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Abstract

Spiking Neural Networks use Address Event Representation to communicate among
different Neuron Arrays. To mimic the behavior of the human neural system and
meets the requirement for large Neuron Array communication, the AER interconnect
should be area-saving, have low power, and operates at high speed.

This thesis aims to build self-timed interconnects for point-to-point and multi-array
communication. The whole system is designed at the RTL level using SystemVerilog.
For point-to-point communication, two transmitters are implemented and compared
according to their synthesis results. In the multi-array communication structure, we
develop a generalized segmented-bus topology and the element - Fence to control its
segments. Different timing problems in the design are analyzed, and corresponding
solutions are proposed. The whole system can operate at around 1Gbps in a self-timed
manner without any timing problems.
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Introduction 1
The Spiking Neural Networks (SNNs), as the third generation of neural networks, are
driving the next wave of innovation in Neuromorphic Computing. Unlike traditional
neural networks, which process data as continuous signals, SNNs handle and transmit
data as discrete spikes incorporating timing and location information. At the same
time, with the technology scaling, more and more neurons are integrated into a single
array. Thus, a specific interconnect structure must be constructed to transmit spikes
between different Neuron Arrays(NAs).

1.1 Problem statement

Neurons generate spikes as output for communication and receive spikes as input for cal-
culation. Address Event Representation(AER) is a commonly-used strategy for point-
to-point communication between NAs. While spiking activity for a single neuron is
sparse compared with the working speed of electronic devices, spikes can be consider-
ably dense in a large neuron array. In most commonly used synchronous systems, a
clock consumes a lot of power which is not desired in our case. Therefore, a self-timed,
high-speed, and ultra-low power interconnect for point-to-point communication needs
to be designed. After that, when it comes to the scenario of multiple NAs, more re-
quirements are added. The interconnect should be able to transmit the spikes to their
corresponding destination. Besides, it must also be capable of dealing with concurrent
spikes from different NAs and solving the contention among spikes.

1.2 Thesis goals

Firstly, this thesis aims to build a fully self-timed interconnect between two NAs. The
interconnect should exclude the global clock signal and clock-trigger devices such as
FIFOs. The interconnect should be able to deal with a spike in the order of nanosec-
onds(ns) and preserve the timing information of each spike as much as possible.

Then based on that, the thesis aims to build an interconnect structure of Multiple
NAs. This interconnect structure uses the segmented-bus topology to save power and
enable parallel communication. The NAs are separated by a structure called ”Fence”
which can be turned on and off. The control logic will be designed to control the whole
traffic flow of the interconnect. The timing information also needs to be verified in this
case.
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1.3 Contributions

The main contributions of this thesis are:

• A novel self-timed point-to-point interconnect structure using AER for NAs.

• A novel interconnect architecture for multiple NAs using segmented bus topology.

• Design of the structure of ”Fence” and its control logic.

• Design of the whole test environment in SystemVerilog and the simulation of the
implemented structure.

• The analysis and solution of timing problems in the design.

1.4 Outline

The rest of the Thesis is organized as follows. Chapter 2 gives a brief overview of differ-
ent interconnect topologies and communication schemes. Based on that, the strategy
and constraints in our design are chosen. Chapter 3 gives the implementation of our
self-timed interconnects structure for point-to-point communication. Then Chapter 4
describes the architecture and implementation of our multi-array interconnect solution.
After that, Chapter 5 presents the simulation results of previous designs. Finally, in
Chapter 6, the conclusion of the thesis is drawn, and the future aspect of the research
is discussed.
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Background 2
This chapter introduces the relevant background information for this thesis project.
Firstly, we give a brief overview of Spiking Neural Networks (SNN) and the protocol,
Address Event Representation (AER), for their inter-array communication. Then, dif-
ferent common implementations of AER protocol are presented and compared. Lastly,
some interconnect topologies for multi-components communication systems are intro-
duced.

2.1 Spiking Neural Networks and Address Event Representa-
tion

Spiking Neural Network (SNN) is an emerging neural network that mimics the human
neural system to do processing and computing. In real neural systems, a neuron fires an
action potential when its synaptic potential reaches a threshold. It will send this action
potential to nearby neurons, causing other neurons’ membrane potential to increase or
decrease by a certain amount. The SNN works basically the same way in that it
utilizes spikes to communicate among different electrical neurons, as shown in Figure
2.1. Different from traditional artificial neural networks, spikes used in SNN are discrete
pulse signals and contain the timing information itself. Therefore, how to transmit these
spikes between different Neuron Arrays (NAs) becomes a critical topic in the research
of SNN.

Figure 2.1: A) SNN structure[1] and B) Biological neurons[2]
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Address Event Representation (AER) is a commonly used protocol for different NA
communication. It was first proposed in [3] in 1993. Figure 2.2 shows a diagram of
how AER works. The AER circuit from the first Neuron Array samples the spikes
from different neurons and encodes them to a corresponding address. Then it sends the
address to another Neuron Array. The decoder in that NA decodes the address into
spikes on the corresponding address line. After that, neurons in the second array can
accept these spikes as their inputs to do the following computing and processing.

Figure 2.2: Address Event Representation [4]

The challenge of AER interconnect design falls mainly in 2 aspects from a broad
perspective. Firstly, although the spiking activity for a single neuron is relatively sparse
compared with modern digital circuits[5], the spikes can be dense for a large size NA. So
AER circuits require low latency and high throughput. Secondly, since SNN imitates
brain activity, low power is also a crucial criterion for AER design.

2.2 Communication Scheme

There are mainly 3 communication schemes for AER interconnect in terms of timing
control methods. They are synchronous solutions, asynchronous solutions with
handshake protocol, and self-timed circuits.

2.2.1 Synchronous Solution

Synchronous circuits are separated into several parts by edge-triggered flip-flops, as
shown in Figure 2.3. Each part is driven by a global clock signal in order to function
correctly. In synchronous circuits, a clock-driven feedback loop can also exist to change
the next circuit state according to the circuit’s current state.
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Figure 2.3: A generalized synchronous system[6]

Figure 2.4 shows a diagram of a synchronous AER transmitter proposed by [7]. The
transmitter is composed of 5 blocks. The clock signal puts spikes in different cycles and
pushes them into FIFO sequentially. The encoder takes spikes from FIFO and outputs
an address corresponding to the spike with the highest priority each clock cycle. The
feedback signal to MUX plays an important role in deciding if the encoder should handle
the remaining spikes from the previous cycle or fetch a new spike set from FIFO. The
whole system works in an orderly manner with the help of a clock.

Figure 2.4: Synchronous AER implementation

Although synchronous circuits are robust and easy to implement, it also has some
drawbacks. Firstly, the constantly flipping clock signal greatly contributes to power
consumption. In [8], the authors point out that the global clock consumed 40 % of the
chip’s total power. Besides, the clock tree needs to be carefully balanced to deal with
the influence that jitter and skew bring about. To handle these problems, asynchronous
circuits are discussed in the next subsection.

2.2.2 Asynchronous with Handshake protocol

Asynchronous circuits do not need a global clock signal to drive the circuits. Instead,
they use a pair of control signals, Request and Acknowledge, to control the data trans-
mission. Figure 2.5 shows a basic structure of the interconnect using handshake pro-
tocol. The Request signal starts a transmission and the Acknowledge signal indicates

7



the transmission has been completed. Then data bus can change to start a new trans-
mission.

Figure 2.5: Communication scheme using handshake protocol[9]

Two kinds of handshake protocols are often used in asynchronous circuits. Figure
2.6 shows the waveform of these two protocols. In the two-phase protocol, both the
rising and falling edges of the Request signal can start a transmission. This also applies
to the termination of the transmission by Acknowledge signal. On the contrary, in the
four-phase protocol, only the rising edge of the control signals is valid for transmission.
Therefore both the Request and Acknowledge signals need to reset to 0 at the end of
each transmission.

Figure 2.6: Waveform of (a) two-phase protocol and (b) four-phase protocol[9]

Most asynchronous circuits use handshake protocols to avoid the drawbacks of
the global clock. But it comes at a price. The sender should be able to detect
when the data is stable for transmission, and the receiver needs a completion
detection circuit to generate the acknowledge signal. This will increase the area
overhead. Besides, the sender and receiver must always wait for each other’s control
signal to continue the communication. This will slow down the communication process.
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2.2.3 Self-timed circuits

Taking all the defects of the above 2 schemes into consideration, a new scheme called
self-timed circuit is proposed.

There is no universal definition for the self-timed circuit. Some articles[10] mix self-
timed circuits with asynchronous circuits that use handshaking. From my perspective,
a self-timed circuit should have the following features.

Firstly, it should use the characteristic of the data or event itself to drive the data
transmission. So it is also called event-driven or data-driven circuits. In this respect,
SNNs are highly consistent with the self-timed circuit because spikes include timing
information themselves. The author in [4] called this property of spikes ’time represent
itself’.

Secondly, the self-timed circuit should use combinational logic, latches, flip-flops,
and delay elements as basic building blocks. Delay elements are circuits that delay the
input for a certain period of time. The simplest delay element is a pair of inverters.

Finally, self-timed circuits should have no clock signal, no FIFO, and no handshaking
signals. They should also have few control signals, especially global ones because this
could slow down the transmission.

owing to these special features of self-timed circuits, no protocol or structure applies
to all kinds of self-timed circuits. Different self-timed structures need to be specifically
designed for different scenarios. [11] proposes a self-timed scheme that can be used for
pulse-mode circuits. It uses a series of self-resetting pulse gates to make the circuit
work in order.

