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IIST OF SYMBOILS

Symbol Subscripts
a —

a R,i,o

a x,y,Z

a,b,c,d  11,12,..88

AC,D 12,32,477
b XyY42

E T,R,D

. i Bx,ix,ox
f Rxz

£ tot

£ rot

f Xy%

fl any

F,T 1x,1y,1z
F,T 2x,2¥.2%
F,T 3x,3y,32
PT dx,dy,dz

2&/9

position vector of hinge centres of rotor,

inner— and outer gimbal

linear accelerations of satellite

matrix elements — values are given in table 4
matrix elements in equation (38)

components of the position vector of

reference point

translation, rotation and deformation

energy

stiffness of the suspension of rotor, inner-
and outer gimbal in x—direction = similar

for y— and z—directions

transverse stiffness of rotor bearing

arlx aﬁlz

f - -
%pso  2%Ryb

Rxz
total translational stiffness
rotational stiffness

defined in equation (39)
non—-dimensional value of f (table 5)

components of force and torque on rotor by

inner gimbal

components of force and torque on inner

gimbal by outer gimbal

components of force and torque on outer

gimbal by satellite

components of disturbance force and torque

on satellite




1,7,

1,7,K

P,Q4T

Subscripts
R1,R2,R3

R1,R2,R3
R

Rn
R,i,o

XyJ92

fR,fi,fo

shaft bending coefficients
non—dimensional value of g (table 5)
anguiar momentum of rotor about rotor axis
nominal value of hR

steering torquss

moments of inertia of satellite

moments of inertia of rotor about rotor

hinge centre

moments of inertia of rotor + inner gimbal

about inner gimbal hinge centre

moments of inertia of rotor + gimbals

about outer gimbal hinge centre

moments of inertia of rotor, inner— and
outer gimbal about their centres of mass
respectively

distance between hinge centres

distance between pairs of bearings or springs
satellite mass

mass of rotor, rotor + inner gimbal and

rotor + gimbals respectively
mass of inner— and outer gimbal
angular rates of satellite

static moment of rotor about rotor hinge

centre

static moment of rotor + inner gimbal

about inner gimbal hinge centre

static moment of rotor + gimbals about

outer gimbal hinge centre

Coulomb friction torqus




Symbol

=

H 3

Subscripts

' 61’ 8,

Ax,ix,ox

Rxb,Rzb
Rxs,Rzs

any

spring constants

viscous friction coefficient

see under F

position vectors of centres of mass

y component of ;R—gR and Ei—gi respectively
non~dimensional moments of inertia (table 5)

gimbals angles

x—-component of angular and linear displace=-
ments due to compliance in rotor, inner
gimbal and outer gimbal suspensions -

similar for y— and z—directions
displacements due to bearing compliance
displacements due to shaft compliance
damping coefficients

non—dimensional lengths (table 5)
non—dimensional mass (table 5)
non—dimensional static moment (table 5)
non—dimensional spring constant (table 5)

lowest natural frequency at boundary of

stable region

rotor angular velocity




INTRODUCTION

Gimballed momentum wheels present a promising system for
‘attitude stabilization and control of satellites. The study of
such systems is very difficult if all effects, such as sensor
characteristics, steering laws, finite stiffness, gimbal masses
etc., have to be taken into account.

Therefore, it is customary to simplify a double gimballed
momentum wheel for system studies by neglecting the gimbal masses
and assuming that the suspension stiffness is infinite. This
simplification is justified if, and only if, the natural
frequencies due to finite gimbal masses and finite stiffness of
the suspensions are well above the system frequencies and if the
motions represented by these natural frequencies are stable.
These conditions will be fulfilled for a high stiffness of the
suspensions and for low gimbal inertias.

The purpose of this study is to obtain requirements for the
gstiffness of the suspensions and for the gimbal inertias from
stability considerations., As starting point a complete set of
linearized equations is used, but neglecting the steering moments
which will have a very low frequency compared to the nétural
frequencies of the double gimballed momentum wheel.

As the number of parameters in the system is rather high, a
study by parameter variation would be Very labourious. Therefore
a different approach is used. Firstly the energy of the system is
considered, to obtain insight in the question what kind of systems
are liable to suffer from instability and in the instability mode.
This insight is used to derive a general equation for the border-
line of the stable region. As this equation still contains a
large number of parameters, approximate solutions, depending on
a limited number of parameters, are looked for. These approximate
solutions are obtained using different sets of approximations,
and they are tested by comparison with numerical solutions of the
equation for some typical configurations. These solutions are

obtained using a digital computer.
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EQUATIONS OF MOTION

The equations of motion for a satellite equiped with a
double gimballed momentum wheel are derived in reference 1. These
equations ars given in table 1 for a coordinate system defined in
figure 1. In table 1 the suspension forces and torques are
denoted by le, Tlx’ etc.3 they are dependent on the method of
suspension and will be considered in chapter 3. The inertia forces
and torques are given on the right hand side of the equations (a)
to (r) and are independent of the suspension method.

For stability considerations some simplifying assumptions
can be introduced in the inertia forces and torques: ‘

— The mass and the moments of inertia of the satellite will be
large compared to the mass and the moments of inertia of the
wheel and the gimbals, Therefore the motions of the satellite
can be neglected, isee Pp =q =1 = 0 and B, = B - 0.

~ The deviations from the nominal conditions remain small,

permitting linearization of the equations of motion.

A third simplification stems from a restriction of the
allowable suspension configurations: The double gimballed
momentum wheel must be tested on the ground, and therefore
gravitation forces must have only minor effects on the beshaviour,
This means that the centre of mass of the rotor and inner gimbal
must be located on the inner gimbal axis (si = 0) and that the
centre of mass of the roltor, inner and outer gimbal must be
located on the outer gimbal axis (s0 = 0). In practice, this
involves also that the outer and inner gimbal axis intersect

(20 = 0), These simplifications are incorporated in table 2,

HINGE EQUATIONS

Rotor suspension
For the rotor suspension ball bearings and hydrodynamic

bearings are considered. The torques about the rotor axis will
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consist of the steering torque and the friction torques (viscous
and Coulomb friction). Therefore the general form for the torque

about the rotor axis is:

T1y = Hp = Tpg sien by - Typ by
For stability considerations the low frequency parts of this
equation can be neglected, resulting in:
Ty = Tg (hR = hp ) (1)
For small displacements, the force on the rotor along the

rotor axis will be'proportional to the axial displacement in the

bearing system and its time derivative:

F,_ = - -~ 3

137 = " Ty 'Ry ~ By SBy (2)
For ball bearing suspensions, the forces along the x and z

axis will have a form similar to equation (2). For hydrodynamic

suspension, these forces will also have a term proportional fo

the displacement perpendicular to these forces and to the rotor

axis (see Ref. 2) i.e.

