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Abstract
Planetary observational accuracy increases and the dynamical modeling of tidal behaviour has to follow.
In this thesis, a newly developed method (Correia et al. 2014; Boue et al. 2016) to deal with tidal
interactions in a 2D two body problem is validated and for the first time applied to Solar system dynamics
on a short time­scale. This method uses a Maxwell rheology for the tidally perturbed body, to calculate
the instantaneous deformation of the body with a differential equation at the same time as its position,
spin vector and orientation. The coupling between the translational, rotational, and tidal dynamics
is incorporated in a consistent way, taking into account the frequency dependency of classical tidal
parameters. The coupled model is more general and is in contrast to currently used models valid for
every eccentricity, spin rate and orientation. The model is applied to the Mars­Phobos and Earth­Moon
systems and the tides are determined separately on both the central as the satellite body in various
propagations. Several parameters of tidal effects of these systems are obtained and compared with
currently available literature approximations and currently used tidal models.

The instantaneous deformation of the tidal body and the evolution of the system’s orbit for the tides
on the primary compare to the literature approximations and currently used direct tidal force model
(Lainey et al. 2007). However, the coupled model displays behaviour of the tidal time lag and angle,
which are accompanied with the deformation, that cannot be captured by the classical method. Small
differences between final states of the coupled model and the direct tidal force model are obtained that
could potentially be important in future space missions and ephemeris determination.

The tides on the locked secondary show a larger difference between the coupled model and the
current tidal direct force models (Lainey et al. 2007; Lari 2018) in the case of an existing libration.
Phobos has such a libration and huge differences in evolution of the states and orbit are found. The
coupled model’s evolution values can be partly justified by the theoretical work of Efroimsky (2018) that
states the additional dissipation in these bodies with large librations.

Altogether, currently used methods or literature approximations can still be used for inaccurate
propagations. However, for more accurate propagations, and for bodies with large physical librations,
it rewards to switch to a coupled method. Especially when regarding the tides on the satellite body a
coupled model is beneficial.
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1
Introduction

Studying the celestial sky and determining the orbits of the solar system objects has been performed
for ages: from the first positions of the moons of Jupiter found by Galileo presented in his Sidereus
Nuncius in 1610 (Galilei and Van Helden 1989), the discovery of elliptical orbits by Kepler described in
his Astronomia Nova around the same time (Lissauer 2009), and the fundamental laws of motion in the
Principia by Newton in 1687 (Newton et al. 1729), to the current days and more accurate ephemerides
(e.g. JPL Development Ephemerides, Folkner et al. 2014 and INPOP, Viswanathan et al. 2017).

An ephemeris, or plural ephemerides, can nowadays be described as a tool of finding the position of
celestial bodies at a desired time, even for the future. This is possible because the dynamical modelling
has developed enough to propagate orbits ahead into time. A dynamical model is an incorporation of
the laws of nature that govern the motion of objects and returns a prediction for the future motion of the
objects through an analytical solution or numerical integration. The modelling is still based on some
sort of observations. The ephemeris has been made by fitting the observations in some way to the dy­
namical model, and uses the dynamical model to find new positions at different epochs (Folkner et al.
2014). Whenever the observations acquired become more accurate, the dynamical model should give
more accurate estimates as well. Only when the observations become so accurate, that their accuracy
surpasses the accuracy of the dynamical model, steps need to be taken: The dynamical model should
be updated to include additional physical perturbations that are now large enough to be reckoned with.

For specific solar system dynamics the accuracy of the observations improves to below model stan­
dards, asmultiple tracking­data types emerge for newmissions. As discussed in Dirkx et al. (2019), new
methods such as multi­wavelength radiometric range and Doppler measurements (Dehant et al. 2017),
same­beam interferometry (Kikuchi et al. 2009), and interplanetary laser ranging (Turyshev et al. 2010)
could achieve new standards of accuracy. This requires the current dynamical models to be evolved to
an accuracy at least equal to, but ideally well below the accuracy of the observations. If done properly,
new andmore accurate estimates of properties of the system’s bodies can be retrieved, indirectly giving
information about the bodies’ evolution, and moreover about the formation and evolution of planetary
systems in general (Dirkx et al. 2016). An example is Lainey et al. (2020), where suggestions are given
on Titan’s origin based on a reanalysis of accurate observations.

The improved models should include a realistic approach for frequency­dependent tidal dissipation,
a detailed non­conservative force model for small interacting bodies, and figure­figure gravitational in­
teractions (Dirkx et al. 2019), where the last takes into account the full mass distribution of the concern­
ing system. These steps were already taken by Efroimsky (2012), where the frequency dependence of
tidal dissipation is discussed in depth, or by numerous authors setting up a figure­figure gravitational
interactive model (e.g. Borderies 1978; Maciejewski 1995; Ashenberg 2005; Fahnestock and Scheeres
2006; Boue et al. 2016; Dirkx et al. 2019). Aforementioned methods are tested and used for specific
solar system dynamics.

The tidal dynamics are as well such a dynamical model that can be improved. The tidal effects have
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been studied for ages, and the modelling of tidal dissipation and accompanied effects is described in
multiple articles. Already in 1754, Immanual Kant introduced the effects of tidal dissipation by stating
that the Earth’s rotation would slowly decrease until it would equal the orbital period of the Moon, in
fact until Earth days would equal Lunar months (Kant 1754). This suggestion was confirmed by Darwin
and Glaisher (1879), Darwin being a son of famous naturalist Charles Darwin. They started modelling
the dissipation and used a Fourier expansion for the tidal potential (Darwin 1880). Kaula (1964) then
extended this into a general formulation with possible frequency dependence of the tidal lag, which is
still being used today (Efroimsky and Williams 2009). This tidal lag modelling is key to understanding
the tidal behaviour. The tidal lag can be described as the phase lag between the position of the tidal
origin (i.e. the perturbing body), and the tidal bulge (i.e. the location where the tides are high). Due to
the lag, the tides are not aligned with the direction of the perturbing body. It takes time for the body to
deform due to the internal dissipation.

To model the tidal lag, others have tried different, less complicated approaches. Macdonald (1964)
and Goldreich and Soter (1966) developed and used the constant geometric lag model (i.e. keeping the
angle between the direction of the perturbing body and the position of the tidal bulge a constant). More
recently, this was rejected by Efroimsky and Makarov (2013), stating that the model is contradictory.
Singer (1968) and Mignard (1980) then developed the constant time lag model, stating that the tidal
bulge position at time 𝑡 is caused by the perturbing body at time 𝑡−𝛥𝑡, while at the same time including
the frequency dependence of the tidal lag (Boue et al. 2016). Mignard (1980) used a very compact way
to describe the tidal force and torque by linearizing the potential function. In fact, the model is still used
to incorporate tidal dissipation in current day planetary satellite ephemeris, because of its compact for­
mulation (Lainey et al. 2007, 2009; Lari 2018). More recently, Ferraz­Mello (2013) developed a tidal
creep theory, where a different approach is taken. The body tends to ‘creep’ to its equilibrium position
aligned with the perturbing body and the stress applied to the tidal bulge is assumed to be proportional
to the distance from equilibrium.

The current dynamical models consist of a translational, a possible rotational and of a possible tidal
part. In reality these parts are completely intertwined, depend and act on each other, but are usually not
completely coupled in the model. For example in Lainey et al. (2004, 2007), where the ephemerides
of both the Jovian and Martian system are determined, the model integrates only the translational part.
The rotation is modelled a priori with an analytical solution, and the tides are included as an additional
effect to the translational part. In for example Dirkx et al. (2019) the dynamical model includes the
integration and coupling of the translational and rotational part, but lacks the effect of the tides. Note
however, that their approach is fully warranted by the accuracy of the available data.

All this considered, the tidal lag and thus tidal effect are completely determined by the rheology
of the body (i.e. the model for the flow of matter of the body). The constant time lag model can be
regarded as a first order viscoelastic rheological model. However, when a completely coupled model
is implemented, the rheological model determines the deformation of the body at every time step of the
numerical propagation through a differential equation, at the same time as the position, velocity and
angular momentum are determined.

Correia et al. (2014) tried this approach for two exoplanets, and Boue et al. (2016) extended this
with a complex description and a more general formulation for dynamics of similar extrasolar planets.
The approach from Boue et al. (2016) is very general and applicable to any kind of orbital configuration,
while the earlier Fourier expansion (Darwin 1880) always used the fact that the eccentricity should be
small to truncate at a low level. The classical way from Lainey et al. (2007) would be to add a force due
to the tidal effect, while a coupled system calculates the mass deformation of the body on the basis of
a rheological model at the same time step and then simply includes this additional gravitational effect.
It would not be such a problem whenever this tidal effect can be determined very accurately. However,
in particular for tides on satellite bodies the tidal effects are not easily determined (Efroimsky 2012).

The full coupled model in recent literature was only tested for dynamical systems outside the solar
system and for long­term evolution (e.g. Correia et al. 2014 and Boue et al. 2016). The important
short­term evolution (i.e. days to years) for planetary missions is not discussed.
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The research performed in this thesis extends this work and applies this coupled modelling closer
to home. The goal of this study is to develop a 2­dimensional coupled model for specific solar system
dynamics and to test it by comparing it with current other models. This research investigates whether
coupled modelling could be beneficial for short­term ephemeris determination and thus for data analy­
sis of future planetary missions. The relatively simple rheological Maxwell model (Renaud and Henning
2018) is used to model the body’s deformation.

Two systems are considered in this research (i.e. the Mars­Phobos and the Earth­Moon case),
where the Mars­Phobos system is the most interesting of the two. Phobos is the closest moon of Mars
and is slowly spiralling inward. It experiences a large tidal force due to its close distance and has a large
libration due to its high gravitational triaxiality. Together with the fact that it has a slight eccentric orbit
and induced libration it could mean that a coupled system is beneficial for its propagation accuracy.
The Earth­Moon system is chosen because it is the best known planet­moon system and thus is more
easily validated with literature and earlier observations.

This leads to the following main research question:

What is the benefit of using a fully coupled translational­rotational­tidal model, when comparing with
currently used other models and literature approximations, and for what systems could this be benefi­
cial?

Two lower­level research questions and accompanied sub­questions should explain the top­level
one and are:

1. What is the benefit of using a fully coupled model, when comparing with currently used other
models and literature approximations, for a 2D system with tides on the primary?

The orbital elements regarded include the semi­major axis and eccentricity. Due to the tidal torque
and lag these parameters will see a change. Literature approximations are available to determine
these changes up front, and these approximations can be compared with the evolution of the sys­
tems as propagated in the coupled model, but also with the evolution as propagated while using
the current direct tidal force models. The tides on the primary are a good benchmark case for the
later and more difficult to determine tides on the secondary part. The following sub­questions are
asked:

• What is the behaviour of the coupledmodel for the test­casesMars­Phobos and Earth­Moon,
when regarding the evolution of the tidal geopotential coefficients, accompanied tidal lag an­
gle and time lag?

• What is the behaviour of the coupledmodel for the test­casesMars­Phobos and Earth­Moon,
when regarding the evolution of the orbital elements?

2. What is the benefit of using a fully coupled model, when comparing with currently used other
models and literature approximations, for a 2D system with tides on the locked secondary?

The tides on the secondary are usually much harder to determine. Both test­cases have an
eccentricity, thus the satellite bodies will have librational as well as radial tides. Their combina­
tion and dissipation is difficult to determine and up to this date there are arguments about the
correct literature approximations for the semi­major axis evolution. This leads to the following
sub­questions:
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• What is the behaviour of the coupledmodel for the test­cases Phobos­Mars andMoon­Earth,
when regarding the evolution of the tidal geopotential coefficients?

• What is the behaviour of the coupledmodel for the test­cases Phobos­Mars andMoon­Earth,
when regarding the evolution of the orbital elements and librations?

After this introduction, a stand­alone paper will describe the main research performed. The descrip­
tion of the coupled model as well as methods for validation of this model are included. It discusses the
results of the test­cases and draws a conclusion on whether the coupled model can be beneficial, and
in what cases. After the paper, the findings are concluded in the report as well, with specific answers
to the aforementioned research questions. The recommendations include a short discussion on what
possible further research could be done. Appendices are included which state additional derivations,
a documentation of the Python code used, and a verification of the Python modelling.



2
Paper

The following stand­alone paper contains the main research performed.
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A coupled 2D translational-rotational-tidal model
on Solar system bodies using a Maxwell viscoelastic rheology
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aDelft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands

Abstract

Planetary observational accuracy increases and the dynamical modeling of tidal behaviour has to follow. In this paper,
a newly developed method (Correia et al. 2014; Boue et al. 2016) to deal with tidal interactions in a 2D two body
problem is validated and for the first time applied to Solar system dynamics on a short time-scale. This method
uses a Maxwell rheology for the tidally perturbed body, to calculate the instantaneous deformation of the body with a
differential equation at the same time as its position, spin vector and orientation. The coupling between the translational,
rotational, and tidal dynamics is incorporated in a consistent way, taking into account the frequency dependency of
classical tidal parameters. The coupled model is more general and is in contrast to currently used models valid for every
eccentricity, spin rate and orientation. The model is applied to the Mars-Phobos and Earth-Moon systems and the tides
are determined separately on both the central as the satellite body in various propagations. Several parameters of tidal
effects of these systems are obtained and compared with currently available literature approximations and currently used
tidal models.

The instantaneous deformation of the tidal body and the evolution of the system’s orbit for the tides on the primary
compare to the literature approximations and currently used direct tidal force model (Lainey et al. 2007). However, the
coupled model displays behaviour of the tidal time lag and angle, which are accompanied with the deformation, that
cannot be captured by the classical method. Small differences between final states of the coupled model and the direct
tidal force model are obtained that could potentially be important in future space missions and ephemeris determination.

The tides on the locked secondary show a larger difference between the coupled model and the current tidal direct
force models (Lainey et al. 2007; Lari 2018) in the case of an existing libration. Phobos has such a libration and huge
differences in evolution of the states and orbit are found. The coupled model’s evolution values can be partly justified
by the theoretical work of Efroimsky (2018) that states the additional dissipation in these bodies with large librations.

Altogether, currently used methods or literature approximations can still be used for inaccurate propagations. How-
ever, for more accurate propagations, and for bodies with large physical librations, it rewards to switch to a coupled
method. Especially when regarding the tides on the satellite body a coupled model is beneficial.

Keywords: Tidal dynamics; Maxwell model; Tidal evolution; Libration;

1. Introduction

Studying the celestial sky and determining the orbits
of the solar system objects has been performed for ages:
from the first positions of the moons of Jupiter found by
Galileo presented in his Sidereus Nuncius in 1610 (Galilei
and Van Helden 1989), the discovery of elliptical orbits by
Kepler described in his Astronomia Nova around the same
time (Lissauer 2009), and the fundamental laws of motion
in the Principia by Newton in 1687 (Newton et al. 1729),
to the current days and more accurate ephemerides (e.g.
JPL Development Ephemerides, Folkner et al. 2014 and
INPOP, Viswanathan et al. 2017).

The accuracy of the observations has increased over
the centuries. When the observations become so accurate,

Email address: jwn.mol@gmail.com (J. W. N. Mol )

that their accuracy surpasses the accuracy of the dynam-
ical model (i.e. the physical model of how to predict and
calculate the orbits), the dynamical model should be up-
dated to include additional physical effects that are now
large enough to be reckoned with.

For specific solar system dynamics the accuracy of the
observations improves to below model standards, as mul-
tiple tracking-data types emerge for new missions. As dis-
cussed in Dirkx et al. (2019), new methods such as multi-
wavelength radiometric range and Doppler measurements
(Dehant et al. 2017), same-beam interferometry (Kikuchi
et al. 2009), and interplanetary laser ranging (Turyshev
et al. 2010) could achieve new standards of accuracy. This
requires the current dynamical models to be evolved to
an accuracy at least equal to, but ideally well below the
accuracy of the observations. If done properly, new and
more accurate estimates of properties of the system’s bod-



ies can be retrieved, indirectly giving information about
the bodies’ evolution, and moreover about the formation
and evolution of planetary systems in general (Dirkx et al.
2016). An example is Lainey et al. (2020), where sugges-
tions are given on Titan’s origin based on a reanalysis of
accurate observations.

The improved models should include a realistic ap-
proach for frequency-dependent tidal dissipation, a de-
tailed non-conservative force model for small interacting
bodies, and figure-figure gravitational interactions (Dirkx
et al. 2019), where the last takes into account the full mass
distribution of the concerning system. These steps were
already taken by Efroimsky (2012), where the frequency
dependence of tidal dissipation is discussed in depth, or by
numerous authors setting up a figure-figure gravitational
interactive model (e.g. Borderies 1978; Maciejewski 1995;
Ashenberg 2005; Fahnestock and Scheeres 2006; Boue et al.
2016; Dirkx et al. 2019). Aforementioned methods are
tested and used for specific solar system dynamics.

The tidal dynamics are as well such a dynamical model
that can be improved. The tidal effects have been studied
for ages, and the modelling of tidal dissipation and accom-
panied effects is described in multiple articles. Already in
1754, Immanual Kant introduced the effects of tidal dis-
sipation by stating that the Earth’s rotation would slowly
decrease until it would equal the orbital period of the
Moon, in fact until Earth days would equal Lunar months
(Kant 1754). This suggestion was confirmed by Darwin
and Glaisher (1879), Darwin being a son of famous natu-
ralist Charles Darwin. They started modelling the dissipa-
tion and used a Fourier expansion for the tidal potential
(Darwin 1880). Kaula (1964) then extended this into a
general formulation with possible frequency dependence
of the tidal lag, which is still being used today (Efroim-
sky and Williams 2009). This tidal lag modelling is key
to understanding the tidal behaviour. The tidal lag can
be described as the phase lag between the position of the
tidal origin (i.e. the perturbing body), and the tidal bulge
(i.e. the location where the tides are high). Due to the
lag, the tides are not aligned with the direction of the per-
turbing body. It takes time for the body to deform due to
the internal dissipation.

To model the tidal lag, others have tried different, less
complicated approaches. Macdonald (1964) and Goldreich
and Soter (1966) developed and used the constant geomet-
ric lag model (i.e. keeping the angle between the direction
of the perturbing body and the position of the tidal bulge
a constant). More recently, this was rejected by Efroimsky
and Makarov (2013), stating that the model is contradic-
tory. Singer (1968) and Mignard (1980) then developed
the constant time lag model, stating that the tidal bulge
position at time 𝑡 is caused by the perturbing body at time
𝑡 − 𝛥𝑡, while at the same time including the frequency de-
pendence of the tidal lag (Boue et al. 2016). Mignard
(1980) used a very compact way to describe the tidal force
and torque by linearizing the potential function. In fact,
the model is still used to incorporate tidal dissipation in

current day planetary satellite ephemeris, because of its
compact formulation (Lainey et al. 2007, 2009; Lari 2018).
More recently, Ferraz-Mello (2013) developed a tidal creep
theory, where a different approach is taken. The body
tends to ‘creep’ to its equilibrium position aligned with
the perturbing body and the stress applied to the tidal
bulge is assumed to be proportional to the distance from
equilibrium.

The current dynamical models consist of a transla-
tional, a possible rotational and of a possible tidal part.
In reality these parts are completely intertwined, depend
and act on each other, but are usually not completely cou-
pled in the model. For example in Lainey et al. (2004,
2007), where the ephemerides of both the Jovian and Mar-
tian system are determined, the model integrates only the
translational part. The rotation is modelled a priori with
an analytical solution, and the tides are included as an
additional effect to the translational part. In for example
Dirkx et al. (2019) the dynamical model includes the in-
tegration and coupling of the translational and rotational
part, but lacks the effect of the tides. Note however, that
their approach is fully warranted by the accuracy of the
available data.

All this considered, the tidal lag and thus tidal effect
are completely determined by the rheology of the body
(i.e. the model for the flow of matter of the body). The
constant time lag model can be regarded as a first or-
der viscoelastic rheological model. However, when a com-
pletely coupled model is implemented, the rheological model
determines the deformation of the body at every time step
of the numerical propagation through a differential equa-
tion, at the same time as the position, velocity and angular
momentum are determined.

Correia et al. (2014) tried this approach for two exo-
planets, and Boue et al. (2016) extended this with a com-
plex description and a more general formulation for dy-
namics of similar extrasolar planets. The approach from
Boue et al. (2016) is very general and applicable to any
kind of orbital configuration, while the earlier Fourier ex-
pansion (Darwin 1880) always used the fact that the ec-
centricity should be small to truncate at a low level. The
classical way from Lainey et al. (2007) would be to add a
force due to the tidal effect, while a coupled system calcu-
lates the mass deformation of the body on the basis of a
rheological model at the same time step and then simply
includes this additional gravitational effect. It would not
be such a problem whenever this tidal effect can be deter-
mined very accurately. However, in particular for tides on
satellite bodies the tidal effects are not easily determined
(Efroimsky 2012).

The full coupled model in recent literature was only
tested for dynamical systems outside the solar system and
for long-term evolution (e.g. Correia et al. 2014 and Boue
et al. 2016). The important short-term evolution (i.e. days
to years) for planetary missions is not discussed.

The research performed in this paper extends this work
and applies this coupled modelling closer to home. The
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goal of this study is to develop a 2-dimensional coupled
model for specific solar system dynamics and to test it
by comparing it with current other models. This research
investigates whether coupled modelling could be benefi-
cial for short-term ephemeris determination and thus for
data analysis of future planetary missions. The relatively
simple rheological Maxwell model (Renaud and Henning
2018) is used to model the body’s deformation.

Two systems are considered in this research (i.e. the
Mars-Phobos and the Earth-Moon case), where the Mars-
Phobos system is the most interesting of the two. Phobos
is the closest moon of Mars and is slowly spiralling in-
ward. It experiences a large tidal force due to its close
distance and has a large libration due to its high gravi-
tational triaxiality. Together with the fact that it has a
slight eccentric orbit and induced libration it could mean
that a coupled system is beneficial for its propagation ac-
curacy. The Earth-Moon system is chosen because it is
the best known planet-moon system and thus is more eas-
ily validated with literature and earlier observations.

After this introduction, the 2-dimensional two-body
problem used for this research is described in Section 2.
In Section 3, the currently used tidal evolution models are
described, for both the tides on the central and on the
satellite body. The coupled model is covered in Section
4, describing the full equations of motion for the transla-
tional, rotational, and tidal dynamics. Section 5 discusses
the methods for validation, comparison, and analysis of
the tidal behaviour of the coupled model, and the cur-
rently used tidal models. Subsequently, the test-cases will
be introduced and results will be shown of the coupled
model’s behaviour with tides on the central body in Sec-
tion 6, and tides on the satellite body in Section 7.