When it comes to SNNs, few self-timed interconnect implementations could be
found. [12] proposes a self-timed interconnect for point-to-point communication. Fig-
ure 2.7 shows the structure and basic components of its proposed interconnect. It uses
an input edge detector to sense the rising edge of spikes. The edge detector then drives
a local multi-phase vibrator to generate 3 short pulses. These pulses then trigger the
spike arbiter to output an ordered AER sequence. This design substitutes the global
clock signal with a local multi-vibrator so that the pulses are only generated when there
is an incoming spike. It uses the edge of the spikes to trigger the whole interconnect to
work properly.

2.2.4 Delay Models of Asynchronous Circuits

Considering all kinds of asynchronous circuits, including the ones using handshake
protocol and the self-timed circuits, they differ mainly in the delay models they use.
The delay model refers to the assumptions and constraints imposed on the gates, wires,
delay elements, and different paths of the circuit.

[13] divides the asynchronous circuits into 5 categories. They are delay-insensitive
design (DI), Quasi-delay-insensitive design (QDI), Speed-independent design (SI), Scal-
able delay-insensitive design (SDI), and Bounded-delay design. The timing restrictions
gradually increase from the first kind to the last. The delay-insensitive design makes no
assumptions about the delays of all the circuit elements, while for the bounded-delay
design, delay value restrictions are imposed on most of the circuit elements. As for the
2 schemes mentioned in the previous subsection, handshake circuits can be made to
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Figure 2.7: Structure and Basic components proposed in[9](a) Spike Arbiter (b) Local Multi-
phase vibrator (c) Input Edge Detector

any of the DI, QDI, SI, and SDI designs based on their different variants. On the other
hand, self-timed circuits fall in the category of bounded-delay designs.

Generally speaking, a design with fewer delay constraints and assumptions tends
to be more robust to process variations. But this comes at a price that it may work
at a relatively low speed, with the high area and power overhead. The bounded-delay
designs are likely to be smaller, faster, and lower in power consumption. But the timing
analysis is needed throughout the whole process of the design. Besides, this kind of
circuit is hard to synthesize with the traditional flow.

2.3 Interconnect Topology

When there are multiple components in a communication system, the interconnect
topology needs to be considered. In this section, 3 kinds of topology are presented and
discussed.

2.3.1 Shared Bus

The shared bus is the simplest topology where all the nodes connect to a single link,
as Figure 2.8 shows. Bus topology is cost-effective for a small number of nodes. But
when the number of nodes increases, the contention problem becomes serious. So it is
used a lot in low-frequency, low-throughput scenarios. The performance of the shared
bus can be improved by increasing the number of channels[14], but this will also add
extra area overhead.

10



Figure 2.8: Bus structure

2.3.2 Network on Chip

Network on Chip(NoC) is an arising interconnect topology for communication systems
that have a large number of nodes. Figure 2.9 exhibits the basic structure of an NoC
interconnect. It is a 2D mesh that has 2 kinds of components, Processing Element
(PE) and Router (R). Each Processing Element is connected to its own Router, while
each Router connects directly to its adjacent Routers. To start a transmission, the
Processing Element first needs to send packets to its Router, and the router determines
the route the packet takes to the destination.

Figure 2.9: Basic NoC structure

While NoC is scalable to a large number of nodes in a communication system, it
consumes a lot of power from its routers. The routing algorithm for routers could also
be complicated to avoid contention and deadlock. The complex control algorithms are
undesirable for asynchronous design since this will make timing checks more compli-
cated. There is some research implementing NoC interconnect for SNNs. [15] proposed
an NoC structure with a ring Router for SNNs. It achieves a low deviation of spikes’
latency. But it is a synchronous design and does not mention the power data.
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2.3.3 Segmented Bus

The segmented bus is a variant of the general bus topology. Its basic structure is shown
in Figure 2.10. The segmented bus was first proposed to enable different nodes in the
system to share common data, as well as sometimes communicate separately in small
sub-blocks. [16] systematically builds a self-timed bus model and proposes a series of
algorithms to optimize the total traffic in the system.

Figure 2.10: Segmented Bus topology[16]

Some interconnects use the segmented-bus topology to enable parallel communi-
cation and reduce power consumption. [17] proposes an asynchronous segmented-bus
communication topology. It uses several handshake signals to arbitrate the use of dif-
ferent segments. [18] is a segmented-bus implementation SNN. It is a synchronous
solution based on the software platform.
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Point-to-point AER
interconnect design 3
From the above-discussed background in Chapter 2, we find that a self-timed circuit is
the best scheme to design the AER interconnect. Firstly, it is power-efficient compared
with synchronous circuits as it does not have a global clock signal. On the other
hand, compared with solutions that use handshake protocol, it has fewer control signals
and less complex control schemes, thus leading to less area overhead and potential
improvements in throughput. The most important point is that the self-timed circuit
is greatly compatible with the working principle of SNNs, i.e., using spikes (events)
themselves to contain timing information that they need to transmit.

This chapter designs an AER interconnect for point-to-point communication. It is
organized as follows. In section 3.1, design considerations for the interconnect are put
forward. Then in section 3.2, the whole structure is presented, and the details of how the
interconnect works are also explained. Next, in section 3.3, the focus component, the
priority encoder, is designed. Several priority encoders introduced in other literature
are discussed, and a new kind of priority encoder is proposed and designed. Having
finished the functional design, in section 3.4, timing problems in this self-timed design
are analyzed, and several solutions are offered. Finally, section 3.5 summarizes this
chapter.

3.1 Design Consideration

Figure 3.1 shows a highly abstracted point-to-point communication diagram. The trans-
mitter encodes the spikes from NA1 into AER signals and sends them to NA2. In the
point-to-point design, the transmitter is the critical part mainly because of 2 reasons.

Figure 3.1: Highly abstracted diagram for point-to-point structure with T representing trans-
mitter, R representing Receiver
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Firstly, in NAs, different neurons may spike concurrently. So the transmitter should
be able to deal with the simultaneous spikes and encode them into an organized AER
sequence at the output.

Another reason is that if the transmitter is well-designed and meets all the timing
requirements, the receiver in another NA can use simple combinational logic to decode
the AER signal into corresponding spikes.

3.2 Whole structure

Figure 3.2 shows the whole structure of my designed transmitter. It mainly consists of 4
different parts, a sampler, a priority encoder, an address-handling unit, and a feedback
loop.

Figure 3.2: Structure of the proposed transmitter in this thesis

The sampler is composed of a set of flip-flops. Each flip-flop’s clock port connects to
an individual neuron to receive its spikes. The data port of the flip-flop is consistently
set to logic 1. Each time the rising edge of a new incoming spike arrives at the clock
port, the corresponding flip-flop’s output is set to 1. Then after some delays, the
output is reset to 0 again, indicating this spike has been successfully handled by the
transmitter.
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There are 2 options to build the sampler, which are using flip-flops or latches. Flip-
flops detect the edge of the spikes, while latches detect the spike level signals. Since
the neuron’s spike width is usually in the unit of µs or ms[19], which is much higher
than delays in modern digital circuits, it is a better option to choose the flip-flop to
build the sampler. On the other hand, using latches could cause a re-sampling problem
because the same spike could set the latch’s output to 1 again, even if it is reset by the
feedback loop.

The priority encoder is the core component of the transmitter because it needs to
deal with simultaneous spikes from the sampler and output a final address correspond-
ing to the highest priority.

The address-handling unit performs some simple operations on the AER signals
from the priority encoder. It plus 1 to the AER signal since 0 is rendered invalid in
our design. In multi-array communications, it also needs to append the index of source
NA.

A feedback loop exists between the AER output and the sampler’s reset ports. In
this feedback loop, the DEMUX first decodes the final address to n-bit lines, and each
bit line connects back to the reset port of the corresponding flip-flop through a delay
element.

The latency of the transmitter is determined by equation 3.1. In this equation,
Ttrans is the cycle for the transmitter to sample and send one spike from the input.
tpri enc, tdemux, tdelay, trst2q represents the delay of the priority encoder, DEMUX, delay
element, and flip-flop’s reset-to-q path respectively.

Ttrans = tpri enc + tdemux + tdelay + trst2q (3.1)

The receiver has a much simpler structure than the transmitter designed in this
thesis. Figure 3.3 (a) shows a diagram of the receiver. The decoder decodes the AER
signal into spikes sequentially at the first stage. Then it is optional to use a spike
stretcher to restore the spike width for neuronal communication inside the NA. The
spike stretcher uses an SR latch to stretch the pulse width, as shown in Figure 3.3 (b).
The final spike width is equal to the delay value of the delay element (expressed as a
triangle with the letter D in it).

(a) (b)

Figure 3.3: The diagram of (a) Receiver, and (b) Spike Stretcher
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3.3 Priority Encoder Design

The priority encoder is the most important building block in the transmitter. In this
section, different kinds of priority encoders are discussed and two kinds of priority
encoders suitable for our project are proposed.

3.3.1 Commonly-used priority encoders

A priority encoder is a kind of circuit that can accept multiple valid bits and output a
final address corresponding to the bit with the highest priority.

