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SUMMARY

The usage of terrestrial processors in space applications is not straightforward, as pro-
cessors in space face unique challenges due to the effects of the space environment,
like ionizing radiation causing Single Event Effects (SEEs). In the nineties, the European
Space Agency chose the Scalable Processor ARChitecture (SPARC) Instruction Set Archi-
tectures (ISA) for its processors, as it was the only solution available at that time provid-
ing both openness and available software support in terrestrial applications. Currently, a
large part of the worldwide space community is using SPARC-based radiation-hardened
(rad-hard) or radiation-tolerant (rad-tol) LEON processors in ongoing and planned mis-
sions, although SPARC processors virtually disappeared from terrestrial applications.
Rad-hard and rad-tol processors for space applications typically lag more than a decade
behind their commercial counterparts in terms of performance and the gap is widen-
ing every year. This is mainly due to the use of Rad-Hard-By-Design (RHBD) cells and
older technology nodes. The larger vulnerability to SEEs of complex microarchitectures
is not the only reason why simple microarchitectures with low parallelism are still the
vast majority of processors employed in space. As a matter of fact, most of the tasks ex-
ecuted by processors in space data systems are non-compute-intensive workloads. The
reason is that they are mainly employed for non-demanding control and housekeep-
ing operations. Therefore, enabling demanding tasks, such as the execution of Artificial
Intelligence (AI) algorithms in space embedded systems, requires a large leap in space-
grade processors, especially because space data systems in satellites are typically power-
constrained.

Recently, RISC-V, a novel free and open ISA, has risen in popularity in terrestrial
applications, drawing the attention of several universities and companies. Given the
similarity between SPARC and RISC-V, this dissertation starts by analyzing the advan-
tages of using RISC-V in space applications. The openness of RISC-V already enabled
a vast field of research activities for terrestrial applications, with many tools and mod-
els at different level of abstraction already available. Therefore, the space industry can
spin-in developments from academia and industry, focusing efforts mainly on improve-
ments concerning specific needs in space applications and without wasting efforts on
other activities. In order to fully exploit modularity, the need of defining the types of
processors required in space application was identified in this dissertation. The mod-
ularity of RISC-V was employed to identify several applications in space data systems
and RISC-V processor profiles to address them. They were defined in this work by the
ISA subset, Instruction-Level Parallelism (ILP), Data-Level Parallelism (DLP), Processor-
Level Parallelism (PLP), reference implementation and expected performance. The pro-
cessors profiles defined range from microcontrollers to general-purpose implementa-
tions to high-performance processors for AI. Finally, a roadmap to bring RISC-V IP cores
for terrestrial applications to space level was defined, identifying the steps and models
required.

xi



xii SUMMARY

After the thorough analysis of the state-of-the-art of RISC-V processors was com-
pleted, two different sets of activities were identified.

1. Increase the fault tolerance of microarchitectures of next-generation space pro-
cessors: In order to do this, a literature study was carried out and a model to eval-
uate the vulnerability of microarchitectures to SEEs was developed. During the
creation of this model, it was found that the most impacting factors on the SEE vul-
nerability are technology, environment and microarchitecture. The most vulner-
able parts identified in both next-generation and state-of-the-art processors were
caches, mainly because of the large area occupied. For this reason, addressing the
upsets in caches reduces failure rate for state-of-the-art and next-generation pro-
cessors by 96% and 93% respectively. Several redundancy techniques were intro-
duced and their effect on microarchitectures similar to state-of-the art and next-
generation space processors were evaluated with this model.

2. Increase performance of next-generation processors: Instead of focusing on the
optimization of existing microarchitecures, the focus here was on identifying new
types of applications for space processors for which performance can be dramati-
cally improved by new microarchitectures, as state-of-the-art processors were not
designed to execute them efficiently. An analysis of the requirements of proces-
sors to execute Deep Neural Networks (DNNs) was performed. Then, a study of
compute-intensive workloads required for execution of DNNs was carried out,
based on the case study of CloudNet, a DNN for cloud detection. Since it was
found that the workload is largely composed by matrix operations, the RISC-V Vec-
tor Extension (RVVE) was proposed to speedup the execution of these matrix oper-
ations. The effect of employing vector instructions was investigated in detail using
an ISA simulator and measuring the reduction in terms of number of instructions.
In the case of matrix-multiplications between 128£128 matrices, vector processors
are shown to provide a potential speedup up to 89£ .

Finally, vector instructions were implemented in Very High Speed Integrated Circuit
Hardware Description Language (VHDL) on a baseline NOEL-V processor from Cobham
Gaisler and the obtained vector processor was employed to generate a hardware proto-
type on a Field Programmable Gate Array (FPGA) achieving Technology Readiness Level
(TRL) 4. Furthermore, a detailed benchmarking with specific kernels including kernels
from CloudNet was carried out, to show the benefits of implementing vector instruc-
tions. Several configurations were considered with high- and low-latency main mem-
ory, based respectively on a Synchronous Dynamic Random-Access Memory (SDRAM)
and Synchronous Random-Access Memory (SRAM) memory. The presented prototype
is capable of executing a DNN for cloud detection roughly 20£ faster than the baseline
processor.



SAMENVATTING

Het gebruik van terrestrische processors in ruimtetoepassingen is niet eenvoudig, aan-
gezien processors in de ruimte voor unieke uitdagingen staan vanwege de effecten
van de ruimteomgeving, zoals ioniserende straling die Single Event Effects (SEE’s) ver-
oorzaakt. In de jaren negentig koos de European Space Agency voor de Scalable Pro-
cessor ARChitecture (SPARC) Instruction Set Architectures (ISA) voor zijn processors,
omdat dit de enige beschikbare oplossing was op dat moment die zowel openheid
als diffuse softwareondersteuning in terrestrische toepassingen bood. Momenteel ge-
bruikt een groot deel van de wereldwijde ruimtevaartgemeenschap SPARC-gebaseerde
radiation-hardened (rad-hard) of radiation-tolerant (rad-tol) LEON-processors in alle
lopende en geplande missies, hoewel SPARC-processors vrijwel verdwenen zijn uit ter-
restrische toepassingen. Rad-hard- en rad-tol-processors voor ruimtevaarttoepassin-
gen lopen doorgaans meer dan tien jaar achter op hun commerciële tegenhangers in
termen van prestaties en de kloof wordt elk jaar groter. Dit komt vooral door het ge-
bruik van Rad-Hard-By-Design (RHBD)-cellen en grotere technology nodes. De gro-
tere kwetsbaarheid voor SEE’s van complexe microarchitecturen is niet de enige reden
waarom eenvoudige microarchitecturen met een laag parallellisme nog steeds de over-
grote meerderheid zijn van processors die in de ruimte worden gebruikt. In feite zijn
de meeste taken die worden uitgevoerd door processors in ruimtegegevenssystemen
niet-rekenintensieve werkbelastingen. De reden is dat ze voornamelijk worden ingezet
voor niet-veeleisende controle- en housekeeping werkzaamheden. Om de uitvoering
van Artificial Intelligence (AI)-algoritmen in space embedded systems mogelijk te maken,
is daarom een grote sprong voorwaarts nodig in space-grade processors, vooral omdat
ruimtegegevenssystemen in satellieten doorgaans power-constrained zijn.

Onlangs is RISC-V, een nieuwe free en open ISA, steeds populairder geworden in ter-
restrische toepassingen en heeft het de aandacht getrokken van verschillende universi-
teiten en bedrijven. Gezien de overeenkomst tussen SPARC en RISC-V, begint dit proef-
schrift met het analyseren van de voordelen van het gebruik van RISC-V in ruimtetoe-
passingen. De openheid van RISC-V maakte al een enorm veld van onderzoeksactivi-
teiten voor terrestrische toepassingen mogelijk, met veel tools en modellen op verschil-
lende abstractieniveaus die al beschikbaar zijn. Daarom kan de ruimtevaartindustrie
ontwikkelingen uit de academische wereld en de industrie hergebruiken, waarbij de in-
spanningen voornamelijk worden gericht op verbeteringen met betrekking tot specifieke
behoeften op het gebied van ruimtetoepassingen en zonder inspanningen te verspil-
len aan andere activiteiten. Om de modulariteit volledig te benutten, werd in dit proef-
schrift de noodzaak geïdentificeerd van het definiëren van de typen processors die nodig
zijn voor ruimtetoepassingen. De modulariteit van RISC-V werd gebruikt om verschil-
lende toepassingen in ruimtegegevenssystemen en RISC-V-processorprofielen te iden-
tificeren om ze aan te pakken. Ze werden in dit werk gedefinieerd door de ISA-subset,
Instruction-Level Parallelism (ILP), Data-Level Parallelism (DLP), Processor-Level Paral-

xiii



xiv SAMENVATTING

lelism (PLP), referentie-implementatie en verwachte prestaties. De gedefinieerde pro-
cessorprofielen variëren van microcontrollers tot implementaties voor algemene doel-
einden tot high-performance processors voor AI. Ten slotte werd een routekaart gedefi-
nieerd om RISC-V IP-cores voor terrestrische toepassingen op ruimteniveau te brengen,
waarbij de vereiste stappen en modellen werden geïdentificeerd.

Nadat de grondige analyse van de state of the art van RISC-V-processors was voltooid,
werden twee verschillende sets van activiteiten geïdentificeerd.

1. Verhoog de fault tolerance van micro-architecturen van ruimteprocessors van de
volgende generatie: Om dit te doen werd een literatuurstudie uitgevoerd en werd
een model ontwikkeld om de kwetsbaarheid van microarchitecturen voor SEE’s te
evalueren. Tijdens het maken van dit model bleek dat de meest invloedrijke fac-
toren op de SEE-kwetsbaarheid technologie, omgeving en microarchitectuur zijn.
De meest kwetsbare onderdelen die werden geïdentificeerd in zowel de volgende
generatie als de modernste processors waren caches, voornamelijk vanwege het
grote bezette gebied. Om deze reden vermindert het aanpakken van de storingen
in caches het uitvalpercentage voor state-of-the-art en next-generation proces-
sors met respectievelijk 96% en 93%. Verschillende redundantietechnieken wer-
den geïntroduceerd en hun effect op micro-architecturen vergelijkbaar met state-
of-the-art en next-generation ruimteprocessors geëvalueerd met dit model.

2. Verhoog de prestaties van de volgende generatie processors: In plaats van te
focussen op de optimalisatie van bestaande micro-architecturen, lag de focus
hier op het identificeren van nieuwe soorten toepassingen voor ruimteprocessors
waarvoor de prestaties drastisch kunnen worden verbeterd door nieuwe micro-
architecturen, aangezien state-of-the-art processors niet zijn ontworpen om ze ef-
ficiënt uit te voeren. Er is een analyse uitgevoerd van de vereisten van processors
om Deep Neural Networks (DNN’s) uit te voeren. Vervolgens werd een onderzoek
uitgevoerd naar de rekenintensieve workloads die nodig zijn voor het uitvoeren
van DNN’s, op basis van de case study van CloudNet, een DNN voor cloudde-
tectie. Omdat bleek dat de werklast grotendeels bestaat uit matrixbewerkingen,
werd de RISC-V Vector Extension (RVVE) voorgesteld om de uitvoering van deze
matrixbewerkingen te versnellen. Het effect van het gebruik van vectorinstructies
is in detail onderzocht met behulp van een ISA-simulator en het meten van de ver-
mindering van het aantal instructies. In het geval van matrixvermenigvuldigingen
tussen 128£128 matrices, wordt aangetoond dat vectorprocessors een potentiële
versnelling tot 89 keer bieden.

Ten slotte werden vectorinstructies geïmplementeerd in Very High Speed Integrated
Circuit Hardware Description Language (VHDL) op een baseline NOEL-V-processor van
Cobham Gaisler en de verkregen vectorprocessor die werd gebruikt om een hardware-
prototype op Field Programmable Gate Array (FPGA) te genereren dat Technology Readi-
ness Level (TRL) 4 bereikte. Verder is er een gedetailleerde benchmarking uitgevoerd
met specifieke kernels, waaronder kernels van CloudNet, om de voordelen van het im-
plementeren van vectorinstructies te laten zien. Er werden verschillende configuraties
overwogen met hoofdgeheugen met hoge en lage latentie, respectievelijk gebaseerd op
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een Synchronous Dynamic Random-Access Memory (SDRAM) en Synchronous Random-
Access Memory (SRAM) geheugen. Het gepresenteerde prototype kan een DNN voor
clouddetectie ongeveer 20x sneller uitvoeren dan de baseline processor.
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1
INTRODUCTION

Blott Sverige svenska krusbär har.
Only Sweden has Swedish gooseberries.

Carl Jonas Love Almqvist, "Om svenska rim" (1838)

State-of-the-art space-grade processors lag behind their commercial counterparts because
of their niched-size market (meaning smaller design teams and investments), their need
for specific design solutions (e.g. tolerance against radiation effects), long qualification
times and the importance of flight heritage in space applications. As a result, state-of-the-
art space-grade processors are based on outdated Instruction Set Architectures (ISAs) and
simple microarchitectures. The recent availability of RISC-V, a free, open and modular
ISA, ignited the development of an unprecedented amount of open-source implementa-
tions targeting terrestrial applications. Future space systems could benefit from many of
these developments, provided that work is done to satisfy the specific needs of processors
for space (spin-in), especially in terms of fault tolerance and Technology Readiness Level
(TRL).

Parts of this chapter have been published in [1] and in [2].

1
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1.1. BACKGROUND
Artificial Intelligence (AI) has been identified in the last decades as one of the most
promising enabling technologies of future space applications [3, 4]. Deploying AI on
board satellites enables intelligent On-Board Decision Making (OBDM), which for in-
stance can help to overcome typical bottlenecks of space systems like the downlink
bandwidth. Link bandwidth is a problem especially for severely resource-limited space-
craft like small satellites (e.g. it can take hours to days to downlink an image to the
ground) [5]. The capability of filtering out images that do not meet certain criteria (data
reduction) can greatly increase the potential of CubeSats, a highly miniaturized standard
based on a satellite form factor of 10£10£10 cm3, as improvements in sensors generate
increasingly larger data volumes and storage space on CubeSats is typically very lim-
ited [5]. Furthermore, many proposed future missions are supposed to produce enor-
mous volumes of data. In order to enable them, [6] suggests that either significant com-
munication advancements or data reduction techniques are needed. However, advances
in both capabilities would provide systems designers with a larger design space where
better trade-offs are possible for missions producing large volumes of data. OBDM can
enable also swarms [7], Active Debris Removal (ADR) by Vision-Based Navigation (VBN)
[8] and in the future even cost-effective asteroid mining [9]. Furthermore, the capabili-
ties of future scientific missions can be improved by OBDM too. For instance, the intro-
duction of increasing degrees of OBDM capabilities to enable autonomous navigation
and autonomous interpretation of data in the Mars rovers decreased the need of send-
ing data to be processed and interpreted on Earth. Thus, the rovers were able to explore
more on the surface of the planet instead of waiting for commands, overcoming also
latency of operations commanded from ground [10].

Decisions can be made according to several degrees of "intelligence". In a first phase,
systems were "smart" because they were provided with fixed rules defined by experts
that worked for a specific application within certain expected boundary conditions. This
approach is typically referred to as Digital Signal Processing (DSP). As an example, [8] de-
scribes several "tailored" algorithms for VBN. Today terrestrial applications are in a new
phase where systems employ statistical learning to adapt their behavior to unexpected
changes. This approach is typically referred to as Machine Learning (ML). More specifi-
cally, Deep Neural Networks (DNNs) are booming in terrestrial applications, generating
a sub-field of AI known as Deep Learning (DL). This is possible thanks to the availability
of large data sets from ’big data’ and the availability of Graphics Processing Unit (GPU)-
based hardware that enables processing of large amounts data in a reasonable timescale
[11]. However, the situation in space embedded systems is quite different, as will be ex-
plained next.

The usage of terrestrial processors in space applications is not straightforward, as
processors in space face unique challenges due to the effects of the space environment,
like ionizing radiation causing Single Event Effects (SEEs)1 and Total Ionizing Dose (TID)
effects2. Radiation-hardened (rad-hard) processors for space applications typically lag
more than a decade behind their commercial counterparts in terms of performance and
the gap is widening every year (e.g. the commercial PowerPC-750 roadmap showed a

1SEEs are events caused by one highly energetic particle [12].
2TID effects are effects due to the accumulation of absorbed ionizing dose [13]
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performance improvement of » 2400£ from the early 1990s to 2005 [14], whereas the rad-
hard version was improved by only » 300£ [8]). This was mainly due to lower frequencies
and smaller caches, both due to older technology nodes (e.g. in [8] commercial proces-
sors were based on 28 nm technologies, while contemporary rad-hard processors on 65
nm technologies) and use of Rad-Hard-By-Design (RHBD) cells. Furthermore, proces-
sors used in space are typically slower than their terrestrial counterparts due to the long
qualification process for space-grade components and to a risk-averse behavior of space
industry that prefers components and technologies which already are flight-proven. As
a result, state-of-the-art space-grade processors are typically one or two order of mag-
nitude less performing than their Commercial-Off-The-Shelf (COTS) counterparts [8].
Therefore, enabling OBDM in space embedded systems requires a large leap in space-
grade processors to deal with algorithmic complexity, especially because satellites are
typically power-constrained [8]. The analysis of state-of-the-art space-grade processors
carried out with a literature review in Sec. 1.4 is the body of knowledge that will be im-
proved in this dissertation. Before this analysis of terrestrial processors, Sec. 1.2 intro-
duces concepts required in order to analyze the microarchitecture of processors in terms
of performance and Sec. 1.3 introduces concepts to analyze the fault tolerance of space-
grade processors.

1.2. CONCEPTS OF COMPUTER ARCHITECTURE
Comparisons of different processors are typically based on metrics involving perfor-
mance. In order to understand the reasons behind differences in performance, in this
section a simple model describing the performance of processors for a certain software
program is presented. The time required to execute a program, Tex, is given by:

Tex Æ
NI
fclk

¢CPI , (1.1)

where NI is the number of instructions in the program, fclk the clock frequency, and
CPI is the average number of Cycles Per Instruction [15]. Sometimes performance is ex-
pressed in terms of Instructions Per Second (IPS), where IPS Æfclk/CPI , although this
metric is incomplete as it does not take into account that different Instruction Set Ar-
chitectures (ISAs) require different NI to execute the same program. Sometimes per-
formance is expressed instead in terms of Instructions Per (clock) Cycle (IPC), where
IPC Æ1/CPI , which has the same limitation as IPS, and it does not take into account the
improvement in terms of performance due to an higher fclk.

The rest of this section shows how this execution time can be reduced for a given
processor, employing parallelism, speculation and caching. The elements introduced in
this section will allow a comparison of state-of-the-art processors for space applications
with state-of-the-art general-purpose processors for terrestrial applications in Sec. 1.4.

1.2.1. PARALLELISM
The execution time can be reduced by exploiting parallelism in several ways. In this case,
the focus is typically on decreasing the average number of CPI , although increasing fclk
or decreasing NI is possible too.
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INSTRUCTION-LEVEL PARALLELISM

One of the main tools to speedup the performance of a processor is to increase its level
of Instruction-Level Parallelism (ILP), i.e. the number of instructions executed simulta-
neously. There are two main approaches:

• Pipelined execution: multiple instructions are overlapped in time, each of them in
a different pipeline stage. Beside gains from overlapping execution of different in-
structions, another advantage of pipelining is the increase of the maximum allowed
frequency, as the logic is broken down in shorter paths [16]:

fclk Æ
1

(T /k) Å TS
, (1.2)

where T is the propagation time trough the logic before pipelining, k the number of
pipeline stages and TS is the overhead in terms of propagation time introduced by
the inserted sequential elements. Assuming that TS ÇÇ T /k, the improvement in fre-
quency is linear with the number of stages. However, the sub-operations of a given
instruction are not uniform and instructions are dependent from each other (inter-
instruction dependency). Non-uniform sub-operations require balancing of the logic
in the stages of the pipeline, as the maximum frequency will be determined by the
slowest combinational path in the pipeline with a propagation time of Tmax, where
T /k is replaced by Tmax in Eq. 1.2. To efficiently handle inter-instruction dependen-
cies an increase of design complexity is required. On the other hand, a simple so-
lution for inter-instruction dependency is stalling the pipeline until the dependen-
cies are solved, causing large penalties in terms of performance [17] because of an
increased CPI compared to an ideal pipeline without inter-instruction dependency.
Inter-instruction dependency can be classified in two types:

1. Data hazard: one of the instructions in the pipeline needs data from an instruc-
tion in later stages of the pipeline but that result isn’t already available in the reg-
isters. A typical example is a load followed by an operation on the loaded value.
In this case the loaded data can be directly forwarded as soon as they are ready
from the previous instruction, thus minimizing the stall [15].

2. Control (or branch) hazard: when a branch instruction is fetched, it takes some
Clock Cycles (CCs) before knowing the target address and whether the branch is
taken or not. In this case speculation can increase performance (Sec. 1.2.2).

Another argument against pursuing an increase of performance by increasing fclk with
a very deep pipeline is that an enhancement in a subsystem of the processor provides
a limited improvement to the performance of the processor as a whole, as that sub-
system is used only a limited amount of time. This is expressed by the Amdahl’s Law
[15]:

Improved Execution Time Æ
Affected Execution Time

Improvement
Å Unaffected Execution Time.

(1.3)
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For instance, memories are typically slower than processors. Assuming that reading
and writing to the memory takes 60% of the time and improving the clock frequency
of the processor by 10£ , the execution time will decrease only by 36% [17].

• Multiple issue: the lower boundary for CPI of a single-issue processor is one. Multiple-
issue processors deal with multiple instructions per stage, so that CPI can be less than
one. There are two approaches for this:

1. Static: the compiler analyses the software and packages instructions to execute
simultaneously, when possible. This solution requires the pipeline (or at least
parts of it) to be replicated. The multiple instructions launched during the same
CC can be seen as one large instruction with multiple operations in parallel. For
this reason, the processors that employ this approach are called Very Long In-
struction Word (VLIW) processors [15].

2. Dynamic (superscalar): in this case the processor decides during execution whether
zero, one, or more instructions can be issued at a given CC [15]. A processor that
can execute up to n instructions is usually called a n-way processor [15].

To utilize more efficiently the ILP of superscalar processors, sometimes dynamic
pipeline scheduling is employed, i.e. using Out-of-Order (OoO) pipelines. Dynamic
pipeline scheduling chooses which instructions to execute next, reordering them to
minimize stalls [15].

DATA-LEVEL PARALLELISM

A processor with Data-Level Parallelism (DLP) can execute an instruction on more ele-
ments of an array. Therefore, a considerable improvement in terms of performance can
be obtained, as Data-Level Parallel (DLP) instructions reduce the number of instructions
NI in a program by dealing with larger chunks of data compared to non-DLP instruc-
tions. This improvement is larger for programs where many instructions operate on reg-
ular data structures, which can be treated as vectors. However, when implementing DLP
the challenge is to keep the penalty on CPI and fclk low. Two different approaches can be
identified for DLP [18]:

1. Packed-Single Instruction Multiple Data (SIMD) DLP: a specific instruction is added
to the ISA to exploit DLP provided by the hardware. The width is encoded in the
assembly instruction. As a consequence, in order to increase performance and
assure backward compatibility, also the number of instructions has to increase.

2. Vector DLP: this type of implementation can be seen as a more flexible version
of packed-SIMD thanks to its time-multiplexed and Vector-Length Agnostic (VLA)
approach. The VLA approach implies that the software is oblivious to the hard-
ware vector length of a specific implementation and the same code executes using
the largest parallelism possible on each platform [18–20]. This approach greatly
simplifies software, especially because the width of the vectors is flexible and the
ISA is independent from the level of parallelism provided by the platform.

As noted in [18], even if SIMD solutions have been successful on the consumer market,
they are a suboptimal choice for an ISA. As a matter of fact, SIMD processors are usually
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implemented replicating the Arithmetic-Logic Unit (ALU) and providing new opcodes3

to the ISA in order to exploit this parallelism. This makes ISA instructions dependent on
the implementation-specific degree of parallelism and new instructions must be added
when a new level of DLP is required. When the architects of a packed-SIMD ISA wish to
increase performance by widening the vectors, they must add a new set of instructions
to process these vectors. For instance, Intel’s newest AVX instructions are as long as 11
bytes [18]. Furthermore, application code compiled for previous versions cannot auto-
matically leverage the widened vectors of new implementations. At the same time, code
compiled for wider packed-SIMD registers fails to execute on older machines as the new
instructions are not known to older implementations. Furthermore, in SIMD extra code
is needed to handle fringe elements of strip mine loops [18].

THREAD-LEVEL PARALLELISM

Thread-Level Parallelism (TLP), also known as hardware multithreading, allows multiple
threads4 to share the functional units of a single processing core, switching thread when
the running one is stalled. In order to do this, the processor must store the independent
state of each thread. Hardware multithreading can be implemented in several ways:

• Coarse-grained: one thread runs until it is blocked by an event that creates a long
latency stall (e.g. a cache miss). Hardware support for this type of multithreading is
meant to allow quick switching between the threads, for instance storing the program
visible state (e.g. general purpose registers and program counter) in the processing
core [21].

• Fine-grained: the processor checks every cycle if the current thread is stalled or not. If
stalled, a hardware scheduler will change execution to another thread that is ready to
run [21]. Simpler fine-grained implementations, like the one described in [22], change
thread every CC independently if the current one is stalled or not [23].

• Simultaneous: in this case a superscalar processor can issue instructions from either
the same thread or from different threads [23]. The hardware thread scheduler has to
chose the best instruction in order to maximize the utilization of the resources [21].

While coarse-grained multithreading is suited to avoid stalls due to a cache miss, fine-
grained and simultaneous multithreading can effectively circumvent penalties due to
control and data hazards [21] and can avoid the need for branch prediction. In [22] sev-
eral fine-grained processing cores with different numbers of pipeline stages and num-
bers of hardware (HW) threads are proposed. The data in [22] shows the average number
of IPC as a metric for the utilization of the pipeline for several versions of the same fine-
grained implementation depending on the number of the software threads employed.
It shows that even the simplest form of fine-grained implementation achieves full uti-
lization (in this case IPC Æ1) of its single-issue pipeline when the number of threads is

3Abbreviated form of "operational code", i.e. a portion of machine language that specifies an operation to be
performed.

4From a software perspective, a thread of execution is the smallest sequence of programmed instructions that
can be managed independently by a scheduler, which is typically a component of the operating system. A
thread includes the program counter, the register state, and the stack [15].
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greater than or equal to the number of pipeline stages. When the number of threads is
smaller than the number of pipeline stages, the pipeline is underutilized.

PROCESSOR-LEVEL PARALLELISM (PLP)
In the last decade Moore’s Law made it possible to include more processing cores in the
same Application-Specific Integrated Circuit (ASIC) [24]. The most common approach
to handle this parallelism is to provide a single physical address space that all the cores
can share and to employ an Operating System (OS) scheduler to assign a thread to each
core. This approach is called Symmetric MultiProcessing (SMP) [25]. Each processor
works internally with virtual addresses that need to be translated to physical addresses.
Processors communicate through shared variables in memory, with all processors capa-
ble of accessing any memory location via loads and stores [15].

General-purpose processors employ a Memory Management Unit (MMU) to trans-
late page-based virtual addresses to physical addresses. The address table necessary for
such translation is contained in the main memory and accessing it for each address is
not an optimal solution. For this reason, Translation Lookaside Buffers (TLBs) are typ-
ically employed to reduce the average time per address translation in a similar manner
as caches are employed to decrease the average access time to data and instructions in
main memory (see Sec. 1.2.3).

SMP processors typically provide up to eight cores, as they are limited by the sequen-
tial model of the software and the use of shared resources (memories and interconnects).
The impact of sequential tasks can be described applying Amdahl’s Law (Eq. 1.3) to the
parallelization problem [26], dividing a general problem in a parallelizable part (p) and
a sequential part (s). The time required to execute the algorithm on a single core can
be written as Tex,1 Æ(s Å p)Tex,1, where s Å p Æ1. Assuming that the size of the problem
remains constant with the increase of PLP, with n processing cores the execution time
becomes Tex,n Æ(s Å p/n)Tex,1. Therefore, the speedup S due to the use of n cores is:

S Æ
1

s Å p/n
. (1.4)

In [26], it can be seen how, for an infinite amount of parallel processors, this leads to the
theoretical maximum speedup of 1/s. This means that, under the assumption that the
size of the problem remain constant, the speedup of a program using multiple cores in
parallel is limited by the time needed for the sequential fraction of the program. In an
SMP platform this means that the capability of the OS to parallelize the workload is the
final bottleneck. Therefore, increasing the number of processors provides only marginal
improvements from a certain number of processors onward, independently from how
efficiently resource sharing problems (e.g. access to shared memories) are solved.

Gustafson in [26] objected the assumption that the size of the problem remains con-
stant when PLP is increased. Instead, he assumed that it is the run-time that remains
constant, thus increasing the amount of calculations included in the problem (assum-
ing that the workload can scale with the number of processors). Assuming that the serial
part remains constant and that the parallel part can be parallelized over the n processing
cores, then T n

ex,n Æ(s0Å p0)T n
ex,n for a parallel system (also here s0Å p0Æ1). The time re-

quired by a single processor executing the workload scaled by n is T n
ex,1 Æ(s0Å p0n)T n

ex,n .
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In this case the execution time of the sequential part of the software becomes more and
more negligible when the number of processors is increased, giving a linear increase
with the number of processing cores, as shown below:

S Æs0Å p0n. (1.5)

Following this paradigm, several manycore5 processors, providing higher degrees of PLP,
have been released (for instance with 64 cores [27]). These processors typically employ
replicas of simple processors, and to parallelize the workload, each of them executes
the same instruction on different data. This paradigm is often referred to as Multiple
Instruction Multiple Data (MIMD) [18].

1.2.2. SPECULATION
Another way to decrease CPI is to use speculative execution (speculation). Speculation
consists in predicting the outcome of an operation and start working assuming that the
guess is right. As soon as the actual result is available, it must be checked if the predic-
tion was right. If that was not the case, then the effect of the instructions that were ex-
ecuted speculatively must be reversed. For this reason, the implementation of specula-
tion adds complexity [15]. Speculation is typically employed when a conditional branch
instruction creates a control hazard in a deep and wide pipeline. For instance, in ARM
Cortex-A8 (a dual-issue 14 stages processor where the branch address is calculated at
the 13th stage, hence number of issues Æ2 and stalling penalty Æ13 CCs) if the pipeline
is stalled while waiting for the branch address, then the number of potentially wasted
cycles are: number of issues£ stalling penalty (that in this case gives 26 wasted CCs per
branch). Considering a branch predictor which predicts correctly 80% of the times in
average, only an average 5.2 CCs per branch are wasted.

Data from [28] show that control instructions have low impact on parallel implemen-
tations of algorithms (e.g. making up only around 2% of the executed instructions), while
they have a considerable impact on sequential algorithms (e.g. making up from 16% to
25% of the executed instructions). Branch prediction is typically transparent to software
(except for variable execution times, so it can be a problem for time-determinism), as
typically it is fully addressed at hardware level. Two approaches are possible:

1. Static branch prediction: the outcome of the branch is predicted before program
execution. This approach is based on prediction heuristics from typical software
[29] and achieves low efficiency, as it does not take into account the result of such
predictions to improve them during software execution. The most popular ex-
ample is the always-taken predictor. This technique can help with prediction of
conditional branches in loops, which are more likely to be taken than not (usually
more than one loop iteration is executed).

2. Dynamic branch prediction: these predictors achieve higher efficiency by learning
on past behavior and exploiting temporal and/or spatial correlation. The typical

5Eight cores can be considered as the boundary between multicore and manycore (typically still considered
multicore).
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solution is a Branch History Table (BHT), a small memory indexed by the lower
portion of the address of the branch instruction. The memory contains a bit that
indicates whether the branch was recently taken or not [15].

Branch prediction speculates on whether a conditional branch is taken or not, but
cannot speculate on the address of the target. For this reason, other forms of prediction
can be employed to avoid stallings due to the calculation of the target address. The two
most popular approaches, often used simultaneously, are:

1. Branch Table Buffer (BTB): a memory indexed with the lowest bits of the address
of a branch instruction and holding the destination instruction address of the last
time a branch instruction with the same lowest bits of the address was resolved.
BTBs work well in most cases but perform poorly at returns from functions, be-
cause a function can be called from several positions within a program [15].

2. Subroutine return stack: an effective way of predicting the branch target when
returning from a subroutine is to push in a stack the call address when a function
call is executed and pop the return address when the return instruction is decoded
[15].

1.2.3. MEMORY SUBSYSTEM
A corollary of Amdahl’s law (Eq. 1.3) is the feasibility of improving performance by mak-
ing the most common cases faster (i.e. a large part of the execution time will be affected
by the improvement). The most striking example of this approach are cache memories.
Caches store recently accessed data (temporal locality) and other contiguous memory
locations (spatial locality), to reduce as much as possible the time spent accessing the
main memory [15]. A block of data read from main memory is placed in a certain con-
tiguous set of locations of the cache according to its associativity. The most common
case is that of set-associative caches, i.e. there are a fixed number of locations where
each block can be placed [15]. A set-associative cache with n possible locations for a
block is called an n-way set-associative cache [15]. Increasing the number of ways de-
creases the probability of a block to be evicted, hence reducing cache misses, but on the
other hand complicates the design, as more sets have to be inspected to check whether
the data is present in the cache.

Memories in processors are organized in hierarchies, as shown in Fig. 1.1. A typical
memory hierarchy has Register Files (RFs) in the core, the fastest and smallest memories.
At the interface between the core and the interconnect, there are Level 1 (L1) caches,
divided in Instruction Caches (ICs) and Data Caches (DCs). L1 caches are considerably
larger than RFs and typically require a couple of CCs to access them. Between the cores
and the main memory, even larger and slower levels of cache (typically shared between
the cores and other masters) are placed to achieve the desired access time/miss penalty
trade-off. It should be noted that caches and layered memory architectures increase
performance for the average case, while access times for the worst case get longer and
time-determinism is penalized. In fact, when a cache does not contain the data, it has to
fetch it from higher levels, recursively up to the main memory.
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Figure 1.1: Typical memory hierarchy and memory sizes for a dual-core general-purpose processor. A similar
memory hierarchy can be found in the GR740 processor [30].

CACHE COHERENCE

The increasing number of processing cores and the limited increase in memory band-
width makes the memory bandwidth the bottleneck of a multicore system [31]. In a
shared-memory multicore processor, data can be stored in several locations simultane-
ously, e.g. one copy might be residing in the main memory while other copies reside in
several cache memories. When one copy of the data is modified by a processing core6,
then the copies in other caches have to be updated or invalidated. When a processing
core writes data to its local cache, two different strategies can be employed [32]:

1. Write-back: the main memory is written back only when the cache line is flushed
[32]. This can result in discrepancies when the same data is updated in a different
way by two different processors. This strategy result in less use of bandwidth but
requires more advanced cache coherence protocols.

2. Write-through: when data is written in a local cache it is also written in the main
memory [32]. This simplifies the coherence issue, although a cache coherence
protocol is still needed to invalidate (write-invalidate) or update (write-update)
other private caches.

1.2.4. MEASURING PERFORMANCE
In principle, the software employed to select the best processor for a certain application
should be a representative portion of the flight software. To have less-specific compar-
isons (and available before coding the flight software) between processors, they are typ-
ically compared using benchmarks, i.e. software intended to emulate the workload for a
given type of application. The choice of the benchmark is critical, as it can unfairly favor

6Although the focus in this work is on processors, in general this applies also to other type of masters (e.g.
interface controllers).
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one implementation over the other. The most common benchmark for embedded pro-
cessors is CoreMark [33], while for processors targeting personal computers the SPEC
suite is more popular [34].

Historically, performance of embedded processors were assessed measuring the time
required to execute part of a "synthetic" program called Dhrystone [35]. In this case per-
formance are typically expressed in "Dhrystone MIPS" (DMIPS)7, i.e. how many times
the execution is faster compared to a reference processor (VAX 11/780) [36]. However,
this program is so short that can fit in the L1 caches of many state-of-the-art processors,
thus exercising only a small portion of the core infrastructure (i.e. integer unit). Further-
more, large portions of Dhrystone can be optimized by the compiler and library calls
are made within the timed portion of Dhrystone. Since the library code is not part of
the benchmark, it is difficult to compare results because different libraries can be used
on different implementations. Using CoreMark instead of Dhrystone addresses these is-
sues. For instance, CoreMark ensures that the compilers can not precompute the results,
as every operation is based on a value that is not available at compile time. Furthermore,
no library calls are made within the timed part.

The timed portion of CoreMark can be divided in three parts [33]:

1. Operations (e.g. reverse, search or sort) on linked lists8, based on the values of
the data items in the list. Including this type of workload measures how fast the
processor deals with pointers and non-serial memory access patterns.

2. Operations on an input matrix (e.g multiplication with a constant, a vector, or an-
other matrix). Furthermore, also operations on subsets of bits from each matrix
item are carried out. Matrix operations can be efficiently sped up by DLP (even if
they are relatively small, i.e. 12£12 [38]) and are based on (nested) loops.

3. Operations on strings (array of characters), with the goal of testing an input string
to detect whether it is a number or not. Including this type of workload mea-
sures the performance of the processors when dealing with irregular conditional
branches (i.e. different from loops).

Furthermore, the correctness of most operations is checked with a 16-bit Cyclic Redun-
dancy Check (CRC). CRC is also included in the time measurement, as it is a common
operation in software [33].

The score obtained after running CoreMark (usually for a large number of iterations)
is the number of times CoreMark is executed per second. Often the CoreMark score
is normalized to MHz (CoreMark/MHz), removing the dependence on clock frequency
(hence on technology). However, measuring the performance in terms of CoreMark/MHz
tends to penalize improvements due to the increase of the number of pipeline stages,
because they increase performance mainly by increasing the maximum clock frequency
(while they can even penalize the processor in terms of IPC).

7Although the name can cause misunderstandings, DMIPS is a relative measure of Tex and it is not the number
of MIPS measured when executing Dhrystone.

8Linked lists are dynamic data structures. Each element of the linked list contains an element to the next
element plus data. These type of constructs are used when the number of elements to be represented are not
known at compile time [37].
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1.3. DEPENDABILITY OF PROCESSORS FOR SPACE APPLICATIONS
Processors for critical applications are required to satisfy certain requirement in terms
of dependability, i.e. "the ability to deliver service that can justifiably be trusted" [39].
Although in principle this definition also includes the effects of malicious threats (in-
tegrity, confidentiality), in space the focus is still on the effects of non-malicious faults,
mainly due to radiation. However, regardless of the specific threats due to the space en-
vironment, processors in space have to be first of all robust against faults common to
processors in terrestrial applications. For instance, simulations for a 32-nm ASIC tech-
nology show that the data propagation delay of Flip-Flops (FFs) increases less than 5%
in 5 years of stress conditions due to aging [40]. This can be taken into account during
design by applying larger margins on the maximum allowed frequency.

1.3.1. FAULTS DUE TO RADIATION
Changes in the charge stored in nodes due to particle strikes are typical faults in space
processors, and they are called soft errors as they can be removed simply overwriting
them with the correct value [41]. This is not the case for hard errors [42], where the dis-
tinction between fault (e.g. defective gate) and error (e.g. wrong result of a calculation)
is needed for correct recovery (e.g. to replace a defective unit with a spare unit).

Despite the possibility of hard errors, soft errors due to radiation typically dominate
the failure rate of processors already in terrestrial environments. In [43] the ratio of soft
errors to hard errors for Static Random-Access Memory (SRAM) arrays in processors
ranges from 77 to 735, and in [44] 99.36% of the errors in a SRAM array are soft errors
while 0.64% are hard errors. Soft errors in space are even more predominant, as in this
case charged particle strikes are more common (outside the Earth atmosphere the flux
of particles is higher) and different particles are present (heavy ions and protons instead
of neutrons) [45].

Furthermore, the focus in this dissertation is on faults capable of generating func-
tional errors while faults which generate electrical failures like Single Event Latchups
[46] and increase of absorbed current due to TID effects [13] will not be investigated in
detail. The reason is that those are typically not addressed at microarchitectural level but
at technology and electrical level instead.

SINGLE EVENT UPSETS (SEUS)
A Single Event Upset (SEU) can lead to a single or multiple upset. In the first case, the
term Single Bit Upset (SBU) is employed. In the second case, the term Multiple Bit Upset
(MBU) can be used9. The upset rate ¸ ev mainly depends on the radiation environment
(including also shielding), the technology10 and the choice of the sequential and com-
binational elements in the processor within the same technology. The upset rate can be
either estimated with environmental models or measured on the field [48]. In the first

9Sometimes the term Multiple Cell Upset (MCU) is employed instead, while MBU is reserved to cases where
the multiple upsets are in the same Error Detection And Correction (EDAC)-protected word.

10Several factors can be included in the technology. For instance, the error rate per bit on a specific technology
depends on the voltage chosen (in [47] decreasing the voltage from 1.2 V to 0.8 V results in an increase of the
error rate by a factor 1.5x up to 3x, depending on the radiation source). However, as shown in [47], this does
not change the ratio between errors from combinational and sequential logic.
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case, a standard approach is to carry out a radiation test composed of several test runs
with particles with different Linear Energy Transfer (LET)11 and measure the respective
cross section12. Afterwards, tools like SPENVIS [50] are used to calculate the differential
LET spectrum which can be obtained from the particle differential energy spectra in a
certain orbit [49]. The upset rate can be then found with the following integral [49]:

¸ ev Æ
Z 1

0

Z 1

¡ 1

Z 2¼

0
f (L,µ,Á) ¾(L,µ,Á) dÁ dcos(µ) dL (1.6)

where the differential flux f and the cross section per bit ¾depend on the LET L and
the incidence and rotation angles (µ and Á) [49].

Data from [51] show for a commercial 28-nm Fully-Depleted Silicon-On-Insulator
(FD-SOI) SRAM a predicted in-orbit SEU rate of 4.66¢10¡ 9 upsets/bit/day for solar mini-
mum in Geostationary Orbit (GEO). From data in the same work, an estimation of 5¢10¡ 7

for worst week in GEO and 5 ¢10¡ 10 upsets/bit/day for Low Earth Orbit (LEO) can be
taken (three orders of magnitude less than GEO worst conditions). Data from [52] show
that considering different time spans will have different worst cases, e.g. the upset rate
for the worst case of an SRAM array for one week in GEO is one order of magnitude lower
than the worst case for 5 minutes, the latter reaching an upset rate of around 10¡ 2 upset-
s/bit/day (similar values are given in [53], some of them even reaching 10¡ 1 upsets/bit/-
day). Furthermore, the upsets are not homogeneously distributed in a certain orbit. For
instance, all reboots in [54] (LEO) due to upsets happened in the South Atlantic Anomaly
(SAA) and over the poles, where the level of radiation is higher due to the lower magnetic
field shielding. To provide a comparison with processors in terrestrial environment, the
upset rates at sea level in [55] is assumed to be 2.7 ¢10¡ 11 upsets/bit/day, which is four
orders of magnitude less than for the 28-nm FD-SOI in GEO (worst week).

The radiation environment experienced by the processor depends also on the
amount of shielding, which cannot be controlled by the designer of the processor. In [52]
it is shown that the reduction of upset rate due to an ideal aluminium sphere going from
0.1 mm to 2.5 mm is of 4 orders of magnitude for a 45-nm Silicon-On-Insulator (SOI)
SRAM in the case of trapped protons, typical of LEO [56]. Considering an electronic box
in a spacecraft brings the upset rate down of roughly another order of magnitude. How-
ever, in [52] it is shown that Galactic Cosmic Rays (GCR) are not affected by shielding
depths. This causes a plateau of 8.64 ¢10¡ 7 upsets/bit/day for the SRAM technology con-
sidered in [52], where adding more shielding does not improve the radiation tolerance
of the part which must be addressed exclusively at semiconductor level.

In a similar manner, different technologies exhibit different upset rates in the same
radiation environment. A typical RHBD SRAM memory based on a 250-nm technology
has been reported in [48] to operate in GEO with an average of 1.8¢10¡ 10 upsets/bit/day.
A commercial SRAM based on 65nm bulk technology in [57] is reported to experience
an average of 1.5 ¢10¡ 7 upsets/bit/day in LEO, and in GEO would show an even higher

11The LET represents the energy loss of the particle when it travels a unit distance in the semiconductor [49].
It is typically normalized to the density of the material and given in MeV cm2/mg .

12The device cross section for a given LET is defined as the quantity that multiplied by the particle flux pro-
duces the SEE rate of that flux of particles. It is typically given as cm2/device or cm2/b [49].
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upset rate. Space-grade processors are currently based on 65-nm (e.g. GR740 [58]) or
even 180-nm (e.g. GR716 [30]) RHBD ASIC technologies, while typical processors for
terrestrial application are typically below 28 nm (e.g. [59]). These newer technologies
are expected to be more vulnerable: when scaling from 65 nm to 14 nm the upset rate
increases from around 10¡ 12 to around 10¡ 11 upsets/bit/day for planar bulk technolo-
gies, while it increases from 10¡ 11 to 10¡ 10 upsets/bit/day for FDSOI and Fin Field-Effect
Transistor (FinFET) technologies [51] (all of them measured at ground altitudes). For all
three types of technologies the increase happens when going beyond 28 nm, while from
65 to 28 nm the upset rate is constant or slightly decreasing.

Even in the same technology, different sequential elements composing the processor
can have different upset rates. For instance, the OpenSPARC T2 in [60] (65 nm) is mainly
composed of SRAM arrays optimized for density (for caches) with an upset rate ranging
between 8.58 ¢10¡ 13 and 1.14 ¢10¡ 12 upsets/bit/day, less-dense and higher-performance
SRAM arrays (for register files) with an upset rate per bit of half or less and FFs with an
upset rate per bit of one-third or less compared to the SRAM array optimized for density.
However, as Ref. [61] shows, this is not always the case and several technologies (espe-
cially newer ones) show the opposite situation. As a matter of fact, the ratio of the upset
rate of FFs to SRAM cells in [61] is 0.44 for 130-nm, 1.96 for 90-nm, 1.75 for 65-nm and
1.15 for 40-nm technologies.