2. Extended Two Body Problem

An extended two body problem is considered with a
central extended body of mass 𝑀c, and a point mass satel-
lite/secondary body of mass 𝑀s. The central body has
a second degree and order gravity field, expressed in the
spherical harmonic coefficients 𝐽2, 𝐶2,2, and 𝑆2,2. The ro-
tation vector of the central body is aligned with ̂𝒆𝐶 from
the fixed rotating reference frame ℱC = ( ̂𝒆𝐴, ̂𝒆𝐵, ̂𝒆𝐶), and
is also orthogonal to the orbital plane, which thus creates
a 2-dimensional problem. The situation is sketched in Fig-
ure 1, and is discussed in Correia et al. (2014). The ellipse
is added to show that the tidal behaviour on the central
body will be of importance.

2.1. The potential function
The gravitational potential of a body is described as

𝑉 (𝒓) = − ∫
C

𝐺d𝑀
|𝒓 − 𝒔| , (1)

where the integral is taken over all mass elements in body
C, 𝒔 is the position vector of the mass element inside the
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Figure 1: Overview of the extended two body problem of a central
body C and satellite body S shown in a 2-dimensional manner. The
inertial reference frame ℱI = ( ̂𝒆𝑖, ̂𝒆𝑗, ̂𝒆𝑘) is centered in the central
body, and the rotating frame ℱC = ( ̂𝒆𝐴, ̂𝒆𝐵, ̂𝒆𝐶) is fixed with the
central body. Note that ̂𝒆𝑘 and ̂𝒆𝐶 are the same and out-of-plane
towards the reader. 𝒓 is the position vector from body C to S, 𝜔
is the rotation velocity of body C and 𝑛 is the orbital mean motion
of body S. 𝛾 is the angular direction of the satellite body S as seen
from the rotating frame ℱC, and 𝜃 is the rotation angle between
both frames.

body and 𝒓 the position vector of the evaluated point out-
side the body. Conventionally, the integral is expressed
in spherical harmonics (e.g. Lambeck 1988; Dirkx et al.
2019), which leads to

𝑉 (𝒓) = −𝐺𝑀
𝑅E

∞
∑
𝑙=0

(𝑅E
|𝒓| )

𝑙+1

×
𝑙

∑
𝑚=0

(𝐶𝑙,𝑚 cos(𝑚𝜙) + 𝑆𝑙,𝑚 sin(𝑚𝜙)) 𝑃𝑙,𝑚(cos 𝜗) .
(2)

If reduced to second degree (i.e. 𝑙 = 2) the potential for
this 2-dimensional situation (sketched in Figure 1) can be
described as (e.g. Correia and Rodríguez 2013; Correia
et al. 2014),

𝑉 (𝒓) = −𝐺𝑀c
|𝒓| − 𝐺𝑀c𝑅E

2𝐽2

2|𝒓|3

− 3𝐺𝑀c𝑅E
2

|𝒓|3
(𝐶2,2 cos 2𝛾 − 𝑆2,2 sin 2𝛾) ,

(3)

where 𝐺 is the gravitational constant, 𝑅E the equatorial
radius of body C used as reference radius, 𝑙 and 𝑚 the
degree and order of the spherical harmonic, 𝜙 and 𝜗 the
longitude and colatitude of the position vector 𝒓 in the ro-
tating frame, and 𝑃𝑙,𝑚 the unnormalized associated Leg-
endre polynomial (e.g. Montenbruck and Gill 2000, Boue
et al. 2016). The angle 𝛾 denotes the negative of the longi-
tude of the position vector as used in Correia et al. (2014).
The periodic functions are then calculated via

cos 2𝛾 = ( ̂𝒆A ⋅ ̂𝒓)2 − ( ̂𝒆B ⋅ ̂𝒓)2 ,
sin 2𝛾 = −2( ̂𝒆A ⋅ ̂𝒓)( ̂𝒆B ⋅ ̂𝒓) .

(4)
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2.2. Equations of motion
The translational evolution of the system is calculated

according to Newton’s second law,

d2𝒓
d𝑡2 = 𝑭 /𝛽 , (5)

with 𝛽 = 𝑀c𝑀s/(𝑀c+𝑀s) the reduced mass of the system
and where the force is given by the gradient of the potential
function (Equation 6),

𝑭 = −𝛁𝑉 (𝒓) . (6)

The rotation of the central body is expressed in the ro-
tation velocity vector 𝝎, the evolution of which is governed
by the conservation of the angular momentum, as

d𝑳
d𝑡 = 𝑰 d𝝎

d𝑡 + 𝝎d𝑰
d𝑡 = −𝒓 × 𝑭 . (7)

Here, 𝑳 is the spin angular momentum and 𝑰 the matrix
of inertia. This matrix is usually constant for planetary
bodies because the gravitational deformations and changes
in the moments of inertia are small (but exceptions exist,
see Section 7) and the evolution of the rotation simplifies
to the last term in Equation 8,

d𝝎
d𝑡 = −𝑰−1 (𝝎d𝑰

d𝑡 + 𝒓 × 𝑭 ) ≈ −𝑰−1(𝒓 × 𝑭 ) . (8)

For the 2-dimensional case described in Figure 1, the
translational part can be expanded as

d2𝒓
d𝑡2 = −𝐺(𝑀s + 𝑀c)

|𝒓|3
𝒓 − 3𝐺(𝑀s + 𝑀c)𝑅E

2

2|𝒓|5
𝐽2𝒓

+9𝐺(𝑀s + 𝑀c)𝑅E
2

|𝒓|5
(𝐶2,2 cos 2𝛾 − 𝑆2,2 sin 2𝛾)𝒓

+6𝐺(𝑀s + 𝑀c)𝑅E
2

|𝒓|4
(𝐶2,2 cos 2𝛾 + 𝑆2,2 sin 2𝛾)( ̂𝒆C × 𝒓) .

(9)

The equations for the rotation are similarly derived in
Equation 10,

d𝝎
d𝑡 = −6𝐺𝑀s𝑀c𝑅E

2

𝐶|𝒓|3
(𝐶2,2 cos 2𝛾 + 𝑆2,2 sin 2𝛾) ̂𝒆C , (10)

where 𝐶 = (2/3𝐽2 + 𝜉) 𝑀c𝑅E
2 denotes the principal mo-

ment of inertia, which is the moment along the principal
̂𝒆𝐶 axis. 𝜉 is the mean normalized moment of inertia of

the central body.
Because of the possible irregular shape of the central

body an orientation of the body has to be recorded dur-
ing a numerical propagation as well. Multiple methods
are available, but the quaternion representation with the
quaternion vector 𝒒 = (𝑞0, 𝑞1, 𝑞2, 𝑞3) as described by
Fukushima (2008) is selected here because it has no sin-
gularities, while the Euler angles representation has these

possible singularities at the poles. Note that for the 2-
dimensional case as in Figure 1, a simplified equation for
the rotation angle 𝜃 can also be used. To keep the model
able to cope with more elaborate situations than this 2-
dimensional model, the evolution of the quaternion vector
is still calculated (see Equation 11),

d𝒒
d𝑡 = 𝑸(𝒒)𝝎 ,

𝑸(𝒒) = 1
2

⎛⎜⎜⎜
⎝

−𝑞1 −𝑞2 −𝑞3
𝑞0 −𝑞3 𝑞2
𝑞3 𝑞0 −𝑞1

−𝑞2 𝑞1 𝑞0

⎞⎟⎟⎟
⎠

.
(11)

The quaternion vector then relates to the unit axis of the
rotating frame ℱC at every instant (see Appendix A and
Fukushima 2008). This completes the base set up of the
model, including the evolution of the orbital and spin mo-
tion of the system.

3. Tidal Effects

The tides, their behaviour, and effects on the transla-
tion and rotation of the system are key in this research.
This section discusses the tidal origin and effects, as are
used today, to validate the results from the coupled model
later in Section 4.

3.1. Perturbing potential
The tides on a body are the time dependent defor-

mations of that body due to a spatial difference in forc-
ing. Figure 2 shows an exaggerated sketch of the tide-
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Figure 2: Exaggerated tide-generating force field and origin of the
tidal deformation. The force experienced at the surface point 𝒓 is
different from the one experienced at the center of mass of body C
caused by the tide-generating body S. It generates an apparent force
𝑭rel in the direction of the line connecting the two centers of mass.

generating force field. This force field is the cause of the
tidal deformations, it creates a tidal bulge directed towards
the perturbing body, with also a high tide on the back of
the body. In potential form this perturbing force is com-
monly denoted as (Efroimsky and Williams 2009),

𝑊 = − 𝐺𝑀s
|𝒓s − 𝒓| + 𝐺𝑀s

|𝒓s|
3 (𝒓s ⋅ 𝒓) , (12)
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or written in expanded form at a surface point 𝑹 as

𝑊(𝑹, 𝒓s) = −𝐺𝑀s
|𝑹|

∞
∑
𝑙=2

(|𝑹|
|𝒓s|

)
𝑙+1

𝑃𝑙(cos 𝛾) . (13)

Here, 𝑹 denotes the position vector to the surface point
and 𝛾 the angular separation between 𝑹 and 𝒓s. 𝑃𝑙 denotes
the Legendre Polynomial of degree 𝑙 (Montenbruck and
Gill 2000).

3.2. Tidal lag
The response of the body to the perturbing potential

is the actual tidal deformation. This deformation causes
a tidal potential in addition to the original static gravita-
tional potential of the perturbed body. The response and
deformation is generally not instantaneous, as the body
has a viscosity. And because the two body system is often
not fully evolved into a state where both orbital and spin
rotation are the same, the difference in orbital and spin
rate in the system ensures that the tidal bulge as depicted
in Figure 2 is not directly aligned along the connecting
position vector. A sketch of an exaggerated tidal lag is
shown in Figure 3. The tidal geometric lag angle denoted

rs
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Figure 3: Exaggerated tidal lag of the tidal bulge in a system where
the central body’s spin rate 𝜔 is larger than the orbital rate of the
satellite 𝑛. 𝛿 here is the tidal geometric lag angle and 𝒓̂T the direction
of the tidal bulge.

with 𝛿 causes an additional torque on the satellite, in its
turn slowing the planet’s rotation and raising the orbit
of the satellite to a higher semi-major axis. The descrip-
tion of this phase lag or tidal lag is thus key in describing
the deformation and tidal potential (Efroimsky and Lainey
2007) and has a major impact on the long term evolution of
the system. Without stating anything about the response
of the material of the body, only assuming a linear and
isotropic tidal behaviour (i.e. the deformation magnitude
depends linearly on the tidal perturbation and occurs in-
dependent of direction in space Remus et al. 2012b), the
tidal potential would become dependent on all past per-
turbations. All past terms of the perturbing potential con-
tribute linearly to the tidal potential at the current time.
This means that a convolution product comes into play,

and for the additional potential this leads to (Boue et al.
2016)

𝑉T(𝒓) =
∞

∑
𝑙=2

(𝑅E
|𝒓| )

𝑙+1
𝑘𝑙(𝑡) ∗ 𝑊𝑙(𝑹, 𝒓s(𝑡))

=
∞

∑
𝑙=2

(𝑅E
|𝒓| )

𝑙+1
∫

𝑡

−∞
𝑘𝑙(𝑡 − 𝑡′)𝑊𝑙(𝑹, 𝒓s(𝑡′))d𝑡′ ,

(14)

where ∗ denotes the convolution product and 𝑘𝑙(𝑡) a Love
distribution as described by Efroimsky (2012). The 𝑘𝑙(𝑡)
can be seen as a function that links the perturbing poten-
tial at time 𝑡′ < 𝑡 to the additional tidal potential at the
current time 𝑡. Consequently, this function describes the
response of the body to the perturbations. 𝑊𝑙 represents
the 𝑙th degree term of the perturbing potential in Equa-
tion 13. This leaves a description of the Love distribution
to be determined to calculate the tidal potential.

3.3. Constant time lag model
An instantaneous response corresponds to a Love dis-

tribution of 𝑘𝑙(𝑡) = 𝑘𝑙𝛿(𝑡) with 𝛿(𝑡) the Dirac-delta func-
tion. This function satisfies the identity in Equation 15
and is equal to ∞ only when its input is zero and equal to
zero otherwise:

∫
∞

−∞
𝛿(𝑡)d𝑡 = 1 . (15)

The instantaneous response corresponds to a static tidal
bulge directly below the perturber and on the connect-
ing position vector. The static Love number 𝑘𝑙 can be
described as

𝑘𝑙 = 𝑘0
𝑙

1
1 + 𝐴𝑙

, with 𝐴𝑙 = 3 (2𝑙2 + 4𝑙 + 3) 𝜇
4𝑙𝜋𝐺𝜌2𝑅E

2 , (16)

where 𝑙 is the degree of the expansion, 𝜇 the rigidity, and
𝜌 the density of the body. The fluid Love number 𝑘0

𝑙 =
3/2(𝑙−1) for a homogeneous incompressible viscous sphere.
More generally, the Darwin-Radau equation can be used
(e.g. Jeffreys 1976; Correia et al. 2014):

𝑘0
𝑙 = 5 ⎛⎜

⎝
1 + [5

2 − 15𝐶
4𝑀𝑅E

2 ]
2
⎞⎟
⎠

−1

− 1 . (17)

Incorporating the tidal lag into Equation 14 has been
done differently in the past. The constant time lag model
was proposed by Singer (1968). It assumes that the tidal
bulge at time 𝑡 is caused by the perturbing body at time
𝑡 − 𝛥𝑡, where 𝛥𝑡 is set a constant. This means that the
Love distribution takes up the form of 𝑘𝑙(𝑡) = 𝑘𝑙𝛿(𝑡 − 𝛥𝑡),
and that the tidal potential from Equation 14 reduces to

𝑉T(𝒓) =
∞

∑
𝑙=2

(𝑅E
|𝒓| )

𝑙+1
𝑘𝑙𝑊𝑙(𝑹, 𝒓s(𝑡 − 𝛥𝑡)) . (18)

When 𝛥𝑡 is small enough and consequently 𝒓s(𝑡 − 𝛥𝑡) lies
close to 𝒓s(𝑡), the tidal potential from Equation 18 can
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be linearized around 𝒓s(𝑡). Consequently, the gradient of
this potential can be retrieved to get the additional force
due to the tides (see Equation 19 and Appendix B for a
derivation),

𝑭T = −𝐺𝑀s
2

∞
∑
𝑙=2

[(𝑙 + 1)𝑘𝑙𝑅E
2𝑙+1

|𝒓|2𝑙+4

⋅(𝒓 + 𝛥𝑡 { 𝑙
2(𝒓 × 𝝎 + 𝒗) + 𝑙 + 2

2
(𝒓 ⋅ 𝒗)𝒓

|𝒓|2
} )] ,

(19)

where 𝒗 denotes the velocity vector of the satellite body.
The time lag 𝛥𝑡 is related to the quality factor and tidal
frequency as in Equation 20,

𝛥𝑡 = 1
𝜒 arcsin ( 1

𝑄) = 2𝛿
𝜒 , (20)

where 𝜒 is the main tidal frequency and 𝑄 the quality fac-
tor. The sine relation as in Murray and Dermott (1999);
Makarov and Efroimsky (2014); Correia et al. (2014) is
used instead of the tangent one used in Goldreich (1963);
Efroimsky and Lainey (2007); Lainey et al. (2012). Efroim-
sky (2012) discusses the correctness of Equation 20 in his
Appendix. The main tidal frequency differs per situation.
For the tides on the central body, the frequency is given
as 𝜒 = 2|𝝎 − 𝒏|. Tides on a locked satellite body have a
frequency equal to the mean motion 𝜒 = |𝒏|.

Note that the angular lag is only equal to the geometric
lag angle between bulge and perturbing body (see 𝛿 in
Figure 3) if the system is in a circular equatorial state. If
not, which is usually the case, the total lag should include
the lag caused by variations in the radial tides (Efroimsky
and Lainey 2007).

For the direct tidal force (Equation 19), the 𝛥𝑡 is cal-
culated via the relation with the quality factor, from which
multiple estimations are available for different systems.
The direct tidal force is truncated to second degree (𝑙 = 2),
which reduces to (e.g. Lainey et al. 2007; Lari 2018),

𝑭T = −3𝐺𝑀s
2𝑘2𝑅E

5

|𝒓|8

⋅ (𝒓 + 𝛥𝑡 {(𝒓 × 𝝎 + 𝒗) + 2(𝒓 ⋅ 𝒗)𝒓
|𝒓|2

}) .
(21)

This equation is used by many and in current day ephemeris
determination due to its simplicity and intuitive physical
interpretation (Boue et al. 2016). To deal with the tides
in the propagation, this force scaled by the reduced mass
of the system 𝑭T/𝛽 is simply added to the translational
EOM in Equation 9.

The rotational evolution is governed by the torque and
the total angular momentum conservation. The torque or
cross product of the position vector with this force 𝒓 × 𝑭T

can be written as

𝒓 × 𝑭T = −3𝐺𝑀s
2𝑘2𝑅E

5

|𝒓|8
𝛥𝑡 (𝒓 × (𝒓 × 𝝎 + 𝒗)) ,

= −3𝐺𝑀s
2𝑘2𝑅E

5

|𝒓|8
𝛥𝑡 (𝒓(𝒓 ⋅ 𝝎) − 𝝎|𝒓|2 + 𝒓 × 𝒗) .

(22)

The classical result cited by many (e.g. Goldreich and
Peale 1966; Mignard 1979; Murray and Dermott 1999) is
retrieved for an equatorial and circular orbit, and by not-
ing that (|𝝎| − |𝒏|)𝛥𝑡 = 𝛿:

𝒓 × 𝑭T = 3𝐺𝑀s
2𝑘2𝑅E

5

2|𝒓|6
sin 2𝛿 . (23)

Subsequently, the torque subtracted from the rotational
part in Equation 10 gives the tidal contribution to the
rotational evolution.

3.4. Satellite tides
All previous assumptions and derivations are made by

considering a more massive central body without spin-
orbit resonance. All equations can similarly be used re-
garding a locked less massive body that rotates around
a more massive body. The satellite is in a corotant or
spin-orbit synchronous state (i.e. its mean orbital veloc-
ity equals its mean spin rotation velocity). For the case
without torques, the same side always faces the more mas-
sive body, or more precisely, the empty focus of the system
(in Figure 4 denoted with E). The tides are now caused by
the more massive body and determined for the less massive
one (i.e. tides on the satellite body). All above equations
can be used when keeping the reference frame at the same
point (i.e. the body with the tides holds the inertial and
rotating frame’s center). A sketch of the situation for the
tides on a less massive body is shown in Figure 4.

The clear difference with the tides on the primary/central
body is shown in the figure. Due to the eccentricity of the
orbit, the instantaneous orbital motion varies in time. Be-
cause the spin rate remains roughly constant, the tidal
bulge will oscillate over the surface of the satellite around
the empty focus direction. The caused lag by the dissi-
pation in this oscillating deformation is the reason for a
torque on the body. Therefore, the rotation rate of the
satellite will see a periodical evolution, which are denoted
librations and librational tides.

The radial tides are the variations of the amplitude
of the tidal bulge. They are easily explained by the dif-
ference in the radial distance between the perturbing and
tidal body due to the eccentric orbit. Both the librational
and radial tides add up to the tidal dissipation inside the
body and to additional tidal forces on the central body.
However, it is difficult to deal with these tides in a dynam-
ical system. According to Murray and Dermott (1999) the
librational tides dissipate exactly 4/3 times as much en-
ergy as the radial tides. In current day satellite ephemeris
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Figure 4: Tidal lag of the tidal bulge on a locked satellite with an eccentric orbit. 𝛿 is here the tidal geometric lag angle and 𝒓̂T the direction
of the tidal bulge. 𝜙 is the angular separation between the main body direction and the empty focus of the system, denoted with 𝐸.

determination (e.g. Lainey et al. 2009; Lari 2018) this
detail is used to simplify the resulting tidal force on the
central body due to the tides on the satellite. The tidal
force given by Equation 21 is used to calculate an average
radial tidal force by employing the orbital angular velocity
𝝎 = 𝒓 × 𝒗/|𝒓|2, instead of the spin rate of the body, and
thereafter 4/3 of this force is added to get a total tidal
force:

𝑭T,rad = −3𝐺𝑀c
2𝑘2𝑅E

5

|𝒓|8
𝛥𝑡 (𝒓 × 𝒓 × 𝒗

|𝒓|2
+ 𝒗 + 2(𝒓 ⋅ 𝒗)𝒓

|𝒓|2
)

= −3𝐺𝑀c
2𝑘2𝑅E

5

|𝒓|8
𝛥𝑡 (𝒓(𝒓 ⋅ 𝒗) − 𝒗(𝒓 ⋅ 𝒓)

|𝒓|2
+ 𝒗 + 2(𝒓 ⋅ 𝒗)𝒓

|𝒓|2
)

= −3𝐺𝑀c
2𝑘2𝑅E

5

|𝒓|8
𝛥𝑡 (3(𝒓 ⋅ 𝒗)𝒓

|𝒓|2
) ,

(24)

𝑭T = −3𝐺𝑀c
2𝑘2𝑅E

5

|𝒓|8
𝛥𝑡 (7(𝒓 ⋅ 𝒗)𝒓

|𝒓|2
) . (25)

The term independent of 𝛥𝑡 in Equation 21 is left by
Lari (2018). This is justified in Lainey et al. (2012) by
stating that it is only a small drift and that it generates
no secular acceleration because it causes no torque.

Overall, Equation 25 may be a good approximation, it
is however only valid when assuming the satellite’s qual-

ity factor to be independent of amplitude and frequency
(Murray and Dermott 1999). The constant quality fac-
tor is not able to describe the long term evolution of the
secular effects. The same holds for short term transla-
tional and rotational evolution in the case of sufficiently
high accuracy requirements. Moreover, the two different
tides have a phase difference of 𝜋/2 (Murray and Dermott
1999). This effect has to be taken into account, and the
simple adding of the two would be generally incorrect.

4. Coupled Model

The direct tidal force has been introduced and de-
scribed (Equation 21 and Equation 25 in Section 3). In
this section, the coupled way of incorporating the tidal
behaviour is discussed. This new approach is the main
topic of this research. Instead of adding a direct tidal
force to the equations of motion, the tidal deformation of
the body is now determined through a differential equa-
tion for the spherical harmonic gravitational coefficients.
This change in mass distribution, which corresponds to
what these coefficients truly represent, modify the poten-
tial gravitational field. Hence, the translational and rota-
tional motion are directly influenced through these changes
in the coefficients.
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4.1. Maxwell Rheology
To get these changes in the gravitational potential co-

efficients, the structure and deformation of the tidal body
have to be modelled. A rheology is the model of the body’s
structure and material when a stress or thus force is ap-
plied. It determines its response due to a receiving stress.
In terms of the tidal potential in Equation 14, it gives a
description of the Love distribution and defines the defor-
mation under a perturbing force. A realistic rheological
approach would be to assume the body viscoelastic (Cor-
reia et al. 2014). This body would have viscous, (i.e. the
deformation is resisted linearly over time when a stress
is applied), but also elastic properties (i.e. the body de-
forms instantly under a stress and returns directly back to
its initial form when the stress is removed).

