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SUMMARY

The flow about and on the surface of an aerofoil
section in a finite stream and that about and on the surface
of the same aerofoil section in an infinite symmetrical cas-
cade are compared. It is shown that, for most cases of practi-
cal interest, the differences are small for stream deflection
angles up to 90 degrees, Thus, the approximate flow about an
arbitrary aerofoil section in a two-dimensional finite stream
may be obtained by using the methods existing for the deter-
mination of the flow about an arbitrary section in a cascade,
The procedure, as applied to the finite stream approximation,
is given using the interference method of cascade theory.
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APPROXIMATE METHOD FOR DETERMINING THE POTENTIAL
FLOW ABOUT AN ARBITRARY AEROFOIL SECTION IN A
TWO-DIMENSIONAL FINITE STREAM WITH PARTICULAR

REFERENCE TO LARGE STREAM DEFLECTIONS

1.0 INTRODUCTION

Methods of determining the plane flow of an in-
compressible, irrotational fluid about an arbitrary body are
well known for the case of the plane flow extending to infinity
in all directions (see for example, Ref. 1). The boundary con-
ditions that must be satisfied by the potential function for
this case are that the velocity at the boundary of the body is
tangential to the surface, and the velocity at infinity (in any
direction) is equal in both magnitude and direction. A more
complicated problem arises if the flow is finite in extent,
bounded by free streamlines., The boundary condition of equal
magnitude and direction of the velocity at infinity is re-
placed by the condition that the pressure and hence the velocity
is constant along the free boundaries. The boundary condition
determines the position of the free boundaries which are not
known a priori.

Helmholtz, Kirchoff and others developed general
methods based on conformal mapping for dealing with plane flows
with free surfaces. The methods are not readily adaptable for
determining the flow of a plane finite stream about arbitrary
bodies with circulation. Prandtl, Sasaki and Woods (Ref. 2, 3
and L4) treated the effects of a finite stream on the aerodynamic
characteristics of aerofoil sections for cases where the de-
flection of the stream was small, The flow of a finite stream
past a point vortex without any restriction on the deflection
angle was determined by Simmons (Ref. 5).

In the following paragraphs, the flow on the surface
of an aerofoil section in a finite stream and that on the same
aerofoil section in an infinite cascade are compared for the
purpose of showing that, in most practical instances, the
differences are small, Since methods for the determination of
the flow about arbitrary aerofoil sections in a cascade exist,
it is possible to determine the approximate flow about an
arbitrary aerofoil section in a finite stream by using these
procedures, The procedure is applicable to highly cambered
sections giving large stream deflections.
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2.0 COMPARISON OF FLOW THROUGH A CASCADE OF AEROFOIL
SECTIONS AND THE FLOW OF A FINITE STREAM ABOUT AN
AEROFOQIL SECTION

2.1 Cascade Flow

The superposition of an infinite uniform stream and
an infinite column of vortices and doublets, with the centres
of the vortices and doublets coincident at points of singu-
larities spaced a distance h apart along an axis perpendicular
to the direction of the uniform stream, represents the flow
through an infinite column of closed oval-shaped bodies
surrounding the points of singularity. A suitable trans-
formation transforms the oval-shaped bodies into aerofoil
sections and the flow through an infinite cascade* of two-
dimensional aerofoil sections is obtained. An example for a
particular case is shown in Figure 1. The details of the
method by which this particular cascade was obtained are given
in Appendix A,

The circulation about each of the aerofoil sections
in the cascade is given as a function of the cascade spacing,
h, and the flow deflection angle ©, by

[ =2h g sin e/2 (1)

The resultant aerodynamic force on each aerofoil acts in a
direction normal to the vector mean of the velocities far in
front of and far behind the cascade (that is, in the cascade
direction) and is given by

Re

ol q cos e/2 (2)

2pd q° sin 6/2 (3)

