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Abstract
This paper provides a refactoring from do nota-
tion to >>= operators and proves that this refactor-
ing maintains observational equivalence. As pro-
grams grow ever larger and more complex, there
is a growing need to automatically apply refac-
torings to these programs in a dependable man-
ner. Current refactoring engines often contain er-
rors, even if they are widely used and thoroughly
tested. The methods used in the proof of contex-
tual equivalence are described in this paper, with
the goal of supporting future research into correct-
by-construction refactorings.

1 Introduction
Refactoring is the practice of changing the code of a program
without changing its observed behavior[1]. Refactorings are
often employed to improve the quality of the codebase; it can
make the code more testable, readable, extendable, maintain-
able, and so forth. It is vital that applying refactorings does
not introduce new errors into the codebase.

For this reason, automated refactorings are a common fea-
ture of most Integrated Developer Environments (IDE) and
Language Servers. IDEs are tool suites assembled around a
text editor to provide language specific features such as error
reporting and refactorings, and Language Servers decouple
this feature set from any specific editor, allowing the features
to be used by any editor that implements the Language Server
Protocol[2]. These widely used and thoroughly tested refac-
torings are however not formally proven and contain an array
of bugs [3]. The programmer can therefore not have absolute
trust that applying an automated refactoring will preserve the
soundness of their beloved code. By formally verifying these
refactorings, we can guarantee no new errors will be intro-
duced.

The correctness of software, and the extent to which this
needs to be demonstrated, has long been a point of discussion
within the field of computer science[4]. Errors in software
have caused many severe accidents, including billions of dol-
lars of economic damage and loss of life[5].

Both the 2021 and 2022 ACM Software System Awards
have gone to teams working on formally verified systems[6].
They were respectively awarded to the teams behind Com-
pCert, an optimizing compiler, and seL4, a high assurance
microkernel operating system.

Many approaches exist to assure programmers of the cor-
rectness of their programs, each with various guarantees and
trade-offs. Examples include regression testing and prop-
erty based testing[7]. However, all these methods lack the
full rigor of a formal proof. In addition, the seL4 project
has shown that the cost of formal verification is lower than
the cost of more traditional methods of engineering a high-
assurance software system[8].

This paper provides a language specification of a Haskell-
like language on which the refactoring is to be applied. Sec-
ondly the refactoring itself is described. Lastly a proof of
equivalence pre- and post-refactoring and the steps to create
it are described.

2 Background
In order to make this paper reasonably self-contained, this
section will go over some of the tools and techniques used
throughout the paper.

2.1 Agda
Both the refactoring and its corresponding proof of correct-
ness have been written in Agda[9], a total, terminating, de-
pendently typed language. This not only guarantees that our
program won’t loop forever nor throw errors, its dependent
type system empowers us to write proofs checked during nor-
mal compilation.

A dependent type is a type that depends on the value of an-
other type. One example would be Fin n, a type with n pos-
sible objects (0 through n − 1), which can be used to struc-
turally, at compile-time, guarantee that a number is smaller
than n. This can be extended to types such as x ≡ y, which
is a proof that the values of x and y are ‘the same’ according
do the rules of the language. Additionally, sym : x ≡ y →
y ≡ x is a proposition that, assuming x equals y, y equals
x, with the implementation of this function being the proof of
this proposition[10]. 1

We can then use these ‘propositions as types’ to state prop-
erties about a program. For example, the proof that the pro-
gram still evaluates to the same value after refactoring has a
type similar to the following.

∀{M V } → (M ↓ V ) → ((refactor M) ↓ V )

Which states that any reduction trace from M to V can be
converted into a reduction trace for the refactored M to that
same value V , or more generally that refactoring the program
doesn’t change its resulting output. 2

To be guaranteed that the implementation of a function is
in fact a proof that the proposition of its type signature holds,
the language must be total. This means that the language
must be both terminating and cannot throw a runtime excep-
tion. If termination was not required, a function (read: proof)
could simply call itself with the same arguments and never
terminate but still inhabit that type. If the throwing of errors
were possible, anything could be proven by simply throwing
an exception, segfaulting, inducing a kernel panic, or other
fun things.

