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for the degree of Master of Science.

Dated: March 29, 2018

Supervisors:
dr. R.P. Dwight

dr. S. Hickel

dr. G. Eitelberg

M. Schmelzer, M.Sc.





Preface

This Master of Science Thesis is the final part of my journey through the department of
Aerodynamics at the Delft University of Technology. I have been blessed to be given this
opportunity to work under the supervision of dr. Richard Dwight and Martin Schmelzer. I
was granted much freedom to develop my skills, which at times was difficult when I was stuck
and struggled to move forward. But whenever I asked for help Richard and Martin were both
readily available to listen to my ideas and provide their input. I would like to thank you
both for your direct and critical attitude towards my work. This has truly helped me second
guess my conclusions and move forward in a meaningful way rather than wandering aimlessly
through the world of turbulence modelling. I would also like to thank all the members of
the ”periodic hills club”. I have much enjoyed working together with you and sharing our
experiences. We have had some great moments watching each others presentations and talking
over coffee breaks learning from each other. I would specially like to thank Mikael Kaandorp
for helping me understand some machine learning concepts and Javier Fatou Gómez for
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Abstract

In this research a global-coefficient non-linear eddy viscosity model (NLEVM) is studied.
This model stems from the inherent inability of the Boussinesq approximation to model
anisotropy and therefore flow features such as: swirl, stream-line curvature and secondary mo-
tions (Lumley, 1970; Pope, 1975; Craft et al., 1996). The focus lies on the limitations of using
global-coefficients calibrated on a square-duct flow when applied on a rectangular-duct and
a wing-body junction. The calibration is done with the Direct Numerical Simulation (DNS)
results from Pinelli et al. (2010) at a Reynolds number of Re = 1, 100. It is shown that using
a global-coefficient NLEVM the velocity prediction on a square-duct and rectangular-duct
is successfully corrected, i.e. secondary motions are present. On an attempt to improve the
corner flow separation on a wing-body junction poor performance is observed. Stability issues
led to only 3 models converge out of 21. Differently to Bordji et al. (2014) who found a large
corner flow separation reduction with a Spalart-Allmaras Quadratic Constitutive Relation
(SA-QCR) turbulence model when compared to a standard SA model, the global-coefficient
NLEVM only showed limited corner flow separation reduction. Apart from correcting the
anisotropy the near-wall resolution and treatment is found to be of large importance for flow
field predictions. In the square- and rectangular-duct a wall damping function destroyed the
secondary motion prediction, whilst in the wing-body junction improving the junction and
corner flow prediction.
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M.F. Döpke M.Sc. Thesis



List of Tables

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Coefficients for lowest cost at each complexity level. Loss function value Lτ is
expressed as Lτ/10000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Tensor alignment as expressed by (4.1). When alignment is not uniform reference
to figure displaying alignment is given. . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Optimum coefficients β found from minβ L
∗
U . β4 is omitted since it is considered

of no influence and its coefficient is set to β4 = 0 for all combinations. . . . . . . 57

5.2 Optimum coefficients β found from minβ L
∗
τ . β4 is omitted since it is considered

of no influence and its coefficient is set to β4 = 0 for all combinations. . . . . . . 57

6.1 Stability and quality of prediction of rectangular-duct flow using different global-
coefficient NLEVM as defined in tables 5.1 and 5.2 and quadratic Shih and cubic
Lien models. + represents good stability and prediction performance, / represents
medium stability and prediction performance and - represents instability and poor
prediction performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Stability and quality of prediction of wing-body junction flow using different global-
coefficient NLEVM as defined in tables 5.1 and 5.2. + represents good stability, /
represents medium stability and - represents instability. . . . . . . . . . . . . . . 72

C.1 Boundary conditions of backward facing step . . . . . . . . . . . . . . . . . . . . 114

C.2 Shih coefficients and reproduced coefficients from calibration routine. . . . . . . 115

MSc. Thesis M.F. Döpke
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) has become an integral part in engineering and science.
Three main types of CFD approaches exist, in order of decreasing computational cost; 1)
Direct Numerical Simulations (DNS), 2) Large Eddy Simulations (LES) and 3) Reynolds-
Averaged Navier-Sokes (RANS) simulations. DNS solves the Navier-Stokes (NS) equations
exactly, involving no modelling of eddies. Whilst this method can be very accurate it requires
to resolve flow features down to the Kolmogorov scale, meaning that the number of grid
cells scales with Re9/4 in three dimensions (Davidson, 2004). LES uses the scale separation
approach modelling only the smallest encountered eddies whilst resolving the larger ones. This
approach has received much development in the past decades, however Slotnick et al. (2014)
describes it as impractical in the foreseeable future for industrial applications. Following
Gatski and Jongen (2000) and more recently Slotnick et al., RANS is expected to remain
the main workhorse of industry for the following decades. RANS solves the Navier-Stokes
equation in a time averaged manner which requires the modeling of all turbulent scales in the
form of the Reynolds stresses

τij = −u′iu′j . (1.1)

Whilst this expression can be solved with equation (A.33) and additional transport equations,
it is most often modeled with the Boussinesq approximation (1.2) introduced in 2.2 (Schmitt,
2008).

τij = −2

3
kδij + νt

(
∂ui
∂xj

+
∂uj
∂ui
− 2

3

∂uk
∂uk

δij

)
(1.2)

The Boussinesq approximation has served RANS turbulence modeling for many decades.
It is mostly used in simulations at high Reynolds number on industrial test cases. These
are mostly shear flow dominated with the goal of obtaining large scale flow features, i.e.
average flow field (Slotnick et al., 2014). When the interest lies however on more detailed
flow features, the Boussinesq approximation (1.2) has some well known deficiencies. It is
known to be incapable of representing anisotropy, and therefore flow features such as: swirl,
streamline curvature or secondary motions (Lumley, 1970; Craft et al., 1996). As a first
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attempt to improve upon the anisotropy prediction Lumley (1970) proposed to expand the
Boussinesq approximation using a tensor polynomial and including the mean rotation rates.
Continuing on this idea Pope (1975) derived the most commonly known non-linear eddy
viscosity model (NLEVM) for RANS. This model was proven to correct the anisotropy and
improve predictions of streamline curvature, but was not extensively tested. Furthermore,
Pope limited his derivation of the arising constitutive relations to two-dimensional flows. From
this work many groups attempted to derive a non-linear eddy viscosity model that could serve
as replacement for the Boussinesq approximation. However until today no universally good
candidate has been found and eventually never will be. The turbulence problem was best put
by Werner Heisenberg (1901-1976).

”When I meet God, I am going to ask him two questions: Why relativity? And
why turbulence? I really believe he will have an answer for the first.”

The continuous search of an improved non-linear eddy viscosity model has generated a zoo of
models of which little knowledge on universality and applicability exists. Whilst non-linear
eddy viscosity models might predict better some flow features, they either under preform
in the mean flow field or come at a too expensive cost compared to linear models. It was
suggested by Edeling et al. (2014) that for a linear model ”no single best choice of turbulence
model or closure coefficients” exists. Then the model needs to be changed before calibration
becomes relevant again.

In this introduction a state of the art literature review of turbulence modelling, machine
learning and a relation from Reynolds stresses to secondary motions are provided. Finalizing
the introduction with the research proposal and thesis outline.

1.1 State of the art

1.1.1 Non-linear eddy viscosity modelling and machine learning

The NASA CFD vision study (Slotnick et al., 2014) sees RANS modelling as the industry
workhorse in 2030. This calls for further development in terms of uncertainty quantification
and turbulence modelling. Here the state of the art of non-linear eddy viscosity modelling is
presented.

Non-linear eddy viscosity models (NLEVM) have been derived due to the limitations of the
Boussinesq approximation (1.2). Pope (1975) derived the most commonly known NLEVM
by extending the one-term tensor representation given by the Boussinesq approximation to
the generalized form of (2.35) and expressed the tensor basis in terms of the mean strain and
rotation rates. Other NLEVM have been derived by Akira Yishizawa (1984), Speziale and Ngo
(1987), Rubinstein and Barton (1990), Shih and Lumley (1993), Craft et al. (1996); Craft,
Launder, and Suga (1997), Lien, Chen, and Leschziner (1996) and Wallin and Johansson
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(2000). An overview of the models is given in table 2.1. The abundance of NLEVM and little
agreement between closure coefficients stands as proof for the difficulty of effective turbulence
modelling. Whilst these models on the calibrated test cases out-performed their linear counter
parts (Boussinesq approximation), when applied to different flow cases the results were not
always convincing.

From the lack of an improved general turbulence model Edeling et al. (2014) decided to
quantify the uncertainties. They evaluated the posterior distributions of the linear Launder
(1972) k − ε turbulence model when calibrated against a variety of flow cases. This allowed
them to create confidence intervals for the RANS result. Finally they concluded that the
”the practice of tuning a set of deterministic closure coefficients for specific applications
seems futile”. The reasoning behind the conclusion was that the model error cannot be
substantially reduced by parameter tuning. This author attributes this conclusion to the
Boussinesq approximation, since the turbulence model used is inherently unable to predict
anisotropy and therefore certain flow features. Also using a linear turbulence model Ling and
Templeton (2015) developed markers to identify regions of high RANS uncertainty. They
compared three common RANS assumptions by comparing RANS and DNS results: 1) non-
negative eddy viscosity, 2) isotropic flow and 3) linear relationship between Reynolds stress
and mean strain rate. They found that the first two assumptions were violated in most
boundary layers and the third in regions of stream-line curvature. It is now clear that linear
turbulence models using the Boussinesq approximation (1.2) fail to represent anisotropy and
the model-form error cannot be substantially reduced. Then more advanced models need to
be derived.

More advanced turbulence models exist in the form of Reynolds stress model’s (RSM), how-
ever these suffer from robustness issues and the requirement to solve at least six additional
transport equations. This increases the computational cost considerably giving only slightly
better predictions. Other improved RANS turbulence models are the Explicit Algebraic
Reynolds Stress Model’s (EARSM) such as the Wallin and Johansson (2000) EARSM. These
turbulence models use constitutive relationships to close the non-linear stress-strain relation-
ship (2.35). Whilst they have shown improvements in anisotropy prediction at a reduced
computational cost and improved robustness when compared to the RSM model’s, they are
still subject to calibration and can therefore not be universally used. Of course then to obtain
better turbulence predictions a new approach needs to be proposed.

One step towards a new approach in turbulence modelling was the introduction of Machine
Learning (ML) algorithms. One can understand these algorithms as an optimization problem
such as least squares. A function is optimized given a specific set of training data. Two main
approaches of implementing ML algorithms in turbulence modelling have been seen over the
past years: 1. learning a functional form and 2. tuning a set of coefficients.

1. When learning a functional form the ML algorithm is provided with a set of inputs
it can use to create a new function to replicate the training data. Pioneering work
with this approach was done by Tracey (2015) whose algorithm learned the functional
form of the Spalart and Allmaras (1992) (SA) turbulence model source term. Following
Tracey’s success Weatheritt and Sandberg (2016) proposed a gene expression program-
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ming (GEP) algorithm intending to find a functional for the anisotropy using the tensors
proposed by Pope (1975) from (2.36). This approach almost grants full freedom of the
algorithm to impose a functional form. Due to dimensionality a constraint was set on
the dimensional form.

2. In tuning coefficients the first works where presented by Duraisamy and Durbin (2014)
who calibrated a multiplicative function added to the production term of a variation
of the k − ω turbulence model given by Ge et al. (2014). Wu et al. (2016) and Xiao
et al. (2016) constructed a calibration procedure where the Reynolds stresses would
be corrected based on training data. As a result the calibration can only be used to
predict flows on the same geometry. From the success of EARSM models Ling et al.
(2016) used an Artificial Neural Network (ANN) to improve the anisotropy prediction
using the tensor basis functions from Pope (1975) to imply invariance and local coeffi-
cients. However this type of ML was not very efficient when predicting flows in which
different features than in the training data were present. Training on a very extensive
set of flows would be required to make the model universally usable. Improving upon
the lack of physics implemented in the ML process in the previous approaches Wang,
Wu, and Xiao (2017) and Wang, Wu, Ling, et al. (2017) proposed a Physics Informed
Machine Learning (PIML) algorithm in which a baseline Reynolds stress is corrected by
a learned functional form. Their results on the square duct were very good. However no
extrapolation towards different geometries was made, rendering the work incomplete.
Kaandorp (2018) trained a random forest given anisotropy results from DNS simulations
and input features from RANS results. This approach proved to be very successful in
predicting flows similar to that used during training with less good results when applied
to different flows.

1.1.2 Square duct and wing-body junction

The square duct and wing-body junction are two test cases on which the Boussinesq approx-
imation is known to be inaccurate (Craft et al., 1996; Dandois, 2014; Bordji et al., 2014).

The secondary motions present in the form of corner vortices in the square duct cannot be
reproduced with the Boussinesq approximation (1.2) due to the isotropy condition. The
corner vortices are stress induced vortices generated by an imbalance of normal Reynolds
stresses τyy and τzz as shown in expression (1.5). The implied isotropy condition in the
Boussinesq approximation limits τxx = τyy = τzz. Therefore the Boussinesq approximation
fails in predicting secondary motions in the form of corner vortices in a square-duct flow.

On the wing-body junction the Boussinesq approximation is known to significantly over-
predict the corner flow separation (Dandois, 2014). This flow is characterized by two orthog-
onal plates, similar as in a square duct. Bordji et al. (2014) and Bordji and Brunet (2015)
compared the Spalart and Allmaras (1992) (SA) and Spalart (2000) and Allmaras Quadratic
Constitutive Relationship (SA-QCR) turbulence models with an experiment. They found
that at the leading edge both models preformed similarly, whilst at the trailing edge the SA-
QCR model outperformed the SA model. This leads to believe that the corner flow region is
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influenced by the quadratic constitutive relationship by which the Boussinesq approximation
is expanded as shown in section 2.5.3.

Considering the corner region of the wing-body junction is similar to a square duct, the corner
vortices from the square duct are thought to be of influence on the wing-body junction. This
renders the square duct an ideal case on which to calibrate the NLEVM before predicting the
wing-body junction.

1.1.3 Secondary motions

The main focus of using a non-linear eddy viscosity model is the ability to represent anisotropy.
The Boussinesq approximation (1.2) assumes isotropic flow by constraining the Reynolds

stresses τij to the strain rate Sij = 1
2τ
∗
(
∂ui
∂xj

+
∂uj
∂ui

)
. This implies that τxx = τyy = τzz.

When using Lumley’s anisotropy tensor it then follows that the anisotropy is zero. Let the
anisotropy be defined by

aij =
τij
2k
− 1

3
δij , (1.3)

with

k =
1

2
(τxx + τyy + τzz) . (1.4)

Then the diagonals of τii/2k = 1/3 and of aii = 0. Introducing non-linear terms as is done in
section 2.5 allows for aii 6= 0 and τxx 6= τyy 6= τzz. This is a necessary condition in order to
represent secondary motions in a square-duct flow. The vorticity equation in a square-duct
can be expressed in terms of the Reynolds stresses following Emory (2014) as(

∂2

∂z2
− ∂2

∂y2

)
τyz+

∂

∂y

∂

∂z
(τyy − τzz) =(

∂2

∂y2
− ∂2

∂z2

)(
νt

(
∂uy
∂z

+
∂uz
∂y

))
+2

∂

∂y

∂

∂z

(
νt

(
∂uz
∂z
− ∂uy

∂y

))
.

(1.5)

From (1.5) it can be seen that the Boussinesq approximation can only represent(
∂2

∂z2
− ∂2

∂y2

)
τyz+

:0∂

∂y

∂

∂z
(τyy − τzz) =(

∂2

∂y2
− ∂2

∂z2

)(
νt

(
∂uy
∂z

+
∂uz
∂y

))
+2

∂

∂y

∂

∂z

(
νt

(
∂uz
∂z
− ∂uy

∂y

))
.

(1.6)

It is well documented that despite the possibility
(
∂2

∂z2
− ∂2

∂y2

)
τyz 6= 0 no secondary motions

are predicted with the Boussinesq approximation in a square duct. Perkins (1970) and Huser
and Biringen (1993) argue that ∂

∂y
∂
∂z (τyy − τzz) is the term responsible for vorticity generation

in a square-duct. Therefore in order to represent vorticity the expansion of the Boussinesq
approximation to (2.35) is required such that τyy 6= τzz.
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1.2 Proposal

In this research the use of global-coefficients is proposed opposed to local coefficients as in
Wang, Wu, Ling, et al. (2017), Ling et al. (2016) and Kaandorp (2018). This will reduce
the accuracy, but might increase solver robustness. It does have the potential to an easier to
implement and use model. This approach is not expected to be universally superior to linear
models, but only to investigate the limitations of using global coefficients. The coefficients
are calibrated on a square duct in which linear models are known to fail to predict secondary
motions. Then the model is used to predict rectangular-duct flow and the corner flow sepa-
ration of a wing-body junction. From (Dandois, 2014) and (Bordji et al., 2014) it is known
that a non-linear eddy viscosity model predicts a more realistic corner flow separation. From
the calibration procedure the model will be tuned to predict secondary motions in a corner
region which should in return predict a more accurate corner flow separation on a wing-body
junction. Due to the use of global coefficients, the mean flow field and other flow features
might suffer.

1.3 Thesis outline

The aim of this research project is to further develop the understanding of non-linear eddy vis-
cosity modelling and explore the boundaries of global coefficient calibration approaches using
data driven machine learning. Once calibrated the model will be used to on a rectangular-duct
flow and wing-body junction to study its predictive capabilities. This research shall stand
as a stepping stone and further confirmation that brute force data driven machine learning
techniques can provide high accuracy results without the need to resolve to costlier and more
complex models. It is aimed to increase the accuracy of the flow solution in terms of secondary
motions without a considerable increase in computational cost.

The main project goals can be summarised into several research questions and sub-questions:

• What are the predictive capabilities of a global-coefficient eddy viscosity model?

– Can the anisotropy be corrected?

– Can secondary motions be predicted?

– Can corner flow separation be reduced?

• What are the limitations of data driven machine learning techniques for calibration?

• Are secondary motions the driver of corner flow separation?

The aim of this research is to explore the boundaries of accuracy of using a global-coefficient
non-linear eddy viscosity model. This will be explored by training the models coefficients
using direct numerical simulation results of a square-duct flow case at a Reynolds numbers
of 1100. Different optimization routines will be used in exploring the coefficient space. The

M.F. Döpke M.Sc. Thesis



1.3 Thesis outline 7

global-coefficient NLEVM model will be applied to a rectangular-duct to investigate the
predictive capabilities on a similar flow to judge its performance in terms of overall accuracy
and secondary motion prediction. As a far fetched attempt it will also be applied to the
wing-body junction to observe the corner flow separation prediction.

The remainder of this Thesis is organized as follows. In chapter 2 RANS turbulence modelling
is introduced. In chapter 3 the methods and techniques used throughout this research are pre-
sented. Also the test cases used are described in this chapter. The global-coefficient NLEVM
calibration procedure is split into two approaches, 1) data-driven and 2) solver-incorporated
calibration presented in chapters 4 and 5 respectively. Chapters 6 and 7 display the predictive
capabilities and limitations of a global non-linear eddy viscosity model on a rectangular duct
and wing-body junction respectively. Finally conclusions and recommendations are presented
in chapter 8.
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Chapter 2

Reynolds-Averaged Navier-Stokes non-linear
eddy viscosity turbulence modeling

The Navier-Stokes (NS) equations describe the motion of Newtonian fluids under the con-
tinuum hypothesis. Whilst solving these equations would represent the physics exactly, it
is prohibitively expensive. Direct Numerical Simulations (DNS) require the mesh to resolve
features down to the Kolmogorov scale, meaning that the number of grid cells scales with
Re9/4 (Davidson, 2004). This limits DNS to small Reynolds numbers, Re ∼ 5000, and simple
geometries. An alternative to solving the NS equations exactly is Reynolds-Averaged Navier-
Stokes (RANS) modelling. As the name implies, there is averaging in the process. RANS
equations are derived by splitting the flow into a mean velocity ū with perturbation u′ such
that u = ū+u′. Where it is assumed that the time averages of the perturbation are zero such
that u′ = 0.

The NS continuity and momentum equations for Newtonian fluids in differential form using
Einstein summation convention are

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (2.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ ρfi. (2.2)

Throughout this research only incompressible flows are being considered. This means no
changes in density ∂ρ

∂t = 0 and ∂ρ
∂x = 0. Furthermore, no volume forcing fi is considered.

Then the NS equations for incompressible Newtonian fluid divided by the density ρ are

∂ui
∂xi

= 0, (2.3)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
. (2.4)

In this chapter turbulence modelling for RANS is introduced starting at the derivation of the
RANS momentum equation in section 2.1. In section 2.2 the Boussinesq approximation is

MSc. Thesis M.F. Döpke



10 RANS non-linear eddy viscosity turbulence modeling

presented. Boussinesq approximation based turbulence models with corresponding transport
equations are discussed in section 2.3. The non-linear expansion to the Boussinesq approx-
imation derived by Pope (1975) is presented in section 2.4. Turbulence models using this
expansion are presented in section 2.5. Turbulence models using the Reynolds stress trans-
port equation are given in section 2.6. Finally a discussion of turbulence modelling with a
view into the greater picture of RANS turbulence models is presented in section 2.7.

2.1 Momentum equation

The RANS momentum equation is obtained from splitting the flow into mean ū and pertur-
bation u′ and applying time averaging as explained in appendix A. Applying this strategy to
the incompressible NS momentum equation (2.4) yields

ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xj
+

∂

∂xj

[
ν

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− u′iu′j

]
. (2.5)

This equation is very similar to (2.4), with an additional term τij = u′iu
′
j . This additional

term is the Reynolds stress tensor which accounts for the momentum transfer between the
turbulent and mean flow scales.

From the derivation of (2.5) τij is an unknown which needs to be specified. This is typically
achieved through a stress-strain relationship and a set of additional transport equations.

2.2 Linear stress-strain relationship

Stress-strain relationships relate the stress and strain of an infinitesimal body. In linear
elasticity this relation is known as Hooke’s law and is formulated as σ = C : ε where σ is the
stress tensor, ε the strain tensor and C the fourth order stiffness. For homogeneous isotropic
materials Hooke’s law is defined by the bulk modulus K, shear modulus µ, Kronecker delta
δij and strain rates

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂ui

)
, (2.6)

εkk =
∂uk
∂xk

(2.7)

as

σij = Kεkkδij + 2µs

(
εij −

1

3
εkkδij

)
. (2.8)

A similar logic can be applied to fluids. Considering a volume of fluid, the stress and strain
will relate following Hooke’s law (2.8). However, since it is a fluid instead of using the shear
modulus µs the viscosity ν should be used. Both these quantities describe the resistance of a
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body to deformation. The bulk modulus K, which expresses the resistance to compressibility
is changed for the turbulent kinetic energy k which is the root-mean-square of the velocity
fluctuations k = 1

2u
′
iu
′
j . The resulting expression from this analysis is known as the Boussinesq

approximation (Schmitt, 2008)

τij = −2

3
kδij + νt

(
∂ui
∂xj

+
∂uj
∂ui
− 2

3

∂uk
∂xk

δij

)
. ((1.2))

Note that ∂uk
∂xk

= 0 for incompressible flows.

2.3 Linear eddy viscosity models

In this section linear eddy viscosity models are presented. The term linear arises from the use
of the linear stress-strain relationship (1.2). Closing the Boussinesq approximation requires
the specification of the turbulent viscosity νt. It is important to note that νt is a flow property
and not a fluid property. Which means that νt can vary a lot from flow to flow and within
the same flow. In this section Boussinesq based zero-equation to two-equation models are
presented.

2.3.1 Zero-equation models

Prandtl (1925) postulated the mixing length theory by making relation to kinetic gas theory.
He assumed that turbulent eddies cling together and maintain their momentum for a distance
lm propelled at a turbulent velocity um. The mixing velocity um is further assumed to be
equal to the fluctuating velocity of the molecules um = u′ = lm|du/dy|. From dimensional
analysis it is known that the turbulent viscosity has units m2/s. Then the mixing length
turbulent viscosity is written as

νt ∝ l2m
∣∣∣∣dudy

∣∣∣∣ . (2.9)

Models based on Prandtl’s mixing length theory are called zero equation models or algebraic
models, not to be confused with Reynolds Stress Models (RSM). Algebraic models make use
of algebraic relations and empiricism to determine the mixing length lm. The need to specify
lm limits the generality and applicability of this approach. Celik (1999) and White (1991)
provide a nice overview of mixing length models to be used in different flow conditions.

