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APPROXIMATE METHOD FOR DETERMINING THE POTENTlAL 
FLOW ABOUT AN ARBITRARY AEROFOIL SECTION IN A 
TWO-DIMENSIONAL FINlTE STREAM WITH PARTICULAR 

REFERENCE TO LARGE STREAM DEFLECTIONS 

1.0 INTRODUCTION 

Methods of determining the plane flow of an in­
cornpress l ble , irrota tlonal fluid about an arbitra ry body are 
weIl known tor the case of the plane flow extending to infinlty 
in all directions (see for example, Ref. 1). The boundary con­
ditions tha t must be satisfied by the potential function for 
thls case a re that the velocity a t the boundary of the body ls 
t angentla l to the surface, and the veloclty at infinity (ln aoy 
direction) is equal in bath magnitude end dlrection. A more 
complica ted problem arises ff the flow is tin1te in extent, 
bounded by tree s trearnl lnes. The boundar y condition of equal 
magnitude and dlrectlon of the velocity a t lnfinity is re­
placed by the condition tha t the pressure and hence the velocity 
ls constant along the tree boundarles. The boundary condition 
determines the position of the free boundaries which a re not 
known a priori. 

Helmholtz, Kirchoff and others developed gener a l 
methode based on conformal mapping for dealing with p l ane flows 
with tree eurtaces. The me thode are not r eadi ly adaptable for 
deterrn1ning the flow o f a pl ane fini te s tream about arb1trary 
bodies with circulation. Prandtl , Sas aki and Woods (Ref. 2, 3 
end 4) treated the effects of a finite stream on the aerodynami c 
characteristics of aeroroil sections fo r cases where the de­
fl ect ion of the stream was small. The flow of a fini te s tream 
past a point vortex without any restriction on the deflect lon 
angle was determined by Si mmons (Ref. 5). 

In the follow1ng paragraphs, the flow on the surfece 
of a n aeroroil section in a finite stream and t hat on the same 
ae rofoil sect10n in an infinite cascade are compared tor the 
purpose of showing that, in most practicalins tances, the 
differences are small. Since methods tor the deterrnination of 
the flow ab out arbitra ry aerofoil sect i ons in a cascade exist, 
it is possible to determine the appr oximate flow about an 
arbitra r y ae roro11 section in a finite stream by uslng these 
procedures. The procedure is applicable t o hlghly cambered 
sections giving large stream deflectlons. 
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2. 0 COMPARISON OF FLOW THROUGH A CASCADE OF AEROFOIL 
SEC TI ONS AND THE FLOW OF A FINlTE STREAM ABO UT AN 

AEROFOIL SECTION 

2.1 Cascade Flow 

The Buperpos ltion of an inflnite uniform s tream and 

an i~rinite column of vortices and doublets, with the centres 

of the vortices and doublets coincident a t poi nt s of singu­

l arities spaeed a distance h apart along an axis perpendicular 

to the directlon of the uniform stream, represents the flow 

through an infinite column of closed oval - shaped badies 

surroa~ding the points of singularity. A suitable trans­

formation transforms the oval-shaped badies 1nto aerofo11 

sections and the flow through an i nfinite c 8scade* of two­

dimensional aerefo11 sections is obta ined. An exampl e tor a 

particular case is shown 1n Flgure 1. The details of the 

method by which this particular c ascade was obta lned are given 

in Appendix A. 

The circulation about each of the ae rofoil sections 

in the c ascade is given as a function of the c as c ade spacing, 

h, and the flow deflection angle 9, by 

r = 2h q sin 9/2 
00 

( 1 ) 

The result ant aerodynam1c force on e ach aerofol1 acts in a 

direction normal to the vector mean of the velocities f a r in 

front of and t ar behind the c as cade (that iS, i n the cascade 

direct ion) and i s given by 

(2) 

or (3) 

• The c ascade in this analysis i s one in whlch the flow a t 

inflnity downstream of the cascade is a mirror image of the 

flow a t i nfi nity upstream of the c ascade with respect to the 

cascade direction. 



where d = h cos 9/2 
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(4) 

is the distance measured normal to q , separatlng tWQ stream-
00 

linea that are spaeed a distance h apart 1n the direct ion of 
the cascade. 

2.2 Finite stream Flow 

Tha analysls of the deta ils of the flow a round an 
ae refoll section 1n whlch the flow is finite in extent is 
complica ted by the tact that the position of the tree boundarles 
s long which the pressure a nd velocity must be cons t ant are not 
known a priori. The conditions a t infinity in the finite stream 
can, however, be determined trom momentum considerations with­
out a det ailed knowledge of the flow in the vlcinity of the aero­
foil seetion. The resultant ae rodynamic force on an aeraroil 
section in a flnite stream of height d, magnitude of velocity 
a t inf inlty of q , end stream deflection of 9 is then, (see 
Fig. 2) = 

q2 sin 9/2 
00 

(5) 