One of the simplest form, and more easily incorporated
in this coupled model, is the Maxwell model (Correia et al.
2014). It is used by numerous authors for describing the
response of a body (e.g. Remus et al. 2012a; Correia et al.
2014; Ferraz-Mello 2015; Boue et al. 2016). The model
describes the material’s response as a simple elastic spring
with modulus 𝜇0 followed by a viscous damper with vis-
cosity 𝜂 in series (Turcotte et al. 2002), see Equation 26,

d𝜖
d𝑡 = 1

𝜇0

d𝜎
d𝑡 + 𝜎

𝜂 , (26)

where 𝜖 denotes the strain and 𝜎 the stress at a point
on the body. If a stress is applied to the material, the
elastic spring makes it instantly deform and the viscous
damper would ensure a constant deformation rate. When
the stress is again removed, the elastic spring returns to its
original position while the viscous damper’s deformation
is held in place. This relation between stress and strain
or deformation is used to derive a differential equation for
the tidal potential, which results into Equation 27 for the
𝑙th term of the additional tidal potential from Equation
14 (see the appendix of Correia et al. 2014):

𝑉T,𝑙 + 𝜏𝑙
d𝑉T,𝑙

d𝑡 = 𝑉 e
T,𝑙 + 𝜏e

d𝑉 e
T,𝑙

d𝑡 , (27)

where 𝑉 e
T,𝑙 is the equilibrium tidal potential, when the

perturbations would be static or the response instanta-
neous. The 𝜏e = 𝜂/𝜇0 is a Maxwell relaxation time and
𝜏𝑙 = 𝜏e (1 + 𝐴𝑙) denotes a global relaxation time. If these
are zero, the additional tidal potential reduces to the equi-
librium potential. If they are surpassed in time during
the simulation, the transient in the derivatives damps out.
These relaxation times are related (for 𝑙 = 2) to the direct
tidal force model through their relation with the 𝑘2 and 𝑄
(Correia et al. 2014),

𝑘2 = 𝑘0
2√1 + 𝜏2

e 𝜒2

1 + 𝜏2
2 𝜒2 , (28)

tan (arcsin 1
𝑄) = tan 𝛿 = (𝜏2 − 𝜏e)𝜒

1 + 𝜏2𝜏e𝜒2 , (29)

𝑘2
𝑄 = 𝑘0

2
(𝜏2 − 𝜏e)𝜒
1 + (𝜏2𝜒)2 . (30)

These equations are key in comparing the coupled model
with the direct tidal force model from Section 3, as the
different input constants are hereby linked.

4.2. The tidal coefficients
To govern the deformation, an equation for the vary-

ing spherical harmonic coefficients is needed. Similarly
to the differential equation for the additional potential in
Equation 27, an equation for the coefficients can be de-
rived (Correia et al. 2014; Boue et al. 2016). For 𝛥𝐶𝑙,𝑚
or 𝛥𝑆𝑙,𝑚 for convenience expressed as a single 𝛥𝑍𝑙,𝑚, it
holds that

𝛥𝑍𝑙,𝑚 + 𝜏𝑙
d𝛥𝑍𝑙,𝑚

d𝑡 = 𝛥𝑍e
𝑙,𝑚 + 𝜏e

d𝛥𝑍e
𝑙,𝑚

d𝑡 , (31)

where 𝛥𝑍e
𝑙,𝑚 is the coefficient at equilibrium. Following

Ferraz-Mello (2015) and Boue et al. (2016), the additional
coefficients can be substituted with

𝛥𝑍𝑙,𝑚 = (1 − 𝜏e
𝜏𝑙

) 𝛥𝑍𝜈
𝑙,𝑚 + 𝜏e

𝜏𝑙
𝛥𝑍e

𝑙,𝑚 , (32)

where 𝑍𝜈
𝑙,𝑚 is the new variable to be used in the differ-

ential equation. This removes the equilibrium coefficient
derivative:

𝜏l
d𝛥𝑍𝜈

𝑙,𝑚
d𝑡 = 𝛥𝑍e

𝑙,𝑚 − 𝛥𝑍𝜈
𝑙,𝑚 . (33)

At a surface position 𝑹 the equilibrium potential is
defined to be equal to the perturbing potential times the
fluid Love number:

𝑉 e
𝑇 ,𝑙(𝑹) = 𝑘0

l 𝑊𝑙(𝑹) . (34)

Substituting Equation 2 and Equation 13 in Equation 34
leads to the equilibrium coefficients of degree 𝑙 and order
𝑚:

𝛥𝐶e
𝑙,𝑚 =𝑘0

𝑙
𝑀s
𝑀c

(|𝑹|
|𝒓s|

)
𝑙+1

(2 − 𝛿0𝑚)

⋅ (𝑙 − 𝑚)!
(𝑙 + 𝑚)! cos(𝑚𝜙𝒓s

)𝑃𝑙,𝑚(cos 𝜗𝒓s
) ,

(35)

𝛥𝑆e
𝑙,𝑚 =𝑘0

𝑙
𝑀s
𝑀c

(|𝑹|
|𝒓s|

)
𝑙+1

(2 − 𝛿0𝑚)

⋅ (𝑙 − 𝑚)!
(𝑙 + 𝑚)! sin(𝑚𝜙𝒓s

)𝑃𝑙,𝑚(cos 𝜗𝒓s
) ,

(36)

where 𝛿0𝑚 is the Kronecker delta and equal to one if 𝑚 = 0
and zero otherwise.
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4.3. Equations of motion for the coupled model
The full equations of motion can now be specified for

the 2-dimensional system portrayed in Figure 1. The vary-
ing spherical harmonic coefficients are described with
𝑍𝑙,𝑚(𝑡) = 𝑍0

𝑙,𝑚 + 𝛥𝑍𝑙,𝑚(𝑡), leading to the following set of
first order differential equations (Equations 37 to 41):

d𝒓
d𝑡 = 𝒗 , (37)

d𝒗
d𝑡 = −𝐺(𝑀s + 𝑀c)

|𝒓|3
𝒓 − 3𝐺(𝑀s + 𝑀c)𝑅E

2

2|𝒓|5
𝐽2(𝑡)𝒓

+9𝐺(𝑀s + 𝑀c)𝑅E
2

|𝒓|5
(𝐶2,2(𝑡) cos 2𝛾 − 𝑆2,2(𝑡) sin 2𝛾)𝒓

+6𝐺(𝑀s + 𝑀c)𝑅E
2

|𝒓|4
(𝐶2,2(𝑡) cos 2𝛾 + 𝑆2,2(𝑡) sin 2𝛾)( ̂𝒆C × 𝒓) ,

(38)

d𝝎
d𝑡 = −6𝐺𝑀s𝑀c𝑅E

2

𝐶|𝒓|3
(𝐶2,2(𝑡) cos 2𝛾 + 𝑆2,2(𝑡) sin 2𝛾) ̂𝒆C ,

(39)
d𝒒
d𝑡 = 𝑸(𝒒)𝝎 , (40)

d𝛥𝑍𝜈
𝑙,𝑚

d𝑡 = 1
𝜏𝑙

(𝛥𝑍e
𝑙,𝑚 − 𝛥𝑍𝜈

𝑙,𝑚) , 𝑙, 𝑚 = (2, 0) or (2, 2) .
(41)

The 𝛥𝑍𝑙,𝑚(𝑡) are determined via their relation in Equation
32, and the equilibrium coefficients for degree 2 are given
by

𝛥𝐽e
2 = 𝑘0

2
2

𝑀s
𝑀c

(𝑅E
|𝒓| )

3
, (42)

𝛥𝐶e
2,2 = 𝑘0

2
4

𝑀s
𝑀c

(𝑅E
|𝒓| )

3
cos 2𝛾 , (43)

𝛥𝑆e
2,2 = −𝑘0

2
4

𝑀s
𝑀c

(𝑅E
|𝒓| )

3
sin 2𝛾 , (44)

where 𝑘0
2 is given by Equation 17, and the trigonometric

functions by Equation 4. The principal moment of iner-
tia 𝐶 is related to the spherical harmonic coefficient 𝐽2(𝑡)
through

𝐶(𝑡) = (2/3𝐽2(𝑡) + 𝜉) 𝑀c𝑅E
2 , (45)

and is now time dependent. The quaternion operator 𝑸(𝒒)
is defined by Equation 11, and the unit axis of the rotating
frame by their relation to the quaternion vector (described
clearly in Equation A24 of Fukushima 2008, see Appendix
A). The dependency of 𝛥𝐽e

2 on the rotation vector as dis-
cussed in Correia et al. (2014) is left out. This parameter
is assumed to be almost constant and thus the static co-
efficient can account for it. It does not have an additional
effect on the secular evolution, because it causes no torque.

To summarize, the coupled model consists of a state
vector [𝒓, 𝒗, 𝝎, 𝒒, 𝛥𝐽𝜈

2 , 𝛥𝐶𝜈
2,2, 𝛥𝑆𝜈

2,2]. The 𝒓 and 𝒗 vec-
tors denote respectively the position and the velocity of

the perturbing body as seen from the inertial reference
frame centered in the opposite body. 𝝎 and 𝒒 denote the
rotation and orientation vector of the tidal body (i.e. the
body with the tides). The tidal coefficients relate to the
spherical harmonics on the tidal body. Body properties set
in the model are the mass 𝑀s of the perturbing body, the
mass 𝑀c and equatorial reference radius 𝑅E of the tidal
body, the static spherical harmonic coefficients 𝐽0

2 , 𝐶0
2,2

and 𝑆0
2,2 related to the tidal body and the mean moment

of inertia 𝜉 of that body. The relaxation times 𝜏e and 𝜏2
are also specified for the tidal body, via their relation with
the 𝑘2 and 𝑄 (in Equation 28-30).

5. Validation/Comparison methods

To be able to compare the coupled model’s behaviour,
literature approximations of the secular effects are described.
These include the semi-major axis and eccentricity evolu-
tion of the system. Furthermore, the comparison method
for the tidal geopotential coefficients is stated. The deter-
mination of the tidal lag angle from these coefficients is ex-
plained. Then, the periodical effects of the librations and
their contribution on the tidal dissipation in the system
are discussed. In Section 6 and 7, these comparison meth-
ods will be used to describe and quantify the behaviour of
the coupled model. This means that the current section is
key to be able to state the usefulness of the coupled model.

5.1. Secular effects
In Section 3 already, the secular effect of the semi-

major axis has been quickly described. Due to the lagging
tidal bulge, a torque is generated on the tidal body, caus-
ing the tidal body’s spin vector to change, and due to the
angular momentum conservation, this is accompanied by
a rise or fall of the semi-major axis. Note the rise or fall
in this matter, as this is entirely dependent on whether
the tidal bulge is lagging the position of the perturbing
body, or preceding. To incorporate this phenomenon in
the direct equation for the secular effects a sign function is
used. Because it is of importance whether the tidal bulge
lags or precedes the position of the perturber, it conse-
quently also means that a difference exists between tides
on the primary and tides on the secondary body, as the
tides oscillate between a lagging and preceding position
on a locked secondary. For the tides on the primary, the
change in semi-major axis is commonly described as (e.g.
Souchay et al. 2013; Boué 2019),

d𝑎
d𝑡 = sign(𝛺 − 𝑛)3𝑘2

𝑄
𝑀s
𝑀c

(𝑅E
𝑎 )

5
𝑛𝑎 , (46)

where the sign(𝑥) function is positive for positive 𝑥 and
negative otherwise. Furthermore, 𝑎 denotes the semi-major
axis, 𝛺 the angular longitudinal velocity, and 𝑛 the mean
motion of the system. Equation 46 is derived by making
use of the total angular momentum conservation and by
taking the following assumptions on the orbit. The orbit is
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assumed to be equatorial, prograde, and circular, the tidal
lag to be constant and independent of the tidal frequency,
the moment of inertia of the central body to be constant,
the spin vector of the central body to be aligned with its
polar axis and the mass of the central body to be much
larger than the mass of the satellite (for a derivation see
Souchay et al. 2013 Section 5.3).

The tides cause an eccentricity change as well, however,
it is harder to grasp. Whenever a non-zero eccentricity, the
tidal torque will cause a secular effect in the eccentricity.
Expanding the tidal potential in Fourier series and con-
verting to orbital elements gives the change in eccentricity
for tides on the primary as (e.g. Jeffreys 1976; Souchay
et al. 2013),

d𝑒
d𝑡 = sign(3𝛺 − 2𝑛)57

8
𝑘2
𝑄

𝑀s
𝑀c

(𝑅E
𝑎 )

5
𝑛𝑒 , (47)

with 𝑒 here the eccentricity of the system. The same as-
sumptions are made as for the derivative of the semi-major
axis, except that the orbit is no longer circular. The dif-
ferent sign function originates from the fact that the ec-
centricity is affected by other tidal components than the
diurnal bulge (Goldreich and Soter 1966).

For the tides on a locked satellite body (i.e. a sec-
ondary body of less mass than the primary and a mean
rotation period equal to the mean orbital period), the sec-
ular effects are different. The tidal angular lag cannot be
assumed roughly constant as it librates across the surface.
This fact makes it more difficult to calculate the secular ef-
fects correctly, which is demonstrated by the fact that still
a discussion is held in recent literature papers about the
approximation of the semi-major axis evolution caused by
the satellite tides (Souchay et al. 2013; Boué 2019). They
differ with a factor 57/21, see Equation 48 and 49, that
display the semi-major axis evolution of the system caused
by the tides on the satellite body.

d𝑎
d𝑡 = −21𝑘2

𝑄
𝑀c
𝑀s

(𝑅E
𝑎 )

5
𝑛𝑎𝑒2 , (48)

d𝑎
d𝑡 = −57𝑘2

𝑄
𝑀c
𝑀s

(𝑅E
𝑎 )

5
𝑛𝑎𝑒2 . (49)

The 𝑘2, 𝑄, and 𝑅E are now denoting the satellite’s body
Love number, Quality factor, and equatorial radius. Equa-
tion 48 is more commonly accepted and used. Both ap-
proximations are considered in this research, and it will be
interesting to see if the coupled model can state more on
the matter.

The eccentricity evolution of the system caused by the
tides on the satellite body are given in Equation 50 (Boué
2019),

d𝑒
d𝑡 = −21

2
𝑘2
𝑄

𝑀c
𝑀s

(𝑅E
𝑎 )

5
𝑛𝑒 . (50)

The literature approximations of Equation 48-50 are de-
rived for the case that 𝑛 = 𝛺, the mean motion is equal to

the spin rate of the satellite (i.e. it is in a 1:1 spin-orbit
locked state).

5.2. The tidal coefficients
The tidal coefficients are retrieved from the state vari-

able according to Equation 32. In current coefficients de-
termination this is done with a complex Love number to
take account for the lag, see Equation 51 (Petit and Luzum
2010).

𝛥𝐽2 = 1
2

𝑀s
𝑀c

(𝑅E
|𝒓| )

3
Re(𝑘2) ,

𝛥𝐶2,2 = 1
4

𝑀s
𝑀c

(𝑅E
|𝒓| )

3
(Re(𝑘2) cos 2𝛾 − Im(𝑘2) sin 2𝛾) ,

𝛥𝑆2,2 = −1
4

𝑀s
𝑀c

(𝑅E
|𝒓| )

3
(Re(𝑘2) sin 2𝛾 + Re(𝑘2) cos 2𝛾) .

(51)

Here denote Re(𝑘2) and Im(𝑘2) the real and imaginary
part of the Love number, respectively, and are stated in
Equation 52.

𝑘2 = |𝑘2| exp(−𝑖 ⋅ 2𝛿) = Re(𝑘2) + 𝑖 Im(𝑘2) ,
Re(𝑘2) = |𝑘2| cos 2𝛿 ≈ |𝑘2| ,
Im(𝑘2) = −|𝑘2| sin 2𝛿 = −|𝑘2|/𝑄 .

(52)

The last equality in Equation 52 follows from the defini-
tion of the quality factor (Equation 20). The real part is
assumed equal to the literature value of the Love number.

The tidal coefficients state the gravitational shape of
the body, and thus contain the bulge’s position and geo-
metric lag angle with respect to the perturber. The geo-
metric lag angle is determined via Equation 53.

𝜈 = 1
2arctan2( 𝛥𝑆2,2

𝛥𝐶2,2
)

𝛾 = (sign( ̂𝒆A ⋅ ( ̂𝒓 × ̂𝒆C)) ⋅ arccos ( ̂𝒆A ⋅ ̂𝒓)) mod 2𝜋
𝛿 = (𝜈 − 𝛾) mod 𝜋

(53)

The geometric tidal lag angle is denoted by 𝛿, 𝜈 is the an-
gle of the tidal bulge with respect to the rotating x-axis
( ̂𝒆A), and 𝛾 is the angle of the satellite with respect to the
rotating x-axis. The geometric tidal lag angle is compared
to the literature value defined by the quality factor from
Equation 20. The current models (see Equation 21 in Sec-
tion 3) use indirectly a constant geometric tidal lag angle.
The coupled model should be able to show a difference and
a periodical variation of this tidal lag angle.

The time lag of the tidal bulge’s position is directly re-
lated to the tidal geometric lag angle. The coupled model
should state a per-period variation of this time lag, which
cannot be done with the currently used direct tidal force
model (Equation 21). The time lag 𝛥𝑡 is determined via
Equation 54

𝛥𝑡 = 𝛿|𝒓|
|𝝎 × 𝒓 − 𝒗| , (54)
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which is in fact a distance between the bulge’s position and
the perturber’s position divided by the relative rotational
velocity.

5.3. Librations
The periodic effects do not directly influence the long

term evolution, but can indirectly still have a huge impact
due to their caused dissipation. Librations are a periodic
wagging or wavering of the apparent face of a satellite as
seen from an observer on the central body. The optical
libration described already, denotes the fact that the same
face always points towards the empty focus. The libration
angle is thus the angular distance between the empty focus
and the perturbing central body (in Figure 4 denoted with
𝜙). This angle is in literature given as

𝜙 ≈ 2𝑒 sin 𝑀 , (55)

with 𝑀 the mean anomaly (Dirkx et al. 2016).
Apart from this optical libration, improper initial con-

ditions and torques acting on the satellite cause an ad-
ditional libration around this empty focus point. These
are the physical librations, consisting of free or proper li-
brations and forced librations. The free librations usually
damp out and are only a phenomenon from a numerical
analysis and caused by imperfect initial conditions. Their
main frequency is a function of the relative moment of in-
ertia (𝐵 − 𝐴)/𝐶 with 𝐴 ≤ 𝐵 ≤ 𝐶 the moment of inertia
in the three axis directions, and is given by Equation 56
(Le Maistre et al. 2013),

𝜈𝜏 = 𝑛√𝐵 − 𝐴
𝐶 . (56)

The normalized moment of inertia are related to the geopo-
tential coefficients through Equation 57,

𝐴 = −2𝐶2,2 − 1
3𝐽2 + 𝜉 ,

𝐵 = 2𝐶2,2 − 1
3𝐽2 + 𝜉 ,

𝐶 = 2
3𝐽2 + 𝜉 ,

(57)

where 𝜉 is again the mean normalized moment of inertia.
The forced librations are different because they do not

damp out as long as the torque is acting on the body.
Usually a 1:1 orbit-libration period coupling has the largest
influence. Its amplitude is given in Equation 58 (Willner
et al. 2010),

𝜃𝜏 = 2𝑒
1 − 𝐶

3(𝐵−𝐴)
. (58)

or in Equation 59 (Efroimsky 2018),

𝜃𝜏 = −6𝑒𝐵 − 𝐴
𝐶 + 𝒪(𝑒3) . (59)

Efroimsky (2018) uses a different amplitude approxima-
tion, but Equation 58 is more commonly used and will
also be used for the validation.

The true physical librations per epoch are determined
via the variation in the rotation angle. The rotation angle
(in Figure 1 displayed as 𝜃) denotes the angle between the
fixed rotating and inertial frame, which includes here a
single angle as it is a 2-dimensional problem. The rotation
angle is calculated via its relation with the unit axis (see
Equation 60),

𝜃 = arctan2( ̂𝒆A(𝑦)/ ̂𝒆A(𝑥)) . (60)

Subsequently, the rotation angle is unwrapped and a linear
least-squares fit is subtracted leaving the variations in the
rotation angle (i.e. the physical librations).

These librations, free and forced, both could have an
influence on the dissipation inside the body. The libra-
tions cause a possible friction due to the deformation of
the body, which causes the dissipation of energy. Recently,
Efroimsky (2018) stated in a theoretical work the relative
power of this additional dissipation with respect to the
tidally induced power as if there were no forced or free
librations. The coupled model should be able to automat-
ically incorporate this and thus it is interesting to see the
behaviour of the tides on a locked body with large libra-
tions (≈ 1.0°). Phobos is assumed to show this librational
motion, with values of 1.1° for the librational amplitude
(Willner et al. 2010).

Equation 61 shows this time averaged power for the
principal 1:1 spin-orbit resonance,

⟨𝑃 ⟩(lib)
tide

⟨𝑃 ⟩(main)
tide

= 1 − 4
7

𝜃𝜏
𝑒 + 1

7
𝜃𝜏

2

𝑒2 + 1
7

𝜃f
2

𝑒2 , (61)

where the (lib) and (main) superscripts denote the total
average tidal power including the forced and free libra-
tions, and the main average tidal power as if there were no
librations. The free libration amplitude is expressed with
𝜃f. Assumptions taken here are a zero obliquity, a limit of
a free libration amplitude of under 12°, and a satellite body
which is near-spherical and follows a Maxwell rheology.