2.3.2 One-equation models

As an alternative for the mixing velocity um = u′ = lm|du/dy| the square root of the
turbulent kinetic energy k has been proposed. This appears a logical choice given that
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12 RANS non-linear eddy viscosity turbulence modeling

k = 1/2
(
u′u′ + v′v′ + w′w′

)
is the square root of the root-mean-square of the fluctuations.

Then the turbulent viscosity is defined as

νt ∝ k1/2lm. (2.10)

This approach requires however the modelling an additional transport equation for k. This
equation is derived in appendix A by taking the trace of the Reynolds stress tensor (A.34)
yielding

∂k

∂t
+ ūj

∂k

∂xj
= τij

∂ūi
∂xj︸ ︷︷ ︸

Production

− ν
∂u′i
∂xk

∂u′i
∂xk︸ ︷︷ ︸

Dissipation

+
∂

∂xj

 ν
∂k

∂xj︸ ︷︷ ︸
Diffusion

− 1

ρ
p′u′j −

1

2
u′iu
′
iu
′
j︸ ︷︷ ︸

Energytransport

 . (2.11)

In this expression the terms on the left-hand side are the rate of change and convective trans-
port of k. On the right-hand side the terms represent the production, dissipation, diffusion
and energy transport. The first two terms on the right hand side are a source and sink terms
respectively by which turbulent kinetic energy is produced and destroyed. The last two terms
represent transport terms that redistribute the turbulent kinetic energy.

The production term represents the kinetic energy an eddy gains due to the mean flow. This
term acts as the source. The dissipation represents the energy transfer from the smallest
eddies to thermal energy. This term acts as a sink. The third term represents the molecular
diffusion of turbulent energy. The energy transport has two parts, transport due to turbulent
fluctuations and transport from redistribution of pressure fluctuations.

In order to solve equation (2.11) some correlation for the production, dissipation, turbulent
diffusion and pressure diffusion need to be specified. For the Reynolds stresses τij in the
production term the Boussinesq approximation (1.2) is used. The eddy viscosity is closed
with (2.10) and a constant of proportionality Cµ as

νt ≈ Cµk1/2l. (2.12)

The dissipation and production terms are balanced as

−u′iu′j
∂ūi
∂xj

= ν
∂u′i
∂xk

∂u′i
∂xk

= ε. (2.13)

From dimensional analysis the above expression has units m2/s. The dissipation can be
expressed by

ε ∝ u3

l
. (2.14)

This is also in accordance with White (1991) who used physical reasoning to derive the
dissipation. White described the dissipation to be proportional to a velocity u times drag
ρu2l2 divided by the mass ρl3. Taking as characteristic velocity the turbulent kinetic energy
and as constant of proportionality the drag coefficient CD, White’s dissipation is defined by

ε ≈ CD
k3/2

l
. (2.15)
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2.3 Linear eddy viscosity models 13

This expression has the same units as (2.14) m2/s.

The pressure diffusion and turbulent fluctuations are modeled assuming a gradient diffusion
transport mechanism

νt
σk

∂k

∂xj
= −1

2
u′iu
′
iu
′
j −

1

ρ
p′u′j . (2.16)

The modelled k equation can then be written as

∂k

∂t
+ ūj

∂k

∂xj
= τij

∂ūi
∂xj
− ε+

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
. (2.17)

To close the turbulent kinetic energy the coefficients Cµ or CD and σk are specified from
a calibration procedure. The length scale l is defined algebraically depending on the flow
properties. l is in many ways determined in a similar fashion as lm from the algebraic models.
This last step is the largest source of error and difficulty in use of one-equation turbulence
models.

Spalart-Allmaras turbulence model

The Spalart-Allmaras (SA) turbulence model is a one-equation model that does not solve the
turbulent kinetic energy k but rather the kinematic turbulent viscosity ν̃. This model was
derived by Spalart and Allmaras (1992) for aerospace applications, specifically wall-bounded
flows. The model is characterized by the transport equation for the kinematic turbulent
viscosity ν̃

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= cb1(1− ft2)S̃ν̃

−
[
cw1fw −

cb1
κ2
ft2

]( ν̃
d

)2

+
1

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
+ ft1∆U2.

(2.18)

The turbulent viscosity is defined as

νt = ν̃fv1 (2.19)

with

fv1 =
χ3

χ3 + c3
v1

(2.20)

and

χ =
ν̃

ν
. (2.21)

In order to solve (2.18) a series of additional terms and closure coefficients are defined as
specified in Spalart and Allmaras (1992).
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14 RANS non-linear eddy viscosity turbulence modeling

2.3.3 Two-equation models

Most one-equation models still suffer from the need to specify a turbulent length scale. Two-
equation models model the turbulent kinetic energy and some length scale or equivalent
parameter. In essence this fully closes the problem of turbulent viscosity. This does not mean
it is exact. Most two-equation models make the assumption of balancing turbulent production
and dissipation and use the Boussinesq approximation to close the Reynolds stresses. This
implies that the turbulent length scales are locally proportional to the scales of the mean flow
(Celik, 1999). This assumption is only valid on equilibrium flows. The additional variable
that is solved with two-equation models is generally the turbulent dissipation rate ε or the
specific turbulent dissipation rate ω. Each variable gives rise to its own turbulence model,
which are the most commonly used turbulence models in industry, the k−ε and k−ω models
(Argyropoulos & Markatos, 2015).

Using the Boussinesq approximation implies that the turbulent fluctuations u′, v′ and w′

are locally equal. Thereby enforcing isotropy. The second fundamental assumption is the
balancing of local turbulent production and dissipation

τij
∂ūi
∂xj

= ν
∂u′i
∂xk

∂u′i
∂xk

. (2.22)

To allow the Reynolds stresses to be calculated using local scales it is assumed that the
production equals the dissipation in the k equation such that ε = τijSij . Considering for τij
the Boussinesq approximation (1.2) and using dimensional reasoning the turbulent viscosity
is estimated to be

νt ∝
k2

ε
, (2.23)

for the k − ε model and for the k − ω model

νt ∝
k

ω
. (2.24)

The k−ε model solves as additional transport equation the turbulence dissipation ε. The k−ω
model solves as additional transport equation the specific turbulence dissipation ω equation.
The k equations for both, the k − ε and k − ω models are similar as for the one-equation
model. With the variation of some coefficients.

The k − ε model

The k − ε turbulence model as expressed in Launder (1972); Launder and Spalding (1974) is
by far the most widely used two equation turbulence model. It defines the turbulent viscosity
as

νt = Cµ
k2

ε
. (2.25)

The additional transport equation solved is for the turbulent dissipation ε. It is obtained from

applying the operator 2ν
∂u′i
∂xk

∂
∂xk

on the incompressible NS equations as shown in appendix
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2.4 Non-linear stress-strain relationship 15

A.5. The modelled turbulence dissipation rate equation neglecting higher order interactions
is

∂ε

∂t
+ ūj

∂ε

∂xj
=

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ Cε1

ε

k
τij
∂ūi
∂xj
− Cε2

ε2

k
. (2.26)

The modelled k equation is given by

∂k

∂t
+ ūj

∂k

∂xj
= τij

∂ūi
∂xj
− ε+

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
. (2.27)

The closure coefficients are determined by calibration and physical reasoning as

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σε = 1.3, and σk = 1.0.

The k − ω model

The k − ω model as expressed in Wilcox (1994a) is the second most used two-equation tur-
bulence model. This one solves the specific turbulence dissipation as

ω = c

√
k

l
(2.28)

with c being a constant of proportionality and l a turbulent length scale. This model can
roughly be stated to be related to the k − ε turbulence model with the dimensional relation
ω ∝ k/ε. The turbulent viscosity is defined as

νt =
k

ω
. (2.29)

The additional transport equation solves the specific turbulence dissipation ω as

∂ω

∂t
+ ūj

∂ω

∂xj
=

∂

∂xj

[
(ν + σνt)

∂ω

∂xj

]
+ α

ω

k
τij
∂ūi
∂xj
− Cβω2. (2.30)

This equation is derived from physical reasoning considering the processes of convection,
diffusion, production α ω

ρkτij
∂ūi
∂xj

and dissipation Cβω
2. The k equation for the k− ω model is

given by

∂k

∂t
+ ūj

∂k

∂xj
= α

ω

k
τij
∂ūi
∂xj
− Cβ∗ωk +

∂

∂xj

[(
ν +

νt
σω

)
∂k

∂xj

]
. (2.31)

The closure coefficients are given by

Cβ∗ = 9/100, α = 5/9, Cβ = 3/40, σω = 1/2, and σk = 1/2.

2.4 Non-linear stress-strain relationship

The Boussinesq approximation (1.2) is known to have some deficiencies. Specifically when
representing flows with strong separation, stream line curvature, recirculation or swirls. This
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16 RANS non-linear eddy viscosity turbulence modeling

deficiency can best be explained when observing the anisotropy introduced by Lumley (1970)

aij =
τij
2k
− 1

3
δij . (1.3)

It has been pointed out by several authors including Lumley (1970) and Pope (1975) that the
Boussinesq approximation is inadequate for flows that exhibit such behaviour since it assumes
the fluid to be isotropic. Which is an invalid assumption for these kind of flow phenomena.
Harris et al. (1977) measured the anisotropy in a nearly homogeneous shear flow to be

axx = 0.3, ayy = −0.18, azz = −0.12 and axy = 0.33.

Where the Boussinesq approximation (1.2) is at best able to predict

axx = ayy = azz = 0 and axy = 0.33.

On a barycentric map introduced by Banerjee et al. (2007), figure 2.1, the DNS results from
a square duct exhibit mostly 1-component turbulence, whilst the Boussinesq approximation
is only capable of predicting plain strain. Barycentric maps are explained in appendix D.

0.0

0.2

0.4

0.6

0.8

DNS cent re line

DNS quarter line

DNS close to wall

DNS inside BL

3-comp

1-comp2-comp

Plain strain

Figure 2.1: Anisotropy representation on a Barycentric map of the square duct

The inability of the Boussinesq approximtion to capture axx 6= ayy 6= azz 6= 0 can be explained
from the theory used behind the derivation. Boussinesq (1877) assumed that a fluid would
behave similarly as a material and made a relation based on the mean strain without consid-

ering the rotation. Lumley (1970) showed that the rotation effects Ωij = 1/2τ∗
(
∂ui
∂xj
− ∂uj

∂ui

)
cannot be neglected for a gas and went on to deriving a different stress-strain relationship as
a function of the strain rate

Sij =
1

2
τ∗
(
∂ui
∂xj

+
∂uj
∂xi

)
(2.32)
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2.5 Non-linear eddy viscosity models 17

and the rotation rate

Ωij =
1

2
τ∗
(
∂ui
∂xj
− ∂uj
∂xi

)
(2.33)

using tensor polynomial expansion. The time scale τ∗ is used to non-dimensionalize the strain
and rotation rates. The most general form of a tensor polynomial is given by

τij = Π∞i=0Π∞αi=0Π∞j=0Π∞γj=0β
α1,α2,...
γ1,γ2,... S

α1Ωγ1Sα2Ωγ2 .... (2.34)

This tensor polynomial provides an infinite polynomial to describe the Reynolds stress tensor
τij . Since τij is symmetric and has zero trace, only expansions fulfilling those criteria need to
be considered. Using the Caley-Hamilton theorem and following the derivation in appendix
B, the expression can be simplified to a finite set of linearly independent second-order ten-
sors. Pope (1975) derived the most commonly known non-linear stress-strain relationship in
turbulence modeling

τij = −2

3
kδij + 2νtSij + k

∑
n

β(n)T
(n)
ij . (2.35)

Tij represent the tensors expressed in (2.36). The additional terms β represent functions in
terms of the invariants SikSkj , ΩikΩkj , SikSkmSmj , ΩikΩkmSmj and ΩikΩkmSmnSnj .

T
(1)
ij =SikΩkj − ΩjkSki

T
(2)
ij =SikSkj −

1

3
{SkmSmk}δij

T
(3)
ij =ΩikΩkj −

1

3
{ΩkmΩmk}δij

T
(4)
ij =ΩikSkmSmj − SikSkmΩmk

T
(5)
ij =ΩikΩkmSmj + SikΩkmΩmj −

2

3
{SkmΩmnΩnk}δij

T
(6)
ij =ΩikSkmΩmnΩnj − ΩikΩkmSmnΩnj

T
(7)
ij =SikΩkmSmnSnj − SikSkmΩmnSnj

T
(8)
ij =ΩikΩkmSmnSnj + SikSkmΩmnΩnj −

2

3
{SkmSmnΩnlΩlk}δij

T
(9)
ij =ΩikSkmSmnΩnlΩlj − ΩikΩkmSmnSnlΩlj

(2.36)

2.5 Non-linear eddy viscosity models

Non-linear eddy viscosity models are derived from the linear eddy viscosity models using
instead of Boussinesq approximation (1.2) the non-linear stress strain relationship (2.35) to
express the Reynolds stress tensor. This substitution can either be complete, using all tensors,
or partial, using a subset of the tensors. Although non-linear eddy viscosity models have been
derived for many turbulence models, in this section only those derived from the k − ε, k − ω
and SA turbulence models are discussed.
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18 RANS non-linear eddy viscosity turbulence modeling

2.5.1 Non-linear k − ε turbulence models

Over the years a variety of non-linear k − ε non-linear eddy viscosity models have been
developed. Some of the most common models are presented in table 2.1. The coefficients β
in table 2.1 correspond to the tensors from (2.36) with the exemptions of β6 and β7 which
correspond to

T
(6)
ij = SijSklSkl (2.37)

and

T
(7)
ij = SijΩklΩkl. (2.38)

Nisizima and Yoshizawa (1987) (NZ) derived a quadratic relationship for the Reynolds stress
tensor from a statistical viewpoint using two-scale direct interaction formalism. Speziale and
Ngo (1987) (SZL) derived a similar expression plus an Oldroyd derivative term (2.39) using
the material frame indifference, realizability and invariance requirements. Rubinstein and
Barton (1990) (RB) used the theory of renormalization group to derive yet another quadratic
model from the Yakhot and Orszag (1986) theory. Shih and Lumley (1993) (SHN) derived
closure coefficients using up to the quadratic terms proposed by Pope (1975) and Craft et al.
(1996, 1997) (CLS) using up to the cubic terms. Lien et al. (1996) (LCL) expanded upon
Shih and Lumley’s work, adding cubic terms and expressions for the respective additions.
Ehrhard and Moussiopoulos (2000) recalibrated the Lien model for flow around buildings.

The Lien model also includes a wall damping function fµ for near wall treatment. This
damping function takes the value of unity far away from the wall and approaches 0 towards

the wall. fµ is expressed in terms of the dimensionless wall distance y∗ = k1/2y
ν and coefficients

Cµ, κ and Aν as

fµ = [1− exp(−Aνy∗)]
[
1 +

2κ

c0.75
µ y∗

]
. (2.42)

This damping function is included in the k− ε model by multiplying the turbulent viscosity

νt = Cµfµ
k2

ε
. (2.43)

This upsets the balance of turbulence production and dissipation near the wall (Launder
& Spalding, 1974). In order to keep the production and dissipation balance assumption the
modelled energy dissipation equation (2.26) is modified to (2.46) by introducing an additional
term

E = Cε2C
0.75
µ f2

√
kε

1 + 2κ
c0.75µ

κy
exp
(
−AEy∗2

)
(2.44)

and damping function

f2 = 1− 0.3 exp

(
−
(
k2

νε

)2
)

(2.45)

yielding

∂ε

∂t
+ ūj

∂ε

∂xj
=

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ Cε1

ε

ρk
τij
∂ūi
∂xj
− Cε2f2

ε2

k
+ E. (2.46)
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2.5 Non-linear eddy viscosity models 19

Table 2.1

NY SZL RB SHN CLS LCL EM

Cµ 0.09 0.09 0.0845 2/3
1.25+S̄+0.9Ω̄

(2.40) 2/3
1.25+S̄+0.9Ω̄

(2.41)

β1 0.72 0.56 15
1000+S̄3 0.4 15

1000+S̄3 0.4

β2 -3.04 -0.15 2.72 3
1000+S̄3 -0.4 3

1000+S̄3 -0.2

β3 4.16 -2.24 −19
1000+S̄3 1.04 −19

1000+S̄3 2− exp
{
−(S̄ − Ω̄)2

}
β4 −80C2

µ −80C2
µ −32C2

µ

β5 0 0 0
β6 −40C2

µ −16C2
µ −16C2

µ

β7 40C2
µ 16C2

µ 16C2
µ

−0.3νt

ε
(
Sij − Skk

δij
3

) (2.39)

Cµ =
0.3
[
1− exp

{(
−0.36 exp

{(
0.75 max (S̄, Ω̄)

)})}]
1 + 0.35

(
max (S̄, Ω̄)

)1.5 (2.40)

Cµ = min

[
1

0.9S̄1.4 + 0.4Ω̄1.4 + 3.5
, 0.15

]
(2.41)

2.5.2 Non-linear k − ω turbulence models

Wallin and Johansson (2000) derived a non-linear variation of the k − ω model which closes
the Reynolds stresses with the full expansion of the non-linear stress strain relationship (2.35)
using constitutive relationships for the arising functions β. This model is commonly known
as explicit algebraic Reynolds stress model (EARSM) where the Reynolds stresses are defined
as in the Boussinesq approximation plus an additional anisotropy term

a
(3D)
ij =β3

(
ΩikΩkj −

1

3
IIΩδij

)
+ β4 (SikΩkj − ΩikSkj)

+ β6

(
SikΩklΩlj + ΩikΩklSlj − IIΩSij −

2

3
IV δij

)
+ β9 (ΩikS

∗
klΩlmΩmj − ΩikΩklS

∗
lmΩmj) ,

(2.47)

a
(2D)
ij =β

(2D)
4 (SikΩkj − ΩikSkj) . (2.48)
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20 RANS non-linear eddy viscosity turbulence modeling

2.5.3 Non-linear Spalart-Allmaras turbulence model

The quadratic constitutive relation (QCR) expanding the SA turbulence model was derived
by Spalart (2000) by expanding the Boussinesq approximation as

τij,QCR = τij,Boussinesq − Ccr1
[
Oikτjk,Boussinesq +Ojkτik,Boussinesq

]
(2.49)

with

Oik =
2Ωik√
∂um
∂xn

∂um
∂xn

. (2.50)

2.6 Reynolds stress models

The Reynolds Stress Models (RSM) avoid the isotropic turbulence assumption by not making
use of the Boussinesq approximation 1.2. Instead the RSM models solve the Reynolds stress
equation

∂τij
∂t

+ ūk
∂τij
∂xk

=− τjk
∂ūi
∂xk
− τik

∂ūj
∂xk

+ εij −Πij +
∂

∂xk

[
ν
∂τij
∂xk

+ Cijk

]
. (2.51)

This expression is derived in appendix A.3. The terms on the left-hand side represent the rate
of change and transport by convection respectively. The first two terms on the right-hand side
are the stress production terms, εij is the dissipation, Πij is the pressure-strain interaction
and Cijk represents the molecular and turbulent diffusion. The additional terms εij , Πij and
Cijk are expressed as

εij = 2µ
∂u′j
∂xk

∂u′i
∂xk

, (2.52)

Πij = p′
[
∂u′i
∂xj

+
∂u′j
∂xi

]
, (2.53)

and

Cijk = p′u′iδjk + p′u′jδik + u′iu
′
ju
′
k. (2.54)

The Reynolds stress equation provides six equations, one for each τij component due to sym-
metry. The production term Πij is commonly modeled with the gradient diffusion assumption
and the dissipation with an additional transport equation. RSM models typically require solv-
ing seven transport equations, hence some authors call RSM models seven-equation turbulence
models. However variations exist with more or less additional transport equations.

The biggest disadvantage of RSM models is their complexity. The user needs to be very
skilled with tensor mathematics to comprehend different models. Furthermore, whilst they
increase the realism, their stability is worse making the models unattractive for industrial
applications.
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2.7 Discussion

In this chapter the RANS momentum equation was derived from the incompressible NS
equations. From this derivation an additional Reynolds stress tensor was found which needed
to be modelled. Three approaches were presented; 1) linear eddy viscosity modelling based
on the Boussinesq approximation 2) non-linear eddy viscosity modelling and 3) Reynolds
stress modelling. In order to put all these models into perspective, Gatski and Jongen (2000)
proposed figure 2.2. This figure shows the cost and complexity vs realism and dynamic range of
a variety of turbulence models. One can see that the linear, non-linear and algebraic models
are all considered viscosity models. This is due to the necessity to model the turbulent
viscosity νt and stress-strain relationships (1.2) or (2.35). The RSM model on the other
hand solves the differential Reynolds stress equation (2.51), eliminating this requirement.
Within the viscosity models a distinction can be made between linear and non-linear stress-
strain relationship based models. The linear ones assumes the flow to behave isotropically,
axx = ayy = azz = 0. The non-linear ones circumvent this by also considering flow rotation
rates Ωij . There already exist several tested non-linear eddy viscosity models. However none
have acquired a large degree of usage due to stability problems and limitations of universal
applications due to calibration. Explicit algebraic stress models take the non-linear stress-
strain relationship to the next level solving the arising coefficients using more exact algebraic
functions as in Wallin and Johansson (2000). However these models also suffer from stability
problems and are also dependent on calibration. Finally, the most exact model, but also most
complex are the RSM models. In this framework, a global-coefficient non-linear eddy viscosity
model is presented in chapter 3 which is calibrated on a square duct. By global-coefficient the
coefficients β are considered to be a single scalar over the entire flow field. This model shall
be situated on par with other non-linear stress-strain relationship models offering a similar
realism for lower complexity and cost.
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Figure 2.2: Hierarchy of RANS turbulence models.
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Chapter 3

Proposed methodology

In this chapter the proposed methodology is discussed. First the newly proposed model is
given in section 3.1. The training data is presented in section 3.3. Section 3.2 provides
the minimization problems used for calibration and section 3.4 describes the optimization
routines used. The last section presents the square-duct and wing-body junction test cases
and convergence studies.

3.1 Proposed model

In section 2.5 some non-linear eddy viscosity models have been presented. The little agreement
in coefficients shows the difficulty of deriving a universal non-linear eddy viscosity model. In
this section a non-linear eddy viscosity model with global coefficients is presented. This means
the coefficients β are assigned a single value for the entirety of the flow field. The proposed
model is based on the k − ω model. The Boussinesq approximation (1.2) is expanded as
described in Pope (1975) by the addition of 9 non-linear tensors (2.36) resulting in (2.35).
The tensor Tij = Sij corresponds to the Boussinesq approximation and is considered the 0th

and linear tensor. The functions β are treated as global coefficients to be calibrated. The
remaining k − ω coefficients are left untouched.

A ramping factor ξ is constructed to increase solver stability. This factor is included by
multiplying the non-linear stresses as

τij = τij,linear + ξτij,non-linear (3.1)

This factor is defined as a function of the number of iterations ti with the first 100 iterations
being ξ = 0 for the solver to stabilize. After 100 iterations ξ increases up to 1. Figure 3.1
shows the behavior of ξ vs the number of iterations. The mathematical expression for ξ is
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given by

ξ =


0, if ti < 100(

1 + e10(1−ti/t∗i )
)−1

, if 100 < t < 2t∗

1, if ti > 2t∗i .

(3.2)

t∗i is the only user defined input necessary to determine the iteration at which ξ = 0.5 is
desired.

