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This is the revised version of our previous report (Nov. 1999) that describes the theoretical background of the beta-release of the
POINT-SAND model. The POINT-SAND model is a computer code solving the relevant equations for momentum, turbulence and
sediment as a function of the vertical co-ordinate as well as in time for wave-current-turbulence-sediment interactions in free-
surface currents as well as in wave tunnels. The main purpose of the POINT-SAND model is being a research tool for sharing and
focussing ongoing research in The Netherlands on sand transport. Presently, we implemented just standard formulations for
settling velocity, hindered settling and bed erosion under sheet-flow conditions. The novel aspect of the code is the explicit
simulation of intra-wave sand transport subjected to wave-current-turbulence interactions for stationary non-breaking waves and
horizontal bed.

This revised version introduces and demonstrates a built-in test facility for checking the accuracy of the implemented sand-
transport processes, numerical solution procedures and physical as well as numerical parameter setting. This test facility is based
on the analytic solution for the depth-integrated flux of suspended sand in stationary turbulent flows.
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flume of monochromatic, bichromatic and random waves, mostly propagating on a turbulent shear flow. It is demonstrated that
the wave-current option of the POINT-SAND model is capable of simulation these laboratory flows.

Finally, this report is extended with our papers for the ICCE symposium (Sydney, 2000). One of these papers explores the
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Summary

Despite joint fundamental research in the EU and in The Netherlands (NCK) towards sand
transport in coastal waters, most of the basic numerical research tools remain dispersed.
The main reason is that research groups or individual researchers design their own
numerical tools for their particular sand-transport experiment. The so-called one-
dimensional vertical (1DV) models for intra-wave simulation of flow, turbulence and sand
transport are the most popular tools in this field of research. The various 1DV models are
validated only for particular applications and most of them rely on a single turbulence
model. Further, all known intra-wave 1DV numerical models are limited to so-called rigid-
lid wave tunnel experiments with horizontally oscillatory flows. On the other hand, there
are doubts whether these tunnel experiments represent correctly sand transport under
surface waves because of a vertical orbital velocity component and of wave-induced
streaming in boundary layers. In addition, most 1DV models are poorly documented which
hampers the transfer to, as well as independent repetitions of the simulations by others.

This state-of-affair frustrates the progress in fundamental research on sand transport
because the doubts and differences already begin with the hydrodynamic simulation of a
stationary channel flow even more so for oscillatory wave-tunnel experiments and then the
question about their applicability to real surface wave conditions. Finally, all this
accumulates in hydrodynamic deviations that are amplified strongly by the non-linear and
mostly empirical closures for sand transport.

The set-up of the POINT-SAND model, described in detail in this report, is our attempt to
consolidate the present state-of-art, to improve the research conditions by stimulating
mutual but independent comparisons as well as the exchange of new findings as
implemented in this code.

These objectives demand an intra-wave 1DV model that allows for simulating the
oscillatory flow in rigid-lid wave tunnel, in mobile free-surface wave channel as well as for
waves and (tidal) flows arbitrary angle in the field while using the same formulations for
sand transport. These aspects are incorporated in our POINT-SAND model. Here POINT
refers to conditions along the water depth at a single horizontal point and SAND to the on-
line coupled simulation of vertical and horizontal sand fluxes by multiple sand fractions.

The POINT-SAND model is designed for simulating sand transport in the following typical

flow configurations:

1. constant-flow channel (free surface);

2. confined wave tunnel (rigid lid);

3. field conditions without surface waves (wind-driven and tidal currents, varying water
depth, varying flow direction);

4. combined wave-current channel (free surface, waves parallel to flow); or

5. field conditions with surface waves (wave propagation irrespective of flow direction).

w | delfc hydraulics Summary- |
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‘ By its one-dimensional nature, the POINT-SAND model is dedicated to horizontally

| homogeneous flows over horizontal flat beds for periodic and non-breaking surface waves.
We recommend the implementation of existing models for the net effects on mass and
momentum transfer by breaking waves and by secondary or Langmuir circulation. For the
latter we recommend Radder’s model, see (Dingemans, 1999). Further, we recommend the
development of a model for turbulence generation over rippled beds for which so-called
Direct Numerical Simulations of the 3D turbulent flow at all relevant scales are available.

The modular set-up of the POINT-SAND model by series of subroutines, written in
FORTRAN?77, is dedicated to future users who desire to implement and validate their own
theories and closures. The model has extensive options for input, output and spectral
analysis and in this report various examples of input lists are given. A built-in test case
allows the user to verify that his adjustments are still in accordance with the few known
analytic solutions of sand transport in stationary turbulent channel flow. Currently, the
POINT SAND model is equipped with three popular turbulence models (k-g, k-L and
Davies’ version of the k-L model) all based on eddy viscosity concepts. The set-up of
subroutines allows for an easy implementation by the user of other turbulence closures
within the eddy viscosity concept.

The present report is extensive because it presents details of the solution procedures with
novel aspects regarding turbulence closures and particularly for simulating the wave-
current-turbulence interaction problems. For those readers who wish to avoid the
mathematics, we have written the overview report (Uittenbogaard, 2000). The latter report
includes a motivation of the model set-up, flow diagrams of the solution procedures, tables
of the modelled or explicitly simulated processes and a sensitivity analysis for the depth-
integrated sand flux to variations in input variables.

Of course, many different and thorough validations are required before the POINT-SAND
model will be accepted as a general tool. This report therefore presents many comparisons
against wave-tunnel and wave-channel experiments. Most hydrodynamic comparisons are
in good to excellent agreement with laboratory observations on currents, oscillatory flows
and surface waves. Further, the tidal or stationary current part of the hydrodynamic module
is the result of much experience at WL|Delft hydraulics in simulating tidal flows, seasonal
thermocline evolution as well as silt transport.

Instead, the comparison of the sand-transport simulations with the POINT-SAND model
against wave-tunnel observations is unsatisfactory and occasionally poor. We believe the
latter conclusions exhibit the known deficiencies in modelling intra-wave sand transport as
well as deficiencies in modelling turbulence in oscillatory flows and in high-concentration
sediment flows. These are some of the present research targets in this field for which we
hope the POINT-SAND model shall be of assistance.

wi | delft hydraulics Summary- 2



Numerical simulation of wave-current driven sand transport 72895.10 October, 2000

| Introduction

1.1 Aim and scope of present study

1DV unsteady models resolve the time- and depth-dependency of the velocity and
concentration fields. The development and refinement of 1DV unsteady models provides us
with further information about the complex processes of sediment suspension enabling a
further improvement of engineering transport models. As such the 1DV unsteady models not
only increase our knowledge about the sediment transport processes but provide us with a
way of improving transport descriptions in morphological models by: 1) parameterization of
the unsteady 1DV models, 2) by making an initial effort of tabulating the results of the intra-
wave model for a specific situation, after which the morphodynamic model is run at
relatively low costs, or 3) by finding analytical approximations to the governing equations
(Bosboom, 1999).

In Bosboom and Cloin (1998) the development of an intra-wave sediment transport model
is proposed. In the latter report, on the one hand, the presently available 1DV models are
described focusing on the underlying physics and their merits and shortcomings as found in
previously performed validation studies. On the other hand, necessary future developments
are identified and a sediment transport model is proposed including many of these features
and with a structure which facilitates cooperation on validation and future developments in
an NCK framework. As such it could be considered as a “national sand transport model”
acting as a ‘knowledge carrier’ (‘kennisdrager’). Besides, an important aspect of the
proposed model as compared to presently available models is the extension to field
situations by including e.g. irregular waves, wave-induced streaming (and thus the
treatment of vertical velocities) and the treatment of the complete water column.

Whereas the latter study can be seen as a first step by identifying the preferred
developments, the present study is a follow-up aiming at the actual development of a first
version of the intra-wave model (POINT-SAND model). The beta-release, on the floppy disk
attached to this report, is thought to be a first version serving as a base for discussion, future
extension and improvement. It does not pretend to be complete in the sense that all the
processes to be modelled as identified in Bosboom and Cloin (1998) are taken into account.
Also some numerical aspects can be improved in the future, especially regarding the
sediment transport module. Although this module functions well when solving horizontal
velocities only (as suffices for comparison with wave tunnel experiments), it does not yet
work well when solving vertical velocities (as is needed when considering orbital motions
generated by surface waves). In addition, calculated sediment concentrations still depend on
the chosen grid schematization.

A limited number of wave-current interaction and sediment transport experiments were
selected to compare with the model. The aim of this comparison was a first model diagnosis
rather than an extensive model validation.

WL | delft hydraulics -1
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The beta-release however, in combination with the present report serving as a theoretical
reference document is thought to provide a concrete basis for discussion in NCK-
framework on a multitude of aspects ranging from process description, numerical treatment
and model structure to in- and output requirements. It therewith aims at materialising the
Cupertino in NCK-framework with the ultimate aim to put an important step forward in the
process-based descriptions of sediment transport.

1.2 Process description

The directional point model (DPM/POINT-MUD; Winterwerp and Uittenbogaard, 1997) is
developed by joint funding of WL|Delft Hydraulics and by Rijkswaterstaat RIKZ. This
model is used as a basis for the development of the intra-wave sand transport model that we
call POINT-SAND model. The most far-reaching changes to the model structure result from
taking into account the non-linear convective terms in momentum equations for the orbital
velocity vector and the consistent coupling with a sand transport module.

The overview report (Uittenbogaard, 2000) describes with more words the physical aspects
of the POINT-SAND model. That report also presents an overview of the processes that are
solved explicitly, modelled or neglected. The following tables are taken from this overview

report.

Input/control by user:

RS s A

Numerical control parameters

output, time series and of harmonic analysis

Advection scheme for sediment 1* order upwind or 2™ order central scheme

Turbulence models

laminar; k-L, k-L (Davies’ version), k-€

Bed friction

partial slip: Chezy, Manning, roughness length
or no-slip with given viscosity.

Mean flow equations

1DV or orthogonal (u,v) components

Earth rotation

Coriolis parameter

Water depth

constant, time series or harmonics

Tidal current vector (outer loop)

depth-averaged or at given fixed reference level:
constant, time series or harmonics

Atmospheric forcing

constant or time series: wind vector, air pressure,
cloudiness, air humidity

True orbital motions (inner loop)

inner loop time step, relaxation time for WCI force and
reference to a file for amplitude, period, phase and
direction of the spectral wave components

Time series output

for given z-level over given time interval

Sediment properties multiple fractions, dso, ps, Or, pick-up or bed
concentration, initial sand profile
Water density initial profile temperature and salinity

On-line harmonic analysis

for given list of frequencies

Test cases

if the extension of the input file is /og, see also on-line
an analysis below

WL | delft hydraulics
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Processes explicitly simulated:
Tt ‘-.:.’m_fézz_: TR el | e BRI
‘process or function I | propedies it NN AT o s
Mean flow (z,t) over entire water depth only, depending on bed

friction, internal friction, wind forcing, Coriolis, WCI
force.

Surface waves

vertical and horizontal orbital velocity (z,t) over entire
water depth only depending on bed friction, internal
friction, horizontal current, solving pressure, arbitrary
direction and phases, WCI force, boundary layer streaming |

Sediment transport (z,t) over entire water depth only, depending on settling
velocity, hindered settling, orbital motions, diffusion, pick
up or bed concentration

WCI force (z,t) dependent on surface wave solution

Boundary layer streaming (z,t) dependent on surface wave solution

Stokes drift for sand mass

(z.t) according to sediment transport and on surface wave
solution

Diffusion without advection

(z,t) by mixing only and for heat content through
computed thermal flux at the free surface

Built-in formulations:

‘process or function ||
| gravity
density of water state equation for sea water
thermal flux four options up to most explicit formulation for air-water
heat exchange processes
Stokes drift water mass correction for depth-integral Stokes mass drift
Turbulence laminar or three eddy viscosity type models, see input;
fixed turbulence model coefficients
Buoyancy through vertical density gradient of sand, salt,
temperature
bed friction linear for laminar flow, quadratic for turbulent flow with
fixed zero level for log. profile.
Wind-drag coefficient Smith&Banks formulation
High-pass filter fixed formulation, for surface waves only
Shields parameter piecewise approx. depending on grain size and us
(Van Rijn, 1993)
Settling velocity piecewise approx. depending on grain size, viscosity,
density of sand and water (Van Rijn, 1993)
Hindered settling Richardson-Zaki formulation, fixed coefficients

Bed concentration

Zyserman&Fredsee at z=2ds, above fluid-bed interface

On-line analysis:

Harmonic analysis

(u;v;w;c;uc; TKE; vr; WCI) for given frequencies over given
time interval (see input)

Stress power

estimation of energy losses by surface waves

Testcases

for *.log extension: no-slip, partial slip, laminar,
turbulent, log. profile, Rouse profile, parabolic eddy
viscosity, sand flux numerical and analytic integration

wi | delft hydraulics
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Assumptions and approximations:

e i T

Reynolds stresses/fluxes closure based on eddy viscosity/diffusivity

laminar-turbulence transition closures for high-Reynolds number turbulent flows only

turbulence in oscillatory flow closure using high-pass filter function only applicable
when each spectral wave component is simulated

mobile free surface boundary conditions imposed on rigid lid

orbital motions dedicated to shear-dominated and turbulent flows

Stokes drift water mass depth-averaged flow corrected by analytic formulation for
Stokes drift

wave form as sum of spatially and temporarily periodic waves; no
wave breaking

test cases for sediment transport in steady flow only

bed form plane horizontal bed, sheet-flow conditions

erosion/sedimentation Zyserman-Fredsee formulation meant for single fraction

input from experiments prescription by time series of sediment concentration at
some given fixed level is not yet available

input from experiments the piece-wise approximations to the Shields parameter as
well as to the settling velocity is discontinuous

laminar-turbulence transition closures for high-Reynolds number turbulent flows only

sand-water density buoyancy term in turbulence closures but not in
momentum equations

1.3 Outline of report and floppy disk

In Chapter 2 an overview is given of some concepts and assumptions underlying the model.
Also the solution procedure, using an inner and outer loop, is outlined here. Chapter 3
describes the solution to the orbital velocity vector in the inner loop. Chapter 4 deals with
the turbulence closure model. In Chapter 5, the mean flow equations, solved in the outer
loop are given. The equations for the sediment are given in Chapter 6. Chapter 7 gives a
short description of some exercises focussing on diagnosis of the model. Section 7.3
describes a comparison with two wave tunnel experiments. One of the tests described here
can also be found on the accompanying floppy disk which also contains the model
executable. The input and output of the model are discussed here. Appendix A presents
schematically the various loops as well as the most important subroutines; this appendix
serves as a rough guideline of the code. The essential assumption underlying the POINT-
SAND model is related to the treatment of horizontal variations. Appendix B investigates an
additional approximation made in that respect, viz. that the horizontal part of the velocity-
amplitude vector L_'i(z) is parallel with the corresponding wave number vector k. In

Appendix C we present details of the implementation of the partial slip condition for the
turbulent flow along a bed in the fully-rough regime. Appendix D contains a listing of the
input files of one of the wave-tunnel tests of which the results are reported on in Section
73

wL | delft hydraulics | -4
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Compared to the previous version of this report, Appendices E to G are new. Appendix E
presents the mathematical background of built-in test cases for sand transport in steady
turbulent channel flows. These test cases are designed so that the future user and developer
of the POINT-SAND model can verify his work and code adaptations. In addition, Appendix
E demonstrates the strong sensitivity of the depth-integrated horizontal sand flux for flow
conditions. The latter sensitivity thus emphasis the importance of carefully testing the
hydrodynamic aspects of the POINT-SAND model. Appendix F is our ICCE paper presented
in the ICCE-conference in Sydney. the paper describes several wave-current interaction and
some more details that reported here. Similarly, Appendix F presents our paper on intra-
wave sediment transport and it contains additional hydrodynamic and sand transport tetsts.
Moreover the latter appendix also introduces one ofthe purposes of the POINT-SAND model
namely connecting wave-tunnel experience to on-shore or off-shore sand transport in the
field.

The admittance of these papers to the ICCE conference can be interpreted as an
international reference to the quality of the work presented in this report.
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2 Overview of concepts and solution
procedure

2.1 Introduction

This report describes the POINT-SAND model being the extended version of the Directional
Point Model (DPM). The POINT-SAND model is dedicated to simulating, in time, the
vertical distribution of suspended sand in an oscillatory horizontal flow in a wave tunnel
but also due to the horizontal and vertical orbital velocity, possibly superimposed on a
turbulent current, in free-surface wave channel or in the field with different wave and
current directions. Irrespective of the application in a wave tunnel or a free-surface wave
channel, the same intra-wave sand transport formulations are used. These sand transport
process formulations have been reported and demonstrated by others. With respect to the
sand-transport process formulations, the POINT SAND model is not superior to published 1DV
models but our model is just more flexible.

The DPM and its predecessor, the 1DV model (one velocity component only), are presented
in (Kester et al., 1997) for simulating thermally-stratified tidal flows. In (Uittenbogaard et
al., 1996) and (Winterwerp and Uittenbogaard, 1997) mud transport is simulated for steady
as well as tidal flows and with the effect of surface waves parameterised by an increased
bed roughness only. These existing 1DV and DPM codes were in principle already suitable
for simulating sand transport in wave-tunnel experiments because these experiments do not
induce a mean or orbital vertical velocity.

The extensions in the POINT SAND model concerns mainly the inclusion of orbital motions
for simulating more aspects of wave-current interaction (WCI), streaming, wave-turbulence
interaction, all this in the context of simulating suspended sand transport under sheet-flow
conditions. The flow along the entire water depth is simulated for a correct estimation of
WCI. The selection of a non-equidistant vertical grid, however, allows for resolving details
of the wave boundary layer.

The loading of the flow with suspended sediment is considered to yield damping of
turbulence equivalent to salt-stratified or thermally-stratified flows. This stratified-flow
analogy, however, requires modification to large particle densities. For the time being, the
stratified-flow analogy is adopted in the implemented k-L and k-¢ turbulence models
through the usual buoyancy flux that represents the conversion of Turbulent Kinetic Energy
(TKE) into potential energy.

The POINT SAND model can be regarded as a spectral code. Per spectral component, it solves
the orbital motions as a function of depth and mean flow profile. The direction of wave
propagation as well as (tidal) flow is arbitrary and we assume spatially periodic wave
motions. The bed is assumed to be horizontal and the waves are periodic and non-breaking.
The latter restrictions exclude sloping beds as well as strong decay or growth of wave

wu | delft hydraulics 2-1
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properties. In principle, each harmonic component of a multi-directional wave spectrum is
simulated although simulating many harmonics reduces the computation speed
proportionally.

The orbital motions by the surface waves are simulated explicity while keeping in mind the
principle objective of the POINT SAND model. The objective of this model is sand transport
in turbulent shear flows with waves and this sand transport is usually confined to just the
bed-boundary layer. Therefore, the mobility of the free surface is neglected i.e. in the POINT
SAND model the free surface is replaced by a rigid lid on which the surface boundary
conditions are imposed. We acknowledge that the latter condition is a crude approximation
if the interest is on simulating near-surface motions and near-surface wave-induced drift
phenomena. On the other hand, the good comparison between experiments and simulations
appear not to suffer severly from this rigid lid approach. There is possibly one exception
namely the case of waves propagating on a laminar flow because the rigid-lid approach
does not allow for a precise description of the conditions for viscous stress and surface
tension at an inclined and rotating free surface. Nevertheless, even that exceptional test case
is simulated quite well, for details see Appendix G.

There are no limitations on angular frequency, water depth, depth-averaged velocity or
velocity shear rates, provided the latter do not induce wave blocking or a critical layer i.e.
conditions where the phase speed equals the mean velocity.

2.2 Outline of concepts and solution procedure

By way of introduction, the solution strategy is presented here but the subsequent chapters
describe the mathematical details.

The original DPM solves partial differential equations for flow, constituents (sediment, salt,
heat etc.) and turbulence as a function of depth co-ordinate z and time t for a steady or
slowly-varying (tidal) flow for a given depth-averaged horizontal velocity and using a
hydrostatic pressure. In the original DPM, the momentum equation for one of the two
horizontal velocity components reads

oU JéP ¢ ou

= +é?x = {(u+ v7) 5z}+?;(z,r) (2.1)
with turbulence-averaged horizontal velocity U(zt), turbulence-averaged pressure P,
kinematic viscosity v, eddy viscosity v1(zt) horizontal co-ordinate x and vertical co-
ordinate z. The POINT SAND model includes the Coriolis force but this contribution is not of
importance here but included in the (extended) code. In this report, pressure is always
divided by constant fluid density i.e. Boussinesq’s approximation is applied. In (2.1), P is z-
independent and AP/0x is adjusted such that the depth-average of U(zt) satisfies a user-
defined temporal function or constant (time series or harmonic components on input). This
is the original and satisfactory approach with the DPM, see (Uittenbogaard et al., 1996) and
(Van Kester et al., 1997) for tests and applications.
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The extension of the DPM as POINT-SAND model for WCI involves the solution of the
depth-dependent momentum equation for the orbital velocity vector of each spectral
component as well as the dynamic and kinematic influence (Stokes drift) on mean flow and
on turbulence. For the dynamic influence, the depth-dependent wave-current-interaction
force Ty in (2.1) is essential. This force is a wave-averaged property and it depends on the
vertical co-ordinate. The WCI force varies with the time scale of the mean current such as
under tidal flow conditions. In the following, these influences are described briefly.

In the POINT-SAND model , the WCI problem is formulated in Eulerian co-ordinates and for
infinitesimal waves propagating on a non-uniform flow. In vector notation, the following
equations for orbital momentum are added to the POINT-SAND model:

Et:+(g+a_“)-v(g+g)+vp“=v.§—z ; U-vU=0 , (2.2)

ou
with 7 the hydrodynamic pressure driving the orbital velocity vector % ; the mean flow is
horizontal and has just a vertical profile. Not all horizontal advection terms are
implemented, but this will be presented later. Per spectral component, the hydrodynamic

pressure p is solved for waves over a shear flow but linearized in terms of orbital motions.

In (2.2), T is the wcI force that in general is a three-dimensional vector and a wave-
averaged property. In the following we explain why we neglect the vertical component of T
and why we compute the horizontal part of T numerically rather than using some theoretical
model. We start with the neglect of the vertical component of T in the POINT-SAND model.

One of the contributions to T is the so-called Craik-Leibovich (CL) vortex force. The CL
vortex force is the outer product of the Stokes drift (horizontal drift velocity) and the
vorticity vector of the mean flow, for details see e.g. (Dingemans et al., 1996) and its
references. Consequently, for a horizontally uniform but possible vertically sheared flow the
CL vortex force has just a vertical component. When the mean flow is perturbed then the CL
vortex force invokes an instability yielding counter-rotating vortex pairs with horizontal
axes parallel to some mean of wave propagation and current direction. In large water
bodies, such as lakes and seas, these vertical circulations are called Langmuir circulation
but also in flumes the CL vortex force creates secondary circulation perpendicular to the
current. This secondary circulation enhances the exchange of horizontal momentum
between the flume centre plane and the vertical walls. This momentum exchange then alters
the flow in the flume centre plane, for details see (Dingemans et al., 1996).

These wave-driven circulations, however, can be simulated explicitly only when the flow
equations are solved in a two-dimensional cross section perpendicular to the flow, such as
in (Dingemans et al., 1996), or solved fully in three dimensions. Therefore, in the POINT-
SAND model having just one spatial dimension, we can only include the consequences of the
CL vortex force by the addition of a suitable model, such as Radder’s model presented in
(Dingemans, 1999). The implementation of Radder’s model in the POINT-SAND model is
recommended. This ends our motivation about not including the vertical component of T in
the POINT-SAND model. Below we motivate the numerical procedure for the horizontal
components of T.
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The orbital motions of waves near the bed and near the free surface invoke shear stresses
acting on horizontal planes. These shear stresses are mainly due to the laminar or turbulent
bed friction or due to the stress free condition at the free surface while it rotates with the
wave motion. The laminar or turbulent stresses create a deviation in the +90° phase lag
between vertical and horizontal velocity components. The vertical derivative of the wave-
induced shear stresses contributes to the horizontal part of T. Various approximate models
for these stresses have been developed. Note that these contributions are not represented by
the CL vortex force. On the one hand we could implement a theoretical approximation to the
laminar or viscous stress contribution for the horizontal part of T. Not only a difference
between this approximation and the exact force but also numerical errors can induce an
accelerating drift velocity through (2.2). By definition, the occurrence of this theoretical or
numerical drift in (2.2) is excluded because (2.2) refers to oscillatory motions with zero
averages.
Therefore, the horizontal components of T are simulated with a numerical procedure such
that the time average of the horizontal orbital velocity in (2.2) is negligibly small or zero.
The latter condition agrees with the precise definition of orbital motions. The simulated T
counter-balances the time average of mainly the non-linear part of the convective terms in
‘ (2.2) that represents the vertical gradient of the simulated wave-induced shear stress.
This computed T yields no artificial drift and then it must represent the transfer of
momentum between the mean flow and the orbital motions. Therefore T re-appears in the
‘ mean flow equation (2.1) with the opposite sign compared to (2.2).
‘ The horizontal part of T, obtained by some numerical procedure, varies over the water
column and, when applied to (2.1), T deforms the mean velocity profile. The depth-
‘ averaged part of T affects the horizontal hydrostatic pressure gradient in (2.1) and the
orbital velocity superimposed on a current increases the wave-averaged bed-shear stresses.

This ends our motivation for using some numerical procedure for the horizontal part of T.
Notice that the particular choice of the procedure is irrelevant as long as it meets its
objectives namely convergence in achieving a negligibly small or zero average of the
horizontal orbital velocity. Once these objectives are met then the horizontal part of T
equals the WCI force, except for some numerical errors in (2.2) that T also counter balances.