=)
1

or

- T

" The cascade in this analysis 1is one in which the flow at
infinity downstream of the cascade is a mirror image of the
flow at infinity upstream of the cascade with respect to the
cascade direction,
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where d = h cos /2 (4)

is the distance measured normal to q_» separating two stream-—

lines that are spaced a distance h apart in the direction of
the cascade,

2.2 Finite Stream Flow

The analysis of the details of the flow around an
aerofoil section in which the flow is finite in extent is
complicated by the fact that the position of the free boundaries
along which the pressure and velocity must be constant are not
known a priori. The conditions at infinity in the finite stream
can, however, be determined from momentum considerations with-
out a detailed knowledge of the flow in the vicinity of the aero-
foil section., The resultant aerodynamic force on an aerofoil
section in a finite stream of height d, magnitude of velocity
at inf%nity of q_s and stream deflection of © is then, (see
Fig. 2

Re = 2pd q- sin 6/2 (5)

This force acts normal to the vector mean of the velocities
far in front of and far behind the aerofoil as in the case of
the cascade and its magnitude is the same as that for an aero-
foil section in a cascade for the same stream deflection and
for the distance d in the cascade (see Fig. 1) equal to the
height of the finite stream,

If one of the aerofoil sections, for example the
section GH in Figure 1, is considered as isolated from the
cascade, the resultant aerodynamic force on the section is
then equal in both magnitude and direction to that of an aero-
foil section in a finite stream of height 4 and stream de-
flection of 6., Unfortunately, there are no streamlines in the
cascade such as AEC or BFD (Fig. 1) along which the velocity
and hence the pressure is constant. If the aerofoil section
is located somewhat centrally with respect to the streamlines
through E and F, however, the variation in velocity along the
streamlines is not large, even when the stream deflection is
large, The velocity distribution, expressed as a fraction of
q_, along such streamlines is given in Figure 4 for three ex-

ample profiles designed to give large stream deflections in a
cascade,
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Small local distortions of the streamlines AEC and
BFD have a powerful effect on the velocity along the stream—
lines. It would be expected, however, that these distortions
would have a smaller effect on the velocity at the aerofoil
gsurface, If the magnitude of the effect on the velocity at the
serofoil surface is small, the cascade solution represents a
good approximation to the flow in a finite stream. It has been
demonstrated for a particular case, with a large stream deflec-
tion, that the effect of these distortions of the streamlines
AEC and BFD on the flow at the aerofoil surface is negligible,
The effect was determined using a numerical procedure, the de-
tails of which are given in Appendix B.

The streamline distortion required to make the
velocity constant along the bounding streamlines for the par-
ticular case is shown in Figure 3. The streamlines for the
aerofoil section in an infinite cascade are shown by the
broken lines, The particular cascade and aerofoil section
(the same as that shown in Figure 1) was designed to give a
flow deflection of 70 degrees. The solid lines represent the
position of the streamlines that is required to make the
velocity along the bounding streamlines constant to within
the accuracy of the numerical procedure used (about one per-
cent of the velocity at infinity). To this order of accuracy
it was not possible to detect any change in the velocity on
the aerofoil surface, The change in circulation was determined
by finding the difference in arc lengths of the bounding dis-
torted streamlines and the bounding streanmlines in the cascade
solution, The change in circulation determined in this manner
was less than one half of one percent of the circulation
around one section in the cascade,

The streamlines AEC and BFD that were chosen in the
cascade solution to represent the bounding streamlines in the
finite stream were those that passed through the points on
the cascade axis E and F (Fig. 1) at which the velocity was
equal in magnitude to the velocity at infinity. This choice
for the bounding streamlines was made sO that the leading edge
of the aerofoil section was located centrally with respect to
the incoming finite stream, Other cascade streamlines could
have been chosen such that the leading edge of the aerofoil
would be located in different positions relative to the in-
coming streamlines. The variation of the magnitude of the
velocity along these streamlines would generally be larger
than along the particular ones choséen above and the cascade
approximation to the finite stream flow would not be as good,

T1

T8 1 1
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The length of the mean camber line of the aerofoil
section in the above example was approximately egqual to the
distance d between the two parallel streamlines AEC and BDF,
If the aerofoil section were larger relative to this distance
(corresponding to an increase in the solidity of the cascade),
the change in velocity along the streamlines AEC and BFD would
lncrease and the finite stream flow would differ from the cas-—
cade flow more than for the example chosen.

