign processes for banking malware using algorithm 3. Also
showing the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious

4 32.514 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
z7_win8_1804
135 24.814 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2
27 7.616 No malware_rat_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804

153 6.880 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl
malware_zeus_session?2
73 6.591 No malware_rat_sessionl malware_rat_session2 malware_zeus_sessionl

malware_zeus_session2
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Table 1.23: Ranking of the processes based on the distance for rat session 1 using algorithm 3. The
first dark line shows the q95 border. All processes above this line are marked as malicious. The second
line is the q90, third the mean, fourth q85, the fifth q80 and the bottom line is q75.

unique ids distance sum malicious

1 4 24.599 No
2 109 12.328 No
3 95 10.132 No
4 204 10.043 No
5 111 8.817 No
6 192 5.445 No
7 167 5.266 Yes
8 188 4.051 No
9 159 3.804 No
10 124 3.709 No
11 43 2.653 No
12 56 1.429 No
13 208 1.386 No
14 122 1.315 No
15 123 1.266 No
16 57 1.130 No
17 203 1.126 No
18 102 1.095 No
19 191 0.927 No
20 187 0.896 No
21 201 0.830 No
22 222 0.789 No
23 1 0.720 No
24 120 0.662 No
25 27 0.656 No
26 72 0.590 No
27 115 0.494 No
28 86 0.394 No
29 26 0.361 No
30 107 0.328 No
31 186 0.272 Yes
32 171 0.267 Yes
33 173 0.267 Yes
34 175 0.267 Yes
35 177 0.267 Yes
36 179 0.267 Yes
37 181 0.267 Yes
38 185 0.267 Yes
39 183 0.264 Yes

40 97 0.230 No
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Table 1.24: The five highest ranked benign processes for rat session 1 using algorithm 3. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious
4 24.599 No malware_bank malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804
109 12.328 No malware_zeus_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804

95 10.132 No malware_bank malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2

204 10.043 No malware_bank malware_rat_session2 malware_zeus_sessionl
malware_zeus_session2

111 8.817 No malware_zeus_sessionl malware_zeus_session2 zz_win8_1604_avond

zz_-win8_1604 zz_win8_1704 zz_win8_1804
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Table 1.25: Ranking of the processes based on the distance for rat session 2 using algorithm 3. The
first dark line shows the q95 border. The second line is the q90, third ¢85, fourth is the mean, the
fifth q80 and the bottom line is q75.

unique ids distance sum malicious

1 4 27.284 No
2 111 11.374 No
3 191 4.836 No
4 161 4.538 No
5 206 4.142 No
6 194 3.791 No
7 189 3.699 No
8 193 3.660 No
9 24 3.468 No
10 95 3.126 No
11 207 2.679 No
12 192 2.438 No
13 34 2.156 No
14 141 1.750 No
15 51 1.640 No
16 202 1.639 No
17 190 1.632 No
18 187 1.488 No
19 97 1.361 No
20 171 1.361 No
21 96 1.360 No
22 164 1.162 No
23 53 1.048 No
24 65 0.941 No
25 52 0.939 No
26 160 0.927 No
27 2 0.802 No
28 101 0.795 No
29 1 0.740 No
30 124 0.700 No
31 165 0.662 No
32 125 0.584 No
33 188 0.533 No
34 69 0.485 No
35 91 0.379 No
36 94 0.348 No
37 116 0.342 No
38 114 0.337 No
39 60 0.313 Yes
40 20 0.287 No
41 84 0.253 Yes
42 80 0.252 Yes
43 82 0.252 Yes
44 72 0.252 Yes
45 74 0.252 Yes
46 85 0.252 Yes
47 76 0.218 Yes
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Table 1.26: The five highest ranked benign processes for rat session 2 using algorithm 3. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious

4 27.284 No malware_bank malware_rat_sessionl malware_zeus_sessionl
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804

111 11.374 No malware_bank malware_rat_sessionl malware_zeus_sessionl
malware_zeus_session2

191 4.836 No zz_win8_1604 zz_win8_1704

161 4.538 No no

206 4.142 No 1no
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Table 1.27: Ranking of the processes based on the distance for zeus session 1 using algorithm 3. The
first dark line shows the q95 border. All processes above this line are marked as malicious. The second
line is the q90, third the mean, fourth 85, the fifth 80 and the bottom line is q75.