—~—

In (2.2), o is the oscillatory part of the stress tensor due to molecular as well as turbulent

motions. The latter are represented by E , the oscillatory part of the Reynolds stress tensor
R. Chapter 4 explains the closure for é but, for clarity, some introductory remarks are

made but we refer to (Uittenbogaard, 2000) for an extensive description.

Below we describe why eddies of different sizes and turnover times respond differently to
the strain rates induces by the orbital motions. Imagining an eddy as some isolated cylinder
of fluid rotating around a curled axis is a simplification on its own but still is a feasible
concept.
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When each fluid parcel of a large and slowly rotating eddy has covered just a small part of
its orbit then short and fast orbital motions already have reversed there influence on the
paths of the fluid parcels. After one spatial and temporal wave cycle, the net effect of the
wave on the large and slow eddy is negligible and, conversely, the eddy did not transfer the
momentum of the orbital motions. Therefore the larger and slower eddies are nearly
inactive in damping surface waves.

Instead, fluid parcels in sufficiently short and rapidly rotating eddies are “swept out of
orbit” by the comparatively slow and large deformations imposed by the orbital motions. In
other words, small and fast eddies are deformed significantly by the orbital motions. This
deformation involves a spatial transfer of momentum that is nearly irreversible because
fluid parcels enter orbits around other eddies and so on. Consequently, these smaller eddies
create a net spatial transfer of the wave-related momentum.

This is our argumentation why sufficiently small and rapid turbulent motions are active in
damping surface waves. Such turbulent motions dominate in the boundary layers where
their size is limited by the proximity of the bed or the free surface. In these boundary layers,
therefore, most turbulent eddies contribute to the deviation from the +90° phase lag between
vertical and horizontal orbital velocity components and this deviation creates the wave-
induced shear stresses. Subsequently, the vertical derivative of the wave-induced shear
stresses contributes to the WCI force and deform the mean velocity profile.

In most applications, the transfer of momentum or mass by turbulence is modelled by the
eddy viscosity/diffusivity concept. In this concept, the eddy viscosity/diffusivity is
proportional to the product of the variance of the vertical turbulent velocity component and
its correlation time scale. As we argued above, the appropriate eddy viscosity for the
transfer of wave-related momentum should be based on the variance of vertical velocity and
correlation time of eddies smaller and faster than the orbital motions. The previous
argumentation can be cast in mathematical formulations. It then yields what we call a high-
pass filter function f, depending on the ratio between wave period and turbulence
correlation time, for details see Chapter 4. The terminology “high-pass filter” refers to
eliminating the contributions from slow and large turbulent motions to the eddy viscosity.
Rather than solving the total momentum equations, the decomposed set (2.1) and (2.2)
allows for splitting the turbulence response due to orbital motions or due to mean flow only.
The high-pass filter function reduces the eddy viscosity, related to all sizes of turbulent
motions, as described by e.g. k-L or k-¢ models.

Another important reason for splitting mean flow and orbital motions is that orbital motions
can induce significant horizontal gradients. Assuming spatially and temporarily periodic
waves, the horizontal gradients of the orbital motions are expressed at the relevant time
derivative divided by the phase speed of the spectral wave component.

The mixing of sediment by turbulence responds to all turbulent motions. Consequently, the
high-pass filter function is not applied to the eddy diffusivity being the turbulence mixing
coefficient for dissolved matter and sufficiently small sediment particles.

The orbital momentum equation (2.2) is solved by using the still water level as upper
boundary (rigid lid) rather than the mobile free surface. This rigid-lid approximation
simplifies the computation at the expense of a crude approximation of the free surface
boundary conditions now imposed on the still water level. The consequence of this rigid-lid
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approximation is that the wave-induced water-mass flux, equal to the depth-integrated
Stokes drift, is not simulated explicitly by the POINT SAND model. Instead, the depth-
integrated Stokes drift is estimated by the theoretical model derived in Appendix B of
(Winterwerp & Uittenbogaard, 1997). This theoretical model is a function of the user-
defined wave amplitude, the simulation orbital velocity as well as the simulated mean-flow
shear rate. Subsequently, the depth-integrated Stokes drift is subtracted from the user-
defined flow rate. The net flow rate is obtained by adjusting the hydrostatic pressure
gradient 6P/0x in (2.1) during the simulation.

In the POINT SAND model two time loops are made and each time loop has its own time step.
In the so-called inner loop for each spectral component (input) the orbital motions in (2.2)
and contributions of orbital motions to turbulence are solved. Thus the inner loop
represents the intra-wave part (2.2) of the POINT SAND model; the inner-loop time step
should be a small fraction of the wave period. All spectral components are solved with the
same inner-loop time step, (2.2) is solved on the same grid as the mean flow equation (2.1)
and turbulence and sediment equations.

In the inner loop and per inner loop time step, the orbital motions are solved by starting

‘ with the slowest motions while including the non-linear coupling by advection of all

‘ spectral components. Per time step of the inner loop, all orbital shear rates are collected and
then high-pass filtered. These filtered shear rates form the turbulence production term in the

‘ k-L or k-g turbulence model that is solved at each inner-loop time step. Notice that in the

‘ inner loop, (2.2) is solved per spectral component and this becomes computationally
demanding for a wide spectrum.

‘ In the outer loop, subsequently, the wave-averaged forces and Stokes drifts of all spectral
components are collected and the bed friction is low-pass filtered. Then the mean flow
momentum equation (2.1) extended to arbitrary flow direction is solved. In this outer loop,
a single and usually larger time step is made, typically this time step equal the largest wave
period. The outer loop time step is an integer multiple (NUMWAYV) of the inner loop time
step. The averaging of wave properties per spectral component covers its most recently
completed wave cycle.

At a new step of the inner loop, the adapted mean-flow profile is used to estimate the wave
numbers for given angular frequencies and for estimating the advection of waves by a non-
uniform current. This alternating solution procedure for (2.1) and (2.2) is repeated until
end. Appendix A presents schematically the various loops as well as the most important
subroutines; this appendix serves as a rough guideline of the code. The overview report
(Uittenbogaard, 2000) illustrates this solution procedure by several flow diagrams.

2.3 Simplifications

Compared with a 3D wave-current simulation, the essential simplification for using the
POINT SAND model concerns horizontal variations. Steady harmonic oscillations at given
angular frequency o with flow-dependent wave number vector k=(k, £ ) with component k
in x-direction and ¢ in y-direction are assumed i.e.
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v =pRelexp(ik-x-iwn)} ; i=v-1 , 2.3)

with  any wave-related variable with zero mean and with constant and real amplitude.
The amplitude §(z) of any oscillatory variable may depend on the depth co-ordinate z.
Accordingly, the following transform (2.4) is applied to all wave-related fluctuations:

A ot R O e 2.4)

The wave-related surface elevation, with zero mean, is prescribed by
¢ =¢sinfk(o)-x -0t +4(0)] 2.5)

with user-defined amplitude & for each angular frequency ® as well as user-defined

direction of propagation and user-defined phase shift ¢. In the POINT SAND model, the wave
number k is a horizontal vector and its magnitude follows from solving the dispersion
relation; this is explained in Section 3.1.

In principle, solving (2.2) involves three equations but the two horizontal momentum
equations are reduced to just one for the horizontal velocity in the direction of wave
propagation. The latter simplification is founded on Appendix B that derives, to a good

approximation, that indeed the horizontal part of the velocity-amplitude vector z_’i(z) is

parallel with the corresponding wave number vector k.
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3 Solving the orbital velocity vector

3.1 One-dimensional Poisson solver for pressure by surface
waves on a non-uniform flow

In the inner loop and per spectral component (spectral loop), first the orbital velocity vector
is solved by (2.2) for each spectral component. For simplifying the notation, we shall not
include the dependence of orbital variables on angular frequency @ explicitly unless
ambiguity arises.

Per spectral component, pressure p drives the momentum equations (2.2) for orbital
velocity; in general 7 is non-hydrostatic. Pressure p is formulated in a Poisson equation
that is derived from

ou nd . 2 " s
S Ur) VU+)+VP=0 5 U=U@E ; V-L=0

for surface waves on a z-dependent mean flow and with the neglect of molecular,
turbulence as well as neglecting all quadratic orbital-velocity terms (advection). These
equations then yield the following linearized Poisson equation

Vp=-2-—=-Vit . (3.1)

Note that (3.1) includes waves relative to a vertically non-uniform flow at arbitrary angle of
propagation. Substitution of (2.4) as well as of the linearized momentum equation for
vertical velocity in (3.1) yields the following equivalent to the well-known Rayleigh

equation:
d’p b 0. 1 Uk
+2B = -ll['p=0 ; B=——— ; Qz)=0-k-Uiz) . 32

This ordinary differential equation for the pressure amplitude is discretized on the vertical
grid of the POINT SAND model with pressure defined in cell centres and its vertical gradient
at cell interfaces. The surface cell has number m=1 and the bed cell m=kmax, the cell
height is Az,,. Typically 100 cells are used which may also be non-equidistant. Variables
defined on the lower cell interface obtain the subscript of the cell above it and the variable
at the mean water surface has subscript m=0.
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The Poisson equation (3.2), equivalent to (3.1), is solved with vertical gradient dp/dz as

principle unknown, see (Peyret and Taylor, 1983, Section 4.1), and by using quadratic
splines for expressing pressure into its vertical gradient through:

pubun=al ) 0] 1o E)
- =0n = TRul 5| TVl = s 33
pm pm+l a [dZJm_| ﬁ (dz L )’ dZ - ( )
with weight factors:
Bn=%(42,+42,,) ; a,=y,=+B, - (3.4)

The exact boundary condition for pressure at the bed reads

op| o2 2(U+UT)@ !
oz oz oz |,

bed

but Kraichnan (1956) showed that the gradient of normal stresses due to molecular and
turbulent motions is negligible and thus the previous boundary condition can be simplified
into

dp
2l =0 . s
(5],

Next we introduce the following essential simplification. All equations are solved on a
fixed grid and the boundary conditions at the free surface are imposed at the still water
level rather than at the mobile free surface. This rigid-lid approximation has conceptual as
well as computational advantages but at the expense of projecting the surface-boundary
conditions on the still water level. In this approach the pressure at still water level is
prescribed as the hydrostatic pressure

p=g¢ . (3.6)
Numerically this condition is imposed on the pressure that is defined in the centre of the

first cell (m=1). Using the vertical pressure gradients at cell interfaces and assuming a
pressure profile quadratic in z, the pressure amplitude in the centre of the top cell reads:

& e ) ap ap
D =25 8M|{3[dz]n+[dzl} . (3.7

With (3.5) and (3.7), the Poisson equation (3.2) is solvable but for a yet unknown wave
number magnitude [ﬁ] . The latter is determined by the so-called dispersion relation. This

relation follows from replacing w, in its linearized vertical momentum equation without
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viscous or turbulence stresses, by the linearized material derivative of £, yielding for
sufficiently-small wave amplitude:

2 ~
[i+g(z)-vj Z+(i’}9] =0 . (3:8)
ot oz ).

The angular frequency Q(z)=0-k.U(2) in (3.2) is recorded by a co-moving observer at level
z. Substitution of (2.3) in (3.8) and then differentiation with respect to the wave amplitude
yields at the still water level:

Q’(2) =( Z ;:;L : (3.9)

Equations (3.2) and (3.9) are mutually coupled where the essential unknown is the wave
number magnitude appearing in Q(z)=w0-k.U(2) in (3.2) as well as in (3.9). Therefore, these
two equations are solved iteratively. The iteration begins with an estimate for the wave
number magnitude | ﬂ derived from the dispersion relation of infinitesimal potential waves
superimposed on a mean current. Next,  is obtained from a finite difference version of
(3.9) by solving (3.2) twice: for zero and for unit wave amplitude. The difference in vertical
pressure gradient at the still water level z=z' then yields Q* from (3.9). By Picard iteration
the new estimate for the wave number follows from

4
k™Y = - _w for fixed — ; |k=vE* +£° (3.10
d sign(k-U(C))+ " /K" i K )

with iteration counter n=1,2,3... The Froude number is assumed subcritical so that no wave
blocking or critical layer is formed i.e. Q(z) is non-zero everywhere and thus B remains
regular. Velthuizen and Van Wijngaarden (1969) consider the case of critical-layer
formation at the level where ©(z)=0 holds. Initially, five to seven iterations are required for
1% relative accuracy but for subsequent wave cycles just a single iteration appears
sufficient.. The dispersion relation is solved at the start of a new wave cycle, using a new
estimate of the mean flow profile in (3.2).

Of course, the converged solution of (3.2) and dispersion relation (3.9) yields also the
vertical profile of d p/d z , normalised by the wave amplitude. From this pressure gradient
follows the wave-related pressure amplitude by (3.3) and starting at the still water level
condition (3.6). Subsequently, the horizontal gradient of the pressure amplitude follows
from the time derivative of the pressure amplitude and using (2.4). At all subsequent time
steps, the horizontal pressure gradient in a single wave cycle follows from (2.3) i.e. by
scaling the horizontal gradient of the pressure amplitude. Note that in this procedure the
harmonic function (2.5) for surface elevation is the single user-controlled input to the
Poisson solver.
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Per spectral component, the pressure gradients drive the momentum equations (2.2) for the
horizontal and vertical velocity components. Section 3.2 starts with the latter because the
vertical orbital velocity is used subsequently for vertical advection in the horizontal orbital
velocity as treated in Section 3.3.

3.2 Solving the vertical orbital velocity per spectral component

This section begins with our motivation for the procedure for solving the vertical orbital
velocity per spectral component.

Consider a 3D shallow-water solver in which the pressure is approximated by the
hydrostatic pressure. In this solver, the vertical velocity is obtained by vertical integration,
of the divergence of the horizontal velocity vector from the bed (z=0) upward:

¢
w(§)-w(0)=—j(%+j—;]dz . @3.11)

0

This integration then yields the vertical velocity at the free surface. In virtue of mass
conservation, the free-surface vertical velocity w(£) must be compatible with the material
derivative of the surface elevation { i.e.

¢

28 Y%
5 OG5 =e) (3.12)

ox

This compatibility condition couples the (depth-integrated) horizontal momentum equations
to the depth-integrated incompressibility condition V-u= 0. The latter coupling yields an

equation in term of the horizontal velocity components (u,v) as well as the yet unknown ¢
but with the vertical velocity eliminated. Once this coupled set is solved, the vertical profile
of the vertical velocity follows from (3.11) without using the vertical momentum equation.
The latter neglect yields a passive or reactive response of vertical velocity mostly as a
kinematic closure to the incompressibility condition rather than a dynamic response to
forcing.

Indeed, extensive experience with the previous solution procedure learns that the passive
response of the vertical velocity does not yield the correct vertical motion of, for instance, a
heavy or light blob of water. Instead, the hydrodynamic solver (Casulli and Stelling, 1998)
can solve this problem correctly because the first estimate for the vertical velocity is
derived from its momentum equation in which vertical forces and hydrodynamic pressure
gradients are included. This analysis and experience motivates our choice in solving a
particular sequence of momentum equations.

For the purpose of investigating which terms are significant in wave-current interaction,
therefore the vertical velocity is solved here first by its simplified momentum equation. The
vertical momentum equation is driven by the vertical hydrodynamic pressure gradient. This
solution procedure allows for the application of the compatibility condition (3.12) but it
does not guarantee the incompressibility condition (3.11). Tests with the POINT SAND
model, however, show that the deviations from (3.12) appear small although a distinct
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criterion for approximating (3.12) is lacking. A dedicated proof of approximating (3.12) is
implementing a transport equation for a conserved scalar and checking the temporal
deviations from an initially uniformly-distributed constituent.

Thus the vertical orbital velocity is solved through a simplified momentum equation. As
announced in Section 3.1, not all advection terms in (2.2) are included in the simulation and
most of them are removed for solving the vertical orbital velocity. The following linearized
momentum equation for the vertical orbital-velocity component is adopted:

ow - 0P @ ow
—57+Q_(z).Vw+E=};{2(U+f@vr)§;} . (3.13)

Note that inconsistent with the Poisson equation (3.1) and its boundary condition (3.5), the
vertical momentum equation (3.13) is extended with the influence of turbulence on the
vertical orbital velocity component. The inclusion of vertical advection has been tested but
it overestimates the vertical velocity near the bed, probably because the solution procedure
for the vertical pressure gradient does not account for this non-linearity but more analysis is
recommended.

The RHS of (3.13) contains the vertical exchange of mean horizontal momentum with v the
kinematic viscosity and vy the eddy viscosity. In (3.13), the horizontal gradient of the
Reynolds shear stress:

7 ou  ow 7 ov ow
tfoinf22) - flerenl-5)

are neglected. These minor terms contain complicated estimates for horizontal gradients of
Ot/ 8z and AW/ dx . Particularly in view of (2.4), the horizontal derivative of the latter

would involve second-order temporal derivatives of .

In (3.13), the eddy viscosity vy is reduced by a (high-pass) filter-function fi, that depends
on wave angular frequency of the particular spectral component. The product of this filter
function and the total eddy viscosity represents the reduced eddy viscosity due to turbulent
motions that respond sufficiently fast to the orbital shear rates; see Chapter 4 for more
details.

On the impermeable bed we have
w=0 (3.14)

The surface condition needs more elaboration for both orbital velocity components as well
as for the mean flow and therefore the stress balance at the surface is considered first. The
following formulations are applied at the still water level (rigid-lid approximation) rather
than at the mobile free surface. This simplification is considered as a crude one but tests
show it works sufficiently well.
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Continuity of pressure as well as zero tangential shear stresses on the water surface
demand, in absence of wind:

z=( on+on=0 ; o.n+o,n =0 with —*’—z—;ﬁ : (3.15)
n x

Z

This is the simplest approximation to the free-surface condition at it is of zero order
accuracy neglecting the surface elevation. In (3.15), o;; (ij=1,2,3 or x,y,z) are the deviatoric
stress components and (ny,n,) are the components of the upward-directed normal to the
water surface of which its mean inclination, due to mean horizontal pressure gradient, is
neglected. The stresses are due to molecular motions as well as due to Reynolds stresses
which are closed by introducing an isotropic eddy viscosity. Combining the two stress
balances in (3.15) yields:

2
z=C o, ={”—*) o, (3.16)

and thus o, is of third-order in wave amplitude so that at least to first-order, the boundary
condition for vertical orbital velocity reads:

z=0"

- Ow
i 3.17
57 (3.17)

Further, from the first condition in (3.15) as well as the stress closures follows:

- QU & 6% .oudl
T — ——+——-=2———-—— .
¢ oz +a"z ox ox Ox (48)

]

z

so that to first-order in wave amplitude, for the horizontal orbital velocity:

= ou ow
e e
holds because the mean of (3.18) demands for the mean vertical shear rate:
= OU _ 3ud
Z=g —sd—— . 3.20
J oz ox Ox P20

The horizontal gradient in the linearized material derivative is converted through (2.4) into
a temporal derivative i.e.
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ow ow ow k.U(z)\ow
—+U@)—+V (@) —=|1-———— . 3.2
ot +UE ox V() oy ( @ )é’r 3:20)

The momentum equation (3.13) for the vertical orbital-velocity component and its boundary
conditions (3.14) and (3.19) are solved on the same grid as the wave-related pressure. The
vertical velocity is defined at vertical cell interfaces where also the vertical pressure
gradient has been defined. In this staggered mesh, condition (3.14) can be imposed on the
bed and the zero normal-stress condition (3.16) closes diffusion in (3.13) at the free surface.

Equation (3.13) is solved with # as principle unknown and diffusion is integrated with
Euler implicit. The pressure gradient in (3.13) is time centred.

Note that first the surface elevation is prescribed in (3.7) and then the hydrodynamic
pressure is solved. Subsequently, the vertical orbital velocity is solved by (3.13) and it is
driven by the vertical pressure gradient. We believe that this solution sequence is essential
for creating the wave-current force that affects the vertical profile of the mean horizontal
velocity. The overview report (Uittenbogaard, 2000) illustrates this sequence. In the next
section, this role of the vertical orbital velocity will become more apparent.

3.3 Solving the horizontal orbital velocity of a single spectral
component

Our numerical simulations have shown that the vertical advection, by orbital velocity w , of
horizontal orbital momentum is responsible for creating the major contribution to the wave-
induced force that affects the vertical profile of the mean horizontal velocity. Rather than
modelling this momentum transfer, the creation of this force is simulated directly by solving
the non-linear momentum equation for the horizontal orbital velocity.

The equation for the horizontal orbital velocity is arranged such that it allows for the
simulation of the orbital motions as part of a given wave number spectrum of surface
elevations. Therefore, we start with (2.2) for a horizontal mean flow. Initially, we neglect
the RHS of (2.2) but later we include the unbalance of turbulence stresses. For the purpose
of solving orbital motions for a given spectrum, the orbital velocity in (2.2) is replaced by
the sum

ST (3.22)

=2
I=1

where ¥ represents all other contributions at wave numbers that differ from wave number k
belonging to % . Formally we thus define

=i(w,) ; Y= HU(w,) (3.23)

[=?

with @, (n=1,2,3,...) the angular frequencies of the spectral components defined by the user.
The previous decomposition is applied to (2.2) and it reads
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0"_1;:-"— +({U+E+7) V(@ +9)+(@+3)-VU+V(p, +p,)=0 (3.24)

where p, is the pressure related to the orbital velocity # and likewise py is related to V. An
obvious decomposition of (3.24) are the following momentum equations for # and V'

separately:
ou R S -
?+(Q+g+z)°Vz+z-VQ+Vpn=Q (3.25)
av S .
7;+(Q+£+P_)'V£+Y_-VQ+VP,,=Q (3.26)

The sum of (3.25) and (3.26) equals (3.24). Of course, (3.26) can be decomposed further
into other wave number components.

Next, a convenient simplification is introduced that allows for solving just one horizontal
momentum equation per wave number or angular frequency rather than solving two
equations for the two horizontal orbital velocity components. This simplification is based
on the linearized version

%+Q—V§+§-VQ+V"§H=Q (3.27)

of the non-linear momentum equation (3.25). Appendix B shows that the orbital velocity
vector can be decomposed as:

s B=1; mk=0 (3.28)

In (3.28), E is the unit vector parallel to the (horizontal) wave number & and the unit vector
m is directed against gravity. The essential aspect of (3.28) is that the horizontal part of the
orbital velocity vector is parallel to its wave number vector k. For surface waves
propagating with some angle to a flow having vertical velocity profile, the latter is not
obvious. Nevertheless, Appendix B shows that this parallelism is approximated excellently.
The convenient consequence of this parallelism becomes apparent after the scalar

multiplication of (3.25) with the horizontal unit vector E yielding:

aa_?+{(g+”v_')'£+?f}5u +W, @Jrﬁu Uk Oh _ (3.29)

u

ox, oz oz Ox,
with x, the horizontal co-ordinate in positive k direction and W, the vertical component of

 all related to a single spectral component. Thus (3.29) is a single horizontal momentum
equation obtained by projection of the “external” flow field (Q +i) on the direction k
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rather than splitting the horizontal part of % with respect to horizontal directions parallel

and normal to e.g. U. The horizontal momentum equation (3.29) shows that the vertical
gradient of the mean horizontal velocity vector is significant only if it has a component
parallel to k. Likewise, there is advection by (U + V) provided (U + ¥') has a component in

the direction k of wave propagation.

Note that (3.29) for the horizontal vector % contains the following linear and non-linear

(wave-wave) interaction terms:

u v u
U |U-vU (U-V¥ |U-Vu
v |¥-VU |¥-V¥ |¥-VE
# [W-VU |T-V¥ |T-VE

Table 1 Overview of linear and non-linear (wave-wave) interaction terms in (3.29)

In the following the reference to wave number k in the horizontal co-ordinate Xy is omitted.
Instead, Xy is replaced by co-ordinate x parallel to the direction of wave propagation.
Likewise, W is written in place of W, and also 7 in place of p,. We believe these
notational simplifications do not create ambiguity because they all relate to the horizontal
velocity subject of the equation in which they appear. Consequently (3.29), extended with
the RHS of (2.2), reads:

@-+{(Q+E)'£+ff}au +ﬁ?§u +W§Q'£+é—=
ot ox oz oz ox

07 ou| 2 ou ow
;{2(u+fhpu,)§;i}+E{(u+ﬂpur)(a—:+-§]}—?;

X

(3.30)

In (3.30) the spatial derivative in the transverse (y) direction as well as the corresponding
transverse velocity component are omitted by the approximation presented in Appendix B.
Further, the x-direction in (3.30) is parallel to the direction k of wave propagation.

The terms
LR L (3.31)
Ox ox oz

see also Table 1, represent the non-linear advection terms in the POINT SAND model of
which
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~ 0

= 3.32
e (3.32)

as part of V-VU in Table 1, appears to be the most prominent one for the experiments of
Klopman (1994).

The horizontal orbital pressure gradient that drives (3.30) follows from the hydrodynamic
pressure (Section 3.1) as well as from (2.4) for expressing the horizontal derivative into
temporal derivative which is defined time centred.

Note that, except Ty, all terms in the RHS of (3.30) are due to the molecular and the
turbulence stresses that we neglected upon deriving the linearized Poisson equation (3.1).

| Below simplifications to the stress terms in the RHS of (3.30) are considered. First define F,
‘ according to the RHS of (3.30), excluding the WCI force T,, as:

a ou| o ou| & ow
F =—12(v+ f,vr ) —+—s v+ S, Vs ) —+—2(Vv+ fi,v ) —F . (3.33
! * 0”x{( Tro T)o"x} é’z{( T r)ﬁz} é‘z{( T T)é'x} 053
Subsequently, the horizontal variations in eddy viscosity vy and in the high-pass filter
function fy, are neglected. The argumentation for this neglect is that near the bed where f;,
is large the horizontal gradients are small compared to vertical gradients. Further, the

horizontal derivative is replaced by the temporal derivative using (2.4) and the second-order
derivative by exploiting the periodicity assumption (2.3). Consequently, F, then reads

o ou| ko ow
F. =2 v+ f, v\ +—3(v+ fi, v | —t = —=—2 v+ fo v, ) —F . 3.34
x ( fhp T) (92{( fhp T) 52} wé’z{( ﬂrp T)ﬁt} ( )
The approximation (3.34) to (3.33) is used in (3.30) because it contains derivatives that are
known in the POINT SAND model. This ends the treatment of the stress terms in (3.30) in the
horizontal orbital momentum equation implemented in the POINT SAND model.