- - 4 - r ’
Frx "Trs %850 = "Bx %8 ~ Thez Fmob (3)

=~ Toe Eaob ™ "Re SRav * ez SR (4)

In equations (3) and (4) the same coefficients are used;
this is valid for rotary symmetric bearings. The displacements
bear the subscript b (for bearing) to distinguish the displace-—
ments in the bearing from the total displacements. This distinct-
ion is required when the structural displacements outside the V
bearings must be taken into account.

From the equations (3) and (4) expressions for the torgues

can be derived under the assumption that the bearing system




consists of two identical bearings at a distance LR:

2

Tlx - -'Z— [fo ERxb + nRx ERx'b * foz ngb] (5)
5 .

le - —-Z_ [fo ®Rzb * nRx ész - foz stb] (6)

For the structural displacements outside the bearing, rotor
shaft bending without damping and rotary symmetry about the y—axis,
but no symmetry about the x and z axes is assumed (see Fig. 2).
Denoting the forces in x direction on the inner gimbal at the two
bearings by Kl and K2 and the structural displacements of the

bearings by Xy and‘xz, the relations between these quantities are:

K

I

g ™ By Xy TR, (7)

K

il

a + a

p = 8%y * 3%, (8)
The force and torque on the rotor and the structural dis—

placement and rotation of the rotor are given by the following

equations as can be seen from figure 2.

- &

F._ == (K1 + K2) P, =

1x 1z 1 K2)

\; —-l =—-—].'— —
Eres =3 (%1 * %) ey i (x) = =xp)

Elimination of Kl’ K2, x4 and x, results in:
F1x = 7 81 ®Rxs T 8R2 2 FRus (9)
LE;
Tyz =" 80 % %Rxs T 8R3 74 “Rzs (10)
with
8p1 = 2 + 2a2 +* ay
€ro T %1 T %3 (11)

Bpy = By ~ 28y % By
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In the same way one can obtain :

=
2

Flz = —ghl Est - gR2 € Rxs (12)
La L%
T1x = " 827 %Ras T 8R3 T CRxs (13)

Equations (1) to (6) are incorporated in %table 2 (right hand
side of equations (a) to (¢) and (j) to (1). A combination of the
equations (3) to (6) with (9), (10), (12) and (13) results in the
equations (s) to (v) in table 2.

It can be noted, that the linear and angular displacements
of the rotor with respect to the inner gimbal in and €p ~consist
of two parts, one dus to bearing compliance and the other due to
shaft compliance. As a result, the number of independent variables
increases with four. The required additional equations are the

equations (s) to (v) in table 2.

Gimbal suspension

For the gimbal suspensions ball bearings and springs are
considered. For ball bearing suspension with torgue steering,
the torques T2z and T3y congists of the steering torques and the
friction torques (mainly Coulomb friction). For stability
considerations the (low frequenoy) steering torques can be
neglected, and the equations are:

Ty, = = Tp; siem 8, T3y = = Tp, Sign 8,

For ball bearing suspension with gimbal position steering,
and for spring suspension, the torques will be proportional %o
the gimbal deflection, with a high proportionality constant in
the first case and a low proportionality constant in the second

case. The general form of the equations becomes:

T,, = = Tp sien b, - Téi 5, (14)
Ty = —fpfo sign & - Téo ®

(15)

(o]




The forces F2z and F3x will be proportional to the axial
displacement in the bearing systems and the derivatives (the
latter for ball bearings only), giving as general formlae

Fou = 7 %35 %45 ~ Myp 85, (16)

Fax = = Tox 5oz ™ Mox E:ox (7)

For the gimbal suspension the structural displacements can
be neglected; the general form of the equations for the forces
perpendicular to the hinge axis is similar to equation (3) omitt—
ing the last term and the subscript b. For spring suspension the
terms with M can be neglected. The general form of the equations
for the torques perpendicular to the hinge axis is similar to
equation (5) with the same omissions.

The resulting equations and the equations (14) to (17) are
incorporated in table 2 (right hand side of equations (d) to (i)
and (m)'to (r)).

With this result, the equations of motion are complete: the
number of equations is equal to the number of independent

variables.

4 ENERGY CONSIDERATIONS

4.1 Possibility of instability

' The energy of a double gimballed momentum wheel consists of
kinetic energy and deformation energy. The kinetic energy can be
separated into translational energy and rotational energy.

The translational energy of the system is equal to:




Introduction of X, =&, =2y and xp = ap = ley’ X, -2 =

yily and ap — a, = lily (with 1y the unity vector in y-direction)
gives:
2 s 2
B S A Y F - . :
By =2 My %ox T Lgox YTV (Eoz * 61)]
L 1 ? ¢ AN | : °
= + - 2 A )= I
o+ e bt - fa] )
2 2
1 1.2 .1 1[; . ] 1 [ . : . ]
= == < + + = + ik
ETy 2 Mo aoy 2 ™ oy iy g3 *n oy ¥ iy F’Ry (19)
l 1 2 1 i ! ) I3 I 2
ETz =2 " aoz +'§ mi[E’oz * Eiz * I3 (60 * 8ix)]

Rx

Pr

2
1 . ® 4 ° .
+'§ T2 [Eoz * Eiz * ERz * (3R+li)(6o+ ﬁix) +yR ERX](ZO)

The rotational energy about the three axes iss

_]__ 1'2 _]_; l - . 2 _;L_ l 4 3 ° 2
=g I o rp Iy (B + e )T v Iy (6, F £, +ép) (21)
1 1 .2 1 1 3 ° 2 1 . . 2
= = = + + = - +
2 Jo Eoy *2 Ji ( oy 1y) JR Eoy £iy sR) (22)
s ol g€ 11 s o \2 1 ol e + 8 o+ 8 2
2 Ko Eoz + 2 Ki (goz i éi) * 2 KR (Eoz 61 st) (23)
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For the assumed linear relation between forces and displace=

ments in the suspension, the total deformation energy is equal to:

ED %;{j%—force . displacement

The deformation energy cannot be divided into translational
and rotational energy, for le is dependent on the angular dis-
placement ERZS and le is dependent on the linear displacement
2N (equations (9) and (10)). Therefors, the deformation energy
is divided into four paris:

EDx © = deformation energy for motions along x axis and about
7z axis.