The differentiation between FFs and SRAM arrays is also required because FFs have
temporal masking, which is not present in SRAM arrays. Considering an upstream se-
quential element connected to a downstream element through combinational logic, an
upset happening in the upstream element between t Ætsamp ¡ Tprop and t Ætsamp (where
tsamp is the sampling instant given by the clock and Tprop is the time required for the
correct sampling of a signal propagating from the upstream to the downstream element)
will not propagate to the sequential elements downstream. A sampling factor can be
defined as

SFFF Æ1 ¡
Tprop

Tclk
, (1.7)

where Tclk is the clock period for the FFs. This implies that the fraction of temporally
masked errors in FFs actually increases with the frequency [47]. Despite this masking,
typical models used in literature assume a constant failure rate for FFs when changing
frequency [62], while more refined analyses find that there is an increase of the failure
rate due to a Single Event Transient (SET) mechanism in the combinational logic be-
tween master and slave. Data provided in [63] show that this increase is very small, when
considering a single FF the maximum found is 5¢10¡ 15 errors/bit/day/MHz. Considering
a design going from 100 MHz to 1 GHz, the error rate increases by 4.5 ¢10¡ 12 errors/bit/-
day, which is of orders of magnitude less even compared to the less vulnerable technolo-
gies for space (around 10¡ 10 upsets/bit/day). However, as mentioned in [47], testing
shift registers where Tprop is close to zero fails to take into account temporal masking,
and SFF F is close to one for practical values of frequency. On the other hand, when test-
ing a circuit with both sequential and combinational logic, understanding which of the
two generated the error sampled in an FF to validate the temporal masking model is a
daunting task. According to the model in [47], temporal masking instead can have a con-
siderable impact. In [47] an average SFF F of 66.6% is given. When lowering the frequency
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on the same design the sampling factor increases, until for 100 MHz the sampling factor
gets to 96.66%.

Even the same type of sequential element can come in different sizes for the right
performance/power/area trade-off. Data from [64] shows that FFs for a 65-nm com-
mercial bulk technology have upset rates ranging between 1.6 ¢10¡ 7 upsets/bit/day
(fastest FF) and 4.1 ¢10¡ 7 upsets/bit/day (slowest FF, 2.56£ more vulnerable). Rad-hard
(radiation-hardened) versions of the same technology have upsets rates ranging from
8.12 ¢10¡ 8 to 1.82 ¢10¡ 9 upsets/bit/day (2.24x increase of vulnerability with a 3x increase
in drive strength). From [65] it can be seen that a rad-hard version of a FF on commer-
cial technology can achieve a reduction of upset rate of 350£ . In [47] several frequency
targets (ranging from 100 MHz to 900 MHz) are set when synthesizing a processor, gener-
ating implementations with different mix of FFs. This increases vulnerability up to 10%
(i.e. RVF F Æ1.1) taking the less vulnerable as reference. This increase follows a regular
pattern, growing with the difference between the target frequency (e.g. 900 MHz) and
the real clock frequency (e.g. 100 MHz).

The upset rate ¸ ev is typically assumed constant [66] (i.e. inter-arrival times of er-
rors are independent [66]) and therefore the reliability function is exponential for each
sequential element, i.e. Rb(t ) Æe¡ ¸ ev¢t . The use of the exponential distribution implies
that the error rate of a series of elements becomes the sum of the error rates and the
probability of not having an upset in the processor is RSEU (t ) Æe¡ SERSEU ¢t , where the
Soft Error Rate (SER) due to SEUs is:

SERSEU Æ¸ ev
¡
NSRAM ¢RVSRAM Å NF F ¢RVF F ¢SVF F

¢
(1.8)

where NSRAM and NF F are respectively the number of SRAM cells and FFs. RVSR AM and
RVF F are the average vulnerability of respectively SRAM cells and FFs employed rela-
tively to a reference sequential element with event rate ¸ ev.

When considering MBUs, they can be measured as fraction of the total events. This
means that if two events happen, one generating a SBU and one a MBU, the fraction of
MBU is 50% regardless of the number of errors due to the MBU. Data from [67] show
that for SRAM arrays in a 90-nm ASIC technology 95% of events cause a SBUs, 4% cause
a MBU2

13 and 1% cause MBU3). For 65-nm SRAM arrays the situation reported in [67] is
quite different: 45% are SBUs, 18% are MBU2, 10% are MBU3 and 27% are MBU(¸ 4). As
a pessimistic estimation for Ultra Deep Sub Micrometer (UDSM) technologies data from
[68] for a 32-nm SRAM array can be taken: in this case the fraction of SBUs is 24%, the
fraction of MBU2 is 52%, the fraction of MBU3 is 3% and the fraction of MBU¸ 4 is 21%.

SINGLE EVENT TRANSIENTS (SETS)
A single particle hitting a combinational node is able to cause a transient voltage pulse
[69]. This pulse can be latched by the sequential elements downstream. A SET can be ei-
ther seen as a single error or multiple errors in sequential elements by the user (e.g. soft-
ware level). Even if the user is not able to distinguish between SETs and upsets, SETs have
different generation mechanisms that require different redundancy techniques com-
pared to SBUs and MBUs. As a matter of fact, SETs have additional levels of masking

13In this dissertation, the notation MBUn will be employed to indicate MBUs causing n upsets with a single
particle strike.
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(electrical and logical) [70]. Furthermore, they have a different temporal masking mech-
anism: if the pulse reaches the sequential element outside from the sampling window,
then the spike is not sampled and the error not generated. This implies that the con-
tribution of SETs increases with the increase of the frequency. The reason is that when
frequency increases, the sampling window becomes a larger fraction of the total time.

In relatively old technologies (e.g. technology nodes larger than 90 nm), SETs are
not predominant as they are attenuated by large capacitance (electrical masking) and
the low clock frequencies make the sampling unlikely (temporal masking) [71]. In more
recent technologies instead, capacitance is reduced and the clock frequency is higher.
For this reason, the probability that a spike is latched increases [71]. In [72] a compara-
tor, an FF chain and an inverter chain are tested to compare the contribution of SETs
and SEUs on a 45-nm bulk technology. The chain of inverters in [72] has a depth (12
stages) to emulate the highest electrical masking available typically in designs and ac-
counts only for electrical and temporal masking, while the comparator also account for
logical masking. As logical masking depends upon the input combination, in [72] a best,
average and worst case are given. The worst case counts around twice the SETs com-
pared to the best case. Furthermore, in [72] errors due to combinational logic (inverter
chain) are less than one eighth of errors in sequential elements up to 100 MHz, around
half at 500 MHz and uncertainties overlaps for 1 GHz (even if the expected value is still at
half the sequential elements). The crossover frequency is around 1.5 GHz for the inverter
chain and between 1.7 and 5 GHz for the comparator. However, considering that the vul-
nerability of FFs decreases with frequency, the contribution of sequential logic would be
higher and the crossover frequency lower. This shows how increasing frequency does
not necessarily increase the error rate, but certainly increases the relative vulnerability
of combinational logic in the design, making optimal redundancy for low frequency not
fit for higher frequencies. The SER due to SETs can be written as:

SERSET Æ¸ ev
Acomb

Ab
SFSET RVcomb (1.9)

where Acomb is the area of the combinational logic, Ab the area of the reference sequen-
tial element associated with ¸ ev, and SFSET is the sampling factor of SET pulses (indi-
cating how many pulses are actually sampled by the sequential elements downstream).
In [73] the overall probability of a SET being latched given a strike is 16.55% for 45 nm,
21.31% for 32 nm, 26.27% for 22 nm and 28.71% for 16 nm. A best case with SFSET Æ0%,
an average case with SFSET Æ15% and a worst case with SFSET Æ30% will be assumed.
Also in this case a RVcomb was defined, to keep into account different frequency targets
that will imply the choice of different combinational elements. Data from [47] show that
different timing targets (e.g. 100 MHz) can increase the failure rate of combinational
logic by 2x compared to the timing target minimizing the failure rate (900 MHz), when
running both implementations at the same frequency (100 MHz). It should be noted that
in the case of combinational logic, as opposed to sequential elements, smaller gates are
more sensitive to SETs [47].

ERRORS IN SRAM-BASED FPGAS

The correct behavior of processors implemented on SRAM Field Programmable Gate
Arrays (FPGAs) is dependent on large configuration memories. An interesting finding
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in [74] is that the percentage of bit flips in the configuration memory normalized to the
resource utilization (fraction of sensitive bits in the configuration memory divided by
the fraction of slices utilized in the FPGA) is roughly independent from the specific IP
core (ranging from around 3% to around 6%). However, the impact of soft errors on the
microarchitecture is similar to those of hard errors (e.g. stuck-at [75]).

1.3.2. REDUNDANCY
In order to avoid an error due to radiation to become a failure, fault tolerance solutions
are employed at microarchitectural level. Fault tolerant is achieved using redundancy in
different ways:

• Hardware (or spacial) redundancy: in this case (part of) the hardware is replicated.
This can be done at several levels: gates, modules, components, boards.

• Temporal redundancy: operations are repeated more than once and the result com-
pared. This typically comes with little (if the reiterations are handled in hardware and
transparently to the software) or no (when the repetition is handled by the software)
hardware overhead. On the other hand, the performance penalty is large, but multi-
threaded processors can handle multiple copies of a single thread efficiently [76].

• Information redundancy: information is stored with more bits than strictly required.
In this way an error can be detected (and sometimes corrected) with less area and
power overhead compared to hardware redundancy.

Redundancy typically causes penalties in terms of area, power and frequency to the de-
sign. Therefore, assessing how much redundancy is required to achieve a certain level
of fault tolerance of the system during operation is crucial to avoid designs with severe
area, power and frequency penalties and little or no enhancements in dependability
compared to COTS processors with similar features, as not all faults will cause wrong
outputs. During the design of a microarchitecture, fault tolerance can be assessed by
Fault Injection (FI) [77] and observation of the effects on the behavior of the system. FI
can then be employed to evaluate the vulnerability to faults in each unit of an imple-
mentation using the Architectural Vulnerability Factor (AVF), the probability that a fault
in particular unit will cause an error on the outputs of the processor [78]. The overall
error rate of a subsystem is then given by the SER, due to radiation in a certain environ-
ment (orbit, shielding, solar activity etc.) on a certain technology (e.g. cross sections)
and the sensitive area (e.g. the number of bits), multiplied by the AVF for that particular
subsystem. The following two sections the most common redundancies are described,
i.e. EDAC codes (information redundancy) and hardware replication (hardware redun-
dancy).

1.3.3. ERROR DETECTION AND CORRECTION CODES
EDAC codes can be classified according to their capabilities in terms of number of er-
rors that can be detected and corrected in a single protected memory block14, which are
determined by the minimum distance (’d’, i.e. the minimum number of bits that differs)

14In the rest of this work EDAC codes will be assumed applied to words.
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between two valid words of the code (’codewords’) [79]. A binary (n,k) linear block code
encodes words of k bits using n Æk Å r bits, with r being the number of check bits [79].
Despite several codes with high correction and detection capability are proposed in lit-
erature (e.g. in [80] up to 8-error detection and 9-error correction), implementations
typically employ Single Error Detection (SED) codes ([81–84]) or Single Error Correction
and Double Error Detection (SECDED) codes ([82–85]), as in [80] it is shown how with
the increase of the minimum distance within the codewords there is an exponential in-
crease in overhead in terms of area and energy per access to the memory block.

SED detects all single errors in an EDAC-protected block [86]. This is often referred to
as ’parity’, as can be easily implemented adding a zero if the block has an even number of
ones or a one if the number is odd, so that all codewords have an even number of ones.
Parity is an example of Error Detecting Code (EDC). Parity is also capable of detecting
every odd number of errors, while an even number of errors will generate an undetected
error. Given its simplicity and low overhead, parity is sometimes used at sub-word level
to detect more than one error in one word. For instance in [80] an 8 bit-interleaved parity
is described, which for a 64 bit word results in 8 times the overhead in terms of check bits.
This approach increases area and power overhead linearly instead of exponentially with
the detection capability (even if no correction capabilities are added).

SECDED corrects all single errors and detects all double errors in a memory block
[80]. The probabilities of miscorrection and detection for more than two errors in the
same word depends upon the specific SECDED code employed. In [87], the (39,32) Hsiao
code has a miscorrection probability of 59.66% for triple errors, while for the (39,32) Odd-
Weight Column code it is 58.43%. The miscorrection probabilities for the (72,64) Hsiao
code and the (72,64) Odd-Weight Column code are respectively 56.28% and 54.78%. In
[88], the Odd-Weight Column code (39,32) miscorrects 1.7% of four errors in a word and
the (72,64) Odd-Weight Column miscorrects 0.8% of them. These codes are examples of
Error Correcting Codes (ECCs).

LAYOUT SOLUTIONS

A way to avoid the exponential increase of overhead due to EDAC codes with increased
correcting and detecting capability is to apply Cell Interleaving (CI) at layout level to
deal with MBUs instead of using codes capable of detecting more than two errors [89].
In CI, memory cells that belong to the same logical EDAC-protected word are physi-
cally non-contiguous in the memory array. In this way, a single ionizing particle capable
of causing multiple upsets is more likely to cause several single bit errors in different
EDAC-protected words. The figure of merit of a certain cell-interleaved memory is the
Interleaving Distance (ID), which indicate how many columns in an SRAM array must
be involved during a particle strike to have a non-zero probability of two upsets in the
same word. In [89] it is shown that an ID of 16 comes with an area increment of 32% and
power increment of 25%, and can be deemed enough to avoid MBUs in most technolo-
gies (even with conservative estimations). A 100% increment in power and area for CI
in an SRAM array (i.e. the same given in [89] for a 4 KiB SRAM array when increasing ID
from 4 to 32) will be assumed. This value is an upper boundary for the acceptable cost
of interleaving in terms of area of power for a memory array, as duplication would have
a similar cost.
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SCRUBBING

In [66] a model is proposed to quantify accumulation in an EDAC-protected word, from
which (assuming that the scrubbing period is small compared to the Mean Time To Event
(MTTE)15 for the accumulation16) the MTTE for accumulation of two errors in a word of
n bits for an array of M words and a scrubbing period Ts is:

MTTE Æ
Z 1

0
e¡ ¸ ev n M t (1 Å ¸ ev n Ts )M t

Ts d t Æ
1

¸ ev n M ¡ M
Ts

ln(1 Å ¸ ev n Ts )
(1.10)

The accumulation for three SEUs in the same word can be estimated instead using the
following equation, derived in a similar way as in [66]:
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Figure 1.2: MTTE for accumulation of errors in the same word when changing upset rate (on the left: memory
array size is 32 KiB and refresh rate is 10 minutes) and memory size (on the right: upset rate is 5E-8 upset-
s/bit/day and refresh rate is 12 hours) according to Equations 1.10 and 1.11. In both cases the impact of the
word length and EDAC code is shown, i.e. solid line for (32,39) and dashed line for (64,72). In gray the range of
MTTE where the models for 2 and 3 upsets in the same word are not valid for the selected scrubbing rate.

Fig. 1.2 (left) shows the MT T E for one upset, accumulation of two and three upsets in
the same word for extreme upset rates, assuming a 10 minutes refresh rate (which can be
seen as a worst case estimation compared to realistic applications as in [90] is is shown

15The term MTTE is preferred to Mean Time To Failure (MTTF) in this case, to avoid confusion with the termi-
nology that will be introduced in Sec. 3.4.1.

16In this work the models for accumulation of two and three bits are considered valid if Ts Ç 0.1MTTE.
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that typical lifetime in a LLC is in the order of tens of microseconds). Even with this
pessimistic assumption, accumulation is in general negligible compared to the contri-
bution of MBUs (the ratio of MTTE of ’accumulation of two upsets’ and ’one upset’ is
around 400 for ¸ ev Æ10¡ 2 upsets/bit/day and 2E+5 for ’accumulation of three upsets’
and ’one upset’). This implies that accumulation will have negligible impact on failures
due MBUs, as the latter are much more common (even considering LC, the ratio between
two upsets and one upset is 24 and the ratio between three upsets and one upset is 95).
The figure on the right instead shows that, even if the sensitivity of the accumulation to
the memory size is the same for all events, the MTTE for large memories is small enough
to contribute significantly to the failure rate. For instance mass memories like the one
described in [91] have a memory scrubber to read and correct locations according to
EDAC codes, therefore limiting accumulation to the scrubbing period. Furthermore, it is
worth to note that, while memories with words of 64 bits perform slightly better for one
upset because (72,64) is more efficient in terms of added cells compared to (39,32) (i.e.
the product n×M is slightly smaller for memories carrying the same amount of bites),
memories with words of 32 bits perform better for accumulation of two upsets and (by
a larger margin) for accumulation of three upsets. This is intuitive, as accumulation be-
comes more likely when the number of bits in a word increases.

1.3.4. HARDWARE REPLICATION
The most common forms of hardware replications are at FF-level and at processor-level.

FF LEVEL

To protect the parts of the processor composed of logic, one of the most common ap-
proach is the one described in [81] for the LEON2FT. This approach uses Triple Modu-
lar Redundancy (TMR) on FFs (and will be indicated in the rest of this dissertation as
FF-TMR), sampling and storing a bit on three different FFs and using a voter on the out-
put to mask upsets and provide the correct value without any CCs of latency. To avoid
common failures to the FFs in the TMR, each of the three FFs can have separate clock-
trees, so that a SET in one clock-tree can be tolerated even if the data of a complete lane
of thousands of registers is corrupted [81]. FF-TMR is applied also in [92], where it pro-
vides a 2.5x reduction in wrong commands/content at the outputs (used in conjunction
with safe FSMs). The authors of [92] suggest that between 20% and 40% of the errors in
the baseline processor are the result of SETs. As a matter of fact, SETs in the combina-
tional logic can still be sampled by the majority of the FFs of a FF-TMR.

However, triplicating both sequential elements and combinational logic (to address
also SETs) is reported to increase Tmin by 60% and area by 326% [93], which is a very
high cost. To address also SETs with less overhead, [94] proposes a FF-level TMR with
different delays for the three FFs (FFD-TMR) to avoid that a SET is sampled in more than
a FF. The area of a FF-TMR cell is [95] is 3.47£ larger than a regular FF and consumes 2.7£
its power. FFD-TMR cells are instead reported to be about 6£ larger than a FF in [94] and
5.2£ in [96]. Furthermore, in [96] FFD-TMR cells consume between 3 to 4£ the power
of a regular FF, depending on the switching activity. The minimum clock period in the
FFD-TMR version is 45% longer than the baseline, showing a substantially larger penalty
compared to FF-TMR without delays. As a matter of fact, in [81] FF-TMR increases the
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minimum period for correct execution of 8% on a 250 nm ASIC technology and the same
value is given from different authors in [97] for the same processor using a 65nm ASIC
technology.

Furthermore, in order to minimize the penalty in frequency, the triplicated FFs are
typically placed close to each other. In this way, MBUs can cause wrong data to become
majority and to be promoted to correct state, state causing data corruption [97].

PROCESSOR LEVEL

In [98], a processing Core-level TMR (indicated in the rest of this dissertation with C-
TMR) is describes. This approach is not found to cause frequency penalties. However,
in [99] a 10% penalty is reported, which shows that, even if not critical as in the case of
FFD-TMR, the frequency can actually be penalized. A drawback of this approach is that
errors are not masked with zero latency like in the case of FF-TMR and FFD-TMR, even
if the Teh can be kept low enough compared to a hard or soft reset. When a discrepancy
in the outputs is found, the processor takes 923 CCs to save and 909 CCs to restore the
state (with caches enabled), for a total of 1,832 CCs. The time required to propagate the
error to the service interface does not influence the availability, as correct operation is
ensured until the error is propagated to the outputs. The propagation time has instead
to be considered for accumulation, as it is possible that the data selected as ’golden’ and
replicated into all the three cores have latent errors that will manage to reach the out-
puts of the three processors completely undetected after the state is restored. However,
even considering the most vulnerable design/technology combination (HE-1 without
caches for HC technologies and ¸ ev Æ10¡ 6 upsets/bit/day) with the worst-case prop-
agation time [100] (1,204 CCs at 100 MHz, i.e. 12.04 ¹ s) used as Tprop, the probability
of accumulation of two errors is negligible (8 orders of magnitude less compared to the
failure rate due to the cacheless HE-1).

The situation in terms of unavailability is quite different with Core-level Dual Mod-
ular Redundancy (C-DMR) (e.g. [101]), as it is not possible to vote to chose a golden
version when a mismatch is found and a soft reset is required. Another possibility is to
save periodically the status of one of the core [102], but this generates substantial penal-
ties in terms of execution time (ranging from +26% to +548%).

1.4. STATE OF THE ART OF SPACE-GRADE PROCESSORS
The first processors employed in space were based on ISAs specifically designed for
airborne computers meant to be used in military avionic systems (e.g. MIL-STD-1750
[103]). With the introduction of proprietary commercial ISAs like x86, PowerPC and
MIPS17, the space industry could rely on software ecosystems and developments from
the commercial field. In the nineties, the European Space Agency chose Scalable Pro-
cessor ARChitecture (SPARC) for its ERC32 and LEON processors, as it was the only so-
lution available at that time providing both openness and available software support
[104]. Currently the European space industry (and a large part of the worldwide space
community) is using Fault-Tolerant (FT) LEON processors in all ongoing and planned
missions [58]. LEON is based on SPARC V8, an open and royalty-free ISA. This had com-
pelling motivations at the time of the introduction of LEON for space [81] and the code
17MIPS can indicate both the Microprocessor without Interlocked Pipelined Stages ISA and a multiple of IPS.
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of the non-FT version is available to the public (except for LEON4) with a GPL license. Al-
though the LEON processor was designed for the Atmel’s AT697F (2009) ASIC, it has been
increasingly used within the GRLIB Intellectual Property (IP) core library as a System-on-
Chip (SoC) platform. The availability of (relatively) large rad-hard FPGAs (especially with
introduction of ACTEL/Microsemi RTAX series) helped this process, since the GRLIB al-
lows components and units manufacturers can build an FPGA-based SoC with minimal
manpower needed to develop hardware (HW) and software (SW).

1.4.1. PERFORMANCE
At the time of writing, the LEON4FT is the most powerful flight-proven European Fault-
Tolerant IP core for space [30] and the GR740, a space-grade ASIC based on a quad-core
LEON4FT, has been selected for ESA’s Copernicus and NASA’s WFIRST [105]. The main
features of LEON4 are reported in Table 1.1.

Table 1.1: Features of the LEON4FT [106].

ISA SPARC V8 (32-bit)
ILP 7-stage, single-issue, in-order
DLP No
TLP No

Speculation static-branch prediction (always taken)
Interconnect AHB (single-layer)

PLP up to 4 (silicon-proven)
Cache management write-through with write-invalidate

Clock frequency 1.5 GHz (32-nm ASIC technology)
Linux-like OSs Yes

Fig. 1.3 shows how different commercial single-core general-purpose processors
compare to the LEON4 and the LEON3 (year of release included within brackets) in terms
of CoreMark/MHz. The collected data are not intended to prove the superiority of one
implementation over another, but to suggest the opposite: the final performance of a
single core processor for general-purpose applications is mainly determined by the level
of ILP employed, especially considering the large uncertainties involved in the compar-
ison of performance for processors of this complexity (e.g. compilers, different size of
caches, different technology). For instance, different compilers and compiler flags can
cause large differences in the final result. In [107], four different measurements (IDs:
1119, 1120, 1046 and 1050) on the Texas Instrument OMAP3530 are given, involving two
different compilers (Sourcery G++ 4.4-179 and GCC 4.3.3) and two different optimization
flags (-O2 and -O3). The minimum score is 12.75% less than the maximum measured
score, while using different compilers with the -O3 flag leads to a reduction of 5.4% in the
score. The -O3 flag activates only a subset of the possible optimization flags and other
optimization flags like "-funroll-all-loops" can affect the performance too. However, all
data from [107] employed in Fig. 1.3 have the -O3 flag.

Fig. 1.4 shows the strong correlation between ILP and performance for the general-
purpose processors from Fig. 1.3. The values found can be used to provide an estimation
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Figure 1.3: Performance of single-core processors and their main features. ID of the benchmarks is provided
for data taken from [107]. Data for LEON4 is from the vendor, data for Rocket and BOOM is from [108]. Data
for Cortex A7 is from [109]. Error bars are given when more results are available.

of target performance for an implementation with a certain ILP. However, this approach
has some limitations, as explained below.

For instance, specific instructions can improve performances, e.g. single-cycle
Multiply-Accumulate (MAC) instructions can effectively speed up the execution of Core-
Mark [110]. Also microarchitectural features can increase performance, like dual-ALUs,
as [111] shows that substantial improvements can be obtained and [109] describes a 10-
stage 2-way superscalar pipeline achieving 5 CoreMark/MHz with dual-ALUs. Further-
more, other kinds of parallelism can increase performance. For instance, the TLP em-
ployed in the MIPS i6500, a 9-stage processor with simultaneous multithreading, reaches
5.6 CoreMark/MHz for two threads [109]. In addition, Fig. 1.3 does not include the de-
scription of the degree of speculation employed in the implementations (e.g. branch
prediction), but, as a general rule, the wider and deeper the pipeline, the more specu-
lation is required to not waste a large amount of operation cycles (e.g. increasing the
pipeline depth reduces IPC due to functional latency [112]). For instance, LEON4 em-
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ploys a static branch prediction scheme (always taken) which exploits the fact that loops,
if taken, are typically iterated more than once. To increase IPC further, the Rocket pro-
cessor [113] employs a BHT for dynamic branch prediction (prediction learning from
past outcomes of the branch), a BTB for dynamic branch target prediction, and a return
stack to compensate the bad performance of a BTB for returns from functions (the same
function can be called from several positions within a program).

Some considerations about the metric employed in the comparison are also re-
quired. CoreMark/MHz is a convenient metric to fairly compare implementations in
different technologies, but neglects the increase in the maximum allowed frequency
for correct operation due to shorter datapaths in deeper pipelines and measuring only
the improvement due to simultaneous execution of more sub-operations from more
instructions. Finally, comparing processors only using a metric evaluating perfor-
mance without considering area efficiency of ILP solutions may lead to implementa-
tions too big for RHBD technologies and space-grade FPGAs, especially because area
efficiency typically decreases when ILP is increased. For instance, the data from [108]
show that the single-issue Rocket (comprising the core and the L1 caches) has an area
efficiency of 4.64 CoreMark/MHz/mm2, the 2-way superscalar OoO BOOM has 3.55
CoreMark/MHz/mm2 and the 4-way version 3.36 CoreMark/MHz/mm2 (all of them in
45-nm technology).

Figure 1.4: Expected performance of implementations employing different levels of ILP, from the data shown
in 1.3.

Keeping in mind all these limitations, Fig. 1.4 suggests that an in-order single-issue
processor is not enough to reach 3 CoreMark/MHz and that more than 2-way super-
scalar and OoO execution are needed to achieve 5 CoreMark/MHz. Considering other
kinds of parallelism and microarchitectural solutions mentioned, either simultaneous
multithreading or a deep pipeline (equal or greater than 10) plus dual-ALUs and MACs
can help reaching 5 CoreMark/MHz.

It should also be noted that Figs. 1.3 and 1.4 only consider performances of sin-
gle cores, while many general-purpose processors provide more than one processing
core. Fig. 1.5 shows the performance enhancement due to the increase of the num-
ber of cores for several SMP implementations of the Cortex A9. The figure shows that
a state-of-the-art SMP implementation can provide a 3£ improvement in terms of Core-
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Figure 1.5: Performance in terms of CoreMark/MHz for different SMP implementations of the Cortex A9.
Shown in red is the ideal enhancement obtained by multiplying the value for a single core by the number of
cores. All data from [107].

Mark/MHz.

Figure 1.6: Comparison of performance and area efficiency of a general-purpose processor increasing its ILP
ans PLP. Data is normalized to the achieved peak. Lines have been added to help visualize trends when moving
from an implementation to another.

Fig. 1.6 show that although multicore provides a large improvement, it causes a de-
crease of area efficiency because of the large Level2 Cache (L2C) required. Furthermore,
the problem of memory coherence in multi-core architectures becomes crucial and the
choice of the coherence protocols greatly affects performance and fault tolerance. For
instance, as noticed in [114], write-through protocols are inherently more robust com-
pared to write-back protocols: in case of a single error the L1 caches can correct the
error employing a parity bit and reading again the corrupted data from higher levels.
In this case, only the main memory is strictly required to have correcting codes, as in
write-through protocols data is available in more copies. For this reason, LEON proces-
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sors use a simple invalidation write-through policy. However, write-through protocols
generate large amounts of traffic. This is especially a problem in single-layer buses like
AMBA High-performance Bus (AHB), where only a transaction is allowed per time. Use
of switch fabric, which reduces contention allowing more than one transaction per time,
allows in general a more efficient scaling with PLP, although this comes at the cost of
a larger area compared to single-layer busses. Also, inter-task interference has a larger
impact when employing write-through protocols compared to write-back protocols like
Modified Exclusive Shared Invalid (MESI) [115].

1.4.2. FAULT TOLERANCE
As is clear from the discussion on cache management in the previous section, a trade-
off between performance and fault-tolerance is required in space-grade processors. The
FT mechanisms are often not described in detail in literature, and are only mentioned
briefly in datasheets of components. Cache memories, like other memory arrays, are
typically protected with information redundancy, employing EDAC codes, as shown in
Sec. 1.3.3. For instance, the LEON2Ft employs two parity bits on caches [81]. There are
two approaches to protect the rest of the processor:

1. Protecting the RFs and the logic (composed of FFs and combinational logic) se-
paretly: this is the most common approach for an FT IP core for space can be
found in [81], where the penalties in terms of area (Table 1.2) and frequency for
a LEON2FT without Floating Point Unit (FPU) against a LEON2 on the same 250-
nm ASIC technology are reported. The total overhead without considering RAM
cells is instead 100% [81]. The main improvements for the FT version are TMR
at FF level with separate clock trees and (32,7) BCH code on the register file. The
penalty in frequency compared to the "non-FT" version is relatively small (-7.4%)
and it’s due to the use of TMR FFs on the critical path. Furthermore, hardware
overhead due to the handling of errors in the register file is optimized by reusing
hardware already available for traps. For instance, when an uncorrectable error is
found in the register file of the LEON2FT an error trap is generated. Instead, when
a correctable error is found the register file is written back with corrected data and
then the processor jumps back to the failing instruction [81].

2. Protecting the RF and the logic simultaneously: this approach is employed in
[98] and consists of replicating entirely the core, excluding large SRAM arrays (i.e.
caches) that can be protected efficiently by information redundancy as shown in
Sec. 1.3.3. In [98] the TCLS is described, a core-level TMR implementation of the
ARM Cortex R5. The three cores share an IC and a DC.

1.5. MOTIVATION
Given the relatively low performance of space-grade processors and the small size of the
space market compared to other embedded markets like mobile and automotive, the
idea of a "spin-in" of COTS processors for terrestrial applications in space systems is
becoming increasingly popular [116, 117].
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Table 1.2: Comparison of area between LEON2 and LEON2FT on a 250-nm ASIC technology. The table is taken
from [81].

Module LEON2 [mm2] LEON2FT [mm2] Area penalty
Integer unit 0.86 1.61 87%

Cache controllers 0.17 0.35 105%
Peripherals 0.45 0.90 100%
Register File 0.19 0.24 26%

Cache memory (16 KiB) 2.42 2.59 7%
Total 4.09 5.69 39%

1.5.1. SPIN-IN OF DEVELOPMENTS FOR TERRESTRIAL APPLICATIONS
The term "spin-in" indicates the reuse in space systems of developments meant for ter-
restrial applications and this can be done at different levels of a space system:

• Subsystem: the spin-in of a full subsystem (e.g. a single-board computer) provides the
maximum reuse of developments from terrestrial applications. The drawback of this
approach is the total lack of specific solutions for space in the manufacturing process.
Also, it leaves room for FT solutions only at software and at system level (e.g. redun-
dant boards). Up to now this approach is limited to low-cost demonstration/university
missions.

• Component: an ASIC developed for other applications is included in a space subsys-
tem. The work in [117] shows that the ’cost of ownership’ of COTS components (com-
posed of procurement cost, cost of lot acceptance test, cost of FT mechanisms and
their validation) is potentially higher than a space-grade equivalent. Therefore, [117]
concludes that only the contribution of COTS components to system performance can
justify their use in space avionics.

• IP core: to cope with an extremely high level of complexity, licensable and reusable
blocks (IP cores) are employed during the design of a SoC. IP cores for terrestrial ap-
plications can be included as-is or after ad-hoc modifications to increase their fault
tolerance in an ASIC or FPGA. In [118] it is described how an e600 PowerPC Core has
been employed in a space-grade payload processor.

Even when the development of the processor starts from scratch, the designers can
either chose to define their own ISA or use an ISA already available. ISAs are (some-
times expensive) IPs that enable the reuse of a certain software ecosystem (compilers,
debuggers, integrated development environments). Furthermore, maintaining a soft-
ware ecosystem is by far the biggest industrial challenge in the development of a proces-
sor [119].

1.5.2. THE RISC-V ISA
While open-source software has been around for decades, being the driving force be-
hind most of the Internet and all of the top-500 supercomputers [120], hardware has not
yet fully experienced the disruptive effects of openness, with the notable exception of
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processors for space applications (mostly based on the LEON processors). Nevertheless,
over the last years RISC-V has risen in popularity in terrestrial applications, drawing the
attention of several universities and companies previously focusing on other open and
free ISAs, proprietary ISAs or even on ISAs designed in-house (with the big drawback of
having to design and maintain a software ecosystem).

RISC-V was originally developed by UC Berkeley to support computer architecture
research and education oriented at hardware implementations, because a flexible, open
and free ISA fit for such purpose was not available [121]. An example of the limits of pre-
viously existing free ISAs is OpenRISC, which features micro-architectural choices like
branch delay slots and is not designed to be modular. Furthermore it does not cover
present and future trends of embedded systems (does not support the 2008 revision to
the IEEE 754 floating-point standard and the 64-bit version was not completed yet when
the definition of RISC-V started) [121]. DARPA funded RISC-V in its very beginning [122]
and is continuing to fund other activities related to the spin-in of open-source IPs in
trustable electronic systems. The reason behind this interest is that open-source IPs
and open ISAs can reduce the resources, time, and complexity required for ’secure and
trusted’ custom SoC design, as detailed information about open-source IP cores can be
found by inspection. Also, ad-hoc improvements or modifications for security are much
easier, avoiding the need of designs from scratch and thus ultimately increasing reusabil-
ity [123]. The space industry can apply many of those considerations to enhance the
fault-tolerance of existing open-source COTS IPs.

UC Berkeley and SiFive released in 2016 an open-source SoC generator called Rocket
Chip to easily configure a SoC and automatically generate the synthesizable Verilog [113].
Since then, the RISC-V software ecosystems has matured quickly. Several ISA simulators,
C compilers and debugging tools are available [124]. The availability of such ecosystem
ignited the development of several open-source hardware platforms from several univer-
sities and companies. For instance, ETH Zürich and University of Bologna are working
on the PULP Platform, a processing platform mainly targeted to the Internet of Things
(IoT) [125]. PULP is based on several IP cores, ranging from a simple 2-stage 32-bit core
to a 6-stage Linux-capable core with caches, and comprises several SoCs architectures
(e.g. the single core PULPino and the multicore PULP). Also established players an-
nounced developments based on RISC-V. For instance Western Digital, a founder of the
RISC-V foundation, announced that over the next few years all the processors shipped
within their products will be transitioned over to RISC-V [126]. The reasons for this tran-
sition is that concerns are growing about monopolistic positions in the embedded mar-
ket, as ISA owners protect their IP not allowing freely available implementations and
free-market competition from other core designers, thus ultimately preventing reuse
and ad-hoc designs. The adoption of a free and open ISA can thus lead to shorter time
to market and lower costs from reuse.

1.6. RESEARCH QUESTIONS, METHODOLOGIES, AND THESIS

STRUCTURE
From the description of the state of the art of space-grade processors in Sec. 1.4, it is
clear that innovations are required to improve performance in space-grade processors
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to enable the new applications introduced in Sec. 1.1. Furthermore, selection of fault-
tolerant mechanisms in space-grade processors are typically based on heritage, without
analysis of the target environment and their cost-effectiveness. Therefore, there is a need
for a model to select the best redundancy approach. The novelty of these two tasks, and
the wide range of problems involved in optimizing the trade-off between performance
and fault tolerance, suggested that they could be explored more effectively with a PhD
than with a set of specific R&D activity carried out by different companies in different
contracts.

Given the considerations above, to improve the state of the art of space-grade pro-
cessors, this dissertation answers the following Research Questions (RQs):

RQ1: What are the advantages of using RISC-V in space applications?

To answer this question, the RISC-V ISA specifications were analyzed in the first part of
Chapter 2 (Sec. 2.1). The analysis consists in a comparison of the user and privileged
RISC-V specifications with other ISAs employed in space-grade and in terrestrial proces-
sors.

RQ2: How can RISC-V be employed in satellite data systems to solve key issues
and enable new capabilities?

After the advantages of the RISC-V ISA have been identified, the remainder of Chapter 2
investigates how to employ RISC-V processors in satellite data systems. To exploit mod-
ularity to its full extent, Sec. 2.2 identifies which types of processors are required in space
data systems and how a RISC-V processor can be employed for each identified applica-
tion. In order to identify all the types of processors required, different types of satellites
with different constraints are considered, ranging from large satellites to small satellites,
with a particular focus on CubeSats. Comparison of several state-of-the-art RISC-V pro-
cessors against COTS and space-grade processors are provided for each target applica-
tion. A critical discussion of benchmarks and metrics required for a fair comparison for
each application is also provided, as ultimately the choice of the benchmark will select
the best processor. Therefore, selecting the most representative benchmark for each ap-
plication is paramount. From this analysis, several processor ’profiles’ (including the
suggested RISC-V subsets, microarchitectures, reference implementations and expected
performance) to address a wide range of on-board application, from microcontrollers to
high-performance processors for OBDM are proposed. Finally, in Sec. 2.3 a roadmap to
bring available RISC-V processors from IP cores for terrestrial applications to space-level
component is proposed.
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RQ3: How to design a fault-tolerant high-performance processor for space?

After having described how to exploit the modularity of the RISC-V ISA, in Chapter 3
the focus is on the main advantage that comes with openness for space processors, i.e.
the possibility to analyze its dependability as a white box instead of using a black-box
approach (the only possible with proprietary processors). In order to do this, a model
to evaluate the dependability of open processors is built starting from what is already
available in literature (part of it already presented in Sec. 1.3 The model is then com-
plemented with own contributions (e.g. error models, technology space, optimization
function, analysis of redundancy and expected in-orbit behavior) and it is employed to
identify the most vulnerable parts of a processor for space applications. Furthermore,
considerations on different microarchitectures and environments are presented.

RQ4: How to enhance the performance of next-generation processors for
satellite data system architectures?

After having identified in Chapter 2 processors for OBDM as the most promising type
of processors to enable new system-level capabilities and the type of processors that
would benefit the most from research and design exploration, an in-depth analysis of the
workloads of machine learning algorithms is carried out in Chapter 4. In particular, the
focus is on DNNs for image analysis and anomaly detection, as these are identified as the
most impacting applications of machine learning on-board satellites. Each algorithm is
decomposed in kernels, and for each of them the effectiveness of DLP is investigated,
analyzing Operational Intensity (OI), problem size and memory traffic.

After this analysis, in Chapter 5 vector processors are proposed as a solution for this
type of workload. The specific challenges of designing a vector processor are also high-
lighted, with a focus on the most critical elements of the microarchitecture (e.g. vector
register file, memory hierarchy) and to the scalability with the amount of DLP. Further-
more, specific aspects related to dependability are investigated, like the use of EDAC
codes. Finally, the Spike ISA simulator has been employed to compare the performance
in terms of number of instructions of vector and scalar implementations of the kernels
of a relevant DNN for image analysis.

Then, in Chapter 6, a novel general-purpose baseline RISC-V processor for space ap-
plications (NOEL-V) will be extended adding DLP (RISC-V standard Vector extension) to
increase performance and efficiency of the processor for the OBDM workloads analyzed
in Chapter 4, according to requirements formulated keeping into account the knowledge
built in the previous chapters. Verification of correct operation of the vector processor
in Chapter 6 will be carried out comparing the output of the kernels for the scalar and
the vector processor. Verification of the requirements is then carried out, implementing
the vector processor on a FPGA board and benchmarking it against the baseline proces-
sor on the same FPGA to prove that the requirement on the speedup is met. Further-
more, the vector processor is compared with other RISC-V implementations targeting
the OBDM profile.

Finally, in Chapter 7 the main contributions of this dissertation to the body of knowl-
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edge identified in Sec. 1.4 are described, highlighting innovations and their implications
on future works.





2
DEFINITION OF RISC-V

PROCESSORS NEEDED IN SPACE

DATA SYSTEMS

Il futuro è di chi lo sa immaginare.
The future belongs to those who can imagine it.

Enrico Mattei

This chapter analyzes the RISC-V Instruction Set Architecture (ISA), focusing on the im-
plications of its modularity and openness. Then, it identifies present and future needs
in space data systems and proposes to address them with RISC-V processors. In order to
satisfy different applications with contrasting requirements in satellite data systems, four
different types of processors are identified: 1) low-area/low-power microcontrollers, 2) On-
Board Computers (OBCs), 3) general-purpose processors for payloads and 4) enhanced
payload processors for On-Board Decision Making (OBDM). Several solutions based on
RISC-V are proposed and compared to proprietary Commercial-Off-The-Shelf (COTS) so-
lutions and to space-grade solutions. The aim of this chapter is also to showcase the un-
precedented number of open-source implementations and models relevant to space appli-
cations that were developed in a relative short time (2016-2018) on the RISC-V ISA.

Parts of this chapter have been published in [1].
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2.1. ANALYSIS OF THE RISC-V ISA
The following subsections analyze the RISC-V ISA to identify the advantages of RISC-V
processors compared to processors based on commercial ISAs (e.g. ARM) and ISA cur-
rently employed for space processors (e.g. SPARC).

2.1.1. MODULARITY
The RISC-V manual is structured in two volumes, one for the user-level ISA and the other
describing the privileged architecture with three privilege levels (User, Supervisor and
Machine mode) [127]. An implementation can employ just the User mode, the User and
the Machine mode (when security is a concern), or all of the three modes to support
Linux-like OSs. The Hypervisor (H) mode (designed to support Type-1 hypervisors) has
been removed and the encoding space reserved, as the RISC-V community is focusing
on hypervisor support via an extended Supervisor mode suitable for both Type-1 and
Type-2 hypervisors1 [127] .

The user-level ISA is defined as a base integer (I) ISA, which must be present in
any implementation, plus optional extensions to the base ISA [121], shown in Table 2.1.
The integer base is restricted to a minimal set of instructions operating on 32 General-
Purpose Registers (GPRs), providing a baseline around which more customized ISAs can
be built. Alongside the general-purpose registers employed to store operands and re-
sults of instructions, Control and Status Registerss (CSRs) are also defined. As opposed
to GPRs, each of these register has a specific function, i.e. configuring the status of the
processor and/or allowing the software to know the status of the processor [121]. A
subset of the integer base (E) can optionally be implemented for processors targeting
small 32-bit microcontrollers, with 16 general-purpose registers. The standard defines
a "general" subset (G) as the set of extensions typically required for general-purpose
computing systems. Whereas other ISAs are treated as a single entity, which changes
to a new version as new features and instructions are added over time (e.g. ARMv7 and
ARMv8 [130]), RISC-V aims at keeping the base and the standard extensions unchanged
over time, and instead plans to add new instructions and new features as further op-
tional extensions. This helps in terms of software reuse, providing straightforward back-
wards compatibility. The base of RISC-V is similar to the original RISC developed in
the Berkeley RISC project [131], but the whole ISA is updated to account for new trends
and needs of the embedded systems market, since it is new (the baseline ISA has been
ratified in 2019 [132]) and, being an open standard, allows open discussion on what
must be included in the standard. For instance the standard defines 32-bit (RV32), 64-
bit (RV64) and even 128-bit (RV128) address space variants, and provides features like
a 16-bit compressed instructions extension (C) to increase performance, code density
and power efficiency. The standard atomic instruction extension (A) adds instructions
that atomically read, modify, and write memory for inter-processor synchronization us-

1Hypervisors provide isolation between different instances of OSs running for instance in multicore proces-
sors. Isolation is currently being investigated in space applications to improve safety behavior, i.e. to avoid
that the failure of an application running on an OS may impact the execution of another application running
in a different OS on the same processor [128]. A type-1 hypervisor (bare-metal) runs directly on the host’s
hardware. A type-2 hypervisor (hosted) resides above a conventional host operating system and provides a
full set of virtual hardware resources to the above guest OS [129].
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ing load-link/store-conditional instructions instead of compare-and-swap instructions,
thus avoiding the ABA problem2 [133] affecting the compare-and-swap instructions and
allowing a straightforward use of modern crossbars3 that do not support locked accesses,
like Advanced Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface
4 (AXI4). Furthermore, RISC-V is little-endian, allowing straightforward integration with
the most popular state-of-the-art embedded infrastructures and proprietary architec-
tures (e.g. ARM).

Table 2.1: User-level standard extensions [121].

Subset Name
Integer I

Integer Multiplication and Division M
Atomics A

Single-Precision Floating-Point F
Double-Precision Floating-Point D
Quad-Precision Floating-Point Q

Decimal Floating-Point L
16-bit Compressed Instructions C

Bit Manipulation B
Dynamic Languages J

Transactional Memory T
Packed-SIMD Extensions P

Vector Extensions V
User-Level Interrupts N

2.1.2. SIMPLICITY
One of the implications of the modularity of RISC-V is that it was possible to keep the
base ISA "I" simple, without the need to target any application in particular. As a matter
of fact, employing instructions which are fit for a specific application makes the hard-
ware implementation inefficient for other applications. As a result, even if the base sub-
set I is similar to the original RISC developed in the Berkeley RISC project [131, 134] in
the eighties, it has been greatly simplified. For instance, the RISC-V ISA does not require
condition codes and register windows [121]. Another example is that, while SPARC V8
specifications (which are similar to the original RISC project [135]) prescribe the use of
a combined hardware/software technique to deal with branch hazards called "branch
delay slots"4, RISC-V leaves the choice of the scheme to deal with branch hazards com-
pletely to the implementation (see examples in Sec. 1.2.2).

2ABA is not an acronym. It indicates the issue arising from the fact that a compare-and-swap instruction will
not realize that A has be changed to B and then back to A, assuming that A remained unchanged [133].

3The term crossbars is used to describe an interconnect capable of connecting several masters and slaves
without contention as long as multiple transaction do not compete for the same master or slave.

4In this case the compiler fills (or not, if nothing is available) the pipeline with useful operations while waiting
for the branch resolution.
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2.1.3. EXTENDABILITY
RISC-V allows both standard and non-standard extensions (the latter are defined out-
side the specifications). Although non-standard extensions are in principle possible for
all ISAs, non-standard extensions require modifications in the software toolchain. In
general this is not technically and/or legally possible for proprietary ISAs.

However, non-standard custom extensions for space applications will not be consid-
ered further in this work as a solution, as space is a niche market and often the lack
of software support for processors in space is the main issue. Reusing the toolchain
supported by a large community is the most perceived advantage of the introduction
of RISC-V in space systems.