Another subject is the sequence of solving the various spectral components of the orbital
motions. This sequence plays a role in computing the advection because this term contains
most of the wave-wave interaction. The horizontal advection terms are approximated by

ou oy £ ) O8 k ~ 7 ~1| U
E+{(Q+L)-&+u}—£={1—;[(Q+l)-£+u]} ~ (3.35)

with At®™ the time step applied in the inner loop. For more than one spectral component,
the advection (3.35) is solved in a loop that starts with the lowest angular frequency. For
solving the orbital motions at angular frequency ,, with s some integer label, the other
orbital velocity vectors are split into two groups as
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kv=ka”+ka® (3.36)
with
FO(t+ LAY = Y a(t+3aPs0,) 5 w50() =D (L w,) (3.37)

Here @, is the angular frequency implicitly referred to in (3.30). The splitting (3.36) and
(3.37) shows that for frequencies lower than ;, the velocity at the new time level is used.
In principle, a return sweep starting with the highest angular frequency can be included,
similar to Gauss-Seidel elimination procedure in solving matrix equations. Here we assume
that At“® is sufficiently small and short waves are affected mostly by longer waves than
vice versa and we neglect the return sweep.

The approximation (3.35) and the solution sequence defined by (3.36) and (3.37) in the
(intra-wave) inner loop are implemented in the POINT SAND model.

The vertical advection (3.32) of horizontal orbital momentum is defined in the centre of the
m® cell and it is discretized by

~0u
w_

2 (3.38)

o 75| +ferosle o5

m m-1

with © for weighting central (6=0) and first-order upwind (6=0.5) schemes. For simulating
the wave-current experiments of (Klopman, 1994) with 100 equidistant layers and 100 time
steps per wave period, the central scheme does not wiggle but for safety we set 6=0.1.
Because the vertical orbital velocity is also known at the new time level, the LHS of (3.38)
is time-centred and the gradient Ju / &z at the new time level is treated implicitly.

The discrete representation of the horizontal-momentum equation (3.30) is formulated with
J4 | 8z as principle unknown and using Hermite interpolation similar to (3.3):

wsi _ oa ou ou ou
= . o4 o i 39
um um+l am( C?Z )m—} & ﬂm( 0"2 Jm +ym[§z }mﬂ ’ (3 )

with weight factors: S, =1(Az, +4z,,) ; @,=7,=0

The Hermite interpolation (3.39), however, allows for a weighting matched to a strongly
non-equidistant grid such as a logarithmic distribution can be used without loss of accuracy.
The latter requires weight factors different from those in (3.4) and these are not
implemented yet.

Finally, we must design a numerical procedure for force T by which the average of the

horizontal orbital velocity is negligibly small or zero. With respect to (2.1) and (2.2), the
argumentation for such a numerical procedure has been given. We have good experience
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with the procedure for adjusting the horizontal pressure gradient in (2.1) for realising a
user-defined depth-averaged velocity. This procedure is applied to T, but for each z-level
separately so that at each z-level the average of the horizontal orbital velocity is negligibly
small or zero.

Per spectral component with angular frequency @, the recipe then reads

~f . (E+I)T
‘ i'j‘(::,(1+%)’}";mj)=M(z—’w"—l : i'z'(z;co,i)-al _[i'i(z,r;cos)dt :
T T )
(3.40)
\ (T S TTY
a

In (3.40), the time interval /T to (/+1)T refers to the most recently completed wave cycle of
the relevant spectral component with wave period T. This numerical formulation of wave-
current force Ty(z) thus follows from averaging, per z-level, the horizontal orbital velocity
over the most-recently completed wave cycle, divided by its wave period.

Force Ty(z) represents some acceleration or deceleration of the horizontal orbital velocity
such that the average horizontal orbital velocity vanishes. Inversely, T, represents a
momentum exchange between mean flow and orbital motions.Therefore, with the opposite
sign, T, appears in the momentum equation (2.1) for the mean or wave-averaged horizontal
velocity. As outlined in Section 2.2, the formulation of T, by (3.40) is purely numerical and
the formulation does not reflect an analytical solution. The mere role of (3.40) is yielding a
sufficiently small wave-averaged orbital velocity as well as closing the total force balance
with the mean-flow momentum equation. In the summation of (3.30) to the mean-flow
momentum equation, yielding the total momentum equation for flow and waves, force T\(z)
vanishes. In general T,(z) is z-dependent so that it deforms the mean current profile. The
depth-average of T, must be balanced by adjusting the hydrostatic pressure gradient in (2.1)
for achieving the user-defined depth-averaged velocity.

The formulation (3.40) is implemented in the POINT SAND model. In the subroutine AVERAG
the time integration in (3.40) is ended and re-initialised at every second zero crossing of

Z(t; ws). Note that there is a time lag in the WCI force per spectral component depending

on the time step in the outer loop as well as the period of the particular spectral component.
Moreover, after completion of a wave cycle, the WCI force is updated and this creates a
jump in WCI force in the mean-momentum equation. For a monochromatic wave this jump
is not serious as it disappears upon convergence to stationary conditions. For multi-
component waves, however, the wave-wave interactions create ongoing oscillations in the
respective WCI forces and the sum of these forces perturb the mean momentum and this
sum can create e.g. subharmonic quite faithfully. In the latter case, however, the jumps in
WCI force create a non-convergence in the mean flow solution, irrespective of the time step
in the outer loop. For obtaining convergence therefore the WCI forces are adjusted
gradually over the respective wave period. The following procedure (3.41) is designed for
that purpose. In (3.41), n represents the gradually adjusted T, from the old value 1, to the
new prediction 1, for T,. This prediction is based on (3.40) and it reads
Nw=2.Tx(new)-T,(old) with T,(new) defined by the latest evaluation of (3.40) over the most
recently completed wave cycle and T,(old) the former cycle. The differential equation
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d
d—,?:afr(r;@—q) (3.41)
T

has the temporal solution 7= q0+um{1—exp(—%a rz)} with time t and this solution

changes gradually from T to ... Inspired by (3.41), the change in WCI force after a wave
cycle is gradually adjusted by the finite difference scheme

n+! n na n
7 l]=,?(]+~§?(%_n( l) : n=12,..N , (3.42)

where N is the number of time steps in the inner loop covering one wave period and integer
n is the counter which is reset to n=0 after every second zero crossing of the surface
elevation. In (3.42), a is taken so that N™-1¢=r.(Mw -No) Which requires o=-In{(1-r)>. This
prediction is based on (3.40) and it reads 1.=2.T(new)-Ty(old) with Ty(new) defined by
the latest evaluation of (3.42) and T,(old) the result of (3.42) at the completion of the most
recent wave cycle. For bichromatic waves this approach yields converged solutions.

As derived in the previous section, see (3.19), the conditions for a stress-free surface
demand to zero order in wave amplitude:
= Ju w kJow
gty EB W _EGW (3.43)
oz ox @ ot

In case of a free surface subjected to wind shear stress, the condition (3.43) still holds when
the wind shear stress does not vary in the rthythm of the surface waves.

The bed condition for orbital motions can be based on a turbulent boundary layer i.e. a
partial slip condition or viscous sublayer i.e. the no-slip condition.

The partial slip condition for a turbulent flow over a hydraulically rough bed requires subtle
definition for obtaining results independent of the thickness Az(kmax) of the computational
bed boundary layer. In literature on 1DV models for orbital motions we found insufficient
details for reference and therefore we present our procedure in detail (see also Appendix
C).

Therefore, the well-known quadratic friction law is applied for the bed shear stress:

o [E+EE+)

_ﬁg + .a_g] Sl (3'44)

(’””‘")[ oz " oz

z=2, z2=Az;

with
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1
S= lIog[1+Z—AZ"’—“-‘i"i] ; k=041 (3.45)
K z,

for a quasi-steady log-layer with roughness length z, 1/30 of the Nikuradse length scale k.
In (3.44), the filter function fi, has been set to unity because in the bed boundary layer,
turbulence is sufficiently fast for responding in a quasi-steady fashion to the imposed

orbital shear rates. The latter is substantiated in Chapter 4. In (3.45), the level 1Az,

refers to the first computational velocity point above the bed.

According to the standard procedure for solving the mean momentum equation in the
original DPM, (3.30) is discretized on a staggered grid with velocity # in cell centre and its
vertical gradient on cell interfaces. The principle unknown is A% / 5z and Hermite

interpolation similar to (3.3) is applied with diffusion Euler implicit. Further, the bed
boundary condition using the quadratic bed friction is solved semi-implicitly by products of
flow variables at old and new time levels. To that purpose, the vertical gradient of the
horizontal velocity is coupled to the near-bed velocity at the new time level as exaplined
below.

From (3.44) follows the wave-induced part of the bed shear stress vector which has zero
mean:

T, = (U +fﬁpu?')%

=357 (|E| u-— m)ga:, ~ (3.46)

Decomposed into mean and orbital motions the previous equation reads

7, = (u+f,,pu,)%§i = S"2(|Q+§|Q+|Q+§|-ﬁ_—@) (3.47)

g L.L -

Zo

For the purpose of Hermite interpolation a connection between orbital velocity and its
vertical gradient is desired and this relation follows from re-arranging the previous equation

into:
S+ alD), - sor)5] =57 (el ealy), (3.48)
or after division by S*|U +,,, -
E(%Azm)—(“fapvr)% = ibl,gl_fil ~U(3 Az ) G:49)
w FE

WL | delft hydraulics 3-14



MNumerical simulation of wave-current driven sand transport Z2899.10 October, 2000

At the bed al turbulent motions are smaller as well as faster than the orbital motions so that
fi,=1. Further, the time levels are considered for implicit integration so that the previous
equation yields:

U(3Az, 00t + At)_ _ [U +~Ur(zost)]S2 | O (z,t + Ar)‘ _
|(—J+E(%Aztmax’t)l oz

o K (3.50)
UaUu+ |

U+ (3 Azypyot)

- Q(% Azkmax ’ f)

*ﬂzim

The LHS of (3.50) contains the desired implicit coupling for the new time level in the inner
loop in which (3.30) is solved and all variables in the RHS of (3.50) are defined at previous
time level(s).

Comments

Note that the definition (3.30) of Ty is not based on an analytic model for the wave-current
force. The sole purpose of T, is obtaining such a small mean horizontal orbital velocity that
this mean value can be neglected in the horizontal orbital momentum equation (3.30).

The principle purpose of Ty is that, once convergence is obtained, its precise formulation is
irrelevant provided the horizontal orbital momentum equation is added to the mean
horizontal momentum equation (2.1). This addition eliminates T, but the true mean

Eulerian velocity is U(z)+#(z) rather than just U(z).
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4 Turbulence closure

4.1 High-pass filter function for wave-turbulence interaction

Laboratory experiments of Jiang et al. (1990) with wind-driven surface waves over a
turbulent flow have shown marginal wave-turbulence interaction. Therefore, the inclusion
of the full eddy viscosity in the closure for the stress tensor of (2.2) would overestimate
significantly the orbital Reynolds stresses and likewise the turbulence production by orbital
shear rates in most of the fluid volume. On the other hand, however, there is notable
turbulence production in the boundary layer so that neglecting wave-turbulence interaction
is not correct for the entire fluid volume.

Therefore, this section considers a simple model for determining the high-pass filter
function f;,, that was introduced in (3.13) and (3.30). This function reduces the total eddy
viscosity to a smaller one that represents the exchange wave momentum just by sufficiently
fast turbulent motions. To that purpose we repeat the derivation of the eddy viscosity
defined as the product <w'>>t, between the variance <w’>> of the vertical turbulent velocity
component and its correlation time scale T, . Subsequently, we estimate the reuced variance
<w'?> of turbulent motions with time scale faster than the wave period as well as the
corresponding reduction in correlation time scale 1. The two reductions are compared to
the original magnitudes of <w'>> and 1, and this comparison yields the low-pass filter
function 0<f;,,<1 that depends on the angular frequency of the particular spectral wave
component and the time and z-dependent turbulent properties as predicted by some
turbulence model.

This function represents the response of sufficiently-fast turbulence to orbital shear rates
with angular frequency . Note that in the experiments of Klopman (1994) the horizontal
wave length is about five times the water depth. Therefore, all major energy containing
turbulence wave lengths are sufficiently short for interacting with the imposed spatial
variations in orbital shear rate. Consequently, in this particular case, the problem of wave-
turbulence interaction reduces to modelling just the turbulence response in frequency
domain. In the more general case, the high-pass filter function should also include the
separation of turbulent shear stress in wave number space.

The derivation of the high-pass filter based solely on separation in frequency domain is
presented below.

First, the frequency spectrum of Lagrangian turbulent velocity is estimated. From this
spectrum, the fraction of turbulent kinetic energy with minimal frequency o is estimated
and o is the angular frequency of the surface wave. The formation of orbital Reynolds
stresses is set proportional to this energy fraction as well as the reduced time scale and the
product of the latter two defines the high-pass filter function fy,.

wi | delft hydraulics 4|



Numerical simulation of wave-current driven sand transport 728%9.10 October, 2000

The frequency spectrum of Lagrangian turbulent velocity is derived as follows. The
(Lagrangian) position X of a fluid parcel, starting at Eulerian position x at time t is defined
formally by

x0)=x B oux,140) (4.1)

with total derivative d/dt with respect to flight time t of the fluid parcel starting at x and u
is the total velocity of the fluid. The Lagrangian autocorrelation coefficient p,, for a single
velocity component is then defined by (Tennekes and Lumley, 1972, eq. 7.1.4)

(u‘(;,r)u'(i,t-i- 1')) ‘ 42)

o)

P73 X:t) =

The brackets <..> imply ensemble averaging over turbulence; the variables after the
semicolon in (4.2) are considered as parameters. If turbulence is superimposed on a time-
varying mean flow then the formalism of turbulence with stationary increments could be
introduced, see (Monin and Yaglom, 1975, part II, sec. 13.1). For turbulence in a wave-
affected flow, the procedure would be to define turbulence superimposed on a mean flow
that is locally linearized in time, i.e. turbulence with stationary first increments, and by
applying phase averaging as the appropriate ensemble-averaging operation. Nevertheless,
the consequences for the design of the following simple model for the high-pass filter
function fy, are equivalent to the following considerations for stationary turbulence.

For stationary turbulence, the definition of the so-called integral Lagrangian time scale
reads (Tennekes and Lumley, 1972, eq. 2.3.17):

Ty= j Pu(T)dT . (4.3)
0
The derivation of eddy diffusivity I'r then yields (Tennekes and Lumley, 1972, eq. 7.1.14):

=i O (), @)

and the usual closure assumption is that eddy viscosity is proportional to I'r, the coefficient
of proportionality is about unity and it is called the turbulence Prandtl/Schmidt number, see
e.g. (Rodi, 1984).

Here the interest is on eddy viscosity related to the orbital Reynolds stresses due to

turbulence with angular frequency ® or larger. The high-pass filter function is now defined
as:

Ir(o)

Tul@)= G

4.5)
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with [ (@) the eddy diffusivity of turbulent motions responding to shear rates imposed at
angular frequency ®. Consequently, according to (4.4) and (4.5), two estimates should be

made for defining the high-pass function. The first estimate concerns the variance (w’2 (a;))

of turbulent motions with angular frequency exceeding ®. The second and last estimate is
the Lagrangian time scale of the high-pass filtered turbulent motions.

The first estimate thus concerns the ratio in velocity variances. Experiments by Sato and
Yamamoto (1987) have shown the following approximation to the Lagrangian auto-
correlation coefficient (4.2):

Pu(t)=exp(-7/7;) . (4.6)

The corresponding (normalised) energy spectrum E,(w') follows from the cosines
transform (Hinze, 1975, eq. 1-95a) of (4.6) and it yields:

En(@)=2—Tb — ; [E.(@)do'=] @7
0

71+ (')
so that the ratio of velocity variances becomes

(u? (@) %

A T =|E, (0)deo'=1-2arctan(w 7)) (4.8)

12
@)
and this defines the first estimate.

The second estimate concerns the equivalent time scale of the high-pass filtered turbulence
with corrected Lagrangian correlation function:

7,(0)= Tpm(r; w)dr (4.9)
0

where @ after the semicolon of the autocorrelation coefficient refers to the high-pass
filtering operation on turbulence. In (4.8) appears the product (w7.) i.e. ® is inversely
connected to the integral time scale. This relation connects the inverse of angular frequency
(or wave number) to integral time scale (or length scale) i.e. disregarding the 2m for
conversion to period or wave length. The equivalency between integral time scale and the
inverse of appropriate angular frequency is typical for turbulence processes, see (Hinze,
1975, chapter 3) for examples. Therefore, (4.9) is approximated by

£ (0)= [pulDdr (4.10)
0
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where ®"' represents the upper limit of time scales of turbulence that responds to

oscillations with angular frequency . Consequently, the estimate for the ratio in integral
time scales reads:

%: 1-exp{-(w7,)"} . (.11

Combining (4.8) and (4.11) in (4.4) for determining the ratio (4.5) yields the high-pass filter
function:

S ={1-}arctan(0 7, )H{1-exp[(e7,) "]} (4.12)

which, of course, becomes unity for vanishing integral time scale 7, i.e. when the
turbulence is very fast compared to the oscillations in the imposed shear rates. Figure 1
presents the properties of the previous functions and particularly the lower graph for f,,, can
be used to estimated the thickness of the wave-induced turbulent boundary layer above a
| rough bed for an estimated profile of 1,(z).

Finally, before closing this section, an estimate for the integral Lagrangian time scale proper
should be made. As presented in the next section, an eddy viscosity/diffusivity model will
be applied. Practically all such turbulence models are based on some analytical expression
or transport equation for the turbulent kinetic energy q* ; note that q* is used here rather
than k for avoiding confusion with wave number. Most eddy-viscosity type turbulence
models are tuned for estimating the exchange of streamwise momentum or mass in the
direction normal to the wall, in the present case that is the vertical direction. The relevant
eddy diffusivity then is based on the vertical velocity variance, so from its definition
(2.5.4), the integral time scale is expressed in turbulence model variables through

I

Lt=Lag
w

: L= ; W =aq’ ; ¢'=3(uw) . (4.13)
Or

with empirical coefficient a~0.25 for turbulent channel flow, see e.g. (Nezu and Rodi,
1986, fig. 12 and 13) and turbulent Prandtl/Schmidt number o1~0.7. Whether a is wave
dependent is not investigated yet. With coefficient o and the turbulent kinetic energy q*
estimated by the turbulence model, the integral time scale 1. follows from (4.13) and with
the given angular of the surface waves, the high-pass filter function is known at every level.
Sufficiently close to a rigid wall, the eddy diffusivity is proportional with wall distance
where ¢’ is large and nearly constant, see e.g. (Nezu and Rodi, 1986). Consequently, the
integral time scale 7 is proportional with wall distance. The consequence is that practically
all energy containing length scales of the fast near-wall turbulence respond to the imposed
orbital shear rates with angular frequency ® and so fi, tends to unity and that corresponds to
1.~0 in (4.12). Therefore, fi,;=1 has been used in the boundary condition (3.44) for orbital
horizontal velocity.
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The simple high-pass filter function is devoted to the special case of simulating the
experiments of Klopman (1994) i.e. with wave length of surface waves exceeding the water
depth significantly. In case of short waves on deep water the truncation in wave number
space should also be included in the filter function. The extension of fi, for truncation of
turbulence shear stress in wave number space is possible provided the form of the cross
spectrum G,,(k) based on turbulent velocity components u' and w' as a function of
horizontal wave number magnitude  is known. An estimate for G,w(k) could follow from
on observations in wave-induced boundary layers and using the decomposition procedure of
(Jiang et al., 1990).

Before presenting the turbulence model in the next section, the turbulence production by
orbital motions is considered here. The turbulence production is a source term in the
transport equation for turbulent kinetic energy. The exact expression for production Py of
turbulent kinetic energy reads:

175 2 P———
% ox, 0x,

=—(uu) ; d,=1 é(u")+é—(f‘—") (4.14)

Pk =’];d.;=' S

with Reynolds stress tensor r;, rate-of-deformation tensor d;; and <..> represents ensemble-
averaging. In case of phase-averaging, e.g. with surface-wave elevation as reference signal,
the tensors in (4.14) can be decomposed into mean (written in capitals) and orbital
components:

—

ry=Ry+%; ; d;=D;+d,

(4.15)
For instance, Jiang et al. (1990) applied such a decomposition procedure to turbulence and
surface waves.

The application of the well-known eddy-viscosity closure for expressing the deviatoric
wave-induced Reynolds stresses into the orbital shear rates then yields for the turbulence
production:

P, =2v;(D,D; + fpd,d,) (4.16)

and in wave-averaging Py it is understood that fy, is independent of wave phase i.e. fy, refers
to wave-averaged turbulence properties rather than wave-related modulations of the integral
time scale.

4.2 Turbulence model

The standard DPM is equipped with the k-¢ turbulence model and the quasi-equilibrium
level 2.5 Mellor-Yamada model which are the prominent models in large-scale civil
engineering simulations. The application of these models in the WCI problem showed no
difficulties. For the purpose of comparing the results of the hydrodynamic performance of
the adapted POINT SAND with (Groeneweg and Klopman, 1998), the k-L turbulence model
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they applied is used here as well. For sake of completeness of notation our versions of the
k-L and k-¢ turbulence models as implemented in the POINT SAND read as follows.

The generic equation for Turbulent Kinetic Energy (TKE) reads:

ok 0O ok
E:E{(U-’-UTIG})E}-{-P&_S_BR (4.17)

Table 4.1 presents closure of (4.17) for the k-L and the k-€ turbulence model.

k-L model k-& model
turbulence production | P, | see (4.16) see (4.16)
dissipation rate € e=c k%)L |see(4.18)
buoyancy flux B« | vp/0,N* |v;/0,N?
eddy viscosity Vi |e, Lk ¢ ke

Table 4.1. Definition and closures for terms in k-L and k- turbulence models

The k-¢ turbulence model is a two-equation model with the following equation for energy
dissipation rate €:

o 0 de| €
E‘:-: Ez-{(u-f v/ 08)_0"—;}-{-;(6'”& =Cy & ~=Cs, Bk) (4.18)

Our version of the k-L model is closed with the flow-independent mixing length L:

L=x(9z,+2) [1- ggi"'z (4.19)
zﬂ

which, in principle, is the Bakhmetev profile but with some correction for the length scale
at the mean water level and at the bed. For boundary conditions on a hydraulically rough
bed we refer to Appendix C.

The last term By in (4.17) the buoyancy flux which represents the conversion of turbulent
kinetic energy to mean potential energy or vice versa. In (4.17) appears the so-called
buoyancy frequency N (see Table 4.1):

N =_E2P (4.20)
p oz

and the turbulence Prandtl/Schmidt number c,~0.7 for conversion of eddy viscosity into
eddy diffusivity. We refer to Chapter 6 for the formulation of the total, fluid and sediment,
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density that is assumed to damp turbulence as if the fluid was stably stratified by salt or
temperature.

In (4.17) and (4.18) Py is the turbulence production term that is extended here by wave-
turbulence interaction according to (4.16).

K 0.41

o, |07

o |10

o {13

c, |0.09
¢, |0.54

cp | 0.156
ce |1.44
Ci: | 1.92
¢ | ON>0
¢ | IN’<0
z, | 1[mm]

Table 4.2. Coefficients used in the k-L and k-¢ turbulence models.

In (4.19), k is the Von Kdrmén constant (k~0.41), z, the roughness length, similar to the one
used in bed friction (3.45), and z, is some off-set or surface-roughness length scale that
Groeneweg and Klopman (1998) introduced for maintaining a non-zero L at the free

surface; they took z, = 1 mm. In (4.19), z=0 is considered to be the mean bed level and z=Z
the mean level of the water surface. The coefficients 6;=1.0, c;_, =054 and ¢, =0.156 are

adopted from (Groeneweg and Klopman, 1998) but the addition of kinematic viscosity in
(4.17) for diffusion is not applied by them.

Presently in the POINT SAND model, vertical advection by the mean and orbital flow is
neglected but may be implemented in the same conservative approach as for sediment, see
Chapter 6. Equation (4.17) is discretized on the same grid as for the momentum and
pressure equations but with k and vy on cell interfaces. At the bed and mean water surface
(without wind forcing) the vertical diffusion of turbulent kinetic energy is zero. On the bed
a usual boundary condition for high-Reynolds turbulence models is imposed, see Appendix
C, with reference to velocity defined in the centre of the bed cell (kmax) at the previous
time step.

For the mean velocity, the time reference is the start time of the inner loop of solving orbital
motions. The boundary condition for k differs from the one imposed in (Groeneweg and
Klopman, 1998) because they applied a no-slip condition for velocity and expressed u. in
the vertical gradient of horizontal velocity. The application by Groeneweg and Klopman
(1998) of the no-slip boundary condition is not in accordance with the high-Reynolds
turbulence model (4.17). The no-slip condition should be applied with a low-Reynolds
turbulence model that accounts for the direct damping of turbulence by molecular viscosity.
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Another problem of using the no-slip condition as well as low-Reynolds turbulence model
for flows near hydraulically-rough bed is the existence of a viscous sublayer with typical
thickness a few times larger than the size of the sand grains that form the bed roughness.
The neglect of the viscous effects very close to the bed is in accordance with the following
procedure. The application of the high-Reynolds turbulence closures, such as (4.17), can be
regarded from the viewpoint of asymptotic expansion theory with

g 4.21)
1]

as scaling parameter. Note that z* is a local Reynolds number. The inner solution holds for
small z" and covers the z-interval with dominant viscous effects on turbulence. Conversely,
the outer solution is dedicated to large z' and this is the range of application of high-
Reynolds turbulence models. In this asymptotic expansion, the outer solution should match
the inner solution and, as usual in this theory, the matching conditions for the outer solution
are imposed on z'=0. Appendix C gives the matching conditions for the (high-Reynolds)
outer solution, see e.g. (Van Dyke, 1975, eq. 7.7b).

