J Optim Theory Appl (2008) 138: 341-359
DOI 10.1007/s10957-008-9389-z

A Class of Large-Update and Small-Update
Primal-Dual Interior-Point Algorithms for Linear
Optimization

Y.Q. Bai - G. Lesaja - C. Roos - G.Q. Wang -
M. El Ghami

Published online: 7 May 2008
© Springer Science+Business Media, LLC 2008

Abstract In this paper we present a class of polynomial primal-dual interior-point al-
gorithms for linear optimization based on a new class of kernel functions. This class
is fairly general and includes the classical logarithmic function, the prototype self-
regular function, and non-self-regular kernel functions as special cases. The analy-
sis of the algorithms in the paper follows the same line of arguments as in Bai et
al. (SIAM J. Optim. 15:101-128, 2004), where a variety of non-self-regular kernel
functions were considered including the ones with linear and quadratic growth terms.
However, the important case when the growth term is between linear and quadratic
was not considered. The goal of this paper is to introduce such class of kernel func-
tions and to show that the interior-point methods based on these functions have fa-
vorable complexity results. They match the currently best known iteration bounds
for the prototype self-regular function with quadratic growth term, the simple non-
self-regular function with linear growth term, and the classical logarithmic kernel

Communicated by F.A. Potra.

This research is partially supported by the grant of National Science Foundation of China 10771133
and the Program of Shanghai Pujiang 06PJ14039.

Y.Q. Bai - G.Q. Wang
Department of Mathematics, Shanghai University, Shanghai, 200444, China

G. Lesaja (X))

Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460-8093,
USA

e-mail: goran@GeorgiaSouthern.edu

C. Roos
Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of

Technology, P.O. Box 5031, 2600 GA Delft, Netherlands

M. El Ghami
Department of Computer Science, University of Bergen, Bergen, Norway

@ Springer


mailto:goran@GeorgiaSouthern.edu

342 J Optim Theory Appl (2008) 138: 341-359

function. In order to achieve these complexity results, several new arguments had to
be used.

Keywords Linear optimization - Interior-point methods - Primal-dual methods -
Complexity - Kernel functions

1 Introduction

We consider the linear optimization (LO) problem in the standard form
(P) min{cTx:Ax =b,x >0},
where A € R™*" (rank(A) =m), b € R", ¢ € R", and its dual problem
(D) max{bTy : ATy +s=c,5s >0}.

We assume that both (P) and (D) satisfy the interior-point condition (IPC), that is,
there exists a point (xo, 9, yo) such that

Axozb, x0>0, ATyO+sO=c, so>0,

which means that the interiors of the feasible regions of (P) and (D) are not empty.
It is well known that the IPC can be assumed without loss of generality. In fact, we
may assume that x* = s = ¢, where e denotes the all-one vector. We will adopt this
assumption in the sequel. For details on the IPC and some other properties mentioned
below, for example, see [2].

Finding an optimal solution of (P) and (D) is equivalent to solving the following
system:

Ax=b, x>0, (1a)
Alyt+s=c¢, s>0, (1b)
xs =0, (Ic)

where the vector xs denotes the componentwise product of the vectors x and s. The
basic idea of primal-dual interior-point algorithms is to replace the third equation
in (1), which is commonly known as complementarity condition for (P) and (D), by
the parameterized equation xs = pe, with ;& > 0. Thus, we consider the system

Ax=b, x>0, (2a)
ATly+s=c, s>0, (2b)
Xs = je. (2¢)

Since rank(A) = m and the IPC holds, the parameterized system (2) has a unique
solution, for each u > 0. This solution is denoted as (x(u), y(u), s(n)) and we call
x(w) the p-center of (P) and (y(u), s(u)) the u-center of (D). The set of u-centers

@ Springer



J Optim Theory Appl (2008) 138: 341-359 343

(with p running through all positive real numbers) gives a homotopy path, which
is called the central path of (P) and (D). The relevance of the central path for LO
was first recognized by Sonnevend [3] and Megiddo [4]. The main property of the
central path can be summarized as follows. If u — 0, then the limit of the central
path exists and since the limit points satisfy the complementarity condition, the limit
yields optimal solutions for (P) and (D).

The limiting property of the central path mentioned above leads naturally to the
main idea of the iterative methods for solving (P) and (D): Trace the central path
while reducing p at each iteration. However, tracing the central path exactly would
be too costly and inefficient. It has been shown that it is sufficient to trace the central
path approximately while still maintaining good properties of the algorithms.