EDz ~ deformation ensrgy for motions along z axis and about
X axis.

EDy - deformation energy for motions along y axis.

EDyR - deformation energy for motions about y axis.

v

The hinge equations (chapter 3) result in:

2
L
1 > 1 - - 2 1 2 R
Bpe "% Fox box T2 fix Pix T o Tax "By T2 &Ry PBxs T8
2
L
1 2 Ip 2
: - — g . e
883 Rus " 2 ®R2 “Rys “Rzs T2 T6i %3 T B TRx SReb
Li 5
o Lo Poe (24)
2
1 g .1 2 1 2 1 2 Ly
= = + = o= + = + =
Bps =2 foy Boz Y 2 535842 % 5 Tpx %Rov * 2 &r1 ast g *
‘ 2
7
2 Ig 1 5 Ay 2
— + = - +
€r3 €Rxs 4 > 8&Rrp Est ERxs 2 Téo ta ? 8 fix: €ix




2 1 2 1 2
-+ — 4 —
EDy = % foy E’oy 2 fix F’iy 2 fRy E'Ry (26)
Li o L12 5
I eeee— + ——
DyR 8 foy Eoy 8 fix fiy (27)

Sommation of equations (18), (23) and (24) and differentation

witkh respect to tine, resulis (after recombination of terms) ing

E‘E[ETI.‘-ERZ-*EDx]:
+é mg +m.£.+mR€Rx-sRERZ+f F,-]+

OX { O oX 1 11X OoX "0X

L * - - o +
% aix ,mi F’ox + o aix * by ERx SR t’:Rz fix E"i:vc] *

H

™M
4

*lpe| ™R Box * r Bix * PR Pry T (sptmply)(E ,*8;)- sp Ep,

+

fo ERxb] o

.

2
- - L
. - i _o 5
EOZ[ (sRﬂnin) ERx Ko oz © Ki 61 * (KR+SR11) ‘Rz T 4 foy Coz]

-
B

+

oy [ = (sprmpd;) Bp * X5 £, + K 8, + (Kp*sply) &5 + Ty, bi] N

12
b E!'Rz[ ~ Sp (aox+£ix+§Rx) * (KR+SR’I’i)(€oz+6i) - K‘R ‘Rg ¥ —4— fo Esz] *
aRxs[_ fo ER}cb ¥ €r1 ERxs =2 8ro fRgg ] *

Ly Iy ]

+

* i | e — + .
* CRog 2[ 8r2 %Rxs ~ 2 IRx “Redb T 2 ER3 CRuzs (28)




Substitution of equations (a), (d), (g), (1), (o), (x), (s)
and (v) of table 2 resultsin:

d _ 2 - 2 .
dt [ETI ¥ ERZ ™ EDI] B nox F’cnc nix Eix nRx ERxb +
2 2
: -
0 2 e 2 o
- — - c 3 - T —— -
noy‘ A Eoz Tfi 8 Bagn 61 Rx 4 ngb foz (Esz inb =
2
=7 “Reb “Rov) T Prn Oo * it Ep (€, * 8 * Eg)) (29)

2 2
L. Ly
> " ] —- __J___ 2 — - o2 4
s 6o sige 6o nix 4 ix nRx 4 “Rxb " foz (ERxb Esz
=7 ®Rzp °R b) * By (60 T it ERx)(EoZ * 61 * €Rz) (30)
d o e _ 2 o 2
dat [ET * EDy] noy aoy nix Eiy T’Ry gRy (31)
2 2
L L : -
d . 2 4 3o "
Tt [ERy g EDyR] =77 oy foy T2 Mix fiy TT, "m (hp - bg,)
(32)

Prom these results some conclusions can be drawn:

a The equations (29) and (30) contain three different types of
terms:
- friction terms, which are always negative (energy dissipation)

and have a favourable effect on stability (the first six terms)
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— gyroscopic coupling terms, which have no net effect on the

total energy and cannot cause instability (the last terms)
- terms with foz which are present for hydrodynamic bearings

and which are the only terms that can cause instability.

b Equation (31) contains only friction terms, therefore the
motion along the y axis is always stable.
¢ Bquation (32) also conbains only friction terms. The motion

about the y axis is always stableg the equilibrium position

is hR = bRn'

Apparently, the most critical suspension method consists of
rotor bearings with large transverse stiffness foz e.g. hydro-
dynamic bearings and gimbal suspension with a very low damping.
Such a system will be analyzed; only the motions along and about

the x and z axes require further consideration.

Instability mode

Neglecting the damping in the gimbal suspensions, the energy
equation for motions along and about the x— and z axes can be
obtained by addition of equations (29) and (30):

2
dlE e s e 2 i o2 2
at - " "Rx [aRxb * Rop T T4 FRap * ERxb)] "

2
: . by . :
* foz [ngb Zsz - Esz ERx;b +'7r (SRxb Esz asz aRxb)] (33)

The condition for stable motion is %% < 03 therefore the

borderiine of the stable region can be defined as %% = 0,

As can be seen from equations (24) and (25), the energy will
always increase with an increase of the displacements § and €.
Hence the suspension system will always be statically stable.
Consequently only dynamic instability can occur. On the border—
line of the stable region, the motion will be dymamically

indifferent, i.e. the motion can be described by:




ﬁRxb = Al sin (wt + ¢1) € R

Epop = Ao sin (wt + 9,) b 15, 8

Substitution in equation (33) results in:

aE _ _ 2,2 2 2 2 2 2
3t = = ey [Al cos” (wt + ¢1) + A, cos (ot + ¢2) + A3 cos
(0t + 9,) + A2 cos® (wt + @ )] P [A A, sin (9, - 9.) +
3 4 4 Rxz 172 i | 2
+ Ayh, sin.(¢3 - ¢4)]

Integration over one period and division by = results in:
AE 2 2 2 2 2 . -
e nRxw [Al + A2 + A3 + A4Ll+ Zfozw [A1A2 sin (¢1 ¢2) +

+ Ayh, sin Wy = ¢4)]

From this equation it can be seen that for high frequencies
AE will be negative and therefore the motion stable. Instability
will occur at frequencies at which Al to A4 and @l to ¢4 can be
chogen in such a way that AE is positive. Therefore, the border—
line of instability will be given by the highest frequency for
which &E can be zZero, or:

2foz A.A, sin (¢1 - ¢2) + A3A4 sin (¢3 -9

4) (34)
W = - 4
7 2 2 2 2
Rx A1+A2+A3+A4

) " ‘
with the conditions E%T =0 (i = 1.0, 4] 3T$z—:—$;7 = 0 and
i
(9 aﬁ 7y = 0 and the second derivatives of ® negative,
3

4

These conditions lead to:

sin (9, = @,) = sin (95 = ¢ ) =1, A

4

or with substitution in equation (34):




This result is obtained under the assumption, that the

- - A I ¢
coefficients Al to A and Ql to ¢4

general this will not be the case, and the undamped frequency will be

can be chosen arbitrarily. In

somewhat less than given in equation (35), .24

afoZ

nRx

with a <1 : (36)

Equations (35) and (36) are valid for all methods of
suspension, provided the rotor suspension can be written asg in
equations (3) and (4) and the damping of the gimbal..suspensions can be
neglected. | | |

For a double gimballed momentum wheel with high reliability,
hydrodynamic bearings for the rotor and springsuspensions for the
gimbals are promising, ‘If this suspension method is used, the
damping in the gimbal suspensions can indeed be neglected. The
coefficients foz and oy depend on the bearings and on the static
load on the bearings. & good hydrodynamic bearing is probably
the grooved bearing with length-diameter ratio of unity (ref. 2).
The static load on the bearings can be neglected under zero—g-
conditions. For this case reference 2 gives the following

coefficients:

2 / fry = 1.5 and Mg /fo = 3/Q (37)
in which Q is the angular rate of the rotor.

Substitution in equation (36) leads to the conclusion, that,
on the borderline of stability, an undamped mode exists with a
frequency equal to (or somewhat lessthan) half of the frequency
of the rotor, the socalled "half-frequency whirl". For the
remaining part of the study the values given in equation (37)

are usede.




5.1

THE STABLE REGION

The precsssion mode

In the previous section it is found that a double gimballed
momentum wheel is stable, if all possible motions have a frequency
above a certain limit valus. Therefore, a stable region can only
exist if no motions of a low frequency can occur., However, it can
be shown that in all cases & motion with a very low frequency will
appear among the possible natural motions. This can be inferred
from a simplified analysis of the equaticns of table 2. Intro-—
duction of an infinite stiffness for the rotor bearings and for

53 and T ) leads to the follow—
i do
ing result for the motions along and about the x and z axes:

the suspension springs (except T

Epe™ S ™ S ™ Np T B ™ boy T Ppe T FRp ™ fyp ™ B ™ U
+ § + -
By By *hp 8, * Tyy 85 =0

- B, -
Io 6o hRn'bi Tbo 6o 9

This means, that in the chosen approximation, all frequencies
are infinite with two exceptions. These frequencies are about
oy /\/KiIO and about Vg, Ty / hp e The first of these frequem
cies will be larger than half the rotor frequency, as Ki and Io
will be smaller than 2J
smaller than Q/2.

This last frequency presents the precession mode of the

R? but the second will certainly be

double gimballed momentum wheel. For infinite bearing and gimbal
stiffness the motion in undamped, for finite stiffness the motion
Willvbe unstable, although the rate of growth will be extremely
small.,

It is clear that a stable region can only exist if the
precession mode can be damped effectively. Damping can be
obtained by means of control torques, provided that the frequency
of the precession mode is not too high for the sensors and the

torquers.
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General equation for the borderline

The equations of motion given in table 2 can be Laplace
transformed and written in matrix form. The result is given in
table 3.

The characteristic equation of the system described by the
equations of motion is obtained by putting the determinant of the
matrix in table 3 equal to Zexro. After some recasting, the charac-—

teristic equation becomes:

aj{ 85230 0 0 0 0 0 0 0 0 0 0O 0 O
8, 85p0 0 0 0 0 0 0 0 0 0 0 0 0 0
a3 83,0 23, 0 0 0 a3g0 b3 0 0 0 0 0 0

0 0 a,;2,0 0 0 ag0 0 b3b,0 0 0 O

0 0 0 0 agaga,0 0 0 6 0 0 0 0 O

O 0 O ags 8 © 0O 0O 0 0 0 0 0 0 O

0 0 0 a,a58,0 240 0 0 0 0 b, 0 0

0 0 O 25,0 0 ag agg0 0 0 0 0 0 bg bagl=0
0 0 30 0 0 0 dyy dypdy30 0 dygdy, 0

o 0 0 0 0 O 0 dyydy,0 0 0 0 0 O

0O ©e350330 0 0 O d3; 83,0 d3,0 0 0 dgg
0 0 ©,30,,0 O 0 0 0 4,;34,0 0 0 4
0 0 0 0 0 0 50 0 dgds30 dggdggdg, O

