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_Analogy between Tides and 
·Electricity 

A.C. 

By DR. JOH.AN· VAN ~EN* 

No. I 

MATHEMATICAL CONSIDERATIONS 

IT is generally ac·cepted that the precise 
calculation of tides in new channels is 

difficult. In the first part of this article . an 
attempt is made to show the truth of this 
statement. In the second part a simple 
analogy from which elementary tidal calcula
tions can be made is explained. This leads 
in the third part to electrical experimental 
solutions. · For the deduction of the formulro 
see the bibliography at the end ofthe article. 

Apart from some early attem,pts to solve 
the problem of tides in a network of channels, 
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h=depth of · channel section at any 
moment. 

t= time. . 
g=gravitational acceleration. 
b= stream breadth in cross-section. 

H =depth below mean level. 
k= linear resistance coefficient (constant). 

These equations, which have _ to be used 
together, start from the . idea that two 
sinusoidal waves run in opposite directions · 
at the same time. No attempt will be made to 
explain them here-the explanation can be 
found in detail in the book of the Zuiderzee 

Committee1 , of which 
Lorentz was chairman. 
It took eight years' 
mathematical calcula
tion to solve the pro
blem of the Zuiderzee 
tides with these form
ulro. 

The simplifications 
which had to be 
accepted were the 
sinusoidal tidal waves 
and a linear relation 
between stream vel
ocity v and friction R, 

R 1rx:.kv . 

The right relation: 
ship is, however : 

Rrx:.v2 /O, 

where O= Chezy's con
stant. 

By assuming the 
total amount of work 
ot both R1 and R per 
tidal period to be- the 
same, Lorentz could 
keep his results within 
bounds while keeping 
his equations linear 
and therefore solvable. 
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In practice his ideas 
proved to be right. The 
tide after the enclosure 
of the Zuiderzee in
creased as was cal
culated, while the 
·currents iri the Frisian 
inlets increased by 
about 20 per cent as 
predicted by cal-Scale 
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FIG. 1- TIDAL NETWORKS 

Professor H . .A. Lorentz, of Leiden, .in 1918 
was the first to introduce two practical and 
se-ientific formulro : 

where 

os/ox= - Boh/ot (continuity 
equation) 

1/gbH. osj'ot= - oh/ox-·ks/bH 
(dynamic equation) 

(1) 

(2) 

s= fiow through cross-section in cubic 
metres. 

. x= distance along axis pf tidal channel. 
B=breadth of river at mean level= 

capacity or fill breadth. 
* Rijkswaterstaat, Tidal Research _Bureau, Holland. 

Km. 

. culation. Superficial 
reasoning might have 
led to the faulty 
conclusion that these 
currents would have 
weakened after such a 

large area of the tidal basin had been cut off. 
The Lorentz equations could not be used 

with exactness in tidal river mouths because 
of the slope which the river discharge .9reates 
in them and upon which the tidal wave 
travels. An extension to these equations 
was made by Dr. J. P. Mazure, engineer of 
the Zuiderzee works, which resulted in the 
following formulro :-

os /ox= -Boh/ot _ (3) 
. oz/ox=-1/gf. os /ot+s /gj2[of/ot+boh/ot] 

+s2/gj 3 • of/ox - lsls /0 2j2R . . (4) 
where 
1 H. · A. -Lorentz, Verslag van de Staatscommissie 1918 
ter ajtsluiting van de Zuiderzee, Den Haag, Algemeene 
Landsdrukkerij, 1926; 336 pp.; 61 fig. 
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z=height of water level above mean 
level. 

.f=area of cross-section. 
lsl =flow regardless of direction. The 

other symbols have the same meaning 
as before. 

Again, these formulro are for purely sinu
soidal tides and also with the linear relation
ship R1akv. Recently Mr. H. J. Stroband, 
of the Rijkswaterstaat improved this method 
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FIG. 2-RELATI ON BETWEEN DEPTH OF 
CHANNEL AND CONDUCTANCE 

so that M 2 , M 4 , s . . . sinusoids (the 
constituents of the vertical tide) can be 
calculated with high accuracy. 

For still greater accuracy the T-idal 
Research Bureau of the Rijkswaterstaat 
developed a third set of formulro, generally 
referred to as the exact ones. They are, of 
course, not quite exact. By using the Fourier 
series the mathematician, Dr. J. J. Dronkers, 
brought in the quadratical relation Ra0v2

, 

and the natural non-sinusoidal tides. These 
exact formulro are : 

oh x2B as x 2B o2s 
81 =s+Bxat ± 8 0 2b2h

0
3' Ft+ 2bgho at2 (5) 

lslsx X as oho x 2B 
hi=h+ 02b2ho3 + gbho. at + lsl at . 02b2ho2 

oh (b+B)x Bx2 o2h 
-

8&. b ·gho2 + 2bgh0 • 8t2 
B2x3 (ah) 2 

± 302b2ho3 8t 
(6: 

where 
h0 = depth at beginning of channel section. 

and 
h1= depth at end of channel section. 
The calculations with these formulro pro

ceed from hour to hour throughout the tidal 
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FIG. 3-SIMPLE APPLIC ATION OF KIRCHHOFF'S 
LAWS 

phase. A " starter " is needed to begin the 
calculations. Usually the results of calcula
tion by formulro (1) and (2) or (3) and (4) are 
used as a " starter." 

It will be clear from this that much work is 
needed to solve a tidal problem by any of the 
methods given above. .As every channel 
section has two equations and a network often 
has twenty or thirty channel sections (see 
Fig. l), for each problem forty or sixty 
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equations have to be solved. Each scheme 
may need thirty different calculations, so 
that for some projects 300,000 man-hours of 
calculation for tides alone must be · faced. 
Thirty years of solving such calculations 
has shown that the theory of tides can be 
mastered, but that the application of such 
methods is very arduous. Readers who may 
be interested in this problem should refer to 
the bibliography at the end of this article. 

THE .ANALOGY 

In the latest development there is a return 
to simplicity by the use of electrical methods. 

THE ENGINEER 

though the area of the first is double that of 
the second. . When a channel is deepened to 
twice the original deptn the conductance 
becomes three times greater (see Fig. 2). 