The diffusion term in the turbulence equation (4.17) Euler-implicit time integrated, Py is
integrated explicit and in the last so-called energy-dissipation term, k*? is written as a
product of old and new time level and it is integrated implicitly. This numerical solution
ensures positive k and consequently no truncation on k is applied. The k-L model is solved
at each inner-loop time step using the solution of the orbital motions at the new inner-loop

time level. All components entering the double contraction czjcz, in (4.16) of the wave-

related strain-rate tensor are evaluated but the horizontal gradients are derived from
temporal derivatives, according to (2.4).
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5 The mean velocity profile and mean flow
rate

After completion of simulating the orbital motions and turbulence properties in the inner
loop, the momentum equation (2.1)

ot Ox Oz ™7 5z *

for the mean horizontal velocity is solved with a time step equal to the wave period. The
solution procedure is the one employed in the original DPM with WCI force T integrated
explicitly. The eddy-viscosity in (2.1) equals the eddy viscosity obtained by solving the q-L
turbulence model (Section 4.2) up to the last time step in the inner loop. The boundary
condition on the mean water surface equals (3.20) which is derived from time-averaging the
stress-free condition with surface waves. The standard boundary condition on the bed is due
to a logarithmic profile using the roughness length scale z, user prescribed either directly or
converted from user-specified Chézy or Manning coefficient

The standard procedure in the POINT SAND model is adopted for estimating the horizontal
pressure gradient such that the depth-averaged horizontal velocity Uy is obtained and Uy is
user-prescribed. In the experiments (Klopman, 1994), the total flow rate in the facility is
constant and it is determined by a pump recirculating the water in the flume so that U, then
represents the flow rate averaged, over any cross section of the flume between the flow-
inlet and flow-exit sections. In case of waves in the facility, the depth-integrated Stokes
drift yields an additional flux in the direction of wave propagation.

In the numerical simulations using the extended DPM, the following three fluxes are
involved in obtaining the imposed depth-averaged velocity Up:

e The depth average of U(z) being the solution of (2.1);
o The depth average of Stokes drift Ug(z);

e The depth average of u(z), being 7(z,t) averaged over the previous wave period.

At the end of Section 3.3, the role of force T, is explained in conjunction with the addition of
the horizontal orbital momentum equation (3.22) to the mean (wave-averaged) horizontal
momentum equation (2.1). Conceptually, the essential point is the elimination of Ty in

conjunction with a non-zero wave-averaged horizontal orbital velocity ﬁ(z), defined by

(3.27). The total mean velocity then reads U(z)+ ﬁ(z) rather than just U(z).

For WCI, the procedure for adjusting the horizontal pressure gradient is extended by
including the wave-related mass flux, or equivalently depth-integrated Stokes drift, and the
new formulation reads as follows:
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= € Ly _ _
P _ Tox ~Tou +U +Ug UU+2; , G.1)
ox ¢ :

with depth-averaged velocity and depth-averaged Stokes drift defined by
15 = 0U
§}=:IU(Z.r)dz : (;)—Cu(f,’) 12 , (5.2)
g 0 oz z
for the latter see (Van Kester et al, 1996). Likewise, the depth-average of Ty(z) is defined by

T.==|T.(2)dz . (5.3)

| —
O Sy Ty |

In (5.1), T is the bed shear stress and t,, the surface shear stress, both divided by fluid
density. The shear stress 1, is used here for imposing the condition (3.20) for a stress-free
boundary with waves. In (5.1), T, is a relaxation time which is set to twice the time step of
solving (2.1) i.e. twice the wave period and this choice is standard for the original DPM. The
RHS of the depth-integrated Stokes drift in (5.2) is due to averaging over the inner-loop
solutions of the last wave period. Similarly, force T, defined by (3.27), is evaluated over the
inner-loop solutions in the previous wave period.

The solution of the mean flow profile according to (2.1) is used in the next inner loop for

solving the hydrodynamic pressure, vertical and horizontal orbital velocity and k-L
turbulence model in the inner loop. This closes the set of equations.
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6 Sediment distribution model

6.1 Advection-diffusion equation

We apply the following advection-diffusion equation for the mass concentration c® of
sediment fraction (k=1,2,..):

(k) (k)
e +V’-(Ef~“c"‘))=—‘i U+U—£} ge ; (6.1)
ot Oz oy ) oz

using the mean particle velocity

=u+wh= . (6.2)

The particle velocity (6.2) is averaged over a sufficiently small volume still containing a
sufficiently large number of particles for defining this mean velocity vector. The first term
in the RHS of (6.3) represents the orbital velocity of all spectral components. The last term
in (6.2) is the fall velocity, specified below for sand and g is the downward acceleration
vector with magnitude g.

The horizontal orbital velocity component in (6.2) is the solution of the horizontal
momentum equation (3.30). The vertical orbital velocity component, however, is derived
from the incompressibility condition rather than from its momentum equation. This
inconsistency is motivated by mass conservation and this argument is clarified in Section
6.3.

By (6.2) we implicitly assume that the mean flow is horizontal and that it does not vary in
horizontal direction. The orbital velocity consists of the horizontal as well as vertical orbital
component. In (6.1) just the vertical diffusion is included. In (6.1), the eddy diffusivity is
defined through the eddy viscosity vr divided by or, the turbulence Prandtl/Schmidt
number. Typically, 51~0.7 holds and this corresponds to the multiplication factor B~1.4
used in sand transport literature. The Prandtl/Schmidt number is a user-defined parameter
and can be specified per sediment fraction (k).

Implicitly, we assumed in (6.1) that the particle response time (Stokes time) is sufficiently
small so that all temporal and spatial variations in eddy diffusivity are transferred to particle
diffusion. In other words, in (6.1) we do not apply the high-pass filter function that was
introduced in Chapter 4 for the possibly reduced response of turbulent eddies to the
straining action of the orbital motions.

Appendix D describes that the user can select more than one sediment fraction e.g. with

different grain diameter and mass density. For simplicity in notation in the remaining text,
however, we omit the superscript (k) for sediment fraction unless required.
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The fall velocity of the sediment w, is computed according to Van Rijn (1993) but reduced
by hindered settling (see Eqs 8.2 and 8.3 in Bosboom et al., 1997, Unibest-TC manual). The
fall velocity w;o of a single particle in infinite fluid, without wall effects, reads (Van Rijn,

1983):
Agd’
W, o =—" y lpm < d, <100um
: 18v
1ov|(. 001aga®Y?
Wso =7 1+—V2"S— -1 s 100;:m<d$ SIOOO}.M (6.4)
w,o=11(Agd,)" , 1000 ym<d,

Here d; is the diameter of the suspended sediment, which is a user-defined property. Van
Rijn (1987) concluded, on the basis of measurements, that d; should be in the range of 60 to
100% of the diameter of the median bed material size ds. In the current version of the
POINT SAND model, d; is set equal to dsp. A user-defined d; will be implemented in a later
stage. It appears that through the piecewise approximations (6.4), the settling velocity is a
discontinuous function of the grain size. Although during the simulation the grain size is
constant, this discontinuity is an undesired property and we recommend replacing (6.4) by a
smooth function of d; over the entire range.

In high concentration mixtures, the fall velocity of a single particle is reduced by the flow
as well as fluid stresses induced by other particles. Following Richardson & Zaki (1954) we
use:

5
3
=[1-= 1w, (6.5)
" [ £y,

with wo defined by (6.4) and where ¢ is the volume fraction of the all suspended sediment
ie.

c{*]

=y — 6.6
¢ ; po (6.6)

Further, ¢; = 0.65 is taken as the maximum volume fraction of solids in a non-cohesive
porous bed. Through (6.6) the volume fraction becomes a temporarily and spatially varying
property. The Richardson & Zaki formulation (6.5) then makes the settling velocity time
and space varying.

WL | delft hydraulics 6-2



Numerical simulation of wave-current driven sand transport Z2899.10 October, 2000

6.2 Boundary conditions

Equation (6.1) is subjected to the boundary conditions of zero flux at the mean water
surface and a specified time-dependent boundary condition at a reference level close to the
bottom. Presently, the user can choose between the following two generic forms for the
boundary condition based on reference concentration.

The first boundary condition prescribes the sediment concentration at a certain reference
level z, :

c(zast)=cy(t) > 6.7

or reformulated in terms of a pick-up function:

mg@ﬁ{v+wJaﬂ§£ 0 . ©8)
z

2=z,

The reference level z, must correspond to the prescription of the bed-reference
concentration c,. Presently, we implemented the formulation of Zyserman and Fredsee
(1994) for the mass concentration ¢, (#):

0331(9-6,)"
0331 (9 B 90)1.75

(1) = at z,=2d, . (6.9)

1+

m

In (6.9), the maximum concentration C,, has a value of 0.32 that deviates from the original

value in (Zyserman & Fredsee, 1994). Further, in (6.9), @ is the Shields parameter defined
by

2
Mo ; og=fr (6.10)

L) 3

f= b
(s-1)gdy Py
with s the relative sediment density and #, the total instantaneous shear velocity
Ju
' = fopVr—— (6.11)
oz|
as determined by the hydrodynamic module. Note that fi,, = 1 holds at the bed because of
the small and rapid turbulent eddies. The computation of the bed-shear velocity (6.11) is

treated in detail in Appendix C.

Finally, in (6.9), €, is the critical Shields parameter and Van Rijn (1993) proposes the
following piecewise representation of the Shields curve:
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6,=024 D' , 1<D.<4

6.=014 D |  4<D.<10

6,=004 D , 10<D.<20 (6.12)
6.=0013 D) |, 20<D. <150

6, =0.055 ,  150<D.

with the dimensionless grain diameter D.:

(s=1)e )K (6.13)

» neafP1

‘ It appears that through the piecewise approximations (6.12), the critical Shields parameter
is a discontinuous function in D. which is an undesirable property that we recommend for
improvements.
Upward mixing of suspended sediment involves the conversion of Turbulent Kinetic
Energy of the fluid into an increasing potential energy of the sediment. The latter is
subsequently destroyed by viscous drag while the particles settle. The rate of conversion of
TKE into the sediment’s potential energy is called buoyancy flux. The latter is included in
the implemented k-L and k-ge turbulence models by assuming the analogy between
sediment-laden flows and flows with density stratification through temperature or salt.
Accordingly, the buoyancy flux for the sediment is then estimated by the total fluid-
sediment density p defined as:

P=p, +Z(l—§%)c‘” (6.14)
k 5

In (6.14), p., represents the density of pure water and this density is determined by its
temperature and salinity, the latter are specified by the user.

Note that at the instant of zero bed stress in an oscillatory flow (6.8) may yield a positive
concentration ¢(z,) whereas (6.7) prescribes a zero concentration.

6.3 Mass conservation and inconsistency with dynamical
equations for orbital motions

The horizontal advection by orbital motions in (6.1) needs careful attention for satisfying
the conservation of sediment mass in an incompressible fluid and this subject is considered

here.

We start with (6.1) for a constant sediment mass concentration, whence:
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@—+Q+@=O (6.15)
ox Jdy Oz

This well-known requirement is not guaranteed by the solution of the vertical momentum
equation (3.21) even though the hydrodynamic pressure solution was formulated using
(6.15) in conjunction with the linearized momentum equations, see Section 3.1. Moreover,
the free-surface conditions for the momentum equations are prescribed at the (time-
averaged) mean-water level rather than at the momentary water level z={(t).

For correctly modelling horizontal and vertical sediment transport, the incompressibility
condition (6.15) and its intimate relation to the advection-diffusion equation (6.1) is
essential. Consequently, for satisfying mass conservation we derive the vertical orbital
velocity for sediment transport from (6.15) rather than from the vertical momentum
equation. This is the inconsistency announced in the title of this section.

We define W, as the vertical orbital velocity component that satisfies (6.15) formulated

now as follows:

oW, "'Z u(x,y,z,t0,) - ov(x,y,z,t;0,) =D 6.16)
az = ox ay

with summation over all spectral components (n=1,2,3...) related to the user-specified

angular frequencies ®,. The horizontal derivatives in (6.16) are converted to time

derivatives through two steps that were introduced with reference to (3.28) and to Appendix

B. The latter demonstrates that, by excellent approximation, the orbital velocity vector is in

the vertical plane containing the wave number k(w;,). The latter simplifies (6.16) to

ow Ju(z,t,,)
< 2=0 6.17
oz +Z,,: ox, ’ (5:17)

with x; the horizontal co-ordinate parallel to k(,). Subsequently, we adopted in Section 2.3
the periodicity assumption which converts (6.17) into

5“}6 = Z k(a}n) 5“(2’“(08) , (618)
oz - o ot

n

Integrating (6.18) from the bed level z=0 upwards yields the vertical orbital velocity
component in accordance with the incompressibility condition:

N ke, t du(z.tw,)
wc(z,t)—zn" - | St (6.19)

n  z'=0

The vertical orbital velocity, as defined by (6.19), is used in the advection term of (6.1) and
the latter reads now:
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Bc®
ot

17 s 8 [1n
+V- (4P e®)= E{(l ~,)c®}+ 5{(% - w® )C(”} (6.20)

with the dimensionless velocity %, defined by the summation over all spectral components
(n=1,2,3...):

0 = Z%}ai‘la‘(z,r; ®,) (6.21)

being the sum of the ratio between horizontal orbital velocity and celerity per spectral
component.

Finally, all equations are solved up to the mean-water level z = Z’ and to ensure depth-

integrated mass conservation we must impose the zero flux condition at the mean-water
level i.e.

|
|
z=(: W -w®=0 . (6.22)

If the sediment concentration is not zero near the mean water level and if the net vertical
velocity is upward than (6.22) creates a blocking of vertical sediment transport and
consequently an increase of sediment concentration in the top layer. The latter increase is
not realistic, but it is our sacrifice to obey strict mass conservation. However, all sand
transport remains in a comparatively thin wave-affected boundary layer so that the artificial
blocking imposed by (6.22) is not observed in practice.

The next section presents the numerical implementation that ensures mass conservation.

6.4 Numerical implementation

The advection-diffusion equation (6.1) is discretized in a finite volume and mass
conservative formulation. Notice that this equation is solved once in the inner-time loop
after the solution of all spectral orbital components.

The vertical grid for sediment transport equals the grid for the numerical solution of the
hydrodynamic and turbulence equations.

The horizontal mean and orbital velocity component as well as the mass concentration c(z,t)

are defined in the centres of the grid boxes. The total vertical velocity component

W, —w®), which includes the fall velocity w,®, as well as the turbulence fluxes are defined

on the cell interfaces. The numerical integration (6.19) is based on the same spatial
discretisation as for the advection diffusion equation and this discretisation guarantees mass
conservation at the numerical representation.
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The ceiling of the upper grid box corresponds to the mean water level. The definition of the
lowest grid box depends on the selected boundary condition (6.7) or (6.8) and this
definition is explained below.

For (6.7), the lowest computational grid box is defined as the box with its centre nearest to
the level z=z, as defined by (6.9). For the pick-up formation (6.8), however, the lowest grid
box has its bottom nearest to the level z=z, as defined by (6.9). In the code, the integer
pointer to the lowest grid box is defined as KBED and, of course, KBEDSKMAX holds where
KMAX is the user-specified number of grid boxes of the hydrodynamic and turbulence-
model equations. Note that KBED depends on the grain diameter and KBED may thus vary
between sediment fractions.

For extremely fine grids near the bed, it is possible that some grid boxes are excluded.
Nevertheless, information on mass concentration must be know for the computation of:

o the horizontal sediment transport; and for

e the buoyancy flux using the total density defined by (6.14).

For these purposes we assume that

z<z,: ozt)=e(z,.1) (6.23)

holds. Consequently, the advection diffusion equation (6.1) is thus solved for the grid boxes
1<K<KBED.

The vertical diffusion in (6.1) is formulated by the 8 method although we recommend 6=1
i.e. Euler-implicit for avoiding wiggles. The diffusive flux at the upper interface of cell
number k is based on the finite difference of cy; (one cell up) and the sediment
concentration ¢, of this cell. The eddy viscosity vy is defined at the cell interface. The
diffusive flux is zero at the mean-water level and guarantees mass conservation in
conjunction with (6.22).

The vertical advection in (6.20) reads

& s
E{(Wc —w®)e®} (6.24)

and there are numerous ways for its discretisation. We implemented the following implicit
advection schemes:

e first-order upwind;
¢ second-order central scheme;
o third-order ADI upwind-central scheme.

For the user we made just the first-order up wind scheme available. This scheme is the
single advection scheme that guarantees monotonicity i.e. positive sediment concentration
and no internal formation of new maxima or wiggles. The disadvantage is that the first-
order upwind scheme introduces numerical diffusion by the amount:
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1, - w®|Az (6.25)

with local cell height Az. On the one hand, for large vertical orbital motions this artificial
diffusion can be significant. On the other hand, in the wave-affected boundary layer the net
vertical velocity in (6.25) remains of the order of the fall velocity.

Numerical experiments with zero fall velocity show that the third-order ADI scheme is the
best of the three and creates minor over- and undershoots at very sharp sediment
concentration jumps. The latter hardly occur in practice and on sufficiently fine grids. The
third-order ADI scheme is computational much more involved than the first-order scheme.
Compared to the effort in solving all the other momentum equation for the orbital motions
as well as turbulence equations in the inner-time loop, the increase in computational effort
is modest.

Therefore we recommend the final implementation of the bed-boundary conditions for the
third-order ADI scheme in case of accurate estimation of sand transport with orbital
motions.

Of course, in case of wave tunnel experiments all orbital velocity components in the

previous considerations are set to zero and there is just vertical advection by the fall
velocity. The first-order upwind scheme may then be the optimal choice.

WL | delft hydraulics 6-8



Numerical simulation of wave-current driven sand transport 72899.10 October, 2000

7 Tests case

7.1 Introduction

The tests reported in this chapter were selected for demonstrating the capability as well as
flexibility of the same POINT-SAND model for simulation constant flows, oscillatory wave-
tunnel experiments and free-surface wave-channel experiments.

In Section 7.2, the hydrodynamic as well as the sediment modules are compared to analytic
solutions for stationary turbulent flows with logarithmic-velocity and Rouse-concentration
profiles. Use is made of built-in routines described in Appendix E.

Section 7.3 presents tests for the full hydrodynamic module i.e. for surface waves on a
mean flow with comparison to extensive series of flume experiments. These test
demonstrate the model’s capability of simulating the hydrodynamics in a free-surface wave
channel.

In Section 7.4 the hydrodynamic and sediment modules of the POINT-SAND model are
combined for simulating experiments in a wave tunnel with a rigid lid rather than a mobile
water surface. In order to do so, the model was run in wave-tunnel mode, which means that
the vertical orbital velocity component is not taken into account. It does however give
information on the behaviour of the model compared to wave boundary layer models (see
Davies et al, 1997) that neglect the vertical velocity component. The aim of the comparison
with the wave-tunnel experiments is to test whether the new model is able to give results
which are at least of the same quality as the results presented in (Davies et al., 1997).

Finally, we refer to our ICCE paper in Appendix F and G presenting tests and discussions
on the importance of the novel features of the POINT-SAND model i.e. the simulation of
sediment transport in wave-driven flows.

7.2 Built-in test case

In steady turbulent flows, the vertical profiles of velocity as well as concentration are
nearly singular so that their simulation requires careful validation. To that purpose,
Appendix E presents the analytic solution for the depth-integrated sand-flux, being the
product of a logarithmic velocity profile and the Rouse profile for suspended sand
concentration. Both profiles are consistent with a parabolic profile for eddy viscosity. When
the user runs the model with the extension Jog for the standard input file, the influence of
sediment load on buoyancy is switched off and a subroutine adds the analytic solutions to
another output file, for details see Appendix E.

Figure 2**° presents the graphs using directly the output data that is scaled when running the
model with the built-in test case option for steady flows. The flow velocity is 1 m/s in 1 m
deep water over a bed with ds;=150 pm sand and with roughness z=5ds,.. The non-
diffusive second-order central advection scheme is used for simulating the settling of sand.
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The bed concentration is prescribed at 2ds, in the centre of the computational bed boundary
layer which thus has a thickness of just 4d5t=0.6 mm i.e. roughly equal to z.

The implemented option of using exponentially-increasing layer thickness is demonstrated
here with just 50 layers for covering the 1000 mm water depth while starting with the 0.6
mm bed boundary layer. The time step is 1 s and 1000 steps are made and convergence is
checked by 5000 steps.

Figure 2 presents a good comparison, using the k-L turbulence model. Notice that the
particular definition of length scale L(z), see (4.19), makes the eddy viscosity profile of the
k-L turbulence model very close to a parabolic profile for which the analytic solutions of
Appendix E were derived. The simulation with the k-L model yields a depth-integrated sand
flux of 5.13 kg.m™".s which is very close to the theoretical solution of 5.14 kg.m™ .

Figure 3 shows a lesser comparison between the analytic solutions and the simulation based
on the k-€ turbulence model with all other numerical settings equal to those of Figure 2. The
difference begins with the eddy-viscosity profile estimated by the k-¢ turbulence model
deviating from the theoretical parabolic profile. These deviations gradually accumulate into
the depth-integrated sand flux of 3.06 kg.m™.s simulated by the k-8 model rather than the
5.14 kg.m™.s of the theoretical solution.

Figure 4 exhibits, with all other numerical conditions the same, the performance of Davies’
k-L model where L is based on a depth-integral of the turbulent kinetic energy k. The depth-
integrated sand flux simulated by Davies’ k-L model is 7.68 kg.m™.s large compared to the
analytic solution of 4.06 kg.m'.s rather than the previously found (Figures 1 and 2) 5.14
kg.m™.s theoretical solution.

The last deviation between theoretical results is unexpected but it is entirely due to a
change of the Von Karméan constant xk=0.41 for implementation of the k-L and k-g
turbulence models whereas Davies’ k-L model applies k=0.40 which is used in the POINT-
SAND model only when his model is selected. The large change in the theoretical result by
such a minor change in the Von Kdrméan constant demonstrates the tremendous sensitivity
of the theoretical depth-integrated sand flux to input as well as state parameters, see also
Table E.2 in Appendix E.

Figure 5 is a repetition of Figure 2 i.e. using the k-L model but now the advection scheme is
changed from the non-diffusive second-order central scheme to the diffusive first-order
upwind scheme for advection by the settling velocity. By doing so, the estimated depth-
integral of the sand flux increased from 5.13 kg.m™.s to 6.76 kg.m™.s due to the numerical
diffusion. This is a large difference, although the concentration profiles (on log-log plots) in
Figure 4° show a minor overestimation.

After this demonstration of the implemented test case options, we conclude as follows. The
built-in test case option with its comparison to theoretical results, appears to be instructive
for the beginning as well as the experienced user in appreciating the sensitivity of
numerically simulating sand transport to very fine scales.
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Minor deviations in eddy viscosity amount to larger deviations in the logarithmic velocity
profile, the bed shear stress and the Rouse-concentration profile so that finally the depth-
integral of sand flux is the essential but unfortunately very sensitive outcome.

Further, we hope that the reader is not drawing the seemingly obvious conclusion that the k-
L model is superior to the k-¢ or Davies’ k-L turbulence model. The good comparison
between theory and the k-L model is due to the definition (4.19) of its mixing length L that
nicely matches the parabolic eddy viscosity used in the theory. Note that there exist no
fluid-mechanics law yielding a parabolic eddy viscosity as well as a parabolic eddy
diffusivity profile, for more comments see Appendix E.

Nevertheless, we recommend using the k-L. model when running the built-in test case
simply because it can match the theoretical results so that the user can record easily the
deviation introduced by varying numerical and state parameters, as we demonstrated briefly.

In the following section, the hydrodynamics of the POINT-SAND model are tested for
simulation wave-current interactions where the simulated second-order wave phenomena
depend on temporal or phase lags, either physically or numerically introduced.

7.3 Wave-current interaction; the Scheldt flume

This section presents a series of test cases for the wave-dynamics part of the POINT SAND
model. All cases are based on observations made by Klopman (1994) in the Scheldt flume
of WL|Delft Hydraulics. The comparison is limited to mean flow and orbital amplitude
properties only. We recommend processing the available data for comparison in terms of
turbulence properties as well as Stokes drift.

Klopman performed tests with monochromatic, bi-chromatic and random waves without
current, following the current and opposing the current. Also a test series was performed for
a steady current without waves. It was found that the mean horizontal current profile under
combined wave-current motion is strongly affected by the presence of waves, not only
inside but also outside the wave bottom boundary layer. In the upper half of the water
column the velocity shear is reduced and may even change sign in the case of waves
following the current. Waves opposing the current increase the velocity shear in the upper
half of the water column.

Following Radder’s proposition that he based on arguments derived from the Craik-
Leibovich (CL) vortex force, additional observations were made in a cross section under the
same wave and flow conditions and in the same facility. These observations revealed the
secondary circulation in vertical cross sections perpendicular to the current as Radder
anticipated, for more background see Section 2.2 as well as (Dingemans et al., 1996).

In qualitative agreement with observations, numerical simulations (Dingemans et al.,, 1996)
for waves following the current show that the wave-driven secondary circulation
contributes to the backward bending of the vertical profile of the horizontal current. This
backward bending is due to the transfer of low momentum fluid from the upper part of the
vertical walls to the upper part of the flow in the flume’s centre plane.
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This phenomenon, driven by CL vortex force, cannot be simulated explicitly by the POINT
SAND model. Instead, we recommend the implementation of Radder’s model (Dingemans,
1999) representing the net effects of the CL vortex force in terms of additional momentum
transfer.