© 0 0 0 0 0 0 0 0 0 0 0 dgzdgO 0

0 0 0 0 0 oo 0 0 0 0 d,dgdg0 dog
0 0 0 0 0 0 og 080 O 0 dg, 0 O dg, dgg

The elements of this determinant are given in table 4
(first two columns). Due to the small number of non-zero elements
in some rows, the order of the determinant can be reduced easily,

leading %o:
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Ayy ey, 0 ayg by 0 0 0
a43 a44 i a48 0 b43 b44 0 0
0 ay, A g0 0 0 by
0 ag, gy agg0 0 O 0 by bgg
©30 0 0 Diydi30 dygd 0
By Bpp B B A = 0 (38)
51 By Oy Age 90 Sy €330 0 0 Dy 0 a0 0 dyg
©43°40 O O d,;38,0 0 4
z 0 65, 0 dg,dgy 0 Dygdy, O
O €p0 O 0 a0 0 dg
0 0 ogogg0 O dg, 0 dg dgg
withs Ay, = 815 = 2y 8,,/a,) C33 = °33 = °35 a3/4;,
hyy = a3y = ay ay/ay Ca7 = ©77 = °16 257/256
Ayy = =hy, ay4/hy, Dyp = dyp = dyy dpp/dy
hog = agg = asg agc/ags Dyp = d3p ~dyy dyp/dyy
Ao = 206 = 205 3g6/2%s Dsg = 56 ~ dgg dge/dgs
PR o -
77 = M6 2577456 D1 = A6 ~ dg5 d66/dg5

In section 4.2 it is found, that on the borderline of
stability, an undamped oscillation with a frequency equal to or
somewhat less than half the rotor frequency occurs. Therefore,
the general form of the equation for the borderline of stabiliity
is equation (38) with substitution of s = ja0Q/2 in the elements
of the matrix.

For simplification, non—dimensional parameters are introduced,
these parameters are given in table 5 and substituted in the
elements of the determinant (table 4). In the last colum of table
4 the equations (37) are also substituted.

The non—dimensional form of the equation for the borderline
is equation (38) with the non—dimensional values of the elements

from table 4.
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APPROXIMATED STABLE REGION

Equations for the borderline

A double gimballed momentum wheel can be considered as a
system consisting of several masses connected by springs.
According to section 4.2 instability will occur if the lowest
frequency of the system (except the precession mode) is lower
than a limit frequency, which is equal to, or somewhat lower
than, half the frequency of the rotor. The lowest frequency in
the system (exoept the precession mode) will largely be determined
by the largest mass in the system i.e. the rotor mass, provided
that the rotational stiffness of the gimbals is sufficient. The
latter condition will be analyzed in section 6.4.

Therefore it can be expected that a realistic approximation
of the stability region can be found by neglecting the gimbal
masses and moments of inertia. Furthermore, the spring constants
Téi and Téo’ which will be very small compared to the other
spring constants can be neglected. These approximations can be

written in the non—dimensional form as:

o
I
=
I
R
+
<

With these approximations and introduction of the abbreviations

oi fii foi fii
S N R e S W (39)
ox "ix , oy iz

equation (38) can be written as:
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o 3 : :
wE (1+55a) 0 £ ¢ ( ¢ ¢ q
S (N, 3 el ; .
SRl(f ) (1 233+gR1) Q 5 (¢] \gR1+gR? 850 ( < G
A 3 P P . , .
C > K fz \1*—53:—1, (¢ ( { C G
. 3 3. 1 @ : § 1 1
2 ) ) o Ag
0 5 sRl(f ) (1+53a%egg,) © ¢ o r1*6Ro ERo
¢ 0 Q 6] Ya KY¥a ¢ 2juv/a 2jev/a ¢
Mg 0 0 ¢ 0 0 (1+35a)  © ° g s
x 27 - 2
1 _ ; ’ I R 3...1 . . _5
2, (£74) &g, 0 0 G (lgp,*egy) (1+55aten,) © 0 s
0 0 0 0 2jkY/a 258v/a o —tYa  -hYa 0
~ y 3 _ 3.
0 0 2 o] G 0 5 ¢ 0 (14—2-3a)
1 I 1 3 T P 3.1
2 & gR2(£Z ‘1) +8R2 o o 2 Y i 8R2+3R3 (1*?Ja+633)
) 1
Subtraction of row 1 from row 23 row 3 from row 43 \times row 1 from row 53 row 6 from row T3
- \ times row 3 from row 9 and row 9 from row 10, followed by subtraction of .1 times column 7 from
colurm 2 and A times colurmm 10 from colum 4 results in:
B £ —(1+—-33a) 0 2 0 0 0 0 C 0
x 2 2
2 11 x R | 1
)t Yo A - o -
g1 (£, £ gg e, ¢ 9 0 lepy*ep, &gz ©0 O "
3 I
o - L (1+7c;3a) c 0 o} 0 0 0
1 \ 1 1 1,1 1
s - —_ -
o o] gRl(fz R)=BE, g ~Agp, © 0 o 0 .lgR1+gR2 &R0
C o 0 o a o« 0 2j/a 2j/a 0
\ 3. 3 =0
¢ o} 0 0 0 0 (1+§Ja) o] 0 ;-
-g- (f -u) \uf g —\gl o] C o] —(\1+1) 1 0 C o]
532 Rz SR3 - d “8rp"8p3/ €p3 ‘
c 0 ¢ ] 2j/a 2j/a o -« -a 0
C o 0 ¢ 0 0 % 0 0 (14-%ja.)
0 0 g (r —-u)+ u f, & -\g 0 (¢ o] “g]' +ed. &l
R2 R2™8R3 72" 8R3 &R3
or:
3, 3
L (1+—2-3a) 0 5 ¢ 0
e S | . |
P Ags = A
8nl(f W=k Agp,mgp, O 0 1% Ero ¢
3 3.
= p +=
(o2a2-4) 0 5 £, (1+532) © (o -0
ey 1,1 T, .1
o] 0 gRl(f B)-n f, €p1 .\gR2 0 \gRl o
1 1 1
+3!@!2(1‘ —#)+W L —gp ey O ° +("gR2+gi113) *
1 1 1
0 0 5nz(f “R)ele £ gp,—lepy 0 ‘gaz"gzlu
ot
uf —(1*—3'_ja.) 0 Bf -—(1+1‘a) 0
x 2 z 2J
2_ a1 _1 4,1 .1 _uV_ W N S . ¢
4) gm(f Rk £ ep,7en, & ter, | * gﬁl(f B)-k £, g, L e B
_uYad Y S S R | Ve 1_1 1,1
3nz(f A N TR AT gRZ(fz W+ L, depimep, 'S3o%ER3
9,2 2_ _ o g ¢ . N
7(a"a%=4) gm(f ~R)-k £ Agy e, B} gRl(f B}k £, Agp +ep, o
—1)4+2 rat +gt 1)+ Ap 1,0l B
gnz(f B)+hu £ Agpotens gpp(£, )+ 2, *po*eR3
ors
2 2_ 3, 3. 9,22
(a“a 4)[u £oA+ (1433a) Bx”u R (1+-2~3a) Bz]-l-d (a®a®=4) BXEZ =0 (40)
withs
2
11 1,1 1 _ 1 1,1 2is X
- —ga Y - = -
A = (g, ep, ) (Mep,tepy)=(Regyap,) (Meg  tep,) = (143%) (e, gplg 3) (m)
B g(f—u)uf (Agl+1)- (f-u)+u\f (A1+1‘—(f '\111—12-uf 32l 1
R1 R2 593 SRZ gR] 532} = x ngp3 532 ) X( gR1+2AgR2 z,RB) (42)
1 % a®
B, = (£,~") (g5, 83378, )F £, (32 5’:u+ ),z,m Lm) (43)
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Both the real and the imaginary part of equation (40) must