The general outline of the generic interior-point primal-dual method is as follows.
First, without loss of generality, it is assumed that a point (x (), y(u), s(«)) is known
for some positive parameter p. For example, due to the IPC assumption we may set
u =1, with x(1) = s(1) = e. Then u is decreased to puy := (1 — 0)u, for some
0 € (0, 1) and, redefining w := 4, we solve the following Newton system:

AAx =0, (3a)
ATAy +As =0, (3b)
SAX +XxAs = e —xs. 3o)

Because A has a full row rank, system (3) has a unique solution for any (x, s) > 0.
The solution (Ax, Ay, As) is known as the Newton direction and this direction is
used in all existing implementations of the primal-dual methods. By taking a step
along the search direction, one constructs a new triple (x4, y4, s4) with

X+ =x +oAx, y+=y+aAy, S =854+ aAs, @)

where o denotes the stepsize, o € (0, 1), which has to be chosen appropriately. If
necessary, we repeat the procedure until we find iterates that are in a certain neigh-
borhood of the p-center (x(u), y(u), s(u)). Then w is again reduced by the factor
1 — 6 and Newton’s method is applied targeting at the new p-centers, and so on. This
process is repeated until u is small enough, for example, until nu < €, where € is a
small positive number. At this stage we have found e-approximate solutions of (P)
and (D).

For the analysis of primal-dual interior-point algorithms it is convenient to asso-
ciate to any triple (x, s, u) with x > 0 primal feasible, s > 0 dual feasible and p > 0,
the vector

vi= |2 ©)
7
Note that the pair (x, s) coincides with the p-center (x (), s(w)) if and only if v = e.
The scaled search directions d, and d; are introduced according to
_ vAX _ vAS

dX : R dS : ] (6)
X S

@ Springer



344 J Optim Theory Appl (2008) 138: 341-359

where the operations are componentwise product and division. Then, the system (3)
can be rewritten as

Ad, =0, (7a)
AT Ay +d; =0, (7b)
dy +d; = v — v, (7¢)
where
|
A:==-Av7lx, V :=diag (v), X = diag (x).
o

Given a vector x, X = diag (x) represents a diagonal matrix where the components of
the vector x are placed on the main diagonal in their natural order. Note that d, and
dy are orthogonal vectors, since the vector d, belongs to the null space and d; to the
row space of the matrix A. Hence, dy =d; =0 if and only if v~! — v =0, which is
equivalent to v = e. We conclude that d, = d; = 0 holds if and only if the pair (x, s)
coincides with the p-center (x(u), s(u)). A crucial observation is that the right-hand
side v~! — v in the third equation of (7) equals minus the gradient of the function

" vl.z—l
W)=Y S— —logui |, 8)

i=1

where v; represents the ith component of the vector v. In other words,
dy +dg = —=VW¥.(v). C)

One may easily verify that V>W..(v) = diag (¢ + v~2). Since this matrix is positive
definite, W, (v) is strictly convex. Moreover, since VW, (e) = 0, it follows that W, (v)
attains its minimal value at v = e, with W.(e) = 0. Thus, it follows that W.(v) is
nonnegative everywhere and vanishes if and only if v = e, that is, if and only if
x = x(un) and s = s(u). Hence, we see that the u-centers x(u) and s(u) can be
characterized as the minimizer of the function W, (v).

The equation (9) is called the scaled centering equation. Its importance arises from
the fact that it essentially defines the search directions. The above observation regard-
ing the function W, (v) leads to an obvious generalization: we can replace W.(v) by
any strictly convex function W(v), v € R% |, such that W (v) is minimal at v = e and
W (e) = 0. Thus, the new scaled centering equation becomes

dy +ds = —-VV¥(v). (10)
Note that since d, and d; are orthogonal, we will still have d, = 0 and d; = 0 if and
only if v = e, that is, if and only if x = x(u) and s = s(u), as it should. Function

W (v) is called a scaled barrier function. Of course, different barrier functions lead to
different Newton directions.

@ Springer



J Optim Theory Appl (2008) 138: 341-359 345

To simplify matters we will restrict ourselves to the case where the barrier function
W (v) is separable with identical coordinate functions ¥ (v;). Thus,

W)=Y ¥, (11)

i=1

where ¥ (¢) : (0, +00) — [0, +00) is twice differentiable and attains its minimum at
t = 1, with ¥ (1) = 0. Following the terminology introduced in [5-7], we call the
univariate function ¥ (¢) the kernel function of the barrier function W (v). Obviously,
in the case

2

1pc(t): )

and V(1) = Y.(t), we have W (v) = W.(v), and then the new search direction co-
incides with the classical Newton direction for primal-dual methods. One may eas-
ily verify that ®.(x, s, u) := W.(v) is the ‘classical’ primal-dual logarithmic barrier
function. We call . (¢) the classical kernel function. Note that the term —log ¢ domi-
?—1

—logt, (12)

nates the behavior of this kernel function if # approaches zero, whereas the term
dominates the behavior of the kernel function if ¢ tends to infinity. We call the first
term the barrier term and the second term the growth term of the classical kernel
function.