The turbulence model is implemented in OpenFOAM and used in combination with the
simpleFoam solver. The implementation and verification is provided in appendix C.
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Figure 3.1: Relaxation factor ξ vs iterations (ti) with a t∗i = 2000

3.2 Minimization problems

This section outlines the minimization problems used throughout this project. These are
defined as minx L(x) with L(x) being the loss function to be minimized by varying the input
x. In this research the loss function is always defined as the L-2 norm of the difference between
the exact fexact and approximated f̄(x) result value as

L(x) =
(
fexact − f̄(x)

)2
. (3.3)

Since the quantity of interest f is a vector or tensor in this study, the loss function is summed
over its components and each component weighted by the maximum over the flow field (over
all cells) of the exact result. The loss function for a vector is then given by

L(x) =
∑
i

(
fexact,i − f̄i(x)

)2
max (fexact,i)

(3.4)
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and for a tensor by

L(x) =
∑
ij

(
fexact,ij − f̄ij(x)

)2
max (fexact,ij)

. (3.5)

As is common in Computational Fluid Dynamics simulations graded meshes are used with
varying cell sizes. In order to circumvent boundary layer cells to dominate the calibration
procedure an area weighting is included in all loss functions by integrating every cell of the
loss function over its cell area as∫

Ωa

L(x)dΩa. (3.6)

For the calibration two loss functions are evaluated. One to reduce the difference between
exact and approximated Reynolds stresses and one to evaluate the difference between the
exact and approximated velocities. The first loss function comes logically since the non-linear
eddy viscosity is built to give a better prediction of τij . However, as has been argued by Xiao
et al. (2016) and also confirmed in this study, the mapping from Reynolds stresses to velocity
field is not unique. By this is meant that when modifying the turbulence model (changing
closure coefficients), the same Reynolds stresses can predict different or the same velocity
fields and vice-versa. Therefore also the velocity differences are evaluated as loss function.
The loss function in terms of Reynolds stresses is given by

Lτ (β) =
∑
ij

∫
Ωa

(τexact,ij − τ̄ij (β))2

max(τexact,ij)
dΩa (3.7)

and that in terms of velocity by

LU (β) =
∑
i

∫
Ωa

(uexact,i − ūi (β))2

max(uexact,i)
dΩa. (3.8)

The determination of τ̄ij can be achieved in two ways; 1) evaluating solely the Reynolds
stresses without solving the RANS equations and 2) solving the RANS equations and evalu-
ating the turbulence model at the same time. Option 1 is cheaper in terms of computation
cost since only τ̄ij are unknowns whilst the velocity ui, turbulent kinetic energy k and specific
turbulence dissipation ω are prescribed from the training data. Then only the Reynolds stress
tensor (2.35) needs to be solved. However due to the mapping not being unique, this does not
guarantee an optimum solution of the flow field once solving the RANS equations. Therefore
option 1 needs to be compared to option 2. Option 2 solves the RANS equations for each
combination of coefficients β. This implies recomputing all quantities for each combination.

In order to evaluate the Reynolds stresses by not solving the RANS equations the specific
turbulence dissipations is computed from the training data. This is done by solving the ω
equation (2.30) from the k − ω turbulence model with coefficients as prescribed by Wilcox
(1994a). The training data ui and τij is propagated into (2.30).
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3.3 Training data

The training data was obtained from Direct Numerical Simulations (DNS) on a square-duct
performed by (Pinelli et al., 2010). Simulations at bulk Reynolds numbers Reh = Ubh/ν
from 1100 to 3500 were performed to evaluate the Reynolds number dependence on the flow
structure and turbulence. The flow was treated as incompressible with no volume forcing. The
results were validated with experiments from Gavrilakis (1992) and Kawahara and Kamada
(2000) at Reh = 2205 and Reh = 3535 respectively.

The data from Pinelli et al. (2010) contained the mean velocities and perturbation. From
the perturbations the turbulent kinetic energy and Reynolds stresses are computed. The
turbulent kinetic energy from

k =
1

2

(
u′u′ + v′v′ + w′w′

)
(3.9)

and the Reynolds stresses from

τij =

u′u′ u′v′ u′w′

u′v′ v′v′ v′w′

u′w′ v′w′ w′w′

 . (3.10)

The specific turbulence dissipation is computed from (2.30) using the closure coefficients from
Wilcox (1994a) and velocity field as an input from Pinelli et al. (2010).

In this research only the data for Reh = 1100 is considered.

3.4 Optimization routines

The loss functions from section 3.2 are evaluated using standard optimization routines imple-
mented in Python. The Nelder-Mead, L-BFGS-B, BFGS, powell, CG, TNC, COBYLA and
SLSQP optimization routines implemented in Python were all evaluated. The Nelder-Mead
and L-BFGS-B functions were deemed as the most suitable for this problem. Furthermore
Monte-Carlo simulations were performed to increase computational speed by allowing paral-
lelized random samples to be taken as evaluations of the loss functions to approximate the
optimum.

3.4.1 Nelder-Mead

The Nelder-Mead method or downhill simplex method finds the maximum or minimum of
a multi-dimensional loss function L(x) without requiring its derivative. As initial condition
n+ 1 points (n=dimension) are evaluated forming the initial simplex. In 2D this simplex has
the form of a triangle as shown in figure 3.2. Based on the evaluations of L(x) at each point
the simplex is updated. The simplex update can be in the form of
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• Reflection: moving the highest or lowest evaluation through the opposing face conserv-
ing the volume of the simplex

• Expansion: by moving one point further away and increasing the simplex volume to
allow for larger search steps

• Shrinkage: moving one point closer to the others reducing the simplex volume and the
search step

The simplex method is very sensitive to the initial condition in case of a non-convex opti-
mization problem. Based on the initial condition a local optimum might be found instead of
a global optimum. This is also showcased in figure 3.2 where the initial condition captured a
gradient towards the local optimum in the left bottom corner and the Nelder-Mead function
will optimize to that region.

Initial simplex

Expansion
Reflection

Shrinkage

Figure 3.2: Nelder-Mead simplex for 2D minimization problem.

3.4.2 L-BFGS-B

The L-BFGS-B method is chosen due to its good ability of solving high dimensional problems.
The dimension of this problem is between 1 and 9, one for each coefficient β to be optimized.
The L-BFGS-B algorithm sets as goal to minimize a function L(x) in a specific search direction
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obtained from the gradient of the loss function. Starting at the initial condition x0 the search
direction pk is found from

Bkpk = −∇L(xk). (3.11)

with Bk being the approximate Hessian matrix and ∇L(xk) an approximate of the gradient of
the loss function. The gradient is not provided to the optimization routine but approximated
within the routine itself. For the next iteration the Hessian matrix B is updated following
the quasi-Newton condition as

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk). (3.12)

The optimization is summarized in 5 steps which are repeated until a specific convergence
criteria is fulfilled:

1. Select the initial condition xk and define initial search direction pk.

2. Perform a 1-dimensional line search on αk = arg min f(xk + αpk).

3. Update sk = 1
yTk αk

and set xk+1 = xk + sk

4. Update yk = ∇L (xk+1)−∇L (xk).

5. Determine the new Hessian matrix

Bk+1 = Bk +
yky

T
k

yTk sk
−
Bksks

T
kBk

sTkBksk
. (3.13)

In mathematical terms the Hessian matrix is a square matrix of second-order partial deriva-
tives

B =
∂2f

∂xi∂xj
(3.14)

used to describe the local curvature of a function. With the curvature in the L-BFGS-B and
other Newton and quasi-Newton optimization routines the search direction can be established.

3.4.3 Monte-Carlo

Monte-Carlo simulations are random evaluations of L(x) on a defined search field. At every
sample point xk the loss function L(xk) is evaluated and the result stored. Combining all
found results the optimum is approximated. Monte-Carlo methods can be considered as brute
force optimization which find an approximate of the optimum. They require many evaluations
more compared to other minimization routines. However they can be implemented in parallel.
This means that if the computer resources are available a similar result can be obtained in
less time. In this study the RANS equations were solved for random β and the results
stored. This allowed for modifications of the loss function L(x) after completing the Monte-
Carlo simulation without having to redo the entire optimization routine. The sample size
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considered is at least 200 samples between the margins of −10 ≤ β ≤ 10 for each degree of
freedom.

The cluster available during this research limited the computation time on each core to 48
hours allowing a maximum of 96 iterations per optimization routine when solving the RANS
equations. This was not sufficient for convergence. Using a Monte-Carlo method CFD runs
could be performed on a random search space on all available cores and the results stored.
This eliminates issues arising from the time limitation of 48 hours allowing to perform many
more CFD runs and comparing the results once a large enough sample space was solved.

3.5 Test cases

In this section the numerical set-up for the calibration and prediction are discussed. For the
calibration a square-duct was used. Predictions were made on a rectangular-duct and wing-
body junction. All cases are built for OpenFOAM. All cases will showcase the domain set-up
with initial and boundary conditions and a mesh convergence study. First the square-duct is
discussed, followed by the rectangular-duct and wing-body junction.

3.5.1 Square-duct

The square-duct was used for the calibration. This geometry has been selected for two reasons:
1) the existence of secondary motions in the form of corner vortices and 2) the availability of
DNS results.

A flow passing through a square duct experiences 8 corner vortices, 2 per quadrant, as depicted
in figure 3.3. The corner vortices are a phenomenon not predicted by linear eddy viscosity
models due to the Boussinesq approximation (1.2). Non-linear eddy viscosity models can
represent this kind of fluid motion. Making the square-duct an ideal test case for calibrating
and studying a global-coefficient NLEVM.

For this research a square-duct mesh of 2,500 cells is constructed after a mesh convergence
study. The mesh is constructed with the blockMesh utility from OpenFOAM. Due to symme-
try only one quarter of the duct is solved and cyclic boundary conditions are used to simulate
an infinite length duct. No-slip boundary conditions are used on the walls. The solved quad-
rant is marked with grey in figure 3.4. The grid spacing is uneven with a 0.1 grading such
that the cells close to the walls are smaller than those close to the symmetry lines. The
bulk velocity is selected to be unity with the viscosity being adjusted to obtain the desired
Reynolds number of Reh = 1100.
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z/h =  1/4;      1/2;       3/4
Figure 3.3: Contour plot of stream function of the right upper quadrant of a square duct flow

and location of samples lines z/h = 1/4; 1/2 and 3/4 within the square duct.

z

y

z

y

Figure 3.4: Designation of quadrant to be solved and mesh spacing.

Mesh convergence study

The mesh convergence study is performed by evaluating the friction coefficient on the side
wall. Grids with increasing number of cells are evaluated from a very coarse 225 cell mesh to
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a very fine 10,000 cell mesh. The friction coefficient for all meshes is plotted in figure 3.5. At
increasing number of cells the friction coefficient converge to a similar line. Grids with 225
and 625 cells are considered too coarse whilst the differences between 5,625 and 10,000 cells
is very small. A compromise of 2,500 cells is chosen for the calibration. This grid offers good
accuracy at at least half the computational cost when compared to the finer meshes. The
final grid is wall resolved with the first cell height being inside the viscous layer with y+ < 1.
In appendix E the near wall behavior of a fluid is discussed.

−0.008 −0.006 −0.004 −0.002 0.000
cf

0.0

0.2

0.4

0.6

0.8

1.0

y/
h

225
625
2500
5625
10000

Figure 3.5: Mesh convergence based on friction coefficient cf on side wall of square duct.

The residuals for the square duct are lowered to at least 1e-6 which is reached at approximately
25,000 iterations. The linear models fail to predict the secondary motions and pressure
differences within the duct, meaning the residuals for these variables do not converge. The
residuals for a linear and non-linear eddy viscosity are given in figure 3.6.
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Figure 3.6: Residuals with a linear (left) and non-linear (right) eddy viscosity turbulence model.
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3.5.2 Rectangular duct

The rectangular-duct is used for the first predictions. This is aimed at providing insight
in predicting a similar flow. The mesh is set-up similarly to the square-duct. One of the
two sides is doubled to 2h. Similarly the number of cells for that side is doubled. Leaving
the total number of cells of 5,000. The mesh is considered converged based on the mesh
convergence study of the square duct. The bulk Reynolds number based on the smaller side
is Reh = ubh/ν = 1100. The convergence criteria was set to 1e-6.

3.5.3 Wing-body junction

The wing-body junction is a more complex 3D case on which linear eddy viscosity models are
known to be inaccurate. Bordji et al. (2014) has shown that the Spalart and Allmaras (1992)
(SA) turbulence model over predicts the corner separation whilst the SA model expanded with
a Quadratic Constitutive Relationship (QCR) (Spalart, 2000) provides better predictions.
This makes this test case ideal to evaluate the improvements possible by using a square-duct
calibrated global-coefficient non-linear eddy viscosity model.

The wing body junction is set up similar to the experiment carried out by Devenport and
Simpson (1990). A 3:2 elliptical nose is joined with a NACA0020 tail at the thickest point. The
wing is mounted to a flat plate with a boundary layer thickness of δ99 = 36 mm 2.15 thicknesses
in front of the wing. The momentum thickness Reynolds number is Re = 6, 700 and the free-
stream Reynolds number Re = 132, 560. Due to symmetry only half the domain is solved.
The coordinate system is x in the free stream direction, y normal to the wing centre-line and
z along the wing-span. A schematic depicting this construction is given in figure 3.7. The
plate and wing are treated as no-slip walls with wall functions.

The numerical set-up was generated with a plate length in front of the wing of 2.158 m. This
length was computed based on the theoretical boundary layer thickness of a flat plate, given
by

δ ≈ 0.37x/Re1/5
x . (3.15)

The domain is extended in the x, y and z direction by 8.8, 3.75 and 8 chord lengths respec-
tively.

The mesh is generated in Pointwise with a grading of 1e-4 towards the plate and wing. This
resulted in a y+ < 1 close to the junction and y+ < 80 on the coarsest cell with an average
y+ < 25. This is considered sufficient with the use of wall functions where a y+ < 30 is
recommended as explained in appendix E. For stability all simulations are started from a
converged laminar solution. From a mesh convergence study 725,200 (149x50x101) cells were
found sufficient for converged results. The grid set-up is shown in figure 3.8. This figure does
not correspond to 725,200 cells, but the coarse mesh of 240,100 cells.
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Figure 3.7: Wing-body junction set-up with
c/T = 4.254.

Figure 3.8: Wing-body
junction grid in the x-y

plane.

Mesh convergence study

The mesh convergence of the fuselage wing junction is evaluated in terms of the flat plate
boundary layer growth and based on the corner flow separation. Dandois (2014) found the cor-
ner flow separation to be very sensitive towards grid refinement. Three different refinements
are evaluated with 725,200, 1,960,200 and 5,900,400 cells. Based on the flat plate boundary
layer, figure 3.9, the coarse and fine mesh follow the theoretical growth. The medium mesh
appears to exhibit a larger, unphysical boundary layer growth. The reason for this could not
be determined. The mesh is set-up in exactly the same form as the other meshes with the
difference being the number of cells and refinement. In general problems of solver instabil-
ities were observed for all meshes requiring a start from a laminar solution. Eventually the
laminar solution was not converged. This mesh was discarded from further analysis. For the
two remaining grids the corner separation region is plotted in figure 3.10. Both refinements
predict corner vortices. The size of the vortices appear similar in both refinements with the
only difference being the flow parallel to the wing at the trailing edge. The coarse mesh pre-
dicted parallel flow till closer to the plate than the fine mesh. For the purposes of this study
the coarse mesh is considered sufficiently refined for the comparison of turbulence models.
Residuals are always lowered to at least 1e-6. For a linear k − ω model figure 3.11 shows the
iterations necessary to reach convergence. For the coarse case a good convergence is reached
after 4,000 iterations starting at a laminar converged result.
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Figure 3.9: 0.99ux (free-stream velocity) contour to represent boundary layer thickness on flat
plate in front of wing with different number of mesh cells. Dotted line (- -) represents measured

flat plate (without wing) boundary layer thickness by Devenport and Simpson (1990).

(a) 725,200 (b) 5,900,400

Figure 3.10: Wall shear stress stream-lines and color plot for different grids. Subcaption is the
number of cells.
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Figure 3.11: Residuals wing-body junction with linear k − ω model.
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Chapter 4

Data-driven calibration

The calibration procedure was split in two approaches: 1) data-driven calibration explored in
this chapter and solver-incorporated calibration explored in chapter 5.

This chapter describes the data-driven calibration. In this approach the DNS velocity field,
turbulent kinetic energy and specific turbulence dissipation rate are used as inputs to evaluate
the non-linear stress-strain relationship (2.35). The coefficients β are found from minimizing
the differences between the exact τexact,ij and predicted τ̄ij Reynolds stresses with the loss
function (3.7)

Lτ (β) =
∑
ij

∫
Ωa

(τexact,ij − τ̄ij (β))2

max(τexact,ij)
dΩa. (3.7)

The remainder of this section is organized as follows: a sensitivity analysis in terms of Sobol
indices is presented in subsection 4.1. Different optimization routines are studied in section
4.2. Section 4.3 analyses the tensors and identifies similarities between them. Section 4.4
explores the anisotropy and Reynolds stress to velocity relation. Using the calibrated coeffi-
cients β in the RANS solver is discussed in section 4.5. Finally a discussion concluding the
data-driven calibration is made in section 4.6.

4.1 Sobol sensitivity analysis

In this subsection the sensitivity analysis for (3.7) is presented. The influence of the coeffi-
cients β towards minimizing (3.7) is evaluated using Sobol indices (Sobol, 2001). These can
be of first order S1, second order S2 and total ST . The first order Sobol indices indicate
the influence of each coefficient towards the total variance as a stand alone. The second
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order Sobol indices indicate the influence of a coefficient when interacting with another coef-
ficient. The total Sobol indices are the sum of all Sobol indices, including first, second and
higher order indices, which indicate further interactions between coefficients. The sum of∑

(S1 + S2 + higher order interactions) ≤ 1 whilst
∑
ST ≥ 1 because ST sums interaction

terms multiple times. In example S212 = S221 is the same effect, which in ST is considered
twice as S21,2 + S22,1. Hence

∑
S1 = 1 and

∑
ST = 1 iff1 no interactions take place. The

samples to be evaluated were obtained from Saltelli sampling with bounds of -10 and 10 for
all coefficients (Saltelli, 2002; Saltelli et al., 2010). Saltelli sampling is a form of Monte-Carlo
sampling that allows for variance-based sensitivity analysis with the SALib library in Python.
This library is known to have some numerical inaccuracies where negative Sobol indices are
possible. If negative Sobol indices occur the sample size needs to be increased or the 95%
confidence interval needs to include 0. Then the negative Sobol indices can all be rounded up
to 0.

The first coefficient β1 is found to be the most influential towards the total variance, having
the largest first order Sobol index S1 as show in figure 4.1. Its total Sobol index ST is also
the largest, indicating it has the greatest influence when interacting with other coefficients.
The second and third coefficients have small first order Sobol indices, but large total Sobol
indices. From figure 4.2 it is seen that these two coefficients interact as shown by a large
S22,3. Coefficients 6 to 8 show interactions with the first coefficient and amongst themselves.
However these coefficients are of much less importance than the first 3. The remaining
coefficients, 4, 5 and 9 have little to no influence towards the total variance as shown by all
Sobol indices S1, S2 and ST approximately 0.

From the sensitivity analysis it is concluded that non-linear models with only the first three
tensors should suffice to represent secondary motions, whilst higher order tensors likely only
lead to over-fitting and have little to no impact on the predictions.

1If and only if
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Figure 4.1: Sobol indices S1
(black) and ST (red).
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Figure 4.3: Cost vs complexity plot for data-driven
calibration. Cost is expressed as the loss function

value Lτ from (3.7). Complexity is expressed as the
number of non-linear tensors considered, meaning

coefficients β 6= 0 from (2.36) in (2.35).

4.2 Optimization

In this subsection different optimization routines are evaluated on the minimization of the
loss function Lτ given in expression (3.7).

The optimization routines are divided into two groups, gradient based, and non-gradient
based. The gradient based routines are preferred for convergence speed. However for high
dimensional non-linear problems their derivative may not be known or difficult to obtain and
the algorithm may fail. Therefore also a non-gradient based approaches are considered. A
total of 8 optimization routines implemented in Python’s Scipy package are considered: 1.
gradient based; BFGS, L-BFGS-B, CG, TNC and SLSQP. 2. non-gradient based: Nelder-

MSc. Thesis M.F. Döpke
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Mead, Powell and COBYLA.

1. Within the gradient based methods several approaches exist. The conjugate gradient
(CG) method is a modified steepest descent method that evaluates the gradient of the
search vector in terms of the residual. This method is very popular for solving large
sparse systems of positive definite matrices. Other gradient based methods require the
Hessian matrix. Newton based methods such as the Truncated Newton algorithm or
Newton Conjugate Gradient (TNC) and the Sequential least squares quadratic pro-
gramming (SLSQP) routines. These compute the exact Hessian to obtain the Taylor
series expansion and search direction. Determining the Hessian can be expensive or
impossible, resulting in some optimization routines to approximate the Hessian matrix.
These methods are known as quasi-Newton methods. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) and Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B)
algorithms are quasi-Newton methods. Once the Hessian is approximated, the BFGS
method stores the entire n×n Hessian matrix with the L-BFGS-B algorithm only storing
a few vectors that represent the approximation. This makes the L-BFGS-B algorithm
well suited for high dimensional problems.

2. Non-gradient based optimization methods determine repeated local minima expanding
their search direction in the direction of the minima. Nelder-Mead makes use of a
simplex of size n + 1 whose corners are updated as new evaluations are made. Pow-
ell’s method establishes two search directions and updates these every iteration. The
Constrained optimization by linear approximation (COBYLA) method is a version of
Powell’s method which allows specification of bounds.

In section 3.4 the L-BFGS-B and Nelder-Mead methods are explained in more detail.

The cost-complexity plot arising from the different optimization routines evaluating Lτ (3.7)
is shown in figure 4.3. Cost is evaluated by the loss function Lτ (3.7) and complexity as the
number of non-linear tensors (2.36) included in (2.35). Being a complexity of 0 equivalent to
the Boussinesq approximation.

When including only the first non-linear tensor T
(1)
ij from (2.36) a cost reduction of 17% is

achieved. Considering the first 2 tensors a cost reduction of 60% is seen. Including tensors
5 to 9 a reduction of ≈ 77% is attained. This is partially in accordance with the sensitivity
analysis. From the Sobol indices it was found that the first three coefficients were the most
influential with the remaining coefficients having little influence. Tensor 3 shows no influence
in figure 4.3. This can be explained from its relation to the second tensor. Making the use
of both redundant. Surprisingly the fifth tensor has a large impact, reducing the cost by an
additional 17%. This also contradicts other non-linear models from table 2.1 which always
calibrated this tensor with a zero coefficient as shown in table 2.1.

It is found that different optimization routines, though obtaining the same cost reduction at
same number of coefficients, differ in their value for the coefficients. This is shown in table
4.1 for the Nelder-Mead and L-BFGS-B routines. These two optimization routines coincide
almost perfectly in figure 4.3 whilst having differing coefficients, specially when considering
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all 9 non-linear tensors. In accordance with the sensitivity analysis relations can be found
between the coefficients. For all combinations of tensors β1 + β2 − β3 ≈ 9 and β2 − β3 ≈ 6
are found. β6 + β7 ≈ 7 is found when considering 7 tensors and β6 + β7 + β8 ≈ −4 when
considering 8 tensors. No relation can be found for the 9th coefficient.

Table 4.1: Coefficients for lowest cost at each complexity level. Loss function value Lτ is
expressed as Lτ/10000.

