An Activity-Based Multimodal Model Structure to assess Transportation Management Strategies for Urban Emergencies

Jeroen P.T. van der Gun, Adam J. Pel, Bart van Arem
Introduction

Urban emergencies

Urban emergencies

Flooding, hurricanes, wildfires, tsunamis, large-scale traffic accidents, airplane crashes, industrial accidents, nuclear disasters, terrorist attacks, etc.

• Observed characteristics (one or more):
 • Substantial delays for everyday traffic
 • Presence of evacuation traffic
 • Emergency services trying to reach the disaster site

• Urban transportation system is easily overloaded
Introduction
How to control

- Transportation authorities need a strategy
- Candidate strategies need assessment
- Assessment requires a simulation model
- Assessment allows for optimisation

Three issues regarding assessment:
- Interface with transportation management problem
- Travel choices of affected population
- Network performance and travel times
The management problem

Overview

Decision variables

Objective

Constraints
The management problem

Decision variables 1/2

- Decision variables
 - Operational
 - Traffic light and ramp metering settings, dynamic speed limits, peak-hour and contraflow lanes, dynamic route information, public transport announcements, traffic regulators, emergency services, ...
 - Tactical and strategic
 - Departure advice, mode advice, destination advice, route advice, roadblocks, contraflow roads, temporary road construction, public transport, public shelters, ...

Challenge the future
The management problem

Decision variables 2/2

- Adaptiveness: take uncertainty into account
 - Operational variables: frequent real-time changes
 - Tactical variables: infrequent changes
 - Strategic variables: no changes

- However, the disaster plan must be unambiguous
 - Since assessment must be possible
 - For changable variables, the decision process must be codified
 - E.g. simple decision rules, model-predictive control, ...
The management problem

Objective and constraints

• Objective
 • Two main categories:
 • Non-evacuations: minimise delays
 • Evacuations: maximise evacuation effectiveness
 • Robustness: evaluate goal function for multiple scenarios to account for uncertainty
 • Prevents creation of overly optimistic disaster plans

• Constraints
 • Limitations of traffic management options
 • Quality/safety of rescue operations
 • Ethics
The management problem

Simulation model components

Evaluate the goal function

- Model travel choices
- Simulate network performance
Travel choice modelling

Why and how

- Used to determine expected loads on transportation system
- Used to see how authorities can influence these

- Activity-based
 - Generates a synthetic population with activity-travel schedules
 - Considers intra-household relationships
 - Important for evacuations
 - Continuously tracks location of individuals and vehicles
 - Can explicitly include relation between normal day and emergency situation

- Dynamic
 - Can study dynamic development of emergency situation
 - Can consider information availability
Travel choice modelling

Escalation model for household

Normal
- Follow activity-travel pattern from equilibrium situation
- Initial state of all households

Adaptation
- Adapt to experienced or anticipated delays
- Ranges from switching routes to rescheduling everything

Evacuation
- Danger is perceived and acted upon
- Household members gather and evacuate or seek shelter
Travel choice modelling

Example implementation

1. Perform everyday activities
 - Household in danger?
 - No: Adjust activity-travel schedules if necessary
 - Yes: Home still safest option?
 - Yes: Travel home
 - No: Evacuate to friend/hotel/shelter

2. Home is safe?
 - No: Evacuation
 - Yes: Normal Adaptation
Simulating network performance

Why and how

• Used to determine congestion levels and travel times

• Dynamic
 • Can study dynamic development of emergency situation

• Multimodal
 • Should be as multimodal as urban regions
 • Public transport could be effective means of evacuation

• Macroscopic (rather than microscopic)
 • Can be more parsimonious
 • Can be calibrated on macroscopic level
 • Is computationally more efficient
Simulating network performance
Choice component interaction

Serial execution
Normal day
Method of successive averages

- Choice (fraction of households)
- No choice (other households)
- Network loading

Modelled time

Parallel execution
Disaster scenario

- Choice
- Network loading

Modelled time

Normal day
Conclusion

Assess effectiveness of emergency transportation management strategy, by using a simulation model

- Allows robust testing of adaptive disaster plan
- Activity-based and dynamic choice model
- Dynamic, multimodal and macroscopic network performance model

What’s next?
- Model implementation (already started)
- Model calibration
 - Stated preference survey for choice model
- Coupling with optimisation module