However, in other fields the situation is quite different. For instance, Xuantie-910
(a RISC-V processor from Alibaba, designed for high-performance computing) includes
non-standard extensions to arithmetic, bit manipulation, load and store, TLB and cache
operations [136]. In addition, there are extensions for the MMU to support page-based
memory attribute management and for the interrupt controller to support permission
control. However, also in this case compatibility with the standard toolchain is deemed
as a desired feature, so the core can be configured to disable the non-standard extensions
[136].

The RI5CY processor, designed mainly for IoT applications, provides instead non-
standard instructions for bit manipulation, auto-incremental load and store, MAC, hard-
ware looping and packed-SIMD operations [137].

2.1.4. OPENNESS
Regardless of the level where the spin-in takes place, the main advantage of the spin-in
of a commercial processor is the reuse of the software ecosystem and of the experience
of a much larger community working on terrestrial applications. For instance, a bug in a
compiler or in an IP core can be found more easily than in the case of a processor only
used in space applications. The advantage is even stronger when this community is built
around an open and free ISA, as everyone can contribute to advancing the state of the
art. For this reason, wide adoption by industry and academia is crucial. These consid-
erations were critical for the adoption of SPARC by ESA in the nineties [104]. However,
nowadays SPARC lost momentum in terrestrial applications, mainly because of the pre-
dominance of the proprietary x86. New markets with different requirements in terms of
energy efficiency (e.g. mobile devices) have led to the success of proprietary ISAs from
ARM [138]. Nevertheless, RISC-V has risen in popularity in recent years. The spread of
an open and free ISA like RISC-V already enabled a vast field of research activities for ter-
restrial application (e.g. security, AI, etc.), as accessing proprietary architectures is costly
and limits what can be done with a certain product or within a certain research activity.
The availability of a software ecosystem supported by a large open community ignited an
unprecedented amount of developments, with several announcements and/or releases
of open-source implementations.

The rest of this section describes how openness can help enhancing two crucial as-
pects of space systems: security and fault tolerance.
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SECURITY

DARPA funded RISC-V in its very beginning and is continuing to fund other activities
related to the spin-in of open-source IPs in trustable electronic systems [123]. The rea-
son behind this is that open-source IPs and open ISAs can reduce the cost, time, and
complexity required for secure and trusted custom SoC design, as detailed information
available with open-source IP can be found by inspection. Ad-hoc improvements or
modifications for secure and trusted application are much easier, avoiding the need to
design everything from scratch and focusing only on the critical part and thus ultimately
increasing reuse [123]. The work in [139] is an example of how the openness of RISC-
V enables academia to work on systematic approaches to eliminating attack surfaces
instead of fixing specific security holes and provide strong security guarantees against
cache timing and memory access pattern attacks. Another example is [140], which pro-
poses an extension of RISC-V against temporal and spatial memory attacks.

FAULT TOLERANCE

Many of the considerations on open-source IP cores and security can be applied by the
space industry to enhance the fault tolerance of existing open-source COTS IP cores.

When selecting a processor for satellite data systems, typically two choices are avail-
able: either a space-grade processor with long flight heritage and well-characterized be-
havior (e.g. LEON processors [30]), or a proprietary COTS processor employed as a black
box sometimes after adequate radiation test [101, 141]). The latter is preferred to the for-
mer when the performance required cannot be met with space-grade processors [117],
which typically lag behind their commercial counterparts in terms of performance [14].
The recent availability of open-source IP cores for terrestrial applications allows for a
better understanding of their vulnerability, avoiding black-box characterization (typical
of proprietary COTS components) and allowing a trade-off between the two approaches.
A better modelling of the inner working of processors can both help choosing the best
IP core and its configuration. For instance, in [142] the lack of public Register Trans-
fer Level (RTL) models (typical of proprietary processors) is identified as the main issue
when trying to characterize the effects of upsets in a microarchitecture (mainly because
it is not possible to estimate the exact number of sequential elements). Furthermore,
the authors of [143] suggest that the failure rate measured with particle beam exper-
iments is much larger than the one estimated with FI due to undisclosed proprietary
parts of the real physical hardware platform compared to the virtual platform where the
FI was carried out. Once the vulnerability of a processor is estimated, it can be reduced
employing redundancy. Redundancy typically comes with significant area, power and
performance overhead. Therefore, assessing its cost-effectiveness is crucial. However,
the amount and type of optimal redundancy can change drastically depending on the
requirements in terms of dependability (i.e. reliability, availability, safety [39]) and per-
formance, as well as on the target radiation environment. For instance, the focus of the
standard ISO 26262 [144] for automotive applications is on functional safety. For this
reason, several ASICs for automotive employ two processors executing instructions in
lockstep, so that errors can be detected comparing the outputs of the two replicas and
the processors are restarted in case of mismatch [101]. A similar approach can reduce
availability, as for instance even benign differences at the outputs of the processors will
cause a reset. Furthermore, as long as the safety requirements are met, availability is not
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a primary concern in automotive. This is not the case for space applications, as depend-
able processors in space are expected to provide a certain service without interruptions
over a certain span of time, hence the focus is instead on availability. For example, in the
case of a telecommunication satellite in GEO the time span of a mission could be more
than 15 years in which the whole space system is expected to provide a certain service
99.9% of the time [145]. This implies an even tighter requirement on the availability of
the On-Board Computer (OBC). Furthermore, when the processor is intended for usage
in space, the presence of ionizing radiation makes the occurrence of soft errors far more
likely than on ground and the amount of redundancy must be carefully evaluated as
power and area available in space data systems are typically very limited. On the other
hand, loss of performance in space data systems can be easily tolerated in most cases
(e.g. in Sec. 2.2.1 it will be shown that processors with low performance are enough to
control large satellites) . In High-Performance Computing (HPC) the constraints are the
opposite, as the amount of loss in terms of performance that can be tolerated is typically
very limited [146].

2.2. PROCESSORS FOR SATELLITE DATA SYSTEMS

Throughout the eighties and early nineties space computer systems were limited by the
very low processor performance. For instance, the first European single-chip processor
was the ERC32, providing 14 MIPS at 20 MHz [58]. Driven by Moore’s Law, the number
of transistors on a single chip and the maximum clock frequency increased significantly
over the years, improving system performance and enabling new computing possibili-
ties.

The period between 1990-2010 was characterized by centralized computing that re-
volved around an OBC and non-intelligent (i.e. without software) Remote Terminal Units
(RTUs), as described in [147]. Improved connectivity and process improvements in the
period from 2010 enabled a shift towards decentralized computing, with a proliferation
of connected intelligent devices and sensors, along with a shift to localized computing.
The latter allows processing to occur closer to the data, effectively improving latency,
bandwidth and energy use. The distribution of intelligence throughout the whole satel-
lite, as shown in Fig. 2.1, is based on processors tailored to several power consump-
tion, processing power, size and real-time requirements. Time-deterministic, low per-
formance, low power, low area microcontroller processors (Sec. 2.2.2) can be employed
in RTUs. The payload processor instead can either be just a general purpose processor
(Sec. 2.2.3) or including an accelerator capable of enabling OBDM (Sec. 2.2.4). A pay-
load module with an enhanced payload processor capable of making decisions requires
less data bandwidth (or in the best case only the low-speed T&C link) to downlink only
selected and meaningful data and/or the results of on-board processing.

Finally, the focus of the space industry in recent years shifted from large GEO satel-
lites to small (< 500 kg) Low Earth Orbit (LEO) satellites (especially CubeSats) [148, 149].

The following subsections show how RISC-V solutions compare with state-of-the-art
space-grade and COTS processors that fit best for each application in the architecture
described in Fig 2.1.
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Figure 2.1: Distributed satellite data system architecture for a medium-large spacecraft based on processors
with different target applications. The figure does not include any redundancy schemes and only one instru-
ment connected to the SpaceWire (SpW) router is represented (when more instruments are present they can
be connected in parallel to the one represented).

2.2.1. ON-BOARD COMPUTERS
OBCs are employed to execute tasks like attitude and orbit control, telecommands exe-
cution or dispatching, housekeeping telemetry gathering and formatting, on board time
synchronisation and distribution, failure detection, isolation and recovery [150].

One of the most severe constraints for OBCs for CubeSats is the available power. As
reported in [151], a 1U CubeSat has a total of 1-2 W available and a 3U has 5-6 W. On the
other hand, a 6U CubeSat reaches around 20 W [152]. Given these constraints on power,
OBCs for small CubeSats (1-3U) are based on simple single-core processors. This type
of microarchitecture achieves low performance, as shown in Table. 2.2, ranging from 1
to 2 CoreMark/MHz5. As a reference, multi-core processors for mobiles reach around
16 CoreMark/MHz [153] and multi-core/multi-thread processors for Personal Comput-
ers around 40 CoreMark/MHz [154]. The peak absolute performance can be estimated
multiplying the microarchitecture performance by the maximum achievable frequency,
which depends on the technology (e.g. technology node) and type of Integrated Circuit
(IC) employed, i.e. ASIC or FPGA. Here the gap becomes even larger, as clock frequencies
in space applications are typically lower (in the order of hundreds [155] or even tens [156]
of MHz instead of GHz [154]).

Small satellites are moving from short demonstrator missions to longer, more-critical
missions [157]. Although the cost of replacing a failed SmallSat in LEO is relatively low
compared to a classical large satellite in GEO, the dependabilty of the single spacecraft

5Although it is preferable to measure performance with CoreMark, these simple implementations are often
still benchmarked with Dhrystone.
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is required to increase. Therefore, radiation tolerance becomes more important and will
move the CubeSats from being heavily reliant on COTS to use radiation-tolerant (rad-tol)
or rad-hard parts [157]. For instance, there is a new trend of using fault-tolerant proces-
sors designed for space application. An example is the AAC Clyde Sirius OBC in [156],
based on the LEON3FT, one of the most popular FT processors in space applications [30].
Furthermore, the Sirius OBC is different from the other OBCs considered in Table 2.2, as
it is implemented on a FPGA with TMR on all FPGA FFs and EDAC codes on memories.
One of the aims of these features is to allow deep space exploration missions with Cube-
Sats [156].

Table 2.2: Performance of some OBCs in the PC104 board format (9.0 cm £ 9.6 cm, the de-facto standard for
CubeSats), measured with CoreMark and/or Dhrystone (DMIPS), depending on the data available. Values for
power refer to peak (p), average (a) and minimum (m) consumption. Data from [155, 156, 158–161].

OBC Processor Norm. Perf. Abs. Perf. Power [W]
NanoMind

AT32UC3C 1.5 DMIPS/MHz 91 DMIPS
0.17 (a)

a3200 0.9 (p)

iOBC AT91SAM9G20
1.1 DMIPS/MHz 440 DMIPS

0.4 (a)
1.5 CoreMark/MHz 612.9 CoreMark

Sirius LEON3FT
1.4 DMIPS/MHz 70 DMIPS 1.3(a)

1.8 CoreMark/MHz 90 CoreMark 0.8(m)-2(p)

However, the RHBD solutions employed in [155] increase power consumption. Also,
the power consumption of the OBC depends on the technology and on the use of the
peripherals (i.e., interfaces and external memories), e.g. ranging from 0.8 to 2 W for the
Sirius OBC [160]. Although the minimum consumption is below the total power available
for a 1U CubeSat, such a large part of the power available shows that it is difficult to
employ RHBD processors in 1U CubeSats, while in a 3U CubeSat they could be employed
instead (the maximum consumption is 33%-40% of the total power available).

To compare the examples given for SmallSats to OBCs for large, high-reliability space-
craft, the OSCAR [162] from Airbus has a mass of 5 kg and is larger than many SmallSats
(230£160£200 mm3). Its peak power consumption is 15 W. On the other hand, OSCAR
is expected to last 10 years in LEO and 15 years in GEO, and it is designed to be SEU6

tolerant and Single Event Latchup (SEL)7 immune [162]. However, it should be noted
that the computational capabilities required for an OBC for a large spacecraft are on the
same order of magnitude (1.8 CoreMark/MHz [161], 86.4 CoreMark at 48 MHz [162]).
This shows that the gap between OBCs for SmallSat and OBCs for large spacecraft lies
more in resilience to radiation effects than in performance.

Table 2.3 shows that OBCs for medium-large satellites have dramatically improved
in terms of power (more than 6£ reduction), mass (4£ reduction), dimensions (5£ reduc-

6A SEU happens when a ionizing particle changes the value stored in a single or more sequential elements.
7A SEL happens when a ionizing particles generates a low-resistance path between power and ground.
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Table 2.3: Improvements of OBCs achieved with the advance of the state of the art of SoCs [162–167].

OBC GOCE OBC GAIA OBC OSCAR
Year 2009 2013 2014

Manufacturer TAS-I RUAG-S AIRBUS
CPU ERC32 LEON2FT LEON3FT
ISA SPARCV7 SPARCV8 SPARCV8

Frequency [MHz] 24 80 808

Abs. Perf. [MIPS] 17 65 68
Norm. Perf. [IPC] 0.71 0.81 0.85

Pipeline stages 4 5 7
Power [W] · 90 (avg) · 40 (avg) 15 (peak)
Mass [kg] 21 16 5

Dimensions [mm3] 470£272£332 420£270£276 230£160£200

tion)9 and absolute performance10 (4£ improvement) since the introduction of SoCs in
space. For instance, OSCAR is based on SCOC3, a SoC which includes also TM/TC con-
trol and CCSDS standard, eliminating one board with respect to the former generation of
OBCs [167]. However, the improvement in computational speed was mainly due to the
increase of the pipeline stages and frequency and not to the microarchitectural efficiency
of the processors, as the average number of IPC has increased only by 20%. The main rea-
son is that OBCs mainly deal with real-time tasks leveraging Real-Time Operating System
(RTOS) like RTEMS. Even the newest ones are based on single-core single-issue in-order
processors like the LEON2FT and the LEON3FT, because higher performance processors
employ microarchitectural features (e.g. superscalar execution, out-of-order execution,
speculation, multicore, several level of caches) that pose challenges to the development
of real-time software, especially during Worst Case Execution Time (WCET) [168]. As a
matter of fact, software standards for on-board software (e.g. [169]) require a schedula-
bility analysis, which in turn requires a WCET analysis of each task [170]. An example of
WCET for an OBC is given in [170].

The previous considerations on the performance/time-determinism trade-off for the
microarchitecture of the OBC suggest that the performance of the whole data system can
be increased by distributing software for data acquisition/processing and simple control
applications in other spacecraft subsystems rather than using higher-end processors for
OBCs. This approach is also suggested by the fact that sensors, actuators and payloads
are inevitably distributed throughout the satellite.

Another reason behind the use of simple microarchitectures in OBCs is that "com-
mand and control" algorithms run by OBCs have a very low OI, i.e. the number of op-

9The data provided in Table 2.3 for power, size and weight refer to a single board with a single computer (pro-
cessor, memories, etc.). Typically two of them are employed (to overcome common-mode failures on a single
board), using an additional board to handle the redundancy at board-level.

10Absolute performances in Table 2.3 are given in IPS. Therefore, a fair compariso is possible only between
implementations of the same ISA, as it counts only the number of instructions per second without evaluating
their impact on the execution times. As SPARCV8 added multiply and divide instructions to SPARCV7, the
improvements of SPARCV8-based OBCs over the one based on SPARCV7 is actually underestimated.
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erations executed per byte read from the memory. For instance, considering a program
reading two numbers and storing their sum (all of them represented with 32 bit), the OI
is limited to 1/12. Higher-end applications, like image processing, have instead a much
larger operational intensity, typically from one to three orders of magnitude larger (See
Chapter 4). For this reason, while the latter are effectively sped up by increasing the
computing capabilities of the processors (e.g. increasing parallelism), the former are es-
sentially limited by the memory bandwidth. Sec. 2.2.4 introduces the ’roofline’ model as
a tool to distinguish between these two kinds of algorithms and to evaluate when an in-
crease in computing capabilities is actually needed for a specific algorithm on a specific
platform.

For all the aforementioned reasons, a RISC-V substitute of the LEON3FT (when used
as main OBC processor) would require a similar microarchitecture, achieving similar
performance with the drawback of giving up long flight heritage and large amount of
OBC software legacy for the LEON processors. On the other hand, a RISC-V substitute
could leverage a larger software ecosystem in the future for new developments, building
on a much larger user base for (e.g.) the maintenance of the SW toolchain.

The Rocket processor is the RISC-V implementation closest to the LEON3 and a more
detailed comparison is given in Sec. 2.2.3, where multicore versions of these processors
are evaluated as low-end general-purpose processors for payloads.

2.2.2. MICROCONTROLLERS
RTUs are usually present on medium-large size spacecraft. In the past, the RTU was typ-
ically a "non-intelligent unit", i.e. without software [147, 171]. However, there is a trend
to have at least a low-performance microcontroller in the RTU in order to implement
locally autonomous acquisition and control sequences, to gather the analogue and digi-
tal telemetry from sensors and units (e.g. temperature), to calibrate raw measurements,
to provide the conditioning for analogue sensors, to control the reaction wheels, gyros,
star trackers, sun sensors, propulsion and other units in the Attitude and Orbital Control
System (AOCS), to control solar array drive mechanisms, to distribute power to heaters,
to distribute (in some cases also downconverting) power to active loads, and control and
monitor payload units [171]. For instance, [172] describes a satellite architecture em-
ploying RTUs containing an RTAX-based microcontroller. This trend led to development
of the DPC from Thales Alenia Space [173] and of the GR716 from Cobham Gaisler [30],
both funded by ESA and based on 180-nm RHBD ASIC technology, as well as several
other rad-tol microcontrollers.

The use of RTUs also increases modularity, as the RTU can be replicated and the
pin-out and software modules of the OBC are less dependent on the specific satellite.
Furthermore, discrete observation signals with direct connections to the OBC imply
penalties in mass. The use of RTUs connected to the OBC with a bus (e.g. CAN or
MIL-STD-1553) reduces cable mass of the satellite and the pin count of the OBC. An
example is the Delfi-C3 satellite, where moving from a centralized to a decentralized ar-
chitectures based on microcontrollers resulted in a mass saving of 1% [174].

In [175] a plug-n-play platform for small satellites development based on several
sizes of the RTU is proposed, containing:
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• nanoRTU (32£32£6.2 mm3, 0.2 W) for temperature sensors, electrical power switches,
magnetic torque control, active heat control, solar arrays and batteries;

• microRTU (70£30£10 mm3, 1.5 W) for propulsion control, mass memories and Teleme-
try and Command (T&C) communication.

For this type of applications, where limited performance is required, general-
purpose processors (described in Sec. 1.4) are usually considered not suitable due to high
power consumption, large area, presence of caches and speculation. The ARM Cortex-
M0+, a 32-bit 2-stage single-issue processor, is an example of a state-of-the-art propri-
etary implementation employed for terrestrial applications with similar requirements.
In the past, ESA has evaluated the ARM Cortex M0+ for a ProASIC3-based microcon-
troller both without modifications and applying FF-TMR together with safe finite state
machine encoding (and reset for unexpected states), employing automated tools [92].

Figure 2.2: Performance, area and area efficiency for several implementations targeting microcontrollers. The
data is derived from [110], except for the performance of the Cortex-M3 and Cortex-M4 (from the vendor and
[107]).

In [110], several RISC-V processors from the PULP platform are described and com-
pared to state-of-the-art ARM cores, Cortex-M0+ included. Fig. 2.2 shows compar-
isons in terms of performance (CoreMark/MHz), area (kGE) and area efficiency (Core-
Mark/MHz/kGE) of the Zero-riscy (2 stages, based on the RV32EC subset), Micro-riscy
(2 stages, based on the RV32IMC subset), RI5CY (4 stages, based on the RVC32IM sub-
set plus non-standard extensions), ARM Cortex-M0+, ARM Cortex-M0 (3 stages, an older
implementation targeting the same applications of the Cortex-M0+), ARM Cortex-M3 (3
stages), and ARM Cortex-M4 (3 stages). Each parameter is normalized to the maximum
value found from the comparison. Comparison between ARM cores and cores from [110]
in terms of power are not reported here, as they require power measurements with the
same technology, operating voltages and clock frequency. Instead, area can be easily
compared using Gate Equivalents (GE), which allows a technology-independent mea-
sure of the area. Furthermore, area efficiency is even more relevant for space processors,
as a larger area typically implies a larger probability of soft errors. This aspect will be
investigated in further detail in Chapter 3.
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The considered microcontroller implementations can be binned in three groups ac-
cording to performance: the low-end implementations (Micro-riscy), the mid-end im-
plementations (Zero-riscy, ARM Cortex-M0, ARM Cortex-M0+) and the high-end imple-
mentations (RI5CY, ARM Cortex-M3, ARM Cortex-M4).

The mid-end implementations generally achieve high area efficiency in terms of Core-
Mark/MHz. While the ARM Cortex M0+ has the highest area efficiency, it is remarkable
that new developments can be based on an open and free implementation (like Zero-
riscy) developed by academia with similar performance as state-of-the-art proprietary
processors.

The Micro-riscy is optimized for less intensive calculations, defined in [110] as "pure
control code", as opposed to the CoreMark based on arithmetic calculations. The SoC
described in [176] uses the Micro-riscy for power management. In [121], the use of
RV32E instead of RV32I is expected to save 25% of area, while Micro-riscy saves more
(38.6%) compared to the Zero-riscy mainly because it removes also the M extension
(no hardware multiplier and divider) [110]. It should be noted that while this leads to a
large improvement in terms of area, it causes large penalties in terms of CoreMark/MHz
performance (-62.7%) with smaller improvements in power consumption (-10.9%). The
main reason is that power consumption is dominated by the pre-fetch buffer accessing
the memory that remains the same in both designs [110]. For this reason, the power ef-
ficiency of the Micro-riscy is significantly lower than the one of the Zero-riscy in terms
of CoreMark/W (-57.5% at 0.8 V and 55 MHz). It should be noted that RISC-V specifi-
cations allow the M extension to coexist with E [121] (this would increase substantially
area efficiency and performance or Micro-riscy), while they do not allow F extension to
coexist with E because the area of a FPU is typically so large that the saving in area due
to 16 general-purpose registers instead of 32 would be marginal.

Both Micro-riscy and Zero-riscy employ the C extension to reduce code size11. An-
other extension which would improve performance of these implementations is the
RISC-V extension for bit manipulation (B), planned in the current specifications [121].
The B extension would reduce considerably code size and increase performance of typ-
ical operations on single bits in embedded software, by providing for instance instruc-
tions to read, write, clear or set a certain subset of bits from a register.

RI5CY includes the extension described in Sec. 2.1.3. It is an implementation tar-
geting control applications requiring DSP capabilities, similarly to the ARM Cortex M4
(which also add DSP extensions to the ARMv7 ISA). RI5CY is 6.1£ faster than the Micro-
riscy for the 2D-convolution (2D-conv) integer kernel12 employed as a benchmark in
[110]. While the area efficiency for the RI5CY is lower than the one of the Micro-riscy
when running CoreMark, RI5CY is 2.83£ more area-efficient when running the integer
kernel. DSP kernels sometimes require floating-point operations. For this reason, the
ARM Cortex M4 can optionally include a FPU (Cortex-M4F), and in [176] the RI5CY has
been extended with the F extension.

11The RISC-V specifications [121] claim that 50%-60% of the RISC-V instructions in a program can be replaced
with C instructions, resulting in a 25%-30% code-size reduction. In [177] similar code sizes for RV32EC and
ARM Thumb-2 are reported when considering the SPEC CPU2006 benchmark suite. As the frequency of
instructions and the number of registers employed vary with the application, [178] defines a non-standard
extension to reduce code size for a specific application.

12Common low-level operations in linear algebra programs are usually called "kernel" operations.
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Figure 2.3: IPC for Klessydra when running basic integer kernels. The IPC has been calculated multiplying
the MIPS (from [22]) by the clock period, for several pipeline lengths and number of threads. Lines have been
added to help visualize the increase of performance with the number of threads.

Defining the optimal number of pipeline stages from the number of IPC given in
[110] is not possible, as the three cores are based on different ISA subsets. A more ho-
mogeneous set of cores is Klessydra [22], a Very High Speed Integrated Circuit Hardware
Description Language (VHDL) model of a RISC-V processor (RV32IM) designed for the
PULPino SoC with a configurable pipeline of 2, 3 and 4 stages and supporting up to 4
hardware threads with a simple fine-grained implementation that changes thread every
CC (independently from whether the current one is stalled or not) [23].

Fine-grained multithreading for microcontrollers is interesting for two reasons: it
allows an efficient handling of SW techniques to increase fault tolerance employing re-
dundant threads [179] and it increases the average number of IPC without the penalties
on time determinism due to speculation, as can be seen in Fig. 2.3. As a matter of fact,
some processors provide branch prediction to increase the number of IPC, which must
be disabled if time-determinism is required. The work in [180] shows instead how to deal
with real-time applications and fine-grained multithread on microcontrollers.

IPC is a figure of merit of how much a certain pipeline is used over time and should
not be confused with absolute performance: pipelines with more stages may have worse
IPC but still shorter executions times because they can achieve higher frequencies and
employ more instruction-level parallelism (even if a larger part of it is wasted compared
to shorter pipelines). For instance, the 2-stage version achieves an absolute performance
of 63 MIPS with two threads (being fully-utilized), while the 3-stage version with two
threads achieves 92 MIPS (being utilized at the 86.2%).

However, as it can be seen in Fig. 2.3, the longer the pipeline, the worse is the penalty
in terms of IPC if no branch prediction or multithreading is present. The absolute per-
formance of the processors shown in Fig. 2.3 for a single thread is 54 MIPS for the 2-stage
version, 46 MIPS for the 3-stages version and 30 for the 4-stage version [22]. This shows
that, for time-deterministic implementations without speculation, a short pipeline (2-3
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Figure 2.4: Comparison of Micro-riscy, Zero-riscy and RI5CY for different benchmarks (data is from [110]). For
each benchmark, data is normalized to the achieved peak. Lines have been added to help visualize trends
when moving from an implementation to another.

stages) is the optimal choice also in terms of absolute performance.

The analyzed implementations for microcontroller applications provide interesting
insights on the importance of the benchmarks in selecting the most efficient implemen-
tation. In Fig. 2.4 the area efficiency of Zero-riscy, Micro-riscy and RI5CY is shown for
different benchmarks (representing different target applications).

2.2.3. GENERAL-PURPOSE PROCESSORS

Fig. 2.1 shows a payload processor taking care of processing and sending data through
the high-data rate modem. Data coming from the instrument can be either stored in
the Mass Memory (MM) before its transmission to ground, or processed (off-line) by the
payload processor after the data is stored and before the transmission, or processed (on-
line) by the payload processor before storing the data in the MM.

While for OBCs RTOSs like RTEMS [156] and FreeRTOS [159] are employed, there is a
trend of using Linux in payload processors [181], as in this case often there are no hard
real-time requirements for the payload software. The use of Linux allows for an easier
software development, because of the availability of drivers, e.g. by using Secure Digital
(SD) cards via SATA, and other software modules already available, or to communicate
via Transmission Control Protocol/Internet Protocol (TCP/IP) [181]. For these reasons,
typically general-purpose processors, already discussed in Sec. 1.4, are employed.

An example of a general-purpose processor for space is the GR740 [30], a quad-core
LEON4FT processor originating from ESA’s European Next Generation Microprocessor
initiative [115] (see discussion in Sec. 1.4).



2.2. PROCESSORS FOR SATELLITE DATA SYSTEMS

2

47

Figure 2.5: Example of use of payload processor with accelerator and FPGA to interface the instrument, similar
to the design described in [182]. The linear data bus (typically I2C) connects this subsystem to the rest of the
CubeSat (not shown here). In red, point-to-point data busses. In yellow, local busses on the PCB.

2.2.4. PROCESSORS FOR ON-BOARD DECISION MAKING
Fig. 2.5 shows an example of on-line processing based on a general-purpose payload
processor and an accelerator to enable OBDM13, similar to the design of Hyperscout-2
[182]. Hyperscout-2, launched in 2020, is the first satellite to demonstrate the feasibil-
ity of applying on-board artificial intelligence with a DNN [182, 183]. It is a 6U CubeSat
for Earth Observation (EO) with a hyperspectral camera. A DNN is employed to clas-
sify images according to the percentage of cloud cover and prioritising their downlink
according to their information content [183]. In order to do this, a Myriad 2 [184] is em-
ployed as an accelerator to run a 17-layer Convolutional Neural Network (CNN) on the
images coming from the instrument (with a total board consumption of 1.8 W during
inference [183]). Based on this In-Orbit Demonstration (IOD) mission, a PC104 board
(with latch-up protection and components with flight heritage) targeting power require-
ments below 5 W is being developed [185], which is below 25% of the power typically
available in a 6U CubeSat. Using a parallel processor as accelerator to execute on-board
compute-intensive workloads that are common in DNNs for Artificial Intelligence, like
GEneral Matrix Multiply (GEMM) [186], is an important trend in space embedded sys-
tems. In these processors, parallelism is either obtained implementing instructions that
operate on more elements of a vector, with DLP and/or PLP.

In [8] several types of platforms (general-purpose processors described in Sec. 2.2.3,
manycore DSPs, FPGA-accelerated processors and GPUs) are compared with regard to
several benchmark algorithms representative of VBN for space applications (another ex-
ample of OBDM in space applications). All the devices are based on 28-nm technologies

13The role of the FPGA in this design is just to interface the front-end electronics of the instrument.
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Figure 2.6: Comparison of five different platforms in terms of performance and energy efficiency. All data is
derived from [8] and "a.u." stands for "arbitrary unit".

for fair comparison, except the LEON4FT which is based on a larger technology node.
The results are reported in Fig. 2.6. Error bars have different meanings depending on the
platform: for the LEON4FT the uncertainty stems from the fact that the performance is
extrapolated from a single core running at lower frequency; for the 66AK2H14 it stems
from slightly different results found in literature; for Zynq it originates from the fact that
acceleration resulted in various acceleration factors compared to general-purpose pro-
cessors depending on the specific algorithm and finally for the desktop GPUs it stems
from different chip models [8].

Fig. 2.6 shows that high-end GPUs provide the highest performance but with the
worst energy efficiency of all the analyzed platforms. Data from [8] also show that GPUs
for mobile devices have performance 13 times lower than the ones for desktops without
substantially increasing energy efficiency. Even worse, the estimated best-case energy
efficiency of mobile GPUs is even lower than the one of desktop GPUs.

On the other hand, Fig. 2.6 shows that the highest energy efficiency is achieved by
processors employing custom FPGA-based on-chip accelerators tailored to the specific
application. However, given the niche-sized market for space applications, developing
a custom hardware accelerator for each algorithm is too expensive as the cost cannot
be spread on large volumes as it is possible for instance for mobiles. The hardware ac-
celeration described in [8] is obtained by connecting the accelerator to the bus/crossbar
so that no change to the ISA is required (as is typically done on Zynq platforms). The
extendability of RISC-V enables ISA application-specific extensions to increase perfor-
mance in a specific application for tightly-coupled accelerators, as described in [187].
Also this approach has a high cost, especially because it makes reuse of the software
ecosystem more difficult and requires forking from the standard toolchain. An approach
to solve this issue is to provide software support for an ISA extension defining a generic
interface for accelerators, as the Rocket Custom Co-processor (RoCC) included in the
Rocket core [188].

The low performance of a general-purpose processor, like the quad-core LEON4FT, is
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easily explained by the fact that this kind of processor relies mainly on ILP and includes
little or no DLP. As a matter of fact, the second best platform found in [8] in terms of
energy efficiency is the Myriad 2 [184], a manycore SIMD processor. The Myriad 2 pro-
cessor contains 12 processing cores, each of them being capable of operating simultane-
ously on integer and floating operands of 128 bits each (potentially from 2 elements of
64 bits each to 16 elements of 8 bits each) [184]. The 66AK2H14 has been included in the
comparison to show that a similar choice can also lead to a different performance/en-
ergy efficiency trade off. For less demanding applications, parallel processors with lower
computational capabilities can be employed. An example of manycore SIMD proces-
sors based on RISC-V targeting ultra-low power applications is the PULP platform [125],
which provides an array of eight RI5CY cores with two shared FPUs plus a Zero-riscy for
control (both of them described in Sec. 2.2.2). The work in [176] describes an ASIC im-
plementation (Mr. Wolf) of the platform on a low-power 40-nm technology, reporting a
peak performance of 1 Single Precision (SP)-GFLOPS and 7 GOPS, a maximum energy
efficiency of 18 SP-GFLOP/J and 30 GOP/J and a maximum frequency of 450 MHz. An-
other ASIC implementation of the same platform, the GAP8 processor contains 8 RI5CY
processing cores for computations (and a simple processing core for control)[189], each
of them capable of executing operations on integer operands of 32 bits (1 elements of
32 bits, 2 elements of 16 bits or 4 elements of 8 bits each [137]). The lack of support for
floating point instructions, together with lower computational capabilities (from 345.6
GOP/s [190] to 20 GOP/s [189]), allows the GAP8 to have a peak consumption of 75 mW
[189], which is around an order of magnitude lower than the Myriad 2 (800 mW [184]).

Given the comparison between packed-SIMD and vector ISA extensions in
Chapter 1, RISC-V dropped the initial proposal of a packed-SIMD standard extension
(P)14 and proposes a vector (V) extension (in the process of being standardized), derived
by the development of the Hwacha co-processor [191]. The V extension is intended to
be flexible and reconfigurable for different data types and sizes on the run, with the goal
to support both implicit auto-vectorization in (OpenMP) and explicit SPMD (OpenCL).

In [18], a manycore MIMD implementation composed of an array of simple RISC-V
implementations (not containing any SIMD features) with 4, 8, 16 cores is compared
against a Rocket with a Hwacha coprocessor with 1, 2 and 4 vector lanes. The results
show that, for similar area, the vector lane solution generally performs better and with
lower power consumption. The main reason behind this is that the multiple cores in a
MIMD array execute copies of the same instructions across multiple data elements. This
approach leads to lower area and power efficiency, as the instruction fetch mechanism
is one of the most expensive components of a processor (as already noted in Sec. 2.2.2).
An example of MIMD implementations is the Epiphany series. The Epiphany-III has 16
cores and achieves 1 GHz on 16-nm technology, with a declared peak performance of 32
SP-GFLOPS and energy efficiency greater of 16 SP-GFLOP/J [192]. The Epiphany-IV with
64 cores achieves 800 MHz with a declared peak performance of 102 SP-GFLOPS and an
energy efficiency greater than 51 SP-GFLOP/J [193]. Finally, the Epiphany-V core with
1024 cores reaches a declared peak performance per CC of 2048 Double Precision (DP)-
FLOP/CC [194]. Another manycore implementation is the 16-nm Celerity Soc [188], con-

14However, there is still an interest in packed-SIMD fixed-point operations for use in the integer registers of
small RISC-V implementations that may lead to the standardization of a P extension.
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taining five Rocket RV64G cores, an array of 496 RV32IM cores and a Binarized Neural
Network (BNN) accelerator coupled using RoCC. The authors of [188] acknowledged the
key role of the RISC-V ecosystem in enabling a small team of junior graduate students
to design and tape-out a complex SoC in just nine months. However, they report also
to have faced some challenges including limited documentation, lack of reference im-
plementations in an industry standard hardware description language, and the lack of a
stable release schedule across the entire ecosystem [188].

A dual-core SMP implementation of Rocket with a single-lane Hwacha (version 3)
per core is described in [191] (Raven-3), taped out on a 45-nm process and achieving
1.3 GHz. Performance is measured with a DP floating-point matrix-multiplication kernel
(reported to achieve 78% of peak performance). The values found are 16.7 DP-GFLOP/J
at 250 MHz and 0.65 V, 1.72 DP-GFLOPS at 550 MHz and 0.8 V (3.13 DP-FLOP/CC),
and 4.03 DP-GFLOPS (peak performance for the kernel) at 1.3 GHz and 1.2 V (3.10 DP-
FLOP/CC). While Hwacha is a coprocessor to be coupled to a Rocket core, in [195]
a stand-alone data-parallel processor (LACore) based on a non-standard extension of
RISC-V is described. Even if it was not validated with an ASIC implementation, [195] pro-
vides a full benchmarking of the implementation using hand-written optimized versions
of the HPC Challenge (HPCC) Benchmark kernels to compare the LACore implementa-
tion against a baseline single-issue RISC-V implementation without DLP (both in gem5).
The absolute performance of LACore and the speedups obtained against the scalar RISC-
V baseline are reported in Table 2.4. The frequency is 3 GHz for the scalar part and 1 GHz
for the data-parallel part of the pipeline for LACore and 3 GHz for the RISC-V baseline.
LACore substantially increases performance of all the kernels in the HPCC compared to
the scalar RISC-V implementation, except for the RandomAccess (as reported in [196])
because it does not imply vectorial operations but measures the peak capacity of the
memory subsystem while performing random updates to the system memory (to evalu-
ate the performance of a processor to deal with large and segmented data sets) [197]. The
other kernels in HPCC are: HPL (solving a linear system of equations), dgemm15 (real
matrix-matrix multiplication), STREAM (which measures sustainable memory band-
width and the corresponding computation rate for simple vector kernel like Triad16),
PTRANS (which exercises the communications where pairs of processors communicate
with each other simultaneously) and FFT (a complex one-dimensional Discrete Fourier
Transform). The efficiency of DLP for matrix operations is confirmed from the data in
Table 2.4. As a matter of fact, [195] provides an estimation of the area penalty of 2.53£
for LACore over the RISC-V baseline. This means that LACore improves area efficiency
up to 31.77£ for the dgemm, but only up to 1.67£ for the FFT. Even if there is no estab-
lished benchmark suite for OBDM of applications, as opposed to what CoreMark is for
embedded applications and SPEC for desktops, the performance of these processors are
generally benchmarked like in [195], measuring the number of (FL)OPS or (FL)OP/CC
for several kernels.

Performance of a certain kernel in terms of (FL)OP/CC on a certain platform can be

15This is a gemm kernel operating on DP floating point elements. Analogous subroutines are defined for dif-
ferent data types and the first letter represents the data type (e.g. sgemm for simple precision and igemm for
integers).

16The operation executed is z Ã ®x Å y , where z, x and y are vectors and ® a scalar.
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Table 2.4: Absolute performance and relative speedup of LACore compared to a baseline scalar RISC-V
pipeline. For each benchmark values for the peak performance (p) and for the largest tested workload (w)
are given, depending on the size of the matrix for dgemm (p and w:1024) and for PTRANS (p:26, w:210), and
the length of the vector for FFT (p:212, w:220) and STREAM Triad (p:212, w:220) [195].

Benchmark
DGEMM FFT PTRANS HPL STREAM Triad

[DP-GFLOPS] [DP-GFLOPS] [DP-GFLOPS] [DP-GFLOPS] [GB/s]

LACore » 16 (p,w)
1.88 (p) » 0.6 (p) 2.55 (p) 103 (p)
0.55(w) 0.15 (w) 1.52 (w) 7.25 (w)

speedup 80.4x (p,w)
4.23x (p) » 3.5x (p) 4.67x (p) 13x (p)
2.1x (w) 1.52x (w) 5.88x (w) 5.2x (w)

Figure 2.7: Example of roofline models for four platforms employing incremental levels of parallelism for three
different kernels (K1, K2 and K3) with different OIs (incremental improvements not to scale).

related to its OI using the "roofline" model [198], with OI being the number of (FL)OP
per byte read from off-chip memory for a certain kernel. In this model, a platform is
represented by a slope given by the memory bandwidth and a "ceiling" representing
the peak computational power, as shown in Fig. 2.7. Fig. 2.7 adds a higher level of ILP
(pipeline capable of executing more DLP instructions at the same time, typically require
HW replication of the DLP module) and multiple cores (PLP) to LACore as incremental
enhancements. The performance of a kernel in Fig. 2.7 is given by the intersection of
the vertical coloured line given by its OI and either the slope or the flat "ceiling" of a cer-
tain platform. However, the measured GFLOPS are typically lower than the ones at the
intersections because of non-idealism not taken into account in this simple model. For
instance, this model assumes that memory traffic and computations can be overlapped
in time, and this is not always possible.

Kernels intersecting the ceiling are limited by computing capabilities and their per-
formance can be enhanced with additional levels of parallelism (like the kernel K3 is for
each of the four platforms presented in Fig. 2.7 and the kernel K2 is only marginally and
only for the addition of DLP). Kernels limited by the slope are constrained by the mem-
ory bandwidth and therefore are not improved by higher levels of parallelism (e.g. the
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incremental use of DLP does not speedup the kernel K1). When considering LACore and
the roofline model in Fig. 2.7, RandomAcces is an example of algorithms like K1, FFT an
example of kernel like K2 and DGEMM a kernel that can be assumed like K3. DGEMM
is typically compute-bound for all sizes and reaches about 95% of the peak performance
(flat line) [199].

2.3. RISC-V ROADMAP FOR SPACE APPLICATIONS
2.3.1. RISC-V PROFILES
In Sec. 2.2 different implementations have been analyzed for each type of processor
identified in satellite data systems. From this analysis, several "profiles" of RISC-V pro-
cessors are defined in Table 2.5, focusing on the features (ISA subsets and non-standard
extensions, ILP, PLP), suggested benchmark, expected performance (for each type of
processor several level of performance and/or DLP/PLP approaches are proposed) and
reference silicon-proven implementations available.

The three profiles identified for microcontroller applications of RISC-V (uC) are es-
sentially derived from the three IP cores presented in [110] for the IoT. The uC-LE is for
"pure control" applications (e.g. power management and latch-up protection of COTS
components), the uC-ME is for control applications requiring more calculations (e.g.
AOCS units) and the uC-HE for sensors producing larger amounts of data (e.g. cameras).
Although the LE profile could be benchmarked with the CoreMark, "pure control code"
(e.g. a non-preemptive task-scheduler and a driver to interact with peripherals) like the
"Runtime" employed in [110] is much more representative of real applications for this
profile. As the uC-HE can be seen as a step towards OBDM processors (a single-core,
performance can be also measured in terms of (FL)OP/CC and a pessimistic estimation
of 2 (FL)OP/CC is reported by dividing the GOPS performance when running integer
kernel on the Mr. Wolf [176] by the number of cores.

For uC processors, short pipelines are preferred to achieve high IPC without specula-
tion to avoid penalties on time-determinism. These processors also target deterministic
interrupt handling for time-critical applications, with fixed and minimized latency for
interrupts. The RISC-V architecture model for managing exceptions, interrupts and reg-
isters is simple and suitable for implementations of processors with deterministic timing
behaviors (e.g. no windowed overlapping registers, overflow/underflow to be managed).

The expected performance in terms of CoreMark/MHz is similar or greater than the
ones expected from the OBCs because shorter pipelines lead to higher IPC. However,
lower maximum frequencies in general lead to lower absolute performance compared
to microarchitectures for OBCs. Additionally, OBCs require support for RTOSs.

The features and the expected performance of the four profiles of General-Purpose
(GP) processors stem directly from Figs. 1.4 and 1.5, with the LE version being a multi-
core extension of the OBC profile with relaxed real-time constraints. The RV64GC sub-
set is proposed for this profile (as it is the subset targeted at the moment by the Linux
ports for RISC-V17) and all the three levels of privileges described in Sec. 2.1.1 are re-

17While atomic instructions are generally needed especially to boot Linux on multicore processors, a smaller
subset would be strictly required, as for instance the need of the C extensions is a requirement introduced
by the Linux ports available at the moment of writing.
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quired. These processors are intended to support general-purpose OSs but sometimes
also RTOSs for hard-real time processing. Development of real-time software becomes
more critical by increasing ILP and speculations, thus the different profiles give several
possible time-determinism/performance trade-offs, along with area/performance and
power/performance trade-offs. The use of the N extension can be evaluated, as dele-
gating some interrupts to user-level processes reduces the overhead both in terms of
number of cycles and in terms of cache misses [200].

To enable OBDM, several PLP/DLP approaches for the OBDM profiles are proposed.
All of them are related to silicon-proven implementations and for each of the profiles
a range of expected FLOP/CC is given. For the OBDM-ManyCore (MC)-LE the lowest
expected performance is taken from Mr. Wolf, which has 8 cores and two shared FPUs.
Assuming an ideal improvement of a factor 4£ for 32 cores and assuming an ideal 4£ in-
crease of performance with an FPU per core, an optimistic estimation of 32 FLOP/CC for
a 32 cores version can be proposed. An expected performance of 16 FLOP/CC is taken
for a more conservative estimation. This estimation is half the peak FLOP/CC given for
the 16 core Epiphany in [192]. From this discussion a conservative derating factor of
0.25£ can be deduced. For these reason, the target performance of the MC-HE are mul-
tiplied by 0.25 compared to the peak values given in [194] for a conservative estimation.
For OBDM-Vector Processor (VP) the maximum value found for Raven-3 is divided by
1.5 to estimate performance for single core and multiplied by 2 to have estimation for
four cores, in accordance with Fig. 1.5. The manycore profiles can be seen as MIMD
extension of the microcontroller profiles, while the VP profile is an extension of the SMP
GP processors with the addition of tightly-coupled coprocessors. The HPCC has been
selected as reference benchmark suite as it contains popular kernels (e.g. GEMM).

All the metrics employed (e.g. CoreMark/MHz) to estimate the expected perfor-
mance in Table 2.5 have been chosen to be technology-independent and frequency-
independent, so that penalties for fault-tolerant features required in space (like the ones
described in [81]) will not cause lower expected performances compared to the "non-FT"
reference versions, even if they will cause lower frequency (therefore lowering the abso-
lute performance, e.g. the absolute CoreMark score) and larger area (for instance reduc-
ing the number of cores that can fit in a certain chip, thus limiting PLP).

2.3.2. FROM THE RISC-V ISA TO FLIGHT-PROVEN PROCESSORS
Sec. 2.2 analyzed several silicon-proven IP cores based on RISC-V. However, a RISC-V
based IP core validated for the space environment with a long history of flight heritage
like LEON2FT is not available yet. This section describes the different models employed
during the development of a space-grade processor. Different models of a processor are
typically used depending on the purpose during the development of a system (some of
those are more fit to develop software, some others to explore design space of an hard-
ware implementation, some others to estimate performance and some others to synthe-
size a FPGA or ASIC implementation) and on the Technology Readiness Level (TRL) of
the implementation (for instance before tapeout the most mature hardware model is the
FPGA prototype).
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Models of processors can be classified in simulation and hardware models. Different
models provide different levels of abstraction, generating a large spectrum of possible
accuracy/speed points for simulation models and cost/representativeness of the flight
model for hardware models. Furthermore, hardware models (when available) can be
employed to speedup parts of simulation. For instance during software development
and hardware prototyping bugs may be triggered on the order of billions of cycles. While
on a hardware model executing a billion of cycles takes a dozen of seconds, on a RTL C++
model generated from Chisel 1 billion cycles takes 8 hours [108]. On the other hand, RTL
models provide a level of observability usually not achievable with hardware prototypes.

SIMULATION MODELS

Simulation models are reported below with a critical discussion on their accuracy, per-
formance and space relevance. The results of this discussion are reported in Table 2.6.