Generally speaking, there are 2 kinds of schemes to implement a priority encoder.
The first scheme divides the priority encoder into a prioritizer and a one-hot encoder.
The prioritizer takes N input bits and generates N output bits. There is only one valid
bit at the output regardless of the number of valid bits from the input. Then the output
from the prioritizer comes into a one-hot encoder where the final address is produced.
The second scheme is to take the priority encoder as a whole. In this kind of scheme,
the priority encoder takes N -bit inputs and directly generates a log2N -bit address.

Figure 3.4 (a) shows an 8-bit priority encoder built with a prioritizer and an
encoder. Using an 8-bit prioritizer(PRI) as a building block, Figure 3.4 (b) constructs
a 64-bit priority encoder with a serial prioritizer. In this structure, the PRIi needs
to wait for the enable signal from PRIi−1 to function correctly. Therefore, the serial
prioritizer has a quite long critical path. Figure 3.4 (C) exhibits a 64-bit priority
encoder with a parallel prioritizer. This structure was first proposed by [20]. The
prioritizer uses some OR gates and an 8-bit prioritizer to generate the enable signal
for PRI0 ∼ PRI7 in parallel. Then all the prioritizers in the second stage operate
concurrently to generate a one-hot output. Although this structure has lower latency
than the serial one, it adds some extra area overhead.

Figure 3.4: The block diagram of (a) PE8 composed of a prioritizer and an encoder, (b)
64-bit Priority Encoder with a serial prioritizer, (c) 64-bit Priority Encoder with a parallel
prioritizer [21]

To improve the performance of the priority encoder, the author in [21] proposes a
1D-to-2D conversion scheme of the priority encoder. This approach considers an N-bit
input as an R × C array. Taking 64-bit input as an example, the input bits are firstly
converted to an 8 × 8 array, as shown in Figure 3.5. Each bit has a row index and a
column index. The final address is the combination of the two indexes.
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Figure 3.5: The conversion from 64-bit to 8x8 bit [21]

The implementation of a priority encoder utilizing 1D-2D structure is shown in
Figure 3.6. The circuit works as follows. Firstly, the 64-bit input is divided into 8
8-bits groups. Each adjacent 8 bits come to an OR gate to generate a DOR signal
which indicates if there exists at least one valid bit in this group. Then the 8-bit DOR
signal enters an 8-bit priority encoder to generate the higher 3 bits. The higher 3 bits
also functions as the select signal to decide which row could enter the second 8-bit
priority encoder. Then the second priority encoder generates the lower 3 bits of the
final address. The Final address is just a concatenation of 2 priority encoders’ output.

Figure 3.6: Implementation of an 1D-2D conversion priority encoder [21]

Based on the 1D-2D conversion structure, the author in [22] proposes 2 improve-
ments. Firstly, the most suitable values for the number of columns and rows are found.
The author points out that when the number of columns is 4, the priority encoder per-
forms the best. Besides, a look-ahead signal is also added to decrease the propagation
delay of the priority encoder. [23] presents their results of a 256-bit priority encoder
after fabrication.

The priority encoder with 1D-2D conversion greatly saves the area. However, it has
a complicated wire routing scheme. Therefore, it is unsuitable for designs that may
encounter wire delay and congestion problems.
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Some other articles also put forward different kinds of measures to improve the
performance of the priority encoder. [24] suggests a 2D-array to 3D- array conversion
method for priority encoder. This idea is similar to 1D-2D conversion, and it further
extends the dimension of the input bits. But it also increases the wiring complexity.
Some articles try to enhance the priority encoder at the transistor level. [25] and [26]
do a full-custom design and generate a regular layout that improves the timing, area,
and congestion. A full-custom design often outperforms a similar semi-custom design,
but it is impracticable to large digital systems.

3.3.2 Tree-structure priority encoder with rotated priority

The priority encoder in this project is used to transmit spikes, and it connects directly
with NAs. Therefore, we need to consider some specific features and constraints of
SNNs.

Firstly, Neuron circuits are much larger in size compared with priority encoders.
[27] designs an SNN chip with 384 neurons and 98304 synapses embedded. The chip
has a 5 × 5 mm2 core size, and the synapse array occupies most of the area of the
chip. In contrast, in [23], a 256-bit priority encoder only occupies an area of 0.78mm2.
The disparity between neuron array and priority encoder brings about 2 consequences.
Firstly the total wire length becomes very large, and the wire delay may dominate the
circuit delay. Besides, the length of different wires in the priority encoder may cause a
high delay dispersion. Therefore, we need a highly regular structure to minimize wire
delay and dispersion.

Secondly, AER signals appear in sequence at the output of the priority encoder.
This may cause some delay(timing errors) for simultaneous spikes. We need to average
this timing error among different neurons.

Taking these 2 aspects into account, two tree-structured priority encoder with ro-
tated priority is proposed.

3.3.2.1 The separate prioritizer and one-hot encoder solution

The first solution is a structure with a separate prioritizer and a one-hot encoder.
Figure 3.7 shows an 8-bit tree prioritizer built with Building Blocks (marked as BB).
At every stage of the tree prioritizer, each pair of adjacent outputs from the previous
stage serves as the input for the next stage’s Building Block. An N-bit input needs to
pass through log2N stages to generate a valid output. The property of priority rotation
is embedded into each Building Block.

Figure 3.8 exhibits the structure of the Building Block. It takes a pair of n-bit
signals, together with their enable signals, as input. The enable signal signifies if there
is at least one valid bit in the input. For the first stage of the prioritizer where n is
equal to 1, the IE 1 and P1 port both connect to the same bit of the sampler’s output,
as well as IE 2 and P2. The Building Block generates a 2N-bit output as well as an
enable signal and sends them to the next stage. Table 3.1 describes the function of the
Building Block.

The flip-flop in the Building Block plays the role of inverting the priority. When
the input enables signal switches from 11 to 10,01 or 00 (actually this does not happen
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Figure 3.7: Proposed 8-bit prioritizer.

Figure 3.8: Diagram of Building Block for prioritizer.

because each time only one bit can be encoded), the priority of the Building Block
toggles. The falling edge of the enable signals is used to trigger the flip-flop in order to
avoid contention in different paths.

The one-hot encoder can accept the prioritizer’s output and generate a final AER
signal. Since there is only one valid bit for the encoder’s input, it is also possible to
use a tree encoder to decrease the wire length, as shown in Figure 3.9.

With a separate prioritizer and encoder structure, the previous transmitter structure
in Figure 3.2 also needs to be altered a little bit. The changed transmitter structure is
shown in Figure 3.10.
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Table 3.1: The function of Building Block in prioritizer

IE 2 IE 1 sel reg P OE

0 0 x 0 0

0 1 x {n{0},P1} 1

1 0 x {P2,n{0}} 1

1 1 0 {n{0},P1} 1

1 1 1 {P2,n{0}} 1

Figure 3.9: Structure of a one-hot tree encoder with 8-bit input.

Similar to the previous structure, the latency of the transmitter is determined by
equation 3.2. tpri, tinv, tdelay, trst2q represents the delay value of the prioritizer, inverter,
delay element, and flip-flop’s reset-to-q path respectively. Equation 3.3 is another
constraint on this structure. tenc is the propagation delay of the one-hot encoder. This
equation simply means that the one-hot encoder should finish the encoding process
within a transmission cycle.

Ttrans = tpri + tinv + tdelay + trst2q (3.2)

Tenc ≤ tpri + tinv + tdelay + trst2q (3.3)
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Figure 3.10: Structure of transmitter with separated prioritizer and one-hot encoder.

3.3.2.2 The priority encoder solution

If we observe the binary coding from 0 to N, the lowest bit is different for each pair of
adjacent numbers. Then the second rightmost bits are the same for numbers 2n and
2n+1. The third bits are the same for continuous numbers from 4n to 4n+3. This
coding property enables us to implement a tree priority encoder, as shown in Figure
3.11. It has a similar structure to the tree prioritizer. Each stage in the tree priority
encoder encodes 1 bit of the address. So in this structure, the final address is determined
bit by bit. It is worth noting that there is a plus 1 block at the end of the priority
encoder. This is because 0 is an invalid signal in AER communication and is therefore
deprecated.

Figure 3.12 shows the structure of the Building Block of the proposed encoder. It
is very similar to the Building Block for prioritizer. The only difference is that it takes
in an n-bit temporary address and outputs an n+1-bit temporary address to the next
stage. The function of this Building Block is illustrated in 3.2.

Table 3.2: The function of Building Block in prioritizer

IE 2 IE 1 sel reg P OE

0 0 x 0 0

0 1 x {0,P1} 1

1 0 x {1,P2} 1

1 1 0 {0,P1} 1

1 1 1 {1,P2} 1
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Figure 3.11: Structure of tree priority encoder.

Figure 3.12: Structure of the Building Block for priority encoder.

3.4 Solving timing problems

Solving timing problems is the most significant part of the self-timed design. There are
mainly two kinds of timing problems introduced by the transmitter. In the following
subsections, these problems will be tackled respectively.

3.4.1 Essential Hazards

Essential hazards are caused by the difference in the propagation delay in two or more
paths. When it happens, a short glitch or unstable state may appear at the output.
The glitches caused by essential hazards in the transmitter are shown in Figure 3.13. In
synchronous circuits, this kind of hazard can be easily resolved if the circuit meets the
setup and hold timing requirements. However, in self-timed circuits, due to the lack
of a clock signal, the glitches may propagate and accumulate throughout the whole
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circuit.