2.2 Monads and their notation
A monad is a class of structures that wrap around values
and encapsulate computational effects[11]. The notation m A
means a monad that wraps around a type A. Monads imple-
ment two functions which specify their behavior. The return
function wraps a single value in the monad of that type. The
bind function (often noted as the infix operator >>=) takes in a
monad wrapping type A and a function A -> m B and returns
a monad wrapping type B. Their use cases will become more
apparent throughout this section.

1In more classical terms, x ≡ y implies y ≡ x.
2In actuality the proof is only of contextual equivalence as the

function bodies in lambda expressions are also altered and these may
be returned as values.



h a l v e : : I n t −> Maybe I n t
h a l v e x = i f even x

then Jus t ( x ‘ div ‘ 2 )
e l s e Nothing

halveSum : : I n t −> I n t −> Maybe I n t
halveSum x y =

h a l v e x >>= (\ hx −>
h a l v e y >>= (\ hy −>
re turn ( hx + hy ) ) )

Figure 1: A Haskell program written using bind operators that sums
the halves of two numbers, and returns Nothing if either number is
odd.

halveSum : : I n t −> I n t −> Maybe I n t
halveSum x y = do

hx <− h a l v e x
hy <− h a l v e y
re turn ( hx + hy )

Figure 2: A Haskell program written using do notation that sums
the halves of two numbers, and returns Nothing if either number is
odd.

One prominent example is the Maybe type (often also
called the Option type in other languages). A Maybe T is
a type that either has or doesn’t have an item of type T, it is
often used to express the possibility of failure. It takes the
place of null references or sentinel values and is less error-
prone than them due to enforcing existence checks. Using the
monad functions from before, we can specify a Maybe monad
by having return be Just and having bind keep Nothing if
the first input is Nothing else apply the function to the value
inside the Maybe and return the result.

One advantage of using monads is that they can easily be
chained together, avoiding the need for explicit control flow
and bookkeeping. For example, a halving function that ‘fails’
if the input is odd can be used to create a function that halves
both its inputs and returns their sum, but also fails if either of
its inputs cannot be halved. The example in Figure 1 illus-
trates this combining with the bind operator.

But this style of composition can become clunky for larger
chains, requiring quite a few lambda expressions and paren-
thesis. To solve this, Haskell has do notation, which provide a
style of programming visually similar to imperative program-
ming while remaining purely functional. Within a do block,
the right-hand side of the <- is an expression resulting in a
monad, and the left-hand side gets assigned elements within
that monad one at a time. The result of the last expression is
the result of the whole block and therefore also has to be a
monad of the same type[12, p. 26]. This abstracts away the
structure and allows the programmer to only consider one ele-
ment at a time, as well as providing a more natural way to use
monadic actions. Figure 2 is the same halveSum example,
except now it’s written using do notation.

In Haskell, this notation is desugared into a chain of bind

operators, and the refactoring and proof presented in this pa-
per focus on this equivalence.

A programmer might want to convert a chain of do blocks
into their corresponding bind operators. One reason for this
may include extracting the expression into a separate function
allowing for code reuse.

3 The construction that is correct
This section describes the proof of correctness that has been
produced, and what was created to reach that proof. First
a description of the subset of Haskell and the modifications
that were made is provided. Secondly the refactoring, and
an implicit proof of well-typedness, is presented. Lastly the
proof of semantic preservation is given.

3.1 The Haskell-like language
In order to demonstrate anything about the Haskell-like lan-
guage (HLL) in Agda, its syntax and semantics must first be
described in Agda.

In order to represent the language, an intrinsically well-
typed representation was used. This means any program that
type-checks as an Agda structure is also well-typed accord-
ing to the typing rules of the HLL. This ensures that any con-
structed program is well-typed and obviates the need for sep-
arate well-typedness proofs.

De Bruijn notation was used to represent terms in the lan-
guage[13]. This eliminates the need for string names and in-
stead identifies terms using an index into the context. A num-
ber is used to represent how close the term is bound, with 0
representing the most recently bound term, and higher num-
bers representing values bound further away.