The new search directions (Ax, Ay, As) are obtained by first solving the system
that consists of the first two equations in (7) and the scaled centering equation (10).
Once d, and d; are found we apply (6) to find Ax and As. They can also be obtained
directly by solving the following system:

AAx =0, (13a)
ATAy + As =0, (13b)
SAXx + xAs = —puvVW¥(v). (13c¢)

In principle, each kernel function gives rise to a primal-dual algorithm. The generic
form of this algorithm is shown in Fig. 1. The parameters 7, 6 and the stepsize « in the
algorithm should be tuned in such a way that the number of iterations required by the
algorithm is as small as possible. The specific default stepsize o will be discussed in
Sect. 3. Obviously, the resulting iteration bound will depend on the kernel function,
and our main task becomes to find a kernel function that minimizes the iteration
bound.

In the literature two types of methods are distinguished: small-update methods
and large-update methods, according to the value of the barrier-update parame-
ter 0. Large-update methods are characterized by the fact that 6 is a fixed con-
stant (6 € (0, 1)), independent of the dimension n of the problem, whereas small-
update methods use a value of 6 that depends of the dimension of the problem, with
0= O(ﬁ). The iteration bounds for large-update and small-update methods based

on the classical kernel function are O(nlog %) and O (Vnlog =), respectively.
The first contribution in the design and analysis of the primal-dual IPMs based on
the use of kernel functions different than the classical logarithmic kernel function (12)

@ Springer



346 J Optim Theory Appl (2008) 138: 341-359

Generic Primal-Dual Algorithm for LO

Step 1. Determine input parameters: a threshold parameter
T > 1, an accuracy parameter ¢ > 0, and a fixed
barrier update parameter 6, 0 <6 < 1.

Step2. Setx:=e,s:=e,u:=1.

Step 3. Until np < & perform the following steps:

Step 4. Calculate ;= (1 — ) and v := /%.

Step 5. Until W (v) < t perform the following steps:

Step 6. Calculate direction (Ax, Ay, As) by solving (13).

Step 7. Calculate stepsize «.

Step 8. Update x :=x + a¢Ax, s :=s5 +aAs,
yi=y+aAy.

Fig. 1 Generic algorithm

was presented in [7]. The recently published monograph [8] can be considered as an
extensive version of [7]. The kernel functions introduced and analyzed in [7, 8] are
so-called self-regular functions. The iteration bound of O (/s lognlog =) for large-
update methods was obtained, which is currently the best iteration bound known for
these type of methods and is a considerable improvement over the O (nlog Z) bound
for large-update methods based on the classical logarithmic barrier function.

Subsequently Bai et al. proposed IPMs for LO using classes of kernel functions
that are not self-regular. For some of the classes they managed to match the best
known iteration bounds obtained by using self-regular functions. The comprehensive
overview of these results can be found in [1].

Until recently almost all existing kernel functions considered in the literature have
had at a least quadratic growth term. The only exception has been the simple kernel
function with the linear growth term considered first in [9]. However, an important
question remained open, namely whether there exist a kernel function with a growth
term whose degree is between linear and quadratic, and which gives rise to an efficient
primal-dual IPM. This paper offers a positive answer to that question.

The proposed new class of kernel functions is

zP+1—1+t‘*f1—1
p+1 q—1

Ypq) = , t>0,pel0,1],q>1, (14)

|
g—1
—logt,t>0,pe€

where p is a growth parameter and g is a barrier parameter. Note that

Pl

—logt when g — 1. Thus, for ¢ = 1, we define ¥, ,(¢) = =S

[0, 1].
The class of kernel functions introduced above contains a few known kernel func-
tions:

@ Springer



J Optim Theory Appl (2008) 138: 341-359 347

e Forp=landg=1,v0@)=v.() = [27_1 —log¢, the classical logarithmic kernel
function, see [2].

e Forp=1landg > 1,y ()= tzT_l + 1L l;jTl , the prototype self-regular kernel func-
tion, see [8].

e Forp=0andg =2,y (t)=1t— % — 2, the kernel function with linear growth rate,
which from an algebraic point of view is the simplest kernel function, see [9].

It is worth mentioning that for 0 < p < 1 and ¢ > 1, ¥, 4(¢) is a non-self-regular
function. Our goal is to analyze the large-update and small-update primal-dual IPMs
based on ¥, 4(?), as given in (14), with the scaled barrier function defined by (11),
and of course with the intention to derive as good as possible iterations bounds.

The paper is organized as follows. In Sect. 2, we present some properties of the
new kernel function, as well as several properties of the barrier function based on
the kernel function. The estimate of the stepsize is discussed in Sect. 3. The iteration
bounds of the algorithm with large-update and small-updates, are derived in Sect. 4.
Finally, some concluding remarks follow in Sect. 5.

In addition to the notation already introduced, some additional notation will be
used throughout the paper. If x = (x1; x2; ...; x,) € R", then || x|| = vxT x denotes
the standard 2-norm of the vector x and xpj, denotes the smallest and xpy,« the largest
value of the components of x. Finally, if g(x) > 0 is a real valued function of a
real nonnegative variable, the notation g(x) = O(x) means that g(x) < cx for some
positive constant ¢ and g(x) = ®(x) means that c;x < g(x) < cax for two positive
constants ¢; and c».