Because the changes in the orbital elements are ulti-
mately dependent on the amount of energy dissipated, a
different evolution of these elements is expected. From
Correia et al. (2014) it is given that the energy dissipation
is as

d𝐸
d𝑡 = −(d𝐸orb

d𝑡 + d𝐸rot
d𝑡 ) , (62)

with 𝐸orb and 𝐸rot the respective orbital and rotational
energy change. Those have a relation with the orbital
evolution as in Equation 63,

d𝑎
d𝑡 = 2

𝛽𝑎𝑛2
d𝐸orb

d𝑡 ,

d𝑒
d𝑡 = 1 − 𝑒2

𝛽𝑎2𝑛𝑒( 1
𝑛

d𝐸orb
d𝑡 + 1

𝛺
√

1 − 𝑒2
d𝐸rot

d𝑡 ) .
(63)

Here denotes 𝛽 again the reduced mass of the system and
𝛺 the angular longitudinal velocity of the spin vector. As
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the energy change alters because of the additional dissi-
pation due to the librations, the orbital elements will see
a different derivative as well. Assuming a domination of
the orbital energy, which is usually the case, the change
in total energy will result in an effect on the orbital en-
ergy mostly. Then, the evolution of the orbital elements
approximation is modified according to Equation 64,

d𝑎
d𝑡 = ⟨𝑃⟩(lib)

tide

⟨𝑃 ⟩(main)
tide

d𝑎
d𝑡 ∣

Literature

,

d𝑒
d𝑡 = ⟨𝑃⟩(lib)

tide

⟨𝑃 ⟩(main)
tide

d𝑒
d𝑡 ∣

Literature

.
(64)

The literature approximations in Equation 48-49 and Equa-
tion 50 will have to be adjusted for this additional tidal
dissipation.

6. Application: Tides on the primary

The coupled model needs to be applied to be able to
check the relevance of the model for future ephemeris de-
termination. Two systems regarded here are the Mars-
Phobos and the Earth-Moon system. The full initial state
and constants for the propagation are stated and the re-
sults are compared using the behaviour analysis methods
described in Section 5. The current section deals with the
tides on a primary body.

6.1. Setup and input parameters
The simulations were performed for two systems, the

Mars-Phobos and the Earth-Moon system. In these simu-
lations, the more massive central bodies have an extended
spherical body of degree 2 and thus experience tides. The
reference frame is centered in these bodies. The satellite
bodies are regarded as point masses (see for the problem
details again Figure 1). Constants used are summarised in
Table 1. The global relaxation time 𝜏2 and Maxwell relax-
ation time 𝜏e can be determined from their relation with
𝑘2 and 𝑄 prior to the simulations, and are also stated in
Table 1.

The initial state vector (position and velocity) is based
on current values of semi-major axis and eccentricity, but
put in a equatorial orbit to mimic a 2D case. The runs per-
formed are thus not mimicking the real case. The inertial
and rotating frame are assumed to coincide at the start of
the propagation. This leads to the initial state in Table
2, based on the orbital elements and rotation parameters
provided in Table 3.

The propagations were performed using the solve_ivp
routine from the scipy.integrate module in Python. It
solves a system of first order differential equations with
a given initial value and propagates until a specified time.

The method of integration used was an explicit Runge-
Kutta method of order 8 named DOP8531 based on a
method by Dormand and Prince (Hairer et al. 2009) that
uses a variable step size in the numerical propagation.
Per step tolerances can be set and a relative tolerance of
2.3 × 10−14 and an absolute tolerance of 1.0 × 10−19 are
used. The relative tolerance is here set at the software’s
minimum. The solver then keeps the local error estimates
below atol + rtol ⋅ abs(𝑦).

The propagations ran are given in Table 4. The Mars-
Phobos propagations are run for 180 Martian days. In this
time span 30000 equidistant states have been collected.
The duration is chosen to be way beyond the Martian re-
laxation time of 19.8 Martian days. In this way, the tran-
sient should be damped. The Earth-Moon propagations
(with a global relaxation time of only 2.1 days) are run
for 480 Earth days and 40000 equidistant states have been
collected. A longer propagation period is chosen for the
Earth-Moon run, because the orbital period of the Moon
is larger than the small orbital period of Phobos (i.e. 27.4
Earth days to 0.3 Martian days, respectively).

No static gravity field coefficients are set, because they
come with large once-per-orbit variations. This would
make it too difficult to retrieve the change in semi-major
axis and eccentricity for the short time scales used.

The comparison between the current direct tidal force
model and the coupled model is performed after the tran-
sient converges. New comparison runs are based on fi-
nal state variables from converged coupled model propa-
gations. That will be discussed in Section 6.3.

6.2. Tidal coefficients
The unnormalized tidal coefficients of the undamped

coupled simulation (MPhCd1) are displayed in Figure 5.
The other state variables are not plotted here, as their
information is primarily used for the verification, and not
for the validation of the coupled model. If plotted, the
figures would show non-interesting behaviour, as expected
from a nearly spherical 2-dimensional orbit.

The convergence of the tidal coefficients can be seen
in Figure 5. This plot clearly shows that the coefficients
converge towards an equilibrium value. The 𝐽2-coefficient
converges towards a positive value, while the other two
coefficients follow a periodic function around zero. This
is expected, as the coefficients should resemble the equi-
librium coefficients after the global relaxation time is ex-
ceeded. The time until the convergence can be seen as
the time the body (i.e. Mars) needs to adjust to the sud-
denly exposed stress. In reality, Mars would already be in
this equilibrium state of tidal behaviour, as it has already
experienced these stresses for a long time. The Martian
global relaxation time of 19.8 Martian days results into a
damping of the transient of over exp(−180/19.8) after the
180 Martian days propagation.

1https://docs.scipy.org/doc/scipy/reference/generated/
scipy.integrate.solve_ivp.html#id5
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Constant Mars-Phobos Source Earth-Moon Source
𝐺 [m3 kg−1 s−2] 6.674 08 × 10−11 CODATA 2014 6.674 08 × 10−11 CODATA 2014

𝑀c [kg] 6.4171 × 1023 Wiki 5.972 364 730 419 × 1024 IAU 2015 Resolution B 3
𝑀s [kg] 1.0659 × 1016 Wiki 7.342 × 1022 Wiki
𝑅E [m] 3396.0 × 103 Genova et al. (2016) 6378.1 × 103 IAU 2015 Resolution B 3

𝜉 [-] 0.3662 Wiki (Folkner 1997) 0.3307 Wiki
𝑘2 [-] 0.152 Lainey et al. (2007) 0.299 Murray and Dermott (1999)
𝑄 [-] 79.91 Lainey et al. (2007) 12 Murray and Dermott (1999)
𝜏e [s] 222 223 57 722
𝜏2 [s] 1 759 047 181 249

Table 1: Constants used for the 2D cases for the primary body tides.
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Figure 5: Tidal geopotential coefficients 𝛥𝐽2 (left), 𝛥𝐶2,2 (middle), and 𝛥𝑆2,2 (right) of a coupled run of a static-gravity-field-free Mars in
the Mars-Phobos system (MPhCd1). The unnormalized coefficients are compared with the values as given in literature (see Equation 51).

Variable Mars-Phobos Earth-Moon
𝑟x [m] 9.234 380 91 × 106 3.632 938 70 × 108

𝑟y [m] 2.770 322 59 × 104 1.089 884 88 × 106

𝑟z [m] 0.0 0.0
𝑣x [m s−1] −6.477 038 45 −3.190 936 87
𝑣y [m s−1] 2.169 765 10 × 103 1.082 419 944 49 × 103

𝑣z [m s−1] 0.0 0.0
𝜔x [rad s−1] 0.0 0.0
𝜔y [rad s−1] 0.0 0.0
𝜔z [rad s−1] 7.088 271 14 × 10−5 7.292 123 52 × 10−5

𝑞0 [-] 1.0 1.0
𝑞1 [-] 0.0 0.0
𝑞2 [-] 0.0 0.0
𝑞3 [-] 0.0 0.0

𝛥𝐽𝜈
2 [-] 0.0 0.0

𝛥𝐶𝜈
2,2 [-] 0.0 0.0

𝛥𝑆𝜈
2,2 [-] 0.0 0.0

Table 2: Initial conditions for both the Mars-Phobos and Earth-
Moon system, where the last three lines are added for the coupled
model.

The literature values for the unnormalized coefficients
are obtained through Equation 51 and differences with
the coupled model’s coefficients are displayed in Figure
5. Only a small difference for the 𝛥𝐶2,2 and 𝛥𝑆2,2 is

Variable Mars-Phobos Earth-Moon
Semi-major axis [m] 9.376 × 106 3.843 99 × 108

Eccentricity [-] 0.0151 0.0549
Inclination [rad] 0.0 0.0

RAAN [rad] 0.001 0.001
Arg of perigee [rad] 0.001 0.001
True anomaly [rad] 0.001 0.001

Spin period primary [s] 88 642 86 164

Table 3: Orbital elements on which the initial state vector is based.

seen. The difference between the literature and the cou-
pled model for the 𝛥𝐽2 coefficient is larger, but this can be
explained by the fact that the 𝛥𝐽e

2 in Equation 42 is as-
sumed to be independent of the rotational evolution. The
𝛥𝐽2 coefficient does not have an effect on the secular evo-
lution of the orbit, because it causes no torque. Thus, it
will not influence the results of the comparative and be-
havioural analysis of the coupled model.

The Earth-Moon propagation (EMoCd1), shows sim-
ilar behaviour. It is damped way before the end of the
propagation time, because of its short relaxation time. It
exhibits a larger periodical variation after the transient
damps out, because the Moon’s relative mass is larger
than for Phobos. The comparison with the literature coef-
ficients from Equation 51 shows again similar results: the
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Identifier Initial value Damped
Mars-Phobos: Duration 0-180 Martian days, No static gravity field

Coupled model MPhCd1 Table 2 No
Coupled model MPhCd2 Final state MPhCd1 Yes

Direct tidal force model (Eq 21) MPhLy1 Final state MPhCd1 Yes
Earth-Moon: Duration 0-480 Earth days, No static gravity field

Coupled model EMoCd1 Table 2 No
Coupled model EMoCd2 Final state EMoCd1 Yes

Direct tidal force model (Eq 21) EMoLy1 Final state EMoCd1 Yes

Table 4: The simulations performed with their identifiers and input settings.

𝛥𝐶2,2 and 𝛥𝑆2,2 are similar, and the 𝛥𝐽2 coefficient shows
a difference.

This proves the functionality of the coupled model for
two entirely different systems. The Mars-Phobos system
has a relatively small orbiting satellite which orbits faster
than the rotation of the primary, while the Earth-Moon
system is characterized by a relatively large satellite orbit-
ing in a slower rate than the primary rotates.

The tidal coefficients contain information about the
tidal bulge position and thus its lag, as they are describing
the gravitational shape of the tidal body. The lag angle
is determined through the tidal geopotential coefficients
with Equation 53, while the time lag is determined with
Equation 54. Figure 6 shows the variation of the tidal
geometric lag angle and time lag.
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Figure 6: Tidal lag angle and time lag of a coupled run (MPhCd1) of
a static-gravity-field-free Mars in the Mars-Phobos system (see Equa-
tion 53-54). Both the tidal lag angle and the time lag are compared
with values obtained through literature (see Equation 20).

In Figure 6, it is clearly visible that a lag is present. It
takes some time to converge to a periodically stable value.
This is caused by the relaxation time settings and the be-
haviour of the Maxwell model. The lag’s mean value is
−0.3588°, where the negative sign shows that it really lags
the position of the satellite, as expected. The lag as cal-
culated via the Q value (see the literature approximation
from Equation 20) is determined to be −0.3585°, which
gives a difference of less than −0.1 %. The time lag’s mean

value of −39.9 s also compares to the literature approxima-
tion (−39.8 s). A negative time lag follows directly from
the negative lag angle and shows that the bulge in fact
lags the perturber (as seen from an inertial frame).

The tidal lag angle (2.39°) and time lag (593.7 s) for
the Earth correspond similarly to the literature approxi-
mations. The values are positive as the bulge’s position
lies now ahead of the satellite as seen in an inertial frame.
An overview of the results is displayed in Table 5 in Section
6.3.

Figure 6 highlights the difference of the coupled model
with the currently used direct tidal force model. The cou-
pled model is able to reproduce variations in both the lag
angle, and the time lag. In the direct tidal force model,
the lag angle and time lag are assumed to be constant,
through their definition from the constant quality factor
in Equation 20. The figure thus displays the dynamical
behaviour that cannot be fully captured by the classical
direct tidal force model.

It should be noted that the literature approximation
from Equation 20 and the coupled model’s lag from Equa-
tion 53-54 are not completely equal. The phase lag de-
termined by the quality factor should contain the entire
phase lag: not only the angular lag of the bulge, but also
the phase lag with respect to the radial tides. Efroimsky
(2006) describes this phenomenon in more detail. This is
not really problematic for the tides on the primary body
in this section, but only becomes a factor for the tides on
the locked secondary discussed in Section 7.

6.3. Orbital elements evolution
The secular changes in the semi-major axis and eccen-

tricity seen by the coupled model are obtained as a next
step. The secular changes are compared with the direct
tidal force model (Eq 21) and with literature approxima-
tions (Eq 46-47). Before a comparison between the models
can be made, the coupled model should be damped. To
perform a meaningful comparison, the final states of the
undamped coupled runs (MPhCd1, EMoCd1) are used as
initial condition for the propagation of both the damped
coupled model runs (MPhCd2, EMoCd2) and the direct
tidal force model propagations (MPhLy1, EMoLy1).

The position and velocity state is transformed to the
osculating elements at every epoch, resulting in the be-
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haviour for 𝑎 and 𝑒 for a coupled run of the Mars-Phobos
damped propagation (MPhCd2) shown in Figure 7.
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Figure 7: Main osculating elements of a damped coupled run of a
static-gravity-field-free Mars in the Mars-Phobos system (MPhCd2).
Both the semi-major axis (top) and eccentricity (bottom) derivative
are determined by a linear fit.

The semi-major axis presents a very distinguishable
slope and it does not have relatively large once-per-orbit
variations. This results in a more accurately obtained sec-
ular change of −1.265 nm s−1, which is only a difference of
0.2 % with the literature approximation.

The derivative is more difficult to obtain for the ec-
centricity as only a minor secular change is present, and
it is superimposed upon large per-orbit variations. Still,
a secular change can be estimated in the slowly decreas-
ing eccentricity and a value of −1.184 × 10−10 /yr is found,
which represents a difference of −22.8 % with the litera-
ture approximation. Table 5 presents an overview of the
results.

The results portrayed in Table 5 show two main points.
Firstly, the eccentricity evolution is difficult to determine
and no clear conclusion can be drawn. This can be ex-
plained by a combination of the fact that the change in
eccentricity is small, the propagation time short, and large
once-per-orbit variations exist.

Secondly, the semi-major axis evolution is in accor-
dance with the literature approximation (Equation 46),
for both the direct tidal force modelling and the coupled
model. The coupled model runs show a slightly lower dif-
ference with the literature. The fact that the difference
with the literature is larger for the Earth-Moon case than
for the Mars-Phobos case could be due to the larger eccen-
tricity of the Moon’s orbit (0.0549 for the Moon and 0.0151
for Phobos, respectively). The literature approximation in
Equation 46 assumes a circular orbit for its derivation.

The semi-major axis evolution is similar for both the
current direct tidal force model and the coupled model.
The linear position differences must be analysed as well,

to assess whether the coupled modeling could make a dif-
ference in short-time propagations for ephemeris deter-
mination. This is done by comparing the coupled runs
(MPhCd2, EMoCd2) with the direct tidal force model sim-
ulations (MPhLy1, EMoLy1). After 1 central body day,
the difference between the position vectors is 3 cm for the
Mars-Phobos system, and only 1.5 mm for the Earth-Moon
system. These values are small, but might be important
for future space missions as data ranging observations be-
come more accurate. Assuming the coupled model to lie
closer to the truth, it will be beneficial to use the cou-
pled model for these high-accurate observation missions.
It will indeed provide more accurate approximations of
the body’s characteristics and tidal parameters. However,
the direct tidal force model can still be used for the current
level of accuracy.

For longer time-scales, in the order of thousands to
billions of years, it would also be beneficial to switch to
the coupled model. The classical direct tidal force model
assumes a constant, or only a frequency dependent quality
factor that averages the tidal dissipation. The coupled
model is not dependent on the quality factor and time
variations in the tidal dissipation are more easily captured.
The input tidal parameters used in the coupled model (𝜏e
and 𝜏2), however, have to be estimated more accurately by
using real data.

6.4. Varying the tidal input parameters
The runs of previous sections in Table 4 have been per-

formed with the same constants and tidal parameters. To
validate the model’s scope of operation, as well as to as-
sess its robustness, testing a wide range of input variables
is necessary. The tidal input parameters for the coupled
model are the Maxwell relaxation time and the global re-
laxation time. The Love number and the quality factor
are the input for the direct tidal force model. These are
linked through Equation 28 to 30. This means that vary-
ing the global relaxation time while keeping the Maxwell
relaxation time constant ensures a varying 𝑘2 over 𝑄 ratio,
such that different tidal behaviour is expected.

The global relaxation times are chosen in a domain
ranging from the Maxwell relaxation time to three times
the true global relaxation time, as determined via the
body’s in literature assumed 𝑘2 over 𝑄 ratio. More points
were allocated at the beginning as the slope of the ac-
celeration there seemed larger. The comparison is done
by taking damped propagations, meaning that for every
different global relaxation time, the propagation was first
performed to reach a damped state. The final damped
state was then used as initial condition in the damped
propagation.

In Figure 8 the orbital elements changes for different
global relaxation times are displayed. In Figure 9 the
orbital elements changes versus the 𝑘2 over 𝑄 ratio are
shown. Figure 8 and Figure 9 show results similar to
the single run comparisons. The semi-major axis evolu-
tion compares to the literature approximation from Equa-
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d𝑎
d𝑡 [nm s−1] Diff d𝑎

d𝑡 [%] d𝑒
d𝑡 [/yr] Diff d𝑒

d𝑡 [%] 𝛿 [°] 𝛥𝑡 [s]
Mars-Phobos

Literature (Eq 46-47 and Eq 20) −1.263 - −1.524 × 10−10 - −0.3585 −39.8
Coupled model (MPhCd1) −1.265 0.2 −1.173 × 10−10 −23.1 −0.3588 −39.9
Coupled model (MPhCd2) −1.265 0.2 −1.177 × 10−10 −22.8 −0.3588 −39.9

Direct tidal force model (MPhLy1) −1.271 0.7 −3.410 × 10−10 123.7 - -
Earth-Moon

Literature (Eq 46-47 and Eq 20) 1.184 - 1.267 × 10−11 - 2.39 593.8
Coupled model (EMoCd1) 1.206 1.9 −5.313 × 10−12 −141.9 2.39 593.7
Coupled model (EMoCd2) 1.207 2.0 −4.780 × 10−12 −137.7 2.39 593.8

Direct tidal force model (EMoLy1) 1.233 4.2 1.484 × 10−11 17.1 - -

Table 5: Overview of the comparison of the coupled model, the direct tidal force model (see Equation 21, Lainey et al. 2007), and literature
approximations of their secular effects and lag angles (Equations 46-47 and Equation 20). The percentage differences are relative to the
literature values.
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Figure 8: The orbital element changes, for semi-major axis (top) and eccentricity (bottom), for the Mars-Phobos system versus the varying
global relaxation time. Models and variations used are a coupled model propagation with a constant Maxwell relaxation time of 𝜏e = 2.4
Martian days and so varying the 𝑘2 over 𝑄 (circle) and a direct tidal force model (Eq 21), where 𝑘2 over 𝑄 ratios are determined backwards
via Equation 30 (triangle). The literature value of the global relaxation time as in Table 1 is shown (red line), and the literature approximation
of the change in orbital element (Eq 46-47) is used for comparison (blue line). The colormaps show the 𝑘2 (top) and 𝑄 (bottom) evolution
(Eq 28-30).
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Figure 9: The orbital element changes, for semi-major axis (top) and eccentricity (bottom), for the Mars-Phobos system versus the varying
𝑘2 over 𝑄 ratio. Models used are a coupled propagation with a constant Maxwell relaxation time of 𝜏e = 2.4 Martian days and a varying
global relaxation time (circles), and a direct tidal force model (Eq 21), where 𝑘2 over 𝑄 ratios are determined backwards via Equation 30
(triangle). The given literature value of the 𝑘2 over 𝑄 ratio is specified (red line), and the literature approximation of the change in orbital
element (Eq 46-47) is used for comparison (blue line). The colormaps show the accompanied global relaxation time (top), and the tidal lag
angle (bottom) as determined via the tidal coefficients (Eq 53) in case of the coupled model, and determined via the 𝑄 factor (Eq 20) in case
of the direct tidal force model.
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tion 46, and the eccentricity evolution lies further away
from its approximation (Equation 47). The peculiar thing
is that the difference with the literature approximation
for the eccentricity evolution is for both models the same
factor for all global relaxation times. An offset factor of
0.77 is obtained with the coupled model and the direct
tidal force model presents an offset factor of 2.24. This
results for both models in a linear evolution when com-
paring with the 𝑘2 over 𝑄 variation (see Figure 9). This
linear evolution is expected behaviour, as the 𝑘2 over 𝑄
ratio linearly determines the literature approximation of
the respective orbital element. Thus, the apparent dif-
ference with respect to the literature for the eccentricity
change (originating from a short propagation time, large
once-per-orbit variations, or small values), still shows this
linear trend.

The colormaps in Figure 8 display 𝑘2 and 𝑄. The val-
ues for the low global relaxation time propagations (i.e.
𝜏2 < 5 central body days), do not correspond to any real
system. The 𝑘2 reaches values of over 1, where the 𝑄 gets
close to 1000. However, it remains interesting to see that
the literature approximation of the semi-major axis evolu-
tion is followed.

The colormaps in Figure 9 show the behaviour of the
global relaxation time for the varying 𝑘2 over 𝑄 ratio, and
the tidal lag angle. The lag angle for the coupled model is
calculated via the respective tidal geopotential coefficients
(Equation 53). For the direct tidal dissipation model it is
defined via the quality factor (Equation 20). It becomes
clear that both methods result in the same tidal lag angle.
This means that the coupled model results in additional
tidal geopotential coefficients with the exact same phase as
literature predicts via the Q factor, thus partly validating
the model.

The same variations in the input tidal parameters are
performed for the Earth-Moon system and the orbital evo-
lution is plotted versus the 𝑘2 over 𝑄 parameter in Figure
10. The semi-major axis evolution shows the same be-
haviour as the Mars-Phobos system (i.e. it follows quite
accurately the literature approximation and scales linearly
with the 𝑘2 over 𝑄 parameter). This differs from the eccen-
tricity evolution. As already shown in the single runs for
the Earth-Moon system (see Table 5), the eccentricity evo-
lution becomes negative, while literature would presume a
positive value. In Figure 10, the eccentricity change be-
comes negative for a higher lag angle, which means for a
lower 𝑄 value and lower corresponding 𝑘2 value. A lower
𝑘2 means a lower amplitude of the tidal bulge. There-
fore, if the lag angle is larger, the dissipation and thus the
change in eccentricity should be an approximation to the
literature.