The actual syntax of this HLL was chosen to closely align
with Haskell, although some deviations were made to accom-
modate easy embedding in Agda. This mainly involves swap-
ping out symbols with preexisting meaning in Agda for visu-
ally similar symbols. The primary changes are that the back-
slash \ is replaced by a λ̄ (lambda with stroke) to circumvent
the special meaning of both the backslash character and the λ
it visually represents. Additionally, the + and * are replaced
by ✛ and ⋆ respectively to avoid collision with the number
operators in Agda. Furthermore, a · rather than whitespace is
used to specify function application. Lastly the do notation is
expressed using do<- to avoid conflicting with the Agda do
keyword and because the binding is not named anyway.

Two more limitations should be noted going forwards.
Firstly only the Maybemonad is implemented due to the time
constraints of this project. Secondly, rather than a do block
with potentially multiple binding expressions, every do<-
block creates a new block with the subexpression bound.
These are equivalent due to the monad laws.

3.2 Refactoring do into bind
The actual refactoring that substitutes the do notation for bind
operators (called rmDo) is given in its entirety in Figure 3 and
due to intrinsic typing it also implicitly serves as a proof of
well-typedness. For any language structure that is not do no-
tation, recurse on every subexpression or if none exist sim-
ply return the expression. When do notation is encountered,



rmDo : Γ ⊢ A → Γ ⊢ A
rmDo (Term x) = Term x
rmDo (λ̄ L) = λ̄ (rmDo L)
rmDo (L · M) = (rmDo L) · (rmDo M)
rmDo (num x) = num x
rmDo (L ✛ M) = (rmDo L) ✛ (rmDo M)
rmDo (L ⋆ M) = (rmDo L) ⋆ (rmDo M)
rmDo true = true
rmDo false = false
rmDo (Nothing A) = (Nothing A)
rmDo (Just L) = Just (rmDo L)
rmDo (M >>= F) = (rmDo M) >>= (rmDo F)
rmDo (do<- M ⌢ F) = (rmDo M) >>= (λ̄
(rmDo F))

Figure 3: The refactoring that removes do notation from the program
it is applied to.

✓: γ |= L ↓ v → (rmDoEnv γ)|=(rmDo L)↓(rmDoValue v)
With:
γ an environment over Γ
Γ a typing context
L a language construct (Γ ⊢ A)
A some type in the HLL
v some value of type A

Figure 4: The function signature of the proof of correctness. It
proves that for any language construct that reduces to a certain
value, the refactored version reduces to either the same value or
a closure with the refactoring applied to it. It can be found in
refactoring.agda as ✓.

a single instance of do<- M ⌢ F is replaced by M >>= (λ̄
F), with the refactoring also applied to the subexpressions M
and F.

Two additional functions have been implemented, namely
rmDoValue and rmDoEnv. The first one applies rmDo to the
bodies of closures and rmDoEnv to the environments they en-
close, and applies itself to the value inside a Just expression
because that might also contain a closure, but leaves all other
values untouched. The rmDoEnv function applies rmDoValue
to all values in the environment, thus also only modifying clo-
sure values.

4 Proof of equivalence
Beyond well-typedness, the source contains a proof of equiv-
alence called ✓, whose type signature can be found in Fig-
ure 4. It proves that, besides closure bodies, a reduction to a
value can be mapped to a reduction from the refactored code
to that same value. First this section explains why this sig-
nature was chosen. Secondly the techniques used to prove
this statement are elucidated. Thirdly some considerations
regarding defining reduction rules are given.

4.1 Observational equivalence
Given that the HLL has no side effects, it is referentially
transparent, a proof of equivalence for the resulting value is

sufficient to prove the equivalence of two programs. Unfor-
tunately a proof of equality of the resulting values is not pos-
sible as the value may contain a closure wrapping a function
body which has been refactored. We instead prove that these
are observational equivalent, meaning that under any context,
they will reduce to an equivalent value[14].

For this reason, rmDoValue is applied to the resulting value
and rmDoEnv is applied to the environment. Both of these
functions only affect closure values, and leave all others un-
touched. For closure values it simply applies the refactoring
to their function bodies, the operation which we are currently
proving preserves observational equivalence.