2 Properties of the Kernel and Barrier Functions

In this section we discuss some properties of the new kernel function v (¢) defined
in (14) and the corresponding barrier function that will be used in the complexity
analysis of the algorithm. According to (14), if ¢ > 1, then the scaled barrier function
W (v) is given by

n n up+1 1 U-l_q 1
wv):Zw(vi):Z( FreRRE ) (15)

i=1 i=1 q-1

where 0 <p <1, g>1, ve R1 4 and v; are components of the vector v. In the
analysis of the algorithm, we also use the norm-based proximity measure 5(v) defined
by

1

1
§() =S IV¥ @)l = (16)

Since W (v) is strictly convex and attains its minimum value of zero at v = e, we have
Ue)=0 «<— fw)=0 <— v=e.

@ Springer



348 J Optim Theory Appl (2008) 138: 341-359

The derivatives of ¥ (¢) play a crucial role in our analysis. Thus, we write down
the first three derivatives:

v'(@t) =17 —174, (17a)
Yty = ptPt g1 (17b)
Y (1) = p(p— DtP~2 —q(g+ Dt 972, (17¢)

Note that these expressions are also valid in the limiting case, that is, if g = 1. It
is quite straightforward to verify the following:

y () =y'(1)=0, lim ¥ () = lim 4 (¢) = +oo. (18)

Moreover, from (17) we conclude that v (¢) is strictly convex and v” (¢) is monoton-
ically decreasing on the interval ¢ € (0, +00).

Several results stated below have been discussed in [1] and references therein. The
proofs that are simple modifications of the existing ones are omitted.

Lemma 2.1 Ift; > 0and t, > 0, then

1
v(Vnn) < E(W(ll) + v (12)).

Proof This result follows easily by using Lemma 2.1.2 in [8], which states that the
above inequality holds if and only if 3" (¢) + v/ (¢) > 0 for all ¢ > 0. Hence, since

" () + 9 (1) = t(ptpl + tq+1) 4P = 1

14

1 —
=pth + = +tp—t——(p+1)tp+(q Do,

the proof is complete. ]

Lemma 2.2 [ft > 1, then

~ﬂ@a—n<wm< q

2T -1

Proof If f(¢) = 2¢(t) — (t — DY'(t), then f'(r) = ¥'(t) — (¢t — Dy () and
(@)= —@ — Dy (@). Also f(1) =0 and f'(1) = 0. Since ¥’ (¢) < 0, it fol-
lows that if z > 1 then f”(r) > 0 whence f/(r) > 0 and f(¢) > 0. This implies the
first inequality. The second inequality follows from Taylor’s theorem and the fact that
y'()=p+q. O

The next lemma combines the results of Lemma 4.8 and Lemma 3.1 in [1] and is
stated without proof.

@ Springer



J Optim Theory Appl (2008) 138: 341-359 349

Lemma 2.3 Suppose that (1) = ¥ (t2), with t| < 1 < tr. The following statements
hold:

(1) One has ¥'(t1) <0, ¥'(t2) >0, and
—¥' (1) = ¥ (1) (19)
(i) If B > 1, then
Y (Bt1) < ¥ (Br); (20)
equality holds if and only if =1 0rty =1 = 1.
Lemma 2.4 [ft > 1, then
V0 =29 (Y (0.
Proof Defining f (1) = ¥/ (1)* — 24 (1)y" (), one has f(1) =0 and
F(@0=2¢"Oy" ) = 29" Oy (1) = 29 ()" (1) = =29 ()Y (1) > 0.

This proves the lemma. (]

Lemma 2.5 Let p(s) : [0, 00) — (0, 1] be the inverse function of—%l/f’(t)fort <1.
The following inequality holds:

p(s) > T (21)
(1+2s)4
Proof Since s = —%g{f’(t), we have
“2s=tFr —t71 = t79=1"+2s<1+42s.
Since t = p(s), this implies the lemma. [l

Lemma 2.6 Ift > 1and g >2 — p, then

t <14ty ).

Proof Defining f(t) =ty (t) — (t — )2, we have f()=0and f't) =y @) +
1y’ (1) — 2(t — 1). Moreover, it is clear that f'(1) =0 and

ffo=2¢")+ty" (1) —2=Q+pt’ +(g—2t71-2
>ptP +(q—2)t79 = p@t? —t79)>0.

The second inequality above is due to the fact that ¢ > 2 — p. Thus, we obtain #i (1) >
(t — 1), which implies the lemma. [l

The lemma below is important because it provides a base for obtaining very good
iterations bounds for both small-update and large-update algorithms.