The variation of the velocity along the streamlines
AEC and BFD for two sections designed to give flow deflections
of 90 degrees in cascade were compared with the velocity dis=-
tribution along the streamlines AEC and BFD in the above
example (70 degrees flow deflection) in Figure L., The dif-
ferences are not large so that one would expect the cascade
solution would give a good approximation for flow deflection
angles up to at least 90 degrees, if the aerofoil size were not
too large relative to the finite stream height and if the
aerofoil section were located somewhat centrally in the finite
stream.

3.0 APPROXIMATE COMPUTATION OF FINITE STREAM FLOW ABOUT
AN ARBITRARY AERQFOIL SECTION

It was demonstrated in Section 2 that, if the
leading edge of the aerofoil section in a finite stream is
located fairly centrally with respect to. the incoming stream,
and if the length of the mean camber line of the section is
of the same order as the height of the incoming stream, the
flow on the aerofoil surface in a finite stream is closely
approximated by the flow on the surface of the same aerofoil
section in a cascade. Under these restrictions, therefore,
it is possible to use cascade theory to approximate the flow
about an arbitrary aerofoil section in a finite stream.

A number of procedures are available for computing
the flow about an arbitrary aerofoil section in a cascade,
The choice of method depends primarily on the computing
facilities available, For the purposes of illustrating the
procedure as applied to the finite stream approximation, the
interference method, described in Reference 6, was chosen,
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3.1 Interference Method for Determining the Flow about an
Arbitrary Aerofoil Section in a Cascade (Ref, 6)

A brief resume of the procedure for determining the
flow about an arbitrary aerofoil in a cascade using the inter-
ference method is given in this section so that the computation
method for the finite stream approximation can be outlined. An
iteration procedure is required.

(i) The aerofoil section used in the cascade is treated
as an isolated aerofoil in an infinite stream (the
infinite stream flow is the vector mean of the flow
far in front of and far behind the cascade) and the
potential flow function, W _, is obtained., Since

the aerofoil section is taken as the zero stream-
line in this flow, W _= & .

(ii) The disturbance potential, along the aerofoil
boundary, Wy = &4 + 1 ¥, caused by the presence

of the external aerofoils in the cascade, is de-
termined, For this calculation the flow about
each of the external aerofoils is taken to be that
computed in (i) above in the first step of the
iteration,

(iii) A compensating flow function (which may only have
singularities within the central aerofoil),
W, = o, + iV, is computed in order to maintain

the aerofoil section a streamline in the presence
of the disturbance flow, It is determined by the
condition that on the boundary its stream function,
Tc, must be equal and opposite to the disturbance

stream function Wd.

(iv) A circulation potential, W,, is computed in order
that the Kutta-Joukowski condition is still satis-
fied at the trailing edge of the aerofoil.

(v) The sum, Wq + W, + VWp, represents the net change

of the flow potential due to the presence of the
external aerofoils, and is designated W,, the

additional flow function. The additional flow

TT
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function, W,y is added to the original flow
function, W_, of the aerofoil section isolated

in an infinite stream, This new flow function
is called W, and replaces W_ in part (ii) of

the computation procedure for the second step
of the iteration. The procedure 1s repeated
until two successive values of WT agree to the

desired accuracy.

3.2 Application to the Finite Stream Approximation

In the finite stream, the orientation, B, and length
of the reference chord of the aerofoil section, l4a, is given
relative to the incoming stream (see Fig. 2). The flow de-
flection produced by the aerofoil section is not known in
advance, however, and so the direction of the infinite stream
flow is not known for the determination of the flow function,
W _, described above (Section 3.1). The function, W_, depends

on, first the geometric mapping function that transforms the
aerofoil into a circle, and secondly on the incidence of the
reference chord of the aerofoil to the free stream direction,
Fortunately, the geometric mapping function is independent of
the reference chord incidence, A numerical solution (the
numerical solution of an integral equation by iteration, see
for example, References 1 and 7), is required to determine the
geometric mapping function, The velocity on the aerofoil sur-
face and hence wm can easily be determined by the following

relation for any incidence once the geometric mapping function
is obtained (see Equation XII of Reference 1).

"E‘| = I[Ein (v + ¢) + sin (v + gT)] . F(¢)| (6)

where Y is the incidence of the reference chord to the direc-
tion of the free stream of velocity U, ¢ is the polar angle of
the circle obtained by the geometric mapping, Eq and the func-

tion F(¢) are determined from the mapping function and are in-
dependent of Y, Similarly the 1ift coefficient of the isolated
aerofoil in the infinite stream of velocity U is given as a
function of the incidence by (see equation VII of Reference 1),
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sin (v + BT) (7)

where wo is a constant determined by the mapping function and
is independent of ¥.