be zero, thus:

2 2 2
[u £ £ A%+ WA (£B 4B )+ (1-% a2+-2-) BXBZ](G a®-4) = 0 (44)

l_p A (2B +£ B ) + 2 BKBZ](aeaz—d,) ol (45)

These equations define the borderline of the approximate

stable region.

6.2 Stable region for symmetric suspension
For symmetric suspension fx=fz and BX=BZ, therefore the

equations (44) and (45) become:

[sz A2 4o £_A3B_ +(1- 2 & a2+%32] eogo=4) = © (46)

X
2
[u f_AB_+ Bi](a 3,2-'4) =0 (47)

' The equations (46) and (47) are satisfied for three sets of
parameters:

2.2 R ‘ ¢ aia y
a «a =4 =0, For realistic momentum wheels this condition will

not be met as it implies that the moments of inertia of the
wheel about the x— and z—axes are larger than, or equal to,

twice the moment of inertia about the y-axis (see table 5).

b A= Bx = O, Thig condition cannot occur, as g%1g%3 is always
larger than g%z (see equations (11) and (41)).
c b fx A+ BX = 0 and a = 1. These conditions give the borderline -

of the stable region. With expressions (41) and (42) the

stability criterion becomes:

ot
A g +2Ag5 g
R WY L T bR 23 (48)
m £ 5
X b S S )
€r18R37CR2

or in dimensional form:

2 Jie 2 2
+ + 22 (49)

b= -
()2mR fo fox fix I‘R

(gnlgm"gﬁz
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To gain physical insight in this equation, the total stiff-
ness of the system is calculated. The total stiffness (ftot) is
defined as the static force on the rotor in x=direction which gives
a unit displacement of the rotor in x-direction, if the displace-
ment in z—direction is zero.

Assuming a static force ¥ on the rotor, the suspension forces

and torques are:

The toltal displacement of the rotor and the total stiffness ars

Etot = Eoz N Eix N ERx

+l e £ = (50)
i Rz tot atot

The equations (a) (d) (g) (1) (s) and (v) of table 2 result ins

P P
Sox = F 8ix = F
oxX X
e (1pggy*2t; gg,)¥
Rx ~ fo ( %8 2 ) e
8r18r3 €2/ R
Rz 'lnl e Y5 8
frar  (8R18R37820)0%

Substitution in eguation (50) gives:

2,9 2 2
+ +
1 1,1, Lrali /g . Ir8r3t4lpli Enot ML gy
3 2 g
Toot  Tox Tix Rx L (831833™8go )

(51)

Comparison with equation (49) shows that the stability

criterion for symmetric suspension can be written as:

4

1 2
. or Q'my < 4 ftot (52)
0 o Yot
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Stable region for unsymmetric suspension

For unsymmetric suspension the borderline of the stable
region is also given in the equations (44) and (45). The only
realistic solution is again that the term in square brackets in
equation (45) is zero with non—zero values of A, Bx and Bz' With

equations (41) to (43) the borderline of the stable region is

given by:
231 .°a1, 1
/ 2 2] AXg,.+t2)g, . tg
PO . 2 Vi -1 2 R1 “"°R2 ER3
BBt AT Ve ) () s
= ® SRR €r18R3 SRo
(53)

Introduction of the non—dimensional total stiffness in x—

and z—=directions:

T f

1 tot x 1 tot 2z
£ w sk R 5 ~Sgses (54)
tot x fo tot 2 fo
with £, . _ given in equation (51) ana £ o4 5 the same

expression for the z—direction, gives for the stability criterion:

2 2
1.1 1 1 _ 2 1 - 1 2
T . = (1429) +%fl 7 )+ (1+27) |(55)

£
Itot b4 ftot Z tot x tot =z
In dimensional form, denoting ftot % by ftot nax if ftot >
ftot s and by ftot min e Rawt g0 & ftot , end vice versa, this
equation becomes:
2
; f .
B ftot min > 1+ ftot min _ (1+ 4£1) tot min
mR02a2 f+ot max L2 fo
& v R
S T Mze .
+ \/ (1 - O n.1n) + (l + 1) [¢] "111’1 (56)
Lot L2 £2
ot max R R

The value of a2 can be obtained from eguation (44); the term
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in square brackets must be equal to zero. With equations (41) to
(43) and (53) the result is:

(57)

In dimensional form this becomes:

f 2
4 _ _tot min
5 R

tot max

L§ : :Rx tot max L ‘ f2

2 2 2 '
VT P AT SN S TIor T S -
iy _tot min ; _ _tot min i tot _min
[(1+ ) +V(1 - Fobminy o )
R Rx

(58)
Equations (56) and (58) form the stability criterion for

unsymmetric suspensions. This criterion is given in the form of a

)
graph in figure 3. For high values of (1+_4{i) ftot min the
gimbal suspensions are stiff compared Lg fo

to the rotor suspension, which has equal stiffness for the x— and

z=~directions. Therefore the ratio of f . ang T will
tot min tot max

be near unity for this case. The dashed curve gives the limiting

value for infinite stiffness of the gimbal suspensions in one

direction.
In most practical cases the difference between f . and
tot min
f will be small and the simple stability criterion
tot max

2
mpfd < 4 Tyt min (59)

can be used.