Figure 3.13: Glitches caused by essential hazards in the transmitter (in red circles).

Figure 3.14 shows the essential hazard in the prioritizer’s Building Block. When two
input enable signals {IE2, IE1} change from 11 to 10 or 01, three paths may propagate
to output at different times:

• Path1: From input enable signals, through the flip-flop and 2 MUX, to the output
(blue line). This path has a delay of tnand + tpff + tm1 + tm2. However, this is a
false path because the output of the flip-flop does not play a role when {IE2, IE1}
= 01 or 10.

• Path2: From input enable signals, through the second MUX, to the output (green
line). This path has a delay of tm2.

• Path3: From P1 or P2, through the expand block and 2 MUX, to the output.
This path has a delay of t1 + tpe + tm1 + tm2 (assume P1, P2 arrives t1 later than
IE1 and IE2.

Due to the different delays in Path2 and Path3, a glitch of t1 + tpe + tm1 width may
appear at the output of the Building Block.

Figure 3.14: Essential hazards in prioritizer’s Building Block. The delay of each element is
colored red and the different paths are indicated in different colors
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To solve the timing problem caused by essential hazards, three methods are pro-
posed.

The first method is to do the delay matching, as Figure 3.15 shows. This method
adds a delay element in the shorter path. The delay value of the delay element is
constrained by equation 3.4. tdelay and tnext min are the delay values of the delay element
and the minimum pulse width that could be handled by the next stage. Other terms
are different elements’ delays indicated in red in Figure 3.14. The equation indicates
that after delay matching, the difference in propagation delay in 2 paths should be
smaller than the minimum pulse or data width that the next stage can deal with so
that the glitch can not propagate and accumulate through the circuit.

|(tdelay + tm2)− (t1 + tpe + tm1 + tm2)| ≤ tnext min (3.4)

Figure 3.15: Delay matching method to solve the essential hazards

The second approach also adds delay elements to the circuits, but the principle
behind them differs. Instead of doing the delay matching, this method uses the inertial
delay of the delay element to filter out unwanted glitches. Inertial delay is a built-in
property of circuit elements. [28] points out that it is not possible to build a device
with an arbitrarily small decision window. In other words, a circuit element cannot
handle signals with a randomly small duration time. Due to the parasitic capacitance
and resistance, it will filter out signals that have a less duration time than its inertial
delay. Then based on this theory, [29] builds a more accurate inertial and degradation
model for CMOS logic gates.

Figure 3.16 shows the method which adds a delay element at the output of the
circuit to filter unwanted glitches. The delay element is constrained by equation 3.5.
Here tdel iner represents the inertial delay of the delay element. The rest items have the
same meaning as in equation 3.4.

tdel iner ≥ t1 + tpe + tm1 (3.5)
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Figure 3.16: Using inertial delay to filter unwanted glitches

The third solution uses a series of Asynchronous Finite State machines (FSM) and
an event-driven flip-flop to solve the glitches in the transmitter.

This solution is based on the fact that in each transmission cycle, one bit from the
sampler’s output is reset to 0. The falling edge of this reset operation indicates that
a new bit is sampled by the prioritizer or handled by the priority encoder. Thus it is
possible to sense these falling edges by an asynchronous FSM.

Asynchronous FSM is a kind of circuit element that can memorize and change the
states in asynchronous circuits. Figure 3.17 shows a basic diagram of Asynchronous
FSM. Similar to synchronous FSM, it also uses the present state to determine the next
state of the circuit and form the output. However, it differs from the synchronous FSM
in that instead of using a global clock signal to memorize the state and form the next
state, it uses delay elements to push the state transition. The asynchronous FSM will
be discussed in detail in Chapter 4.

Figure 3.18 shows the state transition diagram of our proposed asynchronous FSM.
There are four states in total, three of which are idle states. The only valid state is the
sample state. The spike signal in the diagram represents the sampled spike, i.e., one
bit of the sampler’s output. When this bit transfers from 1 to 0, the state changes from
Idle1 to Sample, triggering a short pulse, and this pulse is used to drive the event-driven
flip-flop.

Figure 3.19 shows the structure of the transmitter(separate prioritizer + one-hot
encoder solution) with the proposed FSM + event-driven flip-flop solution. The logic
OR of all the FSM’s output is the final pulse to drive the event-driven flip-flop. The
address signal from the one-hot encoder also passes through an OR gate and connects
to the reset port of the flip-flop.

There are 2 timing constraints for the event-driven flip-flop. Inequality 3.6 means
that the setup requirements for the event-driven flip-flop must be met. thop is the delay
value of the delay element in asynchronous FSM, which is also the time for a single hop
from one state to another. tp2ck represents the path delay from the outputs of FSMs to
the flip-flop’s clock port. And tsetup is the setup time for the flip-flop. Inequality 3.7
ensures that the flip-flop can sample the data in the current transmission cycle in case
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Figure 3.17: The diagram for Asynchronous FSM[30]

Figure 3.18: The state transition diagram of the proposed FSM

the data is lost.

tinv + tdelay + trst2q + thop + tp2ck ≥ tenc + tsetup (3.6)

thop + tp2ck < tpri + tenc (3.7)

As for the whole priority-encoder structure, the corresponding timing constraints
are shown in inequality 3.8 and equation 3.9. The than in the inequality represents the
delay of the address handling circuit.

tdemux + tdelay + trst2q + thop + tp2ck ≥ than + tsetup (3.8)

thop + tp2ck < tenc + than (3.9)
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Figure 3.19: Transmitter with event-driven flip-flop

Taking all these 3 solutions into account, a brief comparison of them is given in Table
3.3 in terms of added overhead and how strict the timing constraints are. The first delay
matching solution has a high extra overhead and the strictest timing requirement.
The second solution tends to have the lowest added overhead (not definitely, but it
also depends on the specific implementation of the delay element). And its timing
requirement for added delay elements is very loose. In contrast, solution 3 also has a
high area overhead because it needs a set of asynchronous FSM, a log2n-bit event-driven
flip-flop, and possibly some delay elements. Its timing constraints are also relatively
loose. On the other hand, solution 3 does not break the structure of the whole priority
encoder, while for the first and second solutions, the delay element needs to be added at
each Building Block inside the whole priority encoder. As a result, the priority encoder
cannot be synthesized as a whole.

Table 3.3: A comparison between 3 glitch-solving solutions

Solution Overhead Timing requirement

1 2(n-1) delay element strict

2 n(log2n) delay element very loose

3 n FSM +log2n FF + (n delay element) loose

3.4.2 Glitches caused by close incoming spikes

Another kind of glitch may also occur due to the very close input spikes. It happens
when a spike comes closely after a previous spike, but not simultaneously. This may
cause the Building Block of the priority encoder to change its value in an extremely
short period. This kind of glitch is not the wrong data. It just lasts shorter than a
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normal transmission cycle. However, it can also lead to the malfunction of the circuit
in some cases. In the rest of this subsection, this kind of glitch is discussed based on
the 2 transmitter structure proposed earlier in this chapter.

As for the transmitter described in Figure 3.10, a glitch may occur at the output
of the prioritizer with the highest possible width of tpri. Three possible scenarios exist
for the glitch as follows.

• If the glitch passes both the one-hot encoder and feedback loop, the circuit func-
tions correctly. The same applies if the glitch passes neither the encoder nor the
feedback loop.

• If the glitch is processed by the one-hot encoder but not fed back to the reset
port of the sampler, the glitch will also appear at the output of the encoder. This
can be solved in 2 ways. The first one is to add delay elements at the output of
the encoder, with an inertial delay greater than tpri. The event-driven flip-flop
mentioned previously could also resolve glitches in this situation.

• If the glitch feeds back to the reset ports of the sampler but is not processed by
the encoder, a spike is lost. To prevent this from happening, the inertial delay
of the feedback’s delay elements should be larger than the encoder’s propagation
delay, as expressed in equation 3.10.

Tdelay iner ≥ tenc (3.10)

Similar cases apply to the transmitter in Figure 3.2. Here the constraint is expressed
in 3.11, which means that the inertial delay of the feedback loop’s delay element should
be greater than the propagation delay of the address handling circuit. In other words,
a glitch that can be processed by its successor circuit is not a ”glitch” anymore.

Tdelay iner ≥ than (3.11)

Based on the above discussions, the event-driven flip-flop together with a require-
ment for the delay element’s inertial delay is the best choice to resolve glitches in the
transmitter. The event-driven flip-flop can resolve the glitches on the forward path of
the transmitter and it does not affect the transmission cycle. The inertial delay adds
a pulse-filtering feature to each delay element in the feedback loop. The pulses with a
shorter width than the inertial delay will not be fed back to the sampler.

3.5 Summary

This section mainly contributes the following aspects:

• Build the whole structure of the transmitter of NA.

• Propose and implement 2 structures of the key element, i.e., priority encoder in
the transmitter.

• Analyze and solve the timing problems in the transmitter.
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Segmented Bus structure for
multi-array communication 4
This chapter proposes a segmented bus topology for multi-array communication.
Firstly, the motivation for the proposed topology is introduced. Then the topology
is explained thoroughly, from the broad structure to the detailed elements design.

4.1 Motivation

When it comes to multi-array communication systems, some extra aspects need to be
considered for the design. They are listed as follows:

• Firstly, a forward path and a backward path (corresponding to recurrent network)
may both exist in SNN. So the communication system should be able to realize
the function of bi-directional data transmission.