@ Springer



350 J Optim Theory Appl (2008) 138: 341-359

Lemma 2.7 Let ¢ : [0, 00) — [1, 00) be the inverse function of ¥ (t) for t > 1. The
following inequalities hold:

1+ (p+ D) <) < 1+s5+s52 +2s. (22)

Moreover, if g > 2 — p, then

0(s) <145+ 52 +s5vs2+2s. (23)

Proof Since g > 1 and ¢t > 1, we have

t1’+‘—1+t1“1—1<ﬂ’+1—1
p+1 g—1 — p+1

s=y) =

Hence, the first inequality in (22) follows. The second inequality in (22) follows by
using the first inequality of Lemma 2.2,

1 1 B
s=vy@) > E(’ —Dy'(t) = 5(z — (P —179)

Lo 1)—1(, ! 2)
—5“”(‘; =\t 2

Hence, solving the following inequality:

2 —2(14s)t+1<0,

leads to
t=0(@)<1+s++s%+2s. (24)
Finally, let ¢ > 2 — p. By Lemma 2.6, one has
t <141y @) <1+ /1s.

Substitution of the upper bound for ¢ given by (24) leads to

0(s) <145+ 52 +s5vs2+2s.

This completes the proof of the lemma. (I
The theorem below provides a bound for 6(v) in terms of W (v) which will play
an important role in the analysis of the algorithm. The theorem is a special case of

Theorem 3.2 in [1] and is therefore stated without proof.

Theorem 2.1 The following inequality holds:

1
5(v) = EW(Q(‘I’(v)))- (25)

@ Springer



J Optim Theory Appl (2008) 138: 341-359 351

Corollary 2.1 If W (v) >t > 1, then

5(v) > é(%)) (26)
Proof Using Theorem 2.1 and the fact that W(v) > 7 > 1, we have
1 1
s(v) = EW(Q(‘IJ(U))) = 5((@(‘11(11)))” IO

1 » -1
z 5 (¥ @))" = (¥ @))).

Note that 7 — + is monotonically increasing in 7. Thus, by using the first inequality

in (22), we obtain

p+1
+1 _ T —
50 > 1 (e(W ()P I _1d+ @+ D¥w)r ] 1

2 o(¥(v) T2 (4 (p+ W)

e O

204 (p DY) 2 (B

which proves the theorem. (I

According to the algorithm, at the start of each inner iteration we have ¥ (v) >
T > 1. Therefore, the above corollary is very helpful for deriving the upper bound on
the number of inner iteration, which will be discussed in Sect. 4.

3 Analysis of the Algorithm
3.1 Growth Behavior of the Barrier Function at the Start of Outer Iteration

At the start of each outer iteration of the algorithm, just before the update of the
parameter p with the factor 1 — 6, we have W(v) < t. Due to the update of u the
vector v is divided by the factor 4/1 — 6, with 0 < 6 < 1, which in general leads
to an increase in the value of W(v). Then, during the subsequent inner iterations,
W (v) decreases until it passes the threshold 7 again. Hence, during the course of the
algorithm the largest values of W(v) occur just after the updates of w. That is why
in this subsection we derive an estimate for the effect of a p-update on the value of
W (v).

The following theorem yields an upper bound for W (v) after the p-update in terms
of the inverse function of yr(¢) for r > 1. It is equivalent to Theorem 3.2 in [1]. Since
the proof is not significantly affected by the introduction of the new kernel function,
it is omitted.

@ Springer



352 J Optim Theory Appl (2008) 138: 341-359

Theorem 3.1 Let o : [0, 00) — [1, 00) be defined as in Lemma 2.7. Then, for any
positive vector v and any B > 1, the following inequality holds:

W(v)
w(ﬂv)snw(ﬁg( . ))

Corollary 3.1 Ler0 <6 <1 and vy = ﬁ. If W(v) <1, then
o(%) ) <p+q)n< o(%) )2
Y < I < 1) . 27
(U+)_”1/f<m < > N 27

Proof With 8 > 1 and W (v) < 7 the first inequality follows from Theorem 3.1. The
second inequality follows by using Lemma 2.2 and "' (1) = pqﬂ. O

Lemma 3.1 We have the following upper bounds on the value of W (v4) after a -

update:
1+I+ /E)2+E
W(vy) <Li:=ny o ,oq>1, (28)
and

n

J1=0 '

1+\/5+;—§+3 D+
V(vy) < La:=ny

q=2—-p. (29

Proof At the start of each outer iteration we have W(v) < t. By Corollary 3.1, the
value of W (v) is bounded above by (27) after the update of parameter p to (1 — ).
Using two different upper bounds for o(s) stated in (22) and (23), respectively, we
obtain the bounds stated in the lemma. U

3.2 Determining the Stepsize

In this section, we determine a default stepsize which not only keeps the iterations
feasible but also gives rise to a sufficiently large decrease of W (v), as defined in (15),
in each inner iteration. Apart from the necessary adaptations to the present context
and some simplifications, the analysis below follows the same line of arguments that
were first used in [7], and later in [5, 6].