This force a cts normal to the vector mean of the veloeities 
t a r in tront of and f ar behind the ae roroil as in the case of 
the cascade and its magnitude i s the Bame as tha t for an aero­
foil section in a cas cade for the same stream deflection and 
~or the distance d in the cas cade (see Fig. 1) equal to the 
height o~ the ~in1te stre~ 

If one of the aerofoil sections, for example the 
section GH in Flgure 1, ls cons ldered as l sol a ted from the 
cascade , the resultant aerodynam1c force on the section is 
then equal in both magnitude and direction to tha t of an aero­
foil section in a tinite stream of helght d and stream de­
flect ion of 9. Unfortunately, there a r e no s treaml ines in the 
cascade such as AEC or BFD (Fig. 1) along which the velocity 
and hence the pressure i s constant. If the aerofoil secti on 
is located somewhat centrally wlth respect to the streamlines 
through E and F, however, the v erl ation 1n velocity along the 
s treemlines is not large, even when the stream deflection ls 
large. The velocity distribution, expressed as a fra ction of 
q~ along Bueh streamllnes is given 1n Figure 4 for three ex-

ample profiles designed to glve l arge s tream deflections in a 
cascade. 
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Small 10ce1 dlstortlona of the etreamllnes AEC and 

BFD have a powerful effect on the velocity slong the atream-

11nea. It would ba expected, however, that these dletortlona 

would have a smaller effect on the velocity at the aeroroi1 

aurface. If the magnitude of the effect on the velocity at the 

aeroroll Burface le emaIl, the cascade Bolutlon represente a 

good approxlmatlon to the flow 1n a tinite stream. It has been 

demonstrated tor a particular cBse, wlth a large stream deflec­

tion, that the effect of these dlstortlons of the stream11nes 

AEC and BFD on the flow at the aerofoil aurface ia negligible. 

The effect was determined using a numerical procedure, the de­

taila of whieh are given in Appendix B. 

The streamline d1stortion required to make the 

velocity constant slong the boundlng streamllnes tor the par­

ticular case le shown in Flgure 3. The streamlines for the 

aerofoil s6ction in an infinite cascade are ahown by the 

broken linea. The particular cascade and aerofoil section 

(the same aa that shown in Figure 1) was designed to give a 

flow deflection of 70 degrees. The solid lines represent the 

poeition of the streamlines that is required to make the 

velocity along the bounding streamlinee constant to within 

the accuracy of the numerical procedure used (about one per­

cent of the velocity at infinity). To this order of accuracy 

it was not possible to detect aoy change in the velocity on 

the aerofoil surface. The change in circulation was determined 

by finding the differenee in arc lengtha of the bounding dis­

torted strearnlines and the bounding streamlines in the cascade 

Bolution. The change in circulation determined in this manner 

was leBS than one half of one percent of the circulation 

around one section in the cascade. 

The streamlines AEC and BFD that were chosen in the 

cascade solution to rep re sent the bounding streamlines in the 

tintte stream were those that passed through the points on 

the cascade axis E and F (Fig. 1) at whieh the velocity was 

equal in magnitude to the velocity at infinity. This ehoiee 

tor the bounding strearnlines was made 60 that the leading edge 

of the aerofoil section was located centrally with respect to 

the lncom1ng tinite strean4 Other cascade streamllnes could 

have been chosen such that the leadlng edge ot the aerofol1 

would be located in different positions relative to the in­

coming streamlines. The varistlon ot the magnitude of the 

velocity along these stream1lnes would generally be larger 

than along the particular ones chosen above and the cascade 

approximation to the fini te stream flow would not be as. good. 
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The length of the mean camber 11ne of the aerofoil 
sect10n in the above example was approxirnately equal to the 
dl s t ance d between the two parallel strearnlines AEC end BDF. 
If the aerofoil Bection were larger relative to this distance 
(corresponding te a n lncrease in the solidity of the c ascade) , 
the change in velocity a long the streamlines AEC and BFD would 
lncrease and the tinite stream flow would differ from the cas­
cade flow more than tor the example chosen. 

The var1etion of the veloclty s lang the streamlines 
AEC end BFD tor tWQ sectlons designed to give flow deflections 
of 90 degrees in c ascade were compared with the veloclty dis­
tribution along the streaml ines AEC and BFD in the above 
example (70 degrees now denection) in Figure 4. The dif­
ferences are not large 60 that one would expect the cascade 
solutlon would give a good approxlmation for flow deflection 
angles up to at least 90 degrees, if the aerofoil Bize were not 
too large relat ive to the tinite stream height and if the 
aerofoil section were located somewhat cent rally in the tin1te 
stream. 

3.0 APPROXIMATE COMPUTATION OF FINITE STREAM FLOW ABOUT 
AN ARBITRARY AEROFOIL SECTION 

It was demonstrated in Section 2 that, if the 
leadlng edge of the aerot'oil section in a f'inite stream is 
located fairly central ly with respect t~ . the incoming stream, 
and it' the length ot' the mean camber 11ne of the section ls 
ot' the same order as the height ot' the lncomlng stream, the 
flow on the aerotoil surface in a finlte stream ls closely 
approximated by the flow on the surface of the same aeroroil 
sectian in a cascade. Under these restr1ctions, therefore, 
it is possible ta use cascade theary to approximate the flow 
about an arbitrary aeroroil sectlon in a fin1te stream. 