The origin of this eccentricity evolution difference be-
tween the coupled model and direct tidal force model and
literature is not found yet, and is an interesting topic for
further research. It could relate to the very small eccen-
tricity change and the resulting difficulty of retrieving this
value, as the semi-major axis is comparable to the litera-

ture. This is the reason that the semi-major axis change
observations are used in approximating the tidal parame-
ters and not the less accurate eccentricity evolution.

7. Application: Tides on the secondary

The second test case discussed is the tides on the less
massive and locked secondary body. These can be as im-
portant as the tides on the primary, and above that are
more difficult to calculate correctly. This is demonstrated
by the fact that still a discussion is held in recent liter-
ature papers about the approximation of the semi-major
axis evolution caused by the satellite tides (see Section 5).
They differ with a factor 57/21. Both approximations are
considered in this research.

Then, the librational tides as discussed in Section 3
and Section 5 could contribute a larger amount to the
tidal dissipation, and dealing with these tides is in current
literature proposed in an averaged way and relies on mul-
tiple assumptions. The coupled model should automat-
ically incorporate the tidal behaviour accompanied with
the librations. This is why the coupled model could ben-
efit most for these secondary body tides, and why testing
these systems is more than appropriate.

7.1. Setup and input parameters
The constants used for this part of the research are de-

picted in Table 6. The classical tidal parameters 𝑘2 and 𝑄
of Phobos are not very accurately known. In Le Maistre
et al. (2013), a range of possible values is used to deter-
mine characteristics of Phobos. Possible values of 𝑘2 =
0.002 and 𝑄 = 100.0 lead to a Maxwell relaxation time
(via Equation 28-30) of 𝜏e = 438 184 s = 5.07 d and a
high global relaxation time of 𝜏2 = 3.940 154 00 × 108 s =
4560.4 d. This means that for the same propagation time
of 120 Martian days, the equilibrium value for the coef-
ficients is not reached yet, and no (periodic) convergence
should be expected. Furthermore, the 𝑘2 over 𝑄 value is
smaller than for Mars, so the effect of the tides will be less
visible in the results. The above reasons justify the use of
different tidal parameters for Phobos, and the 𝑘2 and 𝑄
of the Moon are taken.

The initial state vector is based on the same orbital
elements as in Table 3 disregarding the slight offset given
for the right ascension of the ascending node, argument of
perigee and true anomaly. These are set at zero now. Be-
cause a locked body is assumed, no need for an additional
spin period is necessary, and the initial rotation vector of
the tidal body will be put equal or close to the mean mo-
tion of the system as determined via the semi-major axis
value. To put the system in a reference frame at the less
massive body, the negative of the Cartesian state is taken,
and the initial position of the x-axis of the rotating ref-
erence frame is put in the direction of the more massive
body, so in the opposite direction as the inertial frame.
The initial 𝛥𝐽𝜈

2 and 𝛥𝐶𝜈
2,2 are given a value close to their
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Figure 10: The orbital element changes, for semi-major axis (top) and eccentricity (bottom), for the Earth-Moon system versus the varying
𝑘2 over 𝑄 ratio. Models used are a coupled propagation with a constant Maxwell relaxation time of 𝜏e = 0.67 days and a varying global
relaxation time (circles), and a direct tidal force model (Eq 21), where 𝑘2 over 𝑄 ratios are determined backwards via Equation 30 (triangle).
The given literature value of the 𝑘2 over 𝑄 ratio is specified (red line), and the literature approximation of the change in orbital element (Eq
46-47) is used for comparison (blue line). The colormaps show the accompanied global relaxation time (top), and the tidal lag angle (bottom)
as determined via the tidal coefficients (Eq 53) in case of the coupled model, and determined via the 𝑄 factor (Eq 20) in case of the direct
tidal force model.

Constant Phobos-Mars Source Moon-Earth Source
𝐺 [m3 kg−1 s−2] 6.674 08 × 10−11 CODATA 2014 6.674 08 × 10−11 CODATA 2014

𝑀c [kg] 1.0659 × 1016 Wiki 7.342 × 1022 IAU 2015 Resolution B 3
𝑀s [kg] 6.4171 × 1023 Wiki 5.972 364 730 419 × 1024 Wiki
𝑅E [m] 12.22 × 103 Le Maistre et al. (2013) 1737.4 × 103 Wiki

𝜉 [-] 0.43013 Willner et al. (2010) 0.394 Wiki
𝑘2 [-] 0.024 059 - 0.024 059 Lainey (2016)
𝑄 [-] 37.5 - 37.5 Lainey (2016)
𝜏e [s] 162 251 - 1.383 086 7 × 107 -
𝜏2 [s] 1.213 200 9 × 107 - 8.306 058 05 × 108 -

Table 6: Constants used for the 2D cases for the secondary body tides.
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convergence. This leads to the initial state vector stated
in Table 7.

Variable Phobos-Mars Moon-Earth
𝑟x [m] −9.234 422 4 × 106 3.632 954 949 × 108

𝑟y [m] 0.0 0.0
𝑟z [m] 0.0 0.0

𝑣x [m s−1] 0.0 0.0
𝑣y [m s−1] −2169.774 78 1082.424 67
𝑣z [m s−1] 0.0 0.0

𝜔x [rad s−1] 0.0 0.0
𝜔y [rad s−1] 0.0 0.0
𝜔z [rad s−1] 2.279 495 36 × 10−4 2.665 315 78 × 10−6

𝑞0 [-] 0.0 0.0
𝑞1 [-] 0.0 0.0
𝑞2 [-] 0.0 0.0
𝑞3 [-] 1.0 1.0

𝛥𝐽𝜈
2 [-] 0.12 0.0

𝛥𝐶𝜈
2,2 [-] 0.06 0.0

𝛥𝑆𝜈
2,2 [-] 0.0 0.0

Table 7: Initial conditions for both the Phobos-Mars and Moon-
Earth system, where the last three lines are added for the coupled
model.

Table 8 states the propagations performed. The dura-
tion of the simulations varies per situation. The undamped
coupled runs need to converge, and because of the large
global relaxation times (i.e. 𝜏2 = 440.3 Phobos days and
𝜏2 = 351.9 Lunar days) large propagations are necessary.
For the Phobos-Mars system a duration of 10000 Phobos
days is chosen and for the Moon-Earth system a duration
of 8000 Lunar days.

The comparison with the current tidal force models
(Equation 21 and Equation 25) is performed again after
convergence of the coupled model’s transient. Final state
variables from the coupled model propagations are used as
initial condition for the comparison runs. In this way, the
coupled model and direct tidal force models are compared
consistently. The comparison will be done in Section 7.3.

7.2. Tidal coefficients
The tidal coefficients for the Phobos-Mars system prop-

agation (PhMCd1) are plotted in Figure 11. The coeffi-
cients show convergence as expected, because the relax-
ation times are surpassed. In comparison with the tides
on the primary, now also the 𝛥𝐶2,2 displays a non-zero
mean value, and a proper comparison with the literature
approximation (Equation 51) becomes inept. The 𝛥𝑆2,2
coefficient compares to the literature approximation.

Because the coefficients are relatively large, see the dif-
ference with Figure 5, the change in the coefficients starts
to have an effect on the moment of inertia of Phobos. The
moment of inertia show extreme values according to Equa-
tion 57 (i.e. 𝐴 = 0.271, 𝐵 = 0.509, 𝐶 = 0.510) . This im-
mediately shows that the current modelling does not rep-
resent the true Phobos, because assumed moments of iner-
tia in literature (𝐴 = 0.3615, 𝐵 = 0.4265, and 𝐶 = 0.5024

Willner et al. 2010) do not correspond. However, that
does not matter for the analysis of the coupled model. It
does mean, however, that the principal moment of inertia
𝐶 will change, and the middle term in Equation 8 of the
rotational evolution had to be used.

The tidal coefficients for the Moon are similar qua be-
haviour, but not qua size. Also the 𝛥𝐽2 converges, but
only towards a value of 5.5 × 10−6. 𝛥𝐶2,2 converges to-
wards 2.8 × 10−6. 𝛥𝑆2,2 oscillates around zero and com-
pares to the theoretical approximation.

The tidal lag for both Phobos and the Moon show vari-
ations around a zero mean value, because the angle be-
tween the bulge’s position and the perturber now varies
along the orbit. The variations state the librational tides.

7.3. Librations and the evolution of the orbital elements
Until now, the longitudinal librations as discussed in

Section 5.3 have not been determined. The librations for
the primary body are practically non-existent. The libra-
tions on the locked secondary, however, could be much
larger and be a cause for a large additional dissipation
inside the body.

The librations for a propagation with a short (PhMCd2)
and longer (PhMCd3) duration are displayed in Figure 12.
The libration angle for the short time-scale propagation (in
the bottom plot of Figure 12) varies with a constant rate
around a zero mean value. The amplitude takes a value
of 6.1°, which is confirmed by a theoretical value of 6.0°
as determined via Equation 58. Note that these values do
not compare with the true libration amplitude for Phobos
(1.1° Willner et al. 2010). That is caused by the fact that
the moment of inertia for Phobos portray different values
as well.

The libration angle for the long time-scale propagation
in the top plot of Figure 12 displays an amplitude of 6.2°,
but the libration also seems to be oscillating with another
large period. This is the effect of the long term variation
of the rotation angle, which is confirmed by literature in
for example Rambaux et al. (2012).

The librations shown are truly damped and only con-
sist of a forced variant. A Fourier transform of the libra-
tion angle of both the undamped (PhMCd1) and damped
(PhMCd2) propagation are displayed in Figure 13 to con-
firm this. The Fourier transform of the undamped propa-
gation displays many free librations with varying periods.
The free libration with the highest amplitude is found at
a period of 0.84 of the orbiting period of Phobos, which
corresponds to the literature approximation of Equation
56.

The damped propagation in Figure 13 does not have a
peak at that period, and instead only shows peaks at Pho-
bos’ orbiting period and its main harmonics. The peak at
the orbiting period displays a value of 6.1° which confirms
the previously obtained libration amplitude.

The libration amplitude for the Moon is considerably
smaller than for Phobos. A value of 0.0005° is obtained.
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Identifier Initial value Damped Duration
Phobos-Mars

Coupled model PhMCd1 Table 7 No 10000 Phobos days
Coupled model PhMCd2 Final state PhMCd1 Yes 360 Phobos days
Coupled model PhMCd3 Final state PhMCd1 Yes 90000 Phobos days

Direct tidal force model (Eq 21) PhMLy1 Final state PhMCd1 Yes 360 Phobos days
Averaged direct tidal force model (Eq 25) PhMLa1 Final state PhMCd1 Yes 360 Phobos days
Moon-Earth

Coupled model MoECd1 Table 7 No 8000 Lunar days
Coupled model MoECd2 Final state MoECd1 Yes 360 Lunar days

Direct tidal force model (Eq 21) MoELy1 Final state MoECd1 Yes 360 Lunar days
Averaged direct tidal force model (Eq 21) MoELa1 Final state MoECd1 Yes 360 Lunar days

Table 8: The simulations performed with their identifiers and input settings for the propagations with tides on the secondary.
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Figure 11: Tidal geopotential coefficients 𝛥𝐽2 (left), 𝛥𝐶2,2 (middle), and 𝛥𝑆2,2 (right) of a coupled run of a static-gravity-field-free Phobos
in the Phobos-Mars system (MPhCd1). The unnormalized coefficients are compared with the values as given in literature (see Equation 51).
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Figure 12: Libration angle for a longer (top) and shorter (bottom)
time-scale of coupled model’s propagations of the Phobos-Mars sys-
tem (PhMCd3 and PhMCd2 respectively). The libration amplitudes
are compared with a literature approximation (Eq 58).
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Figure 13: Fourier transform of the libration angle of Phobos for the
undamped (PhMCd1) and damped (PhMCd2) propagations of the
Phobos-Mars system.

Also this value is completely damped and compares to the
literature approximation of Equation 58.

These librations cause additional dissipation due to
the friction inside the body. As discussed in Section 5.3,
Efroimsky (2018) stated the difference in tidal dissipation
when also regarding these physical librational tides. Via
Equation 61 an increase factor of 11.3 is obtained (cor-
responding to the libration angle of 6.1°) . This results
in increased semi-major axis and eccentricity evolution
with the same factor, under assumption of an orbital en-
ergy change that is much larger than the rotational energy
change.

The orbital elements are determined for the propaga-
tions of the damped coupled model run (PhMCd2), the
direct tidal force model run from Equation 21 (PhMLy1),

and the averaged direct tidal force model propagation from
Equation 25 (PhMLa1). The overview of the evolution of
the orbital elements is shown in Table 9.

The coupled model displays a large offset with the lit-
erature for the Phobos-Mars system (PhMCd2). This can
be fully described by the librations, as the factor for the
additional dissipation (11.7) is larger than the relative dif-
ference with the literature. When no librations are present
(MoECd2), the coupled model follows roughly the litera-
ture. The difference is probably relatively high (8.5 %),
because the secular evolution values become small for the
Moon-Earth system.

The libration amplitudes are determined for the cou-
pled model and they correspond with the approximations
from Willner et al. (2010) as stated in Equation 58. For
smaller moment of inertia, and smaller libration ampli-
tudes, the literature approximation from Efroimsky (2018)
as in Equation 59, becomes similar to Equation 58.

The direct tidal force model (PhMLy1, MoELy1) does
not follow the original literature approximation for the
semi-major axis evolution. In the Phobos-Mars case, it
seems to explode to a value which is too large. This could
be because the model has no static field, while the coupled
model is converged towards a variation around a static
tidal coefficient. Thus the initial condition for the direct
tidal force model could be off. The propagation for the
Moon-Earth (MoELy1) corresponds more closely to the
literature approximation 2, as stated in Boué (2019).

The averaged direct tidal dissipation simulations (PhMLa1,
MoELa1) correspond to the original literature approxima-
tion.

7.4. Varying the tidal input parameters
To further investigate the meaning of the single runs,

the tidal input parameters 𝜏e, 𝜏2 (and thus 𝑘2 and 𝑄)
are varied again and multiple propagations are performed.
The global relaxation times are chosen in a domain ranging
from the Maxwell relaxation time to two times the true
global relaxation time, as determined via the body’s in
literature assumed 𝑘2 and 𝑄. The comparison is done
by taking damped propagations, meaning that for every
different global relaxation time, the propagation was first
performed to reach a damped state. The final damped
state was then used as initial condition in the damped
propagation.

The three propagations performed include a propaga-
tion of the coupled model, a propagation of the direct tidal
force model from (Equation 21), and a propagation of the
averaged direct tidal force model (Equation 25). All are
run without a static field. The change in semi-major axis
and eccentricity versus the global relaxation time for the
Phobos-Mars system are displayed in Figure 14.

The figure displays several orders of difference in both
the semi-major axis and the eccentricity change between
the coupled run and the other propagations. This could
very well be explained by the additional dissipation caused
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d𝑎
d𝑡 [nm s−1] Diff d𝑎

d𝑡 [%] d𝑒
d𝑡 [/yr] Diff d𝑒

d𝑡 [%] 𝜃𝜏 [°] ⟨𝑃⟩(lib)
tide

⟨𝑃⟩(main)
tide

[-]
Phobos-Mars

Literature 1 −1.486 - −1.656 × 10−7 - −6.0 11.0
Literature 2 −4.032 - −1.656 × 10−7 - −2.4 2.7
(PhMCd1) −6.050 307 −7.298 × 10−7 341 −6.1 11.3
(PhMCd2) −5.802 291 −7.358 × 10−7 344 −6.3 11.7
(PhMCd3) −6.023 307 −7.280 × 10−7 340 −6.2 11.4
(PhMLy1) 102.7 −7015 −1.514 × 10−7 −8.6 - -
(PhMLa1) −1.490 0.3 −1.661 × 10−7 0.3 - -

Moon-Earth
Literature 1 −0.006 38 - −4.773 × 10−12 - −4.9 × 10−4 9.0 × 10−5

Literature 2 −0.0173 - −4.773 × 10−12 - −4.9 × 10−4 9.0 × 10−5

(MoECd1) −0.006 95 8.9 −4.854 × 10−12 1.7 −4.0 × 10−4 8.2 × 10−5

(MoECd2) −0.006 93 8.5 −4.854 × 10−12 1.7 −5.0 × 10−4 9.0 × 10−5

(MoELy1) −0.0184 188 −5.0691 × 10−12 6.2 - -
(MoELa1) −0.007 038 10.3 −4.9834 × 10−12 4.4 - -

Table 9: Overview of the comparison of simulations with tides on the secondary for the coupled model, the direct tidal force model (Eq 21,
Lainey et al. 2007), the averaged direct tidal force model (Eq 25, Lari 2018), and literature approximations of their secular effects (Eq 48-50)
and libration amplitude (Eq 58-59). Literature approximation 1 are from (Eq 48, Eq 50 and Eq 58), and literature approximation 2 are from
(Eq 49, Eq 50 and Eq 59). The percentage differences are relative to the upper literature approximations 1. The last column denotes the
additional tidal dissipation factor due to the libration.
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Figure 14: The orbital element changes, for semi-major axis (top), and eccentricity (bottom), of the Phobos-Mars system versus the varying
global relaxation time. Models and variations used are a coupled propagation with a constant Maxwell relaxation time of 𝜏e = 58.9 Phobos
days (circle), a direct tidal force model (Eq 21, Lainey et al. 2007) (triangle down), and an averaged direct tidal force model (Eq 25, Lari
2018) (triangle up). The accompanied value of the 𝑘2 over 𝑄 ratio results in a literature value as presented in Souchay et al. (2013) (Eq 48)
(blue line), or as determined in Boué (2019) (Eq 49) (green line). The literature approximation including the librational dissipation is shown
(Eq 64) (orange line). The colormaps show the libration angle as determined via the rotation angle and 𝑘2.
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by the physical libration (Equation 64), as that literature
value corresponds for lower global relaxation times very
well with the coupled model. The fact that for higher
global relaxation times the coupled model and the liter-
ature value with libration start to differ, can be caused
by the incorrect libration amplitude estimation for those
relaxation times. Using the libration amplitude from the
literature value of Efroimsky (2018), Equation 59, to calcu-
late the additional dissipation due to the librations, better
estimates for the semi-major axis and eccentricity deriva-
tive are retrieved.

Figure 15 displays the secular effects for the Moon-
Earth case. The Maxwell relaxation time is set at 13 830 267 s
and the global relaxation times are varied. The propaga-
tions are run for 180 rotation periods of the secondary,
and as the Moon rotates in 27 days, this remains a large
period.

The Moon does not have a large libration (see Table 9)
and the relatively large secular effects for the Phobos-Mars
system are not displayed. The coupled model follows the
literature approximation for both the semi-major axis and
the eccentricity evolution.

The other main observation is the difference between
the direct tidal force methods. The averaged direct tidal
force model (Equation 25) follows the literature approxi-
mation for the evolution of the semi-major axis as given by
Souchay et al. (2013) (Equation 48), but the direct tidal
force model stated in Lainey et al. (2007) (Equation 21),
clearly stays with the literature approximation as stated
in Boué (2019) (Equation 49). This is a remarkable effect
as both models relate to each other, and are in fact used
by both authors. The only difference between the models
is the averaging of the spin rate, and the fact that the av-
eraged direct tidal force generates no torque. It only has
a radial part. The exact cause of the difference remains
unknown.

It is difficult to state which literature approximation
stays closest to the truth. Assuming the coupled model to
be generally better and more consistent, the semi-major
axis evolution of Equation 48 is regarded to lie closer to
reality. The coupled model follows that original literature
approximation in the Moon-Earth case perfectly. On top
of that, that literature approximation with additional li-
bration dissipation factor (Equation 64) stays close to the
coupled model for a certain range of global relaxation times
in the Phobos-Mars system.

Overall, the librational effect is easily incorporated.
The coupled model shows an effect whenever a large li-
bration is present, and can also be easily incorporated for
no libration. This all has been shown for relatively short
term propagations, which are important for future space
missions and accurate ephemeris determination. The only
negative part of the coupled model is that a damped ini-
tial condition has to be found before real situations can
be portrayed. With the possible high relaxation times,
this search can become quite cumbersome. However, the
coupled model displays better behaviour. The current

day models show more varying behaviour and do not deal
with these librations automatically and do so differently.
Thus, it would be beneficial to use the coupled model in
ephemeris determination of satellites with librations.

8. Conclusion

From the research a couple conclusions can be drawn.
First, the systems with tides on the more massive body
are regarded (Section 6). The results show a clear picture:
The evolution of the semi-major axis determined by the
coupled model is similar to the current methods for tidal
effects and similar to the literature approximation of this
evolution. For a range of input parameters varying the
relaxation times of the coupled model, and in so on varying
the currently used tidal parameters 𝑘2 and 𝑄, all changes
in semi-major axis seem to correspond to literature and
current direct tidal force modeling methods (Figure 8-10).

The eccentricity change is more difficult to determine,
as it is in order of magnitude closer to the step error of
the propagation, and shows a difference with the literature
approximation (Figure 10). However, this occurs for both
the current models and the newly tested coupled model,
and so on can be valued with less importance. The exact
reason for this discrepancy is yet to be determined, but it
could be because only a minor secular change is present,
and it is superimposed upon large per-orbit variations.

The tidal coefficients determined in the coupled model
lead to a lag angle and time lag that correspond to the
theory for every case (Table 5), and the amplitude of the
tidal coefficients that govern the lag angle seems to re-
semble literature values. In these varying lag angle and
time lag, the coupled model displays behaviour which is by
definition not captured by the classical direct tidal force
models.

The linear position differences between the current di-
rect tidal force model and the coupled model are small
(3 cm for the Phobos-Mars system, and 1.5 mm for the
Earth-Moon system after one day of propagation). How-
ever, they might become important for future space mis-
sions as data ranging observations become more accurate.

The second part of the research is performed on a sys-
tem with the tides on the locked secondary. Especially
for the system Phobos-Mars, with the tides on Phobos, a
coupled model behaves differently than all current models.
Phobos exhibits a large physical libration, which causes an
additional dissipation that can become the largest factor
in the overall tidal dissipation. The additional dissipation
results in a faster evolution of both the semi-major axis
as the eccentricity. This effect is only captured by the
coupled model, and not by the currently used models.

The Moon-Earth case, with the tides on the Moon,
does not have these librations, and evolution values lie
closer. The coupled model follows the literature approx-
imation (Equation 48). The scientific community is not
sure which is the correct literature approximation, and as
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Figure 15: The orbital element changes, for semi-major axis (top), and eccentricity (bottom), of the Moon-Earth system versus the varying
global relaxation time. Models and variations used are a coupled propagation with a constant Maxwell relaxation time of 𝜏e = 5.42 Lunar
days (circle), a direct tidal force model (Eq 21, Lainey et al. 2007) (triangle down), and an averaged direct tidal force model (Eq 25, Lari
2018) (triangle up). The accompanied value of the 𝑘2 over 𝑄 ratio results in a literature value as presented in Souchay et al. (2013) (Eq 48)
(blue line), or as determined in Boué (2019) (Eq 49) (green line). The colormaps display the 𝑘2 and 𝑄 values.

well the classical direct tidal force models show different
behaviour for the change in semi-major axis. Following the
coupled model’s behaviour, only a single literature approx-
imation should be assumed correct (Souchay et al. 2013).