Nelder-Mead
Lτ,1 Lτ,2 LU β1 β2 β3 β4 β5 β6 β7 β8 β9

569 345 142
474 323 119 1.05
229 248 137 3.47 6.48
226 248 137 3.48 -5.86 -12.36
226 248 137 3.48 -5.86 -12.36 0.34
133 210 130 3.46 8.13 1.46 5.42 -5.75
118 195 099 4.67 7.27 0.88 0.04 -5.82 -7.37
117 195 097 4.72 3.49 -2.85 -2.50 -5.79 -16.70 9.12
095 157 111 6.40 -1.02 -12.06 1.85 -5.65 -1.53 -10.37 7.84
093 155 113 6.45 5.70 -5.56 3.32 -5.74 -3.83 -8.20 8.15 -1.10

L-BFGS-B
Lτ,1 Lτ,2 LU β1 β2 β3 β4 β5 β6 β7 β8 β9

569 345 142
474 323 119 1.05
229 248 137 3.47 6.48
228 248 137 3.48 3.23 -3.27
228 248 137 3.48 3.23 -3.27 -0.03
133 211 128 3.49 3.27 -3.30 0.01 -5.67
118 195 098 4.67 3.29 -3.10 0.29 -5.79 -7.35
118 195 098 4.66 3.24 -3.15 0.13 -5.79 -3.67 -3.62
094 155 111 6.48 5.74 -5.41 0.38 -5.72 -6.14 -6.01 8.04
089 151 101 6.95 -1.03 -12.25 1.42 -5.62 -104.53 88.64 8.10 -149.10

4.3 Tensor similarity analysis

In this subsection the tensor similarity will be analyzed to understand the coefficient sensitiv-
ity presented in subsection 4.1 and the cost-complexity relation from subsection 4.2. In order
to show correlations between coefficients the cosine similarity between two tensors, defined
by Weatheritt and Sandberg (2016) as tensor alignment

ρ(l,r) =
T

(l)
ij T

(r)
ij

T
(l)
mnT

(l)
nmT

(r)
pq T

(r)
qp

(4.1)
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is used. This expression can be understood similar to the vector alignment

ab

‖a‖‖b‖
. (4.2)

The tensor alignment is only a valid measure when the tensors are symmetric. Then the
tensor alignment represents the alignment of the eigenvectors of the tensor. The measure ρ(l,r)

expresses parallelity between two tensors with ρ(l,r) = ±1, with 1 indicating same orientation
and −1 indicating opposite orientation. ρ(l,r) = 0 indicates orthogonal tensors. It has to be
noted that the alignment is the combination of the three eigenvectors . This means that if
two eigenvectors align, but not the third no alignment might be found by (4.1). In example,
it is unknown what the tensor alignment says of two tensors if the 3 eigenvectors are parallel
with equal orientation, parallel with opposing orientation and orthogonal respectively. This
renders this metric delicate to interpretation and not to be considered as universal truth.

In order to increase anisotropy it is desired to have additional non-linear tensors to be orthog-

onal to the Boussinesq approximation term T
(0)
ij and between each other. Table 4.2 provides

an overview of the alignment between tensors. For clarity first focus on the tensor alignments

with T
(0)
ij , the Boussinesq term, is put, followed by a discussion of the interactions between

the non-linear tensors.

Table 4.2: Tensor alignment as expressed by (4.1). When alignment is not uniform reference to
figure displaying alignment is given.

T
(1)
ij 0

T
(2)
ij 4.4a 0

T
(3)
ij 4.4b 0 4.4h

T
(4)
ij 0 4.4e 0 0

T
(5)
ij -1 0 4.4i 4.4k 4.4m

T
(6)
ij 0 1 4.4j 0 4.4n 0

T
(7)
ij 0 1 0 4.4l 4.4o 0 4.4s

T
(8)
ij 4.4c 4.4f -1 1 0 4.4q 4.4t 4.4v

T
(9)
ij 4.4d 4.4g 1 0 4.4p 4.4r 4.4u 4.4w 0

T
(0)
ij T

(1)
ij T

(2)
ij T

(3)
ij T

(4)
ij T

(5)
ij T

(6)
ij T

(7)
ij T

(8)
ij

4.3.1 Alignment with the Boussinesq term

Tensors 1, 4, 6 and 7 are found to be orthogonal to the Boussinesq term. Tensor 5 is found to be
parallel with opposing orientation. Tensors 2, 3 and 8 are found to be mostly orthogonal with
parallelity increasing towards the centre of the square duct (bottom left corner in the figures).

From this it is interpreted that all non-linear tensors but T
(5)
ij provide new information towards

the Reynolds stresses that could explain an improvement in anisotropy correction and thereby

cost reduction in 4.3. If T
(5)
ij ‖ T (0)

ij that could also explain why in other NLEVM’s its
coefficient β5 is always set to 0.
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Figure 4.4: Tensor alignment plots completing table 4.2.
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4.3.2 Alignment between non-linear tensors

Focusing on the interactions between the non-linear tensors, connections between the align-
ment and Sobol indices are drawn. The second order Sobol indices suggested interactions
between the first three tensors. From the alignment measure ρ(1,2) = 0 and ρ(1,3) = 0 were
found, suggesting they act independently when it comes to correcting the anisotropy of the
Reynolds stresses. This is in accordance with figure 4.3 where the addition of the first and
second tensor have the strongest influence in terms of cost Lτ . ρ(2,3) given by figure 4.4h on
the other hand provides an alignment of mostly −1 with a small region of more orthogonality.
This is evidence that the tensors are related. This also explains the little influence of adding

T
(3)
ij in figure 4.3 since T

(2)
ij already carries the same information.

The first non-linear tensor was found in table 4.2 to be aligned with T
(6)
ij and T

(7)
ij , who are

also aligned with each other. This means that these two tensors do not add new information
towards the Reynolds stresses which also explains their little influence in terms of cost in
figure 4.3.

The information captured by the 2nd tensor appears to be similar to that of the 8th and
9th tensor given their alignments of ρ(2,8) = −1 and ρ(2,9) = 1. Also the third tensor is

related to the 8th tensor by ρ(3,8) = 1. This is evidence that the higher order tensors add
little information not captured by lower order tensors. Explaining why the cost is not further
reduced in figure 4.3 by adding these terms.

Tensors T
(4)
ij and T

(5)
ij display some orthogonality towards lower order tensors. From this it

can be said that these tensors should still have influence towards improving the Reynolds
stress prediction. This is in direct contradiction of the Sobol indices analysis where S14 and
S15 are found to be approximately 0. From the coefficients found in table 4.1 the fourth
tensor is often preceeded by β4 ≈ 0 and its addition leads to no reduction in cost. This
implies the fourth tensor carries undesired information. This is in line with the patterns
observed in figure 4.4. The alignments ρ(4,j) display a unique pattern when compared to the

others. The 5th tensor on the other hand provides a reduction of cost in figure 4.3 and its
preceeding coefficient is β5 ≈ −5.7 for all cases. This is attributed to the alignment with
the Boussinesq term ρ(0,5) = −1 which is not varied in this calibration. Then the 5th tensor
corrects for calibration errors arising from the eddy viscosity that multiplies the Boussinesq
term.

4.3.3 Alignment discussion

Having analyzed the tensor alignment, it is concluded that the tensors 1 and 2 should provide
the greatest improvement in Reynolds stresses. The 5th tensor provides limited improvement
which corrects for over or under-predictions caused by the Boussinesq term. The 4th tensor
is always preceded by β4 = 0 and tensors 3 and 6 to 9 are related to lower non-linear tensors.
Their addition can lead to over-fitting and also reduce solver robustness.
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4.4 Results

In this section the calibrated global-coefficient non-linear eddy viscosity model prediction
results on the square-duct are presented. The corection of anisotropy and relation of Reynolds
stresses to secondary motions is detailed in sections 4.4.1 and 4.4.2 respectively. It was
introduced in the Introduction that the secondary motions depend on the Reynolds stresses.
The Boussinesq approximation was incapable of predicting secondary motions due to the
isotropic flow assumption τxx = τyy = τzz which can not predict anisotropy. A non-linear
eddy viscosity is not bound by this assumption and can therefore represent secondary motions.
First the obtained anisotropy from the global-coefficient NLEVM is compared to the DNS
data followed by the secondary motion analysis.

4.4.1 Anisotropy

The anisotropy can best be presented with Banerjee’s Barycentric map (Banerjee et al.,
2007). The construction of a Barycentric map is explained in appendix D. The barycentric
map analyzes the eigenvalues of the anisotropy tensor

aij =
τij
2k
− 1

3
δij (1.3)

which are physically bound by realizability constraints as explained in Schumann (1977)
and introduced here in appendix D. One has to note that the model described by (2.35) is
not bound by the realizability constraints and results can therefore be found outside of the
barycentric map.

On the sample lines z/h = 1/4; 1/2 and 3/4 shown in figure 3.3 the anisotropy is evaluated
for all complexities, 0 to 9. In figure 4.5 the anisotropy for complexities 1, 2, and 5 are given.
Complexities higher than 5 exhibit similar anisotropies as a complexity of 5 and complexities
3 and 4 showed a similar result as complexity 2. Almost no differences between the results
found from the optimization routines L-BFGS-B and Nelder-Mead can be found. This implies
that different turbulence models (different coefficients β) with same velocity field can predict
the same Reynolds stresses.

In figure 4.5 it can be seen that only including the first non-linear tensor from (2.36) only
corrects the anisotropy slightly being concentrated around the plane strain. Increasing the
complexity the anisotropy can be corrected further by shifting it towards the 1-component
turbulence (bottom right corner of the triangle). There is always a prediction of plane strain
close to y/h ≈ 0. The data points outside of the barycentric triangle in figure 4.5 display the
failure of the global-coefficient NLEVM to satisfy the realizability constraint.

Anisotropy can be corrected with the NLEVM, the next step is to relate the anisotropy
corrections to the secondary motions.
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46 Data-driven calibration

(a) Complexity of 1; β1 6= 0 and β2, ..., 9 = 0

(b) Complexity of 2; β1,2 6= 0 and β3, ..., 9 = 0

(c) Complexity of 5; β1,...,5 6= 0 and β6, ..., 9 = 0

DNS L-BFGS-B Nelder-Mead

Figure 4.5: Anisotropy on samples lines z/h = 1/4 (left); 1/2 (centre); 3/4 (right). Anisotropy
moves from 1-component (bottom right corner) towards plane strain at increasing y/h. Data
points outside of the triangle correspond to anisotropies that do not satisfy the realizability

constraint.

4.4.2 Reynolds stress to secondary motion analysis

Having found that the anisotropy can be corrected it needs to be related to the secondary
motions. This is done by analyzing the Reynolds stress components responsible for the sec-
ondary motions, (τyy − τzz) and τyz as described in the Introduction from equation (1.5).
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(
∂2

∂z2
− ∂2

∂y2

)
τyz+

∂

∂y

∂

∂z
(τyy − τzz) =(

∂2

∂y2
− ∂2

∂z2

)(
νt

(
∂uy
∂z

+
∂uz
∂y

))
+2

∂

∂y

∂

∂z

(
νt

(
∂uz
∂z
− ∂uy

∂y

)) (1.5)

Figure 4.6 shows the (τyy − τzz) and τyz from the training data. From the training data a
definite structure in (τyy − τzz) is observed with a positive region above and a negative region
below the diagonal from y/h = z/h. These regions correspond to the two vortices experienced
per corner in a square duct as shown in figure 3.3. The positive region corresponds to the
anti-clockwise rotating vortex and the negative region the clock-wise rotating vortex. The
strength of these vortices is defined by derivative of (τyy − τzz) in y and z as ∂

∂y
∂
∂z (τyy − τzz).

Therefore the gradients of (τyy − τzz) generate the vorticity. The strongest gradients in y
and z is observed near to the walls. Close to the diagonal line the gradient appears constant
meaning the second order derivative is close to 0. The near wall region is then considered to
be the source of vorticity. When observing τyz the second derivative in y and z is considered.
This means the changes of gradient in y and z are relevant. Given the symmetry around

the diagonal y = z, this implies that
∂2τyz
∂z2

=
∂2τyz
∂y2

near the diagonal. Near the walls τyz is

constant or at least approximately constant, which means
∂τyz
∂z =

∂τyz
∂y = 0. Together with the

aforementioned conclusion, this supports the argumentation of (Perkins, 1970) and (Huser &
Biringen, 1993) that τyz does not generate vorticity.

When observing the non-linear models calibrated with global coefficients in figure 4.7, the
model with 1 coefficient shows similar patterns in (τyy − τzz) as the training data. The con-
tours of τyz show a different structure than the training data. Higher complexities displayed
similar contours as the model shown here. The Reynolds stress profiles of (τyy − τzz) and τyz
for different complexities using the L-BFGS-B results from table 4.1 are plotted in figure 4.8.

From the contour plot for (τyy − τzz) 4 regions can be distinguished. Two smaller regions
near the centre of the square duct and two larger regions towards the walls. These larger
regions correspond to those found for the training data in figure 4.7. The origin of the smaller
regions remains unexplained. When comparing (τyy − τzz) from the non-linear model and the
training data near the walls, it can be seen in figure 4.8 that the gradients near the walls
predicted by the non-linear model are smaller than those from the training data. Then the
non-linear model is expected to predict weaker secondary motions.

For τyz the non-linear model predicts two local maxima and minima as in the training data.
The magnitudes and sizes of regions are not predicted well. Given that (τyy − τzz) is respon-
sible for the secondary motions, the impact of not predicting τyz accurately cannot be singled
out.

Implementing the coefficients from table 4.1 into the RANS solver and plotting the velocity
profiles on the sample lines z/h = 1/4; 1/2 and 3/4 gives figure 4.9. This figure shows the
training data as DNS, Boussinesq approximation as baseline and best results including 1, 2,
5 and 9 non-linear tensors from expression (2.36). It is confirmed that the secondary motions
are predicted, but much weaker than in the training data. This is attributed to the difference
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in predicted and exact (τyy − τzz).
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Figure 4.6: Reynolds stress contour plots of τyy − τzz (left) and τyz (right) of the training data.
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Figure 4.7: Reynolds stress contour plots of predicted τyy − τzz (left) and predicted τyz (right)
of (2.35) with 1 coefficient.
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Figure 4.8: Reynolds stress profiles of predicted τyy − τzz (left) and predicted τyz (right).
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Figure 4.9: Predicted velocity profiles Uy (left) and Uz (right). Training data is DNS,
Boussinesq approximation is baseline. 1, 2, 5 and 9 are the best results when including 1, 2, 5

and 9 non-linear tensors in the turbulence model.

4.5 Data-driven vs solver-incorporated calibration

It has been seen that the anisotropy can be corrected given the cost function Lτ from (3.7).
Smaller gradients than the training data near the walls for (τyy − τzz) and τyz were observed.
Secondary motions could be predicted in subsection 4.4.2. However these were smaller than
those from the training data. Furthermore calibrating the coefficients β1,...,9 assuming the
DNS velocity field as input might be flawed due to other sources of error. For example the
Boussinesq approximation implies that u′ = v′ = w′, which is not the case in the training
data. Therefore even the Boussinesq approximation could predict secondary motions when
using the DNS data as input. A connection between the Reynolds-stresses and RANS solver
is made in this subsection.

This subsection analyzes the validity of the data-driven calibration by incorporating the RANS
solver to the calibration procedure. The optimum coefficients β found from minimizing Lτ
(3.7) as defined in table 4.1 for the L-BFGS-B optimization routine were used in the RANS
solver. Other sets of optimum β gave the same results and were omitted for clarity. After
solving the RANS equations the minimization problem (3.7) was reevaluated with τij as a
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function of the predicted velocity, turbulent kinetic energy and specific turbulence dissipation
instead of the training data. Furthermore the prediction of secondary motions is evaluated
with

LU (β) =
∑
i

∫
Ωa

(uexact,i − ūi (β))2

max(uexact,i)
dΩa. (3.8)

Figure 4.10 shows the relation between using DNS and predicted inputs for the Reynolds
stresses τij in Lτ (3.7). The improvement to represent secondary motions are evaluated by
LU given by (3.8). All complexities are displayed. From 0, Boussinesq approximation, to 9,

considering all non-linear tensors. The axis labels are denoted by Loτ = Loτ

(
τ∗ij(U

o, ko, ωo)
)

and L∗τ = L∗τ

(
τ∗ij(U

∗, k∗, ω∗)
)

with o being for training data and data-driven and ∗ for pre-

dicted data and solver-incorporated. The diagonal line in figure 4.10 shows L∗τ = Loτ = L∗U .
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Figure 4.10: Data-driven vs
solver-incorporated calibration
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Figure 4.11: Data-driven vs
solver-incorporated calibration

In figure 4.10 the points relating to different number of non-linear tensors considered are
plotted. It was expected that L∗τ > Loτ for all combinations of tensors since L∗τ is a function of
RANS velocity and turbulent kinetic energy fields. However it appears that when using the

Boussinesq approximation or only up to and including T
(1)
ij the RANS data is more accurate in

predicting the DNS Reynolds stresses τ oij than the DNS data for the given turbulence model.
The remaining complexity levels are as expected above the diagonal L∗τ = Loτ . Despite this
peculiarity that some L∗τ < Loτ , a clear trend is observed. For a reduction of Loτ using the data-
driven approach a reduction of L∗τ , being solver-incorporate, is achieved. A linear function is
fitted through the data points resulting in the black dotted line. The slope of the function
is ≈ 0.4. Meaning that a reduction in L∗τ ≈ 0.4Loτ + 0.01. This justifies the minimization
strategy of minimizing Lτ (3.7) without solving the RANS equations at each iteration but
only evaluating the Reynolds stresses τij with (2.35).

Since the final goal of this research is to derive coefficients β to better predict secondary
motions, LU (3.8) was evaluated. The relation between Loτ and L∗U is shown by the red
markers in figure 4.10. From the markers alone it can already be seen that a reduction in Loτ
does not lead to a reduction in L∗U . This is confirmed by making a linear relation through the
data points obtaining a slope of ≈ 1. Having found a potential inability to predict secondary
motions with the data-driven calibration a Monte-Carlo simulation is preformed solving the
RANS model for random β.
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A Monte-Carlo simulation was set up with 1 to 9 coefficients with margins -10 to 10 for
each coefficient. A total of at least 200n samples are considered for each complexity, with
n indicating how many non-linear tensors are considered (complexity). Both loss functions
Lτ given by equation (3.7) and LU given by equation (3.8) are considered as minimization
problems. The obtained relationship between the minimization problems is given in figure
4.11. The markers indicate the minimization problem, the numbers the complexity and the
axis the loss function value. It is observed that no correlation exists between minimizing
one or the other loss function. At different complexities, minβ Lτ is constant in LU as seen
by the squares, and vice-versa minβ LU is constant in Lτ as seen by the diamonds. The
lack of correlation between these loss functions shows that this way of calibrating does not
work. Different combinations of β although improving the Reynolds stress prediction do not
improve the prediction of secondary motions. This can also mean that the inability to predict
secondary motions might not be exclusively the Boussinesq approximation but also other
factors within the turbulence model might play a role. Such as the use of global-coefficients
or the k or ω transport equations.

4.6 Discussion

Having found that no relation between the two loss functions Lτ (3.7) and LU (3.8) can be
found another calibration procedure is necessary. Two approaches are suggested: 1. Solver-
incorporated calibration with optimization routine and 2. solver-incorporated calibration
with surrogate modelling.

1. The first approach requires a CFD run per search step in an optimization routine ren-
dering a very expensive approach. With the availability of computational resources also
a Monte-Carlo method can be used which can be highly parallelized to evaluate random
samples in a given search space and then approximate the optimum.

2. The second approach requires fewer CFD runs and a model that interpolates between
the runs. This approach is less computationally expensive, is however dependent on the
interpolation. Which can, if not done well, induce additional errors.

Given the availability of a cluster in this research the first approach is selected with a Monte-
Carlo simulation and explored in the next chapter.
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Chapter 5

Solver-incorporated calibration

In this chapter the solver-incorporated calibration is discussed. A Monte-Carlo simulation
is performed with random samples ranging between -10 and 10 for each coefficient. Two
separate runs are performed;

1. considering 1 to 9 non-linear tensors or coefficients β 6= 0 with at least 200n converged
samples, with n indicating the number of tensors considered or coefficients β 6= 0.

2. with 5 coefficients considering 24,000 samples of which 15,089 converged which are used
for Sobol sensitivity analysis

The loss functions studied as minimization problems are Lτ and LU given by (3.7) and (3.8).

Lτ (β) =
∑
ij

∫
Ωa

(τexact,ij − τ̄ij (β))2

max(τexact,ij)
dΩa (3.7)

LU (β) =
∑
i

∫
Ωa

(uexact,i − ūi (β))2

max(uexact,i)
dΩa (3.8)

The remainder of this section is organized as follows; In section 5.1 a sensitivity analysis is
performed including Sobol indices and kernel density estimates. In subsection 5.2 the optimum
results in terms of anisotropy and velocity are presented. The global-coefficient non-linear
eddy viscosity model is compared to other non-linear eddy viscosity models in section 5.3. In
section 5.4 the chapter is concluded with a discussion on the solver-incorporated calibration.
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5.1 Sensitivity analysis

In this section a sensitivity analysis is performed. This is done in 3 ways; analyzing a cost-
complexity relation, with kernel density estimations (kde’s) and Sobol index analysis.

5.1.1 Cost-complexity analysis

The cost-complexity relation is obtained from a Monte-Carlo simulation of at least 200n
converged samples with −10 ≤ β ≤ 10 where n indicates the number of coefficients 6= 0. The
cost-complexity plot, figure 5.1, analyzes the loss function value L∗U and L∗τ as cost in terms
of the number of coefficients given as complexity. The superscript ∗ indicates as a function
of predicted velocities, turbulent kinetic energy and turbulence dissipation. A complexity of
0 indicates the Boussinesq approximation, 1 indicates β1 6= 0 and β2 to 9 = 0 and so on.
From figure 5.1 it is observed that tensors 4 and 6 to 9 have the least influence towards the
reduction of cost in terms of L∗U and L∗τ , whilst tensors 1, 2, 3 and 5 have the largest influence.
The cost reduction obtained by minimizing L∗U by using just 1 tensor is 54% and by using 5
coefficients is 64%. Adding all 9 tensors results in a reduction of 67%. When minimizing L∗τ
reductions of 40% at complexity 1 is observed and a constant 77% reduction from complexities
5 to 9 excluding 7. The low influence of tensors 4 and 6 to 9 in terms of loss function is in
accordance with the results found from the data-driven calibration. The largest surprise is
the cost reduction of L∗U and L∗τ achieved by including the third tensor. This one was found
to be correlated to the second tensor and therefore having a smaller impact.

5.1.2 Kernel density estimates

From the same Monte-Carlo simulation as used for the cost complexity analysis the kernel
density estimates (kde’s) are plotted. The simulation including all 9 coefficients is considered.
This one contains 2, 140 converged samples for −10 ≤ β ≤ 10. Figure 5.3 shows the kde’s of
L∗U and L∗τ when evaluated as minimization problems and taking the best 100 samples. The
blue line represents the kde for the converged samples, the green line the best 100 samples in
terms of minβ L

∗
U and the red line the best 100 samples in terms of minβ L

∗
τ .

In figure 5.3 it is observed that minβ L
∗
τ is better informed than minβ L

∗
U . The kde’s of

minβ L
∗
τ and minβ L

∗
U do not overlap for coefficients 1, 2 and 3. Coefficients 4 and 6 to 9 are

not informed for either minimization problem and also considered of low influence as shown
by the cost-complexity analysis. Coefficient 4 is the greatest surprise given that in the data-
driven calibration it was found to be approximately 0 for all optimization routines and here it
is not well informed for either minimization problem. Meaning that even if β4 6= 0 its tensor

T
(4)
ij has no effect towards the minimization problems.
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Figure 5.1: Cost complexity plots for minβ L
∗
U (left) and minβ L

∗
τ (right). Markers represent

the minimum found from the Sobol index analysis with 5 coefficients and 15,089 converged
samples.
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Figure 5.2: Sobol indices S1 and ST for for L∗
U (left) and L∗

τ (right).

5.1.3 Sobol indices

The Sobol indices are computed for β1 to 5 6= 0 and β6 to 9 = 0. A total of 24,000 samples
were evaluated of which 15,089 converged. The Sobol indices were not computed for all 9
coefficients due to the extravagant computational cost of obtaining sufficient samples for Sobol
index convergence. Figure 5.2 shows the first order S1 and total ST Sobol indices for the
first 5 coefficients. It is observed in figure 5.2 that the 1st and 5th coefficients are the most
influential towards L∗U and L∗τ . Both as stand alone (large S1) and in terms of correlations
(large ST ). Coefficients 2 and 3 have lower influence on L∗U and L∗τ shown by smaller S1 and
ST . With the fourth coefficient having a small influence.

In order to analyze the correlations between the first 5 coefficients scatter plots are created
with one coefficient on the y-axis, another on the x-axis and using color to indicate the value
of loss function. A binary color scheme is selected to highlight the impact of the loss function.
White spaces represent high values for the loss function and black dots low values. Uniform
gray regions indicate solver instability where no converged samples exist. In figure 5.4 on
the left (L∗U ) it can be observed that the lowest loss function values are found towards the
unstable region. Correlations are found between β1, β2 and β3 as β1 ≈ β2, β1 ≈ −β3 and
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Figure 5.3: Kernel density estimations (kde’s) for coefficients β.