Gimbal rotational instability _

The mass and the moments of inertia of the gimbals are small
compared to the mass and the moments of inertia of the rotor.
Therefore it can be expected that a realistic approximation of

the gimbal rotation instability camn be odtained from a model in




which the rotor is assumed to be fixed. The mass of the gimbals
is not important for this rotational mode and will be neglected,

as will be the smell spring constants T and T o

o1 &
Therefore a solution of the equations of motion is derived

for:

B—0o0 %P*O BB —0 BY —x®

BYe, BYB and e finite BA+0UL =0 7. =7 =0
Introduction of these approximationsin +the elements of

equation (38) leads, after some recasting, to the following

Tesults

£ 1+2?33a. 0 o 0 % 0 0

gél'*-fx —glln -(ﬂg%fgég) g%z 0 0o 0 0

A, 0 Dy, 1+—§13a 0 0 0 -g—

- /\fx-g%{2+g%2Ag§‘2+g§3+D32 -g§3 0 0 3 0 o | o i)

0 -2 0 0 £ 145 O 0

0 o 0 0 gkt -g%l -(Ag%ﬂarg%z) géz

0 o 0 --3- Af 0 D 1+—g-ja

0 ¢ 0 0 Afi-g%Q +g%2Ag%é+g§3HH6-g%3

Only for the symmetric case (fz=fx and D =D32) the solution

76

of this equation was calculated. In this case a=1 and equation

(60) can be written as:

2,82 8.2 . .8, o .0 2 }
dL21%5[13 G P T By v By Y ug eyp 3 | = O (61)

in whichs E = the determinant of the upper left 4x4 matrix in
equation (60),

Eij = the minor of the ijth element of B

= n 1 E. . E
eij,kl the common minor of H13 and K1
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Denoting the corresponding determinant of the same matrix
but omitting the imaginary part of the elements by the index R,

equation (61) can be written as:

2 — 2 - = oy — « T - g =
421%s5 [ER 2(e10, 3R PRy 2BR3 4 By 4 B0 3 mR(”Rlz+bR34)]‘ ¥
(62)

“I

Now ey, 3%~ FryPa3, P 4532 = €10,3,7x(P32%11,33™11,34) *

T = o ~\ -
°15 3/ m12™ 02,38 2 T Txf11,34 M R12, 31 %0320, 337002, 30

+ f (=Af e

x°11,32' " rx 11,34 - 32 °13 34) =

- - - or denoting the
03500, ,34°11,337%12,33%11, 34 ®13,34%1,32) O =
1 t by b h .t
elements o ER y i,

| ) o
D [(h21 4370030 1) (Bgpby o )= (ps by =0y By ) (g oh yhygh )

= by omhoph ) (hpsh - 24h43)] Sk

Therefore equation (62) can be written as:

4518655 [ER =9 eyp,3, 733 (ERl2+ER34)] = . (63)

The real and the imaginary part of the term between square
brackets cannot be equal .to zero simultaneously (this would
lead to contraditions) thus the boundary of the stable region is

given by one of the equations:

d21=o d65=0 OTLR=O
Ep = O can be written as a condition for D32 or D76’ Viz.
2 2
1 1 _1 1,2 1 1 1
B B Syt H) (e Bayepy WAL 8,08, (i, o, ey, )
" £ (e )o(2,41) (o vl el )
x R3 - 3 €r1"6R1%R3 ER2
4 &
rol_ 2z
- - (64)
L, f
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2

1 1 _ 1 : R
= £ gR3+(f +1)(eg; 8q3 st J+21f _go +A%F (gal &r1873 -e, )
76" 1 2 =
1 11 1
£,(1+eq3)+(£,71) (g, +ep, 8p3ep, )
41 £
rot X
.-t E (65)
LR fo
: o tities f r
It can be shown, that the quantities rot z and frot 5

which are defined in equations (64) and (65), are equal to the
total stiffness of the inner gimbal for rotations about the z~—
and x—axes respectively, for a fixed rotor position.

The stability conditions for rotations about the z—axis

follow from

4f
1 @3t —3

LR fRL

4
d2 Io% Z) =0 or

4 £
2. 1 rot =z
= S 15 0 1 S SR Yo ~=Yq_ =oA
[A £ Ly (ao—ui)][ 5 L(fa {a 2 )]

lﬂ Rx

Noting that with the used approximations M chi—vaR-aA)x

LR fo = Q2Y1 these stability conditions become in dimensional

form:

2.1 2

£6)
QK <Ly L (66)
2 1
“ Ki <4 frot Z (67)

For rotations about the x—axis, the boundary equation becomes:

4 frot x) -0
76 12 ¢ -
R "Rx

(@ or

d65

4 f
2 _ rot x _ ¥ 2 .1
[Ai fi}: Y (B, ~B;) [-———~—-2 . RO YR, =YBpmoN)+A] £, +

" LR Rx
Az :
- i ix =0

/\ £y —uv(g -g)




T.1

_.3 Yo

or in dimensional forms

2 . 1.2 2 elo2y 42
(L] FixTo@ )4 2y ¥ 15 £, -1507) 17 £, =0
leading to the stability condition:
2 2 b2 2 2 2
. T :
O2< Li f1x+_L flx ,2 rot X:;\[Ll fl« Li fix 2 frot ﬁ' 4 frothi e
' 1 11 S A S Ry M .
21 2 I, I, 21 2 1, I i ¥
o) i i o i i o) I
(68)

The complete set of approximate stability conditions is given
by the equations (59) and (66) to (68). Equations (66) to (68) can
be important if the gimbals have high moments of inertia and/or a

low rotational stiffness.