Overall, the coupled model behaves exactly as it should
for a variation of tidal input parameters. These input pa-
rameters have yet to be determined accurately for most
solar system bodies, which could be done in further stud-
ies involving real position data. For short timescales, cur-
rently used methods or literature approximations can still
be used whenever data requirements are not high. How-
ever, when dealing with high accuracy observations, and
for bodies with larger physical librations, it rewards to
switch to a coupled method. It takes properly into ac-
count the frequency dependency and possible variation of
classical tidal parameters are caught. The method is also
valid for larger eccentricities and inclinations, and remains
valid for any orientation and spin rate. Furthermore, it is
able to capture the behaviour of secondary bodies with
large physical librations.
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Appendices

A. Quaternions

The quaternion vector defined as 𝒒 = (𝑞0, 𝑞1, 𝑞2, 𝑞3)
satisfies the normalization condition stating that the sum
of its squared variables is equal to 1. Furthermore, it re-
lates to the unit axes of the rotating frame ( ̂𝒆A, ̂𝒆B, ̂𝒆C) as
(Fukushima 2008)

̂𝒆A = ⎛⎜
⎝

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2

2(𝑞0𝑞3 + 𝑞1𝑞2)
2(𝑞1𝑞3 − 𝑞0𝑞2)

⎞⎟
⎠

,

̂𝒆B = ⎛⎜
⎝

2(𝑞1𝑞2 − 𝑞0𝑞3)
𝑞0

2 − 𝑞1
2 + 𝑞2

2 − 𝑞3
2

2(𝑞0𝑞1 + 𝑞2𝑞3)
⎞⎟
⎠

,

̂𝒆C = ⎛⎜
⎝

2(𝑞0𝑞2 + 𝑞1𝑞3)
2(𝑞2𝑞3 − 𝑞0𝑞1)

𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2
⎞⎟
⎠

.

(A.1)

The reverse transformation is given as

𝑞0 = 1
2√1 + ( ̂𝒆A)𝑋 + ( ̂𝒆B)𝑌 + ( ̂𝒆C)𝑍 ,

𝑞1 = ( ̂𝒆B)𝑍 − ( ̂𝒆C)𝑌
4𝑞0

,

𝑞2 = ( ̂𝒆C)𝑋 − ( ̂𝒆A)𝑍
4𝑞0

,

𝑞3 = ( ̂𝒆A)𝑌 − ( ̂𝒆B)𝑋
4𝑞0

,

(A.2)

with the single condition that 𝑞0 is nonzero. Other trans-
formations can be used whenever this is the case (Fukushima
2008).

B. The tidal potential linearized

Starting from the tidal potential generated by a body
at time 𝑡 − 𝛥𝑡 and position 𝒓s(𝑡 − 𝛥𝑡), it can be assumed
that (Mignard 1979)

𝑉T(𝒓) =
∞

∑
𝑙=2

(𝑅E
|𝒓| )

𝑙+1
𝑘𝑙𝑊𝑙(𝑹, 𝒓s(𝑡 − 𝛥𝑡)) , (B.1)

with 𝒓 the position of the calculated potential, 𝑅E the
equatorial radius of the perturbed body, 𝑘𝑙 the static Love
number and 𝑊𝑙(𝑹, 𝒓s(𝑡 − 𝛥𝑡)) the perturbing potential
at the surface point 𝑹 below the position 𝒓 caused by
the perturbing body at position 𝒓s(𝑡 − 𝛥𝑡). From now
on for clarity the tidal potential will also be expressed
with a second variable denoting the position of the per-
turbing body, which means in this case that 𝑉T(𝒓) =
𝑉T(𝒓, 𝒓s(𝑡−𝛥𝑡)). The time lag 𝛥𝑡 can usually be regarded
to be small (Mignard 1980). This means that the position
can be linearized with

𝒓s(𝑡 − 𝛥𝑡) = 𝒓s(𝑡) − 𝒗s(𝑡)𝛥𝑡 + 𝝎c𝛥𝑡 × 𝒓s(𝑡) , (B.2)

where the 𝝎c denotes the angular velocity of the perturbed
body. To simplify the tidal potential at Equation B.1, also
this potential is linearized in Equation B.3 as

𝑉T(𝒓, 𝒓s(𝑡 − 𝛥𝑡)) = 𝑉T(𝒓, 𝒓s(𝑡))
+ 𝛁𝒓s

𝑉T(𝒓, 𝒓s(𝑡)) ⋅ (𝒓s(𝑡 − 𝛥𝑡) − 𝒓s(𝑡))

=
∞

∑
𝑙=2

(𝑅E
|𝒓| )

𝑙+1
𝑘𝑙𝑊𝑙(𝑹, 𝒓s(𝑡))

+ 𝛁𝒓s
[

∞
∑
𝑙=2

(𝑅E
|𝒓| )

𝑙+1
𝑘𝑙𝑊𝑙(𝑹, 𝒓s(𝑡))] (𝝎c × 𝒓s(𝑡) − 𝒗s)𝛥𝑡 .

(B.3)

With the gradient worked out in Equation B.4

𝛁𝒓s
𝑉T(𝒓, 𝒓s(𝑡)) = 𝛁𝒓s

[
∞

∑
𝑙=2

(𝑅E
|𝒓| )

𝑙+1
𝑘𝑙𝑊𝑙(𝑹, 𝒓s(𝑡))]

= −𝐺𝑀s𝛁𝒓s
[

∞
∑
𝑙=2

𝑘𝑙𝑅E
2𝑙+1

|𝒓|𝑙+1|𝒓s(𝑡)|
𝑙+1 𝑃𝑙(

𝒓 ⋅ 𝒓s(𝑡)
|𝒓||𝒓s(𝑡)|

)]

= −𝐺𝑀s

∞
∑
𝑙=2

𝑘𝑙𝑅E
2𝑙+1

|𝒓|𝑙+1|𝒓s|
𝑙+1 [ − (𝑙 + 1)𝒓s

|𝒓s|
2 𝑃𝑙(𝑥)

+ d𝑃𝑙
d𝑥 ∣

𝑥
⋅ ( 𝒓

|𝒓||𝒓s|
− (𝒓 ⋅ 𝒓s)𝒓s

|𝒓||𝒓s|
3 )] ,

(B.4)

the tidal potential becomes

𝑉T(𝒓,𝒓s(𝑡 − 𝛥𝑡)) = 𝑉T(𝒓, 𝒓s(𝑡)) − 𝐺𝑀s

∞
∑
𝑙=2

𝑘𝑙𝑅E
2𝑙+1

|𝒓|𝑙+2|𝒓s|
𝑙+1 𝛥𝑡

⋅[(𝑙 + 1)(𝒓s ⋅ 𝒗s)
|𝒓s|

2 |𝒓|𝑃𝑙(𝑥) + d𝑃𝑙
d𝑥 ∣

𝑥

⋅(𝒓 ⋅ (𝝎c × 𝒓s)
|𝒓s|

− 𝒓 ⋅ 𝒗s
|𝒓s|

+ (𝒓 ⋅ 𝒓s)(𝒓s ⋅ 𝒗s)
|𝒓s|

3 )] ,

(B.5)

where for notation simplicity the position 𝒓s(𝑡) = 𝒓s and
𝑥 = ( 𝒓⋅𝒓s

|𝒓||𝒓s| ).
To find the force and consequently the torque, the gradient
with respect to 𝒓 has to be taken of this potential. This
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leads to
𝛁𝒓𝑉T(𝒓, 𝒓s(𝑡 − 𝛥𝑡)) = 𝛁𝒓𝑉T(𝒓, 𝒓s(𝑡))

− 𝐺𝑀s

∞
∑
𝑙=2

{ − (𝑙 + 2)𝑘𝑙𝑅E
2𝑙+1𝒓

|𝒓|𝑙+4|𝒓s|
𝑙+1 𝛥𝑡

⋅ [(𝑙 + 1)(𝒓s ⋅ 𝒗s)
|𝒓s|

2 |𝒓|𝑃𝑙(𝑥)

+ d𝑃𝑙
d𝑥 ∣

𝑥
⋅ (𝒓 ⋅ (𝝎c × 𝒓s)

|𝒓s|
− 𝒓 ⋅ 𝒗s

|𝒓s|

+ (𝒓 ⋅ 𝒓s)(𝒓s ⋅ 𝒗s)
|𝒓s|

3 )] + 𝑘𝑙𝑅E
2𝑙+1

|𝒓|𝑙+2|𝒓s|
𝑙+1 𝛥𝑡

⋅ [(𝑙 + 1)(𝒓s ⋅ 𝒗s)𝒓
|𝒓||𝒓s|

2 𝑃𝑙(𝑥) + (𝑙 + 1)(𝒓s ⋅ 𝒗s)
|𝒓s|

2 |𝒓| d𝑃𝑙
d𝑥 ∣

𝑥

⋅ ( 𝒓s
|𝒓||𝒓s|

− (𝒓 ⋅ 𝒓s)𝒓
|𝒓|3|𝒓s|

) + d2𝑃𝑙
d𝑥2 ∣

𝑥
⋅ ( 𝒓s

|𝒓||𝒓s|
− (𝒓 ⋅ 𝒓s)𝒓

|𝒓|3|𝒓s|
)

⋅ (𝒓 ⋅ (𝝎c × 𝒓s)
|𝒓s|

− 𝒓 ⋅ 𝒗s
|𝒓s|

+ (𝒓 ⋅ 𝒓s)(𝒓s ⋅ 𝒗s)
|𝒓s|

3 )

+ d𝑃𝑙
d𝑥 ∣

𝑥
⋅ (𝝎c × 𝒓s

|𝒓s|
− 𝒗s

|𝒓s|
+ 𝒓s(𝒓s ⋅ 𝒗s)

|𝒓s|
3 )]} .

(B.6)

By noting that the force will be evaluated at 𝒓 = 𝒓s,
consequently making 𝑥 = ( 𝒓⋅𝒓s

|𝒓||𝒓s| ) = 1 and stating that

𝑃𝑙(1) = 1 and d𝑃𝑙
d𝑥 ∣1 = 𝑙(𝑙+1)

2 the force results into

𝑭T = − 𝑀s𝛁𝒓𝑉T(𝒓, 𝒓s(𝑡 − 𝛥𝑡))

=𝐺𝑀s
2

∞
∑
𝑙=2

𝑘𝑙𝑅E
2𝑙+1

|𝒓|2𝑙+4 ⋅ ( − (𝑙 + 1)𝒓

+ 𝑙(𝑙 + 1)
2 (𝒓 − 𝒓))

+ 𝐺𝑀s
2

∞
∑
𝑙=2

{ − (𝑙 + 2)𝑘𝑙𝑅E
2𝑙+1𝒓

|𝒓|2𝑙+5 𝛥𝑡

⋅ [(𝑙 + 1)(𝒓 ⋅ 𝒗)
|𝒓| + 𝑙(𝑙 + 1)

2 ⋅ (0 − 𝒓 ⋅ 𝒗
|𝒓| + 𝒓 ⋅ 𝒗

|𝒓| )]

+ 𝑘𝑙𝑅E
2𝑙+1

|𝒓|2𝑙+4 𝛥𝑡 ⋅ [(𝑙 + 1)(𝒓 ⋅ 𝒗)𝒓
|𝒓|2

+ (𝑙 + 1)(𝒓 ⋅ 𝒗) 𝑙(𝑙 + 1)
2

⋅ ( 𝒓
|𝒓|2

− 𝒓
|𝒓|2

) + d2𝑃𝑙
d𝑥2 ∣

1
⋅ ( 𝒓

|𝒓| − 𝒓
|𝒓|)

⋅ (0 − 𝒓 ⋅ 𝒗
|𝒓| + 𝒓 ⋅ 𝒗

|𝒓| ) + 𝑙(𝑙 + 1)
2

⋅ (𝝎c × 𝒓 − 𝒗 + 𝒓(𝒓 ⋅ 𝒗)
|𝒓|2

)]}

= − 𝐺𝑀s
2

∞
∑
𝑙=2

𝑘𝑙𝑅E
2𝑙+1

|𝒓|2𝑙+4 ⋅ (𝑙 + 1)𝒓

− 𝐺𝑀s
2

∞
∑
𝑙=2

{(𝑙 + 2)𝑘𝑙𝑅E
2𝑙+1𝒓

|𝒓|2𝑙+4 𝛥𝑡 ⋅ [(𝑙 + 1)(𝒓 ⋅ 𝒗)
|𝒓|2

]

− 𝑘𝑙𝑅E
2𝑙+1

|𝒓|2𝑙+4 𝛥𝑡 ⋅ [(𝑙 + 1)(𝒓 ⋅ 𝒗)𝒓
|𝒓|2

+ 𝑙(𝑙 + 1)
2

⋅ (𝝎c × 𝒓 − 𝒗 + 𝒓(𝒓 ⋅ 𝒗)
|𝒓|2

)]}

= − 𝐺𝑀s
2

∞
∑
𝑙=2

𝑘𝑙𝑅E
2𝑙+1

|𝒓|2𝑙+4 (𝑙 + 1){𝒓 + 𝛥𝑡[(𝑙 + 2)𝒓(𝒓 ⋅ 𝒗)
|𝒓|2

− 𝒓(𝒓 ⋅ 𝒗)
|𝒓|2

− 𝑙
2

𝒓(𝒓 ⋅ 𝒗)
|𝒓|2

− 𝑙
2(−𝒓 × 𝝎c − 𝒗)]}

= − 𝐺𝑀s
2

∞
∑
𝑙=2

[(𝑙 + 1)𝑘𝑙𝑅E
2𝑙+1

|𝒓|2𝑙+4 (𝒓

+ 𝛥𝑡{ 𝑙
2(𝒓 × 𝝎c + 𝒗) + 𝑙 + 2

2
(𝒓 ⋅ 𝒗)𝒓

|𝒓|2
})] , (B.7)

which is conform the theory (Mignard 1980). Many au-
thors (e.g. Lainey et al. 2007; Lari 2018) use only the
second degree potential and force. This results then in

𝑭T = −3𝐺𝑀s
2𝑘2𝑅E

5

|𝒓|8
[𝒓 + 𝛥𝑡(𝒓 × 𝝎c + 𝒗 + 2𝒓(𝒓 ⋅ 𝒗)

|𝒓|2
)] .

(B.8)
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3
Conclusions

This chapter concludes the findings of the research and tries to give an answer to whether the use of
a coupled model can be beneficial, as part of answering the complete set of research questions. The
research questions are repeated and answers are given below.
The top­level research question is regarded after all lower­level and sub­questions are properly an­
swered. The question is as stated in the introduction:

What is the benefit of using a fully coupled translational­rotational­tidal model, when comparing with
currently used other models and literature approximations, and for what systems could this be benefi­
cial?

The two lower­level research questions and accompanied sub­questions should explain the top­
level one and are:

1. What is the benefit of using a fully coupled model, when comparing with currently used other
models and literature approximations, for a 2D system with tides on the primary?

• What is the behaviour of the coupledmodel for the test­casesMars­Phobos and Earth­Moon,
when regarding the evolution of the tidal geopotential coefficients, accompanied tidal lag an­
gle and time lag?

The evolution of the tidal lag is regarded only for the coupledmodel, as the direct tidal dissipa­
tion force model from Lainey et al. (2007) does not calculate the change in tidal geopotential
coefficients and thus also no lag. The mean of the tidal lag angle and time lag for the cou­
pled model show no difference with the classical calculation of the phase lag via the 𝑄 factor.
After relaxation times are surpassed, the tidal lag angles and time lags converges exactly
to a periodical behaviour around this literature value. This holds for both systems, for the
preceding tidal bulge of the Earth­Moon system and the lagging bulge of the Mars­Phobos
system. In these varying lag angle and time lag, the coupled model displays behaviour which
is by definition not captured by the classical direct tidal force models. The amplitude of the
tidal coefficients that govern the lag angle seems to resemble literature values. Only the
tidal coefficient 𝛥𝐽2 does not resemble theory, but that could be explained by the exclusion
of the dependence of 𝛥𝐽2 on the rotation.

• What is the behaviour of the coupledmodel for the test­casesMars­Phobos and Earth­Moon,
when regarding the evolution of the orbital elements?

The evolution of the semi­major axis determined by the coupled model is similar to the liter­
ature approximation of this evolution. For a range of input parameters varying the relaxation
times of the coupled model, and in so on varying the currently used tidal parameters 𝑘2 and
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𝑄, all changes in semi­major axis seem to correspond to literature.
The eccentricity change is more difficult to determine, as it is an order of magnitude closer
to the step error of the propagation, and shows a difference with the literature approxima­
tion. As well a difference is encountered between the different systems regarded. The Mars­
Phobos system shows a coupled model that follows the literature approximation, though only
with a small constant offset factor. The Earth­Moon system shows peculiar and interesting
behaviour for the eccentricity change. Similar 𝑘2 over 𝑄 ratios show different eccentricity
changes. It follows the literature linear behaviour of a positive acceleration of the eccentric­
ity for higher 𝑘2 and 𝑄 variables, but turns completely different for lower values. The exact
reason for this discrepancy is yet to be determined, but it could be because only a minor
secular change is present, and it is superimposed upon large per­orbit variations. The linear
position differences between the current direct tidal force model and the coupled model are
small (3 cm for the Phobos­Mars system, and 1.5mm for the Earth­Moon system after one
day of propagation). However, they might become important for future space missions as
data ranging observations become more accurate.

To answer the first lower­level research question: The evolution of the semi­major axis determined
by the coupled model is similar to the current methods for tidal effects and similar to the literature
approximation of this evolution. For a range of input parameters varying the relaxation times of
the coupled model, and in so on varying the currently used tidal parameters 𝑘2 and 𝑄, all changes
in semi­major axis correspond to literature and current direct tidal force modeling methods.
Although similar, the difference between the position vectors after 1 central body day is 3 cm for
the Mars­Phobos system, and only 1.5mm for the Earth­Moon system. These values are small,
but might be important for future space missions as data ranging observations become more
accurate. Assuming the coupled model to lie closer to the truth, it will be beneficial to use the
coupled model for these high­accurate observation missions. It will indeed provide more accurate
approximations of the body’s characteristics and tidal parameters. However, the direct tidal force
model can still be used for the current level of accuracy.
For longer time­scales, in the order of thousands to billions of years, it would also be beneficial
to switch to the coupled model. The classical direct tidal force model assumes a constant, or
only a frequency dependent quality factor that averages the tidal dissipation. The coupled model
is not dependent on the quality factor and time variations in the tidal dissipation are more easily
captured. The input tidal parameters used in the coupled model (𝜏e and 𝜏2), however, have to be
estimated more accurately by using real data.

2. What is the benefit of using a fully coupled model, when comparing with currently used other
models and literature approximations, for a 2D system with tides on the locked secondary?

• What is the behaviour of the coupledmodel for the test­cases Phobos­Mars andMoon­Earth,
when regarding the evolution of the tidal geopotential coefficients?

The tidal coefficients for the locked satellite converge to a periodical function around a static
counterpart. The convergence is reached after the relaxation times are exceeded. For the
tides on the satellite, these relaxation times can become large (order of years). This fact
could potentially form a problem for the coupled model, because the transients in the model
should be damped to be able to compare the model with reality. For a propagation to make
sense, first a damped state has to be found for every single initial condition, which can be
time­consuming. The classical models do not show this behaviour.

• What is the behaviour of the coupledmodel for the test­cases Phobos­Mars andMoon­Earth,
when regarding the evolution of the orbital elements and librations?

The evolution of both the semi­major axis and the eccentricity for the Phobos­Mars case do
not show resemblance with the literature approximations from Souchay et al. (2013) or from
Boué (2019). The changes are much larger for the coupled model. This can be explained
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when comparing with a literature approximation which takes account for the large physical
librations present on Phobos. In its coupling between the translational, rotational and tidal
dynamics, the coupled model takes these physical librations and their caused additional dis­
sipation into account in the propagations. The classical models do not take these librations
properly into account.
The coupled model shows different behaviour for the Moon­Earth case. The Moon does not
have a large physical libration and in order of magnitude the coupled model displays similar
orbital changes as the literature approximations from Souchay et al. (2013). The scientific
community is not sure which is the correct literature approximation, and as well the classical
direct tidal force models show different behaviour for the change in semi­major axis. Follow­
ing the coupled model’s behaviour, only a single literature approximation can be assumed
correct (Souchay et al. 2013).

To answer the second lower­level research question: The second part of the research is per­
formed on a system with the tides on the secondary. Especially for the system Phobos­Mars,
with the tides on Phobos, a coupled model behaves differently than all current models. Phobos
exhibits a large physical libration, which causes an additional dissipation that can become the
largest factor in the overall tidal dissipation. The additional dissipation results in a faster evolu­
tion of both the semi­major axis and the eccentricity. This effect is only captured by the coupled
model, and not by the currently used models.
The Moon­Earth case, with the tides on the Moon, does not have these librations, and evolution
values lie closer. The coupled model shows a different behaviour for the semi­major axis evo­
lution than other currently used models but does follow the literature approximation accurately.
The scientific community itself did not decide yet on the correct literature approximation, and as
well the classical models show different behaviour for the change in semi­major axis.

Ultimately, the main research question can be answered as follows:

Overall, the coupled model behaves exactly as it should for a variation of tidal input parameters.
These input parameters have yet to be determined for most solar system bodies, which could be done
in further studies involving real position data. For short timescales, currently used methods or literature
approximations can still be used whenever data requirements are not high. However, when dealing
with high accuracy observations, and for bodies with larger physical librations, it rewards to switch to
a coupled method. It takes properly into account the frequency dependency and possible variation of
classical tidal parameters are caught. The method is also valid for larger eccentricities and inclinations,
and remains valid for any orientation and spin rate. Furthermore, it is able to capture the behaviour of
secondary bodies with large physical librations. With this coupled model, more accurate propagations
could be performed that tell us more about the body’s material. It could give more information about the
origin and long term evolution of the systems regarded, and in that way, it could give more information
about the origin of life itself.





4
Recommendations

This chapter states some undone work and recommendations for further research opportunities to use
the coupled translational­rotational­tidal model. The following is recommended:

• Validate the coupled model in three dimensions, now including systems with inclined orbiting
satellites.