β2 ≈ −β3. The 5th coefficient β5 is found to be ≈ −5.7 for small loss function values, close to
the stability boundary. The 4th coefficient shows no correlations as indicated by its second
and total Sobol indices. In figure 5.4 on the right (L∗τ ) a clear pattern is found maximizing
β1 and β2, whilst minimizing β3. No correlations for β4 and β5 can be made. Comparing
the left and right of figure 5.4 it becomes clear again that minimizing L∗τ will not lead to a
minimization of L∗U . The prediction of correct velocities appears to be more dependent on
the choice of turbulence model than correct Reynolds stresses.

5.1.4 Optimum coefficients

From the calibration different sets of optimum coefficients β are selected. From minβ L
∗
U the

coefficients β were found to vary largely as also indicated by many optimum regions in the
scatter plot 5.4. The optimum β selected for further analysis are given in table 5.1. On the
square duct all these combinations were found to give identical results. In terms of minβ L

∗
τ

the coefficients were better informed in the kde analysis. Therefore fewer models are studied.

M.F. Döpke M.Sc. Thesis



5.1 Sensitivity analysis 57

±10
-5
0
5

10

β
2

±10
-5
0
5

β
3

±10
-5
0
5

β
4

-10 -5 0 5

β1

-10
-5
0
5

β
5

±10 -5 0 5

β2

±10 -5 0 5

β3

±10 -5 0 5 10

β4

0.0045

0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

0.0080

0.0085

0.0090

(a) Scatter plot of L∗
U .

±10
-5
0
5

10

β
2

±10
-5
0
5

β
3

±10
-5
0
5

β
4

-10 -5 0 5

β1

-10
-5
0
5

β
5

±10 -5 0 5

β2

±10 -5 0 5

β3

±10 -5 0 5 10

β4

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

(b) Scatter plot of L∗
τ .

Figure 5.4: Scatter plot for the first 5 coefficients indicating the loss function value with a
binary colormap. Darker color indicates lower loss function value.

The optimum β selected for further analysis from minβ L
∗
τ are given in table 5.1.

From tables 5.1 and 5.1 the same result as in figure 4.11 is found. There is no correlation
between the coefficients from minimizing one vs the other loss function.

Table 5.1: Optimum coefficients β found
from minβ L

∗
U . β4 is omitted since it is

considered of no influence and its
coefficient is set to β4 = 0 for all

combinations.

Model Combinations
name β1 β2 β3 β5

minβ LU 1 3.83

minβ LU 2.1 -1.19 -8.73
minβ LU 2.2 0.61 -5.72
minβ LU 2.3 1.74 -3.85

minβ LU 3.1 -4.37 -7.81 7.95
minβ LU 3.2 -2.78 -7.05 5.72
minβ LU 3.3 -3.20 -5.24 8.96
minβ LU 3.4 -1.65 -6.01 4.29
minβ LU 3.5 1.62 -5.22 -1.63
minβ LU 3.6 1.03 -2.38 3.54

minβ LU 5.1 -2.80 -4.23 6.44 -7.51
minβ LU 5.2 -1.46 -0.38 7.43 -7.88
minβ LU 5.3 -5.85 -7.43 9.50 -5.40
minβ LU 5.4 1.12 0.56 3.28 -8.50
minβ LU 5.5 1.06 -7.42 -5.63 -7.93
minβ LU 5.6 2.28 -2.41 -3.04 -8.35

Table 5.2: Optimum coefficients β
found from minβ L

∗
τ . β4 is omitted

since it is considered of no influence
and its coefficient is set to β4 = 0 for

all combinations.

Model Combinations
name β1 β2 β3 β5

minβ Lτ 1 9
minβ Lτ 2 9 9
minβ Lτ 3 9 8 -9
minβ Lτ 5 9 9 -9 -6

MSc. Thesis M.F. Döpke
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5.2 Results

The calibrated global-coefficient NLEVM results are presented in this section. The results
are divided into three subsections. First the anisotropy correction is discussed followed by the
Reynolds stress components responsible for secondary motions. Finally the velocity profiles
are presented. All results are shown on the sample lines z/h = 1/4; 1/2 and 3/4 shown by
the red lines in figure 3.3.

5.2.1 Anisotropy

The implementation of the non-linear tensors (2.36) was argued by Lumley (1970), Pope
(1975) and other authors to correct the anisotropy prediction. In this subsection the
anisotropy obtained from the calibrated global-coefficient NLEVM is presented. Figure 5.5
shows the anisotropy on the sample lines z/h = 1/4; 1/2 and 3/4 for complexities 1, 2 and
5. Higher complexities than 5 showed a similar result figure 5.5 (c) and complexities 3 and 4
are similar to complexity 2. The anisotropies of the training data, Boussinesq approximation
and both minimization problems are shown. Different to the results from the data-driven
calibration from chapter 4, all predicted anisotropies from the solver-incorporated calibration
fulfill the realizability constraints and are located within the barycentric map (Schumann,
1977; Banerjee et al., 2007) (see appendix D).

For complexity 1 both minimization problems are found to have similar anisotropies. Not
much anisotropy is corrected given that the anisotropy is similar to that predicted by the
Boussinesq approximation. Increasing the complexity also increases the anisotropy. minβL

∗
τ

shifts to the right of the plane strain approaching the 1-component turbulence state where
also the training data is located. minβL

∗
U shifts towards the left of the plane strain. It

was expected that minβL
∗
τ performed better in terms of anisotropy since it reduces the error

between the exact and predicted Reynolds stresses. It was not expected that minβL
∗
U is worse

than the Boussinesq approximation in predicting the anisotropy of the flow. This suggests
that mapping from Reynolds stresses to velocity field is strongly dependent on turbulence
model. Classifying the act of calibrating the NLEVM with global coefficients to improve the
velocity prediction by minimizing L∗U (3.8) to be an act of unphysical mapping from Reynolds
stresses to velocity field rather than a physical one. Then completely different Reynolds stress
fields from the training data can obtain the same velocity field as the training data.

At increasing complexity minβL
∗
τ continues to correct the anisotropy whilst minβL

∗
U shows

similar anisotropies for all complexities larger than 1. This is in accordance with the cost
complexity 5.1 where the L∗U showed very limited improvement at increasing complexity
after the introduction of the first non-linear tensor whilst L∗τ continued to reduce the cost at
increasing complexity up to complexity 5.
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(a) Complexity of 1; β1 6= 0 and β2, ..., 9 = 0

(b) Complexity of 2; β1,2 6= 0 and β3, ..., 9 = 0

(c) Complexity of 5; β1,...,5 6= 0 and β6, ..., 9 = 0
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Figure 5.5: Anisotropy on samples lines z/h = 1/4 (left); 1/2 (centre); 3/4 (right).

5.2.2 Reynolds stress to secondary motion analysis

The secondary motions described by uy and uz are determined with equation (1.5).(
∂2

∂z2
− ∂2

∂y2

)
τyz+

∂

∂y

∂

∂z
(τyy − τzz) =(

∂2

∂y2
− ∂2

∂z2

)(
νt

(
∂uy
∂z

+
∂uz
∂y

))
+2

∂

∂y

∂

∂z

(
νt

(
∂uz
∂z
− ∂uy

∂y

)) ((1.5))

This expression depends on (τyy − τzz), τyz, k and ω. Plotting the profiles of these quantities,
using the turbulent viscosity νt = k/ω instead of ω figure 5.6 is obtained. Adding more
coefficients gave only small variations in these plots and are therefore omitted. It is seen
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that from using only the first non-linear tensor the secondary motions can be predicted as
shown by (τyy − τzz) 6= 0. The predicted Reynolds stress difference follows a similar shape
than the training data. In magnitude the prediction of (τyy − τzz) from the global-coefficient
NLEVM is approximately 4.5 times larger than that of the training data. τyz is over predicted
by an approximate factor of 3.7 in magnitude. However near the wall, the gradients, which
determine the secondary motions, are similar if not smaller, than that of the training data.
The turbulent kinetic energy k and turbulent viscosity νt are predicted fairly well and show
only little variation for different combinations of β (grey lines). From this it can be said that
these quantities, which depend on the Reynolds stresses via the production term are not very
sensitive to the Reynolds stresses.

For complexity 1, β1 6= 0 and β2 to 9 = 0, the contours of (τyy − τzz) and τyz are plotted in
comparison to the DNS data in figure 5.7. Adding further non-linear tensors showed little
improvement. From figure 5.7 it can be concluded that the models originating from minimizing
L∗τ and L∗U predict a similar near wall behavior in terms of (τyy − τzz). Both minimization
problems exhibit a larger region of approximately constant (τyy − τzz) near the wall than the
training data. In terms of τyz both minimization problems show different contours as that of
the training data. From (τyy − τzz) 6= 0 both minimization problem should predict secondary
motions as shown in figure 5.8.

Figure 5.8 shows the quiver plots of the secondary motions in the square duct of the train-
ing data and both minimization problems. As expected from the correction of anisotropy
(τyy − τzz) 6= 0 secondary motions are present in both calibrated models. minβL

∗
τ displays a

different pattern for secondary motions than minβL
∗
U for complexity 1. For higher complexi-

ties all quiver plots are similar to 5.8 (b). 5.8 (b) displays the existence of secondary motions
similar to the training data. The vortices are of similar strength, but the centre of rotations
are shifted towards the top right corner. The next subsection will analyze the velocity profiles.

5.2.3 Velocity profiles

The velocity profiles from minβ L
∗
U and minβ L

∗
τ when using 1, 2 and 5 coefficients are shown

in figure 5.9. Higher complexities show no further improvements and are therefore not shown.
The complexities are selected based on their influence as shown in subsection 5.1. The results
are compared to the baseline (linear) model and to the training data (DNS). Figure 5.9
shows the velocity uy and uz on z/h = 1/4; 1/2; 3/4 for varying complexities. These figures
show in gray the samples obtained from the Monte-Carlo simulation. Darker gray areas
depict higher density of samples. In blue is the baseline model, obtained from the Boussinesq
approximation. In red is shown the DNS solution. In black are the results obtained from the
minimization problems minβ L

∗
U (-) and minβ L

∗
τ (- -).

In figure 5.9 it can be seen that all complexities predict secondary motions. With minβ L
∗
U

being better in predicting the DNS velocity profiles than minβ L
∗
τ . There is little effect

of adding more coefficients than 1 when observing minβ L
∗
U whilst at least two coefficients

are necessary for minβ L
∗
τ . At complexities 2 and 5 the solutions for the two minimization

problems almost overlap.
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Figure 5.6: Reynolds stress profiles τyy − τzz (top left), τyz (top right), turbulent kinetic
energy profile k (bottom left) and turbulent viscosity profile νt = kω (bottom right) at samples

lines z/h = 1/4; 2/4; 3/4 considering 1 non-linear tensor.
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Figure 5.7: Contour plots of (τyy − τzz) (top) and τyz (bottom) when minimizing L∗
U (left),

L∗
τ (centre) and using DNS data (right).

(a) minβL∗
τ (b) minβL∗

U (c) DNS

Figure 5.8: Quiver plot of secondary motions of both optimization routines and training data.
The colormap represents the stream-wise velocity Ux.
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Figure 5.9: Velocity profiles Uy (left) and Uz (right) at samples lines z/h = 1/4; 2/4; 3/4
considering 1, 2 and 5 non-linear tensors.
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5.3 Comparison to other non-linear models

Having displayed the capabilities of a non-linear eddy viscosity model with global coefficients
on the training case, it is compared to existing non-linear eddy viscosity models implemented
in OpenFOAM. Namely the Shih and Lumley (1993) quadratic and Lien et al. (1996) cubic
models. These models are described in chapter 2.

The anisotropy prediction of all the models is depicted in figure 5.10 for complexity 2,
β1 and 2 6= 0, β3 to 9 = 0. The Shih and Lien model display the same anisotropy. Which
is considerably closer to the plane strain than that from the global-coefficient NLEVM. It
appears as if the task of the Shih and Lien models is not to improve the anisotropy prediction
but rather to predict a good velocity field from a wrong Reynolds stress prediction.

DNS Boussinesq Best min
β
L ∗U Best min

β
L ∗τ Shih Lien

Figure 5.10: Anisotropy on samples lines z/h = 1/4 (left); 2/4 (centre); 3/4 (right).

Figure 5.11 shows velocity profiles obtained from the DNS, linear model, global-coefficient
NLEVM with 2 non-linear tensors and Shih and Lien models. Surprisingly, despite predicting
anisotropy the Lien model fails to predict any secondary motion. The differences between
the Shih, Lien and non-linear models with 2 non-linear tensors is the wall treatment. The
Shih and Lien models use a function Cµ near the wall that multiplies eddy viscosity νt as
described in 2.5.1. This function lowers νt near the wall, thereby reducing the Reynolds
stresses and vorticity. The Lien model furthermore uses a wall damping function fµ to reduce
the turbulent Reynolds stress influence near the wall, leading to (τyy − τzz) ≈ 0 near the wall.
As a result no vorticity is generated. Figure 7.10 shows the behavior of fµ near the wall.

In conclusion the wall-treatment appears to have a major effect towards the prediction of flow
features such as the secondary motions. The global coefficient models use no wall treatment
and reproduce the secondary motions the best. Whilst the Shih model with only making νt
a function of Cµ still captures secondary motions but it under-predicts them by more than a
factor of 10. The Lien model fails to capture the secondary motions in the first place.
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Figure 5.11: Velocity profiles Uy (left) and Uz (right) at samples lines z/h = 1/4; 2/4; 3/4
with 2 non-linear tensors.

5.4 Discussion

In this chapter the calibration of the loss functions Lτ (3.7) and LU (3.8) using the solver
incorporate method was presented. A considerable improvement in terms of anisotropy and
secondary motion prediction could be achieved. The global-coefficient calibrated NLEVM
outperformed significantly the existing quadratic Shih and cubic Lien models. The main
difficulty found was in the determination of optimum β. A variety of combinations of β
were found to predict very well the Reynolds stresses or velocities. In fact largely different
combinations of coefficients provided identical results. From this it is concluded that the
NLEVM rather than being accurate in predicting both, Reynolds stresses and velocities,
attempts to create an unphysical map between these quantities.
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Chapter 6

Rectangular-duct prediction

The global-coefficient non-linear eddy viscosity model (NLEVM) has improved capabilities of
predicting anisotropy and secondary motions. In this chapter the models derived in chapter 5
are used to predict a rectangular-duct flow. A rectangular-duct exhibits similar flow features
such as secondary motion in the form of corner vortices making it a good first step to evaluate
the performance of the global-coefficient NLEVM. A 2:1 rectangular-duct as presented in
subsection 3.5.2 is considered. All combinations from tables 5.1 and 5.2 and the quadratic Shih
and cubic Lien models are used for predictions. First the stability and flow field prediction
are analyzed followed by an analysis of the anisotropy.

6.1 Solver stability and flow field prediction

Table 6.1 showcases the stability and prediction quality of each combination of coefficients β
and the Shih and Lien models on the rectangular-duct. The stability is assessed by whether the
solver breaks down (-) or converges (+). A forward slash (/) is used to show fair convergence
which means the ramping factor did not reach ξ = 1 but the model could be converged with
ξ ≥ 0.6.

The prediction quality is assessed in a qualitative manner by comparing the predictions to the
experiment from Xiao et al. (2016) shown in figure 6.1 (a). A good prediction (+) is shown
in figure 6.1 (b). Fair predictions (/) are shown in figure 6.1 (c) and (d). Poor predictions (-)
are shown in figure 6.1 (e) and (f).

Most converged models with the exceptions of non-linear models minβ LU 5.6 and minβ Lτ 1,
3 and 5 and Lien were able to do a good prediction of secondary motions similar to that shown
in figure 6.1 (b). Fair predictions were done by non-linear models minβ Lτ 3 and 5. Non-linear
model minβ Lτ 3 predicted secondary motions as shown in 6.1 (c), with the size of the smaller
vortex under predicted. Non-linear model minβ Lτ 5 predicted both corner vortices, with the
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centres of rotation at wrong locations as shown in 6.1 (d). Non-linear models minβ LU 5.5
and Lien failed to predict secondary motions as shown in figure 6.1 (f) by the lack of two
vortices.

The models derived from the minimization problem minβ LU consistently outperformed those
obtained from the minimization problem minβ Lτ . This indicates that improving the Reynolds
stress prediction does not guarantee a better prediction of secondary motions. Most models
obtained from minβ LU also outperform the existing non-linear Shih model which predicted
weaker secondary motions.

Table 6.1: Stability and quality of prediction of rectangular-duct flow using different
global-coefficient NLEVM as defined in tables 5.1 and 5.2 and quadratic Shih and cubic Lien

models. + represents good stability and prediction performance, / represents medium stability
and prediction performance and - represents instability and poor prediction performance.

Model Rectangular-duct
name Stability Prediction

minβ LU 1 + +

minβ LU 2.1 + +
minβ LU 2.2 + +
minβ LU 2.3 + +

minβ LU 3.1 + +
minβ LU 3.2 + +
minβ LU 3.3 + +
minβ LU 3.4 + +
minβ LU 3.5 + +
minβ LU 3.6 + +

minβ LU 5.1 + +
minβ LU 5.2 + +
minβ LU 5.3 + +
minβ LU 5.4 -
minβ LU 5.5 / +
minβ LU 5.6 + -

Model Rectangular-duct
name Stability Prediction

minβ Lτ 1 + -
minβ Lτ 2 + +
minβ Lτ 3 + /
minβ Lτ 5 + /

Model Rectangular-duct
name Stability Prediction

Shih + +
Lien + -
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Figure 6.1: Experimental results for rectangular-duct flow. Experiment in (a), good prediction
in (b), Fair predictions in (c) and (d), poor predictions in (e) and (f).

6.2 Anisotropy prediction

In this section the anisotropy is evaluated. Due to a lack of high fidelity data on the
rectangular-duct only a comparison between the derived global-coefficient NLEVM and the
Shih and Lien models can be made. The anisotropy of random cells over the entire flow field
is plotted in the barycentric maps in figure 6.2. The data is divided into 5 barycentric maps
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for clarity.

From figures 6.2 it can be seen that at increasing complexity, minβ LU shifts the anisotropy
towards the left of the plane strain whilst minβ Lτ shifts it towards the right. The Shih
model predicts mostly plane strain with a small shift towards the 1-component turbulence.
The Lien model predicts almost exclusively plane strain. From the result of the square duct,
figure 5.10, it is expected that the real anisotropy lies towards the 1-component turbulence
(bottom right corner). Only the minβ Lτ non-linear models correct the anisotropy towards
the 1-component turbulence. Together with the secondary motion prediction of the previous
section it can be concluded that the turbulence model serves as a mapping function between
Reynolds stresses and secondary motions. Not as a means to predicting both accurately.
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Figure 6.2: Anisotropy in random cells from different turbulence models with naming
convention as specified in table 6.1.
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Chapter 7

Wing-body junction prediction

The global-coefficient non-linear eddy viscosity model (NLEVM) has improved capabilities
of predicting anisotropy and secondary motions on a square- and rectangular-duct. In this
chapter the models derived in chapter 5 are used to predict a wing-body junction flow. The
wing-body junction set-up and mesh convergence study are given in subsection 3.5.3. The
set-up is similar to that used by Devenport and Simpson (1990). A 3:2 cylindrical front is
joined with a NACA0020 tail at the thickest point.

The remainder of this chapter is organized as follows; the solver stability of the global-
coefficient NLEVMs is evaluated in section 7.1. In section 7.2 the set-up is validated. In
section 7.3 the results are presented and the findings are compared to those from Bordji and
Brunet (2015) and Dandois (2014). Finally in section 7.4 the chapter is concluded with a
discussion.

7.1 Solver stability

The solver stability is analyzed by convergence. All NLEVM predictions are started from a
converged linear eddy viscosity model (k−ω). Turbulence models are considered converged if
the residuals found were stable and below 1e-6 with ξ ≥ 0.6. All models from tables 5.1 and
5.2 and the quadratic Shih and Shih∗ and cubic Lien models are evaluated. The Shih∗ model
is an additional model implemented to evaluate the wall functions. This model is quadratic
as the Shih model, but contains near wall treatment as the Lien model. Table 7.1 displays
the stability for all these models. Only 3 global-coefficient NLEVMs out of the 21 from tables
5.1 and 5.2 converged with the remainder breaking down.
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72 Wing-body junction prediction

Table 7.1: Stability and quality of prediction of wing-body junction flow using different
global-coefficient NLEVM as defined in tables 5.1 and 5.2. + represents good stability, /

represents medium stability and - represents instability.

Model Wing-body junction
name Stability

minβ LU 1 +

minβ LU 2.1 -
minβ LU 2.2 -
minβ LU 2.3 -

minβ LU 3.1 -
minβ LU 3.2 -
minβ LU 3.3 -
minβ LU 3.4 -
minβ LU 3.5 -
minβ LU 3.6 +

minβ LU 5.1 -
minβ LU 5.2 -
minβ LU 5.3 -
minβ LU 5.4 -
minβ LU 5.5 -
minβ LU 5.6 -

Model Wing-body junction
name Stability

minβ Lτ 1 +
minβ Lτ 2 -
minβ Lτ 3 -
minβ Lτ 5 -

Model Wing-body junction
name Stability

Shih +
Shih∗ +
Lien +

7.2 Validation

In this section the validation of the wing-body junction is performed. The set-up is validated
in 4 steps. First the boundary layer thickness and growth on the flat plate are evaluated in
the symmetry plane in front of the wing. Second the stagnation points are compared. Third
the pressure contours are plotted in front of the wing. And fourth the stream-wise velocity
profiles are plotted at X/T = (−0.15,−0.20,−0.25). These validation steps are chosen due
to the existence of data from Devenport and Simpson (1990).

7.2.1 Boundary layer thickness

The boundary layer thickness is visualized with a 0.99Ux contour in figure 7.1. 8 different
lines are plotted; the theoretical result from equation (3.15), linear k − ω turbulence model,
the converged global-coefficient NLEVMs from table 7.1 and the Shih, Shih∗ and Lien tur-
bulence models. The intersecting dashed lines at z/T ≈ 0.5 and x/T = −2.15 represent the
measurement point of Devenport and Simpson (1990). The boundary layer thickness was
measured by Devenport and Simpson using only a flat plate and no wing to be 36 mm.

The theoretical result crosses exactly through the measurement point. The Linear model
follows the theoretical result up to x/T ≈ −5, where the 0.99Ux contour becomes vertical.
This change of slope is explained from the presence of the wing which slows down the flow in
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the symmetry plane. The quadratic Shih model without wall damping function over predicts
the boundary layer thickness over the flat plate. Does however reach the same location for
the flow deceleration in front of the wing. The Shih damped model (Shih∗) overlays with the
Lien cubic model. Both models under predict the boundary layer thickness on the flat plate,
and predict the soonest deceleration in front of the wing.

The global-coefficient NLEVM minβ LU 1 and 3.6 overlap and follow very closely the path
of the linear turbulence model approaching slightly the Shih model with no damping. The
global-coefficient NLEVM model minβ Lτ 1 lies in between the Linear and Shih model.

-25 -10 -2.15
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0.0

0.2

0.4

0.6

0.8

1.0

z/
T

Theoretical

Linear

Shih
Shih ∗
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minβLU 1

minβLτ 1

minβLU 3.6

Figure 7.1: 0.99ux (free-stream velocity) contour to represent boundary layer thickness on flat
plate in front of wing. Dotted line (- -) represents measured flat plate (without wing) boundary

layer thickness by Devenport and Simpson (1990).

7.2.2 Stagnation point

The stagnation point measured by Devenport and Simpson (1990) was found to lie between
x/T ≈ −0.4 and x/T = −0.46 from figure 7.2. As shown in figure 7.3 the stagnation point
found from the linear, non-linear minβ LU 1 and quadratic Shih turbulence models lie within
that measured during the experiment. The wall damped turbulence models, quadratic Shih∗

and cubic Lien, on the other hand predict the stagnation point to lie closer to the wing,
indicating a smaller boundary layer over the wing. The non-linear minβ Lτ 1 and minβ LU 3.6
turbulence models predict a stagnation point further away from the wing which corresponds
to a thicker boundary layer over the wing.