A number of procedures are avail able for comput1ng 
the flow about an arbitrary aeroroil section in a cascade. 
The choice of method depends primarilyon the computing 
f acilities available. For the purposes of illustrating the 
procedure as applied to the finlte stream approximation , the 
interference method, descrlbed in Reference 6, was chosen. 
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3.1 Interference Method tor Determining the Flow about an 

Arb1trary Ae roroil Section in a Cascade (Rer. 6) 

A brief resume of the procedure tor determining the 

flow ab out an a rbitrary aeroroil in a cascade uslng the inter­

ference method is glven in thi s section so that the computation 

methad tor the tin1te stream approximation Can be outlined. An 

lteratlon procedure ls requlred. 

( i) 

( 11) 

( 111) 

The aerorol1 sectlon uaed in the cas cade is treated 

as an lso1ated ae rofoll ln an lnflnite s tream (the 

infinite stream flow is the vector mean of the flow 

f a r in front of and tar behind the cascade) and the 

potentia1 flow function, W , is obta ined. Since 
00 

the aerofoil section is t aken as the zero stream-

1ine in this flow, W = ~ • 
00 00 

The disturbance potential, along the ae rofoil 

boundary, Wd = ~d + i ll'd ' caused by the presence 

of the external aerofoil s in the c as cade , is de­
termined. For this calculation the flow about 
each of the external aerofoils l s t aken to be that 

computed in (i) above in the rirst step of the 
iterat ion. 

A compensating flow fUnctlon (whlch may only have 

singularitles wlthin the central ae rofoil), 
" c = CII c + i Wc' l s computed in order to malntaln 

the aerofo l1 sectlon a streamllne ln the presence 

of the dlsturbance flow. It is determ1ned by the 

condition that on the boundary lts stream functlon, 

Wc' must be equal and opposlt~ to the dlsturbance 

stream functlon Wd. 

(iv) A circulation potentiel, Wr , is computed in order 

that the Kutta-Joukowski conditlon ls still satis­
ried at the tra iling edge or the aeroroil. 

(v) The sum, Wd + Wc + Wr , represents the net change 

of the floVi potential due to the presence of the 

external ae rofoils, end is designated WA ' the 

addltlonal flow funetion. The addltional flow 

• 



, 
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function, WA' ls added to the originel flow 
function, W , or the aeroroil seation isolated 

~ 

in an lnrin1 te stream. This new .flow functlon 
ia c alled WT and replaces W~ in pa rt (ii) of 
the computation procedure tor the s econd step 
of the 1 teration. The procedure is repeated 
untl1 two successive values of WT agree to the 
desired accuracy. 

3.2 Appllcation to the Finlte Streem Approxlmatlon 

In the .fin1te stream, the orlentatlon, ~, end length 
of the ref'erence chord of t.he a erofoil sect1on, 4a, ls gi ven 
relative to the incoming stream (see Fig. 2). The flow de­
flection produced by the aerofoll section ls not known in 
advance, however, and sa the dlrection of the lnfinite stream 
flow is not known tor the determination of the flow function, 
W , described above (Section 3 .1). The functlon, W , depends 
~ ~ 

on, first the geometrie mapping funetion that transforms the 
aerofoi1 into a eirele, and seeondly on the ineidenee of the 
referenee ehord of the aerofoi1 to the free stream direction. 
Fortunately, the geometrie mapping fUnetion is independent of 
the referenee ehord ineidenee. A numeriea1 solution (the 
numerieal solution of an integral e quation by ite r ation, see 
for example, Referenees 1 end 7), is re quired to determine the 
geometrie mapping funetion. The velocity on the ae rofoil sur­
face and henee W e an easily be determined by the following 

~ 

relation for any ineidenee onee the geometrie rnapping funetion 
is obtained (see Equation XII of Reference 1). 

lijl = I [sin (y + ",) + sin (y + eT)] • F(",) I (6) 

where y is the lncldence of the reference chord to the dlrec­
tion of the tree stream of velocity U, ~ is the polar angle of 
the cirele obtained by the geometrie mapping, ET and the fUnc-
tion F(",) are deterrnined from the mapping function and are in­
dependent of y. Sirn1larly the lift coefficient of the isolated 
aerofoil 1n the infinite stream of velocity U is given as a 
function of the lncidence by (6ee equation VII of Referenee 1). 
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= 
100 ,., 0 

-P/"""'2-u"'2T-:(-4-a-:-) = 2" e si n (y + ET) (7) 

where Wo la a constant determined by the mapping function and 

is independent of Y. 