If the resultant aerodynamic force coefficient acting
on an aerofoil section in a cascade is defined as

RC
Cp = : (8)
¢ p/2 U° « La

where U = q, cos e/2, the vector mean of the velocity far in

front of and far behind the cascade, and use is made of
equation (3) and the fact that g = 6/2 + ¥, then Cp can be
written as c

_ 8\ sin (B - Y)
GRc h(ha) cos> (B -¥) “

since d, 4a and B are given, Cp 1is obtained as a function of
Yo c

The value of Gy given by equation (7) represents

oo
the value of CR in the cascade only if the cascade spacing
c
is sufficiently large that the interference of the other aero-
foils in the cascade is negligible. If a quantity, acl, is de~-

fined, that represents the reduction in force coefficient on
the aerofoil section due to the interference of the other aero-
foil sections in the cascade, then

i (10)

T7
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The quantity acl cannot be determined in advance so that an

iteration procedure is required, Fortunately, the iteration
converges rapidly and it is usually only necessary to repeat
the process once to give good accuracy.

If the orientation of the reference chord to the in-
coming finite stream, B, the length of the reference chord, La,
and the height of the incoming finite stream, d, are given,
the procedure to determine the approximate performance of an
arbitrary aerofoil section in a finite stream is therefore as
follows:

(1) Determine the geometric mapping function that
transforms the aerofoil section into a circle
by using the procedure given in Reference 1.

(ii) Assume ACy = 0 and determine the value of ¥y

which makes Cy given by equation (7) and Cp |
o] [+ |
given by equation (9) equal,

(iii) Compute the velocity distribution on the surface
of the aerofoil using equation (6) where F(¢) is
obtained from the geometric mapping function ob-
tained above (see equation XII of Reference 1)e

(iv) From the velocity distribution obtained in (iii)
the value of Wm is obtained and the procedure

outlined in Section 3.1 and Reference 6 is
followed to determine the interference effects !
of the other aerofoils in the cascade. From

this result the first value of ﬁCl can be obtained

and a new value of Yy can be determined by using
equations (7), (9) and (10). |

(v) Repeat steps (iii) and (iv) to determine the
second value of acl. This procedure is repeated

until two successive values of acl agree to with-

in the desired accuracy., Usually, the first value
of aCl obtained by this procedure gives good

accuracy.
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A sample calculation is given in Appendix C to
{llustrate in detail the procedure and the rapidity of the
convergence of the iteration.

4.0 CONCLUSION

A procedure has been outlined for the approximate
calculation of the flow about arbitrary aerofoil sections in
two-dimensional finite streams, For most practical applica-
tions the method should give adequate accuracy for stream
deflections up to 90 degrees.
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APPENDIX A

ANALYSIS USED TO DETERMINE THE SAMPLE
AEROFOIL SECTIONS (FIG. 1 AND L)

The superposition of an infinite uniform stream and
an infinite column of vortices and doublets, with the centres
of the vortices and doublets coincident at points of singu-
larities spaced a distance h apart along an axis perpendicular
to the direction of the uniform stream, represents the flow
through an infinite column of closed oval-shaped bodies
surrounding the points of singularities. A suitable transfor-
mation transforms the oval-shaped bodies into aerofoil sec-
tions and the flow through an infinite cascade of aerofoil
sections is obtained. In particular, if the uniform stream
is directed along the positive real axis and the vortices
and doublets are arranged along the imaginary axis, a special
type of cascade termed a symmetrical cascade is obtained,

This cascade is one in which the flow at infinity downstream
of the cascade is a mirror image of the flow at infinity up-
stream of the cascade,

A.1 Complex Potential Function

The complex potential for an infinite row of equal
strength vortices located at (0, +ih, +2ih, ....) along the
imaginary axis is (Ref. 7)

Xy = %% [1n %' + 1n (Z* = ih) + 1n (Z' + ih) + ....]
1
= %% 1n sinh %% (A=1)