(5) Resistance.-A channel has a resistance 
in the same way as a conductor. This is pro
portional to the length of the channel or con
ductor ap.d is reciprocal to the conductance. 
For a river section 0f lm length engineers 
use the expression R = l/bh3 l2• 

(6) Potential.- In electrical science poten
tial means the energy above some initial 
datum- the earth. In hydraulics we might 
call the -height of a water level above the 
initial plane- the mean sea level, for instance 
- the potential. The expression " potential 
difference " is the hydraulic " head," i.e., the 
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a gradient a, and a resistance l/Gbh3 i2, we 
get the well-known Chezy formula for wide 
channels: 

Q = ·0bh3 l2y' rx. 

This · formula applies to simple rectangular 
channels. For trapezoidal channels the 
formula Teads: 

Q= 00VRrx 

where 0 is the· area and R is the hydraulic 
radius of the cross-section. C is the well
known constant, with a value of about 40 
or 60 in metric units. 
· (9) The Laws of Kirchhoff for Direct 

Currents.-At a junction of two ordinary 
rivers (Fig. 3) the total flow per second in the 

B 

-b-
FIG. 4-FILL ARE A FIG. 6 - KIRCHHO FF'S LAWS AND MOTIVE AREA 

Perhaps this should have been the original 
approach. The laws of Nature are often 
simple if solutions of extreme exactness are 
not sought. Intricate formulre are not for 
planners. Civil engineers should apply easy 
and quick formulre for tides. If ultimate 
exactness is needed for the final plan a trained 
mathematician can do the job, or electrical 
imitation can be made. 

The main conceptions of the analogy useful 
for gaining fundamental tidal information are 
as follows:-

(1) Direct Currents .-A non-tidal river, 
flowing in one direction only, can be com
pared to an electrical conductor through 
which direct current is fed. 

(2) Alternating Current._:__A tidal channel 
in which the ~bb and flood streams go to and 
fro resembles an electrical conductor through 
which alternating current pulsates. 

(3) Tidal River M outh.- A channel serving 
the outflow of a river as well as the tide is 
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difference in height of the water surface at 
two different points of a river. The term 
"potential gradient" means slope. 

(7) Motive Power.- The motive power of 
river streams is gravitational, expressed in 
terms of " slope " or hydraulic gradient. 
Also, the tidal streams of tidal inlets are 
promoted by the force of gravity. The moon 
and sun create the rise and fall of the tides in 
the ocean but we can accept the movement 
of the tides at the river entrances as the 
starting point for . our considerations. All 
that need concern us in this matter is the 
fact that the vertical movement of the sea 
level at the river entrance creates changing 
slopes and these slopes cause the current to 
run in or out. A theory exists which con
siders tides as the resultant of waves pro
ceeding and then being cast back ; that is, 
as two waves moving in opposite directions. 
This theory is often used in mathematics and 
is also valid. There is no essential difference 

between this view of 
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the problem and the 
more simple consider
ation of a single wave 
entering the channel 
mouth and creating 
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three channels must obey the equation 
Q1 = Q2+Qa-

When there is an island in a river the 
potentials along both branches must be the 
same. Therefore, aiZ1 =a2Z2, if a1 and a2 are 
the slopes and Z1 and Z2 are the lengths of t he 
two branches. It is quite easy to calculate 
the currents in these branches with the two 
formulre of Kirchhoff and Chezy (or Ohm's) 
Law. 

(10) Kirchhoff Laws for Alternating 
Currents.-In electricity the simple laws of 
Kirchhoff hardly change when alternating 
currents are considered in place of direct 
currents. The same is true in hydraulics, bu.t 
it must be noted that measurements never 
can be made at the exact junctional point. 
A certain area Z (the fill area) remains 
between the lines of measurement; this 
area is shown hatched in Fig. 4. For 
each tidal period our first law of Kirchhoff 
therefore becomes Q1=Q2+Q3+2ZA, when 
the tide comes from the right and A is the 
tidal amplitude. When the tide comes from 
the left we get Q1= Q2+Q3- 2ZA . The Q's 
are the sums of ebb and flood per cycle. The 
factor 2 is for filling plus emptying. 

If we try to check these simple formulre 

FIG. 5 - DISCHARGE AND MOT IVE ARE A FIG. 7 - HYDRAULIC ANALOGUE OF S ELF INDUCTION . 

analogous to a conductor fed with direct 
current at one end and alternating current at 
the other. 

(4) Conductance.-As a thick wire has 
more conductance than a thin wire, so a river 
or channel with a large cross section has 
more conductance than a smaller river or 
channel. The hydraulic conductance for a 
rectangular cross section is propor~ional to 
the 3 /2 power of the depth h, and is directly 
proportional to the breadth b. For such 
a cross section engineers use the expression 
conductance= L'bh3 ' 2• Conductance is in
fluenced more by depth than by breadth. 
A cross section of 800 X lm has the same 
conductance as a cross section 100 X 4m, 

movement of the water in or out of the river 
by reason of the changing gradients imposed. 

(8) Ohm's Law.- The simple relation which 
exists between potential, resistance and a 
continuous current is electrically expressed 
in Ohm's Law: I = E /R . That is, for a con
ductor of unit length, the current is propor
tional to the potential drop and the con
ductance. In hydraulics the law is similar 
except for the root sign. 

Current v'hydraulic gradient, referred to 
resistance 

as Chezy's Law. 

With a current Q (cubic metres per second), 

we find they differ from nature, because of 
the currents going from branch -2 into branch 
3 and vice versa when the tide turns. This 
is due to the difference in phase of the two 
streams in the two branches. The same 
occurs with el~ctrical currents. When the 
phase differences are large we must not 
neglect these " corner " currents. . 

Kirchhoff's second law for alternatmg 
currents means that there is one tidal wave 
at A and also one tidal wave at B (see Fig. 6a). 
The propagation of the tide is such that the 
time of propagation along both sides of an 
island •is the same. The theory that the 
propagation is proportional to v' gh is not 
considered here, since it is important t o 



remember that this theory is only true when 
two opposing sets of tides are considered. 