• Next, spikes from different NAs may arrive at another NA simultaneously. To
avoid data loss, one of the data sources needs to stop sending data to allow the
other source’s data to be processed first.

• Lastly, sometimes an NA may only communicate with its adjacent NA. While
on other occasions, it may communicate with several other NAs concurrently.
This requires that the system should be capable of having its different sub-parts
communicate simultaneously, as well as sharing data among multiple sub-parts or
even the entire system.

Based on the above considerations, a self-timed segmented bus topology for multi-
array communication is proposed and implemented.

4.2 The whole structure

Figure 4.1 shows the architecture of the proposed segmented bus for multi-array com-
munication. In this figure, we design and implement a segmented bus structure that
consists of 4 NAs, 1 AER input, 1 AER output, and 5 Fences. The terminology ”Fence”
is a new circuit element we design to control the operation of the multi-array intercon-
nects. The structure and composition of the Fence will be discussed in detail in the
next section.

Both a forward path and a backward path exist in this interconnect. The forward
path is represented by a line with a right arrow, and the backward path is represented
by a line with a left arrow. The NAs here are some spike generators that can generate
different traffic patterns. As for AER signals, source encoding is used, with the highest
3 bits representing the array index (indicated by the 3-bit number inside the NA in
Figure 4.1) and the rest bits representing the intra-array address.
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Figure 4.1: Self-timed segmented-bus architecture for multi-array communication

To illustrate the connections between NAs and Fences, NAn and Fencen are used
to represent the n-th NA and Fence starting from the left. The NAn’s transmitter can
send AER signals to Fencen+1 on the forward path and Fencen on the backward path.
For the forward path, the NAn’s output AER signal, together with the AER signal from
Fencen, forms Fencen+1’s forward input. A similar connection applies to the backward
path of NAn and Fencen. To arrange the simultaneous AER inputs for the Fence, a stop
signal (indicated in the dashed line in Figure 4.1) is needed to stop the adjacent NA’s
transmitting process. A Fence can send 2 stop signals, taking Fencen as an example,
one to NAn−1 on the forward path and another to NAn on the backward path.

The stop signals from adjacent Fences are cross-coupled to avoid deadlock. The
scenario and waveform of deadlock in the system are shown in Figure 4.2 and Figure
4.3. Without the help of stop signal cross-coupling, when signal stop3 1 and stop1 2
become 1 simultaneously at some time, a closed loop forms among Fence1, Fence2,
Fence3 where all the transmission in this loop halts. What’s worse is that this closed
loop forms positive feedback in which stop3 1 and stop1 2 signal can boost each other
to keep in the same state. As a result, this part of the communication system stops
working as of the time when the deadlock happens, and the spikes from NA1 and NA2

cannot be encoded and transmitted to other NAs anymore. The cross-coupled stop
signal can break the deadlock condition since Fences can accept other NA’s stop signal
and use it to prevent adjacent stop signals from staying in 1 continuously.

4.3 Fence Design

The Fence is crucial to control and ensure the communication system’s regular opera-
tion. It has some main functions listed as follows.

• It should be able to connect and isolate different NAs at different times.

• It needs to control which AER signal can pass through the Fence to the next stage
and which cannot.

• It should be able to stop the operation of the transmitter in NAs.

• It should be capable of sending AER signals to the receiver in its corresponding
NA.
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Figure 4.2: The diagram of the deadlock scenario. The stop signals here are not cross-coupled.

Figure 4.3: The waveform of the stop signals when deadlock happens.

Figure 4.4 shows the Fence structure. It has 2 symmetric forward and backward
paths. Taking the forward path as an example, it has 2 AER inputs, one from the
corresponding NA and another from the previous Fence. The 2 AER signals first come
into 2 instances of the forward control logic unit (shown by ”Forward TR Control” in
rectangles). The forward control logic determines which AER signals can pass to the
next stage and which cannot. The control logic can contain simple gates or a memory
that specifies the destination of each AER signal. It is based on specific SNNs. Then
the forward select logic can select and pass the AER signals from the control logic.
Besides, it can also send a stop signal to the corresponding NA if needed. After that,
the self-timed shift register (shown by ”ShiftReg” in rectangles) ensures a fixed duration
time for each AER signal. Apart from that, it also needs to send a control signal to
the tri-state buffer. The tri-state buffer (indicated as a three-port triangle) can turn on
or off to connect or isolate different Fences based on the control signal. Finally, AER
signals from both forward and backward buses come to an asynchronous FSM to be
sent to the corresponding NA’s receiver in sequence. The backward path has a similar
structure to the forward path except for the backward control logic because it is also
determined by the specific SNN’s composition and function. The select logic, FSM,
and self-timed shift register will be discussed in detail in the following subsections.
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Figure 4.4: The structure of the Fence.

4.3.1 Select Logic

Table 4.1 shows the truth table of the Select Logic block in the Fence. There are
two inputs, bus1 and bus2. Bus1 is the AER signal from the previous Fence, and bus2
represents the AER signal from the corresponding NA’s transmitter. Index1 and index2
are the highest 3 bits of bus1 and bus2, respectively. They represent which NA they
come from and are a non-zero number for a valid AER signal. The first four rows of
the table need to be discussed.

Table 4.1: Function(truth table) of the Select Logic

index1 index2 stop in bus out stop out

!=0 !=0 x bus1 1

!=0 0 x bus1 0

0 !=0 1 0 0

0 !=0 0 bus2 0

0 0 x 0 0

When two input buses both carry a valid AER signal, the Select Logic will pass
bus1’s AER signal and send a stop signal to the NA from which bus2 comes. If bus1
has a valid AER signal, but bus2 does not, the Select Logic will pass that signal, and no
stop signal is generated. On the other hand, if only bus2 carries a valid AER signal, the
input stop signal (indicated by stop in in the table) from the opposite Fence will play
a role in determining Select Logic’s behavior. If stop in is 1, which means that the NA
bus2 comes from has stopped transmitting data, the output of the Select Logic will be
set to 0 to prevent the deadlock (discussed previously in Figure 4.2) from happening.
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Otherwise, it will pass bus2 to the output.
The function of the stop signal is shown in Figure 4.5. The input stop signal can

suspend the transmitting process by stopping the feedback loop. When the input signal
is valid, the Mux will select an all-one value instead of the value from the prioritizer to
send to the sampler’s output ports. Therefore, the output of the prioritizer and encoder
remains the same value, and the transmitter stops working.

Figure 4.5: The transmitter with an input stop signal.

4.3.2 Asynchronous FSM

Asynchronous FSM in the Fence collects output AER signals from both forward and
backward paths. The concept of asynchronous FSM has been introduced in Chapter 3.
In this section, it will be discussed in more detail. Then the Asynchronous FSM in the
Fence is designed.

According to [13], there are 2 kinds of asynchronous FSMs, the ones that operate
in fundamental mode and the ones that work out of fundamental mode. In the funda-
mental mode of FSM operation, only one input of the FSM is allowed to change at a
time. Another change at a different input is allowed to happen only after the FSM has
stabilized. A stabilized FSM means that the next state is the same as the present state
for current inputs. If the input does not meet the timing requirements stated above,
the FSM should operate in non-fundamental mode.

The delay element differs in FSMs operating in fundamental mode and non-
fundamental mode. In fundamental mode, any circuit elements with a certain delay
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value can be used, such as SR latches or a chain of inverters. But in non-fundamental
mode, there is less choice. This is because the normal delay elements, such as buffers
and inverters, may fall into meta-stability due to the fast-changing inputs. The Muller-
C element is a commonly used delay element for FSMs operating in non-fundamental
mode. Figure 4.6 shows the circuit and truth table of the Muller-C element. It has
two stages. The first stage comprises 4 transistors connected in series, and the second
stage is a pair of keep inverters. When two inputs are both high or low, the output is
set to 1 or 0, respectively. When 2 inputs differ, the circuit will maintain its current
state. Because of the keep inverter, the Muller-C element can avoid the meta-stability
problem.

Figure 4.6: Muller C elements for FSMs operating in non-fundamental mode (a) circuit model
(b) truth table.

The FSM in the Fence collaborates with an edge detector to send AER signals to
the receiver in sequence. Figure 4.7 shows the diagram of the edge detector. When a
new AER signal comes, it can generate a valid signal with a certain width by comparing
the AER signal with its delayed value.

Figure 4.7: The diagram of Edge Detector.

The structure of the FSM that we use in the Fence is shown in Figure 4.8. The
FSM operates in non-fundamental mode because both forward and backward buses can
change simultaneously. The data from one bus may also change at any time before or
after the other one. The 2 valid signals from the forward and backward bus are used
together with the present state (indicated by y0 and y1) to determine the next state
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of the FSM. Each bit of the next state from the Next State forming logic is converted
into 2 bits to drive a Muller-C element. Then the present state is generated by a set
of Muller-C elements after a certain delay. The output forming logic uses present state
and AER signals from both the forward and backward bus to produce the final output
that will be sent to the corresponding receiver.

Figure 4.8: The FSM we designed for the Fence.

Since the AER signals from forward and backward buses can have any phase rela-
tionship, the FSM must be robust to deal with all situations. This requires the FSM
to sample each AER signal from 2 buses and avoid the re-sampling or loss of data.