Furthermore, because HLL is terminating, (no fixpoint ex-
ists), and all closures must eventually return a non-closure
value when enough arguments have been applied to it (it is
not possible to construct a type of infinite length), and that
non-closure value has been proven to be the same. We can
therefore conclude that the closures returned by the refactored
version are contextually equivalent.

Since the environment can contain closures, rmDoEnv
needs to be applied to the incoming environment. These clo-
sures may or may not originate from a context which was not
refactored, accordingly their function bodies may or may not
have been refactored. Concretely, if in L a closure value v
is taken from the environment, in rmDo L it might obtain v
if the closure was created outside the refactored context, or
rmDoValue v if it was also refactored. Because there is no
way of knowing locally which terms have been refactored,
refactoring all function bodies ensures that they have been.

4.2 Inhabiting the proof
This subsection will go over some of the methods used to
prove the statement given in Figure 4.

Base case For all final reductions (↓num, ↓lam, and
↓nothing) except ↓var, the same reduction is returned. The
language constructs they reduce are not affected by the refac-
toring and their reduction therefore remains the same. Map-
ping the reduction of a term (↓var), that is getting a value out
of the environment, is discussed later this section.

Simple induction hypothesis For all reductions reducing
constructs not modified by the refactoring, the same reduction
is returned, but with ✓ recursively called on the subexpres-
sions. This maps nicely to the recursive definition of rmDo.

Reducing do constructs In order to reduce what used
to be do<- blocks, they are mapped to their equivalent
bind reductions. For the case in which the Maybe contains
Nothing, the reduction of the Maybe mapped using ✓ and
the ↓bindNothing reduction is returned.

For the case in which the Maybe contains a value, the map-
ping requires slightly more work. The reductions from the
Mabye to the Just value as well as the function body to value
reductions can be mapped by calling ✓ recursively. The re-
duction trace from the second expression to the closure value
however must be newly constructed. Since the refactoring
wraps the second expression in a λ̄ , this can be reduced using
a single ↓lam. Agda automatically infers the function body
of the reduction, along with the fact that the reduction of the



resulting function can be created using the reduction of the
original expression.

Taking values out of the environment The most subtle
point of the proof was the mapping of ↓var, which represents
taking values out of the environment. As mentioned earlier,
the environment is modified by rmDoEnv because the value
may or may not originate from outside the context which was
refactored.

This conversion requires two intermediate steps. First, a
proof that refactoring a value taken out of the original envi-
ronment gives the same answer as taking out a value out of
the refactored environment. This was constructed using stan-
dard structural recursion because the functions are defined in
terms of each other. Second, a congruence proof is created
that, given a proof of equality between two values and a re-
duction to the first value, returns a reduction to the second
value. These two proofs are then combined to convert the
reduction to one over the refactored domain.

4.3 Considerations for defining reduction rules
The HLL has its semantics described in terms of big-step
reductions using environments. This section describes how
these decisions made the proof of equivalence easier to con-
struct. Firstly, the big-step reductions are compared to their
small-step counterparts. Secondly, the choice of environ-
ments over substitution is expounded upon.

Reductions: big or small?
Under small-step reduction, a list of steps is given which all
modify the program slightly until finally a value is reached.
These reductions consist of two or three types of reduc-
tions[15]:

ξ-reductions reduce part of a term, possibly as specified by
another reduction

β-reductions combine a constructor and a destructor; in this
case lambda expressions and function application.

δ-reductions optional type of reduction that applies some
built-in operation on values such as addition or multi-
plication

Under big-step reduction however, a tree of reductions is
composed which more closely follows the syntax tree, and
the reductions return values rather than simplified language
constructs[15]. A new type of reduction is introduced, which
converts primitive types to a value; such as reducing num 5 to
a value containing the number 5. Secondly, the ξ-reductions
are incorporated into the β- and δ- reductions, which take
reductions of their constituent terms and return a reduction of
the whole to a value. For example, the ↓add reduction takes
in the reduction to a number value of both the left and right
sides, and returns the sum of these values.