Ir the resultant aerodynarrdc force coefficlent Beting 

on an aerofo11 sect10n in a cascade ls deflned as 

( 8) 
• 4a 

where U = q~ COB 9/2, the vector mean of the velocity tar 1n 

front of end ter behind the cascade, and use is made of 

equation (3) and the raet that ~ = 9/2 + y, then CR ean be 

wri tt en BS 
C 

CR -,,(~) sin (~ - y) 
e - ~4a oos2 (~ - y) 

( 9) 

Since d, 4a end ~ are glven, CR is obta ined as a function of 

Y. 0 

The value or Cl given by equation (7) represents 
00 

the velue of CR 1n the cascade only it the cascade spaclng 

c 
is 6ufflclently large that the lnterference of the other aero­

roils in the cascade ia negligible. Ir a quantity, acl , is de-

fined, that represents the reduction 1n force coefflclent on 

the aeroroil Bection due to the interference of the ether aero­

foil sectlons 1n the c ascade, then 

( 10) 
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The quantity aC1 c annot be determined in adva nce sa th at an 

lteration procedure ls required. Fortunately, the iterat ion 
converges rapidly and it is usually only necessary to repeat 
the proceBB ance to give good accuracy. 

Ir the orient e tlon of the reference chord to the 1n­
comlng tin1te stream, ~, the length of the reference chord, 4 8, 
and the helght of the lncoming tin1te stream, d, are given, 
the procedure to determlne the approximate performance of an 
arbitrary aerofol1 Bection in a finite s tream ls therefore as 
follows: 

(i) Determine the geometrie mspping fUnetion that 
transfarms the aeroro11 s ect10n into a clrcle 
by using the procedure given in Reference 1. 

(11) A66ume IICl = 0 and determine the val ue of y 
whieh makes Cl given by equation (7) and CR 

~ e 
given by equation (9) equal. 

(iii) Compute the veloeity distribution on the eurfa ee 
of the aerofoil u. ing equa tion (6) where F(~} ie 
obtained trom the geometrie mapp lng function ob­
t ained ab ove (see equation XII of Referenee 1). 

(iV) From the veloeity distribution obtained in (11i) 
the v alue of VI is obtained and the procedure 

00 

outlined in Section 3.1 and Reference 6 is 
followed to determine the interference effects 
of the other aerofoils in the cascade . From 
thisresult the first value of fi CI can be obtained 
and a new value of y can be determined by us ing 
equations (7). (9) and (10). 

(v) Repeat steps (iii) and (iv) to determine the 
second value of fiCI • This procedure i s repeated 
until two successive values of fiC

1 
agree to with­

in the desired accuracy. UsuaIIy, the first velue 
of fiCI obt ained by thi s procedure gives good 
accuracy. 
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A sample calculatlon ls glven in Appendix C to 
illustrate in detail the procedure and the rapidity of the 
convergence of the lteratlon. 

4.0 CONCLUS ION 

A procedure has been outlined for the approximate 
calculation of the flow about arbitrary aerofoil sections in 
two-dlmensional finite s treams . For most practical appll ca­
tions the method ahould give ade quate accura c y for stream 
deflectionB up to 90 degrees . 
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ANALYSIS USED TO DETERMINE THE SAMPLE 
AEROFOIL SECTIONS (FIG. 1 AND 4) 
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The superpo~d tion o~ an lnftn! te uniform stream and 
an infinite column of vortices end doublets, with the centres 
of the vortices e nd doublets coincident a t points of slngu­
larities spaeed a distance hapart along an exis perpendicular 
to the direction of the uniform stream, represents the flow 
through a n infinite column of closed oval-sha ped bad1es 
surrounding the points of singula rlties . A suitable transfor­
matton transforms the oval-shaped badies into aerofoil s ec­
t ions end the flow through an infinite c ascade of a eroroil 
sections is obta ined. In particular, 11" the uniform stream 
l s directed along the positlve re al axis end the vortices 
end doublets a re arranged a10ng the imagina r y axl s , a special 
type of c ascade termed a symmetrica1 cascade is obta ined. 
This c a scade is one in which the flow at infinity downstream 
of the cascade is a mirror image of the :flow a t infinity up­
stream of the cascade . 

A. 1 Complex Potentia1 Function 

The complex potentia1 tor an 1nfinite row o:f equa l 
strength vortices located a t (0, ±ih, ±2ih, •••• ) a long the 
i magina ry a xis 1s (Ref. 7) 

H ' 
= 21< [ln ~ ' + l n ( ~ ' - ih) + ln ( ~ ' + ih) + •••• ] 

if g' 
= 21< ln sinh h (A-1 ) 

The complex potentia1 tor an inf 1nite row of equal 
s trength doublets with the same centres BS the vortices is 



Page - A- 2 
LR- 260 

XD = 

= 

= 

UI1
2 

UI1
2 

U1<112 

h 

[ 1 1 1 .. .. ] 
~ + ~ . -

+ + 
ih 1;; ' + ih 

d 
[In Sinh~] 

dl;; ' 