• Instruction Set Simulator (ISS): once the required standard extensions and privilege
levels are defined, the profile and the software can be evaluated in an ISS like Spike
(the "golden reference" of the RISC-V ISA), QEMU and RV8 [201]. Microarchitecture
features and memory behavior are not represented, so the accuracy in terms of per-
formance and fault tolerance is very limited. From the data provided in [201] a penalty
factor of 5x over native x86 code can be taken for these simulators. Assuming an x86
processor running native code at 100 GIPS, a performance of 20 GIPS is then expected.

• Event-based simulators: an example is gem5, which provides several possible
trade-offs of accuracy/speed in between ISA simulators and cycle-accurate simu-
lations [202] by providing some microarchitectural features (a minimal single is-
sue model, an improved version representing timings of memory, a more detailed
pipelined in-order model, and a pipelined OoO model), memory models and emu-
lation or execution of system-level services [203]. Several RISC-V implementations are
described in literature employing gem5 for the good accuracy/speed trade-off of this
solution during design exploration. For instance, [195] uses gem5 models to compare
different architectures instead of using real hardware to remove variables as process
technology, clock speeds ad cache configuration in order to compare the processor ar-
chitectures only. In [204] gem5 is about 40 times faster than Chisel C++ RTL models in
terms of IPS.

• Virtual prototypes: an example of virtual prototype for LEON processors is described
in [205]. This platform is intended to enable fast full-system simulation, low-level
SW development and design-space exploration for multi-processor SoCs. It is based
on state-of-the-art design specification languages (such as SystemC/TLM2) and with
three abstraction levels: loosely-timed, approximately-timed and RTL. Different levels
of abstraction can be employed for each part of the system, according to the required
accuracy/speed trade-off. In [206] a RISC-V virtual prototype is described, and in [207]
a RISC-V virtual prototype is reported to achieve performance in the range of 30 to 220
MIPS (depending on the accuracy).

• Speed-optimized Cycle-Accurate (CA) models: including implementation-specific and
microarchitectural features to estimate correctly timings. Space industry heavily relies
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on this tool to develop software in a faster way and to provide WCET analysis. For
instance, the use of a cycle-accurate model of LEON (TSIM) is key to provide a light
weight, scalable and cost-efficient solution for integration and validation of satellite
subsystems and payload equipment containing embedded software [208]. The ven-
dor reports TSIM to reach 60 MIPS on a Intel i7-2600K PC at 3.4 GHz, which is close to
the MIPS reported for the OBC in third column of Table 2.3 (-13%). However, the sit-
uation gets worse when the hardware prototype works at higher frequencies (e.g. the
GR740 is reported to have a maximum frequency of 250 MHz).

• Hardware Description Language (HDL) models (also referred to as IP core or RTL
model): this is a crucial model for an implementation, as it is also employed to
synthesize the processor for FPGAs and ASICs. RISC-V is often associated with the
Chisel HDL because Rocket, the reference RISC-V implementation, is written in Chisel.
Chisel has a remarkable potential as a tool to create parameterized architectures, en-
abling and facilitating academic research [209]. From the Chisel model both a Verilog
RTL and a C++ RTL model can be generated. [209] reports that the C++ models is
around 8£ faster than a simulation with commercial tools on the Verilog RTL consid-
ering both compile time and run time, when booting an OS on a Rocket. However,
the performance of C++ RTL models generated from Chisel are in the order of some
kIPS. The space industry lacks of competence and experience in designing with high-
level description languages and modifying the auto-generated Verilog is not a viable
option, as modifying autogenerate non-human readable code is risky and damages
maintainability. Furthermore, autogenerated code may be not acceptable for depend-
able applications, as there is is no established design flow in the industry and an addi-
tional layer in between hardware description and implementation is added. IP cores
for space are typically in VHDL, as it is historically widely adopted by the European
space industry [210]. However, as opposed to Chisel which has not been adopted by
industry yet, new possibilities like SystemVerilog could also be taken into account as
industry and academia heavily relies on this language for terrestrial applications. For
instance, the PULP platform is written in SystemVerilog, which greatly simplifies veri-
fication and this is becoming a sensible problem for space industry as VHDL was fine
to verify simple IP cores but shows its limits as the complexity of the IP cores needed
in space increases.

From the point of view of space applications, IP cores can be classified in two cate-
gories:

– COTS IP cores (or "non-FT"): all the RISC-V IP cores analyzed in Sec. 2.2 are at this
level, where specific features for fault-tolerance dimensioned for space applications
are not present. LEON processors have "non-FT" versions which can be considered
at a similar level of fault tolerance compared to COTS IP cores.

– FT IP cores: this type of IP cores employs solutions to increase their fault tolerance
specifically design for the space environment. An example (LEON2FT) is given in
Sec. 1.4.2.

The differences between the two types of IP cores are becoming less pronounced over
time, as larger cache memories with smaller technologies tend to have considerable
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SER even in terrestrial applications.

• Netlist: after synthesis a netlist is generated. This is the most accurate simulation
model available and can be used for instance also for static timing analysis.

Table 2.6: Simulation models and their features. Speed, accuracy and space relevance are compared using a
coarse scale from Very High (VH) to Very Low (VL). A finer scale using "+" and "-" is used to indicate smaller
differences.

Sim. Model (example) Speed Accuracy Space Rel. Typical use
ISS (Spike) VH L M ISA reference model

Modular platform (gem5) M+ to M- M- to M+ L Design exploration (processor arch.)
Virtual Prototype (SoCRocket) H to M M- to M+ M Design exploration (SoC level), SW dev.
Speed-optimized CA (TSIM) H H H SW development

High-level description (Chisel) L VH- L Parametric and fast design
RTL (VHDL/SystemVerilog) L VH H Design, functional simulation, synthesis

Netlist (Verilog) VL VH+ H Gate-level simulation (e.g. timings)

HARDWARE MODELS

This section describes the different types of hardware models typically available for a
processor in space applications.

• FPGA: RISC-V processors for space should be portable to a large spectrum of FPGAs,
like it is possible today with the LEON processors. Characteristics of FPGAs employed
in the development of space systems vary depending on the purpose of the model
(e.g. prototype vs flight system). FPGAs can be classified according to the technology
employed in the configuration memory and according to whether they are qualified
for use in space applications or not:

– COTS SRAM-based (e.g. Xilinx Spartan6, Xilinx Kintex UltraScale and Xilinx Ar-
tix7): these are the most popular type of FPGAs in terrestrial applications, provid-
ing the best solution for rapid prototyping and evaluation because of their mature
toolchain, large capacity and availability of several FPGA-specific IP cores from the
vendors. However, they have typically high power consumption (a design based on
one of the latest COTS FPGAs dissipates 4 W [211]) and the configuration memory
is vulnerable to SEUs [212]. Typically hardware and information redundancy are
required in the design of a SRAM FPGA, along with scrubbing of the configuration
memory to avoid error accumulation in the configuration memory, which comes at
a great cost in terms of power consumption (e.g. +265% in [213]). However, SRAM-
based FPGAs require an additional level of protection when operating in space com-
pared to an ASIC because large part of the sensitive area is composed of the config-
uration memory. For the Ultrascale series, Xilinx provides the SEM IP core for SEU
detection and correction in the configuration memory with additional FI capabili-
ties to allow the user to evaluate the dependability of the final solution [214].

– COTS flash-based (e.g. Microsemi IGLOO2, Microsemi ProASIC, Microsemi Po-
larFire, Microsemi SmartFusion2): although they can leverage a smaller user-base
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compared to SRAM FPGAs, Flash-based FPGAs seem the best fit for space applica-
tion, because of their lower power consumption [215] and immunity to upsets in
the configuration memory [216]. Furthermore, in [215] it is shown that a design
dissipating 23.70 mW on a COTS Flash-based Microsemi SmartFusion2 dissipates
245 mW (10x) on a COTS SRAM-based Xilinx Artix-7. However, as these FPGAs are
not explicitly validated for the space environment, other problems may arise, like
SETs in critical parts of the SoC (e.g. in Phase-Locked Loops [217]), SELs, low-dose
TID failures, relatively high SEU in the user memory. For instance, [218] reports the
results of heavy ions and proton tests for SEE of an IGLOO2. Several instances of
"high current" status triggered by particles (suspected SELs) are reported (while for
instance the space-grade RTG4 is SEL immune [219]).

– Space-grade SRAM-based (e.g. Xilinx Virtex 5QV): these devices are typically well
characterized in terms of effects of radiation and provide meaningful improvements
over COTS SRAM-based ([220] claims a 1000£ improvement in SEU hardness of the
cells of the configuration memory). However, SRAM cells of the configuration mem-
ory and user memory are still sensible to SEUs and scrubbing of the configuration
memory is then required. For instance, in [220] 3.80E-10 upsets/bit/day in GEO at
an altitude of 36,000 km are predicted for the configuration memory. Furthermore
they are still more power-hungry than their flash-based counterparts, as for instance
the power consumption of the RHBD Xilinx Virtex-5QV SRAM-based FPGA is in the
range of 5–10 W, while the power consumption of the comparable rad-tol Microsemi
RTG4 is in the range of 1-4 W [8].

– Space-grade flash-based (e.g. Microsemi RTG4): flash cells are inherently immune
to SEUs, but user memory is still vulnerable to SEU. This means that the same level
of fault tolerance employed for ASICs can be considered sufficient. In [219] the tol-
erance to TID effect of the RTG4 is compared with the one of SmartFusion2 and a
significant improvement is found, with a TID tolerance tested up to 160 krad. No
SEL were observed for a LET of 103 (MeV cm2)/mg at 100°C and the SER of the se-
quential elements (FFs with TMR) is at least three orders of magnitude better than
the simple FFs in the SmartFusion2. No MBUs were observed in the block RAM of
the RTG4 because of interleaving.

– Space-grade antifuse (e.g. Microsemi RTAX-S): the configuration is fixed, so radia-
tion cannot change configuration memory at all. This comes with large penalties in
terms of frequency and capacity compared to space-grade flash-based FPGA. The
vendor reports the RTAX-S to achieve a frequency 3 times lower than the one of the
RTG4 and to have a capacity in terms of logic elements 7.5 times smaller.

• ASIC prototype: a silicon-proven processor is typically seen as a mature processor
which can be evaluated for inclusion within systems. In space the situation is more
complicated, and for this reason an ASIC demonstrator is even more important con-
sidered the additional difficulties in the use of FPGAs.

– Commercial technologies: while in the past ASICs based on commercial technolo-
gies were susceptible to destructive SEE events (SEL and Single Effect Hard Errors
[221]), newer SOI technologies are immune to SEL [222] and typically susceptible to
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hard failures only for TID. On the other hand, many sub-20-nm ASICs employ Fin-
FET technology, which has an increased SEL vulnerability compared to bulk Com-
plementary Metal–Oxide Semiconductor (CMOS) technologies with the same volt-
age [223]. The SER caused by SEUs and SETs must nevertheless be evaluated. An
example of an ASIC prototype based on commercial technology was the AT697E, an
ASIC prototype of the LEON2FT from Atmel based on a 180-nm CMOS process.

– RHBD technologies: in Europe many ASICs are based on the RHBD DARE library
for the UMC 180-nm CMOS technology [224] and the newer C65SPACE (65 nm) by
STMicroelectronics [225]. The AT697F was based on the ATC18RHA (180 nm) rad-
hard library, providing an increase in resilience to TID effects from 60 to 300 krad
compared to the AT697E.

• Space-grade component: the space qualified version of a processor typically employs
a ceramic and hermetic package, extended temperature range (from -55 °C to 125 °C)
and extended qualification flow (according to QML-V and QML-Q space grade flows
[226]). Radiation performance may vary:

– The rad-tol ATmegaS128 has a LET threshold for SEL of 62.5 (MeV cm2)/mg at 125 °C
and TID tolerance up to 30 krad [227].

– The rad-hard AT697F (from the same vendor) is reported to have a LET threshold for
SEL of 95 (MeV cm2)/mg at 125 °C and TID tolerance up to 300 krad [228].

• Flight-proven component: according to [229] a component has achieved flight her-
itage after two years of nominal performance under nominal mission conditions. The
AT697 flew for the first time in 2008 and remained fully functional for more than 5
years, achieving flight heritage, which was key for broad market acceptance of the
LEON2FT [230]. Together with the LEON processors, also IP libraries like GRLIB have
been proved successfully in space. Therefore integration in GRLIB would enable RISC-
V processors to reuse all the interfaces already available for LEON-based SoCs with
flight heritage like SpaceWire, MIL-STD-1553B, CAN, etc.

Given the discussion on the models adopted by the space industry, a roadmap to
bring a "non-FT" or COTS IP core (e.g. LEON2 or Rocket) into a flight-proven ASIC com-
ponent (e.g. AT697F) is given in Table 2.7, summarizing with examples which steps can
be taken. A more detailed roadmap may also evaluate intermediate hardware models
(e.g. space-grade FPGAs and ASIC prototypes) for flight.

2.4. PRIORITIZATION AND SYNERGIES
The work required to answer RQ3 and RQ4 for each identified profile is more than can be
handled in a single PhD. For this reason, it was necessary to exploit synergies with par-
allel developments, and selecting the most promising profiles for each RQ. During this
PhD, Cobham Gaisler was working on the development of the NOEL-V Platform. This
platform covers the OBC profile and all the GP and uC profiles identified in this chapter,
with some novelties that will be described in Sec. 6.1. Cobham Gaisler released open-
source the non-FT version of the NOEL-V in their GRLIB IP Core library approximately
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Table 2.7: Simulation and hardware models from a COTS IP core to a flight-proven solution.

Model Strengths Weaknesses
COTS IP core

Many available, large user base Fault tolerance to be assessed (and improved)
(LEON2, Rocket)

FT IP core
Designed keeping into account SEEs

Larger area and power consumption,
(LEON2FT) lower maximum frequency
SRAM FPGA Large capacity and rapid Config. memory vulnerable to SEU

(LEON3FT on Virtex-5/5QV) prototyping (COTS versions) (even for space-grade versions)
FLASH/Antifuse FPGA Configuration memory not Less capacity (compared
(LEON4FT on RTG4) vulnerable to SEU to COTS SRAM FPGAs)
ASIC proto. (comm.) High performance, large capacity, Risk of destructive SEEs (bulk/FDSOI)

(AT697E) Process is immune to SEL (SOI) and/or low TID failures
ASIC proto. (RHBD) Representative of final performance Larger area, lower frequency

(AT697F before qualification) and radiation-hardness compared to commercial technologies
Space-grade comp.

Mature solution (TRL=8)
More expensive than ASIC prototypes,

(AT697F after qualification) later on the market (» years)
Flight-proven comp.

Proven solution (TRL=9)
At least 2 years needed for flight-proven

(AT697F after flight) (more than two-years old technology)

halfway this PhD (July 2020), while the FT versions are expected to be proprietary like for
LEON processors. Therefore, the most critical areas to research on during this PhD work
were identified to be on the one hand the analysis of the vulnerability of the GP profiles
as a case study to provide a methodology to turn a open-source non-FT IP Core into a FT
IP core in a cost-effective way, and on the other hand the extension of these profiles to
cover also the OBDM profile with the NOEL-V platform. The final design of the NOEL-V
platform extended to address the OBDM profile has been delivered to Cobham Gaisler,
and it is planned to be included in GRLIB. Furthermore, part of the work identified in
this chapter has been carried by master students under the supervision of the PhD can-
didate. The results of these activities will be mentioned in Chapters 3 and 4, when RQ3
and RQ4 will be addressed.

2.5. SUMMARY
Several profiles of processors based on RISC-V, which are expected to improve satellite
data system architectures compared with state-of-the-art processors for space, are iden-
tified. This chapter discussed how the open nature and modularity of the RISC-V ISA
allow designers to implement the optimal microarchitecture for different applications,
ranging from low-performance/low-power microcontrollers to OBCs to processors for
payload applications to high-performance processors for machine learning and digi-
tal signal processing. The large number of RISC-V implementations described, some
of them with very different target applications, also shows how RISC-V allowed an un-
precedented amount of research in a relative short time on a single ISA. Furthermore,
studies on the same open ISA can be easily employed to compare and evaluate microar-
chitectures to solve currently unaddressed needs in space systems. The introduction of
RISC-V in space will contribute to providing a range of alternatives to proprietary so-
lutions to enable new capabilities in satellites data systems, as concerns are growing
about monopolistic positions in the embedded market. This chapter provides knowl-
edge to choose proprietary solutions when strictly needed to achieve a certain level of
performance or efficiency and choose several degrees of openness when possible, en-
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abling the next generation of space data systems to be based on an effective mix of the
two approaches. A flexible roadmap to bring RISC-V processors from COTS IP cores to
flight-proven components is proposed, based on the models typically employed in the
development of space processors.





3
COST-EFFECTIVE REDUNDANCY TO

MITIGATE THE EFFECTS OF SOFT

ERRORS

.

Yet mark his perfect self-contentment, and hence learn this lesson,
that to be self-contented is to be vile and ignorant,

and that to aspire is better than to be blindly and impotently happy.

Edwin Abbott Abbott, Flatland (1884)

This chapter provides a comprehensive framework to assess efficacy and cost-effectiveness
of redundancy to increase dependability of the microarchitecture of processors for space
applications. The focus is on soft errors, which dominate the failure rate of processors
in space. Error, failure and propagation models are proposed, starting from informa-
tion available in literature, already presented in Chapter 1. These models are employed
to estimate the failure rate due to soft errors for processor profiles identified in Chap-
ter 2. This detailed white-box analysis is possible only for open-source Intellectual Prop-
erty (IP) cores. In this work it will be applied to several open-source IP cores based on
the RISC-V Instruction Set Architecture (ISA). For these case studies, relevant types of re-
dundancy described in literature for space processors will be evaluated in terms of their
cost-effectiveness and expected in-orbit behavior.

Parts of this chapter have been published in [231] and [232].
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3.1. INTRODUCTION
This chapter develops a comprehensive framework at processor-level1 to assess and mit-
igate the soft error vulnerability of processors in a cost-effective way. This means that the
cost of the redundancy required for such mitigation is evaluated and compared to the
reduction in soft error vulnerability obtained with them.

The need of this framework comes from the fact that works in literature typically de-
scribe in great detail specific aspects of the vulnerability of specific hardware structures
and how to address soft error vulnerability of specific units in a processor (e.g. regis-
ter files [234], data [80] and tag [235] array in caches). This sub-processor approach is
dictated by the extensive work required to build a relevant test setup and to the num-
ber of experiments required to get meaningful statistics. In this chapter those works will
be complemented by combining their results together, using them to develop a com-
prehensive framework that the reader can reuse and readapt to its own designs or when
evaluating an open-source IP core.

Moreover, all the aspects related to the microarchitecture will be developed further
and a model will be established. This will give more insights on how to evaluate open-
source IP cores and how to enhance their dependability in a cost-effective way. This
framework will help to evaluate the redundancy to be implemented on a processors, as
fault-tolerant processors are presented without justifying the choice of their redundancy,
like in [81] and [98]. Even if a few comprehensive frameworks [236, 237] were proposed
in recent years (2016-2019), the present framework differs for two reasons:

1. it is presented step by step to the reader (see Table 3.16), without using proprietary
black-box tools. In this way, the reader can therefore implement the framework for
their own designs and contribute to its extension in a straightforward way.

2. it has a wider scope, as it includes definition of threat models from the space envi-
ronment, and considerations on availability and validation.

3.2. OUTLINE
To introduce the problem, the first part of this chapter follows the error from its gen-
eration to the occurrence of the service failure (as shown in Fig. 3.1). In Sec. 3.3, first
an error model is proposed (Sec. 3.3.1), then the effects of the defined error models are
analyzed up to the service interface (Sec. 3.3.2), and finally the application-dependent
effects of errors at the service interface are analyzed (Sec. 3.3.3).

The second part of the chapter follows instead the steps of a typical design flow for a
fault-tolerant processor. In Sec. 3.4 a quantitative model to identify the most vulnerable
units of processors is presented (Sec. 3.4.1) and it is applied to four different processor
designs (Sec. 3.4.2). Sec. 3.5 then analyzes several types of redundancy and discusses
their cost-effectiveness. Sec. 3.6 discusses aspects related to validation and in-orbit ex-
pected behavior. Finally, Sec. 3.7 summarizes the main findings of this chapter.

1That is, including caches but excluding peripherals, interconnects, interfaces, off-chip memories and main
memory. However, processors are typically included in a SoC together with peripherals and memories. To
further extend this framework, the reader can refer to [233], which estimates the impact of other subsystems
of SoCs.
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3.3. MODELLING THREATS
Fig. 3.1 shows how threats2 interact with a processor. A failure is a deviation from the
expected behavior of the service provided at the service interface [39], and it is caused
by one or more deviations from the correct state of the system (errors). The cause of the
error is called fault [39].

Figure 3.1: Typical interactions of threats with a processor providing a service to an output peripheral.

3.3.1. FAULT AND ERROR MODELS
Given the discussion on the errors generated by radiation in Sec. 1.3.1, the SER of the
processor will be estimated as SER ÆSERSEU Å SERSET , which can be rewritten as:

SER Æ¸ ev ¢Neq (3.1)

where Neq is the number of reference sequential elements that would produce the same
SER given a certain ¸ ev, i.e. the event rate. Comparing this equation with Eqs. 1.8 and
1.9 yields:

Neq ÆNSRAM ¢RV SRAM Å NFF ¢RV FF ¢SV FF Å
Acomb

Ab
¢SFSET ¢RV comb (3.2)

In Table 3.1 the parameters of the proposed model for 5 different types of technolo-
gies are reported: Low Criticality (LC), MBU Dominated (MD), High Criticality (HC), SET
Dominated (SD) and Average Criticality (AC) . The effect of the fraction of MBUs on the
final failure rate will be taken into account as described in Sec. 3.4.3. However, it should
be noted that for MBUs it is not possible to define worst cases and best cases and this will
be always so for each type of redundancy explored in the following sections. Therefore,
as a metric to define the best, average and worst case in Table 3.1, the total percentage
of MBUs is considered. This is the reason why, for instance, the percentage of MBU (¸ 4)
is greater for AC than for HC.

The parameters in Table 3.1 describe a three-dimensional space of technologies, as
shown in Fig. 3.2. Four of the selected technologies (LC, MD, HC, and SD) are edges of a
solid in this space and one is the average case (AC). As a matter of fact, technologies not

2In [39], the term ’threats’ refers to faults, errors, and failures.
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Table 3.1: Parameters of the error models for space processors (data derived from [47, 67, 68, 73]) for different
types of technology defined in Sec. 3.3.1: Low Criticality (LC), Average Criticality (AC), High Criticality (HC),
SET Dominated (SD) and MBU Dominated (MD). The values are taken from the discussion in Sec. 1.3.1.

Technology LC AC HC SD MD
SFSET [%] 0 15 30 30 0
SFF F [%] 97 82 67 67 97
SBU [%] 95 45 24 95 24
MBU2[%] 4 18 52 4 52
MBU3[%] 1 10 3 1 3
MBU¸ 4[%] 0 27 21 0 21
MBUeven[%] 4 45 73 4 73

only affect ¸ ev (rate of events), but with the relative contribution of SEUs, SETs and MBUs
(quality of events) they also determine which redundancy is more effective. The rest of
the edges of the solid are defined considering only a finite range of ¸ ev (10¡ 12 ¡ 10¡ 6),
identified according to average values experienced during several missions (Sec. 1.3.1).
The choice to not consider extreme conditions such as worst week and worst 5 minutes
in GEO is due to the analysis in Sec. 1.3.3, which shows that the probability of having
more than one upset in a single EDAC-protected word is negligible for relatively small
memories (e.g. < 2 MiB).

Figure 3.2: Technology space considered in this work, delimited by dashed lines. ’Edge’ and ’average’ tech-
nologies in black solid lines.

3.3.2. ERROR PROPAGATION TO THE SERVICE INTERFACE
Errors generated by a fault not masked at the technology level can be masked during
their propagation to the service interface (even when not considering redundancy) at
microarchitectural level (e.g. the error does not influence the behavior of the processor)
and at software level (e.g. an error which affects a bit in an unused instruction or is
used only by a dynamically dead instruction3), as shown in Fig. 3.3. When the error is
masked, the application terminates normally and output pins (and files) do not differ

3A dynamically dead instruction is an instruction which outputs are not used by any other instructions and
that does not actually influence the output of the processor. [238]
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Figure 3.3: Propagation of errors to the service interface and effects on the system service. The failure rates
¸ eh , ¸ h and ¸ w identified at the service interface will be introduced in Sec. 3.4.1.

from the fault-free execution4.
When redundancy (see Sec. 1.3.2) is employed, along with the intrinsic microarchi-

tectural and software masking, error detection and handling are also possible. The pos-
sible outcomes of error detection and handling are:

• Correctable error: the error detection and handling mechanism proceeds to correct
the error (correction). However, when more errors than expected are present, the cor-
rection can be wrong (miscorrection [87]).

• Detected Uncorrectable Error (DUE): the error detection and handling mechanism is
not able to correct the error, although it is able to detect the error and to prevent it
from propagating to the service interface [240]. The reaction to a detected DUE (e.g.
rollback) may cause penalties in terms of availability.

• Unexpected Termination (UT): its effect on the error propagation is the same as a
DUE, but it is typically caused by the OS and software [241] instead of hardware. For
instance, a process may terminate abnormally due to built-in protections (memory
access violation, kernel panic, and arithmetic exception) triggered by an anomalous
behavior [242].

• Undetected: in this case the redundancy employed fails to detect the error during its
propagation and no action is taken.

3.3.3. SERVICE INTERFACE AND ERROR TOLERANCE
The system service defines the service interface at which the service is to be provided
and which outputs of the software (e.g. variables directly mapped to a failure) and hard-
ware (e.g. signals to other subsystems) will be able of propagating the errors. An error,
when propagated to the service interface, can generate wrong data, wrong commands or
unavailability of the system (Fig. 3.3). The unavailable state can be further broken down
into a state where the unavailability is due to the intrinsic vulnerability of the processor
(i.e. hang) and a state where it is due to error handling.

4In [239], masked cases are instead classified in two different categories depending on whether the final archi-
tectural status is different from a fault-free execution (referred to as Output Not Affected) and those where it
is the same (referred to as Vanished).
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INTRINSIC ERROR TOLERANCE

In many works, wrong data and wrong commands on the output are both assumed to be
a failure, calling this Silent Data Corruption (following the terminology of [240]). How-
ever, this is not always the case, as some services are inherently tolerant to wrong data
at the service interface. In [243] a system is defined as error tolerant with respect to
a service, if the system produces acceptable results to the end user according to a cer-
tain Quality of Service (QoS) even when errors are propagated to the outputs of the sys-
tem. The system fails due to insufficient QoS instead when the QoS is below a certain
threshold (QoSthr). For instance, in a system providing edge detection for images, the
QoS is defined in [244] as the peak Signal-to-Noise Ratio (SNR) when comparing the cor-
rupted and correct images and QoSthr is set to 10 dB. More complex services have a more
complex definition of acceptable quality. For instance, in Moving Picture Experts Group
(MPEG) video encoding, to exploit the similarities among contiguous frames, there are
three types of frames: I frames (which contain all the information to be decoded on
their own, providing low compression rates), P frames (which require data from previ-
ous frames to decode, achieving higher compression rates compared to I frames), and B
frames (which can exploit both data from previous and following frames to be decoded,
achieving even higher compression rate compared to B frames) [244]. In general, the loss
of B and P frames can be compensated by the decoder, while the loss of an I frame will
result in a substantial quality degradation. In [244] a frame is considered bad if the SNR
(compared to the correct frame) is more than 2 dB for I frames, 4 dB for P frames and 6
dB for B frames. The QoS in [244] is then defined as the percentage of good frames and
QoSthr is then set to 10% of bad frames. An example of even more complex service is in-
ference for image classification. In this case the QoSthr is defined as the difference in con-
fidence of the top ranked element compared to the top ranked element of the fault-free
execution [245]. In addition, the concept of QoS is introduced also for the catastrophic
failures, which in this case is when the top ranked element differs from the golden execu-
tion. As a matter of fact, a differentiation is done between the case where the top ranked
element is at least a ’good candidate’ (i.e. one of the first 5) in the fault-free execution
and the case where it is not.

In [244] it is shown that in order to fully exploit the concept of error-tolerance, con-
trol operations (defined as those which can change the control flow in the software and
therefore potentially generate wrong commands at the outputs) must be identified and
protected. Catastrophic failures are avoided both for the Smallest Univalue Segment
Assimilating Nucleus (SUSAN) algorithm (edge detection) and MPEG (MPEG encoding)
when errors are not injected in control operations (while some other benchmarks have
catastrophic failure rates up to 19% even when errors are not injected in control opera-
tions). When control operations are protected, more than 100 errors per second had to
be injected in SUSAN to show any frame loss due to the SNR being too low. MPEG had in-
stead about 2% loss at 10 errors per second. Both the error rates injected for SUSAN and
MPEG are pessimistic for space applications, as the error rate for processors in space is
several order of magnitude lower (in Sec. 3.4.2 the maximum SER found is around three
errors per day at the highest upset rate considered). MPEG crashes disabling protection
for control operation, while for SUSAN disabling protection leads to very poor fidelity
of the output. This can be attributed to the relatively small number of control instruc-
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tions (less than 9%) in SUSAN compared to the higher percentage in MPEG (around 50%)
[244].

EXPLICIT ERROR TOLERANCE

Once models of failures at the service interface are defined, explicit techniques of error
tolerance can be employed. One of the most commonly used is the watchdog timer,
namely a counter that if not periodically reset by the processor will reset the processor
itself [246]. This is represented in Fig. 3.3 with Timeout and it is based on the simple
model of Hang of the processor at the service interface. However, more complex models
can be employed, and in [246] also a smart watchdog is proposed. Similarly, in [247] a
symptom-based mechanism is employed to reduce the failure rate by 20x over a baseline
design without explicit error tolerance.

3.4. MODELLING THE VULNERABILITY OF PROCESSORS
Once the models for the threats are defined, the following step is to build a model to
identify the most vulnerable parts of the design. A common model found in literature is
the AVF decomposition [55].

3.4.1. AVF DECOMPOSITION
In order to take into account the masking effects due to software and microarchitec-
ture, in [78] the AVF of a unit is defined as the probability that a fault in that unit of the
processor will cause a failure at the outputs of the processor. For this reason, the AVF
depends on which event of those described in Sec. 3.3.3 are considered as failures. In
this work, the definitions of failures as indicated in Fig. 3.3 (at the service interface) will
be employed.

The rate of occurrence of a failure f for the unit i can be modelled as:

¸ i , f ÆSERi ¢AVF i , f . (3.3)

For a correct execution, all the units of the AVF decomposition are required to not prop-
agate an error to the outputs of the processor. As a result, units in an AVF decomposition
can be thought as a series of components in a reliability block diagram [55]. Assuming
that the masking is uniform (therefore not changing the distribution of events) and as-
suming that failures in different components are independent of each other, the total
reliability is given by the product of the reliability of the units composing the processor.
The processor-level failure rate ¸ f for the failure f is then given by:

¸ f Æ
X

i
SERi ¢AVF i , f ÆSER ¢AVF f (3.4)

As SER Æ¸ evNeq , the effects of failures on a service for space applications (relatively high
¸ ev and low Neq ) can be sometimes compared to the effects on services for application
with lower ¸ ev and higher Neq (e.g. servers) [55]. Eq. 3.4 can also be written as

¸ f Æ¸ ev ¢
X

i
ˆ̧ i , f , (3.5)
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where ˆ̧ i , f ÆNi £ AVF i , f is the failure rate normalized to the upset rate per bit. For fail-
ures causing wrong outputs or data, the failure rate ¸ w (Fig. 3.3) is enough to estimate
their effect on the service5.

The impact on the service interface of a certain type of failure f causing unavailability
is also determined instead by the duration of the unavailability Tu, f each instance of this
type of failure causes. If a system is unavailable for a total TUnavailable during a certain
time period TMission, the unavailability is then defined as:

U Æ
TUnavailable

TMission
, (3.6)

and the availability as Availability Æ1¡ U . Different types of events causing unavailability
can be observed:

• Timeout (¸ h): these events are due to residual AV F u not protected by redundancy. In
the remainder of this chapter it will be assumed that they are addressed employing a
watchdog timer that triggers a hard reset (power cycle) when it expires. An order of
magnitude for Tu,h can be found in [248], where it is assumed to last 5 minutes, as
extensive checking (e.g. memory) is required.

• UT (¸ eh,ut ): in this case an error handling mechanism causes a UT of a process. When
a process is terminated, a possible solution is to use an interrupt service routine for
diagnostic and restart of the process. These have typically lower impact than a restart
of the whole processor. The work in [249] shows that a process can be restarted with a
latency on the order of 10 ms.

• DUE in data without valid copies (¸ eh,sr ): in this case (e.g. errors in Write-Back (WB)
caches) a DUE requires at least a soft reset (i.e. ending the current processes and boot-
ing again). From the work in [250], a penalty of 45 s can be assumed for a soft reset,
composed of end time and boot time.

• Rollback to an up-to-date value (¸ eh,r b): when the corrupted data is available in the
most up-to-date value, the loss in terms of availability is minimal. For instance, in
case of a DUE in a Level1 (L1) cache with Write-Through (WT) policy the data can be
read from the L2C, with a penalty of a cache miss [251]. As can be seen in [251], 150
CCs can be taken as a pessimistic estimation for a cache miss and even in this case,
assuming a clock frequency of 100 MHz, the penalty is in the order of microseconds
(which is in most cases negligible).

• Correction (¸ eh,c ): the latency in this case is very short. For instance, the LEON2FT
checks the EDAC code on the (scalar) Register File (RF) during the execution phase,
writes back errors in the RF with the correct value, flushes the pipeline and restarts
from the instruction that reads the operand with the error [81]. This procedure causes
typically minimum penalty in terms of stalling (in this case just 5 CCs).

5Sometimes, instead of the failure rate, the MTTF is employed to indicate how often a failure will happen on
average. The use of an exponential reliability function simplifies further the calculations, as MTTF w Æ1/¸ w .
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• Device-specific rollback (¸ eh,ds): some devices save the old status to rollback to it in
case of DUE [102] or they compare the output of three processors and restore the cor-
rect status from one of the golden replica [98]. In these cases the penalty in terms of
availability is implementation-specific. This aspect will be discussed further in Sec.
3.5.

The unavailability due to each type of events f can be expressed as:

U f Æ
Nu, f ¢Tu, f

TMission
Æ

(TMission ¢̧ u, f )Tu, f

TMission
(3.7)

where Nu, f is the number of times the events f happened during the mission and TMission
is the total mission time. Therefore, the unavailability of the processor considering all
the possible sources f of unavailability is:

U ÆTu,h ¢̧ h Å
X

F
Tu,eh, f ¢̧ eh, f Æ¸ ev ¢Û (3.8)

VULNERABILITY IN TIME: ACE ANALYSIS

More insight can be gained on the meaning of the AVF by considering how AVF is esti-
mated in [78], i.e. considering the bits required for an Architecturally Correct Execution
(ACE). A bit is an ACE-bit when changing its value will cause the error to propagate to
the service interface and it is an un-ACE bit otherwise. A bit typically changes from ACE
to un-ACE and vice versa during program execution, as shown in Fig. 3.4 for bits in a
location of the RF.

Figure 3.4: Fraction of time bits a location in the RF is in ACE (gray) and un-ACE (white). Between write and
last read an arbitrary number of reads can happen.

At any instant in time, the AVF can be expressed as the number of ACE bits in a structure
NAC Ei over the total number of bits in the structure Ni :

AVF i (t ) Æ
NAC Ei (t )

Ni
. (3.9)

The average AVF can then be defined as the average number of ACE-bits in a certain
timespan. Using Little’s law [78], the average number of ACE-bits within a structure (e.g.
instruction buffer or execution unit) can be written as the product of the arrival rate
(bandwidth B AC Ei ) of ACE bits and the average time of persistence in the structure (la-
tency Li ):

AVF i Æ
NAC Ei

Ni
Æ

B AC Ei ¢Li

Ni
. (3.10)

For instance, when considering hardware structures storing or executing instructions,
the rate of arrival of ACE bits is given by the number of IPC. The average time these
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bits spend in the structure depends on the functionality of the block, which may store
it for a long time (e.g. memory or buffers) leading to high AVFs or for shorter times (e.g.
execution units) leading to lower AVF. Furthermore, for functional units like ALU, Eq.
3.10 shows that the more frequently they are used and the longer is the latency of the
operation, the more vulnerable they are. For memories, it shows that the longer the
average lifetime and the higher the memory utilization, the higher the AVF is.

3.4.2. IMPACT OF THE MICROARCHITECTURE ON THE FAILURE RATE
In Chapter 2 an overview on RISC-V ISA was presented and as well as the proposed ap-
proach of how to employ it in space data systems to address present and future needs. In
this roadmap, several ’profiles’ of processors were proposed. In this section, four Gen-
eral Purpose (GP) profiles will be analyzed from the point of view of dependability as
case studies for the proposed model: GP-LE-1, GP-LE-4, GP-HE-1 and GP-HE-4. How-
ever, "GP" is usually omitted in the rest of this chapter, as only GP processors are con-
sidered. The LE-4 can be seen as an implementation equivalent to the state of the art
of space-grade components (single-issue, in-order pipeline, quad-core like the GR740
[30]), while the HE-4 can be seen as a possible future space-grade processor. These con-
figurations will be represented by the Rocket (LE) and the BOOM processor (HE) where
FI was carried out in [242]. Therefore, for units in Tables 3.2 and 3.3 values of AVFs from
[242] are employed. However, to provide a more comprehensive comparison of the con-
tribution of each block in a realistic design, estimations for one IC, one DC and one FPU
per core as well as for the L2C (one shared among the cores in LE-4 and HE-4) are also
included. For the Floating Register File (FRF), as a pessimistic estimation, the same value
of the Integer Register File (IRF) of the Rocket is employed, as data from [100] shows for
FRF similar contribution to the failure rate compared to the IRF. When considering the
functional part of the FPU, [252] shows that in average (over different benchmarks) only
1.76% of errors in FPUs reach the FPU output6.

Table 3.2: AVF (from [100, 242, 252]) and Neq for LE-1 (without caches), decomposed in Integer Register File
(IRF), Multiplier and Divider (M/D), Instruction Buffer (IB), rest of the Integer Unit (IU), Control and Status
Registers (CSR), Floating Register File (FRF) and Floating Point Unit (FPU).

LE-1 IRF M/D IB IU CSR FRF FPU
AVF w 3.3% 0.2% 0.5% 2.4% 5.9% 3.3% 1.0%
AVFh 1.0% 0.1% 0.3% 4.4% 8.2% 1.0% 0.2%
AVFeh,ut 12.2% 0.4% 1.1% 4.9% 4.3% 12.2% 0.6%
Neq,LC 2.65E+3 2.17E+2 9.9E+1 1.1E+3 1.2E+3 2.8E+3 1.6E+3
Neq,AC 2.65E+3 5.72E+2 1.4E+2 1.7E+3 1.4E+3 2.8E+3 5.0E+3
Neq,HC 2.65E+3 9.27E+2 1.8E+2 2.2E+3 1.6E+3 2.8E+3 8.5E+3

6Further data from [252] shows that AVF for control modules in the FPU is 8.9% while datapath modules have
a 1.43%. The large percentage of area dedicated to the datapath in a FPU explains the low average value.
Also, this is a pessimistic estimation for the AVF of a FPU in a processor as the service interface is taken at
the output of the FPU and not at the output of the processor, thus neglecting the masking effect of the rest
of the processor to errors coming from the FPU. These data do not differentiate between types of failure so
it is assumed that the breakdown is similar to the one of the ALU in the HE-1 in terms of AV F w , AV F h and
AV F eh,ut .
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Table 3.3: AVF (from [100, 242, 252]) and Neq for HE-1 (without caches), decomposed in Integer Register File
(IRF), Register Rename (RR), Instruction Fetch (IF), Instruction Issue (II), Load and Store Unit (LSU), ReOrder
Buffer (ROB), Branch Prediction (BP), Arithmetic-Logic Unit (ALU), Control and Status Registers (CSR), Float-
ing Register File (FRF) and Floating Point Unit (FPU).

HE-1 IRF RR IF II LSU ROB BP ALU CSR FRF FPU
AVFw 1.9% 2.4% 2.6% 2.4% 1.5% 1.2% 0.8% 1.2% 3.9% 3.3% 1.0%
AVFh 1.0% 3.3% 1.0% 3.1% 2.4% 2.4% 1.5% 0.4% 0.2% 1.0% 0.2%
AVFeh,ut 8.7% 5.7% 7.3% 0.9% 3.7% 0.8% 0.1% 0.7% 5.4% 8.7% 0.6%
Neq,LC 4.5E+3 2.9E+3 4.1E+3 7.1E+2 2.1E+3 1.1E+3 2.8E+3 1.9E+3 1.3E+3 3.4E+3 4.8E+3
Neq,AC 6.4E+3 4.1E+3 5.6E+3 9.8E+2 2.6E+3 1.2E+3 3.0E+3 3.7E+3 1.5E+3 4.3E+3 7.5E+3
Neq,HC 8.4E+3 5.2E+3 7.1E+3 1.2E+3 3.1E+3 1.4E+3 3.1E+3 5.5E+3 1.8E+3 5.1E+3 1.0E+4

Table 3.4: Features of the cache subsystem common to LE and HE (data derived from [253]). ’Pref.’ stands for
’prefetcher’, WB stands for Write-Back.

Unit Size Block size Associativity Policy Prefetching
DC 32 KiB 64 B 4-way WB stride pref.
IC 32 KiB 64 B 4-way read-only pref.
L2C 1 MiB 64 B 16-way WB w/o pref.

Table 3.5: AVF (from [253]) and Neq (the same for all technologies) for caches. LE-1 and HE-1 have one DC and
one IC each. LE-4 and HE-4 are obtained replicating 4 times the respective single-core version and adding a
L2C.

Caches DCWT DCWB IC L2CWB
AVFw 5% 8.8% 0.5% 0.5%
AVFh 1.3% 2.5% 5% 0.6%
AVFeh,ut 2.9% 4.3% 5.2% 1.7%
Neq 5.14E+4 5.7E+2 2.0E+5 2.4E+6

For all the profiles the same cache configuration is employed (i.e. the baseline of
[253]) that is reported in Table 3.4 and with AVF values reported in Table 3.5. This will
provide the reader with an estimation of how the same size of caches influences the fail-
ure rate in different designs (even if higher performance processors may employ larger
caches). However, in Sec. 3.4.2 models and considerations on scaling of cache size will
be provided. For simplicity, in this section only data arrays will be considered, neglect-
ing the contribution of tag arrays in caches. Even if tag arrays in [254] are reported to
have higher AVF than data arrays7 (as for instance they have on average an AVF 2.76£
higher than data arrays in DC), they typically are smaller (around 7 KiB, i.e. around 9
times smaller than the data array). Therefore, not including tag bits in the model can be
expected to underestimate the vulnerability of caches by around 20% according to Eq.
3.4. Furthermore, using values for caches of a processor with a different ISA does not
impact AVF of caches in a significant way, as shown in [255] where the AVF of caches for
two different ISAs (ARM and x86) for 10 programs from the MiBench benchmark suite

7Also [235] shows a high value for tag arrays (32.5%).
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have small differences8.
Furthermore, the same average values of AVF are assumed for single and quad-core

versions of the same design. As a matter of fact, [256] investigates the changes in AVF
in a dual-core processor where each core is running a different thread and it shows that
AVF is roughly the same compared to a single core (the change in AVF is within § 2% of
the value of the AVF for a single core).

Estimations of Neq are obtained with syntheses on Design Compiler [257] on a 65
nm bulk commercial technology targeting 100 MHz and using the code available to the
public of the Rocket processor9 and of the BOOM processor10. However, as it was not
possible to have access to the memory compiler of the ASIC technology (as it is often the
case), the Neq of caches is estimated using CACTI [258].

It can be noted from Fig. 3.5 and 3.6 that caches are the most vulnerable units in pro-
cessors, even considering technologies with high SER from combinational logic. Most
of the units have a similar relative contribution to ¸ w and U , except the IC which has
a similar impact compared to L2C in terms of unavailability but lags behind more than
one order of magnitude in terms of ¸ w . Most of the units increase their failure rate when
moving from LC to SD. However, for a few of those (those with higher percentage of se-
quential elements like BP), the failure rate decreases due to FF temporal masking (as
shown in [47]). Furthermore, microarchitectures impact the failure rate much more in
terms of Neq than in terms of AVF. As a matter of fact, the maximum ratio between two
different designs in terms of Neq with the same type of technology defined in this section
(cacheless LE-1 and the HE-4) is around 100 for each technology, while the maximum ra-
tio of AVFs found in literature due to different microarchitectures is around 4£ (in [259]).

Figure 3.5: Normalized failure rate for wrong outputs ˆ̧ w for LE-1 (cacheless), HE-1 (cacheless) and caches
(from left to right). Calculations based on Eq. 3.4.

DESIGN EXPLORATIONS

In [260] the effect of the processor width and of the number of functional units (e.g ALU
and FPU) on the AVF of the functional units is investigated but no clear correlation is
found. Looking at data from the literature for IRF and caches (e.g. [253]), two models

8Intuitively, this is more true for L2C (-4%) and DC (+5%), while the difference is slightly larger for ICs (+24%),
as instructions are ISA-specific [255]

9https://github.com/chipsalliance/rocket-chip.git
10https://github.com/riscv-boom/boom-template.git
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Figure 3.6: Normalized unavailability Û for LE-1 (cacheless), HE-1 (cacheless) and caches (from left to right).
Calculations based on Eq. 3.8.

Figure 3.7: Effects of size on ˆ̧ (normalized to the ˆ̧ of the smallest size considered) and AVF for 2£ and 4£
increases (based on [253]). For DC the average of the benchmarks (avg) is indicated together with a superlinear
case (for the benchmark corners).

of scaling of the failure rate can be defined for an array of sequential elements based on
Eq. 3.10, as shown in Fig. 3.7:

1. Constant Workload (CW): the workload for the array remains constant while in-
creasing the size of the unit, meaning that the failure rate remains constant and
the AVF decreases by the same factor as the size was increased.

2. Constant Utilization (CU): the relative utilization of the array remains constant
while increasing the size of the array, meaning that the AVF remains the same and
the failure rate increases of the same amount the size was increased.

As shown in Fig. 3.7 some units show a behavior similar to CW (RF), some lay in between
CU and CW (DC on average in [253]) and other units increase their utilization when their
size is increased (DC for the corners benchmark in [253]) and in this case they are said to
show a "superlinear" behavior (as done in [261]).