The complex potential for an infinite row of equal
strength doublets with the same centres as the vortices is
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XD = Uuz 3 + L + . + eesee
A ' - ih Z' + ih

1
= Uu2 B 1n sinh .4 (A-2)
gLt h
unp® Aoy
= —=—_. coth —=—
h h

The desired complex potential for the superposition of a uni-
form stream and an infinite column of vortices and doublets is,

therefore,
iy AN !
X = Xy + Xy + Xp = ug' + U coth 1l 1n sinh ==~ (A-3)
h h | 2x h
2 i
or x=-’i-=z;+1£—cothanz;+-c£1nsinhw, (A-L)
hu P
2 2
2 T r
where 2 =¢'"/h=E + in, k™ = y Cn = — (A=-5)
2’ T onu

The stream function and the velocity potential function are:

v O
¥ _y¢y=1+ —1n (cosh 2x § — cos 27n)

hU 27
2
k sin 27 (A-6)

— —

n cosh 2% £ - cos 27

17T

TIiirre:
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K2 inh 2%
and ¢ = = B4 si T
hU ® cosh 2% § — cos 27
Cp . -1
- — tan~ ' (coth =& tan mn) (A-7)
T

A.,2 Veloecity in the Z Plane

The velocity components 7 = 7'/U in the £ direction
and v = v'/U in the n direction, in the £ plane are:

- 2k? (cosh 27E cos 2 n — 1) Cp Bl =my 8
= 1 = 5 + (A=8)
(cosh 2% & - cos 27n) cosh 21 £ - cos 27
, _ _ _2K° sinh 27 sin 2m Gp Aol A% s
(cosh 2% £ - cos 2wn)2 cosh 2n § = cos 27y
For E 2 =, T 1 and vy -~ GP
and E >4+ o0, T—=>1 and v = - Cp '
so that the total deflection of the stream in going from
- o to o is
6 =2 tan~1 Cp (A=-10)
and the magnitude of the velocity at infinity is
gl 3 e [ L% Bt (A-11)

cos ©/2
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A-3 Stagnation Points and Stagnation Streamlines

Stagnation points in the Z plane (ES s Mg ) occur
0 0
when both T and v are zero and are found from equations (A-8)
and (A-9) to be
flg = = = tan " Op = = (A-12)

2
Eg = ¢ L cosh"1-l—i—g5—-= 3 i cosh.-1 (1 + 2k2) cos ©/2] (A-13)

0 27 9 4 CPZ 27

The equation for the stagnation streamlines is

2R ¥, = -6/2 + [1 + 1n 2k2 cos 6/2] tan 6/2

I

2mng + tan e/2 1n (cosh 21y = cos 2mns)

2k® sin 27 g
. (A-1L)
cosh 27Eg5 - cOS 270 g

where ES and ng are points describing the stagnation stream-

line., Equation (A-14) defines the closed streamlines surround-
ing the singularities at £ =0, n =0, + 1, £ 2 .... that pass
through the stagnation points &5 , mg . Equation (A-1L) can

0 0

only be solved explicitly for ES or mg for the case of ng = 0
where ES is given by

TT
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1 - 27 ¥ cot e/2
Eg = + — cosh 1+ e (A-15)

Equations (A-12), (A-13) and (A-15) give four points on the
closed curve defined by equation (A-14) and other values must
be obtained by a graphical or numerical procedure. For the
purposes of numerical evaluation of the points £, n defining
any particular streamline, it is convenient to write equation
(A-14) in the form:

2k® sin 27

+ - -16
i 2x (¥ - n) (A-16)

L tan /2 =

where e’ = cosh 27E - cos 27 (A-17)

A.4 Transformation Equations

It is convenient, for calculation purposes, to per-
form the following successive transformations, similar in each
step to those used in transforming a single circle into a
Joukowski type aerofoil section

2 = g el (A-18)

Z" = Z" 4+ m + in (A-19)

where n= - (ns cos o + ES sin a) (A-20)
0 0
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1

2
2 1
z' = 2" + b (E cos & - 1M sin a + m) —_—
S0 So 2z - 1eT®

1
+ —'—'—'—I;‘Ia' + cco.]

v +
2 -ic 2 -ic
= Z" + b~ we & cos o = 7 sin o + m coth n2" e
So So
(A-21)
and finally 7 = gt aT1% (A-22)