( A-2) 

coth ~ 
h 

The desired complex potential tor the superpos ltlon of a uni­

form atream end an infinlte column of vartices and doublets is, 

tll3 ref'ore, 

x = 

or 

where 

" 11
2 

U 
h 

coth ~ ' + 

h 
1r In sinh 1<1:; , 

21< h 
(A-3) 

x = 
X 

hU 
= I;; + 

k 2 iCr 
coth 1<1:; + In sinh 1<1:; (A-4) 

I;; = 1;; ' / h 

1< 1< 

2 
= I;; + iT), k 

r 
2hU 

(A-5) 

The stream function e nd the velocity potentiel f'unction are: 

~ Cr 
-- = , = T) + -- In (cosh 21< I;; - cos 21<T)} 
hU 2" 

sin 2'JCT} (A-6) 
'JC cash 2'JC ~ - cos 2 'JCT} 
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and i. <]i E; + k2 sinh 2?ti; 
= = 

hU " cosh 2" ç; - cos 2"11 

Cr 
t an -1 (coth ?ti; t an '(11) ( A- 7) 

" 
A.2 Velocit;ï in the 1;; Plane 

The veloci t y components r = r l /U in the a direction 
and v = Vi/U in the ~ di rection, in the ~ plane are: 

'T = 1 -
2k2 (cosh 2?ti; cos 2" 11 _ 1 ) Cr sin 2"11 

~ + -----''-------
(cosh 2" ~ - cos 2'(11) cosh 2" ç; - cos 2"11 

( A- 8) 

For 

and 

v = 

l; .... - 00 , r -+ 1 

1;-++00,r-+1 

and 
and 

sa that the tatal def'lection of the str eam in go i ng f'rom 

- co to 00 i s 
-1 9 = 2 tan Cr 

and the magnitude of the velocity at lnfinity is 

qoo/U= 1 =Jl+ 
cos 9/2 

C 2 
r 

(A-10) 

(A-11 ) 
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A-3 stagnation Points end Stagnation Strearnllnes 

stagnation points in the ~ plane ( ~s • Tl S ) occur 
o 0 

when both T end vare zero end are found f'rom equations (A-8) 
and (A-9) to be 

Tls o 
= 

1 -1 tan Cr = 
27< 

(A-12) 

~s o 
= • .1.. 

27< 
-1 1 cosh 

Jl+ C 2 
r 

= • .1.. cosh-1 [( 1 + 2k2) cos 1l/2] (A-13) 
27< 

The equatlon f'or the stagnatlon streamlines is 

2" Ws = - 1l/2 + [1 + In 2k2 cos 1l/2] tan 1l/2 

= 2"TlS + tan 1l/2 In (cosh 2~S - coa 27<Tl S) 

2 2k sin 2?t11S 
(A-14) 

cosh 2~S - cos 2"Tl S 

where ~S and ~S are points descrlblng the stagnation strea~ 

line. Equation (A-14) defines the closed streamlines surround­
ing the singularities at ~ = 0, n = 0, ± 1, ± 2 •• • • th at pass 
through the stagnation points ~S • TlS' Equation (A-14) can 

o 0 
only be sol ved expI1c1tIy for ~S or TlS for the case of TlS = 0 
where l;S ls gi ven by 
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1 -1 
[ 1 + 

2'1< W's eot 9/2 ] 
/;;s = ± - cosh e (A-15 ) 

(Tls = 0) 21< 

Equations (A-12). (A-13) snd ( A-15) give four points on the 
closed curve defined by equation ( A-14) and other values mus t 
be obtained by a graphical or numer1cal procedure . For the 
purposes of numer1cal evaluat10n of the points ~ , D defining 
any part1cular etrearnl1ne, 1t is convenient to write equation 
(A-14) in the form: 

~ tan 9/ 2 2k2 sin 27<Tl = - + 2 '1< ( ~ - Tl) 
e~ 

( A-16) 

where e~ = cosh 2~ - cos 2 ~~ ( A-17) 

A.4 Transformat1on Eguat10ns 

It is conven1ent, tor calculat10n purposes, to per­
form the tollowing success1ve transformat1ons , similar in each 
step to those used 1n trans forming a single circle into a 
Joukowsk1 type aerotoil sect10n 

Z"I = ~ e ia (A-18) 

Zoo = ZIII + m + in ( A-1 9 ) 

where n = - ( TlSo cos a + Il;;sol s in a) (A-20 ) 
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"s o 
sin a + m)2 [~ + 

Z" 

1 

Z" _ ie ia 

+ -,-_1'-,irN + •••• ] 
Z" + ie Cl 

2 
s in Cl Tm) coth 1tZ" 

-ia e 

( A-21) 

and 1'inally Z = Z' e-ia (A-22) 

The signi1'icance of the transformation equations (A-18) 
to (A-22) is illustra ted in Figure 1. The oval- shaped bodies 
in the ~ ~lane are distributed s long the i maginary ~ axis. 
Equation tA-18) represents a rotation through the angle Cl where 
Cl is analogous to aerofoil incidence in the infinite stream 
case. The quantity n in equation (A-19), de1'ined in equation 
(A-20), ensures that the trailing edges 01' the aero1'oil sections 
correspond t o the stagnati on points ~S ' ~S in the ~ plane and 

o 0 
hence sets the cambe r of the sections to give the desired rlow 
derlection as a function of Cl. The magnitude of m i n equation 
(A-19) defines the thickness of the sections. The transforma­
tion given by equation (A-21) transforms the oval-shaped bodies 
into streamlined aerofoil sections and is analogous to the 

b 2 
infini te s tream transformation Z' = Z" + -. 