In each inner iteration we first compute the search direction (Ax, Ay, As) from
the system (13). After a stepsize o is determined the new iterate (x4, y4,s4), 1S
calculated by (4).

Recall that during an inner iteration the parameter u is fixed. Hence, after the step
in the direction (Ax, Ay, As) with the stepsize o, the new v-vector is given by

vy = [ (30)
"

@ Springer



J Optim Theory Appl (2008) 138: 341-359 353

Since
Ax dy X
xy=x|leta— )=x|leta—|=—(u-+oad,),
X v v
As dy K
sy=sleta— |)=sleta—)=—|v+ads),
s v v
xs:/wz,
we obtain

vi =/ (v +ady) (v + ady).

Next, we consider the decrease in W as a function of «. We define two functions

flo)=V(vy) — W (), (3D

and
Si(a) = %(‘P(v+adx)+‘lf(v+ads))—‘P(v)- (32)

Lemma 2.1 implies that

1
W(vy) =W (/ (v +ad)(v+ady) < S W+ ady) + V(v +ady)).
The above inequality shows that f(«) is an upper bound of f(«). Obviously,
f0) = f1(0)=0.

Taking the derivative with respect to o, we get

1 n
Flle) =2 Y (W' (i +adxi)dsi + ¥ (vi + adsi)dsi).
i=1

From the above equation and using (10), we obtain

/ 1 T 1 T 2
A0 = V@) (@ +di) = = VW ) VI) = ~250)°. (33)

Differentiating once again, we get
1 n
) =5 Y (" i +ada)dy; + " (v + adsi)d5) > 0, (34)
i=1

unless d, = d; = 0. It is worthwhile to point out that during an inner iteration x and
s are not both at the p-center since W(v) > t > 0, so we may conclude that f](«) is
strictly convex in «.

In what follows we state several lemmas that will be used in obtaining a suitable
lower bound on the stepsize «. They are variants of similar lemmas in [1, 6, 9] and are
stated without the proofs. Also, in the sequel we simplify the notation §(v) to just §.

@ Springer



354 J Optim Theory Appl (2008) 138: 341-359

Lemma 3.2 (Lemma 3.1 in [6]) The following inequality holds:
V(@) <267 (vmin — 208). (35)
Lemma 3.3 (Lemma 3.2 in [6]) If the stepsize o satisfies

— " (Umin — 208) + ¥ (Umin) < 26, (36)
then

fi(@) <0. 37)

Lemma 3.4 (Lemma 3.3 in [9]) The largest possible value of the stepsize « satisfying
(37) is given by

%= A (p(8) —
&= 5(0(8) = p(20)). (38)

Lemma 3.5 (Lemma 4.4 in [1]) Let p and @ be defined by (21) and (38) respectively.
The following inequality holds:

a>—1 (39)
V7 (p(25))

Theorem 3.2 We have

1
a>oi= . (40)

(p+a)(1+48)"T

Proof Using Lemma 3.5, (21) and the fact that 1" (¢) is monotonically decreasing
for r € (0, +00), we have

o> 71
RAED)
1

\%

l1-p

= 1+
p(1+48) 7 +q(1+48) 7
1

T (48T

=a,

\%

proving the theorem. O
We will use & as default stepsize.

@ Springer



J Optim Theory Appl (2008) 138: 341-359 355

3.3 Decrease of the Barrier Function During an Inner Iteration

Using the lower bound on the stepsize obtained in (40) we can obtain results on the
decrease of the barrier function.

Lemma 3.6 (Lemma 4.5 in [1]) If the stepsize « is such that o < &, then
fla) < —ad® 1)

Theorem 3.3 The following inequality holds:

pg—1)

fla) =< W (v)a@iD.

T 60(p +9)

Proof According to Lemma 3.6, if the stepsize « is such that ¢ < &, then f(x) <
—a8?. By (40), the default stepsize & satisfies @ < «, hence, the following upper
bound for f(«) is obtained f (&) < —as2. Using Corollary 2.1, after some elemen-
tary reductions, we obtain

82
fla) <— o
(p+q)(1+48) ¢
2p
n+1
- W (v)r+
- 2 P g+l
36(p+q)(1+5W(v)pl) 7
W( )p((ql};
< —————W(v)arFD,
60(p +q)

Here we used the fact that the first upper bound for f (&) is monotonically decreasing
in 8. Thus, the proof is complete. (]

4 Complexity of the Algorithm

We have all the ingredients to derive an upper bound on the number of iterations
needed by the algorithm to obtain an e-approximate solution for (P) and (D). In the
first section we derive an iteration bound for large-update methods and in the second
one we derive an iteration bound for small-update methods.