The state transition diagram of the FSM is shown in Figure 4.9. It contains three
loops. The first loop (consisting of A and a set of B states) represents the situation
where two valid signal changes simultaneously. In this case, the FSM will sample each
AER input in sequence and then return to A state. The other 2 loops describe a similar
scenario where one of the valid signals changes at first. Then another valid signal also
changes after some time, with the first valid signal still in logic 1. These 2 cases have
more branches than the first one.

To make the FSM operate correctly in different input conditions, some constraints
need to be added. Assume that the width of logic 1 and logic 0 of valid signal in a
transmission cycle is tv1 and tv0, respectively. Then Equation 4.1 holds where tAER is
the duration time for an AER signal. The delay value of Muller-C elements in FSM is
td. This value also indicates the time it takes to finish a state transition. Then three
extreme cases for the timing constraints are illustrated in Figure 4.10. Valid1 and valid2
in the figure represent the valid signal for forward and backward AER signals. The first
arrow’s start point of each case, which locates in the middle of valid1 and valid2 signal,
indicates state A shown in Figure 4.9. The direction of each arrow represents the state
transition.
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Figure 4.9: The state transition diagram of FSM.

tv1 + tv0 = tAER (4.1)

Figure 4.10 (a) shows the extreme case for loop1. The valid1 changes some time prior
to valid2. But this time amount is less than the delay value of Muller-C element, so the
FSM cannot finish a single state transition in this time period. Then valid2 becomes
1 later and the FSM will enter the B1 state at loop1. In this case, although two valid
signals come at different times, they are still treated as simultaneous stimuli for the
FSM. To ensure that the FSM can finish loop1 in one transmission cycle, Equation 4.2
must be met.

5× td ≤ tAER (4.2)

The other two extreme cases may happen in loop2 or loop3. In case 2, shown in
Figure 4.10 (b), the valid2 signal first becomes high and the FSM sends bus2’s AER
signal to the receiver. Then after some time longer than td, the valid1 signal also
changes to 1, so the FSM turns to the state to sample the first AER address. After
that, valid1 changes to low for a short period and then returns to high again, while
valid2 keeps high during this period. Therefore, the FSM must be able to finish one
state transition to sample bus2 in the short period when bus1 is low, as Equation 4.3
shows. Otherwise, an AER signal from bus2 will be lost.
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tv0 ≥ td (4.3)

The last extreme case happens when the valid1 signal rises between a falling and
rising edge of valid2, but the time intervals between two adjacent edges are both less
than td, so an AER signal from bus2 is not sampled. To prevent this from happening,
Equation 4.4 must be ensured. A similar requirement also holds for tv1 as Inequality
4.5 shows.

tv0 ≥ 2× td (4.4)

tv1 ≥ 2× td (4.5)

Figure 4.10: Extreme cases for the timing constraints of the FSM

Based on the three extreme cases mentioned above, the delay value of the Muller-C
element should meet Inequality 4.6. Besides, the receiver determines the lower bound
of the delay value in FSM. Assume that the receiver can only handle the data that
lasts longer than tr min, then inequality 4.7 must be met. The max and min at the
end of each item in the inequality mean the maximum and minimum value, considering
on-chip variation.

td max ≤ min

{
1

5
tAER min,

1

2
tv0 min,

1

2
tv1 min

}
(4.6)

td min ≥ tr min (4.7)

Another kind of timing issue comes from the state assignment. When a transition
happens between 2 states with more than 1 different bit, the FSM may jump into an
intermediate state before stabilizing at the final state. This may cause the FSM to enter
the wrong state and generate false outputs. To avoid this issue, we need to guarantee
that every 2 adjacent states of a transition should only have 1 bit different. So in
our solution, each loop has four states, which enables the use of gray code for 2-bit
state assignment. Since there are three loops in the FSM, we use 2 bits for each loop
encoding, leading to 6 bits in total for the state encoding. In each loop’s transition,
only 2 bits out of 6 may change, with 1-bit change for a single transition. Through

37



this kind of race-free state assignment, the glitches caused by state transition can be
eliminated.

The FSM is also scalable by adding another one or more states between every
2 adjacent states. The number of states can be increased when the delay value of
available Muller-C elements is much smaller than the lower bound of its requirements.

4.3.3 Self-timed shift register

From the discussion of select logic in the previous section, we know that a stop signal
can be issued to the transmitter to stop its feedback loop’s operation when there are
input AER signals both from the corresponding NA and adjacent Fence. However,
since the AER signals from the Fence and NA can come at any time, a problem we call
”Bus Compression” may appear at the output of select logic. It can possibly influence
the function and performance of the Fence.

Taking Figure 4.5 as an example, assume that at time 0, a new set of signals are
generated at the output of the transmitter’s sampler. The arrival time of valid AER
inputs at the Fence is tarr b1 and tarr b2, respectively (corresponding to the input from
the adjacent Fence and NA). The arrival time of the stop signal at the transmitter’s
MUX in the feedback loop is tstop. And the arrival time of the new feedback value at
the sampler’s reset ports is tarr feed. The propagation delay of select logic and control
logic are tsel and tcon. So tarr b2 can be calculated as Equation 4.8.

tarr b2 = thop + tp2ck + tck2q (4.8)

Then the arrival time of the stop signal at the transmitter’s feedback loop is ex-
pressed in Equation 4.9. It conforms to the select logic’s function that a stop signal
will be generated when both inputs have a valid AER signal.

tarr stop = max {tarr b1, tarr b2}+ tcon + tsel (4.9)

Besides, tarr feed can be calculated in Equation 4.10. Here the propagation of the
MUX that performs the stop function is neglected.

tarr feed = tpri + tinv + tdelay + trst2q (4.10)

There are 2 kinds of relationships between tarr b1 and tarr b2. If tarr b1 ≤ tarr b2, which
means that a valid AER signal from the adjacent Fence comes earlier than that from
the NA, then the corresponding NA’s transmitter must stop at the current transmission
cycle to avoid data loss. Therefore, Inequality 4.11 must be met.

thop + tp2ck + tcon + tsel ≤ tpri + tinv + tdelay (4.11)

On the other hand, if tarr b1 ≥ tarr b2, the AER signal from the NA may first appear
at the output of the select logic for a short period before the AER signal from another
Fence comes in. In this case, it has a minimum duration time at the select logic’s
output. Taking Equation 4.8, 4.9, 4.10 and 3.6 into account, the shortest duration time
of an AER signal at select logic’s output is expressed in Equation 4.12.
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tmin dur 1 = tinv + tdelay − (tcon + tsel + tenc) (4.12)

The same conditions also apply to the whole priority encoder solution. Inequality
4.13 must hold for tarr b1 ≤ tarr b2 condition. For the tarr b1 ≥ tarr b2 scenario, the
minimum duration time is expressed in Equation 4.14.

thop + tp2ck + tcon + tsel ≤ tpri enc + tdemux + tdelay (4.13)

tmin dur 2 = tdemux + tdelay − (tcon + tsel + than) (4.14)

This minimum duration time is much shorter than a normal transmission cycle.
So the AER signal is compressed in time. However, the FSM has a lower bound
requirement for the duration time of AER signal. Besides, we also need a relatively
fixed AER signal width to transmit among different Fences. Therefore, the self-timed
shift register is designed to recover AER signal’s duration time.

The idea of the self-timed shift register comes from [31] and [32]. They proposed
and designed a self-timed FIFO circuit and some of its variations. The self-timed FIFO
they proposed is composed of many stages, with adjacent stages communicating by a
pair of handshake signals. In our design, no handshake signals are wanted. Besides,
our circuit element here doesn’t need data processing functions. The only function it
should have is to restore the duration time of each AER signal.

Based on the above-mentioned considerations, we design two self-timed shift regis-
ters that can restore the AER signal width. The first is shown in Figure 4.11. Its first
three stages, which consist of latches, are used to shift the AER signal in sequence.
The last stage, a simple delay element, outputs the AER signal with the desired width.
There are some feedback loops among different stages. Simply put, the feedback loop
determines if this stage is occupied. The term ”occupied” means that input and output
data are different, which indicates that new data needs to be shifted at this stage. Each
latch is transparent if its current stage is occupied and the next stage is not occupied.
To ensure the correct function of this circuit, the propagation delay of the latch must
be higher than the feedback loop to avoid data loss, as expressed in Equation 4.15.
The tdq means the latch’s propagation delay from input D to output Q when E is 1.
The tpath1 and tpath2 represent the delay of two paths marked by purple dash lines,
respectively. This design can ensure a minimum duration time of the delay element’s
value. But there is no upper bound for it.

tdq ≥ max {tpath1, tpath2} = tNEQ + tAND + tINV (4.15)
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Figure 4.11: The diagram of first self-timed shift register

The timing analysis of this circuit can be broken into stages. Assume that each
stage is stable (no changes will happen in the circuit) when a new AER signal comes
in. In the first stage, the feedback loop from Q1 to E1 first updates its value. Then this
new AER signal could pass through the latch in stage 1. This process repeats at stage
2 and stage 3. So the delay of this self-timed shift register is expressed in Equation
4.16. The latch stages can be increased or decreased according to the input. If the
self-timed shift register continuously takes in new AER signals that last much shorter
than the desired duration time, there should be more stages to store each AER signal
to avoid data loss. In our design, the compressed bus only happens when the stop
signal changes from 0 to 1. As a result, we can have fewer stages in our shift register.
2 or 3 stages are enough for our design.

tstreg = 3× tdq + 3× tpath1 (4.16)

Another self-timed shift register we have designed is shown in 4.12. In this design,
the last stage is a latch and a MUX controlled by an asynchronous FSM. The state
transition diagram of FSM is shown in 4.13. EX1 and EX2 are inputs that indicate if
the final latch is occupied and if the input to the final latch is 0. E and SEL control
the final latch and MUX, respectively. In states b and c, the latch is transparent,
and MUX outputs the data from the latch. In states d and e, the latch cannot pass
data but the MUX still outputs data from the latch. In these 2 states, the final stage
becomes unoccupied and can accept data from the previous stage again. This design
of self-timed latch ensures a fixed length of output data width except 0. However,
it’s much more challenging to design and adds more area overhead due to its complex
last stage. In our scenarios, the problem is that the duration time of the AER signal
is compressed. And there are no requirements for the upper bound on data duration
time. Therefore, the first design can meet the needs for data transmission.