Z" 

A.5 Veloei ty in the Cascade Plane 

The non-dimensional velocity components in the cas­
cade or Z plane, u = ut/U, v = Vi / U are given by 

sina + m) 2] 
(A-23) 



x-++oo u~ r 

and as 
v ~ y 
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sina + m) 2] 
( A-24) 

50 that the veloeities at infinity in the two planes are the 
same in both magni tude and direction. 

A.6 Exarnple Profiles 

Three sample profiles were determined using the 
above procedures. The values of the arbitrary constants were 

t alcen us m = -0.01200, b = 0.98000 and k
2 = 0.39478. The 

values of' the flow def'lection aogle 0 nnd of' the angle ex for 
the three prof'iles were: 

(i) 9 = 70' 

(11) 9 = 90' 

(11i) 9 = 90' 

ct = 10° 

ct = 0° 

( A-26) 

The prof'iles and the pressure distributions plotted 
normal to a chord line parallel to the vector mean of' the 
velocity f ar in front of and tar behind the c ascade are given 
i n Figures 5, 6, and 7. The pressure coeff'icient in these 
plots is def'ined as: 

1 - ( A-27) 
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The atreamlinea AEC and BFD (aee Fig. 1) that were 

chosen arbitrarl1y to represent the bounding streamllnes tor 

the tinite stream approximatlon are such that the velocity at 

the points E and F ia equal to~. The velocity diatributiona 

s long the streamllnes AEC or BFD tor the three sample pro­

files are shown in Flgure 4. • 
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APPENDIX B 

NUMERICAL ANALYSIS TO DETERMINE THE REQUIRED 
STREAMLlNE DISTORTION TO GlVE CONSTANT VELOCITY 

ALONG THE BOUNDING STREAMLlNES 

The sample profile chosen ls that shown in Figure 3 
(profile (i) in Appendix A), designed to gi ve a now det'lec-
ti on of 70 degrees when in a symrr.etrical cascade. The relaxa­
tion method was uaed in making the numeri ca l cornputations. 
The ini tial grid spacing was taken to be 1/10 01' the 1'inite 
stream height at lnfinity, d. The value of the stream runction 
was computed at each nodel point in the grid to an a ccuracy of 
1/5 of one percent of the change in ~he stream function value 
trom the lower to the upper bounding streamline (WL = 0 and 

Wu = 1000 in Figure 3) . The bounding streamlines were dis­

torted sueh that the dist ance between the modified strearnlines 
and the original ~ = 100 end If = 900 streamlines was 1/10 
everywhere and the neVi pos! tion of the W :::: 100 and W = 900 
streanà i nes was determined. The above procedure Vlas repe ated 
and it was found tha t the new positions of' the '1' = 100 and 
W = 900 streamlines had not cha nged oppreciably from the 
previous positions. The grid spacing was reduced to d/40 and 
fina l small modif'ications to the bOll.l1din.g streamlines were 
made to ensure the veloc1ty was constant to within one percent 
along them. 

The modified streamllnes are compa red with those 
gi ven by the cas cade solution in Figure 3. 1'he streamline 
distortion in the vicini ty of the aerofoll was not detectable 
within the accuracy of the numerical s olution. Since , in the 
cas cade , the streamlines AEC and BFD a re parallel and the 
veloclty distribution along them is the same, the contribution 
of the integral of the velocity a long these streamlines to the 
circulat i on about each aerofoil section is zero and the circu­
l ation is simply : 

r = 2d qw tan 8/2 (8- 1) 
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In the c ase of the flnite stream, since the bounding stream­
linea are distorted, they are na lange r necessarily equal in 
l ength. The change in clrculatlon in this case c an be measured, 
then, by determln1ng the dlfference in arc l ength of the upper 
end lower boundlng streamlines, say, ÓB, and the change in clr­
culatlon i s: 

If I>r r 

I>r = q I>s 
00 

(B-2) 

is l arge, the flow deflection angle 9 must be changed. 