Because the big-step reductions follow closely the recur-
sive nature of how the refactoring is constructed, it becomes
significantly easier to prove the equivalence pre- and post-
refactoring. Additionally, because under big-step reductions
the term has to reduce to a value rather than a simplified lan-
guage construct, it becomes easier to state and prove equiva-
lence of the resulting values.

data Ctx : Set where
∅ : Ctx
_,_ : Ctx → Ty → Ctx

data _∋_ : Ctx → Ty → Set where
Z : ∀ {Γ A}

→ Γ , A ∋ A
S_ : ∀ {Γ A B}

→ Γ ∋ A
→ Γ , B ∋ A

data Env : Ctx → Set where
∅′ : Env ∅
_,′_ : {Γ : Ctx} {A : Ty}

→ Env Γ
→ Value A
→ Env (Γ , A)

valueLookup : {Γ : Ctx} {A : Ty}
→ (γ : Env Γ)
→ (Γ ∋ A)
→ Value A

valueLookup ∅′ ()
valueLookup (γ ,′ x) Z = x
valueLookup (γ ,′ x) (S y) = valueLookup γ y

Figure 5: The implementation of contexts, environments, and
valueLookup, which given a proof that a value of type A exists
in the context, returns that value. The implementation of Ctx, ∋,
and Env are based on [15, Chapter Lambda and Chapter BigStep].

Environments over substitution
The second significant choice made was to use an environ-
ment to hold values rather than using substitution. This de-
cision greatly simplifies the proof of equality, and its imple-
mentation is made easier by the well-typedness of the context.

The problem with trying to map reductions when using
substitution is that the value substituted in might not be equal
to the value substituted in under the refactored program. This
means that not only does the locally considered reduction
need to be mapped to the refactored program with recursive
calls to their sub-reductions, a modification might also need
to be made somewhere far deeper down the reduction tree to
account for the different value being substituted in.

Using environments instead concentrates this difficulty
into only the reduction that takes values out of the environ-
ment, a process already discussed in section 4.2.

Implementing the environments was a surprisingly clean
process. The environments are indexed on a certain typing
context, meaning that if the context associates a certain in-
dex to a type, the environment over that context contains a
value of that same type. The value lookup function can there-
fore take an index into the context and use that to find a vari-
able in the environment over that context. The implementa-
tion of Ctx, ∋, and Env are based on [15] chapters Lambda
and BigStep, with Env having type information added. The
ValueLookup was made to preserve type safety and to give
an easy way to get values out of the environment given only



the Term construct in the HLL. The exact definitions of these
constructs is given in Figure 5.

5 Discussion
This section gives an overview of other methods of quality
assurance, and discusses the limitations of formally proving
correctness.

5.1 Other assurance methods
Traditional methods of testing programs, such as unit tests,
integration tests, and property based testing, are often em-
ployed to assure a programmer of the correctness of their soft-
ware. It is often noted, and has been since at least 1969, that
testing a program only “shows the presence, not the absence
of bugs”[16, p. 16].

A significant number of projects rely on their widespread
adoption and a large amount of people reading over the code
to assure users of their quality[17]. This tactic is often emu-
lated within closed-source ecosystems by enforcing code re-
view by a different programmer before merging code into the
new branch[18].

However, even ubiquitous open-source programs have had
catastrophic bugs in them. One of the most glaring exam-
ples of this was the Heartbleed vulnerability in OpenSSL[19],
which despite operating between a quarter and half of popular
HTTPS sites, carried an egregious security flaw for over two
years before being discovered.

One study analyzing 198 failures in widely used software
found that 77% of them could be reproduced by unit tests[20,
Finding 9], with that number only being reached when the
fault was already known to exist. Additionally, 38% of sys-
tem specific catastrophic failures only occur in long-running
systems, making the possibility space of input events in-
tractable.

5.2 Limitations of formal proofs
It has been argued that formal proofs of correctness are an
anachronistic way of solving the problem of errors in pro-
grams[21]. The basic idea is that the batch processing per-
spective is dominant in reasoning about software and pro-
gramming languages, but that a significant portion of mod-
ern programs are long-lived ‘live’ programs such as operat-
ing systems or databases. For these types of programs, it is
argued, the abilities to introspect and to update a running pro-
gram are more important than proving some notion of cor-
rectness.