The coupled model discussed in this thesis is two­dimensional, which is only possible for systems
with spin vectors aligned with the orbital angular momentum vector, i.e. have no inclined orbiting
satellite. Many systems do not have this alignment, for example the Earth­Moon system. The
coupled model should be able to deal with any inclined system, but this has not been tested yet
for cases in the Solar system.

• Add additional satellite bodies to the model, which then would be applicable in more complex
test­cases with for example the Galilean moons of Jupiter, or in the case with the additional other
moon of Mars, Deimos.

It would be interesting to investigate the tidal behaviour of interacting satellites with the coupled
model and compare this with the currently used models. This is interesting as the orbital periods
of the separate satellites can cause a resonance within the tidal behaviour that further influences
the orbital evolution of the system regarded. The effect of a coupled model herein is not yet
investigated.

• Perform a validation of the coupled model for the case where both the primary as the secondary
body experience each others tides.

The current model tests separately the tides on the primary and the secondary. Including these
separate tides together has been done before, but not for the coupled model. Tests could be
performed to see if literature approximations can be easily add up to acquire the total evolution
of the system or whether more difficult evaluations are necessary.

• Test the performed research and all of the above proposed recommendations with real position
data.

Real position data of test­case bodies, for example obtained through the tracking of space ve­
hicles, can be used to fit to the coupled model. The tidal parameters of the model, until now
only derived through their relation via classical tidal parameters, could be obtained and a more
accurate statement on whether the coupled model gives more accurate short­time propagations
than currently used models can be made. It ultimately defines whether the coupled model can be
used in later space missions for orbit prediction and determination.
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• Perform long­term propagations to see the use of the coupled model for the long term evolution
of the system.

The long term propagations performed in this thesis are by far not long enough to state some­
thing about the actual origin of these bodies and systems. Performing longer propagations could
eventually state something about the origin or actual end or long­term evolution of bodies and
systems.

• See if other rheological models would increase the accuracy of the coupled model.

The currently usedMaxwell model for the rheology of the bodies is relatively simple. Other options
that are able to deal with more complex reactions inside the body are available, for example the
Andrade rheology. It would be more complex to implement these, both literally and figuratively,
but indeed very interesting to see how these different models compare.



Appendices

A. Additional derivations
This appendix contains multiple derivations of equations and phenomena used in the research. Either
already stated in the literature study or the paper, or just not yet dictated before.

A.1. Gravitational potential of solid sphere
The gravitational potential around a point mass as seen from an inertial point mass centered reference
frame is given by

𝑉(𝒓) = − 𝜇
|𝒓| , (1)

with 𝜇 = 𝐺𝑀p the gravitational parameter of the point mass of mass 𝑀p and 𝒓 the required position
vector. To get to the potential of a solid uniform sphere, first the potential of a ring at a certain distance
from the center of the ring is calculated. The set up is sketched in Figure A.1. The potential is now

z

r

R

θ

Figure A.1: Solid sphere geometry.

given by the integral of the contribution of all the mass elements of the ring. Because the distance 𝑧
from the mass element of the ring to the required location of the potential is constant for this geometry,
the integral becomes

𝑉ring = −∫
𝐺d𝑀
𝑧 = −𝐺𝑧 ∫d𝑀 = −

𝐺𝑀ring

𝑧 . (2)

where 𝑀ring is in this case the mass of the ring.
Secondly the potential due to a thin spherical shell is calculated. All mass contributions from the different
rings should be added, in turn giving the integral

𝑉shell = −∫
𝐺𝑑𝑀shell

𝑧 .

A thin ring element on the shell has mass d𝑀shell = 𝑀ring = 𝜌2𝜋𝑅 sin𝜃𝑅𝑑𝜃, so the integral becomes,

𝑉shell = −∫
𝐺𝜌2𝜋𝑅2 sin𝜃d𝜃

𝑧 ,

41



42 Appendices

with 𝑅 and 𝜌 respectively the radius and the density of the thin spherical shell. Rewriting 𝑧 with the
cosine law and noting that 𝑟 and 𝑅 are constants gives then

𝑉shell = −𝐺𝜌𝑅22𝜋∫
𝜋

0

sin𝜃d𝜃
√𝑅2 + 𝑟2 − 2𝑅𝑟 cos𝜃

,

= −𝐺𝜌𝑅22𝜋 [√𝑅2 + 𝑟2 − 2𝑅𝑟 cos𝜃 1𝑅𝑟 ]
𝜋

0
,

= −2𝜋𝐺𝜌𝑅𝑟 (√𝑅2 + 𝑟2 + 2𝑅𝑟 − √𝑅2 + 𝑟2 − 2𝑅𝑟) ,

= −2𝜋𝐺𝜌𝑅𝑟 ((𝑟 + 𝑅) − (𝑟 − 𝑅))) = −4𝜋𝐺𝜌𝑅
2

𝑟 .

The density of the thin shell is the mass divided by the ‘volume’ of the shell and thus the potential
becomes

𝑉shell = −
4𝜋𝑅2𝐺
𝑟

𝑀shell

4𝜋𝑅2 = −
𝐺𝑀shell

𝑟 , (3)

where the mass is in this case the thin shell’s mass.
Lastly the potential for a solid uniform sphere can be determined by integrating over all the mass ele­
ments of the thin shells inside the sphere. Continuing with the potential for the shell gives then

𝑉sphere = −∫
𝐺d𝑀shell

𝑟 = −𝐺𝑟 ∫d𝑀shell = −
𝐺𝑀sphere

𝑟 . (4)

A.2. The gravitational potential expanded in spherical harmonics
The gravitational potential can be and is conventionally expanded as a series of associated Legendre
polynomials. Starting from its definition (e.g. Montenbruck and Gill 2000; Dirkx et al. 2019),

𝑉(𝒓) = −∫
S

𝐺d𝑀
|𝒓 − 𝒔| , (5)

where 𝒓 is the position vector of the required potential, S the potential generating body, 𝐺 the gravita­
tional constant and 𝒔 the position vector inside the body corresponding to the small 𝑑𝑀. See Figure
A.2.
Rewriting the vector part using the cosine rule gives

rs

r-s

dm

Figure A.2: The potential of a single body at a point 𝑟 away.
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|𝒓 − 𝒔|−1 = [𝑟2 + 𝑠2 − 2𝑟𝑠 cos 𝛾]−1/2 = 1
𝑟 [1 − 2

𝑠
𝑟 cos 𝛾 + (

𝑠
𝑟)

2
]
−1/2

= 1
𝑟 [1 − 𝑧]

−1/2

with 𝑟 = |𝒓| , 𝑠 = |𝒔| and 𝑧 = 2𝑘𝑢 − 𝑘2 , 𝑘 = 𝑠
𝑟 , 𝑢 = cos 𝛾 ,

(6)

where 𝛾 obviously denotes the angle between the vectors 𝒓 and 𝒔. Using the binomial theorem as
stated in Equation 7, here valid for |𝑧| < 1 which is true in this case,

(1 − 𝑧)−𝑛 =
∞

∑
𝑖=0
(𝑛 + 𝑖 − 1𝑖 )𝑧𝑖 , (7)

Equation 6 can be expanded as follows

1
𝑟 [1 − 𝑧]

−1/2 = 1
𝑟 (1 +

1
2𝑧 +

3
8𝑧

2 + 𝒪(𝑧3))

= 1
𝑟 (1 + 𝑘𝑢 −

1
2𝑘

2 + 38 (4𝑘
2𝑢2 + 𝑘4 − 4𝑘3𝑢) + 𝒪(𝑧3))

= 1
𝑟 (1 + 𝑘𝑢 + 𝑘

2 (32𝑢
2 − 12) + 𝒪(𝑘

3))

= 1
𝑟 (𝑃0(𝑢) + 𝑘𝑃1(𝑢) + 𝑘

2𝑃2(𝑢) + 𝒪(𝑘3))

= 1
𝑟

∞

∑
𝑙=0
(𝑠𝑟)

𝑙
𝑃𝑙(cos 𝛾) ,

(8)

with 𝑃𝑙(𝑥) = 𝑃𝑙,0(𝑥) the zero order associated Legendre polynomials given by

𝑃𝑙,𝑚(𝑥) =
1
2𝑙𝑙! (1 − 𝑥

2)𝑚/2 d𝑙+𝑚

d𝑥𝑙+𝑚 (𝑥
2 − 1)𝑙 . (9)

A special attribute of the Legendre polynomials is the addition theorem, stating that the polynomial of a
cosine of an angle between two vectors can be rewritten as a sum of associated Legendre polynomials
as (e.g. Montenbruck and Gill 2000),

𝑃𝑙(cos 𝛾) =
𝑙

∑
𝑚=0

(2 − 𝛿0𝑚)
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃𝑙𝑚(cos𝜃𝑟)𝑃𝑙𝑚(cos𝜃𝑠) cos(𝑚(𝜙𝑟 − 𝜙𝑠)) , (10)

with 𝜃𝑟 and 𝜃𝑠 the colatitude of respectively the position vector 𝒓 and 𝒔, 𝜙𝑟 and 𝜙𝑠 the longitude of both
respective vectors and 𝛿0𝑚 the Kronecker delta which equals 1 for 𝑚 = 0 and equals 0 otherwise.
Rewriting now for the potential function gives

𝑉(𝒓) = −∫
S

𝐺d𝑀
|𝒓 − 𝒔| = −𝐺∫S

1
𝑟

∞

∑
𝑙=0
(𝑠𝑟)

𝑙
𝑃𝑙(cos 𝛾) d𝑀

= −𝐺∫
S

1
𝑟

∞

∑
𝑙=0
(𝑠𝑟)

𝑙 𝑙

∑
𝑚=0

(2 − 𝛿0𝑚)
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃𝑙𝑚(cos𝜃𝑟)𝑃𝑙𝑚(cos𝜃𝑠) cos(𝑚(𝜙𝑟 − 𝜙𝑠)) d𝑀 .

(11)
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Making use of the angle difference formula for the cosine, interchanging the integral and sum operators
and removing the independent variables from the integral results then in

𝑉(𝒓) = − 𝐺𝑀𝑟

∞

∑
𝑙=0
∫
S

1
𝑀 (𝑠𝑟)

𝑙
(𝑅E𝑅E

)
𝑙 𝑙

∑
𝑚=0

(2 − 𝛿0𝑚)
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃𝑙𝑚(cos𝜃𝑟)𝑃𝑙𝑚(cos𝜃𝑠)

⋅ [cos(𝑚𝜙𝑟) cos(𝑚𝜙𝑠) + sin(𝑚𝜙𝑟) sin(𝑚𝜙𝑠)] d𝑀

= − 𝐺𝑀𝑟

∞

∑
𝑙=0
(𝑅E𝑟 )

𝑙 𝑙

∑
𝑚=0

𝑃𝑙𝑚(cos𝜃𝑟)∫
S
(2 − 𝛿0𝑚)

(𝑙 − 𝑚)!
(𝑙 + 𝑚)!

1
𝑀 ( 𝑠𝑅E

)
𝑙
𝑃𝑙𝑚(cos𝜃𝑠)

⋅ [cos(𝑚𝜙𝑟) cos(𝑚𝜙𝑠) + sin(𝑚𝜙𝑟) sin(𝑚𝜙𝑠)] d𝑀

= −𝐺𝑀𝑅E

∞

∑
𝑙=0
(𝑅E|𝒓|)

𝑙+1 𝑙

∑
𝑚=0

(𝐶𝑙,𝑚 cos(𝑚𝜙𝑟) + 𝑆𝑙,𝑚 sin(𝑚𝜙𝑟)) 𝑃𝑙,𝑚(cos𝜃𝑟) ,

(12)

where 𝑅E denotes the equatorial radius and 𝐶𝑙,𝑚 and 𝑆𝑙,𝑚 defined as

𝐶𝑙,𝑚 = ∫
S
(2 − 𝛿0𝑚)

(𝑙 − 𝑚)!
(𝑙 + 𝑚)!

1
𝑀 ( 𝑠𝑅E

)
𝑙
𝑃𝑙𝑚(cos𝜃𝑠) cos(𝑚𝜙𝑠) d𝑀 ,

𝑆𝑙,𝑚 = ∫
S
(2 − 𝛿0𝑚)

(𝑙 − 𝑚)!
(𝑙 + 𝑚)!

1
𝑀 ( 𝑠𝑅E

)
𝑙
𝑃𝑙𝑚(cos𝜃𝑠) sin(𝑚𝜙𝑠) d𝑀 .

(13)

A similar but different way of describing the potential function is by making use of complex coefficients
and the spherical harmonics basis function as

𝑉(𝒓) = −𝐺𝑀𝑅E

∞

∑
𝑙=0
(𝑅E|𝒓|)

𝑙+1 𝑙

∑
𝑚=−𝑙

𝑍∗𝑙,𝑚𝑌𝑙,𝑚(𝜃, 𝜙) , (14)

with 𝑍∗𝑙,𝑚 denoting the complex conjugate of the complex coefficient 𝑍𝑙,𝑚 and 𝑌𝑙,𝑚(𝜃, 𝜙) defined as (Boue
et al. 2016)

𝑌𝑙,𝑚(𝜃, 𝜙) = (−1)𝑚√
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃𝑙,𝑚(cos𝜃)e

𝑖𝑚𝜙 , (15)

with the symmetry in 𝑚 for 𝑚 > 0 as

𝑌𝑙,−𝑚(𝜃, 𝜙) = (−1)𝑚𝑌∗𝑙,𝑚(𝜃, 𝜙) . (16)

This is also denoted as the Schmidt semi­normalization formulation. In literature there are multiple
other definitions of spherical harmonics (Dirkx et al. 2019) and good care should be taken which one
is used. When comparing Equation 14 with Equation 12 the complex coefficients can be derived.

𝑉(𝒓) = −𝐺𝑀𝑅E

∞

∑
𝑙=0
(𝑅E|𝒓|)

𝑙+1 𝑙

∑
𝑚=−𝑙

𝑍∗𝑙,𝑚𝑌𝑙,𝑚(𝜃, 𝜙) ,

= −𝐺𝑀𝑅E

∞

∑
𝑙=0
(𝑅E|𝒓|)

𝑙+1
[𝑍∗𝑙,0𝑌𝑙,0(𝜃, 𝜙) +

𝑙

∑
𝑚=1

𝑍∗𝑙,𝑚𝑌𝑙,𝑚(𝜃, 𝜙) +
−1

∑
𝑚=−𝑙

𝑍∗𝑙,𝑚𝑌𝑙,𝑚(𝜃, 𝜙)] ,

(17)
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Making use of the symmetry relation in Equation 16 and the definition in Equation 15 and changing to
positive 𝑚 values this becomes

𝑉(𝒓) = −𝐺𝑀𝑅E

∞

∑
𝑙=0
(𝑅E|𝒓|)

𝑙+1
[𝑍∗𝑙,0𝑌𝑙,0(𝜃, 𝜙) +

𝑙

∑
𝑚=1

(𝑍∗𝑙,𝑚𝑌𝑙,𝑚(𝜃, 𝜙) + 𝑍∗𝑙,−𝑚𝑌𝑙,−𝑚(𝜃, 𝜙)) ] ,

= −𝐺𝑀𝑅E

∞

∑
𝑙=0
(𝑅E|𝒓|)

𝑙+1
[𝑍∗𝑙,0𝑃𝑙,0(cos𝜃) +

𝑙

∑
𝑚=1

(𝑍∗𝑙,𝑚𝑌𝑙,𝑚(𝜃, 𝜙) + 𝑍∗𝑙,−𝑚(−1)𝑚𝑌∗𝑙,𝑚(𝜃, 𝜙)) ] ,

= −𝐺𝑀𝑅E

∞

∑
𝑙=0
(𝑅E|𝒓|)

𝑙+1
[𝑍∗𝑙,0𝑃𝑙,0(cos𝜃) +

𝑙

∑
𝑚=1

{(−1)𝑚√
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃𝑙,𝑚(cos𝜃)

⋅ (𝑍∗𝑙,𝑚(cos (𝑚𝜙) + 𝑖 sin (𝑚𝜙)) + 𝑍∗𝑙,−𝑚(−1)𝑚(cos (𝑚𝜙) − 𝑖 sin (𝑚𝜙)))}] ,

= −𝐺𝑀𝑅E

∞

∑
𝑙=0
(𝑅E|𝒓|)

𝑙+1
[𝑍∗𝑙,0𝑃𝑙,0(cos𝜃) +

𝑙

∑
𝑚=1

{(−1)𝑚√
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃𝑙,𝑚(cos𝜃)

⋅ ((𝑍∗𝑙,𝑚 + 𝑍∗𝑙,−𝑚(−1)𝑚) cos (𝑚𝜙) + (𝑍∗𝑙,𝑚 − 𝑍∗𝑙,−𝑚(−1)𝑚)𝑖 sin (𝑚𝜙))}] .

(18)

Comparing now again with Equation 12 results for 𝑚 ≥ 0 into
𝑍∗𝑙,0 = 𝐶𝑙,0 ,

(𝑍∗𝑙,𝑚 + 𝑍∗𝑙,−𝑚(−1)𝑚)(−1)𝑚√
(𝑙 − 𝑚)!
(𝑙 + 𝑚)! = 𝐶𝑙,𝑚 ,

(𝑍∗𝑙,𝑚 − 𝑍∗𝑙,−𝑚(−1)𝑚)(−1)𝑚√
(𝑙 − 𝑚)!
(𝑙 + 𝑚)! 𝑖 = 𝑆𝑙,𝑚 .

(19)

Subtracting and adding the two latter equations then gives for 𝑚 > 0

𝑍∗𝑙,𝑚 =
1 + 𝛿0𝑚
2 (−1)𝑚√

(𝑙 + 𝑚)!
(𝑙 − 𝑚)!(𝐶𝑙,𝑚 − 𝑖𝑆𝑙,𝑚) ,

𝑍∗𝑙,−𝑚 =
1 + 𝛿0𝑚
2

√(𝑙 + 𝑚)!(𝑙 − 𝑚)!(𝐶𝑙,𝑚 + 𝑖𝑆𝑙,𝑚) .

(20)

Combined this gives for the coefficients

𝑍𝑙,𝑚 =
1 + 𝛿0𝑚
2 (−1)𝑚√

(𝑙 + 𝑚)!
(𝑙 − 𝑚)!(𝐶𝑙,𝑚 + 𝑖𝑆𝑙,𝑚) , if 𝑚 ≥ 0 ,

𝑍𝑙,𝑚 =
1 + 𝛿0𝑚
2

√(𝑙 − 𝑚)!(𝑙 + 𝑚)!(𝐶𝑙,−𝑚 − 𝑖𝑆𝑙,−𝑚) = (−1)
𝑚𝑍∗𝑙,−𝑚 , if 𝑚 < 0 .

(21)
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A.3. The total angular momentum conservation
Regarding the two body problem with a central and satellite body, see Figure A.3, the total angular
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Figure A.3: The torques and angular momentum on a two body problem.

momentum is given by the separate angular momentum of the bodies as (e.g. Correia 2009; Souchay
et al. 2013)

𝑳tot = 𝑳orb,c + 𝑳spin,c + 𝑳orb,s + 𝑳spin,s (22)

where 𝑳orb,i and 𝑳spin,i denote the orbital and spin angular momentum of body 𝑖 respectively. Using a
true inertial system with origin in the center of mass of the system G, the change of the total angular
moment over time can be written as

d𝑳tot
d𝑡 =

d𝑳spin,c
d𝑡 +

d𝑳spin,s
d𝑡 + 𝑀c𝒙c ×

d𝒗c
d𝑡 + 𝑀s𝒙s ×

d𝒗s
d𝑡 = 0 , (23)

which is zero per definition. The 𝑚𝑖 denotes the mass of body 𝑖 and the 𝒙𝑖 and 𝒗𝑖 the respective
position and velocity vectors, all as seen from the barycenter G of the system. Using the definition of
the barycenter, which is

𝒙c𝑀c + 𝒙s𝑀s

𝑀c +𝑀s
= 𝟎 , (24)

Equation 23 can be rewritten to

d𝑳tot
d𝑡 =

d𝑳spin,c
d𝑡 +

d𝑳spin,s
d𝑡 + 𝑀c(𝒙c −

𝒙c𝑀c + 𝒙s𝑀s

𝑀c +𝑀s
) × d𝒗c

d𝑡 + 𝑀s(𝒙s −
𝒙c𝑀c + 𝒙s𝑀s

𝑀c +𝑀s
) × d𝒗s

d𝑡

=
d𝑳spin,c

d𝑡 +
d𝑳spin,s

d𝑡 + 𝑀c
𝒙c𝑀s − 𝒙s𝑀s

𝑀c +𝑀s
× d𝒗c

d𝑡 + 𝑀s
𝒙s𝑀c − 𝒙c𝑀c

𝑀c +𝑀s
× d𝒗s

d𝑡

=
d𝑳spin,c

d𝑡 +
d𝑳spin,s

d𝑡 − 𝛽𝒓cs ×
d𝒗c
d𝑡 + 𝛽𝒓cs ×

d𝒗s
d𝑡

=
d𝑳spin,c

d𝑡 +
d𝑳spin,s

d𝑡 + 𝛽𝒓cs ×
d𝒗cs
d𝑡 =

d𝑳spin,c
d𝑡 +

d𝑳spin,s
d𝑡 + 𝒓cs × 𝑭s = 𝟎 .