If the tidal graphs A a.nd Bare drawn on 
the same time axis (Fig. 6b), the vertical 
distance at a given time is °'i_b1, and this is 
the head between A and B if the distance 
between these two points is not too great. 
Later on the head is negative, i .e., b2a2 • 

The negative is the ebb-head while the 
positive head a1b1 is the flood-head. Near 
high and low water the heads become zero 
temporarily. When the tidal line B is 
subtracted from the tidal line A and both 
are sinusoids, there remains a new sinusoid, 
differing about 90 deg. in phase with the 
tidal lines. This sinusoid can be referred to 
as the" head graph" between A and B . 

The area of the " head graph " is called 
the motive area. In Fig. 6b this area iii 
hatched vertically. With tides (or alternat
ing currents) the motive power is not con
stant, but sinusoidal. The :iµotive area for 
any channel is an important factor. We 
can obtain it by measuring the tidal curves 
at both ends of the channel section on an 
exact time basis. The tide-recorder clocks 
must keep exact time if we are to rely on 
the motive areas deduced from measure
ments taken by such tide gauges ; · a .minute's 
discrepancy may be too much. 

It will be apparent that there is a very 
close relationship between the velocity of 
propagation of a tide and the motive area. 
It should be understood that our velocity 
of propagation is not proportional to Vgh, 
but that it is, by our definition, the natural 
propagation velocity obtained from tidal 
measurements. 

If the total :tl,ood running through a section 
of tidal channel is f and the total ebb is e, 
it follows that the total flow per tide through 
the e;ross-section is Q J+e (Fig. 5). 
The same is the case with the motive areas, 

M,rn=Mt+Me. 

If there is a river discharge we obtain 
figures as indicated by the curves (b, c and d) 
in Fig. 5. The ebb quantity increases while 
the flood quantity decreases, when the river 
brings down more upper wat~r. Making P 
the river discharge per tidal period (44,700 
seconds) the following relationship holds : 

Q= e+J 
P=e- f 
e=½(P+Q) 
f=½(Q - P) 

In the same way : 

Mq=Me+Mt 
Mp=Me- Mt 
Me=½(Mp+M2) 

M1=½(M2 - Mp) 

Far from the sea there will be no flood. Then 
the curves of the currents and motive forces 
become as shown by the curves (c) and (d) 
in Fig. 5. The tidal cycle must be retained 
in all definitions. 

(11) Self-lnduction.- In the theory of a .c. 
electricity the conception of self-induction 
and power .factor is important. If Im repre
sents mean current, Em represents mean 
electromotive force and Rm resistance (the 
current and voltage wave-forms being 
sinusoidal), then 

lm=Em COS cf, /Rm. 

In this expression cf, denotes the angle of lag 
and cos cf, (the power factor) takes into 
account the effect of self-induction. A 
typical value for cos cf, might be O · 9. 

What is the hydraulic analogue to self
induction 1 It is the inertia of the water 
masses which prevent these masses ceasing 
to flow as soon as the slope reaches zero. 
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Also the maximum flow is not attained when 
the maximum slope occurs, but after a phase 
delay of cf,. In the science of tides there is 
the same angle of lag as there is in electricity. 
Usually the value of the factor v' cos cf, is also 
about O · 9 in -channels. In open seas it is 
ll'.).Uch less, because of the huge m.asses and 
low friction. 

The relation between the tidal curves 
(vertical tide a), the curve of gradient or 
slope (motive curve a}, and the stream curve 
(horizontal curve s) in a particular eross
section of a river mouth. is shown in Fig. 7. 

The slope line a pasf:!eS the axis or zero 
line at or near high and low water and reaches 
its maximum at A 1, A2 and A3- where the 
a line (or vertical tide) is zero. The stream 
line s lags cf, behind the a line. 

This important relationship, as typified 
by Fig. 7, is to be found in every elementary 
book on electrical science. It should appear 
in all books dealing with the science of tides. 
The simple relationship between °'i., a and s 
must be clear to any engineer dealing with 
tidal rivers and estuaries. When there is a 
slope in the H. W. line in a channel, the 
diffcirence in phase of the a and a lines is not 
exactly 90 deg. 

(12) Ohm's Law for Tidal Currents.- The 
formula lm= Em cos cf,/Rm for a complete 
cycle of electrical current has the following 
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formula as its equivalent for a cycle of tidal 
currents: 

Q=Cmbmhm8 ' 2-V rxm T cos cf,. (7) 
The deduction is analogous to the electrical 
equivalent when the Lorentz constant is 
used. Here the use of C necessitates deduc, 
tion, partly by analogy. This is not merely 
introducing a factor of self-induction into 
the Chezy formula ; the new formula is meant 
for a complete cycle of T = 44,700 seconds. 
Therefore the quantity am T is not a certain 
angle or slope but a motive area, or rather a 
mean motive gradient. If the motive area be
tween two stations is Mand the distance is l, 
then the motive gradient per cycle is M /l and 

M 
cxm= 44,700l 

Further, the mean breadth of the wetted 
area of the channel is. b,,., while hm is the 
mean depth during the cycle. If an attempt 
is made to check this new formula by means 
of total flow measurement and by measuring 
the motive gradient as accurately as possible, 
it will be found that it gives accurate results. 
The value of cf, can be roughly obtained by 
measuring the time between high water and 
the following slack water, or the time 
between the point of low water and the 
following slack water. It should be noted 
that the formula is for a single profile 
only, not for a channel section. 

(To be continued) 

The Iron and Steel Institute 
No. U - (Continued from page 488, November 21st) 

THE remainder of Wednesday morning's 
session was devoted to a joint discussion 

on the following papers :-

BRITTLE FRACTURE IN MILD STEEL 
. PLATES 

By W. BARR, A.R.T.C., F .I.M., and CoNSTANOE 
F . TIPPER, M.A., D.Sc. 

SYNOPSIS 

The temperature range of transition from tough 
to brittle fracture of mild steel plates of different 
carpon and manganese contents was deterIIlined 
by means of notched-bar impact, notched bend, 
and notched tensile tests. The results obtained 
by each of these tests were in good agreement, 
except that for very soft steels the notched· tensile 
test gave a lower transition range than the other 
two tests. 