7.2.3 Pressure contour

The next step in the validation consisted of comparing pressure coefficient contours between
the different models with those measured by Devenport and Simpson (1990). Only the con-
tours of the linear and Lien models are plotted in figure 7.4. The global-coefficient non-linear
models and the Shih model contours present close resemblance with the linear model contours
and the Shih∗ model contours coincide with the Lien model contours. From the contours it
can be seen that neither model is perfect and differences exist between the experimental and
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Figure 7.2: Oil-flow visualization from Devenport and
Simpson (1990) on the flat plate.
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Figure 7.3: Stagnation
point in front of wing.

CFD results. The linear model under predicts the Cp close to the wing. On the other hand the
Lien model contour lines of Cp = 0.1 and Cp = 0.2 are predicted further from the symmetry
line and wing respectively. The biggest differences between the different turbulence models
used are in the near wing region. A close-up is presented in figure 7.5 to show the differences
between models.

The most apparent difference noticeable in figure 7.5 is between the models using a wall
damping function and those which do not. The wall damping function appears to have its
largest effect approximately a quarter of the thickness from the wing where they diverge from
the other models. The wall damped models exhibit a larger curvature (smaller radius) close to
the wing inducing the diverging lines further away from the wing seen in figure 7.4. Comparing
linear to non-linear turbulence models, the non-linear models experience more curvature close
to the wing and at Cp = 0.4 the linear and non-linear models differ in contour-lines.

It appears that the near wall treatment has a larger effect in predicting the near wing flow
than the non-linear expansion of the Boussinesq approximation.

7.2.4 Velocity profiles

The last step in the validation procedure was to compare the velocity profiles in the vicinity
of the wing in the symmetry plane at x/T = −0.25; −0.20; −0.15. The profiles are shown
in figure 7.6. From figure 7.6 it can be seen that all turbulence models represent the free
stream velocity accurately, however in the near wall region differences exist. To visualize the
near wall region better a log plot is generated and shown in figure 7.7. In this figure it is
observed that at z/T < 0.06 no model follows the experimental data. Above z/T = 0.06 the
wall damped models, Shih∗ and Lien, reproduce the experimental data very well, whilst the
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Figure 7.4: Pressure coefficient contours of linear and Lien model. Linear model in red and
Lien model in black.
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Figure 7.5: Pressure coefficient contours of linear and Lien model. Linear model in red and
Lien model in black.

remaining models do not.
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NLEVMs minβ Lτ 1 and minβ LU 1 follow very closely the lines of the linear turbulence
model. These three lines can in occasions not be separated due to overlap. NLEVM minβ LU
3.6 approximates better the Shih model. This result is explained from the amount of non-

linear tensors considered. MinβLτ 1 and minβ LU 1 consider only T
(1)
ij which appears to have

a minor effect whilst minβ LU 3.6 uses the first three non-linear tensors similarly as the Shih
model, therefore replicating the Shih model rather than the linear model.

-0.25 -0.2 -0.15

y/T+ 0. 03Ux/U0

0.0

0.2

0.4

0.6

0.8

1.0

z/
T

Exp.

Linear

Shih
Shih ∗

Lien
minβLU 1

minβLτ 1

minβLU 3.6

Figure 7.6: Ux/Uref velocity profile in
front of the wing at x/T −0.25, −0.20
and −0.15 from the wall up to 1 airfoil

thickness.

-0.25 -0.2 -0.15

y/T+ 0. 03Ux/U0

10-3

10-2

10-1

100

z/
T

Exp.

Linear

Shih
Shih ∗

Lien
minβLU 1

minβLτ 1

minβLU 3.6

Figure 7.7: log(Ux/Uref ) velocity profile
in front of the wing at x/T −0.25, −0.20

and −0.15 from the wall up to 1 airfoil
thickness.

7.2.5 Discussion

From the validation it is concluded that the test case is set-up correctly. Using a linear turbu-
lence model the boundary layer thickness and stagnation point can be represented accurately.
However the near wall results of the linear model are not good. This can be either due to
the use of wall functions or insufficient mesh resolution. The models including wall damping
under predict the boundary layer thickness and a wrong stagnation point. Their velocity
profiles in the boundary layer however match the experimental data the best. As a result for
near wall behavior the wall damped models will be taken as most correct whilst for the free
stream flow the non damped models are better. This compromise also marks the difficulty of
turbulence modeling where more complex models do not necessarily mean better overall pre-
dictions, and whilst some flow features might be better predicted, such as secondary motions,
others get worse.

7.3 Results

It was argued in Dandois (2014) that with a quadratic constitutive relation (QCR) (Spalart,
2000), used to expand the Spalart and Allmaras (1992) (SA) turbulence model, a more realistic
junction flow could be predicted. Specifically in the corner region of wing-body junction.
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The standard SA model was found to over predict the corner flow separation region whilst
the SA-QCR model predicted a smaller, realistic, corner flow separation. The same corner
flow difference between the SA and SA-QCR models was found by Bordji et al. (2014) and
Bordji and Brunet (2015) who preformed a comparative study of the SA and SA-QCR models
together with a validation experiment. They investigated two regions, the junction region
and corner region. In the junction region they found the SA and SA-QCR models show little
difference and reproduce the experimental results similarly. Whilst in the corner region the
SA model over predicted the corner flow separation with the SA-QCR model being closer to
the experimental result.

Here the same regions will be investigated to asses in a qualitative manner the differences
between the linear and non-linear eddy viscosity turbulence models. The leading edge region
is called the junction region and the trailing edge is the corner region. Furthermore also the
effect of the wall damping function is discussed. The near wall treatment was found to be
one of the most important factors in the junction and corner flow prediction.

7.3.1 Junction region

The junction region is assessed by the vortices arising from two orthogonal boundary layers.
These vortices are said by Gand and Choffat (2015) to determine the corner flow separation.
Stronger leading edge vortices energize the flow reducing the corner flow separation. Three
distinct vortices are expected: 1. the Horseshoe vortex (HSV), 2. the corner vortex and 3.
the wing boundary layer vortex as shown by in figure 7.8.

1. The HSV is generated by the junction of two orthogonal boundary layers, one from the
flat plate and one from the wing. This causes the flat plate boundary layer to separate
and be transported over the wing. This vortex is characterized by positive vorticity in
the stream-wise direction. This is different than the result found by Bordji and Brunet
(2015) who characterized it by a negative vorticity due to the vortex investigated being
on the other side of the wing.

2. The corner vortex is a counter-rotating vortex to the HSV. This is the vortex closest to
the corner region and is argued by Bordji and Brunet (2015) to be the most important
to reduce corner flow separation.

3. The wing boundary layer vortex origin is a stress induced vortex argued by Bordji and
Brunet (2015) to occur due to large gradients in τxy and τxz in the wing boundary layer.
This vortex is of the same orientation as the HSV but of smaller magnitude in vorticity
and dimension of iso-volume.

The predicted vortices in this framework are provided as the left side of figure 7.9. The
viewpoint is from below the flat plate which is therefore omitted to allow looking through.
The vortices are visualized as iso-volumes using a variation of theQ criterion, Nk = |Ωij |/|Sij |.
The colormaps on the vortices are the vorticity in stream-wise direction, and the colormap
on the wing surface is the wall shear stress.
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The HSV could be predicted by all turbulence models. The linear model predicted the weakest
HSV and the wall damped models the strongest HSV. With the not damped non-linear models
in between. For non-linear models minβ LU 1 and 3.6, minβ Lτ 1 and Shih the HSV appears
to grow in size over the wing. This is thought to be the merger of the wing boundary layer
vortex and the HSV. The wing boundary layer vortex on its own was too weak to represented
by the Nk criterion for these models, but a merger between this vortex and the HSV would
explain the increase in size of the HSV over the wing. In the non-linear Shih model one can
also identify two incoming vortices, the HSV and one from below, which is said to be the wing
boundary layer vortex that emanates at the wing boundary layer which was also captured at
Nk = 1.1. The wall damped models represent the wing boundary layer vortex without any
merging with the HSV. The Shih model also predicts a slightly longer HSV over the wing
than the global-coefficient NLEVMs.

The corner vortex is visualized by all turbulence models. The linear model predicted the
weakest corner vortex. This can be related to the HSV. Since the corner vortex and HSV
are counter-rotating vortices, these are co-dependent and the weakest HSV as a result will go
accompanied by the weakest corner vortex. The minβ Lτ 1 model predicts the longest corner
vortex. It has to be noted that the wall damped models experience a change sign of this
vortex over the wing. This phenomena could not be explained.

In conclusion the global-coefficient NLEVMs and the Shih model showed a merger of the HSV
and wing boundary layer vortex and a stronger corner vortex than the linear model. Only
the wall damped models could predict clearly all 3 vortices without any merging. From this
it is expected that the wall damped models show the weakest corner flow separation and the
linear model the largest.

Figure 7.8: Leading edge vortices found from the SA-QCR simulation from Bordji and Brunet
(2015).
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7.3.2 Corner region

The corner region is shown on the right in figure 7.9. The streamlines of the wall shear stress
and the strength of the wall shear stress are plotted to display the corner flow topology. From
the streamline patterns the flow separation size can be analyzed with the colormap being used
to analyze the strength.

All models display a corner flow separation region, the blue region with circular stream lines
next to the junction. This region is largest for the linear model and smallest for the Shih∗

model. The size of these regions was argued to be influenced by the leading edge vortices and
secondary motion prediction. The linear model showed the smallest corner vortex in figure
7.9 (a) and respectively has the largest corner flow separation in figure 7.9 (a). The global-
coefficient NLEVMs showed improvements in terms of the corner vortex prediction which is
said to be the originating factor in the increase in wall shear stress on the wing near the wall in
the right of figures 7.9 (c-d). The corner flow separation is however not reduced considerably
compared to that of the linear model. This is attributed at the lack of wing-boundary layer
vortex emanating from the leading edge.

The Shih model displayed a bigger combined HSV wing boundary layer vortex in figure 7.9.
This fact is used to explain a stronger energizing of the boundary layer over the wing reducing
the corner flow separation. Bordji and Brunet (2015) argued that the corner vortex interacta
with the corner separation. Comparing the Shih model to global-coefficient NLEVM, the
Shih model predicted a weaker corner vortex, larger wing boundary layer and smaller corner
flow separation. From this it would be argued that the wing boundary layer vortex is the one
that interacts with the corner region to reduce corner flow separation.

The wall damped models, Shih∗ and Lien were the only models to display all 3 vortices.
Consequently these models predict the smallest corner flow separation region. Following
the finding from the previous paragraph, the corner separation region appears to be mostly
influenced by the presence of the wing boundary layer vortex. This is not conclusive evidence,
since the HSV is also predicted stronger than with the non-damped models, but the corner

(a) Linear turbulence model.
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(b) minβ Lτ 1 turbulence model.

(c) minβ LU 1 turbulence model.

(d) minβ LU 3.6 turbulence model.
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(e) Shih turbulence model.

(f) Shih∗ turbulence model.

(g) Lien turbulence model.

Figure 7.9: Leading edge vortices (left) and corner flow separation (right) on the wing-body
junction for different turbulence models.
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vortex is predicted of a similar size. Meaning the corner vortex is likely not the driving factor
to determine the corner flow separation.

7.4 Turbulence model differences

In order to assess the differences between the turbulence models the non-linear terms and
wall damping functions are evaluated. The wall damping is found to be the most important
addition to the turbulence model, with the non-linear terms being less relevant. The Shih
model outperformed the global-coefficient NLEVMs. Having as only difference a variable
Cµ, which multiplies the eddy viscosity, and local coefficients instead of a global-coefficient
approach. The Shih∗ and Lien models outperformed the global-coefficient NLEVMs and
include wall damping. The differences are addressed in 3 steps: 1) wall damping, 2) eddy
viscosity (Cµ) and 3) local vs global coefficients

7.4.1 Wall damping

The wall damping was seen as the dominant effect in the prediction of the leading edge
vortices and corner flow separation. The wall damping is included as two functions, fµ and f2

and an additional term E in the ε equation (see subsection 2.5.1). Conventionally Cµ is also
considered a wall damping function, however for the purposes of this study it is considered a
constitutive relationship.

The wall damping function fµ is defined by

fµ = [1− exp(−Aνy∗)]
[
1 +

2κ

c0.75
µ y∗

]
. (2.42)

This function is designed the reduce the turbulent Reynolds stresses in the viscous and buffer
layer whilst leaving the far field of the flow intact. fµ takes a value of fµ ≈ 0 near the wall and
fµ = 1 far away. The behaviour of this function on a backward facing step as predicted by
Basara (2006) is shown in figure 7.10. In the viscous sub-layer fµ ≈ 0. In the buffer layer fµ
changes rapidly from close to 0 to fµ ≈ 0.9. In the log-layer fµ approaches 1 asymptotically.
The different boundary layer regions are as described in figure E.1 as viscous sub-layer y+ < 4,
buffer layer 4 < y+ < 30, log-law layer 30 < y+ < 200 and outer layer y+ > 200.

The second function f2 given by equation (2.45) is used to multiply the energy dissipation.
In regions of small k/ε, near the walls, f2 ≈ 0.7. Reducing the turbulent energy dissipation.
In order to make up for the lower dissipation an additional dissipative term is added which
should predict better the near wall turbulence dissipation. This term E, which is also a
function of f2 is given by equation (2.44). This term is a function of the wall distance y∗

and represents an additional turbulence dissipation term near the wall. Because of f2 the
wall treatment of the Shih∗ and Lien models is not limited to the near wall anymore, but
more intrusive into the rest of the flow field. f2 can be 0.7 in the far field with the additional
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Figure 7.10: Behaviour of fµ (2.42) on a backward facing step as found by (Basara, 2006).

term E disappearing due to very large y∗ values. This could explain the prediction of a lower
boundary layer thickness in figure 7.1.

The Shih∗ and Lien models under predicted the boundary layer growth of the flat plate. This
can now be attributed to the change in turbulence dissipation in the form of f2 and E and the
damping function fµ. It was not possible in this research to single out the importance of each
of these parameters. It is expected that f2 and E are the dominant drivers for this difference
rather than fµ. Whilst fµ is considered to be responsible for influencing the near wall stress
induced vorticity. In example by not predicting vortices in the square- and rectangular-duct
flows.

7.4.2 Turbulent viscosity

The eddy viscosity for the linear and global-coefficient non-linear turbulence models is defined
as νt = k/ω and for the Shih model as νt = Cµk

2/ε. The Shih∗ and Lien models use
νt = fµCµk

2/ε because of which it is considered part of wall damping and due to interactions
between fµ and Cµ no effect could be singled out. The differences between the two eddy
viscosities, νt = k/ω and νt = Cµk

2/ε, is the function Cµ and the fact that one uses ε with
the other using ω dimensionally proportional to ε/k. The first is considered the important
difference since the second is merely a different format for the same information. Cµ is a
function of the strain and rotation rates as defined in table 2.1. Several different Cµ functions
exist, depending on the model as shown in table 2.1. Here only Cµ from the Shih model is
considered. Cµ generally takes its largest value (Cµ = 0.53 in this flow) in regions of low strain
and rotation, in example the far field. In high strain and rotation regions, such as near walls,
Cµ approaches 0. In this case Cµ is small in the beginning of the wing boundary layer and
large outside of it. This means that in the junction region, left in figure 7.9, Cµ ≈ 0.01, such
that the Shih model predicts a smaller turbulent viscosity. The global-coefficient NLEVMs in

MSc. Thesis M.F. Döpke
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this region should then over predict the eddy viscosity compared to the Shih model. However
from the pressure contours and velocity profiles of figures 5.7 and 7.5 almost no difference is
appreciable between these models.

7.4.3 Global vs local coefficients

The final aspect to be discussed is the use of global vs local coefficients. The Shih and
Lien models use a multiplicative function to convert the coefficients β to local coefficients.
This means one value per cell. The devised function multiplies all non-linear stresses as
τnon-linear/(1000 + (k/ε|S|)3). Investigating this function it is found that it is ≈ 0.001
throughout most of the flow field with the exemption of just in front of the wing, where the
factor is smaller. This led to coefficients of β1 = 0.015, β2 = 0.003 and β3 = −0.019 for
most of the flow field. Which are considerably smaller than those from tables 5.1 and 5.2.
Using these coefficients as global, without Cµ, in the non-linear k−ω model the linear model
results were reproduced. From this it is concluded that the dominant effect of the Shih model
compared to the linear and other non-linear models is the presence of Cµ. With the effect of
global vs local coefficients being less important.

7.5 Discussion

The fuselage wing junction was presented and evaluated with different turbulence models.
The results were compared to the Devenport and Simpson (1990) experiment. Qualitative
comparisons were made to Bordji and Brunet (2015) and the differences between the tur-
bulence models discussed. It was found that the non-linear expansion of the Boussinesq
approximation (2.35) is not the only factor influencing improved Reynolds stress and velocity
predictions. The near-wall treatment was found to be at least equally as important. Wall
damped models were the only ones capable of reproducing clearly all 3 vortices and a real-
istic corner separation. Unfortunately no linear model with wall damping was evaluated to
separate the wall damping effect from that of using a non-linear stress-strain relationship.
Also no global-coefficient NLEVM with wall damping was evaluated. This would provide
more insight into differences between using local or global coefficients. In conclusion the wall
treatment of the turbulence model is considered crucial towards a good result and it needs to
be considered with equal care as a non-linear expansion of the Boussinesq approximation.
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Chapter 8

Conclusion and recommendations

A study of a global-coefficient non-linear eddy viscosity models (NLEVM) has been per-
formed. Non-linear eddy viscosity models have been developed since the 1970’s to improve
upon the deficiencies of the Boussinesq approximation (1.2). The Boussinesq approximation
was argued by many authors to be unable to represent anisotropy and therefore flow features
such as: secondary motions, stream-line curvature or swirl (Lumley, 1970; Pope, 1975; Craft
et al., 1996). Improving the anisotropy prediction Pope (1975) derived the most commonly
known non-linear eddy viscosity model using a tensor polynomial expansion and repeated
application of the Caley-Hamilton theorem. Since Pope many non-linear eddy viscosity mod-
els have been proposed, some of which are presented in section 2.5. These models use the
Reynolds stress definition (2.35) with tensors (2.36). The arising terms β have been solved as
constitutive relationships in explicit algebraic Reynolds stress models (EARSM) and coeffi-
cients as shown by the different models in table 2.1. Non of the NLEVMs known to the author
has gained widespread use in industry due to a lack of consistent performance and robustness.
Whilst these models predict better specific flow features, others get worse, and most indus-
trial flows are simply shear dominated, meaning they satisfy the Boussinesq approximation’s
assumptions as stated in Gatski and Jongen (2000) and Slotnick et al. (2014).

The starting idea behind this research is the increasing complexity of machine learning (ML)
algorithms in turbulence modelling and the little knowledge about their universality and use
in industrial applications. The tuning of global-coefficients β on a square-duct was proposed.
Predictions on a rectangular-duct and wing-body junction were performed evaluating the
limitations of global-coefficients. On the rectangular-duct a similar flow is predicted in which
secondary motions are present. In the wing-body junction a far fetched attempt to improve
predictions on an industrial flow that shares similar features as the square-duct in the corner
region is made.
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8.1 Conclusions

8.1.1 Calibration conclusions

Two calibration procedures were evaluated, data-driven and solver-incorporated presented in
chapters 4 and 5 respectively.

In the data-driven calibration the DNS results from Pinelli et al. (2010) were used as inputs
for the turbulence model. This approach was unsuccessful since the mapping from velocity
to Reynolds stresses and then back from Reynolds stresses to velocity was not unique. It
was found that using the DNS data as input for evaluating the Reynolds stresses lead to
violating the realizability constraint (Schumann, 1977). Furthermore, when implementing
the calibrated model into the Reynolds-Averaged Navier-Stokes (RANS) solver, only a weak
prediction of secondary motions was achieved. This concluded that the data-driven calibration
was unsuited for improving the secondary motion predictions.

As an alternative to the data-driven calibration the solver-incorporated calibration was pro-
posed. In this approach the loss functions (3.7) and (3.8) were minimized by using RANS
results as inputs for the turbulence model. Since every turbulence model provides different
RANS results, per combination of coefficients β a new solver run needed to be performed.
Parallel Monte-Carlo (MC) simulations were performed in order to speed-up the calibration
procedure. From the solver-incorporated calibration good performance in terms of secondary
motions was achieved. In fact the global-coefficient NLEVMs outperformed the quadratic
Shih and Lumley (1993) and cubic Lien et al. (1996) models. The Shih model predicted very
weak secondary motions and the Lien model failed to predict the secondary motions due to
the use of the wall damping function fµ. This damping function was concluded to reduce
the Reynolds stresses near the walls, meaning that τij ≈ 0 near the walls. Then near the
walls τyy ≈ τzz ≈ 0 such that no secondary motions are generated from equation (1.5) as
explained in the Introduction. When observing the anisotropy, no NLEVM could predict well
the training data. The best models in terms of secondary motion prediction showed a correc-
tion towards the axi-symmetric contraction on a barycentric map as compared to the training
data which is concentrated near the 1-component turbulence (see figures D.1, 5.5 and 5.10).
From this it was concluded that the global-coefficient NLEVMs serve as an unphysical map
from Reynolds stresses to velocity. Given a specific turbulence model completely erroneous
Reynolds stresses could be used to predict the best velocity field. This was also supported
from the fact that completely different β obtained similar velocity fields.

8.1.2 Prediction conclusions

Having proven improved performance of the global-coefficient NLEVMs on the square-duct,
predictions on flows different to the training data were performed. First predictions on a
similar flow, rectangular-duct, followed by predictions on an industrial application, wing-
body junction, were made in chapters 6 and 7.
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On the rectangular-duct good performance was observed in predicting secondary motions
for most models. Similar as for the square-duct, the Lien model failed to predict secondary
motions. From the two loss functions LU (3.8) was found to consistently outperform Lτ (3.7).
This supports the conclusion that completely erroneous Reynolds stresses can be used to
predict a better velocity field. This conclusion also highlights the limitation in calibration
since for extrapolation to a different flow-case the same mapping from Reynolds stresses to
velocity will occur. Then if different Reynolds stresses are predicted a flow phenomena that
may not exist could be predicted. Limiting the universality of a global-coefficient NLEVM.

The wing-body junction presents a corner region similar to that in a square-duct where two
plates are orthogonal to each other, being both themselves orthogonal to the free-stream
velocity. At the trailing edge of a wing-body junction Dandois (2014) and Bordji et al. (2014)
found that the corner flow separation was over-predicted with the SA turbulence model, but
that the SA-QCR turbulence model predicted a more realistic, smaller corner flow separation.
Considering that the corner region is similar to that of a square-duct, it was assumed that
a NLEVM calibrated on a square-duct could be used to improve the corner flow separation
prediction.

From the global-coefficient NLEVMs calibrated on the square-duct only 3 models out of 21
were stable and converged on the wing-body junction. The global-coefficient NLEVMs were
calibrated to provide a better representation of the corner flow. However as soon as other
phenomena occurred in the flow, such as the junction of two orthogonal boundary layers, most
models broke down. This was the first big limitation encountered with the global-coefficient
approach. The models were so unstable on the wing-body junction that extrapolation to
it is in hindsight considered almost impossible. From the models that did converge, the
improvement found in corner flow prediction was also very limited. Similar performance
issues were observed by Wu et al. (2016) when injecting corrected anisotropy predictions into
the RANS equations. The anisotropy prediction was improved, but the flow field prediction
improvement found was small. The Shih and Lien turbulence models were able to predict
a smaller corner flow separation compared to the linear k − ω turbulence model. This was
attributed to the near-wall treatment.

Comparing the global-coefficient NLEVMs with the Lien model the main difference is the
near-wall treatment. The Lien model reduces the impact of the Reynolds stresses near the
walls with νt ≈ 0 and τij,non-linear ≈ 0 near the walls. In the square- and rectangular-
duct this was found to cause the secondary motions to not be predicted. On the wing-body
junction this aided in representing 3 distinct leading edge vortices and the smallest corner-
flow separation. This indicated that the initial assumption that improved secondary motions
in a square-duct would provide improved corner flow prediction was wrong.