The significance of the transformation equations (A-18)
to (A-22) is illustrated in Figure 1. The oval-shaped bodies
in the Z plane are distributed along the imaginary n axis.
Equation (A-18) represents a rotation through the angle a where
a is analogous to aerofoil incidence in the infinite stream
case. The quantity n in equation (A-19), defined in equation
(A-20), ensures that the trailing edges of the aerofoil sections
correspond to the stagnation points ES s Mg in the £ plane and

0 0

hence sets the camber of the sections to give the desired flow
deflection as a function of a, The magnitude of m in equation
(A-19) defines the thickness of the sections. The transforma-
tion given by equation (A-21) transforms the oval-shaped bodies
into streamlined aerofoil sections and is analogous to the

2
infinite stream transformation Z' = 2" + E;m

Z

A.5 Velocity in the Cascade Plane

The non-dimensional velocity components in the cas-
cade or Z plane, u = u'/U, v = v'/U are given by

u =R -l—i-)—{- ° Sinh2 We—ia o Z"
az sinh°me 1 %z" - %2b2e-2ia(58 cosax - ng sina + m)2
0 0

(A-23)

T I T T T T T 71
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. sinh® xe”i% . gz
az sinh°ne 1% - xabze-zia(g cosa - 1, Sina + m)2
S S
0 0
(A-2L)
X+ + oo u—
and as
X = oo v v

so that the velocities at infinity in the two planes are the
same in both magnitude and direction,

A.6 Example Profiles

Three sample profiles were determined using the
above procedures, The values of the arbitrary constants were

teken as m = -0,01200, b = 0.98000 and k2 = 0.39478. The

values of the flow deflection angle 6 and of the angle o for
the three profiles were:

(i) e = 70° o = 10°
(ii1) e = 90° & = §0° (A-26)
(iii) e = 90° a = 0°

The profiles and the pressure distributions plotted
normal to a chord line parallel to the vector mean of the
velocity far in front of and far behind the cascade are given
in Figures 5, 6, and 7, The pressure coefficient in these
plots is defined as:

2 2)

| |
Cp=1-(u?+v%) cos 02118247 (A-27)
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The streamlines AEC and BFD (see Fig. 1) that were
chosen arbitrarily to represent the bounding streamlines for
the finite stream approximation are such that the velocity at
the points E and F is equal to q_e The velocity distributions

along the streamlines AEC or BFD for the three sample pro-
files are shown in Figure L.

T




Page - B-1
LR-260

APPENDIX B

NUMERICAL ANALYSIS TO DETERMINE THE REQUIRED
STREAMLINE DISTORTION TO GIVE CONSTANT VELOCITY
ALONG THE BOUNDING STREAMLINES

The sample profile chosen is that shown in Figure 3
(profile (i) in Appendix A), designed to give a flow deflec-
tion of 70 degrees when in a symmetrical cascade, The relaxa-
tion method was used in making the numerical computations.
The initial grid spacing was taken to be 1/10 of the finite
stream height at infinity, d. The value of the stream function
was computed at each nodal point in the grid to an accuracy of
1/5 of one percent of the change in the stream function wvalue
from the lower to the upper bounding streamline (WL = 0 and
vy = 1000 in Figure 3). The bounding streamlines were dis-
torted such that the distance between the modified streamlines
and the original ¥ = 100 and ¥ = 900 streamlines was 1/10
everywhere and the new position of the ¥ = 100 and ¥ = 900
streamlines was determined. The above procedure was repeated
and it was found that the new positions of the ¥ = 100 and
¥ = 900 streamlines had not changed appreciably from the
previous positions. The grid spacing was reduced to d/L0 and
final small modifications to the bounding streamlines were
made to ensure the velocity was constant to within one percent

along them,

The modified streamlines are compared with those
given by the cascade solution in Figure 3, The streamline
distortion in the vicinity of the aerofoil was not detectable
within the accuracy of the numerical solution, Since, in the
cascade, the streamlines AEC and BFD are parallel and the
velocity distribution along them is the same, the contribution
of the integral of the velocity along these streamlines to the
circulation about each aerofoil section is zero and the circu-
lation is simply:

I = 2d q_ tan 6/2 (B-1)
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In the case of the finite stream, since the bounding stream-
lines are distorted, they are no longer necessarily equal in
length, The change in circulation in this case can be measured,
then, by determining the difference in arc length of the upper
and lower bounding streamlines, say, As, and the change in cir-
culation is:

AT = q_ As (B-2)

T %; is large, the flow deflection angle © must be changed.