It was found that the transition range is raised 
by an increase in the ferritic grain size, by an 
increase in plate thickness, and by slow cooling 
after normalising. It was also found that a high 
notched-bar impact value may be accompanied 
by a fracture which is mainly cleavage. 

Tentative conclusions, subject· to confirmation, 
have been reached that the effects of plate thick
ness and slow rates of cooling in raising the transi
tion range are reduced in mild steel plates with 
higher manganese contents. 

EFFECT OF THE MANGANESE/CARBON 
RATIO ON THE BRITTLE FRACTURE OF 
MILD STEEL 

By W. BARR, A.R.T.C., F.I.M., and A. J. K. 
HONEYMAN, B.Sc., F.I.M. 

SYNOPSIS 

A series of four mild steels was made in which 
the only significant variable was the manganese/ 
carbon ratio. The residual elements were low and 
the tensile strengths were approximately the 
same for each steel. The notched-bar impact 
properties of these steels in the annealed and 
in the normalised conditions have been determined. 
It was found that increasing the manganese /carbop 
ratio lowers the range of transition from tough to 
brittle fracture, increases the impact values at 
all temperatures, and tends to result in finer 
McQuaid-Ehn and ferritic grain sizes. A practical 
recommendation is made that for structural 

steels for shipbuilding purposes, the manganese/ 
carbon ratio should be not less than 3 · 0. · 

SOME FACTORS AFFECTING THE NOTCHED
BAR IMPACT PROPERTIES OF MILD STEEL 
By W. BARR, A .R.T.C., F.I.M., and A. J. K. 

HONEYMAN, B.Sc., F.I.M. 

SYNOPSIS 
Work carried out to confirm and extend con

clusions stated previously by the authors on the 
influence of carbon and manganese on the notch 
sensitivity of mild steel is described. Steels were 
made to carefully controlled compositions and thei:r 
structures and impact properties in the normalised 
and annealed states were deterIIlined. It was 
shown that increasing the carbon conten_t raises 
the transition range and lowers the impact values 
of steels in the normalised condition, while increase 
of manganese content has the opposite effect. 
It was confirmed that an increased manganese/ 
carbon ratio tends to give a steel with a finer 
McQuaid-Ehn grain size and a finer structure in 
the normalised condition. A comparison of steels 
made with and without a grain-controlling addition 
of alwninium showed that the manganese/carbon 
ratio may be as effective as grain-size control in 
reducing notch sensitivity. A study of the relation
ship between the notched-bar impact value and the 
degree of cleavage in _the fracture showed that the 
latter is not the best criterion by which to judge 
notch sensitivity. Material which gives a pre
dominantly cleavage fracture will be satisfactory 
in service, provided that an appreciable amount of 
energy is absorbed before a crack is initiated. 

Introducing the papers, Mr. Barr explained 
that the origin of all this work was . the 
failures that were experienced with the 
American "Liberty" ships during the 
war. 

DISCUSSION 

Mr. H, H. Burton (English Steel Corpora
tion) remarked that the only heat treatment 
that had been considered-and this might 
be for reasons with which he was not familiar 
- was normalising. Those who had done a 
lot of work on some of the higher manganese 
pearlitic steels in which_ the manganese 
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Analogy between Tides and A.C. 
Electricity· 

By DR. JOHAN VAN VEEN* 
No. II-(Oontinued'jrom page 500, November 28th) 

(13) Oonrlenser and Oapacity.-An open har
bour with an area Z can store an amount 
ZA of water if A is the amplitude of the tidal 
rise. Per cycle the amount of water flowing 
through its mouth is 2ZA cubic metres. An 
open harbour is a condenser and ZA is its 
capacity. A tidal channel has a capacity 
of. its own in the same way as an electrical 
wire has a capacitance of its own-" spread " 
capacitance, in electrical parlance. For a 

___ Laj_F._,i/1=~@ ___ _ 

FIG. 8 - CAPACITY AND FILL FORMULA 

stretch of tidal channel l metres long the 
following relationship exists ·per cycle 
. (Fig. 8): 

Q1 =Q2 ±2ABlcoscf,. (8) 

This is the " fill formula " in which B 
is the mean breadth of the channel-fill. 
This B is always larger than the stream 
breadth b, as may be seen from Fig. 9. The fac
tor cos <p means that the fill of a tidal channel 
is not to be taken between the levels of high 
water and low water, but between the levels 
at the time of slack water. However, our 
measurements are usually not sufficiently 
accurate to check this formula ·in such a 
way that the influence of cos <p will be notice-
able. Cos cf, is usually about O • 8 and Vcos~ 
= 0·9, as previously mentioned. For open 
harbours the value becomes 1. For very 
deep channels or seas cos cf, is about 0, when. 
the capacity does not count at all. 

The simple fill formula follows from the 
. so-called continuity equation; when inte-

' H.W. l.W~.,..-
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FIG. 9 - MEAN BREADTH AND STREAM BREADTH 

grated over a whole cycle. Electrical 
engineers cannot neglect the ·cc spread " 
capacities of long conductors like telegraph 
or. telephone cables. They have to use the 
". telegraph equation," which is analogous 

· to our. Lor·entz equation (see page 498). 
(14) Wheatstone Bridge.- For . ordinary 

rivers or ·direct currents we may consider a 
ri_ver · with two mouths as shown in Fig. 10. 

· ·When an open channel is made between two 
· point.s_ A and B having the· sanie potential, 
or the saine level, there will be no flow in that 
challlel AB ; it is a balanced Wheatstone 
bd.Jge. . . 

For alternating currents in tidal channels 
, we may consider a case of two neighbouring 
· channels, AA1 and BB1 (Fig. 11), with two 
stations O and D having the. same tidal' 
amplitude and the same phase. No motive 
force exists between A and B; there : are 

• Rijkswaterstaat, Tidal Research Bureau, Holland. 

therefore no · streams except the filling 
ones · of OD. We often meet with 
channels in tidal networks which approach 
the Wheatstone bridge principle. These 
channels are more or less parallel with the 
coast. Improvements at any place in such a 
network always act severely on the streams 
in these " bridges " which then be<lome 
liable to many changes and to silting. Thus, 
if the channel GA is improved (Fig. 11) 
then channel OD may become almost 
devoid of currents, or, alternatively, its 
currents may become much larger, according 
to the change in tidal phase at station 0. 
We never find a purely balanced Wb,eat
stone bridge with the vertical tides at the 
ends exactly alike · and in -phase, but there 
are many channels .which come near to the 
dangerous condition where silting is ' likely 
to occur. 