In the above example, ór determined in thi s manner was less 
than 1/2 percent or the value or r i n the cascade, so that the 
change in Q would b e leBs than 0 . 3 degree. 
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APPENDIX C 

SAMPLE CALCULATION OF APPROXIMATE FLOW ABOUT AN 
ARBITRARY AEROFOIL IN A FINITE STREAM 

For the purposes of the sample calculatlon~ the 
aerofoil sect10n (1) of Append1x A was cons1dered as the 
arbitrary aerofo11. The reference chord of thls aeroroil Was 
taken as 48, its orlentatlon to the lncomlng stream, a was 
46.85 degrees and the rat10 of the reference chord length 4a 
to the slipstream he1ght Vlas 0.72356. The part1cular ref­
erence chord chosen was arbitrary. lts cholce does, however, 
lnfluence the length of the calculatlons requlred to obtaln 
the geometrie transformatlon of the aeroroi1 1nto a cirele. 
It ls shown 1n Figure 2, along wlth the orlentatlon of the 
aerero11 Bect10n te the lncoming stream. 

• C.1 Geometrie Transformatlon of Aeroroil fnto a Circle 

The Theodorsen method (Ref. 1) for obta1n1ng the 
potential flow about aerofo1l sect10na of arb1trary shape was 
used. Points on the aererol1 surface are defined by 

I; = x + iy (C-1 ) 

The aerorol1 contour is then transformed into a near cycle 1n 
the zt plane where ~ end Z' are related by 

( C-2) 
Z' 

The near circle in the Z' plane ie glven by 

• Thè notation in thie Appendix corresponds to that used in 
Reference 1. In particular, Q, ~, and Z' are different from 
those def1ned 1n the list of symbols and in the main text of 
th1s report. 
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,I, 19 
Z I = a e'l' + 

Using (C-2) and (C-3), * and G are determined from 

- P 

where 
2 2 

P=1 - Ua) -(li) 

(C- 3) 

(C- 4) 

( C-5) 

( C- 6) 

The ne ar circle in the Z' plane is then transformed lnto a 
circle 

*0 + iif> 
Z = a e 

in the Z plane us ing the general transformation 

Z(A + i B ) • 1;Zn 
Z' = Z en n n 

or 
* - * + 1(9 - </» z' = Z e 0 

( C-7) 

( C- 8) 

( C-9) 

Equating equations (C-8) and (C-9) , * - *0 and 9 - '" are found 
to be gi ven by: 

* - *0 = '\ LJ 
n 

( C-10) 



, 

where 

= I. [:~ cos nep - sin 

n 

2" 

~! jf cos n~ d~ 
o 

jf sin ~ d~ 

~ l 
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(C-11 ) 

( C-12) 

( C-13) 

( C-14) 

Eliminating the coerricients Aofr n and Bofr n rrom (C-11) by 
uBing (C-1 3) and C-14), the expression for e = - (Q - ~) can 
be wri tten as 

( C-15) 

Since W i s g lven as a function or G = - e + ~ , 1t is ne cessary 
to use an iteration procedure to determine E and W by first 
assuming & as zero, computi ng &( 1) and then determ~ng W as a 
function of ~(1) = Q + e(1). A second app roxima tion to e = , (2) 
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i s then obtained from equation (C-15). The procedure is re­
peated unt11 two successive values of c agree to wltbin the re­
quired accuracy. A procedure for the numeri cal evaluation of 
the E funet10n (equation 0-15) using harmonie analysls i s g iven 
1n Reference 8. The quantities E and *0 define the point to 
point transformatlon of the aerofol1 in the ~ plane to the clrcle 

*0 + i</> 
a e in the Z plane. 

The calculat ions tor this sample aerofoil were made 
with sn electronic digita1 computer. An eighty point formula 
(see Ref. 8) was uaed in the determination of E and six 
iteratlon steps were required to determ1ne the ve lue of E to 
an Bccur acy of 0.01 r adian a t the va lue of ~ corresponding to 
the trailing edge of the aerofo1l. The final computed curves 
of V and C 8a functions of Q are shown in Figure B. 

C.2 Lift Coefficient of the Isola ted Aerofoil and 
Veloc1ty on the Aerofo1l Surface 

The 11ft coeff1c1ent of the 1s olated aerofoil section 
in an infinite stream is (from equation VII of Reference 1): 

= __ 4;1--,-- = 21< 
p/2 U2 (4a) 

sin (y + " T) ( C-16) 

where y 1 s the 1ncidence of the reference chord to the free 
s tream direct10n and eT 1s the value of & at the trailing edge 
of the aerofoil . 

The velocity on the surface of the aerof01l i s 

lul = I [sin (y + rp) + sin (y + "T) 1 • F(e) I ( C-17) 
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where ( C-18) 

Since F( G) and oT are independent of the incidence, y, they 
can ba computed ss functlons of Q or ~ end 1t ls then a simple 
computation to obta in the corre6ponding value6 of v/U for any 
Y. 