The difference in Reynolds number on the square-duct and wing-body junction needs to be
noted. The global-coefficients where calibrated at Re = 1, 100 whilst the wing-body junction
has a Reynolds number of Re = 132, 560. Reynolds number effects were already observed by
Pinelli et al. (2010) on the Rectangular-duct on flows between Re = 1, 100 and Re = 3, 500.
Then the difference between Re = 1, 100 and Re = 132, 560 may also be a reason for difficulty
in stability and prediction performance.
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8.1.3 Looking back at research questions

When looking back at the thesis outline, now the research questions can be answered:

• What are the predictive capabilities of a global-coefficient eddy viscosity model?

Global-coefficient NLEVMs can be used to improve predictions of secondary motions
in a square- and rectangular-duct. The predictions outperform not only linear eddy
viscosity models but also the quadratic Shih and Lumley (1993) and cubic Lien et al.
(1996) turbulence models. When extrapolating to a wing-body junction the performance
is at best considered marginally improved. The corner flow separation is slightly reduced
in size and the leading edge vortices are slightly bigger than with a linear model, but
compared to the linear Wilcox (1994b) k−ω the quadratic Shih and Lumley and cubic
Lien and Durbin turbulence models the improvement is almost negligible.

– Can the anisotropy be corrected?

Anisotropy can be corrected, however this may be futile with a global-coefficient
approach. The best results in prediction were obtained from erroneous anisotropy
field suggesting that a global-coefficient NLEVM serves as an unphysical map from
Reynolds stresses to velocity and vice-versa rather than attempting to predict both
quantities well.

– Can secondary motions be predicted?

Secondary motions can be predicted, even better than with existent NLEVMs. It
is also found that the wall treatment can destroy the vorticity generation and that
is why the cubic Lien et al. (1996) model fails to predict secondary motions in a
square- and rectangular-duct.

– Can corner flow separation be reduced?

Corner flow separation can be reduced with NLEVMs. However it would appear
that the near-wall treatment is at least equally as important as the non-linear
expansion of the Boussinesq approximation.

• What are the limitations of data driven machine learning techniques for calibration?

Data driven machine learning requires the existence of large amounts of high fidelity
data obtained from direct numerical simulations (DNS) or large eddy simulations (LES)
and the availability of clusters. Whilst improvements can be obtained with ML the
extrapolation of prediction onto cases different to the training data is yet to be proven
universally. In this research it was found that extrapolating to a similar flow such as the
rectangular-duct ML provides good performance, but when extrapolating to a largely
different flow case such as the wing-body junction stability becomes a major issue. The
use of a ramping function such as described in section 3.1 can improve stability but it
remains an issue. Furthermore also prediction quality deteriorates.

• Are secondary motions the driver of corner flow separation?

Secondary motions are not the drivers of corner flow separation prediction. Rather the
presence of leading edge vortices as argued by Perkins (1970) and Huser and Birin-
gen (1993) are the drivers. Specifically the wing-boundary layer vortex was found to
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have a large impact on corner flow separation size. However the performance of the
calibrated global-coefficients might have been compromised due to Reynolds number
effects rendering this conclusion as suggestive rather than evidence.

8.2 Recommendations

The global-coefficient approach for turbulence modelling has shown limited capabilities.
Whilst predicting flows on the same case as it is trained on and extrapolating to very similar
cases provided good improvements, extrapolating to different flow cases did not. The biggest
problem of global-coefficients is considered to be the limited applicability and stability of the
solver. One solution to the stability to this is the use of a ramping function. However this
leaves the limited applicability intact. The Shih and Lumley (1993) and Lien et al. (1996)
models convert the coefficients to local and make them a function of the turbulent kinetic
energy, dissipation and strain rate in order to improve prediction and stability. However
deriving new constitutive relationships would introduce an entirely new turbulence model
adding to the zoo of NLEVMs. This is considered undesirable by the author since simplicity
and universality should be the final goal instead of a zillion NLEVMs. Instead a re-calibration
of an existing NLEVM is recommended for specific applications.

Re-calibrating a NLEVM is however not staightforwards. RANS turbulence models are inher-
ently inaccurate since all eddies are modelled and the turbulence model itself has to predict
velocity fields from potentially unrealistic Reynolds stresses. Then changing the turbulence
model by using a non-linear stress-strain relationship should also require the re-calibration
of the original turbulence model coefficients. Whilst global-coefficients can be used for spe-
cific applications, to derive a universal NLEVM, this author recommends to use an existing
NLEVM such as the Shih model or explicit algebraic reynolds stress model and re-calibrate
all coefficients instead of only those expanding the Boussinesq approximation. It was found
that the Shih coefficients were 2 to 3 orders of magnitude smaller than those attained with
the global-coefficients. Therefore with re-calibration considerable improvement in the Shih
model for secondary motion prediction is thought to be achievable.

A re-calibration can also be used for uncertainty quantification. The coefficients can be ex-
pressed as probability density functions from which the set of highest likelihood of coefficients
is chosen for prediction. Repeating this process for a variety of Reynolds numbers or training
cases, the predictions from all sets of highest likelihood coefficients can be averaged providing
a mean and variance for the prediction results.

In order to predict a wing-body junction the calibration cases and Reynolds number also need
to be re-considered. A set of cases with different features existing in a wing-body junction
could be used, i.e. including flow around a blunt object such as a square in two dimensions
or a cube in three dimensions. It is also recommended to include calibration cases at higher
Reynolds numbers. This means also including LES results as training data.

In terms of loss functions, the ones from this research and others should be considered.
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90 Conclusion and recommendations

The loss function LU (3.8) gave a non-convex optimization problem making the selection of
coefficients difficult. The loss function Lτ (3.7) would in the opinion of the author be best.
However the fact that the anisotropy could not be predicted well for any test case used in this
research indicated that the turbulence model is an unphysical map between Reynolds stress
and velocity, rendering the hope of improving the velocity field by improving the Reynolds
stresses with a global-coefficient NLEVM slim. At best one can expect the same deficiencies in
flow prediction in the calibration and prediction cases to make use of this unphysical map. In
order to investigate the anisotropy improvement further one can use the barycentric colormap
as proposed by Emory (2014) on the flow field. This will aid in the visualization of anisotropy
in different regions and thereby in the understanding of the anisotropy prediction by the
turbulence model.

In conclusion RANS turbulence modelling remains a complex task and NLEVM shows only
limited room for improvement. Whilst flow field predictions can be considerably improved on
the training case, the anisotropy may not be predicted well. Then the reason for expanding
the Boussinesq approximation is flawed. This is not to say that NLEVMs are superfluous.
They have shown that when calibrated on a similar flow the anisotropy can be corrected
to a minor degree, but flow features such as secondary motions are improved considerably.
Then if one is only interested in the velocity prediction these models can be used for better
predictions. If however good Reynolds stresses want to be predicted this author recommends
to use alternative approaches. These could be more advanced RANS turbulence models such
as EARSM or large eddy simulations. Furthermore, it should be attempted to use a NLEVM
as a sub-grid scale in large eddy simulations. Direct numerical simulations could also be used,
but their cost make them prohibitively expensive outside academia.

Approaches such as seen by Ling et al. (2016) who proposed a tensor basis neural net-
work (TBNN) and Kaandorp (2018) who proposed a tensor basis random forest (TBRF)
for anisotropy predictions are deemed incomplete. Whilst good results were obtained, the
extrapolation to industrial cases remains to be seen. In fact this author believes that at the
current stage that extrapolation will show similar stability and performance issues as the
global-coefficient model. The TBRF requires a similar error in feature to Reynolds stress
mapping in the training and prediction cases for good predictions. Furthermore the TBNN
and TBRF are only capable of predicting anisotropy based on local quantities, whilst tur-
bulence is known to be a non-local phenomenon. This dependence on local quantities can
also introduce jumps in Reynolds stress prediction between cells. A possible solution to this
would be to smoothen the coefficients β over the cells. However this might result in the loss
of information. In summary using a TBNN or TBRF still presents many issues that requires
future research for its use in industrial applications.

As a final word, there remain many possibilities in RANS turbulence modelling which can be
explored. The global-coefficient approach is at an early stage of research and might become
more attractive in future applications when improving upon some deficiencies encountered
during this Master thesis project. I am optimistic that machine learning algorithms will
dominate the future of RANS turbulence modelling and with appropriate use can be used
successfully to improve turbulence modelling.

M.F. Döpke M.Sc. Thesis
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Appendix A

Derivation of Reynolds-Averaged
Navier-Stokes and turbulence model

transport equations

In this appendix the RANS equations and transport equations from the turbulence models in
chapter 2 are derived. First Reynolds time averaging is explained in section A.1. In section
A.2 the RANS equations for incompressible flow are derived. The derivation of the Reynolds
stresses is preformed in section A.3. The transport equations for the turbulent kinetic energy
and dissipation are derived in sections A.4 and A.5.

A.1 Reynolds time averaging

For the derivation of the Reynolds-Averaged Navier-Stokes (RANS) equations Reynolds time
averaging is performed. The main idea behind time averaging is to express any variable φ(x, t)
as a sum of a mean and a perturbation

φ(x, t) = φ̄(x) + φ′(x, t). (A.1)

For stationary turbulence the average of φ(x, t) is defined by

φ(x, t) = lim
τ→∞

1

τ

∫ t+τ

t
φ(x, t)dt = φ̄(x). (A.2)

With the above definition in mind, the following rules apply:

1. The time average of a constant a is constant

ā = a. (A.3)
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98 Derivation of RANS and turbulence model transport equations

2. The time average of an average is the average it self

¯̄a = ā. (A.4)

3. The time average of a perturbation is zero

ā′ = 0. (A.5)

4. The time average of a sum is the sum of time averages∑
i

ai =
∑
i

āi. (A.6)

5. The time average of a product between mean and perturbation is zero

āa′ = āa′ = 0. (A.7)

6. The time average of a product is the product of time averages plus a time average of
the perturbations∏

i

ai =
∏
i

āi +
∏
i

ā′i. (A.8)

It is important for this rule to not forget the disturbances since

ab = (ā+ a′)
(
b̄+ b′

)
= āb̄+ āb′ + a′b̄+ a′b′

= āb̄+ āb′ + a′b̄+ a′b′

= āb̄+ a′b′.

(A.9)

which is different to āb̄.

7. The time average of a spatial derivative is the spatial derivative of the average

∂φ

∂x
=
∂φ̄+ φ′

∂x
=
∂φ̄

∂x
+
∂φ′

∂x
=
∂φ̄

∂x
+
∂φ′

∂x
=
∂φ̄

∂x
. (A.10)

8. The time average of a time derivative is zero for stationary turbulence. For non-
stationary turbulence the time average of a time derivative is the time derivative of
the average similar as with the spatial derivative

∂φ

∂t
=
∂φ̄

∂t
. (A.11)

For the following derivation the chain rule will often be applied and is therefore reviewed
here. The chain rule states that the derivative of the product of two variables is equals to the
first variable times the derivative of the second plus the second variable times the derivative
of the first. This is defined mathematically as

∂ab

∂x
= a

∂b

∂x
+ b

∂a

∂x
. (A.12)
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A.2 Derivation of Reynolds-Averaged Navier-Stokes equa-
tions

The Reynolds-Averaged Navier-Stokes (RANS) equations are obtained from splitting the flow
field into a mean and perturbation as explained in section A.1 and applying time averaging.
The incompressible Navier-Stokes (NS) equations for an incompressible Newtonian fluid are
given by the continuity and momentum equation as

∂ui
∂xi

= 0, (2.3)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
. (2.4)

Applying Reynolds time averaging to the continuity equation results in

∂ (ūi + u′i)

∂xi
= 0⇒ ∂ūi

∂xi
= 0 (A.13)

and the momentum equation in

∂ (ūi + u′i)

∂t
+
(
ūj + u′j

) ∂ (ūi + u′i)

∂xj
= −1

ρ

∂p

∂xi
+

∂

∂xj

ν
∂ (ūi + u′i)

∂xj
+
∂
(
ūj + u′j

)
∂xi

.
(A.14)

Using the 7 rules as described in section A.1, the momentum equation can be simplified.
First (A.14) is rewritten to ∂(ūi + u′i) = ∂ūi + ∂u′i using rule 4. Then the terms u′i can be
eliminated. Rearranging yields the RANS momentum equation

∂ūi
∂t

+ ūj
∂ūi
∂xj

=− 1

ρ

∂p̄

∂xj
+

∂

∂xj

[
ν

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− u′iu′j

]
. (A.15)

This equation looks very similar to the original NS momentum equation with an additional
term u′iu

′
j . This term is commonly known as the Reynolds stresses τij = −u′iu′j .

A.3 Derivation of the Reynolds stress equation

From the RANS momentum equation the Reynolds stresses have been defined as τij = −u′iu′j .
To find an equation for the Reynolds stresses let us consider the components of the momentum
equation and multiply them by the perturbation u′i and u′j finding

u′j
∂ui
∂t

+ u′juk
∂ui
∂xk

= −u′j
1

ρ

∂p

∂xi
+ u′j

∂

∂xk

[
ν
∂ui
∂xk

]
, (A.16)

u′i
∂uj
∂t

+ u′iuk
∂uj
∂xk

= −u′i
1

ρ

∂p

∂xj
+ u′i

∂

∂xk

[
ν
∂uj
∂xk

]
. (A.17)
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Now consider the time average of the sum of (A.16) and (A.17)

(I)

u′j
∂ui
∂t

+ u′i
∂uj
∂t

+

(II)

u′juk
∂ui
∂xk

+ u′iuk
∂uj
∂xk

=−

(III)

u′j
1

ρ

∂p

∂xi
− u′i

1

ρ

∂p

∂xj

+

(IV)

u′j
∂

∂xk

[
ν
∂ui
∂xk

]
+ u′i

∂

∂xk

[
ν
∂uj
∂xk

]
.

(A.18)

The next step is introducing the RANS approximation u = ū + u′. Since this would lead to
an unreadable equation it will be analyzed term by term. Term (I) is the unsteady term,
term (II) is the convective term, term (III) is the pressure term and term (IV) are the viscous
stresses.

A.3.1 Term (I)

The unsteady term is derived from splitting the flow field into a mean and perturbation
u = ū+ u′

(I) = u′j
∂ūi + u′i
∂t

+ u′i
∂ūj + u′j
∂t

. (A.19)

Using the rules described in section A.1 the components can be split up and the first and
third term eliminated

(I) =u′j
∂ūi
∂t

+ u′j
∂u′i
∂t

+ u′i
∂ūj
∂t

+ u′i
∂u′j
∂t

=u′j
∂u′i
∂t

+ u′i
∂u′j
∂t

.

(A.20)

Finally applying the chain rule uj∂ui + ui∂uj = ∂ (uiuj), term (I) is given by

(I) =
∂u′iu

′
j

∂t
. (A.21)

A.3.2 Term (II)

Using the same approach as for term (I), the convective term is found as

(II) =u′j
(
ūk + u′k

) ∂ (ūi + u′i)

∂xk
+ u′i

(
ūk + u′k

) ∂ (ūj + u′j

)
∂xk

=u′j ūk
∂ūi
∂xk

+ u′j ūk
∂u′i
∂xk

+ u′ju
′
k

∂ūi
∂xk

+ u′ju
′
k

∂u′i
∂xk

+ u′iūk
∂ūj
∂xk

+ u′iūk
∂u′j
∂xk

+ u′iu
′
k

∂ūj
∂xk

+ u′iu
′
k

∂u′j
∂xk

.

(A.22)
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This expression can be simplified using the time averaging rules given in section A.1. The
first and fifth terms are zero due to u′. The second and sixth terms and the fourth and eight
terms can be combined using the chain rule. This yields

(II) =ūk
∂
(
u′iu
′
j

)
∂xk

+ u′ju
′
k

∂ūi
∂xk

+ u′iu
′
k

∂ūj
∂xk

+ u′k

∂
(
u′iu
′
j

)
∂xk

.
(A.23)

We can express the chain rule as

∂
(
u′iu
′
ju
′
k

)
∂xk

= u′k

∂
(
u′iu
′
j

)
∂xk

+ u′iu
′
j

∂
(
u′k
)

∂xk
(A.24)

were the last term is zero to write

(II) =ūk
∂
(
u′iu
′
j

)
∂xk

+ u′ju
′
k

∂ūi
∂xk

+ u′iu
′
k

∂ūj
∂xk

+
∂
(
u′iu
′
ju
′
k

)
∂xk

. (A.25)

A.3.3 Term (III)

The pressure term is derived by splitting the pressure into a mean and perturbation as p =
p̄+ p′ and considering the time average as

(III) = −u′j
1

ρ

∂p̄

∂xi
− u′j

1

ρ

∂p′

∂xi
− u′i

1

ρ

∂p̄

∂xj
− u′i

1

ρ

∂p′

∂xj
. (A.26)

The ∂p̄ terms are zero and using the chain rule the second and fourth term can be rewritten.
Rearranging the expression and using the Kronecker delta results in

(III) = p′
1

ρ

∂u′j
∂xi
− 1

ρ

∂
(
p′u′j

)
∂xi

+ p′
1

ρ

∂u′i
∂xj
− 1

ρ

∂ (p′u′i)

∂xj

=
1

ρ
p′
[
∂u′i
∂xj

+
∂u′j
∂xi

]
− 1

ρ

∂

∂xk

[
p′u′iδjk + p′u′jδik

]
.

(A.27)

A.3.4 Term (IV)

In the viscous term the velocities u are replaced by the mean plus perturbation. The new
terms are solved similarly as for the unsteady term, reducing term (IV) to

(IV) = u′j
∂

∂xk

[
ν
∂u′i
∂xk

]
+ u′i

∂

∂xk

[
ν
∂u′j
∂xk

]
(A.28)

and applying the chain rule as

u′j
∂

∂xk

[
ν
∂u′i
∂xk

]
=

∂

∂xk

[
νu′j

∂u′i
∂xk

]
−
[
ν
∂u′i
∂xk

]
∂u′j
∂xk

, (A.29)

u′i
∂

∂xk

[
ν
∂u′j
∂xk

]
=

∂

∂xk

[
νu′i

∂u′j
∂xk

]
−
[
ν
∂u′j
∂xk

]
∂u′i
∂xk

(A.30)
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yields

(IV) =
∂

∂xk

[
ν

(
u′j
∂u′i
∂xk

+ u′i
∂u′j
∂xk

)]
− 2ν

∂u′j
∂xk

∂u′i
∂xk

. (A.31)

Applying the chain rule again results in

(IV) =
∂

∂xk

[
ν
∂u′iu

′
j

∂xk

]
− 2ν

∂u′j
∂xk

∂u′i
∂xk

. (A.32)

A.3.5 Reynolds stress transport equation

The Reynolds stress transport equation is the combination of the terms (I)-(IV) and some
rearranging. The combination of terms (I)-(IV) gives

(I) :
∂u′iu

′
j

∂t
+

(II) : ūk
∂
(
u′iu
′
j

)
∂xk

+ u′ju
′
k

∂ūi
∂xk

+ u′iu
′
k

∂ūj
∂xk

+
∂
(
u′iu
′
ju
′
k

)
∂xk

=

(III) :
1

ρ
p′
[
∂u′i
∂xj

+
∂u′j
∂xi

]
− 1

ρ

∂

∂xk

[
p′u′iδjk + p′u′jδik

]
+

(IV) :
∂

∂xk

[
ν
∂u′iu

′
j

∂xk

]
− 2ν

∂u′j
∂xk

∂u′i
∂xk

.

(A.33)

Multiplying this expression by the density −ρ, using τij for −u′iu′j and rearranging yields the
Reynolds stress transport equation

ρ
∂τij
∂t

+ ρūk
∂τij
∂xk

=− ρτjk
∂ūi
∂xk
− ρτik

∂ūj
∂xk

+ εij −Πij +
∂

∂xk

[
ν
∂ρτij
∂xk

+ Cijk

]
(A.34)

where the terms on the left hand side represent the rate of change and transport by convection
respectively. The first two terms on the right hand side are the stress production terms, εij is
the dissipation, Πij is the pressure-strain interaction and Cijk represents the molecular and
turbulent diffusion. The additional terms εij , Πij and Cijk are expressed as

εij = 2µ
∂u′j
∂xk

∂u′i
∂xk

, (A.35)

Πij = p′
[
∂u′i
∂xj

+
∂u′j
∂xi

]
, (A.36)

and

Cijk = p′u′iδjk + p′u′jδik + u′iu
′
ju
′
k. (A.37)

The Reynolds stress equation (A.34) introduces several higher order terms, whose modeling
is the basis of finding closure equations.
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A.4 Derivation of turbulent-kinetic-energy equation

Let the turbulent kinetic energy be defined as the mean-squared of the velocity perturbations
as

k =
1

2

(
u′2 + v′2 + w′2

)
(A.38)

and the Reynolds stresses as

τij = −u′iu′j . (A.39)

Observing the above definitions a relation between turbulent kinetic energy and Reynolds
stresses can be made. Let the turbulent kinetic energy be defined as the trace of the Reynolds
stresses

k = tr(τij). (A.40)

Then by taking the trace of the Reynolds stress equation (A.34) the turbulent kinetic energy
transport equation can be found. Expressing the Reynolds stress equation in terms of u′iu

′
j

and dividing it by ρ yields

−
∂u′iu

′
j

∂t
− ūk

∂u′iu
′
j

∂xk
=u′ju

′
k

∂ūi
∂xk

+ u′iu
′
k

∂ūj
∂xk

+ 2ν
∂u′j
∂xk

∂u′i
∂xk

− 1

ρ
p′
[
∂u′i
∂xj

+
∂u′j
∂xi

]
+

∂

∂xk

[
−ν

∂u′iu
′
j

∂xk
+ p′u′iδjk + p′u′jδik + u′iu

′
ju
′
k

]
.

(A.41)

In order to obtain the trace, in Einstein summation convention the indices need to be equal.
This is obtained by setting j = i and k = j

−
∂u′iu

′
i

∂t
− ūj

∂u′iu
′
i

∂xj
=2u′iu

′
j

∂ūi
∂xj

+ 2ν
∂u′i
∂xj

∂u′i
∂xj

− 1

ρ
p′
[
∂u′i
∂xi

+
∂u′i
∂xi

]
+

∂

∂xj

[
−ν

∂u′iu
′
i

∂xj
+ 2p′u′iδij + u′iu

′
iu
′
j

]
.

(A.42)

From incompressibility condition ∂xu
′
i the third term on the right hand side disappears. The

Kronecker delta can be eliminated since only i = j is relevant when δi=j = 1. Then multiplying
this expression by −1/2 and summing up the xx, yy and zz components gives

∂k

∂t
+ ūj

∂k

∂xj
=− u′iu′j

∂ūi
∂xj
− ν

∂u′i
∂xj

∂u′i
∂xj
− ∂

∂xj

[
−ν ∂k

∂xj
+ p′u′j +

1

2
u′iu
′
iu
′
j

]
. (A.43)

In this equation u′iu
′
j can be expressed in terms of τij and the second term on the right hand

side as the dissipation

εij = ν
∂u′i
∂xj

∂u′i
∂xj

. (A.44)

Then the turbulent kinetic energy transport equation becomes

∂k

∂t
+ ūj

∂k

∂xj
=τij

∂ūi
∂xj
− εij −

∂

∂xj

[
−ν ∂k

∂xj
+ p′u′j +

1

2
u′iu
′
iu
′
j

]
. (A.45)
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A.5 Derivation of the dissipation rate equation

The dissipation rate equation is derived starting at the incompressible NS momentum equa-
tion for Newtonian fluid and substituting in the mean plus perturbation for the flow field
components as

∂ (ūi + u′i)

∂t
+
(
ūj + u′j

) ∂ (ūi + u′i)

∂xj

=− 1

ρ

∂ (p̄+ p′)

∂xi
+

∂

∂xj

ν
∂ (ūi + u′i)

∂xj
+
∂
(
ūj + u′j

)
∂xi

 (A.46)

∂ūi
∂t

+
∂u′i
∂t

+ ūj
∂ūi
∂xj

+ ūj
∂u′i
∂xj

+ u′j
∂ūi
∂xj

+ u′j
∂u′i
∂xj

=− 1

ρ

∂p̄

∂xi
− 1

ρ

∂p′

∂xi
+

∂

∂xj

[
ν

(
∂ūi
∂xj

+
∂u′i
∂xj

+
∂ūj
∂xi

+
∂u′j
∂xi

)]
.