4.1 Iteration Bound for the Large-Update Method

We need to count how many inner iterations are required to return to the situation
where W (v) < t after a u-update. We denote the value of W (v) after the pu-update
as Wy, and the subsequent values in the same outer iteration are denoted as Wy,

k=1,2,...,K, where K denotes the total number of inner iterations in the outer

@ Springer



356 J Optim Theory Appl (2008) 138: 341-359

iteration. By using (28) in Lemma 3.1, we have

I+I+ /E2+E

Yo <n
o=nv N

p+1
Since ¥ (1) < ’pp“*l when r>1,and 1 — (1 — 9)% < 0, after some elementary

+1
O+ (p+Drt+np+1)/(5)2+E
<n T+n m " @)

reductions we obtain
\IIO - p+l
(p+DhHA—-0)7

Now, Theorem 3.3 leads to

Wi < W — B, k=0,1,...,K —1, (43)

where 8 = m and y = 7 (” p"fl). Using Lemma A.3, (42) and (43) we obtain the

following upper bound on the number K of inner iterations.
Lemma 4.1 The following inequality holds:

_rtq
no+(p+Hr+np+ l)m 7D .

(p+ D1 -0

K <60g(p+1)

Now, we can derive an upper bound on the total number of iterations needed by
the large-update version of the algorithm in Fig. 1.

Theorem 4.1 Given that 6 = ©(1) and © = O(n), which are characteristics of
the large-update methods, the generic algorithm described in Fig. 1 will obtain an

rtq
e-approximate solution of problems (P) and (D) in at most O(q n4@+D log 2) itera-
tions.

Proof It is well known that the number of outer iterations is bounded above by

Lo " (45)
1..m
0 ge

[2, Lemma I1.17, p. 116]. By multiplying this number and the upper bound for the
number of inner iterations per outer iteration (as given by Lemma 4.1), we get an
upper bound for the total number of iterations, namely

ptq

60g(p+1) (10 + (p+ DT +n(p+ 1 /(52 +2Z\ "
0 (p+ D1 —0)5

logZ.  (46)
€

@ Springer



J Optim Theory Appl (2008) 138: 341-359 357

Using that 8 = ©(1), and T = O (n), some elementary transformations reduces this
iteration bound to the bound in the theorem. [l

The obtained complexity result contains several previously known complexity re-
sults as special cases. When p =1 and ¢ > 1, the kernel function v (¢) becomes the
prototype self-regular function. If in addition, ¢ = logn the iteration bound reduces
to the best known bound for self-regular functions, O (y/nlognlog?). Letting ¢ = 1
and p = 1, the iteration bound becomes O (n log g) and v (¢) represents the classical
logarithmic kernel function. For ¢ =2 and p = 0, the iteration bound is the same as
the one obtained in [6] for the simple kernel function ¥ (¢) =¢ — % - 2.

4.2 Tteration Bound for the Small-Update Method

It is not hard to show that if the above analysis were used for small-update methods
the iteration bound would not be as good as it can be for these types of methods. We
need to use (29) in Lemma 3.1 to get the improved iteration bound, albeit that this
only holds for g > 2 — p. We then have

2 2
1+\/§+;—2+5 L+&
N

Vo < ny

T, 2 ot /72 | 2t
— 2 (1_9 b

where the second inequality is due to Lemma 2.2.
Using 1 — /1 -6 = # < 0, the above inequality can be simplified to

2

p+q 72 2 21
osm 0/n + Tttt — |- (47)

Following the same line of arguments as in the proof of Lemma 4.1, we obtain the
following lemma.

Lemma 4.2 If g > 2 — p, the following inequalities hold:

2(p+q)
q(p+1)

60 2 2
k<DIPHD g ot b D[+
n n n

<06 (48)

@ Springer



358 J Optim Theory Appl (2008) 138: 341-359

Given the upper bound on the number of outer iterations (45), as mentioned in the
previous section, the upper bound on the total number of iterations is

2(p+q)
q(p+1)

60 2 2.2
R (G DY S L i og=.  (49)
6(1—0) n n* on €

For small-update methods we have 6 = @(ﬁ) and T = O(1). After some ele-

mentary reductions one easily obtains that the iteration bound is O (g%/n log 7). We
summarize this result in the theorem below.

Theorem 4.2 Given that 6 = @(ﬁ) and Tt = O(1), which are characteristics of
the small-update methods, the generic algorithm described in the Fig. 1 will obtain
e-approximate solutions of (P) and (D) in at most O(QZﬁ log %) iterations.

5 Conclusions

In this paper we have analyzed large-update and small-update versions of the primal-
dual interior-point algorithm described in Fig. 1 that are based on the new class of
kernel functions (14). This class is fairly general and includes the classical logarith-
mic, the prototype self-regular and non-self-regular kernel functions as special cases.

The analysis of the algorithm in the paper follows the same line of arguments as
in [1], where a variety of non-self-regular kernel functions were considered, including
the ones with linear and quadratic growth terms. However, the important case, when
the growth term is between linear and quadratic, was not considered. In this paper,
we have introduced such a class of kernel functions and showed that IPMs based on
it have very good iteration bounds.