The results in [262] confirm the increase of failure rate of the DC when increasing
its size. However, in this case the behavior shown is superlinear, as increasing its size
by 16£ (from 16 KiB to 256 KiB) increases its failure rate by 21£ . Interestingly, they also
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show that increasing the size of DC by 16x has an effect on the failure rate of L2, which
decreases by around 2x. The work in [263] highlights how cache arrays typically exhibit a
superlinear behavior when the cache hit rate increases with the increase of the size (e.g.
for the FFT and matrix multiplication benchmarks), while if the cache hit rate remain
constant they typically show a CW behavior. An explanation for this is presented in [261]
and reported in Fig. 3.8 (left). If we consider a program that reads the variable A, then the
variable B and then again the variable A, in a large cache, it is more likely that both A and
B will reside in the cache. For this reason reading B does not cause a cache miss and line
A is not evicted. In a small cache instead, reading B is more likely to cause a cache miss
and a replacement of A with B, thus reducing drastically the fraction of time the location
stores ACE-bits. The mechanism described happens for both WT and WB policies, while
in Fig. 3.8 (right) it is also shown a mechanism specific of WB caches. As a matter of fact,
in WB caches dirty lines also exist and those are always ACE, as they will be eventually
written back to main memory. Fig. 3.8 (right) shows a program which writes A and then
reads B and then does not act on the location until the end of the program, when the
dirty lines will be written back. Also in this case, a small cache which substitute A with B
can reduce the fraction of time the location stores ACE-bits considerably.

The previous discussion shows also that the write policy influences the AVF of the
L2C: in [253] a value of 7% can be taken for a WB L2C (in [255] a similar value is given)
and 4.2% for a WT L2C (1 MiB), which implies almost double the SER due to the L2C.

Figure 3.8: Examples of superlinear behavior for a location in DC storing the variable A, similarly to [261].

Furthermore, as shown in [253], the AVF of the DC is in the majority of the cases
insensitive to the associativity (5 benchmarks out of 8), while some benchmarks (djpeg
and smooth) exhibit a steep variation of AVF for a specific number of ways, and only one
(search) shows an increase of AVF with the number of ways. IC instead decreases its AVF
when the number of ways is increased [253]. Adding prefetches to the DC leaves sub-
stantially unchanged the AVF, while removing prefetchers for IC reduces the AVF, which
becomes, on average, 0.67x the baseline AVF [253].
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3.4.3. IMPACT OF OTHER FACTORS ON THE FAILURE RATE
Several factors impact the failure rate. Fig. 3.9 summarizes these factors indicating how
large is the maximum value compared to the minimum value found of the failure rate
when varying a certain factor. The impact of technology (and of the environment) and
of microarchitecture was already assessed in Sec. 3.3.1 and Sec. 3.4.2 respectively. The
remainder of this subsection quantifies the impacts of other factors.

Figure 3.9: Factors impacting the failure rate and their relative impact (maximum value divided by the mini-
mum value of the failure rate when varying a certain factor). The values were estimated as explained in Sec.
3.4.3. Estimation is in gray because it does not affect the failure rate on the field.

DEPENDENCE ON PERFORMANCE AND COMPILER FLAGS

The work in [264] observes a fuzzy correlation between AVF and each performance met-
ric considered (i.e. IPC, branch prediction rate and several cache miss rates) across sev-
eral SPEC2000 benchmarks. However, in [265] the use of performance throttling is pro-
posed to lower the overall AVF of a processor. Acting both on pipeline resources and
cache miss rate, a failure rate reduction up to 35% is achieved.

Another way to improve performance is to employ specific compiler flags. In [266],
GCC with several combinations of optimization flags for the MiBench benchmark suite
are compared in terms of performance and AVF. It is shown that the optimal set of flags
for AVF decreases the AVF by around 9% compared to -O3 and of 8% compared to -O2.
Among the optimization levels, in [267] -Os is found to be better than the -O0 for around
75% of the benchmarks (on a total of 25 benchmarks considered), while the lowest AVF in
average is obtained with -O2. Recent work [268] shows that the ratio of the AVF obtained
with the worst and best sets of optimization flags is around 2£ .

DEPENDENCE ON SOFTWARE

Error masking in a processor, like performance, depends on the software employed. For
this reason, it is crucial that the set of programs employed during the estimation of the
AVF is representative of the final application or is general enough to represent a wide
spectrum of applications. Most works in literature use the SPEC benchmark suites [242,
259], others use EEMBC suites [100] and others MiBench ([253, 266]) for its similarities
to the SPEC benchmarks in terms, for instance, of instruction mix. As a matter of fact,
instruction mix of the software can have a significant impact on the failure rate of certain
units of the processor. For instance, data from [269] show that moving from benchmarks
with low fraction of FPU instructions like AMG2006 and UMT (0.03 and 0.1 per CC) to
those with high fraction of FPU instructions like LINPACK (0.64 per CC) increases the
failure rate of the FRF by 50x.
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The variation of AVF on a microarchitecture employing different programs depends
also on the microarchitecture itself. For instance, the work in [259] shows how, while for
an In-Order (IO) "small core", the AVF ranges from 8% to 16% (2x maximum increase)
for the benchmarks of the SPEC CPU2006, for an OoO "big core" it ranges from around
8% to around 29% (3.63x). Furthermore, the OoO core has for every benchmark a higher
AVF compared to the in-order processor (except for gobmk). In [259] it is also shown
the Cycles Per Instruction (CPI) stack11 for each benchmark, highlighting that there is
no simple rule to predict whether a workload has high or low AVF12. According to [259],
the benchmarks with low AVF have low vulnerability because of their high number of
branch mispredictions and instruction cache misses. The benchmarks with high AVF
show instead a more complex behavior. Some benchmarks (e.g. milc) are memory-
intensive: a load operation accessing main memory typically blocks the head of the
ReOrder Buffer (ROB), which causes the ROB to fill up. This leads to a significant in-
crease of ACE bits while servicing the memory operation13. However, some memory-
intensive benchmarks (e.g., mcf and libquantum) have low AVF because of branch mis-
predictions. Other high-AVF benchmarks (e.g. zeusmp) are compute-intensive: high
IPC and high Memory Level Parallelism (MLP)14 is achieved by having high occupancy
in various queues. Some benchmarks with high AVF instead experience resource stalls
because of DC misses, L2C misses, limited Instruction Level Parallelism (i.e., chains of
dependent instructions) which cause the ROB and issue queues to fill up with instruc-
tions. Data in [242] show a different trend. In this case, the AVF values of the OoO core
are smaller than those of the in-order core for every benchmark, and this is also true for
the only two benchmarks that are considered in both works (bzip and gcc) [259]. Also,
the increase in ratio between the minimum and the maximum AVF found is much lower:
from 12.4% to 20.6% for the in-order (1.66£ ) against 7% to 12.3% (1.76£ ) for the OoO
processor. When considering caches, in [253] the AVF for the baseline DC ranges from
around 3% to around 23% (7.66£ ).

DEPENDENCE ON THE FRACTION OF MBUS

In [142] more complex error models compared to the Single Bit Flip (SBF) of [242] are em-
ployed to investigate the effects of MBUs on the AVF. The most relevant result is that the
AVF value saturates on average around 3 upsets per strike, with an increase of around
10% compared to the value found with the SBF model on average and with a peak of
around 25%. To take into account this effect, the AVF employed in Eq. 3.4 will be then
AV F Æ®MU ¢AV F . In the remainder of this chapter ®MU Æ1 will be assumed for tech-
nologies with a low fraction of MBUs (LC and SD), ®MU Æ1.1 for technologies with an

11A CPI stack quantifies the fraction of cycles spent doing useful work, ’lost’ cycles because of resource stalls,
branch mispredictions, instruction cache misses, Last-Level Cache (LLC) misses and main memory accesses
[259].

12It should be noted that the ACE states of caches are not evaluated in this case, as caches are assumed to be
protected.

13This mechanism is only relevant to OoO processors and does not happen in in-order processors. This explain
why the ranges are different.

14MLP is the average number of useful long-latency off-chip accesses outstanding when there is at least one
such access outstanding [270]. Also in this case, this is a mechanism typical of OoO processors, as simulation
results in [270] show that a moderately aggressive OoO issue processor improves MLP over an in-order issue
processor by 12-30%.
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average fraction of MBUs (AC) and ®MU Æ1.25 for technologies with a high fraction of
MBUs (HC and MD). The impact of MBUs on the failure rate is limited, as the ratio be-
tween the minimum and the maximum value of AVF changing the number of upsets
per strike reported in [142] is around 2x. Also in [269], the maximum ratio found when
injecting one and four upsets is 2x.

UNCERTAINTY DUE TO THE ESTIMATION METHOD EMPLOYED

AVF was originally defined with an ACE analysis implemented on a microarchitectural
simulator [78]. In [271], the ACE approach is found to underestimate on average fault
masking by about 3.5x compared to FI. The causes identified for such overestimations
are: the limited information on the bits (when it cannot be determined whether a bit
is in a ACE or un-ACE state, it is assumed in ACE-state to prove that requirements can
be met); limited size of time windows to analyze dead instructions; and Y-bits15. The
conclusion in [271] is that ACE analysis can be refined until a theoretical threshold is
reached, after which is not possible to further reduce conservatism because of Y-bits.
However, before this theoretical limit for ACE analysis is reached, ACE analysis becomes
intractable due to the increase of complexity. The authors of [273] reject this point of
view, arguing that while FI on RTL may provide a more accurate AVF by modeling all
low-level masking effects, much of this can be accounted for at the performance level
by identifying and modeling those masking effects that significantly impact the AVF and
that the Y-bit effect is on the order of 14% on the AVF and that it can be addressed with a
more refined ACE analysis [271]. While most of the extended microarchitectural simula-
tors are not available to the public, a modified version of the gem5 simulator capable of
assessing soft error vulnerability [274] is available16.

FI requires a large number of experiments and either a working hardware platform or
an RTL model that can be simulated. However, the results in [275], regarding a dual-core
processor design consisting of around 350k sequential elements, show that randomly se-
lecting more than 2.85% elements (10k) for injections provides only marginal improve-
ments in terms of reduction of uncertainty (the standard deviation when considering 10
different groups of FFs saturates).

To inject errors also in microarchitectural resources of a hardware prototype, hard-
ware support is needed. For instance, in [242] faults are injected in a FPGA prototype
with an extra XOR at the input of each FF of the processor. The host processor within
the FPGA decides which FF to inject (and at which CC) and sends the command to the
fault injector connected through a crossbar. Without a similar hardware support, errors
could be injected only via software in architectural resources. Another possibility is to
simulate an RTL model and inject errors during the simulation, changing the value of a
specific signal [276].

3.4.4. LIMITATION OF THE MODEL
Although the use of the AVF decomposition as introduced in Sec. 3.4.1 is common [55],
beside reasonable assumptions as the independence between errors and the uniform
15Y-Bits are bits that can alter the course of execution in the processor without causing a failure, for instance

branches for which the behavior of the application is unaffected by whether the particular branch instance
is taken or not. Around 40% of the executed branches in SPECint2000 are Y-branch [272].

16https://github.com/MPSLab-ASU/gemV

https://github.com/MPSLab-ASU/gemV
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masking, there are some limitations in its capability of assessing the vulnerability of pro-
cessor units.

SUB-UNIT VULNERABILITY

The AVF decomposition does not provide insights on the homogeneity in terms of vul-
nerability of a certain structure. The work in [100] provides instead also data for sub-unit
vulnerability. In this case, the sequential elements of each unit are grouped in Criticality
Levels (CLs), depending on the percentage of times an error in that sequential element
propagates to the outputs. For instance, CL0 means that a fault in that element never
causes a failure and CL5 indicates that a fault in that element always causes a failure. This
classification may allow selecting redundancy more efficiently. For instance, a memory
array with a large fraction of CL0 sequential elements can be protected more efficiently
with selective information redundancy [277, 278] or partial hardware redundancy [279].
While in [100] a conservative approach is adopted which defines an FF as critical if it is
critical at least for a benchmark, data from [47] suggest that a considerable part of the
critical FFs remains the same in 8 programs from MiBench (85 out of the top 200 vul-
nerable FFs of each benchmark), and only a minority (around 13% for each benchmark)
are critical in only a single benchmark. For instance, [277] notes that only a few "long-
lived" registers (10% for the IRF) are responsible for 40% of the total vulnerability time of
the IRF. Based on this consideration, it is proposed to use a cache smaller than the RF to
store the ECC of physical registers and replace check bits of "short-lived" registers with
those of the "long-lived" ones.

PROPAGATION TO SPECIFIC SIGNALS AT THE SERVICE INTERFACE

The AVF decomposition does not take into account to which signal of the service inter-
face the errors will propagate. In [100] it is found that errors manifest only in 65% of the
outputs, with almost 80% of these errors manifesting in only 20% of the ports.

PROPAGATION TIME

The AVF decomposition also does not take into account how long it takes for the prop-
agation of the error to the service interface. Data from [100] show that all of the pro-
cessor components (without considering caches) have a minimum error manifestation
time equal or less than 7 CCs, whereas the average error manifestation time for an er-
ror in the processor is 1,204 CCs. The worst propagation time is 153,287 CCs (for the
logic responsible for branch prediction). Errors propagate more quickly when they di-
rectly affect the processing data (e.g. ALU and FPU), while storage units like RFs have
instead longer propagation times [100]. The FRF has longer average propagation times
(2950 CCs) compared to the IRF (370 CCs), mainly because of more matrix operations
and longer latency of the FPU compared to the ALU. The exception are some long-life
integer variables, such as indexes in iterative loops (propagation time on the order of the
thousands of CCs) [100].

ERROR ACCUMULATION

The AVF decomposition assumes that the software is composed of program loops of pe-
riod TL each [55]. In order for the AVF decomposition to produce a negligible error, the
product TL ¢̧ must be small [55]. This means that AVF decomposition is valid when a
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small number of soft errors occur in a loop iteration. In [280] a model to overcome this
limitation is proposed, however it is much more complex. Nevertheless, for each unit a
failure rate ¸ i ÆDF ¢SERi can be associated, where DF is a more general derating factor.
Therefore, the final result of such more detailed model is a failure rate for each unit in
the design like those in Figs. 3.5 and 3.6, on which the same procedures to apply and
validate redundancy can be followed as done in Sec. 3.5 and 3.6.1.

3.5. EVALUATION OF REDUNDANCY
Given the possible large overheads caused by redundancy (see Sec. 1.3.3 and Sec. 1.3.4),
the concept of cost-effectiveness is introduced in [277] (where a proposed technique is
compared to others in terms of area, power and performance overhead) and in [279]
(where area and power overhead are considered). To provide a metric for this concept,
the following cost function C is defined:

C Æ®
¢ Tex

Tex
Å ¯

¢ A
A

Å °
¢ P
P

Å ±
¢ ¸ w

¸ w
Å ²

¢U
U

(3.11)

where ®, ¯ , ° , ±, and ² are arbitrary weights depending on the target of the design and
express the weight of:

• The term ¢ Tex /Tex is the relative increase in the execution time for a (set of) pro-
gram(s) employed to evaluate performance or the execution of a certain task. The
performance model in Eq. 1.1 will be employed17. However, an increase in Tclk may
be partially compensated by a decrease in CPI due to the fact that the frequency of the
memory remains the same and for this reason the penalty is less than proportional to
the loss in Tclk of the processor. Furthermore, latencies in case of DUEs or corrections
are not considered in the loss of performance, as they are not frequent enough to cause
degradation in performance (as opposed to increase of latency even when there are no
errors).

• The terms ¢ A/A and ¢ P/P indicate respectively the relative increase in terms of area
and power of the whole processor (keeping the same target and operative frequency).

• The quantities ¢ ¸ w /¸ w and ¢U /U account for the percentage of errors detected by
the redundancy, i.e. its coverage.

To show how weights can affect the optimal choice, two opposite cases will be taken into
account:

1. Focus on dependability (Cd ): ® Æ0.25, ¯ Æ0.5, ° Æ0.5, ± = 1, ² = 1. As these weights
make increases in terms of unavailability and failure rate very costly and decreases
in terms of performance less important, this can be seen as the set of weights used
in the cost function employed during in the design of an OBC for command and
control operations.

17It should be noted that increases in CPI are actually more expensive than increases in Tclk as the increase in
CPI implies that the FT processor is not functionally equivalent to its COTS counterpart even when errors
are not detected.
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2. Focus on performance (Cp ): ® Æ1, ¯ Æ0.5,° Æ0.5, ± = 0.25, ² Æ0.5. As these
weights make decreases in terms of performance expensive and increases in terms
of failure rate tolerable (while increases in terms of unavailability are considered
to be in the middle), this can be seen as the set of weight used for the cost func-
tion employed during the design of a payload processor for high-performance on-
board processing.

In order to quantify the effect of redundancy on ¢ ¸ w /¸ w and ¢U /U , let us consider
for brevity only errors in the sequential elements (analogous equations can be derived
changing the seq indices into comb, and SEU into SET ), the ¢ ˆ̧ w,seq of a certain redun-
dancy technique can be determined with the equations below:

ˆ̧ w,seq,nor ed Æ
X

i
AVF w,i ¢Neq,SEU ,i (3.12)
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(3.14)

where Pundet,seq,i is the probability that the error is not detected in the unit i for sequen-
tial logic. Effective redundancy will have a negative ¢ ¸ w /¸ w and will decrease the cost
function, but it is mathematically possible to have a positive ¢ ¸ w /¸ w for inefficient re-
dundancy, when:

Pundet,seq

³
1 Å

¢ Neq,SEU

Neq,SEU

´
È 1. (3.15)

The case where unavailability increases with redundancy is instead more common, be-
cause of the unavailability from error handling:

¢Û ÆTu,h¢ ˆ̧h Å
X

j
Tu,eh, j ¢ ˆ̧eh, j , (3.16)

where j is the index of the j-th type of unavailability due to error handling, ¢ ˆ̧h can be
found with the same equation as Eq. 3.14 and ¢ ˆ̧eh, j is given by:
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(3.17)

where AV F 0
i is the total AVF for the unit i, considering as service interface the point where

the redundancy can detect the error in the processor. This change of definition of AVF
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in this equation (with AV F 0
i ¸ AV Fi ) is needed because redundancy will react also to

errors that manage to propagate to this point and that would be masked in the rest of the
propagation to the real service interface if redundancy was not included. This implies
that the rate of error handling events ¢ ˆ̧eh Æ

P
j ˆ̧eh, j is larger than the decrease of the

rate of other events ¡ ¢ ˆ̧ Æ ¡ (¢ ˆ̧ w Å ¢ ˆ̧h Å ¢ ˆ̧eh,ut ). An example is given in Sec. 3.5.1,
where ¢ ˆ̧eh is larger than ¡ ¢ ˆ̧ by a factor ranging from 1.8x to 13.6£ .

In the following sections, several types of redundancy for different units of proces-
sors will be introduced, evaluating their efficacy and cost-effectiveness for different de-
signs and different technologies/environments combinations. In order to show different
types of redundancy, the cost function will be applied to each part of the processor, de-
composed in:

1. Cache Arrays (Sec. 3.5.1)

2. Register Files (Sec. 3.5.2)

3. Logic (Sec. 3.5.2), composed of the remaining combinational and sequential ele-
ments.

For each of them the most cost-efficient redundancy for different designs, weights
and technologies will be assessed. In Sec. 3.6 the total effect of applying the most
cost-efficient to all the components of the processors will be analyzed. More complex
optimization methods can be employed, as done in [237].

3.5.1. CHOICE OF REDUNDANCY FOR CACHE ARRAYS
Several processors described in literature employ SED in L1 caches and SECDED in
L2C (referred to as EDC/ECC), while others have SECDED in both levels (referred to as
ECC/ECC) [251]. The main argument in favor of the EDC/ECC approach is that it causes
a smaller increase in word length, as the increase in word length increases the access
latency to the word. For this reason, the latency penalty per access compared to an un-
protected L1 cache is less than 1% for the SED, while for the SECDED it is larger (but
still below 10%, as the access latency is dominated by the data array’s word-line decoder
[251]). However, EDC/ECC cannot correct errors in L1 caches, therefore program exe-
cution cannot in general continue after the detection of an error in DC and a reset is
required. This problem is typically mitigated reading the correct, up-to-date value from
the next level of the memory hierarchy [84]. In order to make this correction possible,
this solution requires WT policy for DC, which incurs in significant performance and
power overheads [80]. On average EDC/ECC has a runtime penalty comparable with EC-
C/ECC (+12% vs +2% for SPECint in [251]). However for some specific benchmarks the
penalty for using EDC/ECC is much higher. For instance, for bzip2-graphic the penalty
of EDC/ECC over the unprotected version is +157% and +75% for vortex3. However, ac-
cording to the data in [251], SED incurs in less area overhead (virtually none already for
L1 caches of 8 KiB), while the SECDED at L1 causes an area overhead between around
10% and 50%, depending on the area of the cache (in case of 32 KiB it is around 20%). Us-
ing CACTI [258] it can be found that the increase in terms of area for applying ECC in a 1
MiB L2C is around 21%. Regarding power, in [251] ECC/ECC has an overhead on the or-
der of 20% for 32 KiB, while using CACTI a 24.46% increase for a cache of 1 MiB is found.
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With EDC, also considering the required write to the next level of the memory hierarchy
due to the WT policy, it is around 350% [251]. It should be noted that both power and
area given previously are at cache subsystem level, thus using them directly in the cost
function would overestimate the cost in terms of power and area of cache redundancy
(even if caches in most cases consume a large fraction of the power of a processor [281]).
To estimate the actual relative increases at processor-level, LE and HE were modelled in
McPAT [282]. This modelling shows that DC and IC consume respectively 18.95% and
4.53% of the total power consumption for the LE-1 and 17.12% and 4.11% for the HE-1.
In the case of LE-4 DCs consume 14.97% of the total power, ICs 3.58% and L2C 18.95%
for LE-4. The same fractions for the HE-4 are respectively 14.82%, 3.56% and 11.13%.

Regarding the changes in failure rate and unavailability, limiting the analysis to triple
and quadruple errors in the same word, the probability of miscorrection for a SECDED
PSD,misc is:

PSD,misc ÆMBU3 ¢Pmisc,3 Å MBU4 ¢Pmi sc,4. (3.18)

Therefore, the change in failure rate due to the ECC/ECC is (from Eq. 3.14, assuming
¢ Neq,SEU negligible):

¢ ˆ̧ w Æ ¡ [nc ¢NL1 ¢(AV FDCW B Å AV FIC ) Å NL2C ¢AV FL2C ] ¢(1 ¡ PSD,misc) (3.19)

where NL1 is the size of a single L1 cache and nc is the number of cores.
In the case of EDC/ECC the change in failure rate is instead:

¢ ˆ̧ w Æ ¡ [nc ¢NL1 ¢(AVFDC,WT Å AVF IC )(1 ¡ MBUeven)] ¡ NL2C ¢AVFL2C ¢(1 ¡ PSD,misc).
(3.20)

When calculating the change in availability, employing AVF is too optimistic, as once a
certain location is read, the error handling mechanism will act also on detected errors
that would not reach the service interface (as already pointed out in Eq. 3.17). To elim-
inate the fraction of masking due to the propagation from the cache to the outputs of
the processor, the Cache Vulnerability Factor (CVF), defined in [283] as the probability
of an error in the cache to propagate outside the cache (i.e. being read), can be used
instead. In [283] average CVF data for a similar cache configuration are given when run-
ning 11 benchmarks from SPEC2000. The CVFs found are 38.03% for L2CWB, 57.70% for
DCWB, 16.47% DCWT, and 32.05% for IC. The increase in ¸ eh,DU E for ECC/ECC can be
then estimated as:

¢ ˆ̧eh,DUE Æ[nc ¢NL1 ¢(CVFDCWB Å CVF IC ) Å NL2C ¢CVFL2C ] ¢MBU2. (3.21)

In the case of EDC/ECC the change in ¸ eh,DU E is:

¢ ˆ̧eh,DUE Æ[nc ¢NL1 ¢(CVFDCWT Å CVF IC ) ¢MBUodd] Å NL2C ¢CV FL2C ¢MBU2. (3.22)

In Table 3.6 the costs of applying EDC, ECC and EDC+CI to single core versions and
EDC/ECC, ECC/ECC and EDC+CI/ECC to quad-core versions are compared in terms of
area, power and performance. In Table 3.7 the change of failure rate shows that while
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Table 3.6: Relative change [%] in execution time, area and power for redundancy in caches and different de-
signs. Data from [251], [89] and modelling in CACTI and McPAT.

Redund. EDC ECC EDC+CI EDC/ECC ECC/ECC EDC+CI/ECC
Design LE-1 HE-1 LE-1 HE-1 LE-1 HE-1 LE-4 HE-4 LE-4 HE-4 LE-4 HE-4

¢ Tex /Tex 12 12 2 2 12 12 12 12 2 2 12 12
¢ A/A » 0 » 0 14 10 72 49 17 9 20 18 31 29
¢ P/P 30 10 5 1 54 20 37 12 7 2 45 16

Table 3.7: Relative changes in ¸ w and U [%], referred to the respective unprotected version with DCWB (ac-
cording to Eqs. 3.19, 3.20, 3.21, and 3.22). The SECDED for ECC is an Odd-Weigth Column code. In bold the
most effective redundancy for each design/technology combination.

Redundancy Design ¢ ¸ w,LC
¸ w,LC

¢ ¸ w,AC
¸ w,AC

¢ ¸ w,HC
¸ w,HC

¢ ¸ w,SD
¸ w,SD

¢ ¸ w,MD
¸ w,MD

¢ULC
ULC

¢UAC
UAC

¢UHC
UHC

¢USD
USD

¢UMD
UMD

EDC LE-1 -92 -69 -53 -90 -54 -92 -59 -36 -91 -37
HE-1 -88 -64 -49 -84 -51 -86 -54 -33 -82 -35

ECC LE-1 -94 -91 -92 -92 -93 -87 -37 -84 -86 -85
HE-1 -90 -85 -85 -85 -89 -82 -34 -77 -78 -80

EDC+CI LE-1 -94 -93 -93 -93 -94 -95 -94 -94 -94 -95
HE-1 -90 -88 -86 -86 -90 -89 -87 -85 -85 -89

EDC/ECC LE-4 -95 -79 -70 -94 -71 -77 56 -47 -77 -47
HE-4 -92 -76 -66 -89 -68 -75 54 -50 -73 -46

ECC/ECC LE-4 -96 -93 -95 -95 -96 -75 66 -70 -74 -71
HE-4 -93 -90 -90 -90 -93 -73 64 -67 -71 -69

EDC+CI/ECC LE-4 -96 -95 -95 -95 -96 -79 38 -75 -78 -75
HE-4 -93 -91 -91 -90 -93 -76 37 -71 -74 -73

EDC+CI and EDC+CI/ECC have the highest reduction for every technology, for tech-
nologies with low fraction of MBUs the improvement they can provide over ECC and
ECC/ECC is negligible. The unavailability of quad-core designs with AC technology in-
creases compared to a version without redundancy because of DUEs due to a large frac-
tion of MBU2. In Table 3.8 the total cost is shown for each technology/design/redun-
dancy combination. EDC is the most cost-effective for both single-core designs and
weight factors for technologies with low fraction of MBUs (i.e. LC, SD). When the fraction
of MBUs becomes significant, its distribution determines the most cost-effective redun-
dancy. For instance, AC requires EDC+CI and EDC+CI/EDC because most of its fraction
of MBUs causes more than two upsets, while ECC and ECC/ECC is enough in most cases
for HC as in this case the majority of MBUs causes only two upsets. It should also be
noted that in the case of AC the cost of applying EDAC codes to quad-core designs is
always greater than zero, implying that not applying EDAC codes would be more cost-
effective. However, EDAC codes are typically applied anyway to achieve requirements in
terms of MTTFw.

3.5.2. CHOOSING THE REDUNDANCY FOR THE REST OF THE PROCESSOR
The rest of the processor can be divided in residual (smaller than caches) SRAM arrays
(e.g. RFs) and logic (i.e. composed of FFs and combinational logic). As pointed out in
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Table 3.8: Cost-effectiveness of several redundancies for caches for several technologies and weights. In bold
the most cost-effective solutions for each combination of redundancy, design and technology.

Redundancy Design Cd ,LC Cd ,AC Cd ,HC Cd ,SD Cd ,MD Cp,LC Cp,AC Cp,HC Cp,SD Cp,MD
EDC LE-1 -1.66 -1.09 -0.71 -1.63 -0.72 -0.42 -0.19 -0.04 -0.41 -0.05

HE-1 -1.66 -1.11 -0.74 -1.57 -0.78 -0.48 -0.26 -0.12 -0.45 -0.13
ECC LE-1 -1.66 -1.13 -1.61 -1.63 -1.64 -0.37 -0.12 -0.36 -0.36 -0.36

HE-1 -1.61 -1.09 -1.51 -1.52 -1.59 -0.38 -0.13 -0.34 -0.35 -0.37
EDC+CI LE-1 -1.23 -1.22 -1.20 -1.20 -1.23 0.04 0.04 0.05 0.05 0.04

HE-1 -1.42 -1.38 -1.33 -1.33 -1.42 -0.21 -0.19 -0.18 -0.17 -0.21
EDC/ECC LE-4 -1.42 0.06 -0.87 -1.40 -0.88 -0.23 0.47 -0.02 -0.23 -0.02

HE-4 -1.53 -0.09 -1.03 -1.48 -1.00 -0.38 0.30 -0.19 -0.36 -0.17
ECC/ECC LE-4 -1.52 -0.09 -1.46 -1.51 -1.48 -0.28 0.43 -0.25 -0.27 -0.26

HE-4 -1.51 -0.11 -1.42 -1.46 -1.46 -0.30 0.40 -0.26 -0.28 -0.27
EDC+CI/ECC LE-4 -1.34 -0.16 -1.29 -1.32 -1.30 -0.13 0.45 -0.11 -0.13 -0.12

HE-4 -1.44 -0.29 -1.37 -1.39 -1.41 -0.27 0.30 -0.24 -0.25 -0.25

Table 3.9: Relative increase [%] in execution time, area and power for redundancies protecting RFs, logic and
both simultaneously. Data from [81, 94–97, 277] and modelling in McPAT.

Redund. RF-ECC RF-TMR FF-TMR FFD-TMR C-TMR C-DMR
Design LE-1 HE-1 LE-1 HE-1 LE-1 HE-1 LE-1 HE-1 LE-1 HE-1 LE-1 HE-1
¢ Tex /Tex 4 4 1 1 8 8 45 45 0 0 0 0
¢ A/A 0 1 8 26 9 32 15 53 65 107 28 51
¢ P/P 5 9 9 17 66 65 71 71 60 61 43 44

1.4.2, two main approaches can be found in literature: protecting separately RFs and the
logic [81] or protecting them simultaneously [98]. The rest of this section investigates
the impact of these two approaches on different designs.

CHOOSING THE REDUNDANCY FOR THE RFS

Similarly to caches, RFs are typically protected with information redundancy. However,
as they are smaller than caches, replicating the RF may also be a viable solution. For this
reason, the effects in the case of SECDED (RF-ECC) and TMR of the RFs (RF-TMR) are
compared. In [277] RF-ECC is reported to increase the power of the RF by 100% and the
area of 4.9%. Table 3.9 reports how these estimations increase area and power at proces-
sor level for the two designs and Table 3.10 shows which relative variations in terms of
failure rate and unavailability they produce. As shown in Table 3.9, RF-TMR is in general
more expensive in terms of area and power, although less expensive in terms of perfor-
mance. In [234], a Double Modular Redundancy (DMR) with parity is proposed as a less
expensive version of RF-TMR, which is capable of achieving the same relative change in
failure rate and unavailability with lower overhead in terms of area and power. Neverthe-
less, RF-TMR can be more cost-effective than RF-ECC when the focus is on performance
and for some designs (e.g. HE-1), as shown in Table 3.11.
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Table 3.10: Relative changes [%] in wrong outputs and of unavailability for the LE-1 and HE-1 when adding
redundancy to IRF and RFR. In bold the most effective solutions for each combination of redundancy, design
and technology.

Redund. Design ¢ ¸ w,LC
¸ w,LC

¢ ¸ w,AC
¸ w,AC

¢ ¸ w,HC
¸ w,HC

¢ ¸ w,SD
¸ w,SD

¢ ¸ w,MD
¸ w,MD

¢ULC
ULC

¢UAC
UAC

¢UHC
UHC

¢USD
USD

¢UMD
UMD

RF-ECC LE-1 -3.6 -3.5 -1.7 -3.5 -3.5 -1.2 -0.3 -1.2 -1.2 -1.2
HE-1 -2.9 -3.7 -4.6 -4.6 -2.9 -1.8 -1.9 -2.9 -2.9 -1.8

RF-TMR LE-1 -3.6 -3.5 -3.5 -3.5 -3.6 -1.4 -1.4 -1.3 -1.3 -1.4
HE-1 -2.9 -3.8 -4.7 -4.7 -2.9 -1.9 -2.5 -3.0 -3.0 -1.9

Table 3.11: Cost of redundancy in IRF and FRF in the case of SECDED (RF-ECC) and triplication of the RFs (RF-
TMR). In bold the most cost- effective solutions for each combination of redundancy, design and technology.

Redund. Design Cd ,LC Cd ,AC Cd ,HC Cd ,SD Cd ,MD Cp,LC Cp,AC Cp,HC Cp,SD Cp,MD
RF-ECC LE-1 -0.01 0.00 0.01 -0.01 -0.01 0.05 0.05 0.05 0.05 0.07

HE-1 0.01 0.00 -0.02 -0.02 0.03 0.15 0.15 0.14 0.14 0.15
RF-TMR LE-1 0.04 0.04 0.04 0.04 0.04 0.08 0.08 0.08 0.08 0.08

HE-1 0.04 0.03 0.02 0.02 0.04 0.08 0.07 0.07 0.07 0.08

CHOOSING THE REDUNDANCY FOR LOGIC

As the cross section for a triplicated FF is between three to one orders of magnitude less
compared to the cross section of an unprotected FF in [284], for FF-TMR and FFD-TMR
it is assumed that 10% of the events will corrupt more than one of the FFs in MD and HC,
1% of the events will corrupt more than one FF in AC and 0.1% in LC and SD. Further-
more, FFD-TMR is considered to mask all SETs, as [94] report immunity to spikes up to
105 ps. Table 3.12 shows the relative changes in terms of ¸ w and U when applying FF-
TMR and FFD-TMR to the logic of LE-1 and HE-1. Furthermore, Table 3.13 shows that,
despite the optimistic assumptions on the capability of FFD-TMR to mask all the SETs,
its cost is so high that FF-TMR is preferable for all designs, technologies and weights
considered (the table for the cost-effectiveness is not reported for sake of brevity). This
is due to the large area overhead of FFD-TMR for Cd and to the performance overhead of
FFD-TMR for Cp. Even considering the weights and type of technology for which FFD-
TMR is less expensive (Cd and SD) and reducing the overhead compared to FF-TMR by
50% (e.g. ¢ Tex /Tex Æ0.27), FFD-TMR is still less cost-effective than FF-TMR. However,
the cost of both FF-TMR and FFD-TMR is positive for any design/technology/weight
combinations, showing that they are both expensive types of redundancy in general.

To reduce the cost of redundant sequential elements, different designs of sequential
elements have been proposed to replace FFD-TMR and FF-TMR. For instance, a DICE-
FF cell has a reduction of 61.54% in terms of area, between 40.30% and 48.72% in terms
of power (depending on the switching activity) and 15.13% in terms of delay compared
to a sequential element of FF-TMR [96]. However, while FF-TMR uses three simple FFs
and a voter (and therefore in principle could be implemented in RTL) as a redundant
cell, FFD-TMR and other designs require technology-specific adjustments at layout and
electrical level within the sequential element. For instance, the DICE-FF requires the
design of a custom cell not available in commercial technologies [96].
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Table 3.12: Relative changes [%] in ¸ w and U for redundancies protecting logic. In bold the most effective
redundancy for each design/technology combination.

Redund. Design ¢ ¸ w,LC
¸ w,LC

¢ ¸ w,AC
¸ w,AC

¢ ¸ w,HC
¸ w,HC

¢ ¸ w,SD
¸ w,SD

¢ ¸ w,MD
¸ w,MD

¢ULC
ULC

¢UAC
UAC

¢UHC
UHC

¢USD
USD

¢UMD
UMD

FF-TMR LE-1 -2.2 -1.7 -0.9 -1.5 -1.3 -3.7 -3.0 -2.5 -2.5 -2.6
HE-1 -7.1 -6.7 -3.2 -5.1 -4.3 -8.9 -7.1 -3.5 -8.2 -6.1

FFD-TMR LE-1 -2.2 -3.0 -2.8 -3.8 -0.9 -3.7 -4.1 -3.2 -4.8 -1.5
HE-1 -7.1 -8.1 -8.1 -11.1 -2.8 -8.9 -9.8 -7.9 -11.7 -4.9

Table 3.13: Cost of redundancy in mixed logic in the case of FF-TMR and FFD-TMR. In bold the most cost-
effective redundancy for each design/technology combination.

Redund. Design Cd ,LC Cd ,AC Cd ,HC Cd ,SD Cd ,MD Cp,LC Cp,AC Cp,HC Cp,SD Cp,MD
FF-TMR LE-1 0.34 0.35 0.36 0.35 0.36 0.43 0.44 0.44 0.44 0.44

HE-1 0.35 0.37 0.44 0.37 0.40 0.50 0.51 0.54 0.51 0.52
FFD-TMR LE-1 0.48 0.47 0.48 0.46 0.52 0.86 0.85 0.86 0.85 0.87

LE-1 0.57 0.55 0.57 0.50 0.65 1.01 1.00 1.06 1.03 1.04

PROTECTING SIMULTANEOUSLY SMALL SRAM ARRAYS AND LOGIC

Table 3.14 shows the relative changes in terms of ¸ w and U when applying C-DMR
and C-TMR. Based on these results, Table 3.15 shows the comparison between C-TMR,
C-DMR, and the most cost-effective solution found combining the results from Table
3.11 and FF-TMR. It shows that protecting separately RFs and logic and replicating the
core have in general similar cost-effectiveness, so they are both viable solutions. As a
trend, FF-TMR and RF-ECC are more cost-effective for (older) technologies with relative
low fraction of MBUs and high masking of SETs (i.e. LC, AC) and when the focus is on
dependability. For (newer) technologies higher fraction of MBUs and SETs sampled C-
DMR is more cost-effective. In case the focus is on performance (Cp), C-DMR is found
as the most cost-effective solution regardless of other parameters. C-TMR is generally
the least cost-effective solution because of a larger area and power overhead. It becomes
more cost-effective than C-DMR only in case the weight of the availability is higher (² =5
instead of 1 for Cd).

Table 3.14: Relative changes in ¸ w and U [%] for redundancies protecting both small SRAM array and logic for
different technologies and designs. In bold the most effective redundancy for each design/technology combi-
nation. It should be noted that the model defined in this chapter does not find any difference between C-TMR
and C-DMR in terms of relative change of failure rate. In order to differentiate the effects of the two approaches,
Common Cause Failures (e.g. due to issues on power or shared clock signals among the replicas [285]) should
be considered.

Redund. Design ¢ ¸ w,LC
¸ w,LC

¢ ¸ w,AC
¸ w,AC

¢ ¸ w,HC
¸ w,HC

¢ ¸ w,SD
¸ w,SD

¢ ¸ w,MD
¸ w,MD

¢ULC
ULC

¢UAC
UAC

¢UHC
UHC

¢USD
USD

¢UMD
UMD

C-TMR LE-1 -5.8 -6.6 -7.4 -7.4 -5.8 -5.1 -5.7 -6.3 -6.3 -5.1
HE-1 -10.0 -12.2 -14.4 -14.4 -10.0 -10.8 -12.7 -14.6 -15.2 -10.8

C-DMR LE-1 -5.8 -6.6 -7.4 -7.4 -5.8 4.5 4.6 4.8 4.8 4.5
HE-1 -10.0 -12.2 -14.4 -14.4 -10.0 5.8 3.7 2.6 6.9 5.2
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Table 3.15: Comparison of cost-effectiveness of C-TMR, C-DMR and the most cost-effective solution from
Table 3.11 and FF-TMR. In bold the most cost-effective redundancy for each design/technology combination.

Redundancy Design Cd ,LC Cd ,AC Cd ,HC Cd ,SD Cd ,MD Cp,LC Cp,AC Cp,HC Cp,SD Cp,MD
C-TMR LE-1 0.52 0.50 0.49 0.49 0.52 0.59 0.58 0.57 0.57 0.59

HE-1 0.63 0.59 0.55 0.54 0.63 0.76 0.75 0.73 0.73 0.76
C-DMR LE-1 0.34 0.34 0.33 0.33 0.34 0.36 0.36 0.36 0.36 0.36

HE-1 0.43 0.39 0.36 0.40 0.43 0.48 0.46 0.45 0.47 0.48
Tab 3.11+FF-TMR LE-1 0.32 0.35 0.37 0.34 0.34 0.48 0.49 0.50 0.49 0.50

HE-1 0.36 0.37 0.42 0.36 0.44 0.58 0.59 0.61 0.58 0.60

3.6. EXPECTED IN-ORBIT BEHAVIOR AND VALIDATION

Figure 3.10: On the left, MTTF w for LE-4 and HE-4 in different technologies. Solid lines indicate unprotected
versions and dashed lines versions with the most cost-effective redundancy found according to Cd . On the
right, MTTF w in hours for different designs depending on ˆ̧ and ¸ ev . (FT indicates a "Fault-Tolerant" imple-
mentation, i.e. employing the most cost-effective redundancies found with Cd). Red lines indicate different
classes of designs in terms of MT T Fw .

Fig. 3.10 (left) shows the absolute MTTF w of LE-4 and HE-4 before and after the most
cost-effective solutions according to Cd are employed. It is worth to note that, while from
a quantity perspective the vulnerability is roughly the same for all types of technologies
and quad-core designs (LE-4 and HE-4), the quality of the vulnerability is so different
that applying redundancy produces very different MTTF w (around one order of mag-
nitude of difference). Fig. 3.5 shows that this is the case because caches dominate the
MTTF w and have small variations in terms of vulnerability changing the type of technol-
ogy. Also, the comparison between LE-4-FT/HE-4-FT and LE-1-FT/HE-1-FT in Fig. 3.11
shows that going multicore has a large cost in terms of availability, e.g. for ¸ ev Æ10¡ 7 up-
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Figure 3.11: On the left, availability of LE-4 and HE-4 (AC). On the right, decomposition in core (RFs+logic)
and caches. Solid lines indicate unprotected versions and dashed lines versions with the most cost-effective
redundancy found for each combination of design/technology. The unavailability has been estimated with Eq.
3.8.

sets/bit/day LE-4-FT and HE-4-FT cannot meet an availability target of 99.999%, while
both LE-1-FT and HE-1-FT can meet a 99.99999% target. This findings show that tech-
niques to reduce the vulnerability of L2Cs, e.g. employing a L2CWT to lower the AVF of
the [253] and to decrease the Teh,due, may be a cost-effective solution to increase the
MTTF w and the availability of quad-core processors.

When the focus is on a target MTTF w instead of cost-effectiveness, a chart similar
to Fig. 3.10 (right) can be employed to evaluate possible trade-offs. Once the MTTF w
target is set, a combination of microarchitecture and redundancy will fit only if a tech-
nology (for the target environment) exists for which the horizontal line corresponding
to the microarchitecture/redundancy is below the oblique line representing the MTTF w
target. Assuming a target of MTTF w Æ10,000 hrs (1.14 years), the combinations below
the respective line are:

• HE-4-FT (HC) (C-DMR + EDC/ECC) on RH technology in LEO (HC, ¸ ev · 10¡ 10 upset-
s/bit/day).

• HE-4-FT (LC) (FF-TMR + RF-ECC + ECC/ECC) on rad-hard technology in LEO and
GEO or rad-tol (radiation-tolerant) in LEO (the latter only up to ¸ ev Æ10¡ 8 upsets/bit/-
day).

• HE-4-FT (HC) (C-TMR + ECC/ECC) on rad-hard technology in LEO and GEO or rad-tol
in LEO (the latter only up to ¸ ev Æ10¡ 7 upsets/bit/day).

• LE-4-FT (LC) (FF-TMR + RF-ECC + ECC/ECC) for commercial technologies in LEO,
and both rad-hard and rad-tol technologies both in GEO and LEO.
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Interestingly, Fig. 3.10 (right) shows that processors without redundancy achieve low
MTTF w with commercial technology at ground level. This is reflected by the trend of
including redundancies in processors for terrestrial applications, mainly in caches [84]
and sometimes also in RFs [83]. However, the figure also shows that designs intended for
space operate also at ¸ ev ¸ 10¡ 10 upsets/bit/day and therefore they require more redun-
dancy. Fig. 3.10 (right) also shows that having a limited range for ¸ ev implies that it is
not possible in general to make a certain design reliable enough to achieve an arbitrary
MTTF w target using a rad-hard technology. Therefore, processors in Fig. 3.10 (right) can
be binned in three classes in terms of MTTF w using non-overlapping MTTF w isolines
(e.g. 107, 104 and 10 hours, shown in red). For instance, none of the design/redundancy
combinations can meet a target MTTF w higher than 107 hours and there is a higher level
of MTTF w for which quad-core processors are not fit for any design/redundancy com-
bination and the designer must resort to smaller implementations.

3.6.1. VALIDATION
The most rigorous method to validate a processor for usage in space is radiation testing
[81, 286]. The main advantage of radiation testing is that it can reproduce exactly the
physical mechanisms that will be experienced by the device in space. For this reason,
radiation testing can be used both to validate the design and as a validation of the error
models employed to select the redundancy (e.g. fraction of MBUs and of SETs sampled).

Sometimes FI is proposed as a validation method. However, FI is not capable of val-
idating the fault models (e.g. percentage of MBUs) as the model of fault injected is ar-
bitrary. On the other hand, radiation testing typically has difficult controllability and
observability [101]. Therefore, it is hard to pinpoint where the error was generated.

Because observability is limited, usually the outcomes of radiation tests are binned
according to a simpler classification compared to the one shown in Fig. 3.3. Typically a
run is either successful or the run is interrupted by a particle strike which leads to a tem-
porary non-functionality (or interruption of normal operation) of the affected device. In
the latter case it is said that a Single Event Functional Interrupt (SEFI) happened.

Furthermore, in order to achieve meaningful statistics in a limited time, sometimes
the flux of particles employed during radiation testing is several orders of magnitude
higher than in space. This can produce artifacts, as, for instance, the probability of ac-
cumulation of two errors in the scrubbing period is much larger than in space. A field
example is provided in [287], where the beam flux had to be throttled down in order to
allow error handling in caches to complete successfully and to allow the logging of errors.