4.3.4 Replace FSM with a 2-bit tiny transmitter

There exists another method to send forward and backward AER signals to the receiver
in sequence, which is to use a transmitter structure that has been proposed in Chapter
3.

Figure 4.14 shows the structure of a 2-bit tiny transmitter. It contains a sampler,
a 2-bit prioritizer, and an output multiplexer. The sampler’s input is 2 valid signals
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Figure 4.12: The diagram of second self-timed shift register

Figure 4.13: The state transition diagram of FSM in the self-timed shift register

from the forward and backward bus. The output of the 2-bit prioritizer determines the
output of MUX.

Inequality 4.17 indicates the timing constraint for the delay value of the delay ele-
ment in the feedback loop. ttrans represents the transmission cycle for an AER signal,
which is determined by NAs’ transmitter. To send the concurrent AER signals from
the forward and backward bus, a transmission to the receiver must be finished in half of
the transmission cycle. Inequality 4.18 shows another constraint for the delay element’s
inertial delay. It is used to resolve the glitches caused by close input valid signals.

tpri + tinv + tdelay + trst2q ≤
1

2
× ttrans (4.17)

tdelay iner ≥ max {tpri, tmux} (4.18)

The structure of the Fence that uses a 2-bit transmitter to send AER signals to the
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Figure 4.14: The 2-bit tiny transmitter structure

receiver is shown in Figure 4.15. The 2-bit transmitter scheme has a less complicated
control algorithm. It also has a loose timing constraint compared with asynchronous
FSM. It can use up to half transmission cycles to send data, while in the FSM scheme,
the minimum duration time of output AER signal should be less than 1

5
of the trans-

mission cycle.

Figure 4.15: The structure of Fence using the 2-bit transmitter at the output to receiver
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4.4 Summary

This chapter proposes and implements a segmented bus structure for multi-array com-
munication. A new circuit element called Fence is created to control the data flow of
the system. Each component of the Fence is carefully designed to meet the timing
requirement.
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Results and Discussions 5
In this chapter, the results of the previously designed interconnect are presented.
Firstly, the functional simulation results are shown for both point-to-point intercon-
nect and segmented-bus structures. Then, the synthesis results of part of the design
are listed.

5.1 Functional Simulation

To test the function of our interconnect structure, some spike patterns are generated
in our testbench. Then the waveform at each stage is checked to ensure that the
interconnect operates correctly and all the timing issues are solved by our proposed
methods. The proposed design is implemented in 64-bit, 256-bit, and 1024-bit. To ease
the illustration, we use a 64-bit interconnect with limited input to show the waveform.

5.1.1 Transmitter simulation

The transmitter is the focused part of point-to-point communication. At the functional
simulation stage, we assume some delay values for each circuit component. The delay
value of the delay element is chosen based on Inequalities in Chapter 3.

Figure 5.1 (a) shows the waveform, the input spikes, and the sampler’s output. The
input is some close and simultaneous spikes. Then each flip-flop samples the input
spikes, respectively, as Figure 5.1 (b) shows. Each bit is reset after it has been encoded
and sent out by the transmitter. Note that the spike width is much higher than circuit
delays. Therefore we zoom out the input spikes so that it fits the window.

(a) (b)

Figure 5.1: The waveform of (a) input spikes (b) output of sampler

Figure 5.2 shows the waveform from the tree encoder and the following address
handling circuit. The Addr in signal represents the signal from the tree encoder, and
the Addr-enc is the AER signal after adding 1 and appending the Neuron Array index.
Since 0 is rendered useless in AER communication, a plus 1 operation is always needed
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when the enable signal is 1. There are some glitches at the start of the AER signal.
They are eliminated by the output flip-flop and feedback loop.

Figure 5.2: Waveform from tree-encoder and following address-handling unit

Figure 5.3 (a) shows the waveform of the demux’s output. The demux decodes the
log2n bit address into n bit lines that feedback to the sampler. There are some glitches
at some of the bit lines of the demux’s output. However, since they last short than the
delay element’s inertial delay, they are filtered out at the output of the delay element.

(a) (b)

Figure 5.3: The waveform of (a) demux outputs (b) output delay element

Figure 5.4 shows the waveform of the transmitter’s output. The transmitter’s output
is driven by an event signal called clk in the Figure. By using this event-driven flip-flop,
the previous glitches at the address line are filtered out. After all the AER signals have
been set, the output is reset by the address line. The time between two yellow cursors
is a transmission cycle.

Figure 5.4: Waveform of the transmitter’s output

In the waveforms shown above, the priority of AER signals decreases from high to
low. This is because these waveforms are taken from the beginning. The flip-flops in
the priority encoder are reset at the start of the simulation. A rotating priority can be
seen after the interconnect has worked for some time with irregular spike patterns, as
Figure 5.5 shows.

The waveform of the transmitter, which is composed of a separated prioritizer and
one-hot encoder, is somewhat similar to the above one. The difference is that it just
uses the prioritizer’s output to give feedback to the sampler’s reset port directly.
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Figure 5.5: The rotating priority effect

5.1.2 Segmented-bus simulation

After simulating the point-to-point interconnect, we also simulate the segmented-bus
structure for multi-array communication. The focus of multi-array simulation falls on
the behavior and waveform of the Fence.

Figure 5.6 shows the waveform of a Fence’s forward path. The first 2 rows represent
the input AER signal from the adjacent Fence and corresponding NA. Then after a
certain delay, some AER signal passes to the select logic, while others are refused by
the control logic. The input AER signals of select logic are bus for 1 and bus for 2.
We can see that when there are non-zero AER signals at both of the select logic’s
inputs, a stop signal is issued, and the NA’s output keeps at the same value until AER
signals from the Fence have temporarily completed transmission. And the output of
select logic, indicated by bus for in in the figure, is a sequence of all the AER signals
that pass the control logic. We can see that signal 0fe has a less duration time than
others. After passing the self-timed shift register, all the AER signals at the input of
the tri-state gate have a fixed duration time. Then after the tri-state gate, it passes to
the next Fence and goes to the FSM to be sent to the corresponding NA’s receiver.

Figure 5.6: Waveform of Fence

Figure 5.7 shows the waveform at the output of the Fence. This output is connected
to an NA’s receiver. From the Figure, we can see that the asynchronous FSM success-
fully sends the AER signals from forward and backward output in sequence. Although
their duration time is not fixed, considering that these AER signals will be decoded
but not propagated to other stages. This is not an issue.

Figure 5.7: Waveform of the output of the Fence to the receiver
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Figure 5.8 also shows the waveform of the Fence’s output but using a 2-bit trans-
mitter. Through this method, the duration time of each AER signal at the output is
relatively fixed.

Figure 5.8: Waveform of Fence’s output by a 2-bit transmitter

5.2 Synthesis Results

Synthesis is also partially done(except for the delay element) for the transmitter and
Fence.

5.2.1 Transmitter

The core component of the transmitter is the priority encoder. Therefore different
priority encoders with different input bits are synthesized first.

Table 5.1 shows the synthesis results of the priority encoder. From the table, we
can get the following 2 conclusions:

• Firstly, as for the 64-bit prioritizer, our proposed structure has a similar prop-
agation delay to the normal prioritizer, which does not have a priority rotation
function. However, it comes at a price of much more area overhead. The same
applies to the 64-bit priority encoder.

• Secondly, for the same bit structure, the prioritizer scheme and the whole priority
encoder scheme have a similar propagation delay. However, the whole priority-
encoder scheme saves more than 20% area and more than 40% nets, count. Con-
sidering the fact that the priority encoder or prioritizer needs to collect and process
signals from different neurons which are much larger in size, the wire delay may
dominate the delay composition, and wire congestion could be a potential problem
in place and route. Therefore, the nets count here is also an important criterion
for choosing the transmitter structure. Based on the above information, the whole
priority encoder is a better choice for building the transmitter.

Table 5.1: Synthesis results of different schemes for different bits

Structure Propagation Delay/ns Area Nets Inside Priority rotation

64-bit normal tree prioritizer 0.3328 517.2439 1768 No

proposed 64-bit tree prioritizer 0.3400 920.7100 2588 Yes

64-bit normal tree priority encoder 0.3255 326.9280 910 No

proposed 64-bit tree priority encoder 0.3313 678.5520 1808 Yes

proposed 256-bit tree prioritizer 0.3829 3763.1020 12033 Yes

proposed 256-bit tree priority encoder 0.3766 2961.3640 7539 Yes

proposed 1024-bit tree prioritizer 0.4228 12783.6099 55008 Yes

proposed 1024-bit tree priority encoder 0.4126 9375.1699 31006 Yes
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Having chosen the proper priority encoder, we synthesize the transmitter with a
whole priority encoder structure. The synthesis is done with 64, 256, and 1024 input
bits, respectively. The synthesis excludes the delay elements in the feedback loop.