In order to achieve these complexity results several new arguments had to be
developed regarding the new class of kernel functions, most notable Lemma 2.7,
Lemma 2.5, and Corollary 2.1. Lemma 2.7 is essential in obtaining tight upper
bounds on the barrier function at the start of the outer iteration stated in Lemma 3.1.
Lemma 2.5 is important in obtaining a suitable lower bound on the stepsize stated in
the Theorem 3.2. Together with Corollary 2.1 it leads to the good upper bound on the
decrease of the barrier function during the inner iteration stated in the Theorem 3.3.

Combination of these results enabled us to obtain very good complexity results
for both small-update and large-update IPMs. Moreover, our iteration bounds match
the currently best known bounds. Examples are prototype self-regular function with a
quadratic growth term (see [2]), simple non-self-regular function with a linear growth
term (see [5]), and the classical logarithmic kernel function, (see [1] for an overview).

The above results do not necessarily imply that the numerical behavior of the
method will be competitive with existing methods. Computational studies have to
clarify this matter, and will be the subject of future research.

@ Springer



J Optim Theory Appl (2008) 138: 341-359 359

Appendix: Technical Lemmas

We list three simple technical lemmas because they are used in the complexity analy-
sis of the algorithms. The original proofs of these lemmas can be found in [5-8],
respectively.

Lemma A.1 (Lemma 20 in [5]) Ifa €[0,1]andt > —1, then (1 +1)* <1+ at.

Lemma A.2 (Lemma 12 in [7]) Let h(t) be a twice differentiable convex function
with h(0) =0, h'(0) < 0 and let h(t) attain its (global) minimum at t* > 0. If h” (¢)
is monotonically increasing for t € [0, t*], then

th’'(0
h(t) < 2( ), 0<t<rt*

Lemma A.3 (Proposition 2.2 in [8]) Let ty, t1, ..., tx be a sequence of positive num-
bers such that

o1 <t —pBl 7, k=0,1,...,K—1,

Y
where B >0and 0 <y <1.Then K < L};%J.

References

1. Bai, Y.Q., Ghami, M.E., Roos, C.: A comparative study of kernel functions for primal-dual interior-
point algorithms in linear optimization. SIAM J. Optim. 15, 101-128 (2004)

2. Roos, C., Terlaky, T., Vial, J.-P.: Interior-Point Methods for Linear Optimization. Springer, New York
(2006), 2nd edn. Theory and Algorithms for Linear Optimization Wiley, New York (1997)

3. Sonnevend, G.: An “analytic center” for polyhedrons and new classes of global algorithms for linear
(smooth, convex) programming. In: Prékopa, A., Szelezsan, J., Strazicky, B. (eds.) System Modeling
and Optimization. Proceedings of the 12th IFIP-Conference, Budapest, Hungary, September 1985.
Lecture Notes in Control and Information Sciences, vol. 84, pp. 866—876. Springer, Berlin (1986)

4. Megiddo, N.: Pathways to the optimal set in linear programming. In: Megiddo, N. (ed.) Progress in
Mathematical Programming: Interior Point and Related Methods, pp. 131-158. Springer, New York
(1989). Identical version in: Proceedings of the 6th Mathematical Programming Symposium of Japan,
Nagoya, Japan, pp. 1-35 (1986)

5. Bai, Y.Q., Ghami, M.E., Roos, C.: A new efficient large-update primal-dual interior-point method based
on a finite barrier. SIAM J. Optim. 13, 766-782 (2003)

6. Bai, Y.Q., Roos, C., Ghami, M.E.: A primal-dual interior-point method for linear optimization based
on a new proximity function. Optim. Methods Softw. 17, 985-1008 (2002)

7. Peng,J., Roos, C., Terlaky, T.: Self-regular functions and new search directions for linear and semidef-
inite optimization. Math. Program. 93, 129-171 (2002)

8. Peng, J., Roos, C., Terlaky, T.: Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algo-
rithms. Princeton University Press, Princeton (2002)

9. Bai, Y.Q., Roos, C.: A polynomial-time algorithm for linear optimization based on a new simple kernel
function. Optim. Methods Softw. 18, 631-646 (2003)

@ Springer



	A Class of Large-Update and Small-Update Primal-Dual Interior-Point Algorithms for Linear Optimization
	Abstract
	Introduction
	Properties of the Kernel and Barrier Functions
	Analysis of the Algorithm
	Growth Behavior of the Barrier Function at the Start of Outer Iteration
	Determining the Stepsize
	Decrease of the Barrier Function During an Inner Iteration

	Complexity of the Algorithm
	Iteration Bound for the Large-Update Method
	Iteration Bound for the Small-Update Method

	Conclusions
	Appendix: Technical Lemmas
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