Several works in literature (e.g. [143, 287]) compare failure rates from FIs and sim-
ulations to failure rates during beam testing. The most severe underestimation found
in literature is of a factor 20£ [65] compared to data from radiation tests. However, this
value has been found by simply multiplying the AVF by the population of FFs, so this can
be seen as an upper boundary of the possible underestimation. For instance, in [143]
the underestimation of the AVF compared to radiation tests is of 11£ and the expected
failure rate on the field lies in between these two values. This suggests the adoption of
a safety factor of at least 10 when setting a target in terms of MTTF w and to prefer radi-
ation testing for validation, as it provides a worst case estimation. However, it is shown
in [287] a similar AVF for FI, protons tests and neutrons tests (respectively 5.02%, 4.35%,
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2.65%) when the flux is tuned down enough.
Typically after radiation test new processors are validated in space with an IOD mis-

sion. Data of the behavior of processors in space are not common in literature. Data
from [54] shows in-orbit statistics for six identical LEO satellites. The average number of
reset is 4.67 reboots per year for each satellite, with an MTTFDUE of 2.57 months. This
reflects roughly the models described in this chapter for a LE-1 (typically employed as
OBC as shown in Chapter 2) for technologies with ¸ ev ranging from 10-8 to 10-7 upset-
s/bit/day (rad-tol technology in LEO).

3.7. SUMMARY
A summary of the framework (containing the description of each step, the references to
sections, figures and equations in the paper and possible adaptations or extensions) is
reported in Table 3.16.

Table 3.16: Summary of the framework presented and adaptations required for use with different designs.

# - Step Ref. Possible adaptations/extensions
1 - Definition of fault and error models Sec. 3.3.1 Use of SFSET %, SFF F %, SBU%, MBUn , and ¸ ev for

specific technology and frequency.
2 - Definition of failure models Sec. 3.3.3 Use of QoS to distinguish between acceptable and

Fig. 3.3 unacceptable behavior.
3 - Estimation of Neq or SER Sec. 3.4.2 MCPath can be employed for closed source processors

Eq. 3.1 (only total area).
4 - Estimation of AV F Sec. 3.4.3 Extended microarchitectural simulators (e.g. [274])

or fault injection on FPGA prototype.
5 - Estimation of ˆ̧ and Û Sec. 3.4.1 Use of alternative derating factors and decompositions

Eqs. 3.4-3.8 to convert SER to ˆ̧ (e.g Sec. 3.4.4).
6 - Application of redundancy Sec. 3.5 Requires estimation of Pdet . If AV F 0and ¢ Neq /N are unknown,

Eqs. 3.14-3.17 they can be approximated respectively as AV F and 0.
7 - Analysis of cost-effectiveness Sec. 3.5 Sensitivity analysis on weights and technical

Eq. 3.11 parameters ( ¢ Tex /Tex , ¢ A/A, ¢ P/P ).
8 - Meet requirements Sec. 3.6 Use of more complex optimization algorithms (e.g. [237]) to

Figs. 3.10-3.11 minimize cost of achieving MT T F · MT T Ft ar g et and U · Ut ar g et .
9 - Validation Sec. 3.6.1 SEE radiation tests (protons, heavy ions) and IOD missions.

This chapter provides a framework to evaluate the fitness of a microarchitecture for a
certain space environment or any other environment where the failure rate is dominated
by soft errors. This framework allows to include considerations on soft errors when se-
lecting and configuring an open-source IP core like most of those based on the RISC-V
ISA.

Models to evaluate the vulnerability of different processor units and evaluate the
cost-effectiveness of redundancy in terms of penalties in area, performance, power and
availability for several case studies were introduced. However, the framework can be
easily adapted to different designs and data for a specific technology can be employed
to model a specific implementation. Furthermore, the chapter also provides tools to
find the microarchitecture/redundancy/technology combinations which meet specific
MTTF w and availability requirements.

From the models developed, technology and microarchitecture are the factors im-
pacting the dependability of a processor the most. Furthermore, this work also high-
lights that estimations of AVF are not the only concern when characterizing the depend-
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ability of processors, as other parameters influence the final dependability of the design
(e.g. total area, the ratio between sequential and combinational area, temporal mask-
ing, etc.) in a comparable way. Caches are shown to be the most vulnerable structures
(especially in multi-core processors) and therefore information redundancy in caches
is typically very cost-efficient. However, it can be expensive in terms of availability for
particular distributions of MBUs for which the number of uncorrectable errors is high.
Furthermore, scrubbing has low efficacy in caches (as opposed to when dealing with
large external memories), as accumulation in caches has negligible effects compared to
MBUs.

Work is still required to characterize the SER in space of ASIC technologies below
28 nm (for instance in terms of fraction of MBUs for unprotected FFs and FF-TMR) and
some specific relationships between AVF and microarchitectural choices (for instance
the effect of different microarchitectures on the AVF of caches). Furthermore, at the mo-
ment of writing no validated extended microarchitectural simulators to estimate soft er-
ror vulnerability supporting the RISC-V ISA are available to the public.





4
ANALYSIS OF WORKLOADS FOR

ON-BOARD DECISION MAKING

This is a nightmare, which will pass away with the morning.
For the resources of nature and men’s devices are just as fertile and productive

as they were.

John Maynard Keynes, Essays In Persuasion (1931)

The use of Deep Neural Networks (DNNs) in terrestrial applications went from niche to
widespread in few years, thanks to relatively inexpensive hardware for inference and large
datasets available. The applicability of this paradigm to space systems, where both large
datasets and inexpensive hardware for on-board inference are not readily available, is
more difficult and thus still rare. Furthermore, when large amounts of labelled data are
not available, other machine learning approaches, like unsupervised learning algorithms,
might perform better. Nevertheless, given the high potential of DNNs, this chapter ana-
lyzes the impact of DNNs and other machine learning approaches on On-Board Decision
Making (OBDM) capabilities of space systems, identifying the specific criticalities of de-
ploying Artificial Intelligence (AI) on-board satellites. Although several types of DNNs are
introduced, the focus will be on CloudNet, a Fully Convolutional Network (FCN) for cloud
detection.

Parts of this chapter have been published in [288].
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4.1. INTRODUCTION
The success of DNNs for terrestrial applications has been mainly due to the availability
of large datasets (i.e. rise of ‘big data’) and the availability of relatively inexpensive hard-
ware that can run training and inference in reasonable timescales, for instance GPUs
[11]. The space industry looks at this phenomenon with interest, although the availabil-
ity of large datasets for space applications is limited and the hardware employed in space
applications lags behind in terms of performance compared to its commercial counter-
part.

One of the main issues in terms of hardware design faced by the space industry is that
it is not possible to reuse in a straightforward way the hardware platforms employed in
terrestrial applications, given the specific constraints of satellite data systems especially
in terms of robustness to ionizing radiation [289]. For instance, the GPU tested in [290] is
reported to fail (due to SEFI or SEL) during an irradiation with a high energy proton beam
on average every 43 s. The main reason behind this very low MTTF is that GPUs are much
larger (e.g. they can have 2.2 billion transistors1, which corresponds to roughly 550 MGE
if four transistors per GE2 are assumed) than single-core single-issue processors (890
kGE for the one in [59]) typically employed in space.

A larger soft error vulnerability is not the only reason why simple microarchitec-
tures with low parallelism are still the vast majority of processors employed in space.
As a matter of fact, most of the tasks executed by processors in space data systems are
non-compute-intensive workloads, i.e. they perform a low number of operations per
byte read from and written to memory. The reason is that they are mainly employed for
non-demanding control and housekeeping operations, while on-board data processing
is typically a not attractive solution, since it can be executed in most cases on ground
with much less expensive machines for a given computational need (unless it allows for
improved capabilities of the satellite, e.g. encryption or compression).

This chapter analyzes the benefits that DNNs can provide at the system level (Sec.
4.2) and the feasibility of the deep learning approach for space applications (Sec. 4.3).
Then, an analysis of the software workloads required for DNNs is carried out in Sec. 4.4.
Finally, Sec. 4.5 concludes with a summary of the main findings and several recommen-
dations to systematically enable OBDM with RISC-V vector processors in the medium
term.

The software workloads introduced in this chapter will be employed in Chapter 6 to
evaluate the effectiveness of the RISC-V Vector Extension (RVVE) in speeding up DNNs.

4.2. SYSTEM-LEVEL IMPACT
While GEO satellites can continuously communicate with the ground station, LEO satel-
lites can only communicate with the ground station periodically (unless a relay satellite
is employed [291]), in some cases with large periods between contacts [292]. In this way,
the satellite may enter an unsafe state and the ground operator in the worst case can
only intervene hours later.

1https://www.techpowerup.com/gpu-specs/radeon-e9173-pcie.c3031
2A GE is a technology-independent unit of measure of the area of a design (normalized to a reference 2-input

NAND).

https://www.techpowerup.com/gpu-specs/radeon-e9173-pcie.c3031


4.2. SYSTEM-LEVEL IMPACT

4

97

However, there is a trend of launching several LEO satellites to compose constella-
tions and mega constellations [293], with the possibility of mitigating the risk of failure
of a single satellite at the constellation level and replace them if they fail (as they are
much cheaper than large GEO satellites). Therefore, in this case there is a trade-off to be
made between dependability of a single satellite, its cost and number of spare satellites
in a constellation. Furthermore, if a higher cost can be accepted compared to the case
where a single ground station is employed, more than one base station may be available,
thus reducing the period between contacts.

Furthermore, space systems are inherently constrained in terms of available power
(e.g. only a limited surface is available to collect power). Limited power implies that the
data rate of the downlink given a certain target Bit Error Rate (BER) is also limited, as the
data rate is proportional to the power employed during the transmission [151].

Therefore, small satellites in LEO pose new challenges both in terms of amount of
data that can be transmitted to the ground and in terms of dependability. In the following
two subsections it will be shown how OBDM can help mitigating these shortcoming of
LEO satellites. Then, in Sec. 4.3 the feasibility of applying DNNs to these problems is
investigated.

4.2.1. DOWNLINK EFFICIENCY
In [151] it is shown that, assuming a transmission power of 1 W for a CubeSat in LEO,
a maximum data rate of 512 kbps can be obtained with a Ultra High Frequency (UHF)
downlink. On the other hand, in [151], an image from a simple VGA camera with 640£480
pixels has a file size of 900 KiB and a data cube from a hyperspectral sensor with 32 bands
and 1024£1024 pixels requires 32 MiB. In LEO a potential access duration to the ground
station can be assumed to be 5 minutes every pass, and in this time span only 64 VGA
images or roughly half a cube of 32 bands can be transmitted to the ground. Considering
the 6U CubeSat described in [152], the power budget for the downlink limits the data
rate to 14 Mbps, while its spectrometer (with five spectral bands) generates 255 Mbps.
Without considering data compression, during a single ground station pass3 only up to
31.5 s worth of imaging data can be downlinked, which is only around 0.6% of the data
that could be theoretically collected during a typical LEO orbit (around 90 minutes in
[294]). Although it is not realistic to assume that the spectrometer operates continuously
during the mission, this shows that there is a mismatch between the capability of a small
satellite in LEO to generate data and its capability to transmit data to ground.

BENEFITS OF DATA REMOVAL AND COMPRESSION

Given the constraints discussed above, many on-board processing applications are not
of interest in space systems. For instance, noise filtering can be executed on ground
with cheaper hardware, while on the other hand data compression is already deployed
in many missions (e.g. in [152] a 2:1 compression is employed) because it mitigates the
bottleneck of the downlink. Efficiency of the downlink can be increased even further, re-
moving useless data instead of sending it to ground (i.e. data removal [5]). For instance,
in the Landsat datasets [295], the average cloud cover in an archived scene is 34%, with
38% of the scenes containing less than 10% cloud cover. Therefore, selecting only images

3A pass is a period of time a spacecraft is visible to a ground station.
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Figure 4.1: Ratio R between useful data transmitted with and without data removal as a function of PTP allo-
cated for the transmission subsystem and data removal for different PP and RR. In all cases 2:1 compression
is assumed.

with less than 10% of cloud cover results in average in a 2.63x data reduction. Combining
data removal with a 2:1 compression, the amount of useful data sent increases by 5.26£
compared to a system without on-board data processing.

COST OF REQUIRED HARDWARE

When DNNs and other data processing algorithms are to be deployed on data produced
by instruments, a payload processor is required to process the data (as shown in Fig.
2.1). While for the mass memory technologies with long retention time and low power
dissipation can be employed (e.g. flash memories), faster memories are required to act
as main memory of the payload processors. Typically Dynamic Random-Access Mem-
ory (DRAM) arrays are chosen, ranging from Single Data Rate (SDR) to Double Data Rate
2 (DDR2) and Double Data Rate 3 (DDR3), depending on the radiation resilience/per-
formance trade-off required [296]. In the datasheet [297] of the 1Gb DDR2 DRAM tested
in [296], a peak power consumption of around 0.5 W is reported, which will be taken
here as an estimation of power consumption for DRAMs of this capacity, and 1 W for
the most powerful version of the 22-nm FD-SOI vector processor ASIC in [19] running a
peak-performance application. A requirement of 1 GiB of main memory will be assumed
(in [298] the memory footprint for DNNs ranges from 645 MiB to 1.49 GiB), while the cost
in terms of power PP of applying data reduction and compression will be assumed to be
5 W.

Assuming a common amount of power allocated for the transmission and data pro-
cessing subsystems (PTP), the following equation can be employed [151] to estimate the
amount of useful data transmitted per station contact DC when data is not processed on
board:
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DC Æ
PTP

RR
¢k, (4.1)

where k is a constant (dependent on the transmission subsystem, receiver, propagation
and required BER) and RR is the optimal Removal Rate, i.e. the ratio between useful
data and data produced by the payload. When only useful data is selected and a data
compression of CR:1 is applied, the amount of useful data transmitted is instead:

DC ÆC R ¢(PTP ¡ PP ) ¢k. (4.2)

The ratio R between the amount of useful data trasmitted in the two cases is then:

R ÆRR ¢C R ¢
µ

PTP ¡ PP

PTP

¶
, (4.3)

which for PTP ÈÈ PP tends to its maximum, i.e. RR ¢C R. This means that data removal
is more effective for larger satellites, which have more power available for transmission
and processing.

To understand what the effect of a more power-efficient solution would be, in Fig. 4.1
it is shown the ratio R as a function of the power budget PTP for two different values of
power spent for data processing PP (5 W and 2.5 W). While the fraction of the maxi-
mum ratio achieved for a certain PTP is independent from RR ¢C R, it depends on PP .
As a matter of fact, it takes a larger PTP to achieve a certain fraction of the maximum
improvement possible when PP is increased.

FURTHER DEVELOPMENTS

Having a DNN that classifies pixels in covered by cloud or not covered by cloud is a ba-
sic form of semantic segmentation of an image, i.e. each pixel is classified depending
on a particular label. While this is fine in some applications like cloud detection [299]
or landscape classification (classified in buildings, roads, water and crops [300]), some
other applications require to differentiate among different instances of a certain object.
In this case, object detection may be employed, where each object of interest is identified
and its location is marked with squared boxes. For instance, in [301], boats are detected
with this method. The final objective of this approach will be to have images where the
objects are identified and sent to ground on demand. For example, a user from ground
station may ask all the images of boats in a certain sea area or buildings in a large rural
area of interest. Sending the images of this large areas to the ground may require sev-
eral orbits, while sending only the images of the objects requested maximizes downlink
efficiency.

4.2.2. ON-BOARD VIRTUAL OPERATOR
In [294] it is considered the case of a LEO satellite with an orbit period of 90 minutes4

and that access to the ground station can be booked every 3 orbits, for 5 minutes per
4LEO satellites have a circular or elliptical orbit with an altitude ranging from 250 to 2000 km (measured from

the Earth surface). The orbit period varies with the altitude and ranges from 90 (lower LEO orbits) to 120
minutes (higher LEO orbits) [149].
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contact. However, even when a base station is always available, most LEO satellites for
Earth Observation are in a Sun-Synchronous Orbit (SSO). While a ground station close to
the pole will see the satellite every orbit, other ground stations at mid latitudes will not
see the satellite every orbit. For instance, for TU Delft’s ground station in Delft (52° N) the
satellite will be seen three times in the morning, followed by a long period of lack of any
contacts and again three times in the evening. Even if there is a pass, communication
with the satellite may still not be possible because of issues in the link, for instance due
to the elevaltion of the satellite during the pass.

In this section, to provide an evaluation for two extreme cases, two opposite cases
are considered:

• Polar station: a contact with the ground station either 5 minutes every orbit (6% of the
orbital period)

• Mid-latitude station: three consecutive 5 minutes contacts every orbit followed by a
gap without contact of 9 hours (contact possible for 2.1% of the day)

In a similar scenario, the idea of an on-board virtual operator monitoring the sta-
tus of the satellite and taking autonomous decisions when no communication with the
ground operator is possible becomes of great interest. The on-board virtual operator
can, for instance, enable autonomous failure detection (and forecasting) and autonomous
safe mode management. DNNs can be employed to predict the telemetry of the next or-
bit given the previous one (or more) [302]. This can be used to help diagnose anomalous
behaviors before the next contact with the ground station [302].

BENEFITS OF AN ON-BOARD VIRTUAL OPERATOR

Assuming a constant failure rate ¸ (typical of soft errors, as shown in Chapter 3), the
reliability of the spacecraft after the end of the i th contact and before (i Å 1)th contact
can be expressed as R(t ) ÆR(ti ) ¢e¡ ¸ (t ¡ ti ), where ti is the time instant of the end of the
i th contact. Assuming a ground operator capable of handling safely the failures of the
spacecraft and a satellite not capable of handling safely failures in autonomy, the safety5

S(t ) is 100% during contact and is S(t ) ÆR(t ) when the satellite is not in contact. When
considering an on-board virtual operator, a percentage of the failures are detected with
a certain Detection Factor (DF ), then:

S(t ) ÆR(ti ) ¢e¡ (1¡ DF )¢̧ (t ¡ ti ) (4.4)

when not in contact. Fig. 4.2 shows an example for DF Æ0.9, a ¸ of 10e¡ 4 failures/min
(approximately one failure per week) for a polar station and a mid-latitude station. The
average safety increases from 99.60% to 99.96% in the first case and from 97.95% to
99.79% in the second. Although this is a simple model and some on-board failure de-
tection capabilities are possible without DNNs, it shows that improving the on-board
capabilities of a satellites can help LEO satellites to achieve typical requirements for de-
pendable systems (at least 99.9%).

5In this case, safety will be defined as the probability that the satellite is either working in nominal conditions
or it is in a safe state because of a detected failure.
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Figure 4.2: Increase of safety for a virtual operator with DF Æ0.9 for a polar and a mid-latitude station. Dashed
lines represent average values over time.

COST OF THE REQUIRED HARDWARE

The most attractive solution to deploy telemetry analysis and forecasting is to use an en-
hanced version of a typical OBC. As a matter of fact, the requirements for this kind of
applications are less stringent compared to DNNs for image analysis. In [302], teleme-
try forecasting was implemented with a 64Mb DRAM on a single core reaching 661 pre-
dictions per second, meaning that all the parameters of the satellite telemetry in [302]
(13216 in total) can be predicted in around 20 s. Furthermore, enhancing a general pur-
pose processor with minimal vector facilities (i.e. 2 lanes) increases power consumption
of the processor from 52 mW [59] to 138 mW [19] (+65%).

4.3. ALGORITHMS
4.3.1. SUPERVISED LEARNING
The most common problems in machine learning can be solved learning a function,
given a set of examples of inputs and golden outputs (training). In this case supervised
learning algorithms are employed. Among this type of algorithms, DNNs proved to be
the best approach in classification and prediction when large datasets are available for
training, reaching accuracies close to or slightly above human level [303]. When the
training set is not large enough, other machine learning approaches or human-defined
DSP algorithms may instead achieve better results. The degradation of DNN accuracy
for small datasets is shown for instance in [304], where CNNs are trained for multi-class
classification with different datasets sizes. It is shown that for a 3-class classification
problem using 5,000 images per class achieves 97% accuracy6 on average, while bring-
ing the training set down to 1,000 images per class lowers accuracy to 74% on average.

6In this case, to evaluate the performance of the DNN, accuracy is defined as the ratio of the number of correct
classifications on the total number of classifications. In some cases, where some classes are much more rare
in the data set, more refined metrics considering true positives and true negatives are employed, like recall
and precision [305].
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When the problem becomes more complicated (i.e. larger number of classes), even us-
ing 45,000 images in total achieves an average accuracy below 94% (9 classes) [304].

One of the most popular datasets for terrestrial applications is ImageNet7. It is a
large image dataset typically used to asses the effectiveness of a certain neural network
architecture for image classification, containing RGB images of 256£256 pixels for a to-
tal of 1000 classes [303]. There are 1.3 ¢106 training images (ranging from 732 to 1300
per class) and 105 test images [303]. Large reference datasets available to the public
are much less common for space applications. One of the most popular is the public
Landsat 8 dataset8, which provides hyperspectral images composed of 11 bands ranging
from ultra blue to thermal infrared. A large number of land cover classification solu-
tions were developed on subsets of the Landsat datasets [306]. Setting up a reference,
standardized dataset is instead more difficult for more specific applications, especially
those involving housekeeping data, like telemetry forecasting or anomaly detection. De-
sign parameters like orbits, observed signals and nominal values change from mission
to mission. Furthermore, space industry primes (i.e. large system-level integrators) have
very restrictive data policies concerning open access to telemetry data. However, some
datasets containing telemetry of housekeeping data are available to the public, like those
of the GOCE mission9. Even in this case, it is difficult to pinpoint anomalies, as informa-
tion about them is typically not shared by the mission teams with the public. However,
public datasets can help to study the feasibility of telemetry forecasting, as done in [302].

In the future, the idea of deploying telemetry analysis on-board will have to face the
problem of relying on ad-hoc datasets for specific applications to use for training and
testing. One option is to wait for a certain period of nominal operation of a satellite and
use the past telemetry to train the network on ground and then uplink the trained net-
work in software. When the telemetry forecasting is to be deployed on a constellation
composed of replicas of the same satellite, more statistics for larger datasets is available.
As reported in [293], existing and planned constellations comprise hundreds to thou-
sands satellites (e.g. 4200 for the planned constellation from Samsung) thus making the
use of DNNs potentially very effective also for mission-specific parameters.

4.3.2. UNSUPERVISED LEARNING

Supervised learning is not directly applicable when the dataset is not large enough or it is
not labelled. For instance, in anomaly detection the goal is to classify telemetry segments
according to whether they contain an anomalous behavior or not [307]. In this case, it is
possible that there are not have enough faulty behaviors to train a DNN (e.g. a couple of
failures after years and years of telemetry). A possible approach is to use unsupervised
learning, where the algorithm itself analyzes the structure of the data to find anomalies
[308].

7http://www.image-net.org
8https://www.usgs.gov/land-resources/nli/landsat/landsat-8
9http://eo-virtual-archive1.esa.int/GOCE_TLM_HK.html

http://www.image-net.org
https://www.usgs.gov/land-resources/nli/landsat/landsat-8
http://eo-virtual-archive1.esa.int/GOCE_TLM_HK.html
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4.4. WORKLOADS
In this section, the processor workloads to be executed in order to apply algorithms of
interest for OBDM are investigated. A particular focus will be on CloudNet, as a rep-
resentative image segmentation algorithm. The other type of applications identified in
Sec. 4.2, i.e. telemetry analysis, was analyzed and implemented in detail in [302].

4.4.1. CLOUDNET
As a case study of DNN for image analysis, the public code10 of CloudNet will be em-
ployed [299]. It is a Fully Convolutional Network (FCN) [309] for cloud detection, i.e. its
output is a mask of the same size as the input image indicating the pixels covered with
clouds. The use of a FCN instead of a CNN is due to the fact that the output of a FCN
is an image, making it particularly fit for semantic segmentation. On the other hand,
CNNs are more fit for object detection or image classification (e.g. defining the percent-
age of the pixels covered in clouds rather than the position of each pixel). Furthermore,
while FCNs are composed by a contracting branch, responsible for extracting features
and producing deep low-level features of the input image, and an expanding branch, to
utilize those features to generate the output mask [299, 309], CNNs are only composed
of the contracting branch, typically followed by one or more Fully Connected layers11.
Therefore, the computational workload of a CNN can be assumed to be roughly half the
computational workload of a comparable FCN.

As any other DNN, CloudNet is composed by a sequence of layers12 operating on the
output data of one or more layers. Analyzing the model in Keras13, it can be found that
CloudNet contains 38 convolutional layers (of which 5 are transposed), 15 addition lay-
ers, 31 batch normalization layers, 46 standalone activation layers (plus two activation
layers embedded in the first and last convolutional layers), and 53 concatenate layers.
To give an idea of the contribution of each of these layers, the execution of the model on
a quad-core Intel i7-6600U was profiled. The breakdown of the execution type for each
type of layer is shown in Fig. 4.3 and considerations on each of them are carried out in
the remainder of this section. Furthermore, running a single inference per time requires
a peak main memory utilization of 836.65 MiB.

When considering the input layetr, in the case of CloudNet four spectral bands of the
large images of Landsat 8 (e.g. 7621£7791 pixels) are divided in non-overlapping patches
of 384£384 pixels, which are then downsampled to 192£192 pixels. Therefore the input
layer size is 192£192£4.

CONVOLUTIONAL LAYERS

As straightforward software implementations of convolutions achieve low performance,
performances are typically improved unrolling the convolutions into matrix-matrix mul-
tiplications [310]. Fig. 4.4 shows that applying a convolutional layer with N kernels of
size C£ J£K to an input of dimensions C£W £ H generates an output of N matrices of

10https://github.com/SorourMo/Cloud-Net-A-semantic-segmentation-CNN-for-cloud-detection
11Although in some works like [299] FCNs are called CNNs, we use this term for them, which highlights their

lack of FC layers.
12A layer is a set of ’nodes’ performing a certain function on input data.
13https://keras.io

https://github.com/SorourMo/Cloud-Net-A-semantic-segmentation-CNN-for-cloud-detection
https://keras.io
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Figure 4.3: Breakdown of the execution time for an inference of CloudNet.

size U£V [186], with U and V depending on the stride S and padding P of the convolu-
tional layer with the equations [311]

U Æ b(W ¡ J Å 2P )/ScÅ1 (4.5)

and

V Æ b(H ¡ K Å 2P )/ScÅ1. (4.6)

In this case, the number of FLOPs for each layer is estimated as #F LOP Æ2UV NC JK ,
given that there are UVN output coefficients and for each of them C JK mul-
tiplications and accumulations are required. The read traffic from memory is
MTR Æ4(NC JK Å UV C JK ) and the write traffic to memory is MTW Æ4NUV , while the
total memory traffic is the sum of the two.

Further performance enhancements can be obtained by mapping the matrix-matrix
multiplication with optimized libraries. In [310] it is shown that using Basic Linear Alge-
bra Subroutines (BLAS) instead of coding the unrolled version from scratch produces a
speedup ranging from 2.43x to 3x depending on the architecture and on the input size.
Using BLAS subroutines, matrix-matrix multiplications are mapped to the sgemm sub-
routine14, which (in its non-transposed form) implements the following algorithm:

C Ã ®A ¢B Å ¯ C (4.7)

where A, B , C are matrices of respectively size n1£n2, n2£n3 and n1£n3, and ® and ¯
are scalars, with n1 ÆN , n2 ÆC JK and n3 ÆUV . Fig. 4.5 proposes a C function for
sgemm assuming ® Æ¯ Æ1. For brevity, all the variables of the listings in this chapter

14BLAS routines are typically employed for floating operations and a letter is added to the name of the routine
according to the precision (e.g. sgemm for single precision, dgemm for double precision).
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Figure 4.4: Unrolling of a convolution [186].

are assumed to be already defined as global variables (when possible) and according
to the size described in the respective section. In Table 4.1 the size of the unroll of the
convolution for the 38 convolutional layers of the network is shown. Some observations
can be made:

1. OIs are large (in the order of tens of FLOP/B, with a maximum of 85.33 FLOP/B)
except for convolutions with J ÆK Æ1 for which OI can go down to 0.06 FLOP/B
(although still with an average of 4.26 FLOP/B and a maximum of 9.14 FLOP/B).

2. Even if OI is large and therefore the workloads can be assumed to be
compute-bound, the absolute amount of memory traffic is very high (3 to 86 MiB
per layer). These values require a dedicated design of the memory subsystem com-
pared to processors for non compute-intensive workloads (which in the best case
can leverage a 64 KiB L1 DC per core and a shared 2 MiB L2C), which will be carried
out in Sec. 5.4.

3. The memory traffic is for a large majority composed by reads (MTR% is 92.83% on
average, with a minimum of 69.24%).

void sgemm( ) {
for ( s i z e _ t i = 0 ; i < n1 ; ++ i )

for ( s i z e _ t j = 0 ; j < n3 ; ++ j )
for ( s i z e _ t k = 0 ; k < n2 ; ++k )

c [ i *n3+ j ] += a [ i *n2+k ] * b[ j +k*n3 ] ; }

Figure 4.5: C function employed for igemm on the scalar processor.

Assuming a square matrix at the output (n1 Æn3) together with ® Æ¯ Æ1, sgemm has
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Table 4.1: Workload characterization for the 38 convolutional layer of CloudNet [299]. OI is in FLOP/B, MT in
MiB.

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
n1=N 16 32 16 32 64 32 64 128 64 128 256 128 256 512 512 256 512 512 1024
n2=CJK 36 144 144 32 288 288 64 576 576 128 1152 1152 256 2304 4608 2304 512 512 4608
n3=UV 36864 36864 36864 36864 9216 9216 9216 2304 2304 2304 576 576 576 144 144 144 144 144 36
J=K 3 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 1 3
MT 7.31 24.77 22.51 45.04 12.45 11.29 22.64 6.47 5.77 11.81 4.22 3.38 7.88 6.05 11.81 3.66 11.81 11.81 18.77
MTW% 30.76 18.17 10.00 9.99 18.08 9.97 9.94 17.39 9.76 9.52 13.33 8.33 7.14 4.65 2.38 3.85 2.38 2.38 0.75
#MFLOP 42.5 339.7 169.9 75.5 339.7 169.9 75.5 339.7 169.9 75.5 339.7 169.9 75.5 339.7 679.5 169.9 75.5 75.5 339.7
OI 5.54 13.08 7.20 1.60 26.03 14.36 3.18 50.09 28.10 6.10 76.80 48.00 9.14 53.58 54.86 44.31 6.10 6.10 17.26

Layer 20 21 22 23 24 25 26 27 28 29 30 31 32 33 1T 2T 3T 4T 5T
n1=N 1024 512 512 512 512 256 256 128 128 764 64 32 32 1 512 256 128 64 32
n2=CJK 9216 512 9216 4608 4608 4608 2304 2304 1152 1152 576 576 288 32 4096 2048 1024 512 256
n3=UV 36 36 144 144 144 576 576 2304 2304 9216 9216 36864 36864 36864 144 576 2304 9216 36864
J=K 3 1 3 3 3 3 3 3 3 3 3 3 3 1 2 2 2 2 2
MT 37.41 9.70 23.34 11.81 11.81 15.19 7.88 22.50 11.81 43.03 22.64 85.57 45.04 40.64 23.34 15.19 22.50 43.03 85.57
MTW% 0.38 0.72 1.20 2.38 2.38 3.70 7.14 5.00 9.52 5.23 9.94 5.26 9.99 0.35 1.20 3.70 5.00 5.23 5.26
#MFLOP 679.5 18.9 1,359.0 679.5 679.5 1,359.0 679.5 1,359.0 679.5 1,359.0 679.5 1,359.0 679.5 2.4 1,359.0 1,359.0 1,359.0 1,359.0 1,359.0
OI 17.32 1.86 55.52 54.86 54.86 85.33 82.29 57.60 54.86 30.12 28.62 15.15 14.39 0.06 55.52 85.33 57.60 30.12 15.15

OI Æ
n2

1(1 Å 2n2)

8(n2
1 Å n1 n2)

. (4.8)

Furthermore, assuming that 2n2 ÈÈ 1 (as it is the case for every convolutional layer in
CloudNet):

OI ¼
n1 n2

4(n1 Å n2)
, (4.9)

which given a certain memory traffic (i.e. n1 Å n2 Æconst) is maximized for n1 Æn2,
reaching OI ¼ n1/8. As OI is proportional to the size of the output matrix, sgemm will
eventually achieve the peak performance for a large enough matrix on a given hardware
platform. For this reason, the sgemm efficiency (i.e. the fraction of time the functional
units of the processor are busy when executing sgemm) is typically given as a measure of
attainable performance on a certain hardware platform [312]:

Esgemm Æ
F LOP/CC

MT PCC
. (4.10)

When caching levels are present, increasing the size of the matrix multiplications
to increase OI will eventually cause a drop in performance, as the operands will not
fit anymore in the cache level responsible of peak performance and reads from lower
levels (even main memory) are required during the matrix multiplication, breaking the
assumption of the roofline model that memory traffic and computation overlap. This
issue is analyzed in Sec. 5.4.

CONCATENATE LAYERS

Given that CloudNet is very deep (38 convolutional layers), it requires specific solutions
in its architecture to mitigate the vanishing gradient problem [313]. The designers of
CloudNet handled this problem using skip connections, and addition and concatena-
tion layers [299]. As can be seen in Fig. 4.3, while the impact of addition layers on the
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Table 4.2: Workload characterization for the 53 concatenation layers of CloudNet, where two 3D matrices of
respectively size n1£n1£n2 and n1£n1£n3 are concatenated to create a n1£n1£ (n2Å n3) 3D matrix [299]. MT
is measured in MiB.

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
n1 192 96 48 24 12 6 24 48 48 48 96 96 96 96 96 96 96 192 192 192 192 192 192 192 192 192 192
n2 16 32 64 128 256 512 256 128 256 384 64 128 192 256 320 384 448 32 64 96 128 160 192 224 256 288 320
n3 16 32 64 128 256 512 256 128 128 128 64 64 64 64 64 64 64 64 32 32 32 32 32 32 32 32 32
MT 9.0 4.5 2.3 1.1 0.6 0.3 2.3 4.5 6.8 9.0 9.0 13.5 18.0 22.5 27.0 31.5 36.0 27.0 27.0 36.0 45.0 54.0 63.0 72.0 81.0 90.0 99.0

Layer 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
n1 192 192 192 192 192 12 48 96 96 96 192 192 192 192 192 192 192 24 96 192 192 192 48 192 96 192
n2 352 384 416 448 480 512 128 64 128 192 32 64 96 128 160 192 224 256 64 32 64 96 128 32 64 32
n3 32 32 32 32 32 512 128 64 64 64 32 32 32 32 32 32 32 256 64 32 32 32 128 32 64 32
MT 108.0 117.0 126.0 135.0 144.0 1.1 4.5 9.0 13.5 18.0 18.0 27.0 36.0 45.0 54.0 63.0 72.0 2.3 9.0 18.0 27.0 36.0 4.5 18.0 9.0 18.0

execution time is negligible (1.1%), concatenation layers take a considerable part of the
execution time (24.7%).

In a concatenation layer of CloudNet, two 3D matrices of respectively size n1£n1£n2
and n1£n1£n3 are concatenated to create a n1£n1£ (n2 Å n3) 3D matrix, i.e. the concate-
nation in Keras is executed on the third axis. Therefore, concatenate operations contain
no FLOPs and consist mainly of memory transfers. For this reason, Table 4.2 does not
contain #MFLOPS and OI . Furthermore, as the concatenation means basically copying
the two matrices to different locations, MTW is always half the MT . Fig. 4.6 shows conc, a
C function implementing concatenation, where the memcpy function from the standard
library string.h is employed to copy the arrays into a new one.

#define A_SIZE n1*n1*n2
#define B_SIZE n1*n1*n3

void conc ( ) {
memcpy( c , a , A_SIZE * 4 ) ;
memcpy(&c [ A_SIZE ] , b , B_SIZE * 4 ) ; }

Figure 4.6: C function employed for conc on the scalar processor.

SUBSAMPLING LAYERS

Pooling can be either implemented as a nested for-loop over each window, or split into
operations in one axis and then in the other (which usually provides better performance
[314]). In CloudNet all the subsampling layers are implemented with max pooling, i.e.
the maximum value of an s£ s window is selected to compose the downsampled output
matrix. This is common in state-of-the-art DNNs [186], even if also average pooling,
mixed strategies and statistic pooling are employed in some cases. Fig. 4.7 reports the C
function maxpool2d operating on an input matrix A of size n1£n1£n2 and generating an
output matrix B of size (n1/s)£ (n1/s)£n2. Table 4.3 shows the sizes and the subsampling
factor s of the subsampling layers in CloudNet.

BATCH NORMALIZATION

In CloudNet batch normalization is applied to n1£n1£n2 matrices, where each batch is
composed by a n1£n1 2D-matrix. Batch normalization layers are employed to speed up
training and increase accuracy of DNNs [315]. This type of layer also acts as a regularizer,
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void maxpool2d ( ) {
for ( s i z e _ t p = 0 ; p < n2 ; ++p) / / rows

for ( s i z e _ t i = 0 ; i < n1 ; ++ i )
for ( s i z e _ t j = 0 ; j < n1/ s ; ++ j ) {

b_t [ j + i *n1/ s+p*n1 * ( n1/ s ) ] = a [ s * j + i *n1+p*n1*n1 ] ;
for ( s i z e _ t k = 1 ; k < s ; ++k )

i f ( a [ k+s * j + i *n1+p*n1*n1 ] > b_t [ j + i *n1/ s+p*n1 * ( n1/ s ) ] )
b_t [ j + i *n1/ s+p*n1 * ( n1/ s ) ] = a [ k+s * j + i *n1+p*n1*n1 ] ; }

for ( s i z e _ t p = 0 ; p < n2 ; ++p) / / columns
for ( s i z e _ t i = 0 ; i < n1/ s ; ++ i )

for ( s i z e _ t j = 0 ; j < n1/ s ; ++ j ) {
b[ j + i * ( n1/ s )+p* ( n1/ s ) * ( n1/ s ) ] = b_t [ j + i *n1+p* ( n1/ s ) * n1 ] ;
for ( s i z e _ t k = 1 ; k < s ; ++k )

i f (b[ j + i * ( n1/ s )+p* ( n1/ s ) * ( n1/ s ) ] < b_t [ j +k*n1/ s+ i *n1+p* ( n1/ s ) * n1 ] )
b[ j + i * ( n1/ s )+p* ( n1/ s ) * ( n1/ s ) ] = b_t [ j +k*n1/ s+ i *n1+p* ( n1/ s ) * n1 ] ; } }

Figure 4.7: C function implementing maxpool2d.

Table 4.3: Workload characterization for the 15 subsampling layers (all of them are max pooling) [299].

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n1 192 96 48 24 12 24 48 96 192 48 96 192 96 192 192
n2 32 64 128 256 512 512 512 512 512 256 256 256 128 128 64
s 2 2 2 2 2 2 4 8 16 2 4 8 2 4 2

keeping the magnitude of the coefficient low and thus avoiding overfitting [315, 316].
When executing batch normalization during inference, each element aijk of the input
3D matrix A from the previous layer is normalized according to [317]:

cijk Æ° k ¢
µ aijk ¡ E [Ak ]

p
Var[Ak ] Å ²

¶
Å ¯ k (4.11)

where E [Ak ] and Var[Ak ] are respectively the expected value and the variance calculated
on each of the n2 2D matrices of the input (obtained from cumulative statistics collected
during training), ² is a small constant to ensure convergence, and ° k and ¯ k are two
scalars learned during training. To minimize the number of operations, Eq. 4.11 can be
rewritten as:

cijk Æ
°

p
Var[Ak ] Å ²

¢aijk ¡
° k ¢E [Ak ]

p
Var[Ak ] Å ²

Å ¯ k . (4.12)

In this way, ° k /
p

Var[Ak ] Å ² and ¡ (° k ¢E [Ak ])/
p

Var[Ak ] Å ² Å ¯ k can be precomputed
after training and stored in memory as single parameters. For this reason, each layer
has a number of parameters equal to 2 ¢n3. Fig. 4.8 shows batchnorm, a C function
implementing a batch normalization layer, where the two parameters from Eq. 4.12 are
respectively named gamma_denom and mean_beta_denom. The size, #FLOP and MT
of each batch normalization layers is reported in Table 4.4. The number of operations
required for n1£n1 matrix is 2¢n and the amount of elements to be read from and written
to memory is n1 Å 4. Therefore, the OI is
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OI Æ
n1

2

2(2n12 Å 1)
, (4.13)

which, given that n1
2 ÈÈ 1, in all cases gives around the same low value (0.25 B/FLOP).

This value shows that this layer is typically memory bound, taking up a non-negligible
part of the total execution time of CloudNet (5.5%).

void batchnorm ( ) {
for ( s i z e _ t i = 0 ; i < n2 ; ++ i )

for ( s i z e _ t j = 0 ; j < n1*n1 ; ++ j )
c [ j + i *n1*n1 ] = ( a [ j + i *n1*n1 ] *gamma_denom[ i ] ) +mean_beta_denom[ i ] ) ; }

Figure 4.8: C functions employed for batchnorm.

Table 4.4: Workload characterization for the 31 batch normalization layers

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n1 192 192 192 96 96 96 48 48 48 24 24 24 12 12 12 12
n2 32 16 32 64 32 64 128 64 128 256 128 256 512 512 256 512
#FLOP 4.72 2.36 4.72 2.36 1.18 2.36 1.18 0.59 1.18 0.59 0.29 0.59 0.29 0.29 0.15 0.29
MT 9.00 4.50 9.00 4.50 2.25 4.50 2.25 1.13 2.25 1.13 0.56 1.13 0.57 0.57 0.29 0.57

Layer 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
n1 12 6 6 6 12 12 12 24 24 48 48 96 96 192 192
n2 512 1024 512 1024 512 512 512 256 256 128 128 64 64 32 32
#FLOP 0.29 0.15 0.07 0.15 0.29 0.29 0.29 0.59 0.59 1.18 1.18 2.36 2.36 4.72 4.72
MT 0.57 0.30 0.15 0.30 0.57 0.57 0.57 1.13 1.13 2.25 2.25 4.50 4.50 9.00 9.00

ACTIVATION LAYERS

Activation layers apply a non-linear function to each element of a 3D matrix of size
n1£n1£n2, producing an output of the same size. Analyzing Cloudnet in Keras, a to-
tal of 84 activation layers are found. However, only 48 are non-linear (the others being
pass-through functions which do not have any computational impact), of which 47 are
Rectified Linear Unit (ReLU) and only 1 is a sigmoid (at the last layer). ReLU functions
have low computational impact, as it is enough to set to 0 all the negative values [314].
Sigmoids (and hyperbolic tangents) are computationally more expensive, as in principle
they require the calculation of a non-linear math function. A typical approach to im-
plement them is to use a lookup-table [314] or a piece-wise linear approximation [302].
Table 4.5 reports the non-linear activation layers present in CloudNet and their size. In
Fig. 4.9 a C function implementing a ReLu activation layer on a n1£n1£n2 3D matrix.

ADDITION LAYERS

In the addition layers of CloudNet, n 3D matrices of dimensions n1£n1£n2 are added.
In this case, the number of operations is #F LOP Æ(n ¡ 1) ¢n1

2 ¢n2, the memory traffic is
MT Æ4 ¢(n Å 1) ¢(n1

2 ¢n2), and MTW % Æ1/(n Å 1). Fig. 4.10 shows the madd2 and madd3
C functions to perform respectively addition of 2 and 3 matrices. The C functions madd4
and madd5 are not reported for brevity, but they are composed using madd2 as shown
in madd3.
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Table 4.5: Workload characterization for the 48 activation layers of CloudNet. All of them are relu, while the
last one is sigmoid. MTW % is around 50% for all layers.

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
n1 192 192 192 192 192 96 96 96 96 48 48 48 48 24 24 24 24 12 12 12 12 12 12 6
n2 16 32 16 32 32 64 32 64 64 128 64 128 128 256 128 256 256 512 512 256 512 512 512 1024
MT 4.50 9.00 4.50 9.00 9.00 4.50 2.25 4.50 4.50 2.25 1.13 2.25 2.25 1.13 0.56 1.13 1.13 0.56 0.56 0.28 0.56 0.56 0.56 0.28

Layer 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
n1 6 6 6 12 12 12 12 12 24 24 24 24 48 48 48 48 96 96 96 96 192 192 192 192
n2 512 1024 1024 512 512 512 512 512 256 256 256 256 128 128 128 128 64 64 64 64 32 32 32 1
MT 0.14 0.28 0.28 0.56 0.56 0.56 0.56 0.56 1.13 1.13 1.13 1.13 2.25 2.25 2.25 2.25 4.50 4.50 4.50 4.50 9.00 9.00 9.00 0.28

void relu ( ) {
for ( s i z e _ t k = 0 ; k < n2 ; ++k )

for ( s i z e _ t j = 0 ; j < n1 ; ++ j )
for ( s i z e _ t i = 0 ; i < n1 ; ++ i )

i f ( a [ k*n1*n1+ j *n1+ i ] < 0)
b[ k*n1*n1+ j *n1+ i ] = 0 ;

else
b[ k*n1*n1+ j *n1+ i ] = a [ k*n1*n1+ j *n1+ i ] ; }

Figure 4.9: C function implementing relu.

void madd2( f l o a t *a , f l o a t *b , f l o a t * c ) {
for ( s i z e _ t i = 0 ; i < n1*n2 ; ++ i )

for ( s i z e _ t j = 0 ; j < n1 ; ++ j )
c [ i *n1+ j ] = a [ i *n1+ j ] + b[ i *n1+ j ] ; }

void madd3( f l o a t *a , f l o a t *b , f l o a t *c , f l o a t *d ) {
madd2( a , b , d ) ;
madd2( c , d , d ) ; }

Figure 4.10: C functions employed for madd2, and madd3. In this case local variables are used to allow the
composition of functions with more than two operands.

Table 4.6: Workload characterization for the 15 addition layers of CloudNet, each composed an addition of m
3D matrices, each of size n1£n1£n2 [299].