C.3 Determination of Approximate Flow about the 
Aerorol1 Section in Cascade 

The resultant force coefflclent on an aerarol1 
seat10n 1n a tinite stream, or in an inflnlte c ascade, trom 
t he change of momentum 1n the s tream t er in front of end 
t er behind the section ls 

sin G/ 2 
C06

2 G/ 2 

end, slnce tor a symmetrlcal c ascade, (see Fig. 1 "and 2) 

G/ 2 = ~ - y 

6in( ê -y) 
cos2 ( ~ _ y) 

(C-19) 

(C-20) 

(C-21) 

The lnterference of the other aeroroi1 sectlons in a c ascade 
on a particular section reduces the 11ft on thls particular 
section !rom the lift it would give if it were isolated in 
an infini te stream with the flow velocity of t he infini te 
s tream e qual to the vector mean of the velocity t er 1n front 
of and f a r behind the cascade. If t his reduction in lift is 
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glven by fie1 , the force coefficients given in e quatlons (C-16) 
a nd (C-21) are related by: 

( C-22) 

A number or procedures a re available for the de­
term1nation of the v alue of bel- The method used in this 
a nalysls is known as 11 the interf'erence method" and ls des­
cribed fully in Reference 6. In order to use the methode for 
determing 6C1 directly 1t ls necessary to be glven the value 

of Y, or 9/2 from which y ean be determined. In the present 
applicatio~ , neither Y or 9/2 a re given but only the value 
of~. An iteration procedure 1s thus required. The pro­
cedure use d was: 

(1 ) 

( 11) 

( 111) 

(1 v) 

Assume à C1 ::: 0, end determine 

e9-uat1ons (c-16) and (C-21). 
\ 1 ) Y = 10.7 degrees. 

y( 1 ) byequat1ng 

For this case 

Compute the veloclty distribution on the 150-
l ated aeraro11 section using equation (C-17), 
tak1ng y = y( 1 ) • 

The cascade spa cing, h(1), 1s then given by 

d 
cos 9/2 

The procedure given in Ref'erence 6 was then 
used to determine the va lue of 6C (1) for 

( C-23) 

y =- y( 1). The calculations were ~de on an 
electronic digital computer using the contour 
integral method. 1'wo iterations were required 
to determine 6c1( 1 ) t o an accuracy of 0 . 02 

(corresponding to an accuracy of about 0. 2 degree 
in the value of y or 9/2). 



(v) 
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Us1ng th1s value or 6c1(1), the seeond 

approx1mat1on to y, y = y(2) was obta1ned 
us1ng equat10na (C-16), (C-21), and (C-22). 
y(2) was round to be 12.4 degrees. The 
correct value ot y ls 11.85 degrees, so that 
the second step 1n the lteratlon gave an 
answer accurate to 0.55 degree 1n y or 
1.10 degreea 1n Q. 
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f.PPROXIWATE WETtiOO POR OETERIUNING 't'HE POTJ,;NTI,\L 
FLOW ABOUT All ARBITRARY AEROFOJL SECTION IN A TflO­
OIIIENSIONAL 'INlTE STREAM WITH PARTICULAR REPE~~~E 
TO LAIIt! STREAM DEFLECTIONS 
O. O. OOul"'. Auguat 1959 . 33 p . .. e tlga . 

t"he flow about and on the aurt'aoe ot' an aerotoil 
aeoUon ln a tinl ta atream and that about and on the 
aurtaoe ot the aame ae r o toU aaoUon 1n an lnt'lnite 
ayametrlcal caacade ara c~ared. It ia ahown thet . 
tor lIIoat cnea or practical intereat , the d1tter­
encea are smal I tor atream deflectlon anglea up to 
90 degreel . Thua , the IIppro:dlllllte now about IIn 
arb1t r ar1 aerotoil aection in a two-diDensional 
t'lnt te etrealll II1II1 he obtalne4 by ueing the Deth04s 
e:dsttng tor the determination ot' the flow about an 
a rbltra ry aactlon in a caacade. The proce4~e , liS 
app11ed to the tinita atream approximation , ill g1~an 
using the intert'erence method ot caacade theory. 
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APPROXlllATE WETtiOD POR DETERIIININO TIIE POn:m'IAL 
FLOW ABOUT AN ARBITRARY AEROFOIL SECTION IN A TWO­
DIIIE~SIONAL FINIT~ STREAM WITH PARTICULAR REPERENCE 
TO LARGE STREAII DEPLECTIONS 
O. G. Gould. Auguat 1959 . ,3,3 p . .. 8 tigs. 

t"he flow about and on the aurtace ot an aerotol1 
section in a tinlta stream and that about and on the 
aurtace ot the aame aerotoil aection in on lntinite 
ay:mnetrlcal caacade are c~ared. ft ia ahown that . 
tor lIIOat caaea ot prllctical interest , the ditter­
ences are amail tor st"OIll detlection anglea up to 
90 degreea. Thua , the "ppNlxlmate tlow about an 
arbitrary "erotoil aection in a two-dlmenslonal 
tinite atream l118y be obtained by ulling the me thoda 
exiating tor the determination ot the flow about IIn 
arbltrary a"ct10n in 11 C"lc"de . The procedure , aa 
applied to the tlnlte atrenm opproxi~tlon , i" given 
ustng the intertere~oe method ot caac"de theory. 
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