unique ids distance sum malicious

1 4 32.503 No
2 111 15.913 No
3 113 15.806 No
4 80 6.663 No
5) 107 6.191 No
6 147 4.524 No
7 81 3.265 No
8 42 2.784 No
9 38 2.616 No
10 82 2.035 No
11 41 1.690 No
12 132 1.507 No
13 141 1.484 No
14 83 1.387 No
15 140 1.375 No
16 134 1.341 No
17 91 1.121 No
18 121 1.023 No
19 43 1.002 No
20 127 0.980 No
21 150 0.841 No
22 112 0.831 No
23 84 0.799 No
24 39 0.670 No
25 1 0.669 No
26 2 0.553 No
27 117 0.506 No
28 75 0.405 No
29 152 0.389 No
30 130 0.381 No
31 97 0.310 No
32 73 0.301 No
33 135 0.291 No
34 118 0.273 No

35 12 0.263 No
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Table 1.28: The five highest ranked benign processes for zeus session 1 using algorithm 3. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious
4 32.503 No malware_bank malware_rat_sessionl malware_rat_session2
malware_zeus_session2 zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804

111 15.913 No malware_rat_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804

113 15.806 No malware_rat_sessionl malware_zeus_session2 zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804

80 6.663 No malware_bank malware_rat_sessionl malware_rat_session?2

malware_zeus_session2
107 6.191 No malware_bank malware_rat_sessionl malware_rat_session2

malware_zeus_session2
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Table 1.29: Ranking of the processes based on the distance for zeus session 2 using algorithm 3. The
first dark line shows the q95 border. All processes above this line are marked as malicious. The second
line is the q90, third the mean, fourth 85, the fifth q80 and the bottom line is q75.

unique ids  distance sum malicious

1 4 32.503 No
2 112 15.942 No
3 114 15.749 No
4 79 6.511 No
) 130 5.498 No
6 116 5.462 No
7 117 3.763 No
8 82 3.637 No
9 119 3.250 No
10 163 3.092 No
11 154 2.985 No
12 81 2.970 No
13 123 2.889 No
14 80 2.786 No
15 36 2.698 No
16 118 2.670 No
17 40 2.652 No
18 120 2.342 No
19 160 2.091 No
20 129 2.019 No
21 140 1.845 No
22 115 1.619 No
23 164 1.196 No
24 99 0.957 No
25 139 0.930 No
26 121 0.858 No
27 37 0.781 No
28 1 0.683 No
29 137 0.679 No
30 127 0.676 No
31 151 0.550 No
32 167 0.548 No
33 92 0.533 No
34 26 0.518 No
35 176 0.509 No
36 85 0.453 No
37 187 0.432 No

38 148 0.409 No
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Table 1.30: The five highest ranked benign processes for zeus session 2 using algorithm 3. Also showing
the clean datasets in which the executable is present.

unique  dis- ma- dfs
ids tance li-
sum cious
4 32.503 No malware_bank malware_rat_sessionl malware_rat_session2
malware_zeus_sessionl zz_win8_1604_avond zz_win8_1604 zz_win8_1704
zz_win8_1804

112 15.942 No malware_rat_sessionl malware_zeus_sessionl zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804

114 15.749 No malware_rat_sessionl malware_zeus_sessionl zz_win8_1604_avond
zz_win8_1604 zz_win8_1704 zz_win8_1804

79 6.511 No malware_bank malware_rat_sessionl malware_rat_session?2

malware_zeus_session 1
130 5.498 No malware_bank malware_rat_sessionl malware_rat_session2

malware_zeus_sessionl zz_win8_1604_avond zz_win8_1604 zz_win8_1704
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Algorithm 3: Process trees



Figure J.1: The process tree of the banking malware dataset set showing the malicious marked process ids, using the 75% quantile as threshold,
with a red label.



Figure J.2: The process tree of the rat session 1 malware dataset set showing the malicious marked process ids, using the 75% quantile as
threshold, with a red label.



Figure J.3: The process tree of the rat session 2 malware dataset set showing the malicious marked process ids, using the 75% quantile as
threshold, with a red label.



Figure J.4: The process tree of the zeus session 1 malware dataset set showing the malicious marked process ids, using the 75% quantile as
threshold, with a red label.



Figure J.5: The process tree of the zeus session 1 malware dataset set showing the malicious marked process ids, using the 75% quantile as
threshold, with a red label.