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
m 2 2 2 2 3 2 5 3 4 3 3 3 2 3 3
n1 192 96 48 24 12 6 12 12 24 24 48 48 96 96 192
n2 32 64 128 256 512 1024 512 512 256 256 128 128 64 64 32
MT 1.38 0.69 0.35 0.17 0.12 0.04 0.17 0.12 0.29 0.23 0.46 0.46 0.69 0.92 1.84
MTW % 33.33 33.33 33.33 33.33 25.00 33.33 16.67 25.00 20.00 25.00 25.00 25.00 33.33 25.00 25.00
#FLOP 1.18 0.59 0.29 0.15 0.15 0.04 0.29 0.15 0.44 0.29 0.59 0.59 0.59 1.18 2.36
OI 1.23 1.23 1.23 1.23 0.82 1.23 0.61 0.82 0.68 0.82 0.82 0.82 1.23 0.82 0.82

4.4.2. OTHER LAYERS IN DNNS FOR IMAGE ANALYSIS
When DNNs are employed for classification, the expected output is typically a vector
containing the probability of classification for a certain object, using CNNs. In these
cases, the convolutional layers increase in N and decrease in UV going to successive
layers (as in CloudNet from the convolutional layer 1 to 19/20 in Table 4.1), but then
instead of being followed by a final cascade of convolutional layers where there is an



4.4. WORKLOADS

4

111

opposite trend (until the output has the same 2D size of the input), the DNN is termi-
nated by adding Fully Connected (FC) layers (to make a decision based on the informa-
tion contained in groups of pixels). FC layers can be seen as convolutional layers where
there is no sharing of coefficients, i.e. where (using the same notation as in Sec. 4.4.1)
J ÆK ÆW ÆH [186]. This implies that the output is a vector of size N , the number of
operations is #F LOPs Æ2NC HW , the memory traffic is MT Æ4[C HW (N Å 1) Å N ] and

OI Æ
1

2[1 Å 1/N Å 1/(C HW )]
. (4.14)

Therefore, OI reaches its maximum (0.5 FLOP/B) for very large C HW and N . To give an
idea of how FC layers compare against convolutional layers, the memory traffic and OI
for the convolutional layers in Table 4.1 were compared to FC layers with same C , W ,
H and N . The MT of the FC layers ranges between 1.31x and 18.36x compared to the
respective convolutional layer, while the OI is 3.3x to 154.2x smaller. The high MT asso-
ciated with FC layers is confirmed by [186], although a trend can be noticed: for early
CNNs with few convolutional layers (e.g. AlexNet with 5 convolutional layers and 3 FC
layers) the percentage of parameters in the FC layers is very high (for AlexNet 96.07%),
while state-of-the-art deeper CNNs (typically achieving higher accuracy) like ResNet
[313] have many convolutional layers (for ResNet the number of convolutional layers
ranges from 53 to 155 and typically only one FC layer is present) and have a much lower
percentage of parameters in the FC layers (ranging respectively from 8.04% to 3.42%).

Furthermore, the performance for FC layers can be improved employing batching,
i.e. processing more input features in parallel [186]. This technique is particularly
effective in the case of FC layers, as it allows reuse of the large amount of parame-
ters read from memory over several input features15. When processing B input fea-
tures in parallel, the number of operations is #FLOP Æ2N BC HW , the memory traffic
is MT Æ4[C HW (N Å B) Å B N ] and the operational intensity is

OI Æ
1

2[1/B Å 1/N Å 1/(C HW )]
. (4.15)

This equation shows that the effectiveness of batching eventually saturates. For instance,
for C Æ512, N Æ512 and W ÆH Æ12 without batching OI Æ0.5 FLOP/B. For small
batching, i.e. 1/B ÈÈ [1/N Å 1/(C HW )], batching causes an almost linear increase of OI
and OI ¼B/2 (e.g. OI Æ3.93 FLOP/B for B Æ8). The effectiveness of batching saturates
for larger B until for very large batching an upper bound of

OImax Æ
1

2[1/N Å 1/(C HW )]
(4.16)

is reached (in this example around 254 F LOP/B). A relatively high value of B may be
required to achieve an OI in the order of the tens (e.g. 15.05 for B Æ32). Furthermore,
batching introduces an extra latency, as to process a frame in the worst case B ¡ 1 suc-
cessive input feature maps have to be calculated. This effect of batching can be an issue

15Batching is instead not effective with convolutions, as the amount of parameters in a convolution is very
small (e.g. 3x3x16).
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in real-time applications and is further analyzed in Sec. 4.4.3. Despite the described crit-
icalities of FC layers, they typically have limited impact on the execution time of CNNs.
For instance, in [318] the breakdown of the execution time for inference according to the
different type of layers is reported to be 90.7% for convolution layers, 9.15% for subsam-
pling Layers, 0.03% for ReLU activation layers and 0.11% for FC layers. The breakdown
of the number of layers is instead 25% convolution layers, 20% subsampling layers, 40%
activation layers, and 15% FC layers.

4.4.3. RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNNs) are typically employed in time series analysis like
speech recognition and Natural Language Processing (NLP) [319–321] and they can be
applied for instance to early failure detection or to predict the telemetry of the next orbit
given the telemetry of previous orbits, as done in [302]. RNNs are composed by a cascade
of units with internal feedback, where each unit requires the output of the previous one
to be ready to calculate the next activation. Typically Long Short-Term Memory (LSTM)
implementations are chosen to achieve high accuracy, while Gated Recurrent Unit (GRU)
implementations provide lower accuracy with higher performance [302]. Furthermore,
one or more FC layers are placed before the output [302].

LSTM LAYERS

LSTM layers are typically memory-bounded [322]. Similarly to [302], the linear part of
the LSTM layer can be described as:

st ÆW ¢xt Å U ¢ht ¡ 1 Å b (4.17)

where xt ,ht ¡ 1, and st are column vectors respectively of length m, n and n. W and U are
respectively m £ n and n £ n. Therefore the #F LOPs is 2(n2 Å n Å n ¢m), the MT seen by
main memory is 4(n2 Å nm Å 3n Å m) and the OI is:

OI Æ
#F LOP

2(#F LOP Å 2n Å m)
(4.18)

with a maximum value of 0.5 FLOP/B for large matrices, i.e. #F LOP ÈÈ 2n Å m. This low
value can be increased with batching, as it turns matrix-vector multiplications into more
computational intensive matrix-matrix multiplications (as B vectors are put together to
create a matrix of dimensions [n £ B ]). In this case:

OI Æ
#F LOP ¢B

2[#F LOP Å (3B ¡ 1)n Å m ¢B ]
(4.19)

This equation shows that the efficacy of batching in terms of increase of OI saturates as
B grows, until the upper bound of

OImax Æ
#F LOP
6n Å 2m

(4.20)

is achieved. This upper bound is a relatively large value, for instance being 27.29 for
m Æ27 and n Æ60 (typical values of m and n in [302]). However, OI cannot be increased
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arbitrarily by batching in real-time applications, as batching requires that all the inputs
to the LSTM layers of the batch are ready. For instance, in [322] increasing batching
from 16 to 64 increases performance to 2.41£ the original value, while the time required
to complete execution in more than 99% of the cases increases from 7.2 ms to 21.3 ms
(2.95x).

4.4.4. UNSUPERVISED LEARNING
As a case study of unsupervised learning algorithm for anomaly detection, DBSCAN
[323] will be investigated. Each point is classified according to how many points are
in its neighborhood. This means that this algorithm is a composed by a loop, calculating
the distance between points. Therefore, its core operation is

(xi ¡ x j )2 Å (yi ¡ y j )2 Ç ² 2. (4.21)

The OI of this type of operation is low (OI Æ1/5), as 5 elements (xi ,x j ,yi ,y j and ² 2) are
read from memory and 4 operations are executed (two subtractions and two multiplica-
tions).

4.5. SUMMARY
The recent shift of focus of the space industry from large GEO to small LEO satellites
opens up new challenges. Limited downlink data rates and short communication win-
dows typically allow the transmission of just a fraction of the data generated by on-board
sensors in small LEO satellites. The efficiency of the downlink can be increased with data
compression and with data removal (e.g. removing images that have a certain percent-
age of pixels covered with clouds). This solution requires a dedicated processor which
comes at relatively high cost in terms of power (around 5 W), which can be sustained
only by relatively large satellites. Furthermore, long periods without contact with the
ground station require an on-board virtual operator, monitoring the status of the satellite
and making decisions when the communication with the ground station is not possible.

These challenges in terms of downlink efficiency and dependability can be addressed
with DNNs when it is possible to build relatively large datasets (e.g. thousands of images
or months of telemetry data). Therefore, there is a need for large, public and standard-
ized datasets to be used as reference data set to benchmark DNN architectures to be
deployed in space applications. However, part of future LEO satellites are planned to be
part of large constellations, making large datasets more easily available in the future.

The analysis of the workloads associated with CloudNet, a DNN for cloud detection,
shows that most parts are very compute-intensive and can be mapped to matrix-matrix
multiplications with high OI (sgemm). Although MT is typically high also for this type of
kernels, it is mainly composed of read transactions. These characteristics of the work-
load of DNNs will be exploited in the next chapter to define an appropriate hardware
platform.





5
ANALYSIS OF POTENTIAL AND

CHALLENGES OF VECTOR

PROCESSORS

Se un’idea è più moderna di un’altra,
è segno che non sono immortali né l’una né l’altra.

When an idea is more modern than another one,
neither of them is immortal.

Carlo Emilio Gadda, La cognizione del dolore (1941)

In this chapter, the RISC-V Vector Extension (RVVE) is introduced. Then, an analysis of
the potential and challenges of the microarchitectures of vector processors is carried out.
The preliminary design of a RISC-V vector processor to be employed as a generic platform
to enable energy-efficient OBDM both for payload and platform applications is investi-
gated. The design of the memory subsystem is explored in depth to allow full exploitation
of the computational resources in typically resource-constrained space systems. Then, the
kernels of CloudNet introduced in Chapter 4, are implemented using the RVVE, proving
that large gains in terms of performance are possible (in particular a sizeable reduction of
the number of instructions) when scalar kernel implementations are replaced with vector
implementations.

Parts of this chapter have been published in [288].
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5.1. INTRODUCTION
It is still matter of discussion whether it will be feasible to deploy AI systematically
on-board satellites in the next 10-15 years. To meet the requirements to execute DNNs
in reasonable time scales, already identified in this dissertation by analyzing CloudNet
in Chapter 4, the space industry is following three main approaches:

1. Work is being done to efficiently map DNNs on resource-constrained state-of-
the-art space processors [324], accepting a consistent loss of performance com-
pared to DNNs in high-performance processors for terrestrial applications. This
approach can exploit synergies with the trend in IoT of implementing DNNs in
low-power and resource constrained processors [325].

2. High-performance proprietary COTS processors employed in terrestrial applica-
tions are being proposed [326]. Although they can achieve higher-order magni-
tude performance compared to state-of-the-art space processors [8], they come
with a large ’cost of ownership’ to avoid losses in terms of dependability [117], and
possible restrictions on their usage and knowledge of internal behavior (see Chap-
ter 1).

3. FPGAs allow the design of a customized hardware accelerator, typically connected
to either a hard or soft processor through an interconnect [8]. The accelerator
can be either handcrafted in HDLs or autogenerated from software, after profiling
to identify the most computational intensive functions. In [327] it is shown that
Vivado HLS with enabled optimizations (i.e. pipelining and concurrent execution
of operations) achieves a 6.23x speedup for a small CNN and 9x for a larger CNN on
a Zynq compared to the software implementation on its hard processor (which can
be considered roughly equivalent to space processors). The custom accelerator
approach in space application is typically limited to FPGAs (and not financially
viable for ASICs), given the niche-sized market available. Furthermore, in [328] it is
noted that only 25% on average is spent waiting on accelerator computations, with
the rest of the time taken up by data transfers (34%) and processor computations
(42%).

In this dissertation, a novel approach is followed. Instead of employing COTS compo-
nents or using automated tool to generate hardware for custom FPGA accelerators, the
idea is to improve the performance of space processors with DLP, to achieve a level of
performance per CC of the same order of magnitude of terrestrial processors for DNNs.
This processor is meant to be used in the future in rad-hard and/or rad-tol ASICs. This
approach will systematically enable OBDM in space applications, as opposed to the
three approaches described previously, which are viable only in specific contexts. For
instance, a COTS component successfully used to enable OBDM in a previous mission
may be discontinued or replaced with new components with worse radiation tolerance.
Even smaller changes, like changing process, fab or even lot-to-lot variance can hinder
the use of a similar solution in new missions.
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Figure 5.1: Steps to increase the MTPCC of space processors in a power- and area-efficient way, with D number
of elements of a vector on which a single instruction can operate and P number of processing cores.

5.1.1. PROPOSED APPROACH
State-of-the-art processors for space applications typically execute instructions on two
scalar operands [30]. Considering a single core, this type of platform has a MTPCC of
1 FLOP/CC.

The simplest way of increasing the MTPCC of future space processors is to introduce
ISA extensions with instructions defining Fused Multiply-Add (z Ã w x Å y) and Fused
Multiply-Accumulate (z Ã x y Å z) operations1, achieving a MTPCC of 2 FLOP/CC (as
shown in Fig. 5.1). This requires modifications to the FPU and ALU. However, the cost
of these changes in the FPUs and ALUs is limited (as for instance the area of these units
is dominated by the multiplier). The biggest cost is instead on the complexity of the
register file, which is required to provide more operators to the functional units [329].

To increase the MTPCC even further, DLP is the most energy-efficient solution avail-
able [330]. Large part of the power consumption of a general-purpose scalar processor
is spent on fetching instructions. For instance, the breakdown of energy dissipation on
a scalar processor executing igemm in [59] shows that the instruction cache dissipates
19.63% of the total energy, the instruction fetch and decode stages 4.69%, and the virtual
memory (comprising both instruction and data) 7.41%. A percentage of energy dissipa-
tion ranging between around 24% and 32% can therefore be attributed to instructions
fetching and decoding. Data parallel processors reduce this fraction of power, defin-
ing instructions that operate on arrays of D elements instead of scalar elements. Fig.
5.1 (c) shows an example with D Æ4, which (together with FMA operations) achieves
MTPCC Æ8 FLOP/CC. However, DLP is the least flexible form of parallelism [330], as it
can only be applied to calculations that can be vectorized (i.e. expressed with instruc-
tions on vectors), e.g. matrix-matrix multiplications in convolutional layers. In [331], the
speedup found in the convolutional layers of a CNN using the data-parallel NEON ex-
tension over the baseline ARM ranges from 2.45x to 2.78x, with a decrease of energy con-
sumption per convolutional layer ranging from 59.11% to 82.04%. The energy efficiency
of the data-parallel solution (i.e. performance in terms of executed layers per amount of
energy) is in this case 5.98x to 15.50x the energy efficiency of the non-data-parallel base-
line. When the effectiveness of DLP saturates for large D , the solution left to increase
the MTPCC is to replicate the processing core. In Fig. 5.1 (d) the core is replicated 4
times (P Æ4), achieving an MTPCC of 32 FLOP/CC (together with FMA and D Æ4). Going

1Both will be indicated with FMA, unless a distinction is to be done.
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above four cores typically reduces the utilization of the functional units. For instance, in
[189] it is shown that with 8 cores it is possible to obtain for CNNs performances ranging
from 3.99x to 5.76x the performance of a single core. Similarly, with 8 cores it is possible
to reach 5.55x the performance of a single-core implementation of an LSTM RNN [302].
The next section details the state-of-the-art of DLP ISAs.

5.1.2. DATA-PARALLEL INSTRUCTION SET ARCHITECTURES
When compute-intensive applications were to be addressed in the commercial market,
computer architects resorted to packed SIMD ISAs both for Personal Computers (with
the Intel’s MMX extensions (1996) for integers [332] and the SSE extensions (1999) for
floating point elements [333]) and for embedded applications (with the NEON extension
[138]). The success of ARM in high-end embedded applications made the SIMD NEON
extension, first introduced in the ARMv7-A Cortex-A8 (2005) [138], very popular. Also
PULP, one of the most popular sets of RISC-V cores, employs the RI5CY packed-SIMD
extension (2016), defined outside of the RISC-V standard [137].

Packed-SIMD extensions are typically chosen by hardware designers because they
can be applied to scalar processors without extensive modifications to the microarchi-
tecture [18]. However, the end of Moore’s law is leading computer architects to use more
efficient ISA extensions and ARM recently (2017) released its ARMv8-A Scalable Vector
Extension (SVE) [20]. Although previous Fujitsu’s supercomputers were based on SIMD
extensions of SPARC, the Fujitsu A64FX is the first processor based on the Armv8-A SVE,
targeting supercomputer applications. It achieves 2.7 DP-TFLOPS (7 nm process), a
dgemm efficiency È 90% [334] and it is composed by 48 computing cores, each achieving
around 57 DP-GFLOPS [334].

Vector extensions can be seen as more flexible versions of packed-SIMD extensions
thanks to their time-multiplexed and VLA approach. For VLA ISAs, the software is not
required to know the hardware vector length of a specific implementation and the code
can be written to run the same executable with the largest parallelism available on every
platform without any modification [18–20]. In SIMD extensions, the data width of the
operations is encoded directly in the instruction opcodes instead. Therefore, the code
must target a specific width. Furthermore, when the architects of SIMD ISAs want to
increase performance by widening the vectors, they must add a new set of instructions
to process these vectors [18]. Therefore, application code compiled for previous versions
of the ISA cannot automatically leverage the widened vectors of new implementations
and the code compiled for wider SIMD extensions fails to execute on older machines (as
the new instructions are not known to older implementations) [18].

For these reasons, the proposal for packed-SIMD floating-point was dropped in fa-
vor of the V extension for large floating-point vector operations [121]. However, there is
interest in packed-SIMD fixed-point operations for use in the integer registers of small
RISC-V implementations. A task group is working to define the packed-SIMD P exten-
sion [121].

5.1.3. OUTLINE
In Sec. 5.2, the RVVE is presented. This RISC-V extension allows the introduction of DLP
in space processors, without the shortcoming of SIMD ISAs. Then, the microarchitec-
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ture of vector processor is analyzed and the information collected is used to define a
suitable hardware platform for space applications. To account both for computational
and memory constraints, separate discussions are carried out for the microarchitecture
of the processing core and its memory subsystem, respectively in Sec. 5.3 and Sec. 5.4.
Finally, the C functions required to implement CloudNet on scalar processors (defined
in Sec. 4.4.1) are rewritten with the RVVE instructions in Sec. 5.5 to exploit DLP in vec-
tor processors, analyzing the performance increase due to the vector instructions and
verifying the functional equivalence between scalar and vector functions.

5.2. THE RISC-V VECTOR EXTENSION
The RISC-V Vector Extension (RVVE) is similar to the ARMv8-A SVE and was heavily in-
spired by the Hwacha2 development [335]. Both RVVE and ARMv8-A SVE define a con-
figurable vector unit with 32 vector registers (i.e given a certain VRF size, the number
of elements and size of elements can be configured with instructions) [121] and allow
the same binary code to work efficiently across a variety of hardware implementations,
which vary in physical vector storage capacity and datapath parallelism. Additionally,
ARMv8-A SVE includes 16 scalable predicate registers (not defined in the baseline RVVE
[336]) to optimize loops, using the predicate controlled loops vectorization style [20].

Although the RVVE is still in the process of being standardized, it plays such a crucial
role in state-of-the-art applications that already several developments implementing the
RVVE are described in literature. The two most notable examples are the Xuantie-910, a
12 nm RISC-V processor with 16 cores clocked up to 2.5 GHz with an out-of-order triple-
issue 12-stage pipeline [136], and Ara, a single-core RISC-V vector processor based on
Ariane achieving up to 33 GFLOP/s and 41 GFLOP/J, with clock frequency higher than
1 GHz on 22 nm FD-SOI technology. Furthermore, work is being done to support the
RVVE in popular DNN frameworks like TensorFlow Lite [337].

The rest of this section introduces the most important additions of the RVVE to the
base RISC-V ISA. However, this section is not intended to give an exhaustive description
of the RVVE, for which Draft 0.9 specifications [336] are available3.

5.2.1. VECTOR REGISTERS

The vector extension adds 32 architectural vector registers (v0-v31) to the base scalar
RISC-V ISA. Each implementation defines a number of bits in a vector register, VLEN ,
and the maximum size of a vector element that any operation can produce or consume
in bits, ELEN . Both of them must be power of 2. These two fixed values for each RVVE
implementation define also the maximum number of elements in a vector register, i.e.
VLEN ÆVLMAX ¢ELEN . In most implementations VLMAX is also the number of lanes
NLanes , each of them operating on a element of size ELEN bits of a vector.

2The main difference with RISC-V Vector extension is that Hwacha fetches its own instructions, as there are
two threads: a control thread running on the scalar core and a worker thread [18]. This can potentially lead to
higher performance, but also higher complexity.

3They have not been ratified yet and non backward-compatible changes will potentially happen [336].
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5.2.2. CONFIGURATION AND STATUS REGISTERS
The RVVE adds several Control and Status Registers (CSRs) [336]. Among them:

• vtype: it configures the type of elements of the vector. For instance, the field vsew
configures the Selected Element Width (SEW), i.e. the bit size of each element of the
vector (e.g. 8-bit, 16-bit, 32-bit etc.). When a certain SEW is set, also the number of ele-
ments in a vector register is set: if a vector register is composed of 128 bits (VLEN=128),
when configured with 8 bit vectors it stores 16 elements, while when configured for
16-bit vectors it stores 8 elements. To deal with vectors longer than VLEN, multiple
vector registers can be grouped together to form a vector register group and a single
vector instruction can read a single operand from multiple vector registers. For in-
stance, when the field lmul is set to 2, vector registers are organized to store 16 vectors
of 2 ¢VLEN/SEW elements and the instruction vadd v2, v4, v6 will execute (v2, v3) :=
(v4,v5) + (v6,v7), where (vx, vy) is the concatenation of vx and vy.

• vl: it contains an unsigned integer specifying the number of elements to be updated
by a vector instruction. Elements in any destination vector register group with indices
greater or equal than vl are not modified during execution of a vector instruction.

5.2.3. OPERATIONS
The registers vtype and vl must be configured before using the vector unit, as shown
below (the final i stands for "immediate"):

v s e t v l i rd , rs1 , vtypei , lmul # rd = new vl , rs1 = AVL, vtypei = new vtype
# i f rs1 = x0 , then use current vector length

where AVL is the Application Vector Length, i.e. the number of elements in the vector
defined at software-level. The AVL encoded in the instruction (given that it is within
certain boundaries reported in [336]) will become the new vl). If AVL is set to zero, the vl
is set to VMAX. Furthermore, the new vl will be written in the scalar register rd.

After the configuration, vector arithmetic instructions on values held in vector reg-
ister elements can be executed. Therefore loads (and stores) to move bit patterns be-
tween vector register elements and memory are required. The RVVE supports unit-stride
(accessing elements stored contiguously in memory starting from the base effective ad-
dress), strided (accessing the first memory element at the base effective address, and
then accessing subsequent elements at address increments given by the byte offset con-
tained in the GPR register specified by rs2), and indexed (using a vector of offsets and
adding the contents of each element of the vector offset operand specified by vs2 to the
base effective address to give the effective address of each element) addressing modes.
Vector load/store base registers and strides are taken from a scalar GPR register. As op-
posed to other instructions, the width of each element of the vector is specified by the
load and store instructions, for instance:

# vd destination , rs1 base address
vle16 . v vd , ( rs1 ) , vm # 16− b i t unit − s t r i d e load
vle32 . v vd , ( rs1 ) , vm # 32− b i t unit − s t r i d e load

# vs3 store data , rs1 base address
vse16 . v vs3 , ( rs1 ) , vm # 16− b i t unit − s t r i d e store
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vse32 . v vs3 , ( rs1 ) , vm # 32− b i t unit − s t r i d e store

# vd destination , rs1 base address , rs2 byte s t r i d e
vlse16 . v vd , ( rs1 ) , rs2 , vm # 16− b i t str ided load
vlse32 . v vd , ( rs1 ) , rs2 , vm # 32− b i t str ided load

# vs3 store data , rs1 base address , rs2 byte s t r i d e
vsse16 . v vs3 , ( rs1 ) , rs2 , vm # 16− b i t str ided store
vsse32 . v vs3 , ( rs1 ) , rs2 , vm # 32− b i t str ided store

In the instructions above, (rs1) indicate the address contained in the scalar register rs1.
As most RVVE instructions, vector load and store instructions can be masked with a vm
field:

vop . vv v1 , v2 , v3 , v0 . t # enabled for element i when v0 [ i ] . LSB=1 , m=0
vop . vv v1 , v2 , v3 # unmasked vector operation , m=1

As an example of possible operations after the data is loaded, some Vector Integer Arith-
metic Instructions are provided below:

• Vector Single-Width Integer Add and (reverse) Subtract. Among them, there are vector
addition instructions between vectors, vector and scalar, and vector and immediate
value:

vadd . vv vd , vs2 , vs1 , vm #Vector −vector : vd [ i ] = vs1 [ i ] + vs2 [ i ]
vadd . vx vd , vs2 , rs1 , vm #vector − s c a l a r : vd [ i ] = x [ rs1 ] + vs2 [ i ]
vadd . v i vd , vs2 , imm, vm #vector −immediate : vd [ i ] = imm + vs2 [ i ]

In the instructions above, vd[i] represents the ith element of the vector vd (same for
other vector registers), while x[rs1] represents the scalar values contained in the scalar
registers rs1.

• Vector Single-Width Integer Multiply-Add Instructions (i.e. FMA operations). Among
them, Integer multiply-add instructions overwriting the addend or the multiplicand:

# Integer multiply −add , overwrite addend
vmacc . vv vd , vs1 , vs2 , vm # vd [ i ] = +( vs1 [ i ] * vs2 [ i ] ) + vd [ i ]
vmacc . vx vd , rs1 , vs2 , vm # vd [ i ] = +( x [ rs1 ] * vs2 [ i ] ) + vd [ i ]

# Integer multiply −add , overwrite multiplicand
vmadd. vv vd , vs1 , vs2 , vm # vd [ i ] = ( vs1 [ i ] * vd [ i ] ) + vs2 [ i ]
vmadd. vx vd , rs1 , vs2 , vm # vd [ i ] = ( x [ rs1 ] * vd [ i ] ) + vs2 [ i ]

• Other examples are: Vector Widening Integer Operations (where the destination ele-
ment width is doubled), Vector Bitwise Logical Instructions, Vector Integer Min/Max
Instructions (unsigned and signed), Vector Integer Add-with-Carry/Subtract-with-Borrow
Instructions (to support multi-word arithmetic), etc.

Instructions similar to those described for integers are given for Fixed Point and Floating
Point operations. For instance, for Floating Point additions:

vfadd . vv vd , vs2 , vs1 , vm # Vector −vector
vfadd . vf vd , vs2 , rs1 , vm # vector − s c a l a r

The standard defines also more specific instructions, for instance:
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• Vector Reduction Operations: they take a vector register group of elements and a scalar
held in element 0 of a vector register, and perform a reduction using some binary op-
erator, to produce a scalar result in element 0 of a vector register. For instance:

vredmax . vs vd , vs2 , vs1 , vm # vd [ 0 ] = max( vs1 [ 0 ] , vs2 [ * ] )

In the instructions above the asterisk indicates that the operation is executed on all the
elements of vs2.

• Vector Mask Instructions. For instance:

v f i r s t .m rd , vs2 , vm

In this case, the instruction finds the lowest-numbered active element of the source
mask vector that has its Least Significant Bit (LSB) set and writes that element’s index
to a GPR. If no element has an LSB set, -1 is written to the GPR.

• Vector Permutation Instructions. For instance slide instructions. For instance:

vslideup . vx vd , vs2 , rs1 , vm # vd [ i +rs1 ] = vs2 [ i ]

5.2.4. EXCEPTIONS
When a trap occurs during a vector instruction (caused by either a synchronous excep-
tion or an asynchronous interrupt), a CSR is written with a pointer to the errant vector
instruction, while the RVVE-specific vstart CSR is written with the element index that
caused the trap to be taken. In this way, it is possible to resume partially executed vector
instructions to reduce interrupt latency and to simplify forward-progress guarantees.
This is similar to the scheme in the IBM 3090 vector facility [336]. To ensure forward
progress without the vstart CSR, implementations would have to guarantee that an en-
tire vector instruction can always complete atomically without generating a trap.

Some platforms may choose to provide a privileged mode bit to select between pre-
cise and imprecise vector traps. Imprecise mode would run at high-performance but
possibly make it difficult to discern error causes, while precise mode would run more
slowly, but support debugging of errors [336].

5.3. MICROARCHITECTURE OF VECTOR PROCESSORS
There are two main approaches to design a vector processor:

1. Many supercomputers like the Fujitsu AF64X coprocessor have a joint scalar and
vector pipeline with separated register files and execution units [334]. The main
disadvantage of this approach is that a vector load instruction stalls the pipeline
also for scalar instructions, unless a superscalar pipeline with large ILP is em-
ployed (e.g. as done in the Fujitsu AF64X with up to 4-ways).

2. When the ILP is not high enough, using a decoupled vector pipeline, where the
scalar pipeline pushes vector instructions into an instruction queue interfacing
the vector pipeline, can mitigate this issue. The scalar pipeline can continue ex-
ecution and the vector pipeline acknowledges completion of vector instructions
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and passes scalar results (when needed) to the scalar pipeline without passing
through the bus. This approach is employed for instance for the Ara processor [19]
and it is shown in Fig. 5.2. Another advantage of this approach is that it provides
a more modular solution and a vector version of a scalar RISC-V processor can be
achieved with minimal modifications to the scalar pipeline (i.e. the introduction
of a front end).

Figure 5.2: Block diagram of a decoupled vector pipeline.

The critical elements of a vector processor are shown in Fig. 5.2. The following sub-
sections will focus on the Vector Register File (Sec. 5.3.1), and on the issues limiting
scalability of performance (Sec. 5.3.2). Furthermore, Sec. 5.3.3 provides insights on the
soft error vulnerability of vector processors.

5.3.1. VECTOR REGISTER FILE
Vector Register Files (VRFs) are typically more complex than scalar RFs, as they have
in general more contention given FMA operations and masked execution [19]. When
considering Ara, the worst case for contention for access to the VRF is the masked FMA
(multiply-add) instruction, which reads four operands from four vector registers (one
mask, two factors and one addend) [19], executes the operation only if the mask has a
certain value and writes the result of the operation to a register. A straightforward so-
lution to avoid contention in the VRF is therefore to employ a multiported SRAM with
as many ports as needed, in this case four read ports and one write port (4R1W). How-
ever, multiported register files come with a large area overhead. In [330], the area of the
VRF for the T0 vector processor according to different the number of ports employed is
analyzed. As the T0 vector processor contains two arithmetic units and one multiplier
per lane, to avoid contention it requires one read port and one write port for the multi-
plication, and two ports for read and two for write for each arithmetic unit (i.e. 5R3W).
Different implementations in ASIC technology are proposed for the VRF, trading-off the
number of banks and ports with the area:
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• One 5R3W bank of 256 elements (1£5R3W)

• Two 3R2W banks of 128 elements each (2£3R2W)

• Four 2R1W banks of 64 elements each (4£2R1W).

Data from [330] show that banking decreases the area occupied by the VRF by 31.7%
when going from 1£5R3W to 2£3R2W. However, the efficacy of this technique saturates
quickly, as going from 2£3R2W to 4£2R1W decreases the area only by 2.1%. This is due
to the increase of overhead to handle the banks (storage cells compose 88.9% of the VRF
for 1£5R3W, 83.1% for 2£3R2W and only 41.7% for the 4£2R1W implementation).

Banking is also employed in Ara, where the VRF is composed of eight single-ported
read-or-write banks (1RW). To help avoid contention, in Ara, vectors are organized in
SRAM banks with a shift of one element ("barber pole" shift) [19]. This is particular effec-
tive to avoid conflicts when the functional units fetch the first elements of two vectors.
[19]. However, this organization leaves some residual contention, which is addressed
with round-robin arbitration [19]. A way to completely solve bank contention is sys-
tolic execution. For instance, Hwacha uses four 1R1W (4£1R1W) dual port banks with
stall-free systolic bank execution, capable to sustain n operands per cycle to the shared
functional units after an initial n-cycle latency [335].

5.3.2. SCALABILITY
Although existing RISC-V vector processors have good scalability in terms of peak per-
formance and efficiency (as can be seen in Table 5.1), there are still criticalities to be
addressed for small matrices and very high requirements of peak performance. The re-
mainder of this subsection discusses how scalability influences frequency, efficiency, the
effects of the issue rate on the achieved performance and the width of the interconnect.

Table 5.1: Scalability of Ara in terms of number of lanes (peak values in bold) for 22FDX process (FD-SOI).
Data derived from [19].

Number of lanes 2 4 8 16
Max. frequency [normalized] 1.00 1.00 0.94 0.83
Max. FPU utilization [%] 98.20 98.00 97.22 97.36
Area efficiency [DP-kFLOP/s/GE] 2.20 2.85 3.08 3.02
Energy efficiency [DP-GFLOP/mJ] 35.58 37.84 39.91 40.81

FREQUENCY

Most considerations in previous sections were based on the frequency-normalized value
FLOP/CC, while a reduction of clock frequency decreases the peak performance in terms
of FLOP/s (as #FLOP/s ÆfCPU ¢#FLOP/CC) and therefore can decrease the efficiency of
a platform when DLP is increased.

In [19] Ara has been implemented in the Global Foundries 22FDX process (FD-SOI).
As can be seen in Table 5.1, the 2-lane and 4-lane versions of Ara achieve the same max-
imum nominal frequency. In both cases, the critical path is in the DP FMA FPU (1.2
GHz nominal, 0.92 GHz worst case), about 40 gate delays long. Another critical path (of
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the same length) is present in the combinational handshake between the Vector Load
and Store Unit (VLSU) and operand queues in the lanes of the vector processor. When
increasing the number of lanes, the second path becomes longer and therefore the fre-
quency is reduced (down to 1.04 GHz for 16 lanes). This is because the VLSU handles
data to and from all the lanes simultaneously. Therefore, a larger number of lanes im-
plies longer combinational paths. This shows that, in general, the scalability of the DLP
in a vector processor is limited by the elements that act on all the lanes [19].

It should be noted that the maximum frequency of the scalar processor on the same
technology is 1.7 GHz [59]. Therefore, the 2-lane version already comes with a penalty of
at least 30% percent compared to the scalar processor.

AREA AND ENERGY EFFICIENCY

The increasing energy efficiency in Tab. 5.1 shows good scalability and suggests that
the peak in energy efficiency may be obtained for an even larger number of lanes. On
22 nm FD-SOI, Ariane and Ara (depending on the number of lanes) consume between
138 mW (2 lanes) and 794 mW (16 lanes) at peak performance [19]. As energy efficiency
depends on the ASIC technology employed, changing technology will provide different
efficiency. Resorting to a 65 nm RHBD technology would decrease energy efficiency be-
cause of larger power consumption for a given clock frequency.

Area efficiency reaches a maximum for 8 lanes, as for 16 lanes the increase due to
the decreased overhead of the scalar pipeline per vector lane is more than compensated
by the greater complexity of the logic to handle the increased number of lanes. There-
fore, area efficiency can be expected to be more critical than energy efficiency in vector
processors. Ariane and Ara occupy together between 2228 and 10735 kGE. In particular,
the area of Ariane and Ara with 4 lanes is 3434 kGE. i.e. 4.28x a single-core Ariane com-
prising L1 caches. Therefore a four-lane vector processor has similar requirements in
terms of die area compared to state-of-the-art quad-core processor for space [30]. This
implies that, for space applications, the use of FPUs in vector processors typically limits
the number of lanes to four. For this reason, in Sec. 5.5 the functions are written for in-
tegers and in the next chapter the design of the vector processor will be carried out only
for integer instructions.

Employing fixed point values (substantially integers with scaling factors of 2s ) in-
stead of floating-point values is a well-known technique when implementing DNNs in
embedded systems. As a matter of fact, hardware implementation of the FPGAs cannot
afford floating point operations and typically employ fixed point values. In [338] it is
shown that precision of integers can be brought down to 8-4 bits, giving up only around
0.27% to 1.01% of the accuracy.

SMALL MATRICES

Along with the memory bound identified by the roofline model, the authors of Ara [19]
show that the limited issue rate of instructions for a single-issue scalar pipeline limits the
performance for matrices of sizes smaller than 256£256. Therefore, they suggest that the
use of higher ILP and speculation in the scalar pipeline could improve performance for
smaller matrices, where control operations (e.g. configuration of the lanes) have a larger
overhead. Similarly to [19], for a n£n igemm with 32-bit elements, an upper bound due
to the issue rate can be found. As the lanes operate in lockstep when enabled, this upper
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bound in terms of number of FLOP/CC can be written as the utilization of the functional
units in the processor multiplied by the MT PCC . The former can be calculated as the
number of CCs each functional unit is busy with an FMA instruction, divided by the the
minimum number of clock cycles required to issue two instructions executing opera-
tions:

#FLOP/CC · MTPCC ¢
2n/MTPCC

¢CCissue
. (5.1)

Considering the OI of the igemm kernel with 32-bit elements (OI Æ8/n), n can be re-
placed:

#FLOP/CC ·
16 ¢OI

¢CCissue
. (5.2)

Therefore, OI¤ (in this case representing the boundary between issue-bound and compute-
bound kernels) is:

OI ¤ Æ
MTPCC ¢¢CCissue

16
. (5.3)

Eq. 5.3 shows that doubling the issue rate (i.e. using a dual-issue microarchitecture) will
halve the ¢CCi ssue , thus halving OI ¤ . For instance, as a FMA instruction can be issued
every five CCs in Ara, the worst OI ¤ is 5 FLOP/B (considering an 8-lane version with
MTPCC Æ16 FLOP/CC), while a dual-issue version lowers this value to 2.5 FLOP/B. As
will be seen in Sec. 5.4, these values are comparable with upper bounds due to mem-
ory bandwidth and therefore can have an impact on performance when they produce a
higher OI ¤ than memory bandwidth.

INTERCONNECT

In order to increase the OI ¤ due to the memory bandwidth, Ara uses a single 32 ¢NL
bit wide bus interface for all the lanes together4, reaching 512 bits for 16 lanes. To keep
the same ratio between peak operations per CC and peak memory transfer (in this case
0.5 DP-FLOP/B), a 32-lane implementation would need a 1024 bit wide bus interface.
However, this problem can be mitigated using a L1 cache for vector data, i.e. Vector
Cache (VC), which allows large bandwidth for data residing in it without requiring a wide
crossbar (Fig. 5.3). The design of an area efficient memory subsystem for RISC-V vector
processors is described in Sec. 5.4.

5.3.3. DEPENDABILITY
Vector processors typically achieve high utilization of the FPU (e.g. 97% in [19]), while
scalar processors typically work in memory-bounded conditions and therefore achieve
much lower FPU utilization. This implies an increase of soft error vulnerability of arith-
metic units, as suggested by the models in [78] relating utilization and soft error vulner-
ability. Furthermore, the increase of frequency compared to state-of-the-art processors
4Hwacha, instead, uses an interface per lane [191].
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for space (e.g. from 250 MHz to 1 GHz) points to an increased percentage of errors from
combinational logic (as shown in [47]), which compose the majority of the area in FPUs
and ALUs . For instance, the BOOM processor5 was synthesized on a 65nm ASIC tech-
nology and the area of the FPU and ALUs (comprising hardware multiplication and divi-
sion) were found to be composed respectively for 79.52% and 86.11% of combinational
logic. Finally, scaling efficiently at least up to 16 lanes, vector processor can achieve
high performance when large ASIC implementations are possible. For this reason, small
technology nodes should be preferred. However, in [51] it is reported that going below
28 nm increases the SER in the terrestrial environment. In FD-SOI technologies this is
mainly due to an increase of SER due to protons, while the SER due to alpha particles is
slightly decreasing. Given that in space there is a different radiation environment, the
technology node minimizing the SER may be different.

The separation between scalar and vector pipeline in decoupled vector processors al-
lows for a selective hardening approach. Assuming that control operations are executed
only in the scalar pipeline and computations only in the vector pipeline, redundancy to
avoid catastrophic failures is required only in the scalar pipeline. In Ara, the critical path
limiting the maximum frequency for the 4-lane version is in the vector pipeline and al-
lows for a maximum frequency of around 1 GHz, while the scalar pipeline has a critical
path allowing up to 1.7 GHz [59]. Therefore, applying state-of-the-art techniques to im-
prove fault-tolerance only to the scalar pipeline (e.g. TMR at flip-flop level in the scalar
pipeline and EDAC codes in the scalar register file) will not cause any penalties in terms
of maximum frequency. In this way, there will be no penalties in terms of MTPCC com-
pared to the non-FT version. As a matter of fact, TMR and EDAC are reported to cause
only 9% decrease in frequency in the LEON2 [81]. A similar decrease would keep the
maximum frequency of Ariane from 1.7 GHz [59] to around 1.5 GHz, which is still above
the maximum frequency possible in the vector pipeline.

5.4. MEMORY HIERARCHY
Fig. 5.3 shows a possible memory hierarchy for a vector processor. As a typical mem-
ory hierarchy for scalar processors, it comprises a DC, an IC, a unified L2C6, and a main
memory. However, an VC is added to increase performance especially for workloads with
low OI . The figure also indicates the width Wi of the interface between levels (where i is
D for the interface of a DRAM module channel and the memory controller, L2,MCon for
the one between memory controller and L2C, x for the interface between interconnect
and VC, C,V for the interface between the vector pipeline and the VC), which determines
the bandwidth Bi of the interface together with its clock frequency fclki (while for the
DRAM and interconnect the same nomenclature as Wi is employed, for the other inter-
faces for brevity clk is omitted and instead of the interface the focus is on the module:
fC PU and fMCon) , according to Bi Æfclki ¢Wi . For instance, the DC of the Intel 2600K in
[339] has a 384-bit interface and, for this reason, a maximum bandwidth of 384 b/CC. In
the case of main memories (composed by DRAMs):

5https://github.com/riscv-boom/boom-template.git
6This is typically the case of multicore processors (not shown in the figure), where more cores with their own

L1 caches are connected to the L2 via an interconnect.

https://github.com/riscv-boom/boom-template.git
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BD ÆRD ¢CD ¢fclkD ¢WD , (5.4)

where RD is the data rate of the DRAM (intended as the number of times the data is
valid during a cc: 1 for SDR and 2 for DDR), CD is the number of channels for the main
memory7, fclkD the clock frequency of the DRAM chips and WD the width of the interface
for each channel. For the DDR3 DRAM employed in the Intel 2600K in [339] CD Æ2,
fclkD Æ0.8 GHz, WD Æ64 and therefore BD is 25.6 GB/s.

A cache-aware roofline model [339], shown in Fig. 5.4, highlights the main benefits
of adopting a memory hierarchy similar to Fig. 5.3. When data resides in main memory,
OI ¤ is around 2.50-6.02 FLOP/B (depending on the DRAM technology), while if data
resides in a L2C (with WX Æ64 b) OI ¤ becomes 0.25 FLOP/B and a dedicated VC with
WC ,V Æ356 b reduces OI ¤ to 0.04 FLOP/B. Furthermore, from Fig. 5.4 it can be deduced
that keeping a processor in a compute-bounded state for a given OI sets increasingly
higher requirements on the memory bandwidth when MTPCC (hence the computational
capabilities) is increased (e.g. an implementation with lower MTPCC has a lower OI ¤ ). As
a result, extremely high-performance processors for DNNs are actually memory-bound
except for very high OI [322].

Figure 5.3: Possible memory hierarchy for a vector processor. Other cores and peripherals (not shown in figure)
can be connected to the interconnect."CHNL" stands for "channel".

5.4.1. MAIN MEMORY
The need for radiation tolerant (or radiation hardened) parts with solid flight heritage
limits the use of state-of-the-art memories. As a result, main memories for space in ESA
missions lag behind commercial counterparts in terms of performance. For instance,
state-of-the-art OBCs typically employ Single Data Rate (SDR) DRAM [162]. The SDR
DRAM (ISSI IS42S86400B-7TL) tested in [296] has 16 bits for data I/O and achieves up to
166 MHz. Therefore, its BD is 2.66 Gbps, i.e. two orders of magnitude lower compared
to the DDR3 DRAM of the Intel 2600K in [339]. Faster DRAMs are also being considered,
as the DDR2 tested in [296] (IS43DR81280B-25DBLI) which has 8 bits for Input/Output
(I/O) data and achieves up to 400 MHz. This means a BD of 6.4 Gbps, which is still more

7The number of channels represents the number of simultaneous transfers between the processor and main
memory. This should not confused with the data rate in each of these channels.
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Figure 5.4: Theoretical performance improvement expressed in number of operations per processor CCs for
low OI workloads for matrices residing in L2C and VC compared to single-chip SDR (ISSI IS42S86400B-7TL)
and DDR2 (IS43DR81280B-25DBLI) memory modules, obtained plotting #F LOP/CC Æ(Bi / fC PU )¢OI for each
of them (with fclkC Æ1G H z). The horizontal line is the upper boundary due to computational capabilities of
a vector processor with 8 lanes, obtained #FLOP/CC ÆMTPCC .

than one order of magnitude lower compared to the DDR3 DRAM of the Intel 2600K in
[339].

EDAC CODES

In the space environment, DRAMs suffer from SEUs and MBUs like SRAMs do [340].
However, as opposed to SRAMs, in DRAMs most of the upsets happen in a set of weak-
ened cells [341]. Furthermore, DRAMs are also more likely to suffer from stuck bits (cells
stuck to a value, mostly related to variable bit retention [342]) and SEFIs than SRAMs.
SEFIs in a DRAM can affect from some tens of bits to an entire chip per read cycle and
can be recovered only with a chip reset or sometimes with a full power cycle [341]. To de-
tect and correct these errors, EDAC codes are employed in the DRAM. Including EDAC
checkbits in DRAMs decreases the bandwidth, as also checkbits are read and written,
and increases latency, as the checkbits have to be calculated before storing the data in
memory and checked before using the data read from the memory. For DRAMs in space
embedded systems typically Reed-Solomon (RS) codes are employed [30]. A RS(n,k)
code takes a word of k symbols and generates a codeword of n symbols, where n Æk Å 2t
(with 2t being the number of check symbols). RS codes have a redundancy r Æ2t/k,
where r is typically 25% or 50%, meaning that they increase the number of bits required
to express the information by r . RS codes can correct errors in up to t symbols [343].
Regarding the symbol size, conventional organization of DRAM-based memories uses
several chips in parallel to constitute a rank of the desired data width (e.g. 64 bits) [344].
It is therefore a straightforward choice to use as symbol size the I/O width of a single
chip. We will assume the chip to have an I/O width of 8 bits and therefore employ a
byte-based RS, although different choices are possible. In this way, SEFIs can be masked
and the failed chip can be reset when it is less detrimental to functional availability. For
instance in [30], 16 check bits or 32 check bits for 64 bits of data are employed, meaning
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respectively RS(10,8) and RS(12,8).
RS comes with substantial penalties in terms of performance. When adding RS with

r Æ25% and r Æ50% to a memory module with n chips, the average effective data band-
width per chip becomes respectively 75% and 50% of the original DRAM bandwidth.
Therefore, the bandwidth of the SDR DRAM in [296] with RS reduces from 2.66 Gbps to
2.00 Gbps (r Æ0.25) and 1.33 Gbps (r Æ0.5), while the bandwidth of the DDR2 reduces
from 5.1 Gbps to 3.8 Gbps (r Æ0.25) and 2.6 Gbps (r Æ0.5). Furthermore, RS codes come
also with a substantial penalty in terms of latency. For instance, the decoder proposed in
[345] has a latency of L Æn Å 10t Å 20 CCs. Typically, critical paths of Memory Controllers
(MCons) are deeper than those of processors and run at lower frequency. For instance,
the length of the critical path reported in [346] ranges between 547 and 48 gates depend-
ing on the design complexity. Assuming 0.02 ns per gate as for Ara [19], this limits the
frequency in a range between 1.04 GHz to 91 MHz. Therefore, we assume that the de-
coder runs at half the frequency of Ara and we partially compensate this with a doubled
data width between the MCon and L2 compared to the one between L2 and VC. Assum-
ing that the frequency of the interconnect is the same of the processor:

WX Æ
WL2,MCon

fC PU / fMCon
, (5.5)

where fC PU and fMCon are respectively the frequency of the vector processor and the
frequency of the MCon. Therefore, the latency expressed in terms of number of CCs of
Ara, keeping into account that n Æ(1 Å r )k and t Æ(r /2)k, is

LC PU Æ
fC PU

fMCon
[(1 Å r ) ¢k Å 6 ¢r ¢k Å 20]. (5.6)

Given that k ÆWL2,MCon/8 (as a symbol was assumed to be composed of 8 bits) and
WX Æ32 ¢NLanes (following the rule of thumb reported in Sec. 5.3.2), the final expression
is:

LC PU Æ4NLanes(1 Å 6r )
µ

fC PU

fMCon

¶2
Å 20

fC PU

fMCon
(5.7)

It should be noted that the latency of this design has a quadratic dependence on the ratio
of the frequencies and only a linear dependence on the number of lanes NL . Therefore,
having a low fC PU / fMCon ratio is very effective to help the scaling of performance with
the number of lanes. Substituting NLanes = 4, r = 0.25 and fC PU / fMCon = 2, we estimate
200 CCs of additional latency seen by the processor during reads due to the use of RS.
This is a significant increase (e.g. read latency of the DRAM chip around 20 ns [297],
i.e. 15-20 CCs for fC PU Æ1 GHz), and therefore it may be required to lower the level of
information redundancy or not applying EDAC altogether on vector data to achieve the
required level of performance.