In the above example, AT' determined in this manner was less
than 1/2 percent of the value of I' in the cascade, so that the
change in © would be less than 0.3 degree.
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APPENDIX C

SAMPLE CALCULATION OF APPROXIMATE FLOW ABOUT AN
ARBITRARY AEROFOIL IN A FINITE STREAM

For the purposes of the sample calculation, the
aerofoil section (i) of Appendix A was considered as the
arbitrary aerofoil, The reference chord of this aerofoil was
taken as La, its orientation to the incoming stream, B was
46,85 degrees and the ratio of the reference chord length La
to the slipstream height was 0,72356, The particular ref-
erence chord chosen was arbitrary, Its choice does, however,
influence the length of the calculations required to obtain
the geometric transformation of the aerofoil into a circle,
It is shown in Figure 2, along with the orientation of the
aerofoll section to the incoming stream,

L
Ce1 Geometric Transformation of Aerofoil into a Circle

The Theodorsen method (Ref. 1) for obtaining the
potential flow about aerofoil sections of arbitrary shape was
used, Points on the aerofoil surface are defined by

Z=x+ 1y (c-1)

The aerofoil contour is then transformed into a near cycle in
the Z' plane where Z and Z' are related by

2
Z=2' 4+ & (c-2)
71

The near circle in the Z' plane is given by

* The notation in this Appendix corresponds to that used in

Reference 1, In particular, O, 4, and Z' are different from
those defined in the list of symbols and in the main text of
this report,



Page ~ C-2
LR-260

Y o g g ¥ LR (c-3)

Using (C-2) and (C-3), ¥ and @ are determined from

2 sinh2 ¥ = =D + J p2 + (.V/a)z (C=4)

2 sin® O = P + er2 + (;Y/a)2 (c-5)

where 1 £ s ? 6
(8 - @ s

The near circle in the Z' plane is then transformed into a
circle

Z = ae (C—?)

in the Z plane using the general transformation

e%(An + iB ) * 1720

7' = 2 (Cc-8)

V=¥, + i(e - ¢)
or z' = Z e - (c-9)

Equating equations (C-8) and (C-9), ¥ - ¥  and © - ¢ are found

to be given by:

o

B
¥ =Yy = j{i [ g% cos ng + ;% sin n¢ ] (c-10)
n

—
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B A
e - ¢ = Eﬂ [ —% cos n¢p - -% sin n¢ (c-11)
| r 144
n
A 27
n 1
where ;ﬁ = = j. Y cos n¢ d¢ (c-12)
(o}
B 27
oo l./ ¥ sin ng d¢ (c-13)
RIS
o
2%
v, = %‘[ vag (C-11)
0

Eliminating the coefficients An/rn and Bn/rn from (C-11) by

using (C-13) and C-14), the expression for & = - (6 = ¢) can
be written as

27

“' 1 ¢ - ¢c
e(¢,) = - ﬁf ¥ cot (—2—~> a¢ (c-15)
o
Since ¥ is given as a function of 6 = - & + ¢, it is necessary

to use an iteration procedure to determine £ and ¢0 by first
assuming £ as zero, computing 8(1) and then determing ¥ as a
function of ¢(1 = 0 + 8(1). A second approximation to & = &

(2)
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is then obtained from equation (C-15). The procedure is re-
peated until two successive values of & agree to within the re-
quired accuracy, A procedure for the numerical evaluation of
the & function (equation C-15) using harmonic analysis is given
in Reference 8, The gquantities e and V¥ define the point to

point transformation of the aerofoil in the Z plane to the circle
¥+ i¢

ae?® in the Z plane,

The calculations for this sample aerofoil were made
with an electronic digital computer. An eighty point formula
(see Ref., 8) was used in the determination of £ and six
iteration steps were required to determine the value of & to
an accuracy of 0,01 radian at the value of ¢ corresponding to
the trailing edge of the aerofoil. The final computed curves
of ¥ and & as functions of © are shown in Figure &,