The Deep Space 1 spacecraft is one example of formal ver-
ification failing[22]. The program had been proven to be free
from concurrency errors, but this proof relied on the assump-
tion that only the concurrency constructs in the specially de-
signed language would be used. The person assigned to write
a part of the code was not properly informed of this and called
into some lower level Lisp constructs, thus unknowingly in-
validating the proof. The probe deadlocked twenty hours af-
ter becoming autonomous, but was revived by dynamically
updating the Lisp code running on it.

5.3 Limitations of the proof
This subsection will discuss some of the limitations of the
proof that is presented in this paper. Additionally, possible
remedies will be given where it is considered feasible.

Firstly, it is important to note that the refactoring and the
resulting proofs were done on an intrinsically well-typed syn-
tax tree rather than actual source code. This means that the
input program must be well typed, and no behavior is spec-
ified for ill-typed programs. Furthermore, the conversion to
and from text is done using Agda’s parser and printer, a com-
plete proof could also prove some correspondence between
the text representation and the underlying syntax tree.

Secondly, the proof and refactoring are specified in relation
to a small subset of a ‘real’ programming language that uses
semantics that are similar but not equivalent to real Haskell.
Given that the refactoring only transforms the program where
do notation is used, extending the language with additional
orthogonal constructs should only result in trivial changes
needing to be made. However, a distinction in semantics does
exist as do notation in Haskell also includes pattern matching
and fail recovery, which are not present in my language due
to the time constraints of this research project.

The specification of the HLL semantics in terms of Agda
is not very problematic, however, due to the similarity of the
languages[23], and it is common to use deep embedding to
represent a language in a proof assistant[24].

6 Responsible Research
The source code (and therefore proofs) used in this paper is
available online3, and can be verified as correct by loading it
in Agda. No attempt has been made to subvert the correctness
guarantees of Agda. All code has been written in a manner
which should make its function evident, and as such can be
safely built upon.

The limitations of my approach have been documented in
the Discussion section. This is done such that the reader can
make an informed judgement on whether to reproduce and
expand the ideas presented in this paper, or to embark on
other methods of quality assurance.

A lot of work has been done on proving formal correctness
by actors not everyone would agree are ethical. One exam-
ple would be seL4, which, although made in Australia, was
funded by DARPA through Boeing, to create an “optionally
manned helicopter”. The morality of the United States Mil-
itary Industrial Complex is left as an exercise to the reader.
Conversely, there is also a lot of interest in high assurance
software in fields such as medicine. And software errors in
such fields have been disastrous for many people.

7 Conclusions and Future Work
This paper has presented a refactoring that converts do blocks
into chains of >>= and has proven the result to be observa-
tionally equivalent. The way this proof was constructed, the
subset of Haskell that has been used to write it upon, and

3https://github.com/MetaBorgCube/
brp-agda-refactoring-timenzandberge

https://github.com/MetaBorgCube/brp-agda-refactoring-timenzandberge
https://github.com/MetaBorgCube/brp-agda-refactoring-timenzandberge


the choices made in the creation of this Haskell-like language
have been explained.
Supporting more of Haskell Currently, the subset of
Haskell that is included in the HLL is very limited. Expand-
ing this refactoring to all of modern Haskell would allow it
to be used in real-world projects. Broadening the proof to in-
clude orthogonal constructs can be done analogously to cur-
rent constructs not affected by the refactoring. There would
be a challenge in describing the semantics for all possible
monads, as these can also be user defined.
Supporting more refactorings By combining this correct-
by-construction refactoring with other refactorings that have
also been proven correct, a powerful suite of refactorings can
be composed. These smaller refactorings could then also be
combined into larger refactorings that implicitly carries all
the properties of the smaller refactorings they are composed
of[25].
A correct parser and printer Currently, the proof of cor-
rectness is only valid for an implicitly well-typed abstract
syntax tree. Future work would need to be done to com-
bine this language description with a parser and pretty-printer
which are also proven correct. The proof of correctness of the
refactoring could then be extended to include the actual string
representations pre- and post-refactoring.
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