(A.47)

Taking the time average results in

∂ūi
∂t

+ ūj
∂ūi
∂xj

+ u′j
∂u′i
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

[
ν

(
∂ūi
∂xj

+
∂ūj
∂xi

)]
. (A.48)

Taking the difference between the previous two relations yields

∂u′i
∂t

+ ūj
∂u′i
∂xj

+ u′j
∂ūi
∂xj

+ u′j
∂u′i
∂xj
− u′j

∂u′i
∂xj

=− 1

ρ

∂p′

∂xi
+

∂

∂xj

[
ν

(
∂u′i
∂xj

+
∂u′j
∂xi

)]
.

(A.49)

From continuity for incompressible flow ∂uj/∂xj = 0 and using the chain rule

u′j
∂u′i
∂xj

=
∂u′iu

′
j

∂xj
− u′i

∂u′j
∂xj︸ ︷︷ ︸
=0

(A.50)

the dissipation equation can be rewritten to

∂u′i
∂t

+ ūj
∂u′i
∂xj

+ u′j
∂ūi
∂xj

+ u′j
∂u′i
∂xj

=− 1

ρ

∂p′

∂xi
+

∂

∂xj

[
ν

(
∂u′i
∂xj

+
∂u′j
∂xi

)]
+
∂u′iu

′
j

∂xj
.

(A.51)

Since epsilon is given as in equation (A.44) as εik = ν
∂u′i
∂xk

∂u′i
∂xk

the above expression is differ-

entiated with respect to xk and multiplied by ∂u′i/∂xk. Following the derivation from (Celik,
1999) (this is the only derivation I could not replicate myself) term by term the expression
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becomes

(I) =
∂u′i
∂xk

∂

∂xk

(
∂u′i
∂t

)
=

∂

∂t

[
1

2

(
∂u′i
∂xk

)2
]

(A.52)

(II) =
∂u′i
∂xk

∂

∂xk

(
ūj
∂u′i
∂xj

)
=
∂ūj
∂xk

∂u′i
∂xk

∂u′i
∂xj

+ ūj
∂

∂xj

[
1

2

(
∂u′i
∂xk

)2
]

(A.53)

(III) =
∂u′i
∂xk

∂

∂xk

(
u′j
∂ūi
∂xj

)
=
∂ūi
∂xj

∂u′i
∂xk

∂u′j
∂xk

+ u′j
∂u′i
∂xk

∂2ūi
∂xkxj

(A.54)

(IV ) =
∂u′i
∂xk

∂

∂xk

(
u′j
∂u′i
∂xj

)
=
∂u′i
∂xk

∂u′j
∂xk

∂u′i
∂xj

+ u′j
∂

∂xj

[
1

2

(
∂u′i
∂xk

)2
]

(A.55)

(V ) =
∂u′i
∂xk

∂

∂xk

(
1

ρ

∂p′

∂xi

)
= −1

ρ

∂u′i
∂xk

∂2p′

∂xkxi
(A.56)

(V I) =
∂u′i
∂xk

∂

∂xk

(
∂

∂xj

[
ν

(
∂u′i
∂xj

+
∂u′j
∂xi

)])
=
∂u′i
∂xk

(
∂

∂xj

[
ν

(
∂2u′i
∂xjxk

+
∂2u′j
∂xixk

)])
(A.57)

(V II) =
∂u′i
∂xk

∂

∂xk

(
∂u′iu

′
j

∂xj

)
= 0. (A.58)

The final expression becomes

∂

∂t

[
1

2

(
∂u′i
∂xk

)2
]

+
∂ūj
∂xk

∂u′i
∂xk

∂u′i
∂xj

+ ūj
∂

∂xj

[
1

2

(
∂u′i
∂xk

)2
]

+
∂ūi
∂xj

∂u′i
∂xk

∂u′j
∂xk

+ u′j
∂u′i
∂xk

∂2ūi
∂xkxj

+
∂u′j
∂xk

∂u′i
∂xj

+ u′j
∂u′i
∂xk

∂

∂xj

[
1

2

(
∂u′i
∂xk

)2
]

= −1

ρ

∂u′i
∂xk

∂2p′

∂xkxi
+
∂u′i
∂xk

(
∂

∂xj

[
ν

(
∂2u′i
∂xjxk

+
∂2u′j
∂xixk

)])
.

(A.59)

Multiplying this by 2ν, letting εik = ν
∂u′i
∂xk

∂u′i
∂xk

and rearranging the turbulent energy dissipation
equation becomes

∂ε

∂t
+ ūj

∂ε

∂xj
= −2

ν

ρ

∂u′i
∂xk

∂2p′

∂xk∂xi
+ ν

∂

∂xj

(
∂ε

∂xj

)
−u′j

∂

∂xj

(
ν
∂u′i
∂xk

∂u′i
∂xk

)
− 2ν2

(
∂2u′i
∂xj∂xk

)2

− 2ν
∂u′i
∂xk

∂u′j
∂xk

∂ui
∂xk

−2ν
∂u′i
∂xk

∂u′i
∂xj

∂ui
∂xk
− 2νu′j

∂u′i
∂xk

∂2ūi
∂xk∂xj

− 2ν
∂u′i
∂xk

∂u′j
∂xk

∂u′i
∂xj

.

(A.60)
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Appendix B

Derivation of non-linear stress strain
relationship

The non-linear stress-strain relationship (2.35) was derived by Pope (1975) with the repeated
use of the Caley-Hamilton theorem. In two-dimensions this theorem states

cikckj = cijckk −
1

2
δij [ciicjj − cikcki] . (B.1)

Substituting cij = aij + bij into (B.1) gives

(aik + bik) (akj + bkj) = (aij + bij) (akk + bkk)

− 1

2
δij [(aii + bii) (ajj + bjj)− (aik + bik) (aki + bki)]

(B.2)

aikakj︸ ︷︷ ︸
I

+ aikbkj + bikakj + bikbkj︸ ︷︷ ︸
II

= aijakk︸ ︷︷ ︸
I

+ aijbkk + bijakk + bijbkk︸ ︷︷ ︸
II

− 1

2
δij

aiiajj︸ ︷︷ ︸
I

+ aiibjj + biiaii + biibjj︸ ︷︷ ︸
II

−
aikaki︸ ︷︷ ︸

I

+ aikbki + bikaki + bikbki︸ ︷︷ ︸
II

 .
(B.3)

Identifying that the Caley-Hamilto theorem holds for I and II, these vanish, leaving

aikbkj + bikakj = aijbkk + bijakk −
1

2
δij [(aiibjj + biiaii)− (aikbki + bikaki)] (B.4)

aikbkj + bikakj = aijbkk + bijakk − δij [aiibjj − aikbki] (B.5)

Similarly as in (Pope, 1975) multiplying (B.5) by bij leads to

bikakjbjm = −aikbkjbjm + aijbkkbjm + bijakkbjm − bijδij [aiibjj − aikbki] . (B.6)

MSc. Thesis M.F. Döpke



108 Derivation of non-linear stress strain relationship

Identifying that the Caley-Hamilton theorem (B.1) can be used to express

aikbkjbjm = aikbkmbjj − aik
1

2
δkm [bkkbmm − bkjbjk] (B.7)

and

bijakkbjm = akkbimbjj − akk
1

2
δim [biibmm − bijbji] , (B.8)

(B.6) can be rewritten and simplified to

bikakjbjm =−aikbkmbjj + aik
1

2
δkm [bkkbmm − bkjbjk]︸ ︷︷ ︸

=−aikbkjbjm

+ aijbkkbjm

+akkbimbjj − akk
1

2
δim [biibmm − bijbji]︸ ︷︷ ︸

=bijakkbjm

− bijδij [aiibjj − aikbki]

(B.9)

bikakjbjm =− aikbkmbjj + aik
1

2
δkm [bkkbmm − bkjbjk]

+ aijbkkbjm

+ akkbimbjj − akk
1

2
δim [biibmm − bijbji]

− bijδij
[
aiibjj − aikbki

]
(B.10)

bikakjbjm =
1

2
(aik − akk) δmi [bmmbii − bkjbjk] + bijδijaikbki. (B.11)

Considering a general polynomial expressed as a finite number of successive multiplications
of matrices in any order

P = Aα1Bβ1 ...Aα2Bβ2 ...AαrBβr (B.12)

were αr and βr are any positive integers and no two adjacent terms are powers of the same
matrix. The order of the resulting polynomial is αr + βr in P , αr in A and βr in B.

Its order can be reduced by repeated substitution of the Cayley-Hamilton theorem from (B.1)
and (B.11). If the partial order of P (αr + βr) is greater than 1, repeated substitutions of
(B.1) can be applied and if the order of P is larger than 2 the order can be reduced to less
than 2 by repeated application of (B.11). The possible tensor functions of extension two
(aikbkj and bikakj), given (B.4) only one is independent. The remaining independent base
tensors are δij , aij , bij and aikbkj or bikakj .

The invariants are formed by taking the trace of the base tensors and invariances used to
reduce the order of P . The invariants are then aii, bii, aikaki, bikbki and aikbki or bikaki.
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The tensor function can now be expressed as

φ(aij , bij) =
∑
n

gnT
(n) = g1I + g2a+ g3b+ g4ab (B.13)

with g1, ..., g4 being functions of the invariants.
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Appendix C

Implementation and verification

The turbulence model proposed in chapter 3 was included into OpenFOAM (OF) with k−ω
and k − ε transport equations. Verification was done using the existent quadratic (Shi-
hQuadraticKE) and cubic (LienCubicKE) non-linear models implemented in OF. As verifi-
cation test case a backward facing step was used. This is a common selection for turbulence
model analysis due to the well documented inaccuracies of reproducing the separation length.

C.1 Implementation

The implementation of the proposed model from chapter 3 is detailed in this section.

The first step for the implementation was the study of all non-linear models existent in OF.
This search brought to light the quadratic model from Shih (1987) and the cubic model from
Lien (1996). Disregarding the wall function that is used in the Lien model, the non-linear
stress-strain relationship from these models is used as basis. The relationship is expanded
using the tensors from Pope (1975) (2.36). The stress-strain relationship is added in such
a way that it automatically propagates the correct Reynolds stresses into any other OF
functions.

The OF implementation in its most basic form is a new function with output nonlinearstress
in the Turbulence model .C file as

1v o i d <n e w T u r b u l e n c e M o d e l > : : c o r r e c t N o n l i n e a r S t r e s s ( c o n s t v o l T e n s o r F i e l d &g r a d U )
{

v o l S c a l a r F i e l d t a u _ (1 / ( o m e g a _ ) ) ; // k−o m e g a m o d e l

v o l S c a l a r F i e l d t a u _ ( k / ( e p s i l o n _ ) ) ; // k−e p s i l o n m o d e l

6v o l S y m m T e n s o r F i e l d S = t a u _ ∗ s y m m ( g r a d U ) ;
v o l T e n s o r F i e l d W = t a u _ ∗ ( s k e w ( g r a d U ) ) ;

// B a s e t e n s o r s

v o l S y m m T e n s o r F i e l d T2 = t w o S y m m ( S & W ) ;
11v o l S y m m T e n s o r F i e l d T3 = dev ( s y m m ( S & S ) ) ;

v o l S y m m T e n s o r F i e l d T4 = dev ( s y m m ( W & W ) ) ;
v o l S y m m T e n s o r F i e l d T5 = t w o S y m m ( W & ( S & S ) ) ;
v o l S y m m T e n s o r F i e l d T6 = d e v 2 ( t w o S y m m ( s y m m ( W & W ) & S ) ) ;
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v o l S y m m T e n s o r F i e l d T7 = t w o S y m m ( W & ( S & s y m m ( W & W ) ) ) ;
16v o l S y m m T e n s o r F i e l d T8 = t w o S y m m ( ( S & W ) & ( S & S ) ) ;

v o l S y m m T e n s o r F i e l d T9 = d e v 2 ( t w o S y m m ( s y m m ( W & W ) & ( S & S ) ) ) ;
v o l S y m m T e n s o r F i e l d T10 = t w o S y m m ( W & ( ( S & S ) & s y m m ( W & W ) ) ) ;

21
n o n l i n e a r S t r e s s _ = k_ ∗ (

( b2_ ∗ T2 + b3_ ∗ T3 + b4_ ∗ T4 ) + // q u a d r a t i c

( b5_ ∗ T5 + b6_ ∗ T6 ) + // c u b i c

( b7_ ∗ T7 + b8_ ∗ T8 + b9_ ∗ T9 ) + // c u a r t i c

26( b 1 0 _ ∗ T10 ) // q u i n t i c

) ;

this−>n u t _ = k_ / o m e g a _ ; // k−o m e g a

31this−>n u t _ = C m u _ ∗ sqr ( k_ ) / e p s i l o n _ ; k−e p s i l o n

this−>n u t _ . c o r r e c t B o u n d a r y C o n d i t i o n s ( ) ;
}

The production term is updated as

v o l S c a l a r F i e l d G

2(
this−>G N a m e ( ) ,
( ( n u t _ ∗ dev ( t w o S y m m ( t g r a d U ( ) ) ) − n o n l i n e a r S t r e s s _ ) && t g r a d U ( ) )

) ;

The new variables b2 to b10 need to be loaded into OF by being defined in the .H file

d i m e n s i o n e d S c a l a r b2_ ;

and .C files

b2_

(
d i m e n s i o n e d<scalar > : : l o o k u p O r A d d T o D i c t

4(
” b2 ” ,
this−>c o e f f D i c t _ ,
0

)
9) ,

The coefficients β are modified through a python routine for easier implementation of opti-
mization routines as

1# M o d i f y t u r b u l e n c e P r o p e r t i e s f i l e

# @ p a r a m − t a r g e t D i r e c t o r y : c a s e f i l e l o c a t i o n

# @ p a r a m − t u r b u l e n c e M o d e l : c h o s e t u r b u l e n c e m o d e l

# @ p a r a m − c o e f f i c i e n t s : c o e f f i c i e n t s for the t u r b u l e n c e m o d e l

# @ r e t u r n − w r i t e new t u r b u l e n c e P r o p e r t i e s f i l e

6def m o d i f y T u r b u l e n c e P r o p e r t i e s ( t a r g e t D i r e c t o r y , c o e f f i c i e n t s , t u r b u l e n c e M o d e l ) :

f i l e = P a r s e d P a r a m e t e r F i l e ( t a r g e t + ”/ c o n s t a n t / t u r b u l e n c e P r o p e r t i e s ”)
f i l e [ ” RAS ” ] [ ” R A S M o d e l ” ] = t u r b u l e n c e M o d e l

11c o e f f s . u p d a t e ({
” b2 ” : c o e f f i c i e n t s [ 0 ] ,
” b3 ” : c o e f f i c i e n t s [ 1 ] ,
” b4 ” : c o e f f i c i e n t s [ 2 ] ,
” b5 ” : c o e f f i c i e n t s [ 3 ] ,

16” b6 ” : c o e f f i c i e n t s [ 4 ] ,
” b7 ” : c o e f f i c i e n t s [ 5 ] ,
” b8 ” : c o e f f i c i e n t s [ 6 ] ,
” b9 ” : c o e f f i c i e n t s [ 7 ] ,
” b10 ” : c o e f f i c i e n t s [ 8 ]

21})

f i l e [ ” RAS ” ] [ t u r b u l e n c e M o d e l+”C o e f f s ” ] = c o e f f s

f i l e . w r i t e F i l e ( )

The OpenFOAM cases are run by loading the OF module into python and executing the
following function
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1# I n s t a l l a t i o n d i r e c t o r y O p e n F O A M

p a t h = ’ . / opt / O p e n F O A M / O p e n F O A M - 3 . 0 . 1 / etc / b a s h r c ; ’

def r u n O p e n F O A M ( solver , c a s e D i r e c t o r y , np=1) :
if np == 1:

6p r i n t ’ R u n n i n g ’ , solver , ’ in s e r i e s ’

p r i n t ’ cd ’ + c a s e D i r e c t o r y + ’ ; ’ + s o l v e r

+ ’ > log . ’ + s o l v e r

p = s u b p r o c e s s . P o p e n ( p a t h + ’ cd ’ + c a s e _ d i r + ’ ; ’ + s o l v e r

+ ’ > log . ’ + solver , s h e l l=T r u e )
11p . w a i t ( )

e l s e :
p r i n t ’ R u n n i n g ’ , solver , ’ in p a r a l l e l ’

p r i n t ’ cd ’ + c a s e _ d i r + ’ ; m p i r u n - np ’ + str ( np ) + ’ ’ + s o l v e r

+ ’ - p a r a l l e l > log . ’ + s o l v e r

16os . s y s t e m ( ’ cd ’ + c a s e D i r e c t o r y

+ ’ ; d e c o m p o s e P a r - force > log . d e c o m p o s e P a r ’ )
os . s y s t e m ( ’ cd ’ + c a s e D i r e c t o r y + ’ ; m p i r u n - np ’ + str ( np ) + ’ ’

+ s o l v e r + ’ - p a r a l l e l > log . ’ + s o l v e r )
os . s y s t e m ( ’ cd ’ + c a s e D i r e c t o r y

21+ ’ ; r e c o n s t r u c t P a r > log . r e c o n s t r u c t P a r ’ )

C.2 Verification

The verification is divided in two two sections; 1) verification of implementation of non-linear
stresses and 2) verification of calibration procedure.

C.2.1 Turbulence model verification

Turbulent flow over a backward facing step has established itself as a benchmark to evaluate
turbulence model performance. The main challenge for turbulence models are to predict the
reattachment length. The reattachment length is defined as the distance downstream from
the step up to where the stream-wise velocity changes sign. An intuitive representation of
this phenomenon is given in figure C.1. A vortex occurs right behind the step providing a
flow pattern where the velocity experienced on the lower wall is in opposite direction to the
free stream velocity. The point at which the velocity on the lower wall reverts back in the
same direction as the free stream is defined as the reattachment point. The distance from
the step to the reattachment point is the reattachment length. Turbulence models such as
the k − ε model are known to under-predict this distance by 20 to 25% (Demirdzic, 1982;
Nallasamy, 1987; Abid, Speziale, & Thangam, 1991). This makes the backward facing step a
good candidate to be used as verification case.

xr

h

Figure C.1: Intuitive representation of the vortex experienced behind the step in a backward
facing step flow and definition of reattachment length, defined as the distance between the step

and xr.

Figure C.2 shows the geometry used for verification. All length scales are expressed in terms
of the step height h. The boundary conditions related to the faces of figure C.2 are given
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in table C.1. The physical quantities are set such that the flow is fully developed at a step
Reynolds number of Reh = 5, 100.

h

20h
8h

h5

Inlet

Top

Bottom

Outlet

Figure C.2: Geometry of the backward facing step in terms of the step height h.

Table C.1: Boundary conditions of backward facing step

Face Boundary condition

Inlet Developed turbulent flow velocity inlet
Outlet Pressure outlet

Top Slip velocity
Bottom No-slip wall

Verification was done in four steps, represented in figure C.3;

1. the non-linear stress-strain relationship is built in and tested whilst all coefficients β = 0,

2. the Shih quadratic k − ε model is reproduced,

3. the Lien cubic k − ε model is reproduced,

The proposed model overlaps exactly the existing linear, quadratic and cubic models from
OpenFOAM, see figure C.3, thereby verifying the implementation has been done successfully.

C.2.2 Verification of calibration procedure

The calibration routine was verified by reproducing the Shih model on a square duct. A very
simplified approach of only evaluating the Eddy viscosity (2.35) was set up. The minimization
problem was as posed in section 3.2. The velocity, turbulent kinetic energy and turbulence
dissipation were constant during the calibration. The initial conditions of the coefficients was
β1 = β2 = β3 = 0. The result of calibration is given in table C.2. Although the match
is not perfect, the calibrated coefficients approach the Shih coefficients. The difference is
likely to arise due to interactions between the first and third non-linear tensor of (2.36). The
interactions are discussed in chapters 4 and 5.
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Figure C.3: Verification of implementation of non-linear Eddy viscosity model.

Table C.2: Shih coefficients and reproduced coefficients from calibration routine.

Coefficient Shih Calibrated
β1 3 4.47
β2 15 15
β3 -19 -17.5
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Appendix D

Barycentric map and realizability constraints

In this appendix the barycentric map from Banerjee et al. (2007) and realizability constraints
presented in Schumann (1977) are introduced.

D.1 Barycentric map

An intuitive way of visualizing anisotropy is the anisotropy-invariant map (Lumley, 1970)
or the barycentric map (Banerjee et al., 2007), used in this report. A barycentric map is
essentially a triangle in which all turbulent flows can be classified depending on its state.
The boundaries of the triangle also work as physical boundaries of turbulence properties,
specifically the realizability constraints explained in the next section.

The three corners of the triangle are defined as the 1-, 2- and 3-component limiting states.
Which mean 1, 2 and 3 eigenvalues of aij are non-zero respectively. The lines connecting these
states are then defined as the axi-symmetric expansion, contraction and two-component limit.
A fourth line, originating from the 3-component limiting state and going to in between the
1- and 2-component limiting state, is generally shown, which depicts the plane-strain. This
fourth line is the isotropic turbulence state on which all Bousinesq approximation simulations
lay. A typical barycentric map with explanations is depicted in Fig. D.1 (Banerjee et al.,
2007).

The coordinates of a turbulence state on the barycentric map are calculated from

x =C1cx1c + C2cx2c + C3cx3c, (D.1)

z =C1cz1c + C2cy2c + C3cy3c. (D.2)
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Where C1c to C3c are determined by the eigenvalues (λ1 to 3) of aij as

C1c =λ1 − λ2, (D.3)

C2c =2 (λ2 − λ3) , (D.4)

C3c =3λ3 + 1. (D.5)
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Figure D.1: Barycentric map adapted from (Banerjee et al., 2007).

D.2 Realizability constraints

The realizability constraints presented in Schumann (1977) stipulate that the Reynolds stress
tensor τij be Symmetric Positive semi-Definite (SPD). This is a necessary condition for real
velocities and to satisfy the Schwarz inequality. Then the Reynolds stress tensor has to satisfy
the following conditions:

• τij = τji

• τii ≥ 0

• det(τij) ≥ 0

• τ2
ij ≥ τiiτjj .
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Appendix E

Wall treatment

Turbulence models used for RANS simulations generally require one of two conditions; 1) a
mesh resolution of y+ < 1 or 2) the use of wall functions. If a mesh resolution of y+ < 1 is
chosen the first cell is well within the viscous sublayer of the boundary allowing the turbu-
lence model to resolve all features of the boundary layer. This however can be prohibitively
expensive since it requires very fine meshes near walls. Therefore wall functions have been
introduced. These generally require a resolution of at least 30 < y+ < 300 for good results.
Wall functions are based on the law of the wall. This one states that the average velocity
u+ of a turbulent flow near the wall is proportional to the logarithm of the distance to the
wall y+ as shown in figure E.11 (von Karman, 1931). Two regions can be identified, inner
region composed of a viscous sublayer, buffer layer and log-law layer and the outer layer. The
viscous sub-layer

u+ = y+ (E.1)

is modeled as one cell with this cell height commonly being defined by y+ = 20 or 30. The
log-law

u+ =
1

κ
ln y+ +B (E.2)

stretches from the first cell height to about y+ ≈ 150. κ in (E.2) is the von Karman constant
κ ≈ 0.41 and B is a constant often chosen as 5.1. The non-dimensional velocity u+ is defined
as

u+ =
u

uτ
(E.3)

with

uτ =

√
τw
ρ

(E.4)

where τw is the wall shear stress.

1Retrieved on 12/03/2018 from: https://en.wikipedia.org/wiki/Law of the wall#/media/File:Law of

the wall (English).svg
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120 Wall treatment

Figure E.1: Near wall behavior of flow velocity. Two regions are identified, inner and outer
region. The inner region is composed of the viscous sublayer, buffer layer and log-law layer. The

viscous sublayer is modeled by the first cell, then the log-law is used up to y+ ≈ 150. No wall
function remains in the outer region.
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