C.2 Lift Coefficient of the Isolated Aerofoil and
Velocity on the Aerofoil Surface

The 1ift coefficient of the isolated aerofoil section
in an infinite stream is (from equation VII of Reference 1):

1 (o}

C = =
1o p/2 U° (La)

2x e © sin (¥ + eq) (C-16)

where ¥ is the incidence of the reference chord to the free
stream direction and € is the value of & at the trailing edge

of the aerofoil,

The velocity on the surface of the aerofoil is

|%| = | [sin (¥ + ¢) + sin (y + BT)] « F(0) ‘ (0_17)
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Vo
where F(e) = (1 _+ de/d0) e (c-18)

J(sinh2 v + sin® ©) [1 + (ay/ae)?]

Since F(©) and &q are independent of the incidence, ¥, they

can be computed as functions of © or ¢ and it is then a simple
computation to obtain the corresponding values of v/U for any
Yo

Ce3 Determination of Approximate Flow about the
Aerofoil Section in Cascade

The resultant force coefficient on an aerofoil
section in a finite stream, or in an infinite cascade, from
the change of momentum in the stream far in front of and
far behind the section is

- - Re sin 6/2 »
Up ® Cg, = T oeZ 672 - L‘(h_) cos 0/2 (0-13)

p/2 q_ cos cos

and, since for a symmetrical cascade, (see Fig. 1 and 2)

0/2 =B - ¥ (Cc-20)
sin (B - ) oy
u<E—) cos® -v) (G=24)

The interference of the other aerofoil sections in a cascade
on a particular section reduces the 1lift on this particular
section from the 1ift it would give if it were isolated in
an infinite stream with the flow velocity of the infinite
stream equal to the vector mean of the velocity far in front
of and far behind the cascade, If this reduction in 1ift is
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given by AC,, the force coefficients given in equations (C-16)
and (C-21) are related by:

Cp =0 — ACy (c=-22)

A number of procedures are available for the de-
termination of the value of ﬂCl. The method used in this

analysis is known as "the interference method" and is des-
cribed fully in Reference 6, In order to use the methods for
determing &Gl directly it is necessary to be given the value

of ¥, or 6/2 from which y can be determined. In the present
application, neither ¥ or 6/2 are given but only the value
of B. An iteration procedure is thus required. The pro-
cedure used was:

(i) Assume AC, = O, and determine Y(1) by equating
e?uations (C-16) and (C-21). For this case
) 1) = 10,7 degrees,

(ii) Compute the velocity distribution on the iso-
lated serofoil section using equation (C-17),

taking ¥ = Y(1).

(1iii) The cascade spacing, h(1), is then given by

(1) d d
h = = (0—23)
cos (B - 1)y

(iv) The procedure given in Reference 6 was then
used to determine the value of 301(1) for

Y = 7(1). The calculations were made on an

electronic digital computer using the contour
integral method. Two iterations were required

to determine 301(1) to an accuracy of 0,02

( corresponding to an accuracy of about 0.2 degree
in the value of y or 6/2),




(v)
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Using this value of &01(1), the second

approximation to ¥, Y = 7(2) was obtained
using equations (C-16), (C-21), and (C-22).

7(2) was found to be 12,4 degrees. The

correct value of ¥ is 11,85 degrees, so that
the second step in the iteration gave an
answer accurate to 0,55 degree in y or

1.10 degrees in O,
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The flow sbout and on the surface of an aerofoil
section in & finite stream and that about and on the
surface of the same aerofoil section in an infinite
symmetrical cascade are compared, It is shown that,
for most cases of practical interest, the differ-
ences are small for stream deflection angles up to
90 degrees., Thus, the approximate flow about an
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applied to the finite stream approximation, is given
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The flow about and on the surface of an aerofoil
section in a finite stream and that about and on the
surface of the same aserofoll section in an infinite
symmetricel cascade are compared. It is shown that,
for most cases of practical interest, the differ-
ences are small for stream deflection angles up to
90 degrees, Thus, the approximate flow asbout an
arbitrary aerofoil section in & two-dimensionsl
finite stream may be obtained by using the methods
existing for the determination of the flow about an
arbitrary section in a cascade, The procedure, as
applied to the finite stream approximation, is given
using the interferernce method of cascade theory.
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