Figures 6 to 9 compare the observations in (Klopman, 1994) with the wave-current
simulation using the POINT-SAND model but without an additional model for the net effect
of the CL vortex force.

Figure 6 presents what appeared to be the most delicate test case for wave-current
interaction by the POINT-SAND model. It is a test that in principle lies outside the intended
range of applicability of the POINT-SAND model as it is designed for waves on turbulent
shear flows rather than on laminar flows.
In Figure 6, the monochromatic wave propagates in positive U-direction on initially
stagnant water while producing virtually no turbulence above a thin bed-boundary layer. In
| other words, most of the water column is a weak laminar flow. Particularly, the very weak
streaming in the surface boundary layer relies now on the laminar flow solution of the
| model. Moreover, the crude zero-order approximations (3.19) and (3.2) for the stress-free
| water surface dominate in this test case.

The simulation for Figure 6 required careful selection of the time step as well as the
relaxation time for temporarily smoothing, per computational layer, the otherwise
oscillating WCI force. If the WCI force oscillates in time then also spatial oscillations along
the water depth may be induced due to subtle phase differences of the temporal oscillations
of the wcI force as a function of the depth co-ordinate. These vertical oscillations are
virtually not damped because of the laminar flow. Nevertheless, the result is in qualitative
agreement with observations and that is more than we anticipated of the model for laminar
flow. Figures 2 and 3 of Appendix G exhibit additional evidence for this test case.

Note that in Figure 6 the monochromatic wave propagates in positive U-direction and visual
inspection suggests that the depth-integrated flow is in negative U-direction. However, there
is also the Stokes drift for the water-mass flux that we do not simulate explicitly. Instead,
the user-specified depth-averaged velocity (zero here) is corrected by the Stokes drift
through the pressure-gradient control procedure (5.1). Consequently, the depth-integral of
the velocity profile in Figure 6 is compensated by the depth-integrated Stokes drift.

Figure 7 is devoted to the proper design conditions of the POINT SAND model i.e. waves
propagating on a turbulent shear flow. The results in terms of mean flow and amplitude of
the 1.44 s carrier wave are in good agreement with the observations. We cannot explain the
underestimation of the wave amplitude (Figure 7°) for a monochromatic wave against the
current. Further investigation, including a check on the processing of the wave amplitude
and the occurrence of wave reflection is recommended.

Figure 8 deals with bichromatic waves propagating with the turbulent current. This is the
first test case where more than one spectral component is simulated by the POINT SAND
model. The results are in good agreement with observations although the backward
curvature in the mean current profile begins at higher levels than observed.
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Figure 9 is a challenging simulation using 12 spectral components that Klopman
constructed from his wave spectrum that was forced by significantly more spectral
components. The 12 spectral components have nearly the same wave amplitude. Due to
lacking digital data sets we did not compare the rms wave amplitude to observations but
this is recommended for future analysis.

In addition to the previous cases, Figure 5 in Appendix F presents an example of simulating
a second-order Stokes wave in a 3.4m wave channel with similar horizontal orbital velocity
as for the C1 series in the rigid-lid wave tunnel. Figure 5 in Appendix F shows the
deformation of the second-order Stokes wave inside the wave-boundary layer. Further, this
figure exhibits a remarkable feature of local maximums in the eddy viscosity just after flow
reversal. For more details we refer to the text of Appendix F describing that the high-pass
filter function f,, (Section 4.1) is responsible for these local maximums in eddy viscosity.
Although local maximums in turbulence after flow reversal can occur due to turbulence to
laminar and laminar-turbulence transitions, these phenomena are is not intentionally
modelled by fi,, nor by the implemented high-Reynolds k-¢ turbulence model.

Note that the filter function can be applied only for orbital motions because each spectral
component is simulated separately so that f, weights the strain rates per spectral
component and as a function its wave period, see (4.12). In principle, the high-pass filter
function is not designed for simulating wave tunnel experiments because then just the sum
of all spectral components is simulated so that fj,, is not appropriately applicable.

We conclude that the wave-current interaction part of the POINT-SAND model is indeed
capable of simulating complicated wave-current test cases also with multiple spectral
components. we recommend the implementation of the model (Dingemans, 1999) for the
net effect of the CL vortex force on momentum and mass transfer. It is anticipated that for
the cases of waves following the current, the vertical profiles of the mean current would
bend more backwards than shown in Figures 7, 8 and 9.

An experienced user is required for simulating wave-current interaction cases. The reason is
that temporal and sometimes spatial oscillations in the WCI force occur. These oscillations
disappear at some outer-loop time step as well as relaxation time, the latter smoothes the
temporal behaviour of the WCI force. Unfortunately there is not yet a reliable rule-of-the-
thumb for choosing these numerical parameters. Presently, the best advice we can give is
setting the outer-loop time step equal to the period of the lowest subharmonic of the carrier
waves and taking the relaxation time two times longer. Further, we found that with more
spectral components the oscillations in the WCI vanish probably because of a lacking
dominant subharmonics.
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7.4 Sand transport; the wave tunnel

| 7.4.1 Test cases

| Model results regarding the sediment concentration are discussed for 2 oscillating wave
tunnel experiments:

1. Case Cl: this is a case with asymmetrical waves. The following wave conditions were
applied at a level of z = 0.20 m from the bed: U (z = 0.2 m) = U, + Uj cos ot + U, cos
2wt, where T=2 n/w = 6.5 s and U, = 0.025 mv/s; U; = 0.845 m/s and U, = 0.265 m/s.
The ds of the applied sediment was 210 um. This case is comprehensively described in
Al-Salem (1993).

2. Case El: this is a case with sinusoidal waves. The following wave conditions were
applied at a level of z = 0.075 m from the bed: U (z = 0.075 m) = U, + U, cos ot, where
T'=2n/o=72sand Uy =0.15 m/s and U = 1.60 m/s. The ds, of the applied sediment
was 210 um. This case is comprehensively described in Katopodi et al. (1994).

7.4.2 Input/output

The input files used for the calculations are INDPM.C1, TUN_C1.LVL, TUN_C1.VEL and
WAVSPC.CI for the Cl-case and INDPM.E1, TUN_E1.LVL, TUN_E1.VEL and WAVSPC.E1 for the
E1 case. These files can be found on the accompanying diskette. The input files are listed
and discussed in Appendix D. The file INDPM.* is the main input file where parameters can
be set regarding the grid schematisation, turbulence model, bed roughness and sediment
properties, amongst others. In the file *.VEL the wave conditions are specified, whereas in
the file *.LVL the water levels (this is a dummy file for the wave tunnel conditions). In
WAVESPC.* the frequencies for harmonic analysis are specified. Note that the velocities
specified are depth-averaged velocities. If the user wishes to set the velocity at a certain
level, the depth-averaged velocity should be chosen such that the required velocity at the
required level is realised. In a future version of the program, it will be possible to apply the
velocity at a user-defined level.

The output files generated by the computer program are: OUTDPM.C1 and OUTSPC.C1 for the
Cl-case and OUTDPM.EI and OUTSPC.E1 for the E1-case. The output file OUTDPM.* consists
of the following items: first a copy of the input, subsequently the output at each time step
specified. A description of the output files can be found in Appendix D.

Results of the harmonic analysis can be found in the file OUTSPC.*. All input files for the
two cases discussed are stored on the accompanying diskette. Also the executable of the
1DV-program is stored there. The output files are not stored on the diskette due to limited
disk space, but may easily be generated running the executable using the input files. Answer
‘cl” or ‘el’ to the question ‘Give filename extension for files indpm and outdpm:’. If the
program aborts abnormally, an error diagnosis message is written to the file OUTSPC.*.
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7.4.3 Results

In Fig. 10 the time-averaged concentration profile is plotted for case E1. Comparison with
measurements shows that the calculated concentration profile closely matches the measured
one near the bed and at a level of a few centimetres above the bed. At intermediate heights
the calculated concentration is too high. This is also the case for the upper part of the water
column. The observed curvature of the concentration profile near the bed, which separates
two distinct regions, may be attributed to turbulent kinetic energy damping by vertical
grADIents in suspended sediment concentration. This has to be further examined.

Sediment concentrations as a function of time at several levels for case E1 are plotted in
Fig. 11. Moreover, for two levels (z=2.3 and z = 3.7 cm, Figs. 12 and 13) calculated profiles
are compared with measured profiles. The calculated concentration at z=2.3 cm is much too
high, whereas the concentration at z=3.7 is about right. Calculated and measured peaks
during a wave cycle roughly coincide.

For case C1 (second-order Stokes wave) the calculated sediment concentration behaves
approximately the same. In Fig. 14 the time-averaged concentration profile is plotted for
case C1. Comparison with measurements again shows that the calculated concentration
profile matches the measured one at a level of a few centimetres above the bed. In the lower
and higher parts the calculated concentration is too high. Note that the results depend on the
grid resolution: 500 layers result in a lower concentration than 100 layers, which suggest
that full convergence has not yet been reached for 100 layers.

Sediment concentrations as a function of time at several levels for case C1 are plotted in
Fig. 15. Moreover, for three levels (z=3.2, z=0.7 and z = 0.2 cm, Figs. 16, 17 and 18)
calculated profiles are compared with measured profiles. The calculated concentration at
z=0.7 c¢m is much too high, whereas the concentrations at z=3.2 and z=0.2 cm are about
right. Calculated and measured peaks during a wave cycle roughly coincide.

In Figure 19 the sediment flux is plotted as a function of z. Although the POINT SAND model
does not perform worse than other published models (Davies et al., 1997), the measured
reversal of sediment transport at about 2 cm above the bed is not reproduced. Moreover, the
sediment flux near the bed appears to be too high.

7.5 Sand transport by waves and wave-driven current

We refer to Appendix G containing our paper for the ICCE symposium on sand transport in
wave-driven currents using the POINT-SAND model. This paper compares observations in the
wave tunnel with simulations but this paper presents just simulations of sand transport
under free-surface waves without comparison to observations. The paper assesses the
differences between rigid-lid wave tunnel and free-surface wave channel experiments as
well as their contradictory influence on estimating onshore or offshore sand transport in the
field.
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Figure 5 of Appendix G compares simulations to observations for the wave-tunnel case E1
of an oscillatory flow superimposed on a current. This figure shows deviations from wave-
tunnel observations similar to those noted in Figure 14 and 19 (case C1).

The most prominent deviations between simulation and wave-tunnel observations are the
vertical profiles of mean sand concentration. Of course these strong deficiencies, note the
application of logarithmic axes in the relevant figures, require serious study. It is expected
that the POINT SAND model offers the efficient tool for it because that was the essential
objective of its design.

These and other findings are repeated in the final Chapter 8.
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8 Conclusions, discussion and
recommendations

8.1 Conclusions

Hydrodynamic and wave conditions

This report with Appendices F and G demonstrates the applicability of the POINT-SAND

model to the following flow configurations:

¢ Constant-flow channel (free surface);

e Confined wave tunnel (rigid lid);

e Field conditions without surface waves (wind-driven and tidal currents, varying water
depth, varying flow direction);

e Combined wave-current channel (free surface, waves parallel to flow); or

e Field conditions with surface waves (wave propagation irrespective of flow direction).

Due to the one-dimensional nature of the POINT SAND model the following hydrodynamic
conditions cannot be simulated explicitly:

e breaking waves;

e flow and waves with strong horizontal gradients;

e flow over ripples;

e secondary or Langmuir circulation driven by the CL vortex force.

Waves or horizontal oscillatory motions

e The POINT SAND model is designed for simulating wave tunnel experiments i.e. a
horizontally oscillating flow without a coherent wave-related vertical velocity
component;

e The same POINT SAND model has separate routines for simulating each spectral
component of true orbital motions of waves propagating at arbitrary angle on a turbulent
shear flow;

e The POINT SAND model simulates each component of a given wave spectrum with
independent wave amplitudes, phase lags and propagation directions;

e The surface boundary conditions are imposed at the still water level (rigid-lid
approximation);

e The rigid-lid approximation does not allow for the explicit simulation of the Stokes drift
but that is included by a theoretical model. Instead, the Stokes drift for sand mass is
simulated explicitly as long as the sand concentration is zero at the still water level;

e In principle, the rigid-lid approximation is too crude for representing the delicate surface
boundary-layer flow in case of wave-current interaction in laminar stagnant water;

o Presently, for wave tunnel experiments, the POINT SAND model allows for
forcing/prescribing the horizontal velocity at some given level in terms of given time
series or harmonics.
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Modelling turbulence

The implemented turbulence models are based on eddy viscosity/diffusivity closures
(Boussinesq hypothesis) for high-Reynolds turbulence;

Nevertheless, the user can choose between no-slip conditions or partial-slip conditions
for a hydraulically rough bed;

A so-called high-pass filter function is derived that weights the turbulence-generating
part of the wave-induced strain rates per spectral component;

By its nature, the high-pass filter function is applicable only in wave-current simulations
(wave channel or the field) but not for the wave-tunnel cases;

The sand-water mixture is treated as a quasi single-phase fluid with variable density
differences acting through the gravity term only (Boussinesq approximation).
Turbulence damping by this quasi-buoyancy effect is included in the turbulence models;
The laminar-turbulence and turbulence-laminar transitions are not included in the (high-
Reynolds) turbulence models, although the high-pass filter function appears to mimic
this phenomenon after flow reversal.

In terms of mean current profile and wave amplitudes, the hydrodynamic module in the
POINT-SAND model simulates the wave-current experiments of Klopman (1994) and also the
wave-tunnel experiments well.

Sand transport
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The sand-water mixture is treated as a quasi single-phase fluid with variable density
differences acting through the gravity term only (Boussinesq approximation);

Multiple sand fractions with different grain sizes are allowed;

The settling velocity depends on grain size and on the time and space varying volume
fraction (Richardson & Zaki formulation);

Sand transport is modelled for sheet-flow conditions only;

The simulation of vertical sand transport by waves includes the vertical orbital velocity
component;

The Stokes drift and streaming of sand mass is simulated explicitly as long as the sand
concentration is zero at the still water level.

The Zyserman-Fredsee formulation for bed concentration is applied with the option of
prescribing it as bed concentration or as a flux formulation;

The built-in test case (Appendix E) allows the user to check his selection of numerical
parameters and to appreciate the large sensitivity of the simulated depth-integrated sand
flux to numerical methods, turbulence models, state parameters and user-defined input
parameters;

The k-L model matches the theoretical results well so that we recommended using this
model for this particular test case allowing for easily recording deviations by other
parameter of process choices;

Our comparison with wave tunnel experiments shows that at the current level of
development, the results with the POINT-SAND are comparable to 1DV models such as
discussed in (Davies et al., 1997). This is expected since for the idealised wave tunnel
conditions, the underlying model equations reduce to equations similar as used in the
wave boundary layer models described in (Davies et al., 1997);
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e We believe to have explored more thoroughly the sensitivity of our simulations to
various numerical methods and parameter settings than published by others. We found
that the simulation poorly converges and convergence is obtained at significantly more
grid points than others publish their results.

8.2 Discussion

Hydrodynamics

We experienced a sensitivity of the simulations to time step and relaxation time for
smoothing the numerical determined wave-current interaction (WCI) force. Under certain
conditions this WCI force exhibits slow oscillations in time as well along the depth co-
ordinate. These oscillations can be checked by the user because the WCI force is written to
output in time series per z level as well as in depth records per time interval. Presently, we
do not have a thorough rule-of-the thumb for the appropriate time integration input
parameters, or a more robust scheme for better converging the WCI force to steady state, so
that experience and careful testing is required.

Sand transport

e Despite the accurate simulation of analytic solutions (built-in test case), the comparison
with observations in the wave tunnel is in general not satisfactory and occasionally even
poor;

e This discrepancy suggests deficiencies in the implemented sand transport formulations
in conjunction with some remaining deficiencies in turbulence modelling (e.g. laminar-
turbulence transition at flow reversal);

e More analysis on the precise causes of the poor results is needed. This analysis may
require additional options such as simulating sand transport using experimentally
observed concentration signals (time series). This approach then by-passes some of the
disputable sand transport closures.

e Comparisons should also be made outside the sheet flow regime, as bed ripples are
commonplace both in laboratory tests and in the field. The effect of ripples on bringing
and keeping sediment in suspension and the implications for sediment transport model
need further research. Strictly speaking, the formulations used in this report are valid
only for plane beds. The knowledge of sediment transport above rippled beds is limited
such that it is difficult to properly model a rippled bed situation. Due to this lack in
knowledge, in coastal engineering practice today, models for flat bed situations are often
applied to rippled bed situations, using an increased bed roughness related to the ripple
dimensions.

wi | delft hydraulics 8-3



MNumerical simulation of wave-current driven sand transport Z2899.10 October, 2000

8.3 Recommendations

The previous conclusions and discussions yield the following recommendations.

Improving or extending the POINT SAND model

The ocassional oscillatory adjustment of the numerically determined WCI force must be
eliminated. In view of our attempts this is expected to be a serious enterprise;

The implementation of Reynolds Stress Models (RSM’s) should avoid the application of
the high-pass filter function for eddy viscosity closures. In principle, RSM’s allow for a
more suitable simulation of the response of turbulence to rapid oscillatory motions in
wave tunnels or in wave channels;

The implementation of Radder’s model (Dingemans, 1999) on the net effect of
secondary or Langmuir circulation on momentum exchange and mass transport;

The design and implementation of a model about the role of bed ripples on turbulence
production and momentum exchange e.g. by using analytic solutions or Direct
Numerical Simulations (DNS) of the turbulent flow over wavy beds;

In literature on particulate industrial flows, various models are given for the dependence
of the settling velocity on turbulence levels as well as on turbulence damping;

The piecewise approximations (6.2) and (6.4) to the settling velocity and Shields
parameter are discontinuous and therefore should be replaced by continuous functions;
Sediment in laminar shear flows also exhibit dispersion for which a thoroughly tested
closure is available;

The large sediment concentrations near the bed violate Boussinesq assumption i.e. the
variable density of the sand-water mixture should also be included in the momentum
equations;

Rather than using some closure for the bed concentration, we recommend simulating the
soil-mechanical and pore-pressure response on-line coupled to the hydrodynamic
simulation;

Prescription of sand concentration at some given level by time series derived from
observations for by-passing or testing the empirical formulations of sand concentration
near the bed;

Extension of built-in test cases with analytic solutions for oscillatory flows such as
presented in (Bosboom, 1999).

Data analysis

Nearly all tests cases in this report compare mean flow and wave amplitudes. We
recommend further testing of turbulence and drift properties but this requires additional
data analysis also dedicated to further model developments:
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Turbulence properties derived from the extensive wave-current data setsin (Klopman,
1994);

Additional checks on wave amplitudes and wave reflections derived from observations
(Klopman, 1994);

Estimation of Stokes drift from (Klopman, 1994);
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e Averaged properties of mean-flow, turbulence and sand transport derived from DNS of

mean or oscillatory flows over plane and wavy beds including sand transport, e.g.
(Vittori & Verzicco, 1998) and (Boersma, 2000).

Simulations
o In view of the demonstrated sensitivity of the simulated as well as theoretical depth-
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integrated sand flux to changes in input and process conditions, further development of
sand transport processes as well as a more thorough analysis of, and inter-comparison
with other 1DV models is strongly recommended;

The first previous tests as well as the first exploration of the POINT-SAND model to sand
transport under wave-driven flows demonstrates how this model can assist in research
for sand transport in coastal seas. The experiments in Hannover and at Delft University
on sand transport under waves are good candidates for further exploration with the
POINT-SAND model;

Ideally, comparison should also be made with field experiments, although it may prove
to be hard to obtain a data set with sufficiently accurate near-bed velocities and
concentrations. The study of sediment transport in coastal conditions (combined waves
and current) is rather problematic, especially since an important part of the sediment
transport will occur in the near-bed region. No reliable instruments are available for
measuring velocities and sediment concentrations in the field below, say 5 cm above the
bed.
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1[m]; U=l [m/s] ; partial slip ;

exponential layer distribution with k-l model ;

Built—in test case ; H

Comput. bed layer 0.8 [mm] ; 50 layers ; 150 [um] sand ;

Central scheme for vertical advection.
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1 [m] : U=1 [m/s] ; partial slip ;

exponential layer distribution with k—I model ;

Built—in test case ; H

Comput. bed layer 06 [mm] ; 50 layers ; 150 [um] sand ;
First—order upwind scheme for vertical advection.
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Numerical simulation of wave-current driven sand transport Z2899.10 October, 2000

A

Overview of solution procedure

The names of the most important subroutines are indicated between brackets [..] and in capitals;

the

Ini
L ]

most important variable names are written between (..) and in italics.

tialise the computation

Initialise arrays [INIARR];

Read input file named INDPM.ext0 with extension “ext0” [INPUT];

Initialise mean flow and turbulence according to log profile [INIT];

The input file allows for solving one or two mean-flow momentum equations, choose between
Directional Point Model (DPM), possibly with Coriolis force included, or one-dimensional
model (1DV) e.g. for wave-tunnel experiments ;

The input file refers to other input files with harmonic components or time series for variable
water level and depth-averaged mean flow to be solved by the mean-flow momentum
equations. The latter also includes the definition of wave-tunnel oscillatory flow
superimposed on mean flow;

The input file refers to a file with harmonic components (angular frequency, phase and surface
amplitude) of orbital motions to be simulated as well as other harmonic components for
harmonic analysis only such as subharmonics;

The input file defines the time step (times?) for solving the mean momentum equations;

The input file defines the relaxation time step (reltim) for control over depth-averaged mean
flow velocity, reltim serves as response time to following the prescribed depth-averaged flow
and WCI forcing;

The input file defines the number (numwav) of orbital time step per time step (timest) of the
mean flow;

If numwav=0 then just the mean flow equations are solved e.g. for simulating wave tunnel
experiments or tidal flow only;

The input file allows for selection of the k-¢ or k-L turbulence models (kep or k-/) or just
laminar (/am) flow. In case of sediment, salt or temperature transport, buoyancy effects are
included in the turbulence models;

o The bed friction is by Chezy, Manning or bed roughness (note z, not k);

wi | delft hydraulics

The input file allows for the definition of various sediment fractions (sand or floc), the type of
boundary condition for sand transport (pickup or bedcon) as well as initial concentration
profiles.

For the time being, the output is limited to just two sediment fractions;

The output file OUTDPM.ext0 contains a copy of input as understood by the code (please
check).
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0 Start outer loop for solving mean-flow momentum equations with time step At™*",
Define depth-averaged mean flow vector [UPDTS or UPFOU];

Define wind vector [UPWIN];

Solve mean-flow momentum equations [UVMOM] depending on vector sum of WCI
forces, Stokes drift and low-pass filtered eddy viscosity;

Solve wave numbers and amplitude profile of hydrodynamic pressure for all wave
frequencies for the given mean flow [SOLVEP], note that if mean flow oscillates then
wave numbers respond accordingly;

0
¢
0

0

Start inner loop for solving all orbital momentum equations with time step At

0

0

< O OO

S OO OO

(orbit)

Time step At”™ is an integer fraction (numwav) of At™" (timest) of solving mean-

flow equations;

Start frequency loop per frequency ™ with time step At®™";

0 Start with longest wave which usually has most energy and prescribe water
surface elevation of spectral component [DEFWAV];

0 Project z-dependent mean-flow vector on direction of wave propagation
[PROJEC];

0 Update sum of orbital velocities and project it on direction of wave propagation
k™ [PROJEC];

¢ Compute time dependent pressure [SOLVEP] with amplitude profile defined
outside loop;

0 Define high-pass filtered eddy viscosity [TURCLO];

0 Solve orbital momentum equation for u® in direction of wave propagation
[WWAV;UWAV];

Compute double-contracted strain rate d;d;; induced by u® [INCOMP];

Add frequency-weighted strain rates fi,,d;d; for turbulence production [ALLDIJ];

0 Add contribution to vertical orbital velocity w, according to incompressibility
[INCOMP];

0 Stop averaging operation at every second zero crossing of free-surface elevation
and

0 compute Stokes drift and WCI force in direction of wave propagation
[AVERAG];

End frequency loop

Define fall velocity [FALLVE] for sand, hindered settling included;

Low-pass filter bed friction for mean flow [USTAR];

Harmonic analysis of velocity, TKE, eddy viscosity, sediment concentration and

horizontal sediment transport [ORBIT];

Define total density by salt, temperature and sediment [DENS];

Solve turbulence model [TRATUR (k-g); KLMOD] including buoyancy;

Define fall velocity [FALLVE] for sand, hindered settling included;

Define bed condition for sand transport [REFCON];

Solve sediment transport with advection and mixing due to all orbital motions

[SEDWAV 1% upwind], built-in options are [SEDCEN central advection] and

[DIFU1D 3" order upwind ADI];

< O

¢ End inner loop
0 Apply vector summation of all frequency-dependent WCI forces and Stokes drift;

¢ End outer loop

¢ Summarize all temporary output files [OUTMAP] and write to OUTDPM.ext0;
¢ Write results of harmonic analysis [SPCTRL] to OUTSPC.ext0.