(15) The Vitality Factor.-Because of the 
" spread " capacity of tidal channels the 
cross-sections of these must become larger 
towards the sea. The shores of tidal channels 
often have- or need to have__:a flare. 
Equation (7) is useful when considering a 
_single cross-section, but in order to be able 
to deal With a channel length with varying 

.cross-sections we have to introduce the term 
" vitality factor," F given by 

F=Q/bha/2 

For normalising a tidal channel this factor 
F should .be a constant· for all profiles of the 
channel. It means that the relation between 
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FIG. 10- WHEATSTONE BRIDGE 

the tidal total · flow per cycle and the con
ductance should be constant in that particular 

· channel. Fr.om equation (7) it follows that : 

F=O'Vocm T cos cf, . .. (9) 

so that a constant F in a channel (Fig. 12) 
implies a constant mean gradient am ( or a 
constant velocity of propagation), since 
0 and cf, vary little. 

Measurement in any tidal network of 
channels shows that nature has . made F 
constant, or nearly so, when the bottom sand 
varies little and the channel is not too 
sinuous. There are, of course, ·large differ
ences from one profile or cross-section. to 
another, but as a whole the value of F 
remains constant in any stretch of the channel 
(with metrfo units, about 7000 to 12,000). 
A high value of F shows tendency to scour 

-and a -low value is a sign that there ·may be 
silting:· Yet there is an exception to this 

· rule : · sand streams can · ups~~ · scouring 
· tendencies, . and generally F is highest on 
a bar. · 

The three graphs-'-total flow, conductance 
and vitality- are usually as shown in 

. Fig. 12. The first two increase while going 
. downstream, but the vitality remains more 
or less constant. In a network of tidal or 
non-tidal channels we cannot change the 

· value of F in any one channel without affec·t-
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ing the values of F in all the other channels. 
It is, of course, important to have a network 
with good vitality factors because silting and 
scouring are dependent upon it. Bars cause 
local troubles near the knots in such net
works, due to irregular sandstreams. 

(16) The Flare Formula.-Dr. Herbert 
Chatley gave in No. 71 of the Selected 
Engineering papers of the Institut ion of 
Civil Engineers the following formula :-

A= 2000B2A JQ, 

in which A is the flare per kilometre and Q 
the total amount of flow in a channel profile 
per cycle. This formula is for a constant 
mean depth h over the whole length of the 
channel and can be obtained from the fill 
formula, thus : 

Q1 =Q2+2AB l cos cf, 

This may be written 

0 1B 1hi312VrY.1 cos cf,1 - 0 2B 2h2
312VrY.2 cos cf, 2 

= 2ABZ cos cf,. 

In this Bis taken to be the same as b (see 
Fig. 9). · Assuming that 01 = 0 2= 0, and 

() 

II 
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FIG. 11- WHEATS TONE BRIDG E- TIDAL 
CHANNEL.S . 

a1=a2=a, and cos <p1 = COS c/,2= COS cf,=~ 
and h1 = h2= h, we obtain 

(B1 - B 2)0h3 / 2y; =2ABZ, 

or A= B1 - B~/l= 2000 B 2A /Q metres 
per kilometre. · . Thi~ formula is often too 
simple, since we have · to remember that · b 
differs from B and hi from h2• Generally we 
need a constant F = Q/bh312, and we get 

b1h1
3 / 2-b2h 2

3 ' 2 = (2000 AB cos cf,) /F metres 
per kilometre . . . (10) 

This formula only differs from Chatley's 
inasmuch as it works with conductivity and 
not with a constant depth hi= h2. EqJation 
(10) means that the growth in conductance 
must. be proportional to the mean fill breadth 
B and to the double tidal rise X cos cf, while 
being inversely proportional to the vitali~y 

FIG. 12- VITAL.ITY FACTO.R · 

factor . . The flare ·can therefore be -taken 
.according t~ wish_o~ circumstance, the depth 
being .calculated accordingly. · _ 

(17) Propagation of the Tidal W~ve . .,,...,..As ~as 
• been said before, the propagation velocity 
.of the tidal wave has a •close ·relationship -to 
the motive area and therefore to the currents. 

. This may need further explanation. . . . . . 
· If there is uniform propagation (Fig: -13), 
the tide line in A has exactly the same form 
as the tide·line in B, but not the same phase. 
In that case the horizontal lines aib1 = a2b2 
=a:ib3, &c. The time of propagation T 
is the same for all points of the v:ertical tide. 
If the distance between the two stations 
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A and B is l, then the velocity of propagation 
is 

V =l/T metres per second. 
If the propagation is_ not uniform the 

velocity of propagation is not a constant for 
all points of the tide. We may, however, take 
an average (Fig. 14). 
V (average)=(A1 +A 2)l/M metres per second, 

since the total area between the tidal curves 
of station A and station B is the motive 
area M and A 1 and A 2 are the tidal rises 
therein. 

The relation between the motive force and 

FIG- 13- UNIFORMLY PROPAGATED TIDAL 
WAVE 

the propagation of the vertical tide is very 
close indeed. It is: 

Propagation area AB=motive area AB. 
When the propagation of the tidal wave 

is rapid then the slopes are small and the 
.currents are relatively weak. If the propaga
tion. of the tide is difficult and slow the 
slopes are steep and therefore the currents 
rapid. We can see, therefore, on any map 
showing the co-tidal lines the points where 
fierce currents will occur. They are where 
the co-tidal lines are close together. 