VULNERABILITY OF DNN PARAMETERS

In order to evaluate the effect of not applying EDAC on the DRAM when running a DNN,
we estimate the effect of SEUs on the parameters residing in the DRAM for CloudNet.
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According to [341], a 512 Mb SDR DRAM memory (MMSD08512408S-Y) experi-
ences 2.75 £ 10¡ 11 upset/bit/day in LEO (1336 km altitude, inclination of 66º). There-
fore, 0.19 upsets/day are to be expected for coefficients and feature maps residing in the
DRAM (using the peak memory reported in Sec. 4.4). To assess the sensitivity to SEUs,
we ran a fault injection campaign on the DNN coefficients expressed in SP floating point
(expected to reside in the memory buffer) during the inference. For each experiment a
single error is injected and the accuracy of the classification over 9201 input patches is
checked. The metric employed to estimate the accuracy of the DNN is the Overall Accu-
racy (OA) defined in [299] as:

OA Æ
TN Å TP
#Pixels

, (5.8)

where TN (True Negatives) is the number of pixels correctly classified as without clouds,
TP (True Positives) is the number of pixels correctly classified as covered by clouds and
#Pixels is the total number of pixels (therefore comprising also false negatives and false
positives). For a fault-free execution over the 9201 patches of the test set, the OA is
96.5%. In the majority of the cases, injecting upsets in the input images causes little
or no damage to the accuracy of the DNN and the OA usually does not go below 96.5%,
except for when the bit flip happens in the Most Significant Bit (MSB) of the exponent.
In this case, a single bit flip can change a very small number in a very large number and
vice versa. For instance, 1.4293875e-05 (0x376FCFBA) can be turned into 4.8639537e+33
(0x776FCFBA). Therefore, even setting a very tight requirement on the OA, a SEU in a
coefficient has a 1 in 32 chance of causing the DNN to fail. Another large deviation could
take place when the bit flip happens in the sign bit and the data has a large magnitude.
This is not the case in CloudNet, as the maximum magnitude found for the parameters
is around 0.59. This is also to be expected in other DNNs, as typically regularization
techniques that keep the magnitude of parameters low are employed to avoid overfitting
[316]. As an extreme case condition for the upset rate, we ran also experiments with 10
upsets simultaneously. Also in this case we note that large deviations (e.g. OA Æ61.3%)
are present only if one of the upset is in the MSB of the exponent. Assuming 0.19 up-
sets/day and that only upsets in the MSB of the exponent will cause a failure due to
insufficient QoS, we can expect upsets to cause a failure due to SEU for insufficient QoS
every 165.4 days.

Other DNN architectures may be more vulnerable to SEUs. For instance in [245] it
is shown that the FC layers in the last layers of CNNs are more vulnerable compared to
early convolutional layers. However, the dependence of the vulnerability of a bit on its
position is related to the format of the coefficients. For instance, in [347] the MSB of the
exponent is found to be the most critical bit of the SP model coefficients also in CNNs
and DNNs with LSTM layers. Furthermore, [245] shows that using Half Precision (HP)
floating point can increase robustness for some architectures compared to SP floating
point.

Fixed point representation can mitigate the failure mechanism described for floating
point thanks to their limited range [245]. However, if the fixed point representation has
a large integer part (e.g. 1 bit for sign, 21 for the integer part and 10 for the decimal
part) the robustness of the DNN can be severely reduced compared to floating point
representations [245].
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Figure 5.5: Fraction of time (red) where all the inferences are wrong because of SEFIs and the system unavail-
able (yellow), in case of a periodical reset (left) and in case of parity (right). Intervals where all inferences are
correct are represented in green, intervals where an inference has half the probability of being detected (un-
available) or undetected (wrong inferences) are represented with yellow and red stripes. Fraction of times are
not to scale.

Figure 5.6: Fraction of time where inferences are wrong (red) because of SEUs (case without EDAC). A similar
figure holds when parity is employed, where the red is replaced by yellow (unavailable). Fraction of times are
not to scale.

PROPOSED SOLUTIONS FOR DRAMS

While the effect of SEUs on parameters can be tolerated by the intrinsic robustness
of DNNs, SEFIs produce an unpredictable number of errors per CC and therefore
require mitigation. According to data from [341], a 512 Mb SDR DRAM memory
(MMSD08512408S-Y) experiences 1.33e-3 SEFI/device/day in LEO. To achieve the peak
memory required (identified in Sec. 4.4.1), 14 chips are required and therefore not in-
cluding any EDAC will produce a SEFI every 53.7 days. This is unacceptable, as every
inference after the SEFI is likely to have insufficient QoS until the next reset of the failing
chip. As a mitigation, DRAM chips can be reset periodically, as shown in Fig. 5.5 (a). As-
suming a reset every 2 hours and, as a worst case estimation, that the SEFI happens just
after a reset, the percentage of failed inferences due to SEFIs WISEFI in the worst case is:

WISEFI Æ
Failures(SEFI)

Total inferences
Æ

¢ TRst

MTTFSEFI
Æ0.16%. (5.9)

The contribution to wrong inferences of SEUs can be estimated with a similar equation,
where the MTTFSEU in the denominator is divided by 0.03 to account for the discussion
in Sec. 5.4.1 on the vulnerable bits of floating point coefficients and TRst is replaced with
the time required for a single inference TInf , which we assume to be 5 s. The value found
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is negligible (two order of magnitude less than the contribution of SEFIs). However, it
should be considered that, while WISEFI is independent from the performance in terms
of inferences/s Æ1/TInf , WISEU increases for slower systems. The final value of average
reliability, i.e. the fraction of correct inferences, RAvg Æ1 ¡ WISEU ¡ WISEF I (99.84%)
can be not deemed enough for critical applications. The availability when there is a
periodical reset instead depends also on the unavailability due to the maintenance time
after a reset. In this case, as shown in Fig. 5.5 (a):

AvailabilitySEFI Æ1 ¡
TRst ¢

¥ MT T FSEF I
¢ TRst ÅTRst

¦
Å ¢ TRst

MTTFSEFI
. (5.10)

If a maintenance time of 30 s is assumed for each reset, we find that the availability of the
service is 99.43%, while a maintenance time of 300 s produces an availability of 95.85%.
Both values do not meet typical requirements of dependable systems (e.g. 99.9% [145]).

A trade-off between RS and no EDAC is represented by simpler EDAC codes. EDAC
codes with lower redundancy, although they cannot mask SEFIs, can still detect some of
the wrong bits caused by the SEFI. For instance, a parity bit per chip can detect an odd
number of errors in a chip and it is possible to keep track of them with a counter. When
the number of errors from a chip exceeds a certain threshold in a certain time window,
the DRAM chip is reset to recover from a probable SEFI. The effects of this approach are
shown in Fig. 5.5 (b). Assuming a threshold of three errors and an equal probability that
the SEFI will cause an even or odd number of errors, the percentage of wrong inferences
due to SEFIs is:

WISEFI Æ
Nthr Å 1

MTTFSEFI /TInf
Æ0.0004%. (5.11)

Regarding SEUs, neglecting accumulation and MBUs, all the upsets are detected and
W ISEU Æ0. Therefore Rav Æ99.9996%, which is a substantial improvement compared to
employing no EDAC. There is a substantial improvement in availability too. In this case,
as shown in Fig. 5.6 (b):

AvailabilitySEFI Æ1 ¡ USEF I Æ1 ¡
2(Nthr Å 1) ¢TInf Å TRst

MTTFSEFI
, (5.12)

which yields 99.998% and 99.993% respectively for 30 s and 300 s of unavailability per
reset (TRst ). This shows that employing parity limits the effect on the system of longer
maintenance periods. However, in this case there is also a component of unavailability
due to SEUs (assuming, as a worst case that all the inference is to be repeated when an
error is detected):

AvailabilitySEU Æ1 ¡ USEU Æ1 ¡
TIn f

MTTFSEU
, (5.13)
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Table 5.2: Approaches suggested for applications with different criticality levels (reliability/availability) and
achievable performance. The failure rate due to low QoS is indicated with ¸ QoS. Values for the RS approach
are reported to be (almost) ideal, as the error models employed in this analysis do not find any failure with RS.

Approach No EDAC Parity RS
Reset strategy Periodic Threshold After SEFI
¸ QoS 0.03¸ SEU Å ¸ SEF I ¸ SEF I ' 0
RAvg 99.84% 99.9996% ' 100%
Availability (300s ¡ 30s) 95.85-99.43% 99.992-99.997% 99.994-99.9997%
Performance High Medium Low

which yields 99.9988%, comparable with the values found for SEFIs. Therefore the to-
tal availability is Availability Æ1 ¡ USEU ¡ USEFI , which yields respectively 99.997% and
99.992%. These value are considerably higher than those found applying a periodic reset,
meeting typical availability requirements of safety criminal space systems (e.g. 99.9%).
Assuming an RS code capable of correcting a single symbol and a reset of the chip car-
ried out every time a SEFI is detected, the introduced error models do not identify any
loss of reliability8. However, the reset causes a loss of availability, according to Eq. 5.14:

Availability Æ1 ¡ USEFI Æ1 ¡
TRst

MTTFSEFI
, (5.14)

which yields 99.9997% and 99.994% respectively for a TRst of 30 s and 300 s. Table 5.2
summarizes the different EDAC and reset approaches discussed to protect DRAMs for
DNNs.

5.4.2. L1 VECTOR CACHE
Many vector processors use L1 caching for instructions and for scalar data, leaving vec-
tor data uncached (e.g. Ara [19]), as historically locality in vector workloads was assumed
to be less pronounced compared to scalar workloads [348]. The work in [348] character-
izes temporal and spatial locality in compute-intensive vector workloads and finds that
caches can significantly improve the performance of a vector processor. Furthermore,
in [349] it is shown that the use of caches helps masking memory latency, as increasing
by 3.21x the latency of a memory access (from 14 CCs to 45 CCs) roughly triplicates the
mean delay per memory reference for a processor with uncached vector data and less
than doubles the access time for a processor with a L1 cache for vector data.

The following subsections will carry out a design exploration of the VC to assess
which sizes, organizations and write policies are more efficient for vector processors.

SIZE

From Table 4.1, it is clear that the large matrices originating from unrolling of convolu-
tional layers (ranging from 3 to 41 MiB) do not fit even in large L2 caches (e.g. 2 MiB

8An alternative approach could be resetting when the availability is not reduced (e.g. during routine oper-
ations, plausible given that SEFIs occur every 53.7 days on average). However this approach will damage
reliability, as there is a non-zero opportunity of a second SEFI on another chip, that will cause wrong infer-
ences.
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Figure 5.7: Example of tiling of a matrix-matrix multiplication. ’Acc.’ stands for accumulation.

[30]). This problem can be addressed with tiling, as shown in Fig. 5.7. In this approach,
two levels of looping (shown in Fig. 5.7 with index i and j ) select a subset of the matrix-
matrix multiplication which produces one of the

§UV
b

¨§ N
b

¨
tiles of dimensions b£b of the

result. By increasing the size of the cache, it is possible to work on larger matrix blocks
residing in the VC. The subset of operations obtained in Fig 5.7 (b) can be decomposed in§C JK

b
¨

segments, and the results of these segments can be accumulated to generate the
final result of the tile. The level (c) in Fig. 5.7 is where the mapping to igemm (decribed
in Sec. 4.4.1) can be applied.

One of the possible implementations of igemm (Fig. 5.7 (d)) is a loop selecting the
mth column of A and the mth row of B and generating a matrix where the p th column is
the mth column of A multiplied by bmp . Vectorization is applied with maximum vector
length of VLMAX , with FMA (accumulate) operations between the column vector am
and a scalar bmp . A matrix representation of this implementation for a 2£2 example is
shown below.

C Æ
µ

a11b11 Å a12b21 a11b12 Å a12b22
a21b11 Å a22b21 a21b12 Å a22b22

¶
(5.15)

C Æ

Ã

a1 b11 a1 b12

!

Å

Ã

a2 b21 a2 b22

!

. (5.16)
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As the focus in this section is on investigating the speed increase due to the use of a
VC for small matrices, memory-bounded conditions will be assumed (the computations
happen in parallel with part of the loads and stores, although with a shorter duration).
In these conditions, the execution time can be estimated as the time required to move
the matrices from main memory to the VC and the time required to write the result to
main memory.

Loading a vector of length VLMAX from main memory takes:

TL,V ÆTLM Å
SEW ¢VLMAX

BM
, (5.17)

where SEW is the size of a single element of the vector, BM is the bandwidth of the main
memory and TLM is the latency of the first element of the vector from main memory9.
The time required to copy a row vector of length b from main memory to VC is:

TL,b ÆTL,V ¢
»

b
VLMAX

¼
Å

SEW ¢b
BM

, (5.18)

and the time required to read an entire b£b tile is: TL,b£b ÆTL,b ¢b. The time required to
read a fringe b£b0tile with b0Ç b is instead:

TL,b£b0 Æ
µ
TL ¢

»
b0

VLMAX

¼
Å

SEW ¢b0

BM

¶
¢b. (5.19)

There are three possible implementations, depending on which tile (of the coeffi-
cient, input feature and output feature matrix) is kept into the VC during the innermost
looping, i.e. Loop(m) in Fig. 5.7. Considering the associated continuous functions (with-
out modulo, ceiling and floor functions), it is possible to show that the fastest implemen-
tation is the one keeping in VC the tile of the output feature matrix. This is because this
implementation does not require loading and storing of the temporary tile of the out-
put matrix during accumulation. Assuming that the output feature matrix is kept in VC,
the time required during the loop on CJK to load all the tiles in a C JK£b stripe of the
C JK£UV input feature matrix, as shown in Fig.5.7 (b), is:

TL,C JK£b ÆTL,b£b ¢
C JK

b
, (5.20)

while for a b£C JK stripe of the N£C JK matrix is:

TL,b£C JK ÆTL,b£b ¢
¹

C JK
b

º
Å TL,b£b0, (5.21)

where b0Æ(C JK )mod(b). As every column has to be multiplied for every row, the total
time spent reading the coefficient matrix is:

9Matrices are assumed to be stored in row-major order, as this is the order employed in the C language.
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TL,N£C JK ÆTL,b£C JK ¢
»

UV
b

¼
¢

N
b

, (5.22)

where the ceiling is required because all the matrix of the coefficients is to be read again
even if only one column of the input feature is left to be loaded. Similarly, the total time
spent reading the C JK£UV matrix is instead:

TL,C JK£UV Æ
µ
TL,C JK£b ¢

¹
UV

b

º
Å TL,b£b0¢

C JK
b

¶»
N
b

¼
. (5.23)

Similar equations can be derived for storing the result, substituting the subscript L (load)
with S (store). Only the final result for each tile is written to main memory, therefore the
time to store all the results is

TS,N£UV Æ
µ
TS,N£b ¢

¹
UV

b

º
Å TL,b£b0¢

N
b

¶
. (5.24)

To trade-off the speedup against the increase in size due to a larger VC, the area effi-
ciency in terms of FLOP/CC/GE for matrix multiplications with matrices residing in VC
will be considered. To give a realistic estimation of the cache size that maximizes the
area efficiency, the increase of area due to the inclusion of a VC in Ara will be considered.
The area of Ariane and Ara ranges from 2228 for two lanes to 10735 kGE for 16 lanes. As
a worst case for memory-bounded conditions, we assume 16 lanes (VLMAX Æ16) and
in this case the area without VC is 10735 GE. The area of the L1 cache is estimated as
AV C ,GE Æ(6/4)¢Nb , assuming 6T SRAM cells and a GE corresponding to four transistors.

In this section, four cases comprising all the combinations of memory with latency
50 CCs (representative of the latency without RS) and 300 CCs (representative of the la-
tency with RS) and with bandwidths of 4 and 40 b/CC (respectively representative of a
memory module with 4 SDR chips and 4 DDR chips) are condidered. Table 5.3 shows
the results of this model. The main observations are that the optimal size of VC is much
larger (256 KiB-1 MiB) than a typical DC (e.g. 16 KiB [30]) and that the most impacting
factor on the area efficiency is the dimensions of the convolution. For each layer, one
cache size maximizes the area efficiency independently of latency and bandwidth. This
value decreases from 1 MiB to 256 KiB when going from layers with large U ÆV and small
C and N to layers with small U ÆV and large C and N . This means that processors in-
tended to run deeper CNNs can employ smaller caches with lower penalty. However, the
maximum area efficiency decreases going from Layer 1 to Layer 11 to Layer 19. The opti-
mum size of the vector cache is instead largely independent from the latency and band-
width of the main memory, showing that a single design can be employed efficiently for
different applications with different requirements in terms of dependability.

ORGANIZATION

The model in the previous section assumes that it is possible to keep the tiles in VC,
avoiding that loading a vector of one of the tiles causes the eviction of data belonging
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Table 5.3: Estimates of area Atot [MGE] and area efficiency AE [FLOP/CC/MGE] for a 16 lane vector processor
with different sizes of VC, main memory (latency and bandwidth) and maximum size of the tile b£b when
applying tiling to the layers of CloudNet.

Size 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB
b 40 60 84 120 168 240
Atot 11.5 12.3 13.9 17.0 23.3 35.9

Layer 1: C Æ4; N Æ16; J ÆK Æ3; U ÆV Æ192
AE(50,40) 1.06E+0 1.44E+0 1.91E+0 2.35E+0 2.44E+0 2.34E+0
AE(50,4) 4.09E-1 5.44E-1 7.23E-1 8.59E-1 8.82E-1 8.28E-1
AE(300,1) 1.57E-1 2.14E-1 2.84E-1 3.48E-1 3.59E-1 3.44E-1
AE(300,10) 2.06E-1 2.83E-1 3.76E-1 4.68E-1 4.86E-1 4.71E-1

Layer 11: C Æ128, N Æ256, J ÆK Æ3, U ÆV Æ24
AE(50,40) 4.04E-1 1.58E+0 2.03E+0 2.40E+0 2.33E+0 2.08E+0
AE(50,4) 2.62E-1 5.97E-1 7.65E-1 8.72E-1 8.43E-1 7.33E-1
AE(300,4) 6.48E-2 2.35E-1 3.01E-1 3.54E-1 3.43E-1 3.05E-1
AE(300,40) 7.09E-2 3.11E-1 3.99E-1 4.78E-1 4.63E-1 4.17E-1

Layer 19: C Æ512, N Æ1024, J ÆK Æ3, U ÆV Æ6
AE(50,40) 6.24E-1 7.07E-1 7.44E-1 7.10E-1 5.74E-1 4.15E-1
AE(50,4) 3.69E-1 2.77E-1 2.89E-1 2.68E-1 2.13E-1 1.50E-1
AE(300,4) 9.35E-2 1.06E-1 1.11E-1 1.05E-01 8.51E-2 6.11E-2
AE(300,40) 1.21E-1 1.38E-1 1.45E-1 1.40E-1 1.13E-1 8.26E-2

to one of the other tiles required. Whether this happens or not depends on the cache
organization and an ineffective organization requires larger caches to allow the tiles to
reside in the cache during computations.

Data-parallel ISA extensions (also the RVVE [336]) typically support vector load and
store operations with non-unit stride VS , i.e. two contiguous elements of the vector are
placed in non-contiguous location separated by VS ¡ 1 elements. According to the model
in [349], the fraction of non-unit strides in a workload determines whether organizations
similar to scalar processors are enough to achieve acceptable performance or organiza-
tions specific for vector processors are required. One example of the latter are prime-
mapped caches [349], which have a conflict-free memory organization for vectors with
power-of-two strides. However, they have no advantage against direct-mapped caches
(the simplest cache organization for scalar processor) when all the strides are unitary. In
[330] the breakdown of vector access in terms of vector memory accesses for 20 bench-
marks running on tree different vector machines (Cray90, Alliant FX/8, Convex C3) is
reported. The respective percentages are 66.37% unit stride, 24.24% other strides and
9.40% indexed (also known as ’scatter and gather’ and also supported by the RVVE [336]).
The improvement with prime-mapped caches for a typical workload with unit stride of
70% is 2x over the cacheless version, while the improvement for direct mapped caches is
below 1.5x [349].

Typical applications which require non-unit strides are Fast Fourier Transform (FFT)
and its inverse Inverse Fourier Transform (IFT) [349]. FFT is employed in several compute-
intensive workloads. For instance, in [350] it is proposed to speedup CNN execution, as
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convolutions can be substituted by a sequence of FFT, element-wise multiplication and
IFT.

To investigate whether vector loads and stores with non-unit strides are present in
DNNs, we translated CloudNet into ARM NEON assembly (which supports vector load
and store strides of size 1, 2, 3, 4, 8) using TVM10. The fraction of vector accesses for
stride 1, stride 2 and stride 4 are respectively 97.13%, 1.62% and 1.25%. No accesses with
stride 3 (supported in NEON) have been found. Translating other DNNs leads instead to
only unit stride accesses. For instance, translating the popular resnet18_v1 [313] model
did not produce non-unit stride accesses.

These findings suggest that, although in a first phase this problem could be miti-
gated relying on certain choices of DNN architectures and software implementation to
reduce the fraction of non-unit vector strides, in general different cache organizations
are needed compared to those typically employed for scalar processors.

WRITE POLICY

A microarchitecture with separated scalar and vector data caches requires a solution to
handle memory coherence issues when data in one of the two caches is modified and an
old value is read from then other. This can be addressed with a write-through policy for
VC and DC, although this comes with substantial penalties especially in terms of power
[351], memory traffic [251] and performance [115].

5.5. CLOUDNET KERNELS FOR RISC-V VECTOR PROCESSORS
After having investigated the potential and criticalities of the microarchitecture of vector
processors, in this section the impact of the RVVE on the kernels of CloudNet is shown.
The aim of this section is to investigate which RVVE instructions have the potential to
speedup DNNs kernels. In Chapter 6 these instructions will be implemented in a hard-
ware prototype and their efficiency in speeding up CloudNet evaluated.

Furthermore, discussion in Sec. 5.3 showed that the need of an FPU per lane, to sup-
port FP operations, implies large area increase that cannot be tolerated in highly con-
strained embedded systems. For this reason, in this section the kernels will be imple-
mented on integer elements instead of floating point elements, and comparisons will be
carried out with integer versions of the kernels reported in 4.4.1.

5.5.1. METHODOLOGY
The use of instrinsics allows considering only a subset of the RVVE, as the generated in-
structions depend on the intrinsic functions employed [352]. For instance, the intrinsic
function:

s i z e _ t vsetvl_e32m1 ( s i z e _ t avl )

generates a vsetvli instruction with a SEW Æ32 (e32) and no register grouping (m1), hav-
ing in the field rs1 the register address of the register storing AVL. The function returns
the value of vl in the register indicated in the field rd of the related assembly instruction,
which is implicitly selected by the user by assigning the result of the intrinsic function to
a variable. Examples of use of this intrinsic function are reported in Sec. 6.3.
10https://github.com/apache/incubator-tvm

https://github.com/apache/incubator-tvm
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IMPACT ON PERFORMANCE

Keeping in mind the performance model provided in Eq. 1.1, the main criterion to eval-
uate the effectiveness of the addition of vector instructions to a scalar processor is the
factor of which the number of instruction NI is reduced when moving from a scalar to
a vector function, given by NI s /NIv . For brevity, this factor will be called ideal speedup,
as it is the speedup due to the use of vector instructions in a hardware prototype when
there are no penalties on CPI and fclk (see Eq. 1.1). The choice of this parameter is due
to the fact that at this point a hardware prototype is not available yet. In Chapter 6, when
the required instructions will be implemented in the prototype, also the impact on CPI
and fclk will be evaluated.

In order to measure the decrease in terms of NI, both versions of each kernel were
executed on a version of the Spike ISA simulator supporting the RVVE 11.

VERIFICATION

In order to verify that the vectorized C implementations of the kernels are functionally
equivalent to the scalar implementations proposed in Chapter 4, both versions of each
kernel were executed on a version of the Spike ISA simulator supporting the RVVE 12. The
same randomized input, using the function rand() from the standard library stdlib.h, was
fed to both functions and the outputs were checked with a simple loop (Fig. 5.8) which
prints the differences found (if any). Furthermore, if a difference is found, the processor
enters an infinite loop and the program hangs. The latter functionality lets the user know
that the result is wrong even in runs where the printf functionality is not implemented.
The verification has been successful for all the kernels reported in this chapter.

int pass = 1 ;
for ( int i = 0 ; i < OUTPUT_LEN; i ++) {

i f ( golden [ i ] != c [ i ] ) {
p r i n t f ( " index %d f a i l e d , %d!=%d\n" , i , golden_array [ i ] , c_array [ i ] ) ;

pass = 0 ;
}

}

while ( ! pass ) ;

Figure 5.8: Loop to verify the functional equivalence between scalar and vector implementations.

Furthermore, the measures of NI are employed to validate the analytical models pro-
vided to analyze the effect of VLMAX and of matrix sizes on the ideal speedup. The
nomenclature of the variables of the analytical models follows the one shown in the case
of a nested loop in Fig. 5.9.

PROCEDURE

The first step is compiling:

11https://github.com/riscv-software-src/riscv-isa-sim ,
checkout: debdad850ba3c97171b027fc590db1e83cd9383a

12https://github.com/riscv-software-src/riscv-isa-sim ,
checkout: debdad850ba3c97171b027fc590db1e83cd9383a

https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim


5.5. CLOUDNET KERNELS FOR RISC-V VECTOR PROCESSORS

5

141

Figure 5.9: Nomenclature for the number of instructions in a kernel composed of nested loops. The number
of iterations #iter. i is a function of the matrix sizes and V LM AX . The N Ii chunks are those executed before
and after (in figure indicated only before) the loopi (executed #iter.i times).

riscv64 −unknown− e l f −gcc −O2 −o conc conc . c

Then the executable is run with Spike:

spike −− i s a =RV64IMAV −−varch=vlen :4096 , elen :32 − l pk conc 2>conc . log

where the switch -l is employed to generate a log of instructions, which with 2>conc.log
prints the executed instruction in a conc.log logfile. The switch –varch=vlen:4096,elen:32
is employed to select a specific VLEN and ELEN . If the execution completes successfully
and no difference is found then the two implementations are functionally equivalent. To
count the number of instruction for both implementations, a dump of the instructions
in the object file is executed with:

riscv64 −unknown− e l f −objdump −−disassemble − a l l conc > conc .dump

5.5.2. IMPLEMENTATION OF THE KERNELS
This section contains C implementations of the CloudNet kernels using the RVVE in-
trinsics. The functions proposed here will be compared to the one presented for scalar
processors in Sec. 4.4.1.

CONVOLUTIONAL LAYERS

As opposed to the matrix multiplication implementation described in Sec. 5.4.2 (operat-
ing on columns), here we use an implementation that operates on rows of matrix B and
scalar coefficients from matrix A, according to the decomposition shown in Eq. 5.25:

C Æ
µ

a11( b1 )
a21( b1 )

¶
Å

µ
a12( b2 )
a22( b2 )

¶
. (5.25)

The main advantage of this implementation is that it does not require vector stride loads
and stores. The function implementing igemm is shown in Fig. 5.10, where the loop on
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void igemm_vec( const int *a , s i z e _ t lda , const int *b , / / k * n matrix
s i z e _ t ldb , int *c , s i z e _ t ldc ) {

s i z e _ t v l ;
for ( int i = 0 ; i < n1 ; ++ i ) {

const int * b_k_ptr = b ;
int * c_k_ptr = c ;
for ( int c_k_count = n3 ; ( v l = vsetvl_e32m1 ( c_k_count ) ) ; c_k_count −= v l ) {

const int * a_j_ptr = a ;
const int * b_j_ptr = b_k_ptr ;
vint32m1_t acc = vle32_v_i32m1 ( c_k_ptr ) ;
for ( s i z e _ t k = 0 ; k < n2 ; ++k ) {

vint32m1_t b_k_data = vle32_v_i32m1 ( b_j_ptr ) ;
acc = vmacc_vx_i32m1 ( acc , * a_j_ptr , b_k_data ) ;
b_j_ptr += n3 ;
a_j_ptr ++;}

vse32_v_i32m1 ( c_k_ptr , acc ) ;
c_k_ptr += v l ;
b_k_ptr += v l ; }

a += n2 ;
c += n3 ; } }

Figure 5.10: C function employed for igemm on the vector processor.

n3 is parallelized, accumulating the result on VLMAX elements of a row. The paralleliza-
tion of these two implies that the amount of loop iterations compared to the scalar im-
plementation is divided by a factor VLMAX . Eq. 5.26 describes the ideal speedup when
moving from the scalar to the vector implementation:

N Is

N Iv
Æ

N I1s Å n1 ¢
£
N I2s Å n3 ¢

¡
N I3s Å n2 ¢N ILoop,s

¢¤

N I1v Å n1 ¢
£
N I2v Å

§ n3
VLMAX

¨¡
N I3v Å n2 ¢N ILoop,v

¢¤. (5.26)

Fig 5.11 shows the equation above in case of n1 Æn2 Æn3 Æn, when varying n. The
parameters employed were found from Spike simulations and are N I1v Æ22, N I2v Æ9,
N I3v Æ14, N ILoop,v Æ10, N I1s Æ15, N I2s Æ9, N I3s Æ8 and N ILoop,s Æ7. The equa-
tion has been verified to produce the same results of a Spike simulation for the case with
n Æ128 and VLMAX Æ32 (N Is /N Iv =22.32) and the case with VLMAX Æ128 (N Is /N Iv =88.80).

Regarding the behavior when n is fixed and VLMAX is varied, a roughly linear be-
havior is obtained until VLMAX Æn is reached. Further increasing VLMAX does not
provide any advantage. The almost-linear behavior can be explained noting that the
function is of the type a/(b Å c/VLMAX), which for b ÇÇ c/VLMAX can be approximated
as a/(c/V LM AX ) as shown below:

N Is

N Iv
¼

N I1,s Å n1 ¢
£
N I2,s Å n3 ¢

¡
N I3,s Å n2 ¢N ILoop,s

¢¤

n1 ¢
§ n3

VLMAX
¨¡

N I3,v Å n2 ¢N ILoop,v
¢ . (5.27)

The behavior predicted with this approximated equation is shown with a solid blue line
in Fig. 5.12, along with red dots from the complete equation.
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Figure 5.11: Ideal speedup for igemm when employing vector instructions instead of scalar instructions (Eq.
5.26).

Figure 5.12: Ideal speedup when increasing the VLMAX from 4 to 512, with n1 Æn2 Æn3 Æn ¡ 128. In blue, the
linearized continuous function associated with Eq. 5.27, in red actual values for allowed VLMAX integer values

CONCATENATE LAYERS

Although no operations are present in concatenate layers, the loads and the stores re-
quired to copy A and B into the concatenated matrix C can be parallelized. In this case,
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void conc_vec ( int *a , int *b , int * c ) {
s i z e _ t v l ;
int * c_n_ptr = c ;
int * b_n_ptr = b ;
int * a_n_ptr = a ;
vint32m1_t acc ;

for ( int n112 = n1*n1*n2 ; ( v l = vsetvl_e32m1 ( n112 ) ) ; n112 −= v l ) {
acc = vle32_v_i32m1 ( a_n_ptr ) ;
vse32_v_i32m1 ( c_n_ptr , acc ) ;
c_n_ptr += v l ;
a_n_ptr += v l ; }

for ( int n113 = n1*n1*n3 ; ( v l = vsetvl_e32m1 ( n113 ) ) ; n113 −= v l ) {
acc = vle32_v_i32m1 ( b_n_ptr ) ;
vse32_v_i32m1 ( c_n_ptr , acc ) ;
c_n_ptr += v l ;
b_n_ptr += v l ; } }

Figure 5.13: C function to implement conc on the vector processor.

the expected gain is avoiding the latency of main memory each time a single element
is loaded and stored, and the cache misses of the scalar pipeline. Fig. 5.13 show this
implementation on vector processor. Increasing VLMAX will decrease the number of in-
structions until VLMAX approaches n1

2 ¢n2 for the first loop and n1
2 ¢n3 for the second

one. The ideal speedup can be found as:

N Is

N Iv
Æ

NI1s Å
h

n1
2(n2Ån3)

C PL

i
¢N ILoop,s

N I1v Å
³l n2

1¢n2
VLMAX

m
Å

l n2
1¢n3

VLMAX

m´
N ILoop,v

, (5.28)

where CPL is the number of elements copied in a single loop. After the division by CPL,
no ceiling function is applied because both n1

2 ¢n2 and n1
2 ¢n3 are divisible by the CPL

selected by the compiler, i.e. 8.
Considering Layer 1 in Table 4.2 (n1 Æ192, n2 Æn3 Æ16) when VLMAX Æ128, NI is

reduced by a factor of 19.55. When considering Layer 6, the one with the lowest par-
allelization possible for both loops (n1

2 ¢n2 Æn1
2 ¢n3 Æ18432), the ideal speedup is by

a factor of 19.51. Regarding the kernels with the higher parallelization possible, for the
layer with the highest one for the first loop (layer 32 with n1

2 ¢n2 Æ17694720 and) NI is
reduced by 19,56x (with N I1v Æ8, N ILoop,v Æ9, N I1s Æ14 and N ILoop,v Æ11). Given that

N I1v ÇÇ
n1

2 ¢n2 Å n1
2 ¢n3

VLMAX
¢N ILoop,v (5.29)

and

N I1s ÇÇ
n12 ¢n2 Å n12 ¢n3

C PL
¢N ILoop,s , (5.30)
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the ideal speedup for large matrices is almost independent from their size, as shown in
the resulting equation:

N Is

N Iv
¼

N ILoop,s

N ILoop,v ¢CPL
¢VLMAX . (5.31)

Fig 5.14 shows that for already relatively small n (around 10), the ideal speedup ap-
proaches a value independent of n. On the other hand, Fig. 5.15 shows that there is a
linear increase of N Is /N Iv when VLMAX is increased up to VLMAX Æn1

2 ¢n2 Æn1
2 ¢n3

is reached. This is also confirmed by empirical data from Spike simulations: layer 6 with
VLMAX Æ64 has an ideal speedup of 9.77x, with VLMAX Æ32 of 4.89x. In this case,
N I0 Æ4, N ILoop,s Æ11 and N ILoop,v Æ9.

Figure 5.14: Ideal speedup for concatenation layers when employing vector instructions instead of scalar in-
structions for conc. In blue, the continuous function associated with Eq. 5.28 for VLMAX Æ128 (solid line) and
for VLMAX Æ64 (dashed line). In orange and red dots, the values for integer n for the former and for the latter.
In cyan, the asymptotic value for VLMAX Æ128 (solid line) and for VLMAX Æ64 (dashed line).

BATCH NORMALIZATION

Fig. 5.16 shows how batchnorm_vec has been implemented with RVVE. As the RVVE does
not define a Fused Multiply-Add (FMA) instruction with a vector operand and two scalar
operands, and expanding one of the two scalars into a large vector (minimum length) is
deemed inefficient, the implementation has been carried out on each batch with a vector
loop executing the vmul.vx and vadd.vx instructions on the input matrix. In this case,
the normalization can be parallelized on a complete n1

2 batch. Although in CloudNet
the median value of this potential parallelization factor is high (576) (see Tab. 4.4), three
layers out of 31 (Layers 18, 19, and 20) have a value of 36.
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Figure 5.15: Ideal speedup when employing vector instructions instead of scalar instructions for conc when
varying VLMAX . In blue, the continuous function associated with Eq. 5.32. The solid line represent the linear
approximation for Layer 32, the dotted line n1

2 ¢n2 Æn1
2n3 Æ512 and the dashed line for n1

2n2 Æn1
2n3 Æ64.

In cyan and orange the actual ideal speedup values for allowed integer values of VLMAX in case of Layer 32
and 6 respectively, and in green and red for n1

2n2 Æn1
2n3 Æ512 and n1

2n2 Æn1
2n3 Æ64 respectively.

void batchnorm_vec ( ) {
s i z e _ t v l ;
vint32m1_t va , vb ;
for ( s i z e _ t i = 0 ; i < n2 ; ++ i ) {

int32_t batchsize = n1*n1 ;
for ( ; v l = vsetvl_e32m1 ( batchsize ) ; batchsize −= v l ) {

va = vle32_v_i32m1 ( a ) ;
vb = vmul_vx_i32m1 ( va , gamma_denom[ i ] ) ;
vb = vadd_vx_i32m1 ( vb , mean_beta_denom[ i ] ) ;
vse32_v_i32m1 (b , vb ) ;
a += v l ; b += v l ; } } }

Figure 5.16: C function for batchnorm_vec on the vector processor.

The peak parallelization is possible for the layers with n1 Æ192, i.e. Layers 1, 2, 30 and
31. Considering Layer 1 (n1 Æ192 and n2 Æ32), the ideal speedup for VLMAX Æ128 is
88.47. Considering one of the layers with the minimum parallelization possible (Layer
19, with n1 Æ6 and n2 Æ512), the ideal speedup is 17.41.
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As shown in Fig. 5.17, for relative large matrices, the ideal speedup tends to

N Is

N Iv
¼

N ILoop,s

N ILoop,v
¢VLMAX . (5.33)

Furthermore, from Fig. 5.17, it can be seen that n2 has low impact on the ideal speedup,
as the cyan (largest n2) dots are very close to the blue line (smallest n2). Although the
differences between red dots and cyan dots are visible for small n1 (performance for
larger n2 is slightly higher), they become almost unnoticeable for around n1 È 40.

Figure 5.17: Ideal speedup when employing vector instructions instead of scalar instructions for batchnorm.
In blue, the continuous function associated with Eq. 5.32 for n2 Æ16. In red, values for integer n1 in case of
n2 Æ16. In cyan, values for integer n1 in case of n2 Æ1024. In orange, the asymptotic value for large n1, which
in this case is around 0.69 times VLMAX (i.e. 88.62). The range of n1 considered (6-192) was defined from the
minimum and maximum values in Table 4.4.



5

148 5. ANALYSIS OF POTENTIAL AND CHALLENGES OF VECTOR PROCESSORS

SUBSAMPLING LAYERS

Fig. 5.18 shows how to implement maxpool2d_totalvec with RVVE13. The function uses
an intermediate Bt matrix of size (n1/s)£n1£n2. In this case, the first loop, the one com-
paring rows, can be easily parallelized with the vmax_vv instruction, i.e. an instruction
comparing element-by-element two vectors and writing the maximum for each of them
in an output vector. To parallelize the loop second loop, i.e. the one comparing columns,
non-unit stride load and store instructions are needed, because (as explained in Sec. 5.4)
elements in the C language are stored in row-major order, i.e. elements of a row are con-
tiguous in memory while elements of a column of the input are 4¢n1 bytes apart, with n1
being number of columns. While the parallelization of the first loop achieves relatively
low values (the maximum value of n1 in Table 4.3 is 96, with a median value of 24 and a
minimum value of 6), the second loop deals with vectors of n2 ¢n1/s elements (the max-
imum value in Table 4.3 for this is 3072, with a median value of 1536 and a minimum
of 384). However, support of non-unit strides puts higher constraints on the memory
subsystem. For this reason, a second implementation is provided (maxpool2d_halfvec),
where the second loop (the one requiring non-unit stride load and stores) is replaced
with a scalar implementation. Fig. 5.19 shows the scalar loop employed. In the case of
s Æ2:

N Is1 ÆN I1s1 Å n2(N I2s1 Å n1[N I3s1 Å
n1

s
(N ILoop,s1 Å Pr ¢N Ii f 1)]) (5.34)

N Is2 ÆN I1s2 Å n2{N I2s2 Å
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When considering the full vectorized version, with non-unit stride load and stores:
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while instead, when only the loop comparing rows is vectorized:
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In both cases:

N Is

N Iv
Æ

N Is1 Å N Is2

N Iv
. (5.38)

From Fig. 5.20 it is clear that n2 has a small impact on the ideal speedup, although very
small values (n2 Æ6) produce noticeably slightly lower results already for small differ-
ences in terms of n2 (e.g. n2 Æ20). The loss in terms of ideal speedup due to the use

13To avoid the use of the memcpy function in the scalar version, the additional flag "-fno-tree-loop-distribute-
patterns" was added during compiling.
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void maxpool2d_vec ( int *a , int * b_t , int *b) {
s i z e _ t v l ;
vint32m1_t va , vb , vc , va1 , vb_t ;

stride_rows = 4*n1 ;
stride_rows_s = 4*n1/ s ;
b_saved = b ; b_t_saved = b_t ; a_saved = a ;
for ( int j =0; j <(n1*n2 ) / s ; j ++){

for ( int i =0; i <s −1; i ++){
columns = n1 ;
b_t= b_t_saved+ j *n1 ;
a= a_saved+ j *n1*m+( i +1)*n1 ;
for ( ; v l = vsetvl_e32m1 ( columns ) ; columns −= v l ) {
i f ( i ==0){

a−=n1 ;
vb_t = vle32_v_i32m1 ( a ) ;
a+=n1 ; }

else {
vb_t = vle32_v_i32m1 ( b_t ) ; }

va = vle32_v_i32m1 ( a ) ;
vb_t = vmax_vv_i32m1 ( va , vb_t ) ;
vse32_v_i32m1 ( b_t , vb_t ) ;
a += v l ;

b_t += v l ; } } }

b_t=b_t_saved ;
for ( int j =0; j <(n1 ) / s ; j ++){

for ( int i =0; i <s −1; i ++){
rows = n2*n1/ s ;
b= b_saved+ j ;
b_t= b_t_saved+ j * s+ i +1;
for ( ; v l = vsetvl_e32m1 ( rows ) ; rows −= v l ) {

i f ( i ==0){
b_t −=1;
vb = vlse32_v_i32m1 ( b_t , stride_rows ) ;

b_t +=1;}
else {

vb = vlse32_v_i32m1 (b , stride_rows_m ) ; }
vb_t = vlse32_v_i32m1 ( b_t , stride_rows ) ;
vb = vmax_vv_i32m1 ( vb , vb_t ) ;
vsse32_v_i32m1 (b , stride_rows_s , vb ) ;
b_t += v l *n1 ;
b += v l *n1/ s ; } } } }

Figure 5.18: C function implementing maxpool2d_totalvec with RVVE.

of maxpool_halfvec instead of maxpool_totalvec is very large, having the former an al-
most constant ideal speedup of around 2x, while the latter has an ideal speedup above
20 already for n1 ¸ 24 (14 layers out of 15 in Table 4.3).

Fig. 5.21 show the ideal speedup for layers with s È 2 with experimental data from
Spike. The number of instructions in this case is highly dependendent on the optimiza-
tion of the compiler for each value of s. Therefore an analytical model for s È 2 was not
defined. The experimental data shows that maxpool_halfvec becomes better with higher
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for ( int j =0; j <(n1 ) / s ; j ++){
for ( int i =0; i <s −1; i ++){

rows = n2*n1/ s ;
b= b_saved+ j ;
b_t= b_t_saved+ j * s+ i +1;
for ( ; v l = vsetvl_e32m1 ( rows ) ; rows −= v l ) {

i f ( i ==0){
b_t −=1;
vb = vlse32_v_i32m1 ( b_t , stride_rows ) ;

b_t +=1;}
else {

vb = vlse32_v_i32m1 (b , stride_rows_m ) ; }
vb_t = vlse32_v_i32m1 ( b_t , stride_rows ) ;
vb = vmax_vv_i32m1 ( vb , vb_t ) ;
vsse32_v_i32m1 (b , stride_rows_s , vb ) ;
b_t += v l *n1 ;
b += v l *n1/ s ; } } }

Figure 5.19: Loop employed to replace the second loop in maxpool_totalvec, to obtain maxpool2d_halfvec
without non-unit stride load and store.

Figure 5.20: In red, ideal speedup (NI s /NIv ) when employing vector instructions instead of scalar instructions
for maxpool_totalvec for n2 Æn1 and m Æ2. In blue, for n2 Æ6. In green for n2 Æ1024. In orange the ideal
speedup of maxpool_halfvec for n2 Æn1. In black an horizontal line for NI s /NIv Æ2 is plotted for comparison.
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s, going from around 25 times slower for sÆ2 to 4 times slower for sÆ16.

Figure 5.21: Ideal speedup ( N I s/ N I v ) when employing vector instructions instead of scalar instructions for
maxpool2d_totalvec (in blue) and for maxpool2d_halfvec for different value of s.

ACTIVATION LAYERS

To implement relu_vec with the RVVE, a loop based on the instruction vmax.vx can be
employed, i.e. the instruction comparing all the elements of a vector with the content of
a scalar register and providing as an output a vector of the same size where each element
is the original element of the input vector or the scalar [336]. As shown in Fig. 5.22
relu_vec can be easily obtained setting the value in the scalar register to 0. Also in this
case a good degree of parallelizzation can be obtained, because the vector loop operates
on n1

2 ¢n2 vectors. The ideal speedup is:

void relu_vec ( int *a , int *b , s i ze_ t n) {
s i ze_ t v l ;
int c = 0;
vint32m1_t va , vb ;
for ( ; v l = vsetvl_e32m1 (n ) ; n �= v l ) {

vb = vle32_v_i32m1 (b ) ;
va = vmax_vx_i32m1 (vb , c ) ;
vse32_v_i32m1 (a , va ) ;
a += v l ;
b += v l ; } }

Figure 5.22: C function implementing relu with RVVE.
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