¢ End simulation
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B Direction of orbital velocity and wave
number vectors

Consider a mean flow U(z) in x-direction and possible with a vertical profile; this flow is
without friction, viscosity and turbulence. Superimposed on this flow are infinitesimal
waves propagating with horizontal wave number k=(k, £ ) and we define the orbital velocity
as

i = i(z) exp[i(kx + £y) - i 1] (B.1)

with angular frequency ®. In this appendix we investigate under what conditions and how
much the direction of the velocity amplitude 7(z) deviates from the wave number direction

k. Consider therefore the two horizontal momentum equations for these waves:

—+U—+W—+——=0 ",
ot ox wdz ox (B

Q.FUC?_V.F_(ZE:

0 (B.2b)
ot ax oy

The direction of Q(z) is obtained by eliminating the pressure from (B.2) and this proceeds
by using (B.1) also for the wave-induced pressure. Equation (B.2a) then yields

—ikp = i(kU - )i+ ﬁr%{- ; (B.3a)
z

Likewise, (B.2b) is converted into

—ilp = i(kU — @) v (B.3b)
Multiplication of (B.3a) with (ik) and (B.3b) with (i£) and adding the two equations
provides

2 2\ ~ . ag . S dU
(K +¢ )p::(kU—a))(zkquv)ka—a- (B.4)
z
From incompressibility follows

iti+itp+ 2% =0 B.5)

dz
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and substitution of this relation in (B.4) yields:

i(kU-0) dio _ikiv_dU
K+ dz kK+¢ dz

p=- ®B.6)

This expression for the pressure amplitude is substituted into (B.3) and provides the desired
relations from which follows the direction of the velocity amplitude.

dw W dU
(k% + )it = —k—+ ;
I( * )u dz w-kU dz (Bg)
dw kéw dU
(k2 +02)p=—0—— b
U = kT s L

| The last terms in (A7a+b) is responsible for the deviation between the direction of the
horizontal vector of the wave velocity amplitude #(z) and the wave number k. For waves
perpendicular to the mean flow k=0 holds and then

‘ s ﬁdU . A 1 d}?‘,
i=— iV=——
‘ |£| dz

wdz ’

Consequently, the angle difference between horizontal wave velocity vector and wave
number vector follows from

=

du _ tanh(kz) dU
dz @ dz

l
e |

a.‘ﬁ-
(& ]

(B.8)

< | =
o ®

where in the last approximation the potential theory solution v o sinh(|kz]) for infinitesimal
waves without shear is implemented. We estimate this angle difference due to a logarithmic

velocity profile with
av_u
dz Kz

This ratio is large near the bed and there we can approximate tanh(|_l.:| z] ~ |I£] z whence

tnh(d2) U _ e
- @ dz ko

< | =2

(B.9)

The angle is thus proportional to the ratio between bed shear velocity u. and the wave’s
celerity and this ratio is negligible because u. is a small fraction, typically 1/10, of the mean
flow and the Froude number for the waves is also significantly less then unity.

wi | delft hydraulics B -2



Numerical simulation of wave-current driven sand transport Z2899.10 October, 2000

More generally, the order-of-magnitude of the ratio between the last terms in (B.7a+b) and

the first terms reads:
shear terms 1 tanh(|k|z) dU u, @
(0] ROV——"———t § €, =I~k—|

(B.10)

without shear |c, —kU/[K| K| dz c,—kU /K|

and the same order of magnitude appears. The ration (B.10) shows that it becomes
significant if the wave’s celerity approach the mean flow velocity U and this occurs first for
waves propagating with the current. However, then there is no change in wave direction.

We conclude, therefore, that the orbital velocity amplitude ﬁ(z) is practically parallel with

the wave number vector k, the deviation being of the order of the ratio between shear stress
velocity and the wave s phase speed relative to the mean flow.
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the turbulent flow along a bed in the fully-rough regime. We follow closely (Hinze, 1975)
and (Jackson, 1981).

Hinze (1975, p. 636) defines the condition of a fully-rough bed by:

LAY (C.1)

v

with k; the Nikuradse length scale which is of the order of the geometrical height of the
roughness forming elements that create the fluid-bed interface. Note, however, that
condition (C.1) is satisfied only for long and high waves or strong currents. The
implementation of the transitional roughness regime is recommended.

Mumerical simulation of wave-current driven sand transport Z2899.10 October, 2000
C Partial slip condition
In this appendix we present details of the implementation of the partial slip condition for

The essential and very subtle problem is the definition of reference level normal to the bed,
here the z-direction, and z is positive away from the bed. Hinze (1975, eq. 7-76) defines the
plane z=0 as the average of the top levels of the roughness forming elements. Subsequently,
Hinze defines the logarithmic profile above a rough bed by

U(Z)=}_m{Ml}+Bﬂ% ; k=041 , B=49 , (C2)

U, K v U,

and, based on various observations (Hinze, 1975, fig. 7-16),. Hinze (1975, eq. 7-76)
estimates the apparent origin of the logarithmic velocity profiles at z=-k. and k.=0.25 ki.
The latter conclusion is substantiated by Jackson (1981) who derives the meaning of this
origin and shows for various roughness elements that

k=0.3ks (C.3)
holds. In the following, we adopt (C.3).

For AU=0, the formulation (C.2) is equivalent to the turbulent layer flow along a
hydraulically smooth wall but with the origin 0.3k, below the mean top levels of the fluid-
bed interface. For a rough bed, there occurs a velocity shift AU and Hinze (1975, p. 637)
concludes from his figure 7-16:

AU(z) _ lm{_“' 2 } +C ; C~-04 , (X))
U K v

where C is given an average value for various type of roughness elements. Combining
(C.2), (C.3) and (C.4) yields
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@ = lln{S.’?S +
U K

293z

} ; k=041 (C.5)

5

Given the customary relation zy=k/30 between roughness length scale z, and geometrical
scale k; as well as the uncertainty range in the various parameters (x, B and C), we simplify

(C.5) as:
U(z2) - lln{ 9z, +z} . C6)
w K Zi

We apply formulation (C.6) in conjunction with the precise definition of the plane z=0. It is
this plane z=0 that equals the bottom of the first computational grid box above the bed. We
believe the concept (C.6) should be followed strictly. For instance when using the mean
shear rate at the level z=0 of the bed-grid box:

c?U| W
§z|

(C.7)

0 Kz,

The equally strict consequence of (C.7) is that the eddy viscosity at the bed level z=0
follows from the definition u.’ i.e.

i = {u,_(z)_i_f_}

Note that in the first expression of (C.8) the kinematic viscosity is excluded in accordance
with the hydraulically rough regime (C.1) for which (C.6) has been derived. On the other
hand, if the kinematic were included in (C.8) is would be negligible provided (C.1) is
satisfied but this not always the actual application of the previous formulation. Therefore,
we exclude the kinematic viscosity in (C.8).

v(z=0)=9%uz, (C8)

z=0

The bed boundary conditions for the k-L as well as k-& model should match the eddy
viscosity defined by (C.8) and at z=0.

In our k-L model the closure for eddy viscosity reads:

v7(2) = ¢, L(2)\k(2) (C.8)

and at the bed we define the Turbulent Kinetic Energy by:

Cu

k(z=0)= [iT (C.9)
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Consequently, given (C.8), the mixing length scale must be defined as:
L(z=0)=9z, (C.10)

This completes the boundary conditions for the k-L model. The Bakmetev length scale
profile is then defined with z=-9z, as virtual origin for L(2).

Next we continue with the appropriate bed boundary conditions for the k-& model. Near the
bed under high-Reynolds turbulence conditions and a logarithmic boundary layer must
hold:

2
U 0
= = C.11
y U?{ 0”2) k(z+9z,) (C10
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D Description of program in- and output

As an illustration, the format of the input and output files is discussed using the Cl-case of
the wave tunnel calculations. Only the input files are listed, as the length of the output files
is too large. Instead, the output files are schematically discussed.

The main input file is the file indpm.id, where id stands for the identification string of the
calculation (i.e. cl in our case). The input of this file is typeset in courier, whereas the
explanation is typeset in Times.

*******General input*****rsx
1pv DIMENS: choose 1DV or DPM

If 1DV is chosen, only one velocity component is solved. If DPM (directional point model) is chosen,
two velocity components (x and v) are solved. In the B-release distributed with this report, the DPM-
variant does not work properly with the sediment subroutines.

0.0 FCORIO: Coriolis parameter
Coriolis parameter (0 in the wave tunnel and flume experiments, 1 in the field)

0. DP : depth
Depth of the water column below the & (zeta) = 0 plane. For the present calculations the plane { =0
is defined at the bottom of the wave tunnel, therefore DP = 0.

0.0 ZETA : water-level (or)
FILTSZ: file time series ZETA (or)
tun_cl.lvl FILFOZ: file fourier comp. ZETA (or)

Surface elevation, in the current case specified in fourier components in the file tun_c|.M. The value
of ZETA in the first line is neglected if a file is specified in the second or third line.

0.0 UMEAN : West-to-East depth-averaged wvelocity (or)
FILTSU: file time series UMEAN (or)
tun_cl.vel FILFOU: file fourier comp. UMEAN (or)

Horizontal velocity, in the current case specified in fourier components in the file tun_cl.vel. The
value of UMEAN in the first line is neglected if a file is specified in the second or third line. Note that
the depth-averaged velocity is specified, not the velocity at a certain level.

sec TUNIT : time unit (SEC/MIN)
Chose time unit: seconds or minutes.

0.05 TIMEST: time step (in TUNIT)
15600 NUMTIM: number of timestep simulation
0 NUMWAV: number of timestep orbital motion per TIMEST

In order to solve orbital motions accurately at a large time step (compared with the wave period), the
orbital motion can be solved using a smaller time step, being the wave period divided by NUMWAV.

0.05 RELTIM: relaxationtime (in TUNIT)
The relaxation time should not be chosen smaller than the time step!

65 0.20 78 TIMEWR: STRT-INC-STOP time frame writing output (TUNIT)
The first number is the start time, the second number the time increment and the third number the
stop time with regard to writing to the output file.

1.0 TETAR : par. theta-method(rec. theta =1)
This is a input parameter for the integration method used. It is recommended to set 6 at 1.

KEP MODEL : choice between LAM (laminar flow) or KEP (k-epsilon turb. model)
Chose turbulence model: lam (laminar flow), k-1 or kep (k-epsilon model).

le-6 VISCOU: kinematic viscosity [m~2/s]
z0 ROUMET: roughness meth. MANN/CHEZ/ZO

Chose roughness method: Manning, Chézy or z,.
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3.2e-5 ROUCQF: roughness height (ROUMET)
1 IRO : IRO=0: hydr.smooth, IRO=1: hydr.rough
FLTWIN: file time series (directional) wind and surface waves (or)
0. DIRWI : direction from which the wind blows
0. WIND : wind speed, 10 m above free surface

The three lines here are intended for wind-generated waves and are not used in the wave tunnel case.

wavspc.cl FLTSPC: file with directional spectrum of surface waves (or)

0. DIRWA : direction from which the surface waves come
0. HSIG : significant wave height

0. PERIO : significant wave period

1000.0 RHOM : reference density

******tLaYEI Input******tt

VARIA LAYDIS: choose EQUIDistant or VARIAble

If VARIA is selected, the layer distribution is logarithmic with a power specified below; with EQUID a
equidistant distribution is selected.

500 KMAX : number of layers
Here the number of layers is specified. The maximum is 1000.

1.5 ALFA : >1 power in layer distribution, ALFA ignored for equidistant
layers

*rkkr**Constituent Input*****axs

0 LMAX : number of constituents

0 LSAL : index nr for salinity

0 LTEM : index nr for temperature

10.0 SALEQS: eqg. of state salinity (always input)

5.0 TEMEQS: eg. of state temperature (always input)

The constituent input is not used for the wave tunnel calculations.

iii**iiSediment Input*tiii***

1 LSED : number of sediment

The number of sediment types can be specified here, each to be assigned a name label and sediment
properties.

sand SEDTYP(L): type of sediment

0.7 SIGSED(L): prandtl schmidt number

2650 RHOSOL (L) : density sediment

0.21e-3 SEDDIA(L): D_50 [m] of sand

bedcon EROTYP (L) : PICKUP or BEDCON for type of bed condition

Two types of bed boundary conditions can be selected: PICKUP or BEDCON.

step SEDDIS : "step" or "linear"
An initial sediment concentration distribution may be applied, either a ‘step’or a linear distribution.

0.0 SEDTCP (L) : sediment concentration above step
0.0 SEDBED (L) : sediment concentration below step
100 KSTEP : k-value of sediment step position
i*i*t*tEnd Inputi*tlii**

The files to which is referred in the input file indpm.c| are: tun_c|.IM, tuncl.vel and wavespc.cl.
These are discussed below.

tun_cl.M

2 ol K1l nfc [number of harmonic component]

Specify number of harmonic components and their label.
199385 398769  frequency(n=2:nfc) [degrees/hour] must equal those in zeta-
file
Specnfy frequencies in degrees per hour!
1 0.0 0.0 ampl (n=l:nfc) [m]
The first number is the constant component of the water level, i.e. the height of the wave tunnel

section (1.1 m).
0.0 0.0 phase (n=1:nfc)
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tunc|.vel

2 1 nfc ; ksec

Specify number of harmonic components and number of velocity components to be weighed.
3.0 weight (k=1:ksec)

Specify the time unit (k=1: ksec).
199385 398769 frequency(n=2:nfc) [degrees/hour] must equal those in zeta-
file
Specify frequencies in degrees per hour!
0.042 0.844 0.265 U_ampl (k=1;n=1l:nfc)
Specify the velocity amplitudes in m/s; the first number is the constant component.
0.0 0.0 U-phase (k=1;n=1:nfc)

0.000 o0.000 0.0 V_ampl (k=1;n=1:nfc)
0.0 0.0 V-phase (k=1;n=1:nfc)
wavespc.cl:
0 NSPC : number of spectral components for solving orbital motions

With this parameter the number of spectral components for solving orbital motions can be specified,
i.e. the spectrum of £ (surface elevation). For the wave tunnel case NSPC is set at 0. If flume
experiments with surface waves are to be modelled, NSPC should be given a value equal to or larger

than one.
3 NSPCAD: in addition to NSPC other spectral components for harmonic analysis
only

** remark: if NSPC > 1, specify here nr. of spectral component; angular fregq.;
** amplitude; phase; direction from which the waves come
** Bdditional spectral components for harmonic analysis only, angular frequency is

essential:
1 0.0 0.0 0.0 0.
2 0.96665 0.0 0.0 Tk

3 1.93329 0.0 0.0 0.
nr.;angular freq.;amplitude;phase;direction from which the waves come; number of
spectral components

Description of output files

Results are written to two output files: outdpm.id and outspc.id, where id stands for the
identification string of the calculation (i.e. cl in the case described here). The file
outdpm.id first lists the values of the input parameters as specified in the input files,
including the specified layer thickness and the initial sediment concentration distribution.
Subsequently, the following information is written:

At each time step specified for output three tables are displayed. The first table consists of 8
columns listing for each layer:

1. z-coordinate layer interface
2. turbulent energy

3. turbulent dissipation

4. eddy viscosity

5. dw/dz

6. dv/dz

7. dp/dz

8. Richardson number
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The second table consists of 6 columns listing for each layer:

z-coordinate concentration point
u-velocity

v-velocity

uv-magnitude

uv-direction

density

2y B e e

The third table consists of 2 (or 3 if two types of sediment have been specified: the current
program supports 2 sediment types) columns listing for each layer:

1. z-coordinate
2. sediment concentration

After the last time step, three tables are displayed containing the same information as the
tables specified above, but each of them containing information for all time steps. In one
additional column (the first one) the time information is displayed.

The last table in the file outdpm.id contains 12 colums (or more if more than one type of
sediment has been specified) displaying for each time step specified for output the
following parameters:

time (seconds)

depth value

free surface

depth-averaged u-velocity

calculated depth-averaged velocity

difference UREAL-UMEAN for depth-averaged velocity
depth-averaged v-velocity

calculated depth-averaged velocity

9. difference VREAL-VMEAN for depth-averaged velocity
10.Shields parameter sediment fraction 1

11.critical Shields parameter sediment fraction 1
12.prescribed bed conc. sediment fraction 1
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The file outspc.id contains the following information:

o the period of each spectral component;

o tables for the parameters tke (turbulent kinetic energy), vicw (eddy viscosity), uw, utot,
viot, fwci (force wave current interaction), sedi (sediment concentration fraction i), uc;
and ve; containing 7 columns:

z-coordinate w-point

amplitude component NF= 1

phase component NF= 1

amplitude component NF= 2

phase component NF= 2

amplitude component NF= 3

phase component NF= 3

bR g o

In this example 3 components are specified, of which the first is the steady flow component.
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E Built-in test case

Introduction

The well-established concept of Prandtl’s mixing length in a high-Reynolds stationary
boundary layer flow along a rough plane wall invokes that sufficiently near the wall for the
eddy viscosity v, =k u, zholds with the origin at some level oz, below the fluid-bed

interface, see Appendix C. It is well known that then the velocity profile becomes
logarithmic and the concentration profile proportional to z®. Here, B is the so-called Rouse
parameter and P=wOr/ku. holds with settling velocity w; and Or is the turbulence
Prandtl/Schmidt number. The latter being the ratio between eddy viscosity and eddy
diffusivity.

The consequence of Prandtl’s classical but well-established law is that both the mean
velocity profile as well as the mean sand concentration profile are nearly singular. The
strict reader is asked for some tolerance in the latter mathematically poor but intuitively
clear definition.

In a steady current along a horizontal bed, the horizontal sand flux profile is the product of
the nearly singular mean velocity and nearly singular mean sand concentration profiles.
The latter product thus suggests that the numerical solution of the horizontal sand flux is
overly sensitive to numerical errors.

Consequently there is a need for comparing the POINT-SAND model against analytic
solutions. These are presented in this appendix. The results are implemented in a subroutine
in the POINT-SAND model. When the user runs the code with /og as extension to the standard
input file indpm.* then in the code the density coupling between sediment and turbulence
(buoyancy flux) is switched off. Further, the simulation results are appropriately scaled by
subroutine fstlog and then written to the output file tstdpm.log. All other formulations for
settling velocity, bed concentration, turbulence closures etc. remain the same as for general
use.

The new output file zstdpm.log also contains the analytic solutions, using the same scaling
for making a detailed one-to-one comparison through e.g. plots. The great advantage for the
user is that he can check his expertise of correctly setting numerical control parameters
such as layer distribution, number of time steps, time step etc. Further, after any correction
to the code, at least this test case should yield the proper results.

The analytic solutions are based on the frequently observed logarithmic velocity profile in
stationary high-Reynolds number channel flows. For a constant pressure gradient normal to
the bed, the eddy viscosity profile then should be parabolic. With significantly more scatter
such a parabolic profile is indeed derived from the observable mean velocity gradient
divided by the observe Reynolds shear stress, see e.g. (Nezu and Rodi, 1986).

In this appendix we shall assume this seemingly one-to-one connection between logarithmic
velocity profile and parabolic eddy viscosity profile. It should be remembered, however,
that this is a convenient algebraic relation rather than an experimentally proven fact.

This appendix presents the analytic solution for the depth-integrated sand flux due to a

logarithmic velocity and the Rouse concentration profile derived from the parabolic eddy
viscosity/diffusivity. Based on these solutions, we present a sensitivity analysis. Much
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attention is paid to the proper definition of the origin of the logarithmic velocity profile
over a hydraulically rough bed and the precise expressions for eddy diffusivity as well as
for the concentration profile.

In the subsequent analysis, the following five length scales play a role:

1. ds the grain size diameter of 50% sieve passage;

2. 1z, usually 2ds,, the level above the fluid-bed interface where the concentration of
suspended sediment is prescribed by some empirical formula depending on e.g. bed
shear stress;

3. 1z the hydraulic roughness length scale of a plane granular bed, usually one-order of
magnitude smaller than the dsq of the grains in the bed;

4. oz, the position of the origin of the logarithmic velocity profile below the bed-fluid
interface;

5. hthe water depth, measured between free surface and the bed-fluid interface.

The z-axis is vertically upwards and the level of fluid-bed interface is defined at z=0:z. The
integrals appearing in the following text have marginal corrections to exact solutions. The
latter, however, are valid for the Rouse parameter B<1. Note that this limitation of our
analysis does not imply that B>1 is physically impossible. The dedicated output file
tstdpm.log reports the following depth-integrated sand fluxes:

1. numerical integration, along the entire water depth, of the product between the
computed horizontal velocity and the computed concentration;

2. numerical integration, along the entire water depth, of the product between the analytic
logarithmic velocity and the analytic Rouse profile both based on the computed bed
shear stress;

3. For B<I also the analytic solution to the previous integral based on the analytic
solutions for velocity and concentration and based on the theoretical bed-shear stress.

Obviously the most reliable comparison is made with the third option but then B<1 must

hold.

E.l Logarithmic velocity profile

The logarithmic velocity profile for a high-Reynolds number flow over a hydraulically
rough but plane bed is defined as

az, ; a=9 (E.1.T)

below the top levels of the sand bed, the magnitude of o is estimated in Appendix C. For
simplicity of formulation we define the level z=0z, as the origin of the logarithmic function

describing the velocity profile which, according to Appendix C, is located just below the
tops of the sand grains forming the fluid-bed interface.

The water depth is defined as % i.e. the free surface is at z=h+oz, and for notational
simplicity we define:

H=h+oz, . (E.1.2)

WL | delft hydraulics E -2



Numerical simulation of wave-current driven sand transport 22899.10 October, 2000

With these definitions, the logarithmic velocity profile for a high-Reynolds number flow
over a hydraulically rough bed reads:

u:ﬁ{ln[ﬂ]ﬂnz} with Z=— | (E.1.3)
H

IS z,

and Z= azy/H corresponds to the fluid-bed interface with non-zero velocity. The
definition of the depth-averaged velocity then reads:

E=%h_f:;(z)dz=u—'{[ +a—:9~]ln(1+ A ]—l—a—:"—hm} ; (E.1.4)

K az,

It will be convenient to define the following usually very small and positive parameter:

_az, _ az

i S

wivesdy Zmt g Bl (E.1.5)

H h+az, h 1-¢ h l-¢

Using (E.1.6), the logarithmic velocity profile (E.1.3) then reads:

u =ﬁ{1nz+1n(3)} . (E.1.6)

K £

Likewise, the depth-averaged velocity:

;=K(::£){ln[:—£]—£h(i:—J} with e=exp(l) .

e\ e

ae m{l(ﬁ)"‘} e — E.17)

Usually, € is less than (10) so that & in (E.1.7) can be neglected however the €' term in
the logarithm is retained.

E.2 Eddy-viscosity profile

wi | delft hydraulics

In agreement with (E.1.3), the eddy viscosity profile is derived here and it should yield
the linear profile of Reynolds shear stress R, for a stationary high-Reynolds flow with
hydrostatic pressure distribution and neglecting viscous stresses:

R =2z (E.2.1)
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Note in (2.1),R_=u holds at the zero-velocity level z=0zy. The corresponding
definition of the eddy viscosity follows from the Boussinesq hypothesis:

= 2 E22)

and using Z=2/H the corresponding expression for the eddy viscosity reads

2 —
vr=xu.£:~ Z(I—Z)EKH.H%_Z—) . (E.2.3)

The last expression uses the definition of the small positive parameter €, see (E.1.6).
Note that (E.2.3) yields a non-zero eddy viscosity at the zero-velocity level Z=azy/H.
From the Reynolds analogy, using the turbulence Prandtl/Schmidt number or, the eddy
diffusivity I'y is related to the eddy viscosity through:

T, = xuH Z(1-2) ) (E2.4)
Or 1-¢

E.3 The equilibrium concentration profile

For stationary conditions in a channel of uniform dimensions the settling flux due to a
constant settling velocity w; is balanced by upward mixing i.e.

522 ©3.1)

The solution to (E.3.1) is the well-known Rouse profile for a parabolic eddy diffusivity
profile. It is customary that the integration constant appearing in solving (E.3.1) is
converted to some given concentration c, at level z, above the fluid-bed interface. In the
present purpose the so-called Zyserman-Fredsoe formulation for c, is applied at z=2ds,
above the fluid-bed interface. In the scaled Z-coordinate the level z, is defined by

5=_“2o7+%_=3+2§;70 _ (E3.2)

Consequently, the Rouse profile reads:

c(z)——*cn( g T(I;Z—T , (E3.3)

1-8 z

with ¢, given by the empirical Zyserman-Fredsge formula.
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In the following we define that below the level z=z, no suspended sediment transport occurs
but just bed-load transport (by rolling and jumping grains) and the latter is not part of the
suspended sand-flux formulation that we seek here.

The difference between € and 8 is very small. Nevertheless in computing depth-averaged
concentration and sand flux, we integrate over the physical interval (z,,h) and divide by the
total water depth h. In view of the very small ratio dsp/h, we acknowledge the division by 4,
rather than by (h-z,), is just a formality.

The so-called Rouse parameter B, appearing in (E.3.3), follows from (E.2.4):

gll-dor (E.3.4)

KU,

Typically, B<1 holds for profiles representing significant suspended sediment loads. In the
following section, <1 is assumed for exploiting exact solutions to miscellaneous integrals.

E.4 Miscellaneous integrals

Depth integrals of the previously derived concentration profile and the related sand-flux
profile can be expressed analytically at high accuracy. The essential function appearing in
these expressions is the Gamma function I'(z) defined through Euler’s integral (Abramowitz
& Stegun, 1972, p.255):

r@)=[rear . E4.1)

[]

The Gamma function satisfies the recurrency formula I'(1+z)=zI'(z) showing that
I'(1+n)=n! holds for integer argument n=1,2,.. Related to (E.4.1) is the Psi or Digamma
function:

.

In view of the depth-integral of the concentration profile (E.3.3), the Beta function is of
relevance and it is related to the Gamma function (E.4.1) through:

Fus yok T(u)C(v
B(u,v) = {: (1-0)"dt= % = B(v,u) . (E.4.3)

The depth-integral of the logarithmic velocity profile (E.1.3) and the Rouse concentration
profile (E.3.2) yields the (total) sediment flux. The solution for the depth-integrated sand
flux is derived on the following integral (Gradshteyn & Ryzhik, 1980, eq. 4.253):
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j'x"" (1 - x')y-l Inxdx= i} B(E S v]{!y(ﬁ} - ;a{£+ v]} ; (E4.4)

o r r r &

The lower limit of the actual depth integrals, however, is not Z=0 but Z=3 being a very
small number, considering that the grain size is at least four orders-of-magnitude smaller
than the water depth 4. Consequently, the following two approximations are sufficient,
provided B<1 holds:

52 fer- o

j(45) mzaz- 2o fule)- -0t}

We begin with the depth-averaged concentration due to (E.3.3) yielding:

= 1?8(1_56)”];(122)" 4z . (B4

Note the appearance of € in (E.4.6) due to depth-averaging over 4 rather than over (h-z,).