(18) Propagation Governed by Ohm's and 
Kirchhoff's Laws,- The formula v= µVgh, 
which assumes that the velocity of pro-
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' 

FIG. 14- NON- UNIFORM PROPAG ATION 

pagation is proportional to the root of the 
depth and the root of . the gravitational 
acceleration, is not a suitable formula for use 
in our engineering calculations. This formula 
should never be used unless we are dealing 
with the difficult theory of waves going in 
either direction at the same time, as con-

. sidered m higher mathematics. 
It can easily be shown that in some cases 

the velocity of propagation may be quite 
independent of the depth of the channel ; 

-for instance, when a purely balanced Wheat
. stone bridge is considered. In that case, 
the velocity of propagation is infinitely 
great, while the influence of the depth 

. is , practically frnmateriaL In any net-
work of tidal cl).annels there can be 'but one 
verti0al tide in any knot or. junction. There
fore, around a mesh as that shown by Fig. 15 
the following simple relation:exists: 

T1+1\='.l\+T~ 
where the symbol _ T denotes the times of 

-propagation. - The velocities of propagation 
in each of the four channels are su<'h that 
there is only one vertical tide in A and one 
in B. We can also say M1+M2= M 3+M4, 

• ,because the motive areas are comprised 
between the tidal curves of A and B. 

In the case of a huge mesh, like the one 
,,aro~d the coast of England. an.Ji Scot~i:i,d, 
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the times of tidal propagation along the two 
paths- the coast of Scotland and the English 
channel- will be different, but nature ensures 
phase coincidence - where the two paths 
meet off the coast of Kent by allowing 
the Northern wave to arrive exactly one _ 
cycle later. It therefore does not meet its 

2. 

@ 
FIG. 15- SIMPLE NETWORK 

" brother " at the Kentish coast but its 
"uncle." Amphidromic points (Fig. 16) 
are, as it were, small islands near the centre 
of some coastal bend which allow the ver
tical tide to travel around them in a whole 
cycle along that particular coast. 

(19) The Left (or Right) Tendencies of Sea 
M ouths.- The deepest and largest channel 
in the estuary will be found in the direction 
from which the tide comes. For _ instance, 
along the Dutch and German North-Sea 
coasts the outflow of all main channels is 
towards the south-west or the west. This 
preference can be easily explained by theory. 
Let us take the case of a forked mouth of a 
tidal river (Fig. 17) and the tide in the sea 
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FIG. 16- AMPHIDROMIC POINTS 

going in the direction from A towards B 
along the coast. In that · case channel ~C 
will have scoured_ a larger profile than 
channel BC. This can be shown by drawing 
the lines of -the vertical tide for the stations 
A, B and C on the same time-axis. _- At 
flood tide the "head " a1 c1> b1c1 and 
at ebb-tide also a2c2> b2c2. 

We can also say Mac>Mbc• There_ is a 
bigger motive force in channel AG _ thi1_n 
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FIG. 17:_LEFT T.ENDENCY 

there is in channel BC and therefore, there 
are stronger flood as well as ebb streams in 
the first channel, .creating larger profiles . 

Slight increases or decreases in tidal ampli
tude from A to B or C will not alter the_ "left" 
tendency, as may _be noticed when d!~wing 
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figures resembling those of Fig. 17. On 
the German North Sea coast the increase 
of amplitude is towards •foe East, but 
it has very little' influence on the left
tendency of outflow. The force of Coriolis 
must also be -considered; in the northern 
hemisphere this force would push the water 
to the r1ght (ebb streams as well as flood, 
streams), but generally it is not very influen
tial when the channels are not too -wide: 

The main factors to be consid~red are 
the motive gradients, that is the motive 
areas per kilometre of the channel. The 
larger the motive area along the coast from 
A to B the larger the "· left " tendency. 
When there are three or more sea-mouths 
of a single · river and the head of the 
delta O is in full tidal swing, the pro
portions of the water in the various 

A B C D E 0 
Time Axis 

A B C 0 Jj E 
Time Axis 

I. 
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FIG. 18-TIDAL DELTA 

mouths will be more or less 13,s indicated. by 
the motive gradients and the conductances 
of those mouths. 
- If the vertical tide does not change much 
in the mouths we can indic_ate · _the phases 

· simply by marking on the same '.time-axis 
' a point to represent each knot or junction 
(Fig. 18). Supposing that the phase at the 
head O of the delta comes last, _the motive 
areas in the five .different mouths · are pro
portional to the times AO, BO, CO, DO and 
EO. Supposing that the phase· of th\3 ver
tical tide in O comes between C arid. D, 
the motive areas are also proportional to 
the same AO, BO and CO, &c., but we see 
that the flood runs towards the sea in the 
channels DO and EO, while it runs towards 
the land in the channels AO, BO .and CO. 

(To be con_tinued.) 

New Canaµian J.~lant 
FOUR new units costing a total of 

1,680,00·o· dollars · are under construction at ·the 
plants of Shawinigan Chemicals, Ltd., at 
Shawinigan Falls, guebec._ First to be com
plete_d will l;>e an addttiona~-llll!t tQ th~ ac(ltylene 

. hydratio11· process. ___ It is ·t.o be housed iI.). ja 
building 54ft squa,re and 70ft high, with .con
crete -foundations an,d steel sliperstructur~ . 

- Scheduled-- for completion :· in February,: 1948, 
is a -monochloracetic acid plant, housing ·a ·new 
'process developed by the Shawµugan-Cqmp-ahy. 
The -building, L -shapedi will _haye one _w~_g.TS:ft 
by 20ft and 60ft high, and_ ,:the other wmg· 54ft 
by 55ft and 20ft _-liighi : - '±'i'l.e third unit to be 

· completed-under the -scheme will -be an .e:!l;ten
. sion to t):J.e present vinyl a~e.tat_e p~an.t. Tt \s -to 
' be ready irr Mar·ch, 194'8, aria"will prouuce ~yl 
: acetate by the vapour,phase_ process. · _ The 'last 

of the units·now under way-is·to ·be an·:addition 
to the present:butanol plant ·to produce butyral
dehyde. Most of this unit will be housed in the 

• present plant, but it requires a new pump·-house, 
20ft by 23ft and 15ft high, built of concrete l),Bd 

_ brick, and a tank farm, 35ft by 72ft of con2r~te 
design for t~n containers. __ : _ ... _ .-., , 
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Analogy between Tides ·and A.C. 
Electricity 

By DR. JOHAN VAN VEEN* 

No. III - (Oontinued from page 521, December 5th} 

PRACTICAL EXAMPLES 

AS stated in the first part of this article, 
there are two formulre to work with : 

the dynamic equation and the continuity 
equation. The simplest equations to which 
these can be reduced. are· " Ohm's Law" 
(7) and the "fill equation" (8). They 
are both for a whole cycle and are not 
intrinsically interwoven as they should be. 
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FIG. 19- PENINS ULAR AND S ING LE CHANNE L 

Therefore only simple questions can be 
tackled with them. In cases where our 
works will not alter the amplitude of the 
vertical tide these simple formulre can be 
used but they should not be used in the 
larger cases when the amplitude does change 
considerably. 

ments and exact gauge readings can check 
this . . 