STABLE REGICON FOR SOME TYPICAL CONFIQURATIONS

Choice of configurations

In chapter 6 an approximate stable region is determined,
which is valid for all possible configurations. Due to the large
number of parameters, a general check on the accuracy of the
approximations is hardly possible. Therefore this check is only
performed for some typical configurations,

The chosen configuratvions are sketched in figure 4. In
configuration I the ginbals are around the rotor and the
suspension centres coincide. In configuration II, the gimbals
are placed inside the rotory the suspension centres coincide.,

In configuration ITI, the gimbals are also placed inside the
rotor; the suspension centre of the rolor does not coincide with
the suspension centres of the gimbals.,

For configurations IT and IIT, two cases are considered,
viz. the case in which the rotor centre of mass coincides with
the suspension centre of the gimbals (configurations IIa and IITa)
and the case where some distance in y—direction between these

two centres exists (configurations IIb and IIIb). For all
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configurations the centre of mass of rotor + inner gimbal
coincides with the suspension centres of the gimbals.

Assumed is, that the suspension of innex and outer gimbal
is identical i.e.

£f. =1 f = P,
iz ox oy ix

With these'assumptions also the following identities are obtained:

t, = fx Ytot z © ftot x frot z frot x

The non—dimensional parameters for the chosen configurations

are given in table 6.

Stable region

The approximate stable region is given by the equations (59)
and (66) to (68). For the chosen configurations, the conditions
given by equations (66) and (67) are always fulfilled if the
condition given by equation (68) is fulfilled. Therefore the
approximate stable region is given by the equations (59) and
(68); for the chosen configurations this region is given in
figures 5 and 6.

From figure 5 it can be concluded, that for configuration I
both stability criteria are important, but that the parameter
ftot/fix has hardly any influence on the stable region. For
configurations ITI and III the stable region is given by equation
(59). It can be noted that for configurations I and II the

parameter LE ftot/4 frot will be smaller than 1, for configuration

IIT this parameter will be smaller than 0,01l as can be inferred
from the equations (51) and (64).

In figures 7 to 9 the approximate stable region is again
given, using a different parameter viz. ftot/fo?x' This para-—
meter ranges from O to 1 for all configurationss it is zero for
infinite stiffness of the gimbal suspensions and one for infinite
stiffness of the rotor suspension, In figures 7 to 9 points are
given for a number of numerical solutions of the exact equation

(38); these solutions were obtained using a digital computer.
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The differences between the exact and the approximate
boundary of the stable region are not large — maximum about 20
percent. Equation (68) seems to be somewhat conservative (Fig. 7),
equation (59) somewhat unconservative.

For configuration I (Flv. 7) all exact solutions are located
neafly on one linej the differences due *to differences in

U e 113 the X 1 "
ftot/fo’ f.x/f. and 7 are very small. The rather low value of

mRoz/ft Y tot/f f = 1 can be explained as follows: For

tot/f f = 1 the stlffness of the rotor suspension is infinite,
thprefore the rotor and the inner gimbal must be regarded as one
mass. As for configuration I the ratio m. /nR = 0.2 a reduction
of about 20 parcent in the parameter mp Q /f ot Can be. expected.

Figure 8 shows that the differences between configurations

ITa and IIb are very small and also that the parameter fix/fiz
has hardly any influence on the boundary of the stable region.
The rather low value of mR£22/f at f /I_ = 1 can be

explained as before = in this c::z mi/mR : O,l. For configuration
II a remarkable difference between exact and approximate solutiors
exists for low values of ftot/fo?x and low values of ftot/fo‘
In this case the stiffness is largelydetermined by the stiffness
of the rotor shaft, which is highly unsymmetric. Coupling between
translations and rotations will occur, which leads to a reduction
in the stability parameter.

Configuration III (Fig. 9) gives the same picture as
configurations II except at low values of ft t/fR f . The
reduction in the stability parameter is not present in this case,
due to the relatively much higher rotational stiffness. However,
this does not imply that configuration III is better than
configuration II. For the same springs and bearings i,e. the
same value of le’ fiz and fo the value of ftot will be less
for configuration I1I, due to the large value of A;:mg/'LR (see

equation (51)).
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CONCLUSIONS

For the stability of the high freguency motions of a double

gimballed momentum wheel, the following conclusions can be drawn:

1 The motions along and about the rotor axis will always be
stable as no mechanism exists to increase the energy of the

motion.

Iro

For the motions along and about the other axes, there exists
a mechanism to increage the energy of the motion in the rotor
suspension if this suspension is such that the force in
x—~direction depends on the displacement in z-—direction and

vice Versa (ﬁﬁxé £ 0).

A useful stability criterion is &8 > fhxz/nRx' that means.

that all natural frequencies of the system must be higher z
than the ratio of the transverse stiffness foz and the

damping coefficient nRxf This stability criterion is exact

for symmetric suspensions, but somewhat conservative for un-

symmetric suspensions.

I~

For ball bearings (fozﬂ'o) no instability will occur; for
hydrodynamic bearings (foz/nRx ~0/2) the stability criterion
becomes ® >-£2/2, that means that all natural frequencies of

the system must be higher than half the rotor frequency.

5 The stability criterion ® > Q/2 leads to a criterion for the
stiffness of the system viz.: ftot >vQR£22/4 in which me is
the rotor mass andAftot the total static force on the rotor
divided by the displacement of the rotor caused by this force.
This criterion is somewhat unconservative; for some cases it
will be better to use the total mass of rotor and inner gimbal

instead of the mass of the rotor.

fon

With some configurations rotational instability can occur,
especially if the gimbals have high moments of inertia and/or
a low rotaticnal stiffness. The criteria for the rotational
stiffness are given in the equations (66) (67) and (68) on

pages 30 and 31.
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Table 6: Non—dimensional parameters for the chosen

Tab. 6

configurations

Configuration T Ila ITb IIIa ITIb
8o/ €y 0 <15 | <1 | AL | R
gR3/ghl 1 345 3.5 3:5 35
Y 10 50 50 50 50

A 0 0 0 5 g

o 0 0 -0.1 -5 ~5.1
BB 0.2 0.1 0.1 0.1 0.1
A=A 4 2 2 2 2

ap=Bp 0.51 | 0.52 0.52 1.02 1.04
o 0.71 | 0.53 0.53 0.53 0.53
Bs 0.53 | 0.53 0.53 0.53 0,53
o 0.91 | 0.54 0.54 0.54 0.54
B, 0.73 | 0.54 0.54 0.54 0.54
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Figure 2

Fig.2 STRUCTURAL DISPLACEMENTS DUE TO ROTOR SHAFT

BENDING.
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