Table 5.2 shows the synthesis results of transmitters with different input bits. The
fourth column is the delay value we chose for the feedback delay element. Based on the
constraints proposed in Chapters 3 and 4, the delay value is chosen in a conservative
way, which is at least 1.5 times higher than the priority encoder’s delay and higher
than the total path delay except for the delay element itself. The fourth column shows
the Inertial delay required for the delay element. Any pulses that last shorter than this
value will be filtered out. The throughput is measured based on how many spikes it
can transmit per unit of time.

Table 5.2: Synthesis results for the transmitter(delay element excluded)

Structure Propagation Delay/ns Area Delay value choice/ns Inertial Delay/ns Throughput/Gbps

With proposed 64-bit tree priority encoder 0.3924 1205.3019 0.5 0.35 1.12

With proposed 256-bit tree priority encoder 0.5254 4964.4839 0.6 0.4 0.89

With proposed 1024-bit tree priority encoder 0.5950 16753.7859 0.7 0.45 0.77

We do a post-synthesis simulation to see the delay information and if our transmitter
functions correctly. Figure 5.9 shows part of the waveforms of the simulation. The first
and second signal is the priority encoder and address handling unit’s output. The third
one is the event-driven clock signal and the last signal is the final AER output. In
post-synthesis simulation, the glitches become much more severe than in functional
simulation. Here we guarantee a stable output by event-driven flip-flops introduced in
Chapter 3.

Figure 5.9: Partial waveform of post-synthesis simulation

The transmission cycle not only affects the timing error introduced by the trans-
mitter for each spike, but also influences the number of stages we should use in the
self-timed shift register. The priority encoder we designed has a tree structure. Since
not all the stages change their state each time when they encode a spike, there can
be some variations in the priority encoder’s delay, thus leading to variations in the
transmission cycle. We input around 1000 spikes, which include plenty of simulta-
neous spikes, to measure the delay distribution for the 64-bit, 256-bit, and 1024-bit
transmitter.

Figure 5.10 shows the histogram of different transmitters’ delay distribution. We
use the worst-case delay as a reference, and each bar represents the proportion of spikes
that has a transmission cycle in a certain range. For each transmitter, the transmission
cycles mostly fall in the range of 80% to 100% of worst-case delay. Based on the
synthesis results, the variation of the transmission cycle is within 0.2 ns to 0.3 ns.
There are also some transmissions that last shorter than 60% of the worst-case delay.
This happens when all the spikes have been transmitted and the AER output returns to
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0. The transmission cycle can be restored by the self-timed shift register in the Fence.

Figure 5.10: The delay distribution of transmitters

5.2.2 Fence

We also partially synthesize the Fence. Unlike the transmitter with delay elements
only in the feedback loop, the Fence contains delay elements in most sub-blocks. So we
break down each of its sub-blocks and synthesize them.

Table 5.3 shows the synthesis results of the components in Fence. All the sub-blocks
have 9 input AER signal wires. The self-timed shift register has a higher delay than
other components since it has multiple states. In each stage, it needs to wait for the
feedback’s delay and the latch’s delay before it can pass to the next stage. The FSM,
under this condition, may not operate correctly sometimes. This is because its delay of
next state forming logic is higher than the required one by Inequality 4.6. As a result,
its delay element should have a 0 delay value which is not possible. Therefore, using
the 2-bit transmitter to send data to the receiver is a safer option. Besides, it also
brings area benefits compared with asynchronous FSM.

The sum of these elements’ area is the area for one path. The Fence consists of
2 paths. The Fence delay from the input to the output is the sum of control logic,
select logic, self-timed shift register, and tri-state gate’s delay. The control logic is not
synthesized here because it is related to the structure of specific SNNs. Table 5.4 shows
the delay and area of the Fence with 9, 11, and 13-bit input address lines.
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Table 5.3: Synthesis results for the Fence’s sub-blocks(delay element excluded)

Component Delay Area/um2

select logic 0.2667 74.782

self-timed shift register 0.6544 81.438

FSM
0.2265 for next state forming;
0.2899 for output forming

121.520

tri-state gate 0.2740 74.088

2-bit Transmitter 0.2332 91.336

Table 5.4: Synthesis results for the Fence in total(delay element excluded)

# Address Lines Delay Area/um2

9 1.1951 551.952

11 1.1869 705.502

13 1.2008 839.664

5.3 Discussion

Two criteria are critical in the segmented-bus structure: throughput and delay. The
throughput of the interconnect is determined by the transmitter in each NA and the
control logic in the Fence. The transmitter determines the peak throughput for each
NA. As for the control logic, it determines which AER signal can pass and which cannot.
Generally speaking, if the control logic passes all the AER signals so that the Fence
needs to send a stop signal to NAs continuously, the throughput will be decreased.

The delay of the circuit is determined by the transmitter and the Fence. Since the
transmitter sends AER signals in sequence, it adds extra delay to simultaneous spikes.
As for the Fence, all components add delay to the AER signal. The AER signals in the
Fence are used mostly as a bunch of wires that can or cannot pass. It does not have
processing utilization. As a result, more input bits only add to the area but have no
influence on the delay. Besides, for an AER signal, the more Fences it needs to pass,
the more delay it will be added.

The synthesis results are also influenced by the synthesis strategy. In this project.
we break the design into delay elements and parts without delay elements. The synthesis
is done for parts without delay elements. Another reason for the breakdown is that the
tool cannot analyze timing for some circuits, such as the self-timed shift register. The
breakdown of the design may hurt synthesis results because the tool cannot perform
optimization between different parts. Another factor that has a great effect on synthesis
results is the output load in constraints. Here we use 1pf for output load. In the timing
report, there is always a steep increase in the delay at the output port (sometimes
larger than 50%). Therefore, the interconnect may have a much better performance
when using smaller loads.
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Conclusion and Future work 6
This chapter first restates the background of the thesis. Then it summarizes the main
work we have done in this project and gives a conclusion. Finally, it gives some future
aspects that can be done to extend the topic.

6.1 Conclusion

Spiking Neural Networks use spikes to transmit information. The spikes themselves
contain timing information for the following Neurons to process. Address Event Repre-
sentation is the most commonly used communication protocol among different Neuron
Arrays. To reduce the power consumption caused by a clock signal and save the area
overhead, this thesis aims to design a self-timed interconnect for Neuron Array commu-
nication. The self-timed circuit uses the feature of the event itself to start or terminate
a transmission. It should have few control signals and is built up on delay elements,
latches, flip-flops, and combinational logic. Due to the lack of clock and global control
signals, solving the timing problem is the critical part of self-timed circuits.

In this thesis, we start from the point-to-point interconnect for SNNs and focus on
its transmitter design. Generally speaking, the transmitter samples the edge of each
spike and feedback a reset signal to complete a transmission cycle. The priority encoder
is the key component of the transmitter because it needs to handle simultaneous spikes
and minimize the delay. Two types of priority encoders are designed in this thesis based
on the features of Neuron Arrays. While both the prioritizer with one-hot encoder and
the whole priority encoder solution have a similar delay and throughput, the whole
priority encoder outperforms the other one in terms of area and wire counts. Based on
the structure we designed, different timing issues are analyzed and some measures are
proposed to solve timing problems. Among them, setting the delay element a certain
amount of inertial delay as well as adding an event-driven flip-flop at the output of the
transmitter is considered the safest.

Besides the point-to-point interconnect, a general segmented-bus topology is pro-
posed and designed for multi-array communication. The segmented bus can connect
or isolate different NAs at different times. To control the segmented bus, we designed
a structure called Fence. The Fence is responsible for communicating different AER
signals among NAs. Due to the lack of a clock signal, the Fence needs to control the
timing carefully. It needs to guarantee a fixed duration time for each incoming data
and send them to corresponding NAs regardless of their phase relationship. Based on
Fences, the AER signal can communicate among NAs in an ordered way.
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6.2 Future Work

This thesis realizes a generalized interconnect structure for point-to-point and multi-
array communication. Further work can be done in the following aspects.

Firstly, in the point-to-point interconnect structure, we impose a set of constraints
on the delay elements. They are left as black boxes in this design. These delay elements
can be implemented at transistor level based on our proposed requirements. Besides,
the rotated priority solution comes at a price of more area overhead. Based on different
SNNs, whether the priority rotation function should be removed to save area is another
topic for research.

For multi-array interconnect, out segmented-bus topology is a generalized structure
suitable for different kinds of Neuronal communication systems. When it comes to
specific SNNs, the structure can be optimized to achieve better performance. For
example, how to map a given SNN in this segmented-bus topology to achieve better
throughput and power consumption could be studied in the future. Besides, different
NAs may be also put in a single segment to decrease the amount of traffic.

Furthermore, this self-timed interconnect is not compatible with the existing syn-
thesis flow. In this work, our strategy is to separate the combinational part from other
parts that contain flip-flops, latches, or delay elements. Then, each part is constrained
and synthesized on its own. The final results of different parts are combined again.
However, this will weaken Design Compiler’s optimization effect, so the results may
not be the best. Further research can be done to make self-timed circuits suit the
traditional synthesis flow.
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