It is not advisable to take the river sec
t ions too long. For rivers about 400m 
wide the length of the sections should not 
exceed 15km ; for wider rivers greater length 
can safely be taken ; the stylisation should 
be done with care. 

For the simplest primary calculations we 
have therefore to consider four formulre, 
the so-called Ohm's Law, the fill formula, 
and the two laws of Kirchhoff. These give 
a good insight into the principle of the 
conditions in any estuary or other network 
of t idal or non-tidal channels, for instance, 
irrigation networks. But the results they give 
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M AD+ MAB+Muo= Moo 
F AB = Q,./b1h1312 = 10,000y'MAB/ZAR 
FAD = 10,000y'MAD/ZAD 
Foo= 10,000y'Moc/Zoo 

The velocities in the new channel can be 

FIG . 22-O SCILLOG RAMS OF :'.;V E R T ICAL. -.C TIDEi" 
- RIVER L E K - - ~ 

estimated by using the sinusoidal formula 
mentioned above. 

The Calculation of the "Left" Tendency .
In a tidal river with two mouths (Fig. 17), 
the border conditions are M AB• the motive 
area in the sea along the coast, and the dis-

For a first approach it is instructive to 
use . the simplest method. Generally the 
vertical tides are well developed · in tidal 
networks and any change in the profile of 
one or more channels will hardly affect the 
amplitude. When the amplitude is affected 
this change can be estimated to start with. 
The main changes which occur are in the 
currents, the friction and the propagation, 
not in the vertical amplitude. We should 
start by measuring C (Chezy constant) in 
all our channels, using very good chrono
meters to determine the exact phases of 
the vertical tide lines. 

FIG . 21 - ELECTRIC AL EQUIVALE NT OF TIDAL RIVE R S 

We also can measure the value of cos cf, 
in all channels. Average values are cf, = 35 ° and 
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FIG. 20-OPEN CHANNE L C ONN ECTING 
TIDAL RIVERS 

ycos cp=0 · 9. This last figure varies between 
0 · 87 and O · 94 for different Dutch channels. 
Because C and cos cf, vary so little in the 
whole network we can combine them with 
the constant v' 44,700, which <mters into every 
calculation. We then get the convenient 
figure of 52x v' 44,700 X0·9=10,000. 

The following simple formula can there
fore be used : F=l0,000-v' M /l (dynamic 
equation), and Q1=Q2 ± 1·8ABl (con
tinuity or fill equation). But it is not 
certain that all estuaries will show the same 
convenient figure 10,000. Only flow measure-

* Rijkswaterstaa.t, Tidal Research Bureau, Hollan:d. 

are not exact. For larger and more important 
works other means of calculation must be 
sought- to which· reference is made later
but an example of the approximate method 
is given below. 

Calculation of Single Channel Cutting off 
Periinsula.-The simplest case for calcula
tion is when a single channel cuts off a 
peninsula around which there is a tidal 
sea (Fig. 19). The calculation of an open 
channel like the Panama canal poses the same 
simple problem. Let us suppose that the new 
channel streams will not affect the vertical 
tides in the seas near A and B . Then the 
motive area MAB can be measured accurately 
and it will not change when the new channel 
is made. The total flow can, therefore, 
be found immediately by applying the 
formula: 

Q= 10,000 bh3 l2 y'M.AB /l 
For sinusoidal curves the max. current is : 

S Qrr 
maz 2 X 44,700 

Supposing that the tides in A and B do 
change after the channel is made then two 
more sections, AD and BC, must be calculated 
(Fig. 19). Then Mm, is ou.r fixed "border 
condition." The quantities required are 
MAD, MAB, MBc, QA. For these four the 
followjng equations have to be solved: 

charge of tlie upper river Q. The following 
formulre can be deduced. 

We suppose that the vertical tide will not 
change when we fix the channel profiles 

FIG . 23- O SCILLO~RAMS OF H O RIZONTAL 
FLOW- RIVE R LEK 

in AC and BC to known proportions. Then 
Q1 just above the divid-i.ng point C remains 
the same and is known. To begin with : 

Q2+ Qa= Q1 
M Ac+ M uc= MAB 
FAc= 10,000y'M,.o/lAc 
F nc = 10,000y'Muc/ZRc 

Supposing that the profiles are known we 
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can calculate the streams or, alternatively, 
if we suppose that the maximum velocity 
in both mouths must be x metres per second, 
then the dimensions of the profiles can be 
calculated. 

Calculation of a New Open River Connect
ing Two Others.-For a new channel con
necting two existing_ parallel tidal rivers 
(Fig. 20) we can proceed as follows: We 
know Qi, Q2 and MAo, 
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the Lorentz constant which is proportional 
to the unknown current velocity. The 
simulation of the quadratical tides does not 
need these preliminary calculations, and 
therefore gives better and quicker results. 
The difficulty is to obtain the quadratical 
relation between current and friction. 
Ordinarily electrical currents give only the 
linear relation. However, electronic tech-

and can assume that 
the vertical tidal 
amplitude will not 
change because of the 
digging of the new 
open river. 