The integral in (E.4.6) is related to the Beta function (E.4.3) but reduced by the first
approximation in (E.4.5):

Lrq_ 8 1-4
{ (JZ—Z) dZ=B(1- 4,1+ ﬂ)—li_?{la- 0(6)}. (E-4.7)
Note that in (E.4.7)

B(1-B,1+ B)=T(1- B)r(1+ B) (E.4.8)

holds. The depth-averaged concentration thus reads:

- ¢ )
e (1 a) {3(1 B.1+p -——[1+0 ]} : (E4.9)

Finally, the sediment flux, averaged over depth 4 follows from:
1

uc=(1-¢)" [u(2)(2)dz , (E.4.10)
&

after substituting the Rouse profile
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c(z)=c,(§5)ﬂ(fz—z)ﬁ , (E3.2)

as well as the logarithmic velocity profile

u=%_'—{1n2+ln(%)} . (E.1.3)

Substitution of (E.3.2) and (E.1.3) into (E.4.10) yields the full expression:

;I-=K;-fg)(:é)””(‘;zrmzdzm[%)i(‘;;-fdz} . (E.4.11)

&

In (E.4.11), the first integral is related to (E.4.4) with r=1 ; v=1+f ; p=1-f whence
| 8
J(52) mzaz=s0- g1+ Aut-A-v@)} 5 w=1- E4.12)

holds. In (E.4.12), yis Euler’s constant and y=0.577...

Using (E.4.5) as correction to the lower limit in:

((1-zY’ T T I IR Gl o N E4.13
[(52) mzaz=n0-p1enfy-p-v@) - s fule)-tHi-o) . B4

The second integral in (E.4.11) is expressed in the exact solution for =0 and subsequently
corrected by the first approximation in (E.4.5):

m[ﬁ) j(%)ﬁ dz:ln[%] {B(l-p,nﬁ)—i‘%{l-o(a)}} :

£/ %

or converting the multiplication with In(o/g):

111[%) i[ %]ﬂ dZ= m[%) B(1-B1+p)- (i;)z m{[g)""}{l -0(s)} . (E4.14)

In view of (E.4.11), (E.4.14) is added to (E.4.13), yielding:

[%T InZ dz—m[%)j'(%]p dZ=B(1-B1+ ﬂ){w(l— p)- w(z)m(%)}— > (E.4.15)

5

[ —

with

z =(%{m(%‘i}l_ﬁ - 1} fi-0(s)} .
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For obtaining the depth-averaged sand flux (E.4.11), (E.4.15) must be multiplied by

oalis)

E.5 Summary

Here the derivations of the previous sections are summarised for the purpose of testing the
POINT-SAND model. In case of the extension /og for the input file indpm, the POINT-SAND
model is tested for a given:
¢ depth-averaged velocity;
¢ bed roughness length;
e grain diameter;

| e sand density and

| ¢ turbulence Prandtl/Schmidt number.

For the bed roughness length z, Van Rijn (1993, p. 4.15) proposes for sand k=6ds, and with
zy=k/30 this yields zy=dsy/5. Table E.1 presents the formulae implemented in subroutine
TSTLOG. This is routine is called when the user applies the extension /og to the standard
input file indpm.

wL | delft hydraulics E -8
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parameter explanation

h water depth: distance fluid-bed interface to free surface
u depth-averaged velocity
dsp grain diameter
Z0 ds¢/S (Van Rijn, p. 41.5)
o oizy distance below fluid-bed interface of origin of logarithmic

velocity profile
W, settling velocity, as implemented in the POINT-SAND model
Ci bed concentration as implemented in the POINT-SAND model
2ds distance above fluid-bed interface where c, is given; below this

level no suspended sediment transport is assumed.
H h+oz,
€ ozo/H
by (otzg+2dse)/H
X Von Karman constant, defined in the POINT-SAND model
u. x(1-&)u ;bed friction velocity

l-¢
)|
e\e
B (1-&)w, 07 . Rouse parameter
K

r Gamma function
] Psi or Digamma function
- B 1-8
c c, ) é

— | —| ¢T(1-8)I(1 -—1 o] ;

= (:5) fro-are -2 o)
uc e (i]ﬁ r(1-B)r(1+ B)| w(1-B)- w(2)+ m(ﬁ) =

k(1-¢)\1-6 £
) 5 as)™”

————<In| — —-1:41-0(é
huc depth-integrated flux of suspended sediment

Table E.1 Overview of formulae for the analytic solution of the depth-integrated sand flux
wL | delft hydraulics E -9
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E.6 Sensitivity analysis

Table E.2 presents the powers in the proportionality relation between depth-integrated sand
flux and the listed inputs and their magnitude, here for 200 pm sand. Using energy
arguments and the powers appearing in the Zyserman-Fredsee bed concentration most
powers in Table E.2 can be accounted for.

Input parameter magnitude | dim. power
Density of water (p;) 1000 kgm” | 4.3
Water depth (h) 1 m 0.15
Mean velocity (U) 2 m.s’ 4.5
Ratio o (in zero-velocity level azy) 9 - 0.23
Bed roughness length (z) 4.10” m 0.59
Turbulence Prandtl/Schmidt number (oy) | 0.7 - -29
Density of sand (p,) 2650 kgm” |-3.3
Sand grain diameter (dso) 2.10% m -4.3

Table E.2 Powers in local proportionality relation between input parameters and depth-integrated sand flux.

WL | delft hydraulics
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ABSTRACT

This paper presents the contents as well as examples of the hydrodynamic part of our
time and depth-dependent 1DV solver using a Poisson solver for pressure for
explicitly simulating various wave-current-turbulence interactions of periodic non-
breaking surface waves propagating on horizontally uniform currents and horizontal
beds. The accompanying paper (Bosboom and Klopman, 2000) presents the sand
transport module interacting with this hydrodynamic solver.

The reduction in spatial dimensions excludes the simulation of some intriguing
wave-current interactions such as Langmuir cells. These circulations augment the
vertical exchange of horizontal momentum and of matter. Radder, see (Dingemans,
1999), proposes a cell-averaged model that will be added to our 1DV code.

Progress is also made of implementing our hydrodynamic 1DV solver into a 3D free-
surface hydrostatic solver, as an interface for depth-averaged wave-forecasting
models such as HISWA and SWAN, see (Groeneweg & Uittenbogaard, 2000).

1. INTRODUCTION

For stationary long-crested surface waves following or opposing a stationary
turbulent current Kemp and Simons (1982, 1983) and Klopman (1994) observed in
the laboratory the changes in mean-flow profile as indicated by symbols in figure 1.
Using the Generalized Lagrangian Mean (GLM) theory, Groeneweg and Klopman
(1998) simulated these observations excellently. The latter study induces several
important questions that are addressed in this paper other subjects are included as
well.

The first question is whether the observations of figure 1 can be simulated through
solving this wave-current interaction (WCI) problem in Eulerian co-ordinates and
with explicitly simulating the orbital motions rather than in the wave-averaged GLM.
The second question is about the force distribution exerted by surface waves on the
wave-averaged flow. The third question deals with describing wave-turbulence
interaction. The last two questions are important for developing WCI models in 3D
shallow-water solvers coupled to wave forecasting models. Apart from these
questions we dedicate the 1DV solver also to the following subjects.



In The Netherlands much research is devoted to morphology and to sand transport in
coastal seas through the combined action of waves and tidal or wind-driven currents.
Most simulations on sand transport aim at wave-tunnel experiments (Davies et al.,
1997) i.e. oscillatory flows without a free surface. The latter has no Stokes drift and
exhibits boundary-layer streaming effects that differ from those due to surface
waves. Consequently, a code is needed that allows for a thorough comparison of
wave-tunnel experiments with wave-channel experiments. Preferably, this code
should also simulate sand transport at fixed horizontal locations in shallow lakes,
estuaries and coastal seas due to a directional as well as frequency spectrum of
waves propagating on steady, tidal and wind-driven turbulent shear flows. This
paper presents the hydrodynamic part of such a 1DV code as well as its limitations.
The accompanying paper (Bosboom & Klopman, 2000) presents the sand transport
module and relevant examples. The entire code is called National Sand Transport
Model and it is intended to be used and to be improved by Dutch researchers at
various universities and institutes.

The outline of this paper is as follows. Section 2 presents, in general, the
methodology, the applicability and the limitations of the 1DV hydrodynamic module.
Section 3 briefly exhibits the most relevant mathematical equations solved by the
hydrodynamic module. Section 4 presents some examples for monochromatic and
bichromatic surface waves following or opposing a stationary turbulent shear flow.
Section 5 concludes and announces future work.

2. METHODOLOGY

For the applications and questions raised in the previous section, a spectral-type of
1DV solver has been designed, for all details see (Uittenbogaard et al., 1999). This
solver assumes periodicity of surface waves i.e. all horizontal derivatives are

vor-=—k@™'8./8t into temporal derivatives for given angular

frequency ® but with wave-number vector k solved by the dispersion relation, see
section 3.

In this 1DV model, the orbital motions are simulated in time by solving their vertical
and horizontal momentum equations as a function of the depth co-ordinate z. The
solver is designed for waves propagating at arbitrary angle to a flow with an
arbitrary depth-dependent direction of the current.

For each spectral wave component the user specifies the wave period, wave
amplitude, wave direction and relative phase. For the mean flow the user specifies
the velocity vector, either depth-averaged or at some given depth and possibly time
dependent for tides, and also the mean water depth, bed roughness and time-
dependent wind vector.

The solution procedure is split into an outer loop for the mean-flow equations and
into inner loops for each spectral component of the orbital motions. The time
stepping for solving all spectral components is synchronous. The time step used in

converted by V



the inner loop is a fraction of the shortest wave period, the time step of the outer
loop usually equals the shortest wave period but this choice is not strict.

A time-independent and non-equidistant grid is used with appropriate staggering of
mean as well as orbital flow variables i.e. turbulence properties, vertical derivatives
and vertical velocity at cell interfaces and all others at grid centres. We prefer a grid
size that increases exponentially from a user-specified bed-layer thickness of
0(10.z,) with z, the hydraulic roughness.

At every start of a new inner loop i.e. a new wave cycle, the wave number
magnitude is solved for each spectral component of a freely propagating wave at
arbitrary angle with respect to the mean flow velocity vector which is solved in the
outer loop.

The vertical profile of the hydrodynamic pressure amplitude is solved by its
linearized Poisson equation for waves on shear flows. The actual pressure is in phase
with the surface elevation. The horizontal derivatives in the Poisson equation are
simply replaced by their respective wave number components so that an ordinary
differential equation in z is obtained, its solution is straightforward and it is based on
compact differentiation (Hermite interpolation). The latter procedure is not unlike
pseudo-spectral methods, see e.g. (Canuto et al., 1988).

By definition, the inner loop covers a single wave period, in which the intra-wave
orbital-velocity vector is solved as a function of z and at time steps significantly
smaller than their period. The vertical and horizontal orbital momentum equations
are driven by the hydrodynamic pressure gradient. The free surface conditions are
approximated and imposed at the mean water level (rigid lid) rather than exactly at
the mobile water level.

The equations for turbulence, vertical sand transport, bed concentration, bed friction
are also solved at inner-loop time steps and turbulence production depends on the
sum of all spectral orbital motions and mean-flow properties, the latter remain
frozen over an outer-loop time step.

After the completion of a wave period of a spectral component, the WCI force and
other related wave-averaged quantities are updated. These wave-averaged quantities
are used for the solution, in the outer-loop, of the mean flow vector as a function of
z; by definition the mean flow is horizontal and horizontally uniform. Per spectral
component, the z-dependent horizontal WCI force vector is adjusted for maintaining
a zero horizontal orbital velocity vector, averaged over the last wave cycle. The
vertical WCI component is discarded, see below. The total z-dependent horizontal
WClI force vector is the sum of all spectral contributions and this total WCI force
appears in the horizontal momentum equations for the mean flow. The summation
involves a sign change so that the action of the horizontal WCI force represents the
transfer of mean horizontal momentum in the orbital motions to the mean-flow
momentum. In other words, the WCI force disappears in the sum of mean-flow and
all (spectral) orbital momentum equations.

The orthogonal horizontal velocity components are solved by the mean-flow
equations, which are time dependent and mutually coupled through Coriolis force,
turbulence eddy viscosity and bed friction. The mean flow is assumed to be



horizontal and horizontally uniform and to be driven by hydrostatic pressure
gradients. The latter are adjusted so that the desired depth-averaged velocity vector
is maintained. Note that the user specifies the depth-averaged mean-flow vector or
the mean-flow vector at some given depth, either by time series or by harmonics
(tidal motions).

In wave-tunnel experiments the turbulence-averaged flow is horizontal and the
horizontal pressure gradients are independent of z and these flow properties are
represented by the mean-flow momentum equations. Consequently, for simulating
wave-tunnel experiments, the user switches off the entire inner-loop solution
procedure and specifies the velocity harmonics (period, velocity amplitude, phase
and direction) at constant water depth of the “mean flow” solved in the outer-loop.
The outer-loop time steps are now a fraction of the shortest wave period. Turbulence
and sand transport equations are now solved at outer-loop time steps. The latter
procedure then simulates wave-tunnel rather than wave-channel experiments using
the same code, input, turbulence model and sand transport equations as for surface
waves propagating on a flow.

This completes the overview of the solution procedure. The next section presents the
most important equations solved by the 1DV code but first we conclude with some
comments and a summary of limitations.

The previous overview suggests that, at least by its design, the code is applicable for
wave-tunnel or wave-channel experiments or the local hydrodynamics of waves in
wind-driven lakes, tide-driven estuaries as well as coastal seas. The outer-loop has
options for computing the net surface heat flux for given air temperature, pressure,
air humidity, cloudiness and position on the globe and for simulating the density
stratification (thermocline) by water temperature, see (Van Kester et al., 1997).
Obviously, this 1DV solver for wave-current-turbulence interactions has the
following limitations. In principle, although some tolerance may be allowed, the
waves should be subcritical, non-breaking, horizontally periodic and with small
surface elevations. The bed should be horizontal without sand ripples; the mean flow
should be horizontal and uniform in horizontal planes. There are no limitations on
mean flow shear rates. Presently, the subtle surface-boundary conditions for purely
viscous flows are crudely approximated (rigid lid) suggesting this 1DV solver is
primarily suitable for waves on turbulent shear flows.

3. THE EQUATIONS

In view of the previous description of the methodology, this section presents most of
the code’s mathematical equations with brief comments only. The order of
presentation equals the sequence by which these equations are solved. For notational
convenience all orbital variables obtain a tilde and are assumed to be period through:

1}7=g}‘/Re{exp(1‘{g-£-iwr)} i=A-1 . (D)
Uittenbogaard et al. (App. B, 1999) show that for waves on a shear flow at arbitrary



directions the orbital velocity vectors of a single spectral component are in single
vertical plane with directional deviations of (u./c,) where u. is the bed-shear velocity
and ¢, the wave’s phase speed. Therefore, the horizontal part of the orbital velocity
vector is assumed to be parallel with its wave-number vector.

At the start of each wave cycle the inner loop begins with solving the vertical profile
of the hydrodynamic pressure amplitude p. Its Poisson equation is linearized in

orbital motions; turbulence stresses are neglected and devoted to dealing with shear

flows yielding:
72§=—25—Q-Vﬁ’: , )
oz

where U is the mean horizontal flow, p is the fluid pressure divided by mean density
and w 1is the vertical orbital velocity. For (2) we apply the boundary conditions

[‘;—p} =0 ; 7= 3)
z z=0

the latter imposed at mean water level z=¢ (rigid lid), the bed level is z=0.
Substituting the linearized equation for vertical momentum (6) in (2) and using (1)
yields the following ordinary differential equation, equivalent to Rayleigh’s
equation,

d*p 4B 1nga 1 Uk
2B ——k|"'p=0 ; B= — ; Qz)=w -k -U 4
dzZ + dz 1—’ p Q(Z) Oﬂz (Z) w: = _(Z) ( )

for the pressure amplitude with given angular frequency ®, but yet unknown
horizontal wave-number vector k. The latter is obtained by the dispersion equation

2 ~
for o, (%Jrg.v) M 5)

oz

E
derived from (6) after neglecting turbulence stresses. By iteration, the wave number
magnitude is found so that the equality QE(Z) =0%p/ 8z ¢ is satisfied. During the

subsequent wave cycle the pressure-amplitude profile p(z;@,) for a given angular

frequency ®, is converted into the instantaneous pressure p(z,f;@,) being in phase



with the surface elevation, see (3). The vertical pressure gradient of the spectral
component with angular frequency @, then drives the momentum equation

ow, . 0p(ztw,) & ow,
e 2(v+ fhpur)g (6)

forw,:

for the vertical orbital velocity component while retaining just the most important
Reynolds stress term. In (6), v is the kinematic viscosity, v, the eddy viscosity and
f,, a wave- and turbulence-dependent high-pass filter function that is described later
in this section.

For a spectrum of waves, the orbital velocity vector is rewritten as % — & +V where
¥ represents all other contributions at wave numbers that differ from wave number k
belonging to % . Formally we thus define

i=i(0,) ; ¥=Yi(,) )

LS

where ®, is the user-specified angular frequency component appearing in (4). The
decomposition (7) as well as the previously introduced approximation (2),, = iZE

with é the unit vector parallel to the wave number vector k(®,) yields the following
equation for horizontal orbital momentum:

u & 7] u 4k 2Pzt
forw,: Q+{(Q+E).}i+g}£ﬁ+gsé’_u+ﬁ oy E_i_ pz.t0,) =
ot ox, oz oz ox,

1z ou| & ou ow,
F(z)+ o, {2(U+f*PUT)}Z}+E{(U+f"PUT)[Z+ ox, )}

In (8), W, is the vertical velocity component solved by (6) with the pressure induced

at angular frequency o, and x, is the horizontal co-ordinate along the k(,)-direction.
In view of table 1, all wave-current terms are retained in (8) and most of the wave-
wave interacting terms, the exception being the contribution of the vertical velocity
component by other spectral components to the advection term.

In (8) appears the important horizontal WCI force F, that is parallel to E . Rather than
using some model for WCI, we define the WCI force in the 1DV code numerically
such as to obtain a zero or negligibly small mean horizontal orbital velocity.
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Table 1 Overview of linear and non-linear (wave-wave) interaction terms in (8).

Our WCI force is determined per spectral component over its last completed wave
period and it reads:

(1+1)T
F;(z,(l+-2‘-)T;aJ,)=F [a(zt0,)dt r=iE i =0138s « )
ir s

In (9) the integral expresses averaging over the last wave cycle and F, is the mean
orbital velocity divided by its wave period. The origin of (9) lies in the success of a
similar procedure for adjusting the horizontal hydrostatic pressure gradient, see (14).

Other formulations for F,(z;®,) may be chosen provided they serve the essential
purpose namely obtaining zero mean horizontal orbital velocity at every z-level.

The last hydrodynamic step in the inner-loop solution procedure involves the closure
for turbulence stresses, particularly those in phase with the orbital strain rates. We use
the concept of eddy viscosity/diffusivity for exchange of momentum and mass
respectively. It can be argued that turbulent eddies with overturning time scales and
length scales longer than those of the orbital velocity fluctuations are deformed
without significant irreversible exchanges of orbital momentum. Conversely, the
orbital momentum fluxes are altered irreversibly by turbulent eddies at scales faster
and smaller than those of the orbital motions and these we define here as high-pass
filtered turbulence. For surface waves affecting the bed it can be shown that high-pass
filtering in terms of frequency spectra dominates so that we define the high-pass filter
function

£ =v@) (v*(@.)71(@.) (10)
vr(0) (u'z (0)) 7,000 °

reducing the total eddy viscosity of mean flow to the effective eddy viscosity v(,)

acting on orbital motions with angular frequency ®,. In (10), 7,(®,) is the integral time

scale of the high-pass filtered turbulence velocity component u” and we omitted the

dependence on space and time. For an exponentially decaying velocity correlation
coefficient it is straightforward to show that

S = {1 o %arctan(é’)}{l —exp-07]} ; 0=0,7,(0) (11)

holds and obviously fi, is unity for the mean flow. This expression is used in
determining the total production Q of turbulent kinetic energy through



szuf(DﬂFij+Zﬁp(ws)3:}(ws)a:j(ws)) (12)

where, omitting space and time dependence, D; is the mean-flow strain rate and
d;(®,) is the strain-rate tensor related to orbital motions with angular frequency ®;

Using the well-known k-L, k- or k-¢ turbulence models, 7,(0) can be expressed in
modelled turbulence properties. Consequently, (12) is a closed expression and (12)
is used in some eddy-viscosity turbulence model at each inner-loop time step when
all spectral components have been advanced a single inner-loop time step.

At the start of a new outer-loop time step all wave-averaged quantities are determined
over their most recent wave period and these averages are used in solving the mean-
flow horizontal momentum equation

ou " % ou &
Lovrsppry-Zoro) G- E-TR@)i@)  ©

with Coriolis parameter f and &, the vertically upward unit vector. We omit
describing the usual boundary conditions and just note that they include wave-
averaged stresses. In (13), F is the sum of all spectral WCI force vectors and the
minus sign in (13) is due to its momentum transfer property so that F, vanishes when

adding (8) multiplied by E to (13). The user specifies the depth-averaged velocity

vector Uy, possibly time-dependent. We fulfil this condition by adjusting the
horizontal hydrostatic pressure gradient, divided by fluid density, through

(14)

The first term in the RHS of (14) is the difference in wind-shear and bed-shear stress
vector divided by the mean water depth E , the second term represents the total WCI
force where the superscript ({) denotes depth-averaging. The last term in the RHS of
(14) represents the essential correction procedure with At the outer-loop time step
by which (13) is solved. This correction procedure has shown to work excellently
also for time dependent U,. Finally, in (14) appears the depth-average of the Stokes
drift US(z). Due to the rigid-lid formulation, the wave-induced mass flux vector M of
water between crest and through is not simulated and instead we substitute the

analytical formulation
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M={U =3 Za(Q)k+1 3.0 —= (15)
5 5 Z

derived in (Winterwerp & Uittenbogaard, 1997) and of second-order accuracy in
surface elevation; in (15) the overbar denotes averaging over the most recent wave
cycle.

The expression (15) is used for correcting just the mass flux of water because as
long as sediment concentrations are zero near the free surface the Stokes drift of
sediment is simulated directly, see also the accompanying paper (Bosboom and
Klopman, 2000).

4. EXAMPLES

The lines in figure 1 present the simulation with this 1DV spectral solver and these
show a good correspondence with observations; the inserted detail in Figure 1 has a
logarithmic z-axis. The simulation is based on 150 layers that increase exponentially
from a 0.1 mm thick bed layer for a 160 mm/s turbulent current parallel to the
direction of propagation of a monochromatic wave of 1.44 s period and 60 mm
amplitude on 500 mm deep water. The k-L turbulence model is used with the no-
slip condition.

Figure 2 compares the simulated and observed horizontal velocity amplitude, which
is slightly underestimated for the wave against the current. Figure 4 presents the
simulated WCI force transferring momentum between (8) and (13).

Figure 3 compares similar simulations with experiments on bichromatic waves with
wave amplitude and periods of 49 and 35 mm at 1.70 and 1.36 s, following the same
current as for the monochromatic-wave experiment (figure 1).

Figure 5 presents time series of simulating a second-order Stokes wave (485 and 188
mm at 6.5 and 3.25 s) that propagates on 2.4 m deep water, without a depth-
averaged current, using the k-g¢ turbulence model and 200 layers increasing
exponentially from the 0.84 mm bed layer. Due to phase lags, the horizontal velocity
signal at 100 mm above the bed is deformed inside the wave-induced boundary
layer. The temporal pattern of the eddy viscosity coefficient v; shows the anticipated
phase lags increasing with distance above the bed. Further, the time series of v;
inside the wave-induced boundary layer show local maximums occurring just after
the zero crossing of the velocity. These local maximums are induced by the high-
pass filter function f;,, see (11), that increases to unity with reducing turbulent time
scales. This function first boosts the turbulence production (12) as soon as the wave-
induced strain rates increase after zero velocity but subsequently the turbulence time
scale increases and then f,, reduces this production. This pattern in turbulence and
mixing mimics phase-coupled turbulence bursting in oscillatory flows. This type of
laminar-turbulence transition and/or secondary instability, however, is not

introduced in the high-Reynolds k-€ model nor in the high-pass filter function so that



this part of the temporal pattern of v; is a fortunate coincidence but it lacks a sound
physical modelling concept.

- CONCLUSIONS AND FUTURE DEVELOPMENTS

We conclude that the 1DV spectral solver, in Eulerian co-ordinates, is capable of
simulating various wave-current-turbulence interactions. Therefore the 1DV solver is
recommended for simulating laboratory experiments of sand transport under
combined waves and currents as demonstrated in the accompanying paper (Bosboom
and Klopman, 2000).

The high-pass filter function f, (11) appears to produce the correct wave-induced
boundary layer thickness. This function, however, is applicable only if the strain
rates and turbulence stresses of each spectral wave component are known explicitly
but not in the case of composite temporal signals such as in wave-tunnel
experiments. The modelling concepts of f,, as well as the occurrence of laminar-
turbulence transitions suggest the implementation of so called low-Reynolds
Reynolds Stress Model that avoids f;, and is suitable for composite time signals.

The reduction in spatial dimensions in the 1DV code excludes the simulation of the
wave-driven secondary circulation in laboratory channels (Nepf & Monismith, 1991)
by the Craik-Leibovich vortex force. In case of waves following the current this
circulation transports low momentum fluid to the channel’s centre (Dingemans et al.,
1996) and enhances the backward bending of the mean profiles in figures 1 and 3.
Likewise, the 1DV code lacks the simulation of Langmuir cells in unbounded waters
that augment the vertical exchange of horizontal momentum and of matter (Thorpe,
1984). Radder, see (Dingemans, 1999), proposes a cell-averaged model for vertical
transport of horizontal momentum and matter and his model will be added to our
1DV code.