1,300 

1,200 

E/ootrio,/1~ ~u=rs, 
Measured t, . , 

M2 M4 / 1\ 
\ 

Then 
Q1=Q3+Q. 
Q2=Qs+Qe 
MAD=Moc +MBc+M"" 
F AB= 10,000yMAB/lAB 
F 8 c= 10,000yMBc/lBa 
Fan= 10,000yMcn/lon 

The fill formulas must 
be used for obtain
ing the flows in all 
profiles, in AB, BC 
and DC. 
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Any other example 
can be solved in this 
way provided we pre
sume that the ampli
tude of the vertical 
tide does not change 
because of our works. 
The . flow of the 
upper river has only 
a small influence 
upon the value of cos 
rp as has been proved 
in the Rhine mouths. 
The value of V cos ef, 
gradually changes from 

0 2 3 4 5 6 7 8 9 70 11 72 
••1 ... E [N G IN[ER" 

Lunar Hours 

Tidal Stream Curves at Krimpen on River -Lek. 

FIG, 25-COMPARIS ON OF ELE CTRICALLY MEAS URED AND 
CALC ULATED TIDAL CURVES 

0 · 9 into 1 when reaching the limit where 
the tide dies out, but in practice this small 
difference can hardly be noticed. The total 
flow, the resistance and the propagation 
can · be calculated without giving much 
thought to the flow of the upper river : 
Q is the total flow whether tidal or not. 

THE METHOD OF ELECTRICAL SIMULATION 

To obtain greater accuracy we must use 
either one of the sinusoid methods or the 
still more tedious " exact " method. They 
can deal with the vertical tide as well as 
with the horizontal tide, but the exact 
method gives more detail. and is more accurate 
because it takes the quadratical relation 
between velocity and friction into account 
correctly. 

nology provides a method of reproducing 
this quadratical relation electrically. With 
the aid of a cathode ray tube we can see the 
new tidal curves and they can be photo
graphed. 

The vertical tidal curves ( quadr(l.tical 
resistance) for a river of 50 ·miles length 
are shown in Fig. 22 as reproduced on a 
cathode ray tu be. The different lines 
are for different stations and they show the 
tide diminishing in amplitude from left to 
right when going up-river. The influence of 

The Iron and 

545 

river discharge on mean level cannot be 
shown by the cathode ray tube, which is, 
however, convenient for demonstration. 
Accurate measurements have to be taken 
electrically by other means. 

Fig. 23 shows the tidal streams 
(quadratical resistance) on the same ' river . 
and for the same stations. The deformations 
are due mainly to the quadratical relations 
between velocity and resistance. The por
tions of the curves abpve the datum line 
represent ebb conditions; the portions of 
the curves below the datum are steeper and 
they correspond to the river in flood. Note 
the phase differences, with the tide diminish
ing in amplitude from left to right. 

In Fig. 24 the tidal curve obtained elec
trically is compared with one obtained by 
calculation, assuming quadratical friction in 
both instances . 

Though the electrical analogy eliminates 
a considerable amount of difficult calculation, 
the theory of the tides should not be 
neglected. Mistakes may be made unwit
tingly with the decline in research and actual 
knowledge of the river, which may follow 
the application of easier methods of dealing 
with tidal estuaries. Even while using an 
electrical equivalent we should not neglect 
to check the results with river measurement. 

There are three ways of dealing with tidal 
problems: river research, which comes first 
and last; laboratory research; and mathe
matical research. None of these three should 
be neglected. They permit us to view our 
problems from three different angles and we 
cannot ignore one of these without running 
the risk of committing errors. But why 
should electrical engineers apply mathe
matical means for calculating their networks 
and hydraulic engineers, dealing with more 
costly analogous problems, not do likewise ? 
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Steel Institute 
In order to avoid the calculation work 

involved we can simulate our network of 
tidal channels by means of copper wires, 
electrical resistances, condensers, &c., 
putting an alternating current into one end 
of this network while injecting a · direct 
current into the other end. It goes without 
saying that the linear Lorentz equations can 
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. be simulated quite easily electrically because 
this method is exactly analogous to the tele
graph formulre. The photograph reproduced 
in Fig. 21 shows an electrical circuit which is 
equivalent t_o a tidal river, the Lek, in which 
the tide comes from the left and dies out 
towards the right, where the upper river 
brings its fresh water . 

The accuracy of such an electrical equi
valent is the same as that given by the mathe
matical formulre of Lorentz. The two sets 
of results do not differ by O • 5 per cent. 
The disadvantage of the linear method is 
not only that it gives inadequate results 
when great accuracy is needed, but also that 
it needs much previous calculation for fixing 

THE third and final session was held on 
Thursday morning, November 13th, the 

President (Dr. C. H. Desch, F.R.S .) again 
being in the chair. 

The first paper presented was : 

THE FLUIDITY OF STEEL 
By R. JACKSON, D. KNOWLES, T. H. MIDDLEHAM 

and R. J. SARJANT 

SYNOPSIS 

The paper described experimental investigations 
on the fluidity/temperature relationship,, as indi
cated by Ruff and Spiral mould tests, of four steels, 
viz. (1) 2 per cent Cu ste0l, (2) Si-Ni steel, (3) low
carbon steel, and (4) 13 per cent Mn steel, melted 
in high-frequency furnaces with acid and basic 
linings. Temperature measurements were made by 
optical and quick-immersion-couple methods. The 
Spiral mould gave more consistent results than the 
Ruff. Comparison of the authors' results with 
those of Taylor, Rominski and Briggs on similar 
steels showed widely differing fluidity /temperature 
relationships with similar moulds. Investigation 
of the pyrometric methods employed in the two 
sets of trials indicated that the differences could 

be mainly ascribed to the time lag in the temperature 
measurement employed by the American authors. 

DISCUSSION 

Dr. W. C. Newell (B.I.S.R.A.) said that 
one of the outstanding conclusions reached by 
the authors was that the · Spiral test wa.s 
superior to the Ruff test. The paper con
tained ample justification for that con
clusion. Another valuable conclusion was 
that regarding the correlation between 
fluidity and optical pyrometer readings and 
between :fluidity and quick immersion pyro
meter readings or tr~e temperature readings. 
The paper confirmed the general knowledge 
that acid steel was more fluid according to 
the optical pyrometer, but by the immersion 
pyrometer there was scarcely any difference. 
If anything, the bias was in favour of basic 
steel being more fluid, but the difference 
was within experimental error. Comparing 
true temperatures against fluidity, the corre-
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