In the 1DV code, we decomposed hydrodynamic processes into those driven by
hydrostatic pressure (outer loop) or driven by non-hydrostatic pressure (inner loop),
for the latter assuming horizontal periodicity. This approach suggests the
implementation of the inner-loop solver into a 3D free-surface hydrostatic solver, see
(Groeneweg & Uittenbogaard, 2000). In this arrangement, the inner-loop solver then
converts depth-averaged wave properties, estimated by wave-forecasting systems
such as HISWA and SWAN, into z-dependent WCI force vector, z-dependent Stokes
drift vector and z-dependent wave-induced turbulence production for use in 3D
hydrostatic free-surface solvers and their 3D turbulence models.
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Intra-wave sediment transport modelling
Judith Bosboom" ? and Gert Klopman™ 2
Abstract

This paper investigates the effect of wave-induced streaming on sediment transport by
applying a newly developed numerical sediment transport model. The transport model
solves the intra-wave oscillatory motion and sediment concentrations. The wave-
induced streaming in the wave boundary layer, as occurs in propagating waves, is an
integral part of the computed flow field. Comparison of the computed flow field with
wave-current flume experiments gives good results. The model can also describe the
horizontally uniform situation in an oscillating water tunnel, in which vertical orbital
velocities and wave-induced streaming are absent. The model is successfully tested
against measurements of sediment concentrations and net transport rates performed
in a large-scale oscillating water tunnel. The importance of streaming is assessed by
comparing model results for the case with wave-induced streaming and the case of the
oscillating water tunnel. For a typical water tunnel condition, the effect of the absence
of vertical velocities and streaming is found to be a 40% lower net transport rate than
the corresponding situation under propagating waves. These differences result not only
from the net transport by the streaming velocity, but are also due to an increased
asymmeltry in the model of near-bed velocity, bed shear-stress and resulting sediment
concentrations. This result suggests that the differences in transport rates between water
tunnel and propagating waves may not be insignificant.

Introduction

Since in the wave boundary layer under propagating waves the horizontal (# ) and
vertical velocities () are not exactly 90 degrees out of phase, an ensemble-averaged

shear stress — p(a’ﬁ) is introduced. As a result, a shoreward directed net velocity exists
in the wave boundary layer (see Figure 1). Although this wave-induced streaming
(Longuet Higgins, 1953) streaming is small, it is potentially important for the net-
sediment transport, since the sediment is concentrated near the bed.
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% Netherlands Centre for Coastal Research (NCK), Department of Civil Engineering and Geosciences,
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* Albatros Flow Research, P.O. Box 85, 8325 ZH Vollenhove, The Netherlands. Gert.Klopman@afr.nl
(corresponding author)



In order to study sediment transport phenomena under controlled simulated wave
conditions, often oscillating water tunnels are used. The generated oscillatory flow is
purely horizontal. The water tunnel therefore provides a first-order representation of
the sediment transport phenomena in the boundary layer under progressive waves.
This paper assesses the effect of neglecting the vertical orbital velocities, horizontal
gradients and wave-induced streaming on the net sediment transport rates.

We therefore first present a newly developed sediment transport model, which solves
the intra-wave-period and depth variation of the velocity and concentration fields. A
common assumption in such models is the neglect of the horizontal gradients in the
fluid momentum equation and the sediment mass balance, apart from the horizontal
pressure gradient. Neglecting these horizontal-gradient terms results in a model which
does not take vertical orbital velocities, horizontal convection and streaming into
account. This is a good representation of the oscillating water tunnel situation. Since
the fields of velocity and sediment concentration are determined locally by a one-
dimensional vertical (1DV) approach, the computational effort is limited.

crest-trough layer

Figure 1 Net velocity profile under propagating waves. In the wave boundary layer,
the net velocity is in the direction of wave propagation

In the model presented here, the horizontal gradient terms and the resulting
vertical velocities are accounted for in an essentially 1DV framework by rewriting the
horizontal derivatives in terms of time derivatives under the assumption of periodicity
in time and space. To our knowledge this method was first used by Trowbridge et al.
(1986) for the oscillatory boundary layer under waves. By retaining the horizontal and
vertical convective acceleration terms in the fluid momentum equation, the Stokes
drift and wave-induced streaming in the wave boundary layer are an integral part of
the flow field. The concentration fields include the effects of advection by the wave
orbital motion to second-order and therefore the wave drift of suspended sediment.

Further, an asset of the model is the consistent treatment of the complete water
column (including the wave boundary layer). Other important aspects of the model are
the applicability to random waves and the modelling of the water-sediment
interaction.

In the verification of the model a number of aspects is considered. First, attention is
directed towards the wave-induced streaming in the direction of wave propagation in the
wave boundary layer. For this the model is compared with wave-current flume
experiments. Secondly, the model is tested against measurements of sediment



concentrations and net transport rates performed in an oscillating water tunnel.
Comparing computed sediment transport rates for the situation in the oscillating water
tunnel and the corresponding situation in propagating waves assesses the importance of
streaming.

Model formulation

A one-dimensional vertical (1DV) solver has been designed (Uittenbogaard, 2000)
and extended with a sediment distribution model (Uittenbogaard et al., 1999, 2000),
such that the suspended sand transport under sheet-flow conditions can be simulated.
The model has a finite difference discretization in the vertical direction, and a mixed
frequency-domain / time-stepping approach for the time stepping. Horizontal
derivatives are rewritten as time derivatives assuming they are propagating with the
wave celerity. The selection of a non-equidistant vertical grid allows for resolving
details of the wave boundary layer while simulating the flow along the entire water
depth.

The combined wave and current flow is determined from the following non-linear

Reynolds’ averaged horizontal momentum equations (see for more detail Uittenbogaard,
2000):

au s i.‘. vi au la_p S a(u'w') oo a(urv’) = 3(1{’“’) , (la)
adt  dx dy 32 pdx dz dy ax

¥ o F o o 1dp avw’) V) auv’)
dt dx Jdy & pdy Iz dy dx

(Ib)

where the Reynolds’ averaged velocity in the directions (x,3,z) is denoted by (w,ww), p
is the pressure, p is the mass density of the water and (-) denotes ensemble

averaging. The turbulence fluxes are determined using a k—¢& turbulence closure
model, via the Boussinesq hypothesis. The vertical velocities are solved through a
(reduced) vertical momentum equation. The pressure p(z) driving this equation is
derived from the solution of Poisson-like equations for linear wave propagation on a
slowly varying, vertically sheared current.

In order to transform these equations to a 1DV framework, which is attractive
from a computational point of view, all horizontal derivatives in Eq. (1) to time
derivatives by assuming a wave of permanent form propagating with a celerity

c, =(C...C,,) and thus

w.x?
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The assumption of spatially periodic wave motions excludes sloping beds and

strong decay or growth of wave properties. The spectral solution procedure to Eq. (1)
is such that for each harmonic component in the velocity signal the propagation



velocity according to the dispersion relation is used for the transformation given by
Equation (2).

The corresponding Reynolds’ averaged conservation statement for the sediment
assuming that the upward transport of sediment is due to turbulence diffusion reads:

de  de dc de owe  dcw) Icv) dcw)
Dgme T i R ¢ T 5 e _ - 3
3!+u3x+vay+“é}z > 37 v 3% (3)

where c is the sediment concentration and w; the concentration dependent sediment
fall velocity. In order to model the turbulence sediment flux, we make the assumption
of upward transport due to turbulence diffusion as for the fluid. The loading of the
flow with suspended sediment is considered to yield damping of turbulence.
Analogous to the procedure for the fluid momentum equations, the horizontal
derivatives in Equation (3) are converted to time derivatives via the assumption of
periodicity.

We use a bottom boundary condition which is a function of the instantaneous bed
shear stress and with an upper cut-off for the sediment concentration at large values of
the bed shear stress. The sediment concentration is prescribed at a reference level
z, =2Dy,:

clzast)=c, () &)
In this way we expect to account for the majority of the transport near the bed; the

bed load transport is expected to be small as compared to the suspended load

contribution. For more detailed description of the sediment transport model one is

referred to Uittenbogaard et al. (2000).

Comparison with Scheldt flume experiments

The model is tested against wave-current flume experiments of Klopman (1994).
The experiments were conducted to study the flow kinematics under combined wave-
current motion. Tests were performed with mono-chromatic, bi-chromatic and random
waves without current, following current, opposing current and current only. The
cases with combined wave-current motion are investigated in Uittenbogaard (2000).

Here we only consider the case of mono-chromatic waves without a current. These
test series without a current show the well known wave-induced streaming near the
bed, in the direction of wave propagation. The experiments were performed in
wL|pelft Hydraulics’ Scheldt flume in a water depth of 0.5 m. The wave period is
1.44 s and the wave amplitude 0.06 m. Figure 2 and Figure 3 show the mean velocity
(left plot) and amplitude of the first harmonic (right) plot for the entire water depth
and for the lower 10 c¢cm respectively. We find an overestimation of the streaming
velocity and a slight underestimation of the velocity amplitude in the overshoot
region. In general the measurements and computations compare reasonably well.
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Comparison with Large Oscillating Water Tunnel experiments

In order to study sediment transport phenomena under controlled simulated wave
conditions at full scale, the Large Oscillating Water Tunnel (LOWT) has been
constructed at WL|Delft Hydraulics, see Figure 4. The system basically consists of a
vertical U-tube with one open leg. The other leg is provided with a piston. At the
bottom of the test section a sediment bed may be installed. The tunnel is equipped
with a flow circulation system, such that besides an oscillating flow a current can be
generated. The generated oscillatory flow is purely horizontal. As opposed to the case
of progressive waves, vertical orbital velocities and horizontal gradients, and thus
wave-induced streaming, are absent.

Oscillating water tunnel
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Figure 4 Schematic representation of the Large Oscillating water tunnel

Plane-bed experiments carried out in the LOWT for a sinusoidal oscillation plus
current (Katopodi et al, 1994a,b) and for a regular asymmetric (second-order Stokes)
oscillation in the absence of a mean current (Ribberink and Al-Salem, 1994, 1995)
were used for model validation. The sand median diameter is Dy, =210um . The sets
of experiments covered a range of wave periods, flow velocity and asymmetry. For a
few tests detailed time-dependent measurements of flow kinematics and sediment
transport were performed. For all tests net transport rates were derived using a mass-
conservation technique. Time-averaged concentrations were measured using a suction
system, whereas time-dependent concentrations were measured using a conductivity
concentration meter (CCM) in the sheet flow layer and an optical concentration meter
(OPCON) in the suspension layer. The conditions used here are the sinusoidal wave
plus current condition E1 and the regular asymmetric wave condition Cl1.



Sinusoidal oscillation plus current, LOWT condition El

The model input parameters for the E1 case are a mean velociy <u> = 0.17 m/s at
10 cm and a fundamental harmonic u; = 1.7 m/s with a period of 7.2 s. Comparison
between the model and the measurements for the cycle-averaged vertical profiles of
horizontal velocity <#> and sediment concentration are shown in the upper two plots
of Figure 5.
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Figure S Comparison between model predictions and measurements by Katopodi et al.
(1994a,b): the vertical profiles of cycle mean velocity (upper left panel) <u> and
cycle mean concentration <c¢> (upper right panel) and the profiles of the cycle mean
total sediment flux <uc>(lower left panel) and current related <u><c¢> and wave
related (#¢) contributions (lower right panel).

It is not surprising that the velocity magnitude around the matching level between
data and model agrees well with the model. However, also the velocity shear is
predicted quite accurately such that the velocity is in good agreement throughout
entire region shown. The large sediment concentrations close to the bed are in good
agreement with the measurements, but up to a few centimeters above the bed the
sediment concentrations are clearly overestimated. An underestimation occurs for
higher elevations.

In the lower left panel of Figure 5, the predicted time-averaged flux profiles are
compared with the data. The model and the data show an ‘onshore’ transport in the
near-bed layer and an ’offshore’ transport in the outer suspension layer. Any mismatch
between model and data further from the bed can be expected to be relatively
unimportant for the net transport predictions. The overestimation of the net flux close
to the bed is important for the net transport prediction; in this case the net transport is
overestimated with a factor 1.5. Other tests showed that this is a general trend of the



model; the model tends to overestimate the net transport predictions, with factors up
to 2.

Not surprisingly, these features qualitatively correspond with model predictions
discussed in a MAST2 G8-M intercomparison study comparing four numerical 1DV
wave boundary layer models with LOWT data (Davies et al., 1997): for the idealised
water tunnel conditions, the equations underlying the here described model reduce to
equations similar as used in other wave boundary layer models, in which vertical
velocities and horizontal gradients are neglected a priori. Note that this is a valid
assumption for models simulating LOWT experiments.

Second order Stokes condition without net current, LOWT condition C1
In the C1 experiment the free-stream velocity at z =20 cm is:
u, (1) = (u)+y cos(@r)+u, cos(2ax) )

where T = 2n/o = 6.5 s and the velocity amplitudes are <u> = 0.025 m/s, u; = 0.85
m/s and u;=0.27 m/s.
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Figure 6 Comparison between model predictions and measurements by Ribberink and
Al-Salem (1994,1995): the vertical profiles of first harmonic velocity amplitude u;
and second harmonic u; (upper left panel) and cycle mean velocity <u> (upper right
panel) and the profiles of the cycle concentration <c> (lower left panel) and mean
total sediment flux <uc> (lower right panel).

The vertical profiles of the net current and first and second harmonic amplitudes is
shown in the upper panels Figure 6. The existence of the small residual current in the
tunnel, as shown in the upper left panel, has been discussed by Ribberink and Al-



Salem (1995). Near the bed (z < 6 cm) this current is ‘against the wave propagation
direction’, i.e. in the direction of the flow during the trough half cycle. Further from
the bed, a small compensating flow in opposite direction occurs. This boundary layer
streaming results from the asymmetry in the turbulence characteristics under

asymmetric waves. Although the mean shear stress 7=-p («'w)) is effectively zero at

each level, V9w /dz=—v du/dz is in general unequal to zero for asymmetric waves with

asymmetric vand #. The present model predicts the tunnel streaming rather well
(upper right panel).

In the lower left panel of Figure 6, the sediment concentration is compared with
the measurements. As for E1, the concentration close to the bed are in good agreement
with the measurements. Further from the bed, the concentrations are first significantly
overestimated and then underestimated. The lower right panel shows the time-
averaged sediment flux. The model significantly overestimates the height of zero flux,
which is a direct result of the underestimation of the phase differences between
velocity and concentration. This is generally the case in models based on a diffusion
approach for the upward transport of sediment (see Davies et al 1997, Bosboom et al,
1998).

These features lead to a general overestimation of the net transport rates by the
model. However, when testing the model against the complete set of experiments with
a sand median diameter of Dy, =210um, covering a range of wave periods, flow
velocity and asymmetry, all computed transport rates for the idealised water tunnel
situation are within a reasonable factor 2 of the data.

Waves versus water tunnel: the effect of streaming

In the previous section, it was seen that in the water tunnel a turbulence
asymmetry-induced streaming is present as a result of the wave asymmetry. Close to
bed this streaming is against ‘wave propagation direction’ or in the direction of the
wave trough velocity. In propagating waves however, the net wave-induced streaming
close the bed is in opposite direction, i.e. in wave propagation direction. The water
tunnel is therefore not a complete representation of the situation under propagating
waves, although it is often assumed to be, since many transport models were
calibrated using the tunnel data without making corrections to account for the
difference in streaming,

In order to assess the importance of this streaming for the net transport rates, the
model was run in ‘water tunnel mode’ for water tunnel condition C1 (see previous
section) and in corresponding ‘propagating wave mode’. The results of these two
model runs were compared on velocity, concentration and flux profiles and the net
sediment transport rate.

In first instance we choose a propagating wave condition corresponding to the
wave tunnel by matching the oscillatory velocity above the wave boundary layer i.e.,
at z~ 0.2 m. This means waves with a wave height H =1 m and a wave period of 6.5
s propagating in a water depth of 2.4 m. In the right panel of Figure 7 the first and
second harmonic amplitudes are given for both the water tunnel (drawn lines) and the



corresponding propagating wave condition (dashed lines). The profiles of the mean
velocity are given in the left panel. The latter plot clearly shows the turbulence
asymmetry induced streaming and the wave-induced streaming, which are of the same
order of magnitude but of opposite sign. The magnitude of the net flow is small, both
in absolute sense and relative to the root mean square velocity.

Figure 8 (left panel) shows the mean velocity in the lower 1.5 cm above the bed
for the tunnel and propagating wave cases. The right panel shows the mean sediment
concentration, which is remarkably similar in both cases. The total flux (lower left
panel) however and the wave and current related fluxes (lower right panel) show some
distinct differences. The major difference in the total flux occurs very close to the bed,
where the propagating wave case shows a higher time mean flux. Upon integration it
appears that the total sediment transport is ~ 40 % higher in the propagating wave
case. As expected from the signs of the mean velocity, the current related flux is
‘onshore’ and ‘offshore’ directed for the propagating wave and water tunnel case
respectively. This effect however only results in part of the differences in the observed
total fluxes. The wave related flux also shows some important differences, being
larger for the propagating wave case near the bed, but smaller at higher elevations
above the bed.

The difference between tunnel and wave case seems to be largely due to the wave
induced effects on the flow field. Switching off the vertical velocity related terms in
the advection-diffusion equation for the sediment concentration did result in very
small changes in the results.
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Figure 7 Comparison between model results for the water tunnel (drawn lines) and the
corresponding propagating wave condition (dashed lines). Profiles of mean velocity
(left panel, including data for the tunnel situation) and amplitudes of first and second
harmonics (right panel).
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Figure 8 Comparison between model results for the water tunnel (drawn lines) and the
corresponding propagating wave condition (dashed lines): the vertical profiles of cycle
mean velocity (upper left panel) <u> and cycle mean concentration <c¢> (upper right
panel) and the profiles of the cycle mean total sediment flux <uc>(lower left panel)
and current related <u><c¢> and wave related (i}’ ¢) contributions (lower right panel).

Summarising, the observed net effect on the total flux going from the water tunnel
to the corresponding propagating wave situation is an approximately 40 % higher net
transport rate. Both the current related (due to opposite signs of the streaming velocity
in waves and LOWT) and wave related flux are significantly different. This result
suggest that the differences in transport rates between water tunnel and propagating
waves may not be insignificant. The differences in the wave related flux become clear
when inspecting the instantaneous bed shear stress and sediment concentrations in
either case (Figure 9).

The upper right panel of Figure 9 shows that the oscillatory velocities in the wave
boundary layer are practically identical. The total velocities however, as shown in the
upper left panel are significantly different, as a result of the opposite sign of the
streaming velocity. This significantly influences the asymmetry of the velocity signals
(upper left panel) and bed shear stress (see shear velocity in lower left panel). In the
propagating wave case the asymmetry is enhanced by the streaming in the wave
propagation direction, or, in the direction of the crest velocity. In the water tunnel case
however, the turbulence asymmetry induced streaming, in the direction of the trough
velocity, reduces the asymmetry of the velocity, bed shear stress and sediment
concentrations. The increased asymmetry in the concentrations close to the bed results
in an increased wave related flux near the bed where the oscillatory velocity and
sediment concentrations are only slightly out of phase. Thus, differences in the
sediment fluxes between the water tunnel and waves not only result from the net



transport by the streaming which is opposite in sign, but from a decreased asymmetry in
the water tunnel velocity signal, bed shear stress and therefore sediment concentrations
as well.
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corresponding propagating wave condition (dashed lines): the instantaneous total
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In the above, we talked about the corresponding propagating wave case as the case
which would yield the same identical oscillatory velocity signal in both wave and
water tunnel case. The mean velocity in the water tunnel is matched at a certain level
with the known, measured, mean velocity. For the propagating wave case, the mean
velocity profile is determined using the condition that the mean depth-averaged
velocity is zero. One could just as well argue that the reasoning to determine the
conditions that should be compared should be the other way around and start at the
real wave case. This is illustrated in Figure 10 where the result for the previous
comparison are repeated and a new case LOWT2 is added. Here it is assumed that in
the field we measure a velocity signal, oscillatory and mean, above the wave boundary
layer, at z = 0.2 4 0.3 m. We carry out a test in the LOWT, which simulates this field
condition. So instead of experiment C1 with a mean velocity at z = 0.2 m of <u>=
0.025 m/s, we have an experiment with a mean velocity at z = 0.25 m of -0.05 m/s
(experiment LOWT2). In that case the difference in transport rates between
propagating wave case and water tunnel case becomes only larger.
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Figure 10 Comparison between model results for the water tunnel case LOWT
(drawn lines) and LOWT2 (dash-dot) and the corresponding propagating wave
condition (dashed lines): cycle mean velocity (left panel, upper right panel) <> and
cycle mean total sediment flux <uc> (lower right panel).

Conclusions

The following conclusions can be drawn:

1.

The 1DV model provides a means to assess the flow field and sediment transport
under waves and current over the full water depth including the bed boundary
layer. By switching off the vertical velocities the model can also compute the flow
and sediment fields as found in an oscillating water tunnel.

The flow kinematics computed by the model agree well with measurements both
in a wave-current flume and an oscillating water tunnel.

The sediment transport rates computed with the model agree in general to within a
factor of two with those obtained in the oscillating water tunnel. However, the
model in general overpredicts the sediment concentration near the bed and
overestimates the level of zero sediment flux.

The turbulence asymmetry induced streaming in the oscillating water tunnel is of
opposite sign as the wave induced streaming under propagating waves. The
sediment transport rate was found to be 40 percent higher under waves than for the
oscillating water tunnel. This suggests that relationships between near-bed
velocities and sediment transport derived from oscillating water tunnel
experiments should be corrected for the absence of wave induced streaming in the
bed boundary layer.

This increase in transport rates is partly due to the ‘onshore’ directed transport by
wave-induced streaming. Further, differences in wave-related transport occur
between water tunnel and propagating waves which are due to differences in
asymmetry of near-bed velocities (owing to the streaming more asymmetric under
propagating waves), bed shear stress and therefore sediment concentrations.



Acknowledgements

This work is undertaken in the SEDMOC project, in the framework of the EU-
sponsored Marine Science and Technology Programme (MAST-III), under contract no.
MAS3-CT97-0115. It is cosponsored by the Dutch Ministry of Transport and Public
Works (Rijkswaterstaat), WL[Delft Hydraulics in the framework of the Netherlands
Centre for Coastal Research (NCK) and Delft Cluster Sediment Transport under
contract no. 03.01.01

References

Bowen, A.J., 1980. Simple models of nearshore sedimentation; beach profiles and
longshore bars. The Coastline of Canada, Ed. S.B. Cann, Geological Survey of
Canada, Ottawa, pp.1-11.

Bosboom, J., Klopman, G., Reniers, A.JHM., Stive, M.J.F., 1998. Analytical model
for wave-related sediment transport. Proc. ICCE 1998, pp. 2573-2586.

Davies, A.G., J.S. Ribberink, A. Temperville and J.A. Zyserman, 1997. Comparisons
between sediment transport models and observations in wave and current flows
above plane beds. Coastal Engineering 31, pp. 163-198.

Katopodi, I., Ribberink, J.S., Ruol P., Koelewijn, R., Lodahl, C., Longo, S., Crosato, A.,
and Wallace, H., 1994. Intra-wave sediment transport in an oscillatory flow
superimposed on a mean current. WL|Delft Hydraulics, Report H1684, Part II1.

Katopodi, I., Ribberink, J.S., Ruol, P. and Lodahl, C., 1994. Sediment transport
measurements in combined wave current flows. Proc. of Coastal Dynamics,
1994, Barcelona, ASCE.

Klopman, G., 1994. Vertical structure of the flow due to waves and currents: Laser-
Doppler flow measurements for waves following or opposing a current.
WL|Delft Hydraulics report H840.30 Part II.

Longuet-Higgins, M.S., 1953. Mass transport in water waves. Phil. Trans. Roy. Soc.
London A 245, pp. 535-581

Ribberink, J.S. and Al-Salem, A.A., 1994. Sediment transport in oscillatory boundary
layers in cases of rippled beds and sheet flow. J. of Geophys. Res., 99(C6), pp.
12707-12727.

Ribberink, J.S. and Al-Salem, A.A., 1995. Sheet flow and suspension of sand in
oscillatory boundary layers. Coastal Eng. 25, pp. 205-225.

Rijn, L.C. van, 1993. Principles of sediment transport in rivers, estuaries and coastal
seas. Aqua Publ. (The Netherlands).

Trowbridge, J.H. and Kanetkar, C.N., 1986. Numerical simulations of turbulent wave
boundary layers. Proc. ICCE 1986, ASCE, pp. 1623-1637.

Uittenbogaard, R.E., Bosboom, J. and T. van Kessel, 1999. Numerical simulation of
wave-current driven sand transport. WL| Delft Hydraulics, Report Z2733.41.

Uittenbogaard, R.E., Bosboom, J. and G. Klopman, 2000. Numerical simulation of
wave-current driven sand transport. WL| Delft Hydraulics, Report Z2899.

Uittenbogaard, R.E., 2000. 1DV simulation of wave-current interaction. Proc. ICCE
2000.

Zyserman, J.A. and J. Fredsoe, 1994. Data analysis of bed concentration of suspended
sediment. J. Hydraulic Eng. 120(9), ASCE, pp. 1021-1042.



WL | Delft Hydraulics

Rotterdamseweg 185
postbus 177

2600 MH Delft
telefoon 015 285 85 85
telefax 015 285 85 82
e-mail info@wldelft.nl
internet www.widelft.nl

Rotterdamseweg 185

p.o. box 177

2600 MH Delft

The Netherlands
telephone +31 15 285 85 85
telefax +31 15 285 85 82
e-mail info@wldelft.nl
internet www.widelft.nl

North Sea

London «