(25)

Here the notation 𝒓cs means the position vector from body c to s, 𝛽 = 𝑀c𝑀s
𝑀c+𝑀s

the reduced mass and
the last equality follows from the second law of Newton. 𝑭s denotes thus the force on body s. When
regarding the extended body of the central body and the point mass of the satellite body, as well as
only the force of the first on the second, the spin momentum of the satellite body does not change. It
is even not able to exist as it is regarded as a point mass. The resulting equation for the total angular
momentum in turn becomes

d𝑳tot
d𝑡 =

d𝑳spin,c
d𝑡 + 𝒓cs × 𝑭s = 𝟎 , (26)

giving an equation for the spin angular momentum change of the planet in the aforementioned form:

d𝑳spin,c
d𝑡 = −𝒓cs × 𝑭s . (27)



A. Additional derivations 47

A.4. The tidal potential linearized
Starting from the tidal potential generated by a body at time 𝑡 − 𝛥𝑡 and position 𝒓s(𝑡 − 𝛥𝑡), it can be
assumed that (Mignard 1979)

𝑉T(𝒓) =
∞

∑
𝑙=2
(𝑅E|𝒓|)

𝑙+1
𝑘𝑙𝑊𝑙(𝑹, 𝒓s(𝑡 − 𝛥𝑡)) , (28)

with 𝒓 the position of the calculated potential, 𝑅E the equatorial radius of the perturbed body, 𝑘𝑙 the static
Love number and 𝑊𝑙(𝑹, 𝒓s(𝑡 − 𝛥𝑡)) the perturbing potential at the surface point 𝑹 below the position
𝒓 caused by the perturbing body at position 𝒓s(𝑡 − 𝛥𝑡). From now on for clarity the tidal potential will
also be expressed with a second variable denoting the position of the perturbing body, which means in
this case that 𝑉T(𝒓) = 𝑉T(𝒓, 𝒓s(𝑡 − 𝛥𝑡)). The time lag 𝛥𝑡 can usually be regarded to be small (Mignard
1980). This means that the position can be linearized with

𝒓s(𝑡 − 𝛥𝑡) = 𝒓s(𝑡) − 𝒗s(𝑡)𝛥𝑡 + 𝝎c𝛥𝑡 × 𝒓s(𝑡) , (29)

where the 𝝎c denotes the angular velocity of the perturbed body. To simplify the tidal potential at
Equation 28, also this potential is linearized in Equation 30 as

𝑉T(𝒓, 𝒓s(𝑡−𝛥𝑡)) = 𝑉T(𝒓, 𝒓s(𝑡)) + 𝛁𝒓s𝑉T(𝒓, 𝒓s(𝑡)) ⋅ (𝒓s(𝑡 − 𝛥𝑡) − 𝒓s(𝑡))

=
∞

∑
𝑙=2
(𝑅E|𝒓|)

𝑙+1
𝑘𝑙𝑊𝑙(𝑹, 𝒓s(𝑡)) + 𝛁𝒓s [

∞

∑
𝑙=2
(𝑅E|𝒓|)

𝑙+1
𝑘𝑙𝑊𝑙(𝑹, 𝒓s(𝑡))] (𝝎c × 𝒓s(𝑡) − 𝒗s)𝛥𝑡 .

(30)

With the gradient worked out in Equation 31

𝛁𝒓s𝑉T(𝒓,𝒓s(𝑡)) = 𝛁𝒓s [
∞

∑
𝑙=2
(𝑅E|𝒓|)

𝑙+1
𝑘𝑙𝑊𝑙(𝑹, 𝒓s(𝑡))] = −𝐺𝑀s𝛁𝒓s [

∞

∑
𝑙=2

𝑘𝑙(𝑅E)
2𝑙+1

|𝒓|𝑙+1|𝒓s(𝑡)|
𝑙+1𝑃𝑙(

𝒓 ⋅ 𝒓s(𝑡)
|𝒓||𝒓s(𝑡)|

)]

= −𝐺𝑀s

∞

∑
𝑙=2

𝑘𝑙(𝑅E)
2𝑙+1

|𝒓|𝑙+1|𝒓s|
𝑙+1 [−

(𝑙 + 1)𝒓s
|𝒓s|

2 𝑃𝑙(𝑥) +
d𝑃𝑙
d𝑥 |

𝑥
⋅ ( 𝒓
|𝒓||𝒓s|

−
(𝒓 ⋅ 𝒓s)𝒓s
|𝒓||𝒓s|

3 )] ,

(31)

the tidal potential becomes

𝑉T(𝒓, 𝒓s(𝑡−𝛥𝑡)) = 𝑉T(𝒓, 𝒓s(𝑡)) − 𝐺𝑀s

∞

∑
𝑙=2

𝑘𝑙(𝑅E)
2𝑙+1

|𝒓|𝑙+2|𝒓s|
𝑙+1𝛥𝑡

⋅ [
(𝑙 + 1)(𝒓s ⋅ 𝒗s)

|𝒓s|
2 |𝒓|𝑃𝑙(𝑥) +

d𝑃𝑙
d𝑥 |

𝑥
⋅ (𝒓 ⋅

(𝝎c × 𝒓s)
|𝒓s|

− 𝒓 ⋅ 𝒗s|𝒓s|
+
(𝒓 ⋅ 𝒓s)(𝒓s ⋅ 𝒗s)

|𝒓s|
3 )] ,

(32)

where for notation simplicity the position 𝒓s(𝑡) = 𝒓s and 𝑥 = (
𝒓⋅𝒓s
|𝒓||𝒓s|

).
To find the force and consequently the torque, the gradient with respect to 𝒓 has to be taken of this
potential. This leads to

𝛁𝒓𝑉T(𝒓, 𝒓s(𝑡−𝛥𝑡)) = 𝛁𝒓𝑉T(𝒓, 𝒓s(𝑡)) − 𝐺𝑀s

∞

∑
𝑙=2
{ − (𝑙 + 2)𝑘𝑙

(𝑅E)
2𝑙+1𝒓

|𝒓|𝑙+4|𝒓s|
𝑙+1 𝛥𝑡 ⋅ [

(𝑙 + 1)(𝒓s ⋅ 𝒗s)
|𝒓s|

2 |𝒓|𝑃𝑙(𝑥)

+ d𝑃𝑙
d𝑥 |

𝑥
⋅ (𝒓 ⋅

(𝝎c × 𝒓s)
|𝒓s|

− 𝒓 ⋅ 𝒗s|𝒓s|
+
(𝒓 ⋅ 𝒓s)(𝒓s ⋅ 𝒗s)

|𝒓s|
3 )] + 𝑘𝑙(𝑅E)

2𝑙+1

|𝒓|𝑙+2|𝒓s|
𝑙+1𝛥𝑡

⋅ [
(𝑙 + 1)(𝒓s ⋅ 𝒗s)𝒓

|𝒓||𝒓s|
2 𝑃𝑙(𝑥) +

(𝑙 + 1)(𝒓s ⋅ 𝒗s)
|𝒓s|

2 |𝒓| d𝑃𝑙
d𝑥 |

𝑥
⋅ ( 𝒓s
|𝒓||𝒓s|

−
(𝒓 ⋅ 𝒓s)𝒓
|𝒓|3|𝒓s|

)

+ d2𝑃𝑙
d𝑥2 |

𝑥

⋅ ( 𝒓s
|𝒓||𝒓s|

−
(𝒓 ⋅ 𝒓s)𝒓
|𝒓|3|𝒓s|

) ⋅ (𝒓 ⋅
(𝝎c × 𝒓s)
|𝒓s|

− 𝒓 ⋅ 𝒗s|𝒓s|
+
(𝒓 ⋅ 𝒓s)(𝒓s ⋅ 𝒗s)

|𝒓s|
3 )

+ d𝑃𝑙
d𝑥 |

𝑥
⋅ (𝝎c × 𝒓s

|𝒓s|
− 𝒗s
|𝒓s|

+ 𝒓s
(𝒓s ⋅ 𝒗s)
|𝒓s|

3 )]} .

(33)



48 Appendices

By noting that the force will be evaluated at 𝒓 = 𝒓s, consequently making 𝑥 = (
𝒓⋅𝒓s
|𝒓||𝒓s|

) = 1 and stating

that 𝑃𝑙(1) = 1 and
d𝑃𝑙
d𝑥 |

1
= 𝑙(𝑙+1)

2 the force results into

𝑭T =−𝑀s𝛁𝒓𝑉T(𝒓, 𝒓s(𝑡 − 𝛥𝑡))

=𝐺(𝑀s)
2
∞

∑
𝑙=2

𝑘𝑙(𝑅E)2𝑙+1

|𝒓|2𝑙+4
⋅ (−(𝑙 + 1)𝒓 + 𝑙

(𝑙 + 1)
2 (𝒓 − 𝒓))

+ 𝐺(𝑀s)
2
∞

∑
𝑙=2
{ −

(𝑙 + 2)𝑘𝑙(𝑅E)2𝑙+1𝒓
|𝒓|2𝑙+5

𝛥𝑡 ⋅ [
(𝑙 + 1)(𝒓 ⋅ 𝒗)

|𝒓| + 𝑙
(𝑙 + 1)
2 ⋅ (0 − 𝒓 ⋅ 𝒗|𝒓| +

𝒓 ⋅ 𝒗
|𝒓| )]

+ 𝑘𝑙(𝑅E)
2𝑙+1

|𝒓|2𝑙+4
𝛥𝑡 ⋅ [

(𝑙 + 1)(𝒓 ⋅ 𝒗)𝒓
|𝒓|2

+ (𝑙 + 1)(𝒓 ⋅ 𝒗) 𝑙
(𝑙 + 1)
2 ⋅ ( 𝒓

|𝒓|2
− 𝒓
|𝒓|2

)

+ d2𝑃𝑙
d𝑥2 |

1

⋅ ( 𝒓|𝒓| −
𝒓
|𝒓|) ⋅ (0 −

𝒓 ⋅ 𝒗
|𝒓| +

𝒓 ⋅ 𝒗
|𝒓| ) +

𝑙(𝑙 + 1)
2 ⋅ (𝝎c × 𝒓 − 𝒗 +

𝒓(𝒓 ⋅ 𝒗)
|𝒓|2

)]}

= − 𝐺(𝑀s)
2
∞

∑
𝑙=2

𝑘𝑙(𝑅E)2𝑙+1

|𝒓|2𝑙+4
⋅ (𝑙 + 1)𝒓 − 𝐺(𝑀s)

2
∞

∑
𝑙=2
{
(𝑙 + 2)𝑘𝑙(𝑅E)2𝑙+1𝒓

|𝒓|2𝑙+4
𝛥𝑡 ⋅ [

(𝑙 + 1)(𝒓 ⋅ 𝒗)
|𝒓|2

]

− 𝑘𝑙(𝑅E)
2𝑙+1

|𝒓|2𝑙+4
𝛥𝑡 ⋅ [

(𝑙 + 1)(𝒓 ⋅ 𝒗)𝒓
|𝒓|2

+ 𝑙
(𝑙 + 1)
2 ⋅ (𝝎c × 𝒓 − 𝒗 +

𝒓(𝒓 ⋅ 𝒗)
|𝒓|2

)]}

= − 𝐺(𝑀s)
2
∞

∑
𝑙=2

𝑘𝑙(𝑅E)2𝑙+1

|𝒓|2𝑙+4
(𝑙 + 1){𝒓 + 𝛥𝑡[

(𝑙 + 2)𝒓(𝒓 ⋅ 𝒗)
|𝒓|2

− 𝒓
(𝒓 ⋅ 𝒗)
|𝒓|2

− 𝑙
2
𝒓(𝒓 ⋅ 𝒗)
|𝒓|2

− 𝑙
2(−𝒓 × 𝝎c − 𝒗)]}

= − 𝐺(𝑀s)
2
∞

∑
𝑙=2
[(𝑙 + 1)𝑘𝑙(𝑅E)

2𝑙+1

|𝒓|2𝑙+4
(𝒓 + 𝛥𝑡 { 𝑙2(𝒓 × 𝝎c + 𝒗) +

𝑙 + 2
2

(𝒓 ⋅ 𝒗)𝒓
|𝒓|2

})] ,

(34)

which is conform the theory (Mignard 1980). Many authors (e.g. Lainey et al. 2007; Lari 2018) use
only the second degree potential and force. This results then in

𝑭T = −3
𝐺(𝑀s)

2𝑘2(𝑅E)
5

|𝒓|8
[𝒓 + 𝛥𝑡(𝒓 × 𝝎c + 𝒗 + 2

𝒓(𝒓 ⋅ 𝒗)
|𝒓|2

)] . (35)
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B. Documentation
Both models used, the coupled and the direct force model, are implemented from ground up using
Python. This is a manual to use the code in whatever way is required (if functionality is available). The
code is uploaded to a github repository: https://github.com/icetea3/Thesis.

B.1. User manual
A single propagation is performed with the main.py script. In the script the input needed for the prop­
agation is set, the propagation is performed, the outputs are saved to file, the state data is analysed,
and the results are summarised in plots and or on screen output.
To begin with the beginning, the input is set under the DEFINE PROBLEM part. The first things set are
the boolean values that define whether a specific input file is used to define all inputs, whether gravity
field coefficients should be imported from file, and whether the output generated requires saving to file.
The outputfilename should be defined if required under outputfile.

� �
# Boolean var iab le , True when inpu ts from . so l or . p i c k l e are used
se t Inpu tsFromFi le = False
# Boolean var iab le , True when g r a v i t y f i e l d c o e f f i c i e n t s should be imported from
# spec i f i ed f i l e
setGFFromFile = False
# Boolean var iab le , True when output needs saving
saveOutput = False
# I f saveOutput , de f ine f i lename r e su l t s
i f saveOutput :

o u t p u t f i l e = ’ yourFileName ’� �
If setInputsFromFile is set False, the inputs should be set manually. The entire input for the propaga­
tion is contained in a dictionary structure, where the appropriate name of inputdict is used. Within this
dictionary, the first main inputs are the used model, which orientation is used, and whether the rota­
tion vector is propagated or kept constant, respectively set in the keys ’whichmodel’, ’whichframe’, and
’propagaterotation’. Options and defaults are stated in the comments. The key ’whichmodel’ defines
the entire model and overwrites in that way the perturbationsdict, where specific perturbations can be
specified. Only the ’Custom’ model allows the perturbations to be completely defined by perturbations­
dict. Later in the script, the perturbationsdict is added to the inputdict under the key ’perturbationsdict’.

� �
# Set and de f ine inpu ts
i n p u t d i c t = { }
# Def ine the model used − opt ions are now [ de f au l t = ’ F u l l ’ , ’ Correia2014 ’ , ’ PointMass ’ ,
# ’Custom ’ ]
i n p u t d i c t [ ’ whichmodel ’ ] = ’Custom ’
# Def ine frame o r i e n t a t i o n used − opt ions are now [ de f au l t = ’ I n e r t i a l ’ , ’ Ro ta t ing ’ ]
i n p u t d i c t [ ’ whichframe ’ ] = ’ I n e r t i a l ’
# Def ine boolean value whether r o t a t i o n vec to r i s propagated or not [ de f au l t = True ,
# False ]
i n p u t d i c t [ ’ p ropaga te ro ta t i on ’ ] = True

# Def ine pe r t u rba t i ons used in d i c t i o na r y − opt ions are now { ’ g r a v i t y _ cen t r a l ’ :
# [ de f au l t = None , ’ Correia2014 ’ ] , ’ t i d e s_cen t r a l ’ : [ d e f au l t = None , ’ Lainey2007 ’ ,
# ’ Coupled ’ ] }
pe r t u r b a t i o n sd i c t = { }
p e r t u r b a t i o n sd i c t [ ’ g r a v i t y _ cen t r a l ’ ] = None
pe r t u r b a t i o n sd i c t [ ’ t i d e s_cen t r a l ’ ] = ’ Lainey2007 ’� �

The next part of the main.py script deals with the gravity coefficients, whether set via input file, or

https://github.com/icetea3/Thesis
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directly here in the code. For now only up to second degree and order is available. The coefficients
are defined in a 2d NumPy array, where the first two columns denote the degree and order, the last
two columns the cosine and sine coefficient, respectively. The function setGeoCoeff() is used to read
the input file and set the 2d NumPy array in a dictionary, but only for the specific GMM­3 Mars gravity
field (Genova et al. 2016). Compatibility for other data files can be updated in the GeoCoeffReader.py
script. The geoCoeffCentral contains then the coefficients for the gravity field of the central body.

� �
GFfilename = ’ yourPathName ’
maxdegree = 2
geoCoef fd ic t = setGeoCoeff ( GFfilename , maxdegree )
geoCoef fCentra l = geoCoef fd ic t [ ’ CentralBody ’ ]� �

After defining the gravity field coefficients, the used constants are set in the dictionary constantsdict.
Most constants used are specified in the Constants.py script, to keep them in a central location and
easily adjustable over all other code.

� �
# Def ine constants used and i n i t i a l cond i t i ons
cons tan t sd i c t = { }
# Spec i fy constants cen t r a l and s a t e l l i t e body
cons tan t sd i c t [ ’ M_central ’ ] = m_M. value # Mass cen t r a l body [ kg ]
cons tan t sd i c t [ ’ M_sa t e l l i t e ’ ] = m_Phobos . value # Mass s a t e l l i t e [ kg ]
cons tan t sd i c t [ ’ R_cent ra l ’ ] = R_M. value # Equa to r i a l rad ius [m]
cons tan t sd i c t [ ’ Cnorm_central ’ ] = Cnorm_M # Moment o f i n e r t i a f a c t o r [ − ]
cons tan t sd i c t [ ’ k2_cen t ra l ’ ] = k2_M # k2 Love number [ − ]
cons tan t sd i c t [ ’ Q_centra l ’ ] = Q_M # D i ss i pa t i on / Qua l i t y f a c t o r Q [ − ]
cons tan t sd i c t [ ’ T _ s a t e l l i t e ’ ] = 7 . * 3600. + 39.2 * 60. # o r b i t a l per iod [ s ]
cons tan t sd i c t [ ’ GC_central ’ ] = geoCoef fCentra l # unnormalized c o e f f i c i e n t s [ − ]
cons tan t sd i c t [ ’ tau_e_cen t ra l ’ ] = 2.5 * 86400. # Maxwell r e l a xa t i o n t ime [ s ]� �

Having defined the constants, the initial value is set next. Starting from the Keplerian elements of the
satellite body, the Cartesian coordinates are retrieved by using the kep2car() function. The rotation
vector is defined in omega0 via the rotation period of the central body and points towards the positive
z­axis. The orientation of the central body is then defined in terms of its unit axes, from which the
quaternion for the central body can be retrieved via formulation in Fukushima (2008).

� �
a_sat = 9376e3 # semi major ax is Phobos [m]
e_sat = 0.0151 # Ec cen t r i c i t y [ − ]
i _ sa t = 0.0 #1.093 / 180. * np . p i # i n c l i n a t i o n [ rad ]
Raan_sat = 0.001 # RAAN [ rad ]
argper_sat = 0.001 # argument o f per igee [ rad ]
t ruano_sat = 0.001 # t rue anomaly [ rad ]

# Ret r ieve i n i t i a l s t a t e i n ca r tes ian coord ina tes
s ta te0 = kep2car ( a_sat , e_sat , i _sa t , Raan_sat , argper_sat , t ruano_sat ,

G. value * ( cons tan t sd i c t [ ’ M_central ’ ] + cons tan t sd i c t [ ’ M_sa t e l l i t e ’ ] ) )

# Def ine i n i t i a l r o t a t i o n vec to r cen t r a l body
r o t pe r i o d_cen t r a l = 24. * 3600. + 37. * 60. + 22. # s i de rea l r o t a t i o n per iod [ s ]
omega0 = np . ar ray ( [ 0 . , 0 . , 2 . * np . p i / r o t pe r i o d_cen t r a l ] )

# Def ine i n i t i a l o r i e n t a t i o n cen t r a l body , should be based on i n i t i a l r o t a t i o n vec to r
e_rotA0 = np . ar ray ( [ 1 . , 0 . , 0 . ] ) # I n i t i a l u n i t vec to r A ax is r o t a t i n g frame
e_rotB0 = np . ar ray ( [ 0 . , 1 . , 0 . ] ) # I n i t i a l u n i t vec to r B ax is r o t a t i n g frame
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e_rotC0 = np . ar ray ( [ 0 . , 0 . , 1 . ] ) # I n i t i a l u n i t vec to r C ax is r o t a t i n g frame

# Set i n i t i a l values f o r the quaternions , based on i n i t i a l o r i e n t a t i o n
q00 = 1. / 2 . * np . sq r t ( 1 . + e_rotA0 [ 0 ] + e_rotB0 [ 1 ] + e_rotC0 [ 2 ] )
q10 = ( e_rotB0 [ 2 ] − e_rotC0 [ 1 ] ) / ( 4 . * q00 )
q20 = ( e_rotC0 [ 0 ] − e_rotA0 [ 2 ] ) / ( 4 . * q00 )
q30 = ( e_rotA0 [ 1 ] − e_rotB0 [ 0 ] ) / ( 4 . * q00 )
qvec0 = np . ar ray ( [ q00 , q10 , q20 , q30 ] )

# Fu l l i n i t i a l value : pos i t i o n [m] , v e l o c i t y [m/ s ] , r o t a t i o n vec to r [ rad / s ] ,
# quatern ion [ − ]
y0 = np . concatenate ( ( s tate0 , omega0 , qvec0 ) , ax is =0)� �

The values filled in here are mimicking a Mars­Phobos system, but using a zero inclination to get a
2­dimenisional system. The y0 denotes the full initial value for the to be propagated variables. For
the coupled system the initial state has be extended with the initial values for the tidal geopotential
coefficients 𝛥𝐽𝜈2 , 𝛥𝐶𝜈2,2 and 𝛥𝑆𝜈2,2. These are set in Delta_nu0.� �

# Only add t i d a l c o e f f i c i e n t s to i n i t i a l value i f model f o r t i d e s i s coupled
i f pe r t u r b a t i o n sd i c t [ ’ t i d e s_cen t r a l ’ ] == ’ Coupled ’ :

Delta_nu0J2 = 0.0
Delta_nu0C22 = 0.0
Delta_nu0S22 = 0.0
Delta_nu0 = np . ar ray ( [ Delta_nu0J2 , Delta_nu0C22 , Delta_nu0S22 ] )

# Fu l l i n i t i a l value : pos i t i o n [m] , v e l o c i t y [m/ s ] , r o t a t i o n vec to r [ rad / s ] ,
# quatern ion [ − ] , t i d a l param [ − ]
y0 = np . concatenate ( ( s tate0 , omega0 , qvec0 , Delta_nu0 ) , ax is =0)� �

By defining the initial state vector, the integrator settings can be specified. All settings are set in the
integratordict, which is as well a dictionary structure. The ’timespan’ key denotes the start and end
point of the integration in seconds. The ’timeeval’ key is for the array of points where a solution is
required and returned afterwards. The ’method’ is defining the built­in method used by the solver.
More on these integrator methods can be found in SciPy documentation1. The highest order method
available is the ’DOP853’, which is an 8th order explicit Runge­Kutta method. The ’iv’ is short for initial
value and the ’rtol’ and ’atol’ denote the relative and absolute tolerances the solver uses to determine
if the next step in the integration is converged so it can stop iterating. Again more on this in the SciPy
documentation1. The ’func’ specifies the function used to calculate the right hand side of the differential
equation. This function is key to the integration as it completely covers the calculation of the forces and
other necessary parts to determine the change in the state variables. In this case this is RHSfun, other
options are for now not available.

� �
# Def ine i n t e g r a t o r se t t i n g s i n d i c t i o na r y
i n t e g r a t o r d i c t = { }
# Set timespan of i n t e g r a t i o n − l i s t o f begin and end t ime [ s ]
i n t e g r a t o r d i c t [ ’ t imespan ’ ] = [ 0 . 0 , 120.0 * 86400. ]
# Set t imepo in ts where so l u t i o n i s requested , must be i ns i de timespan frame
i n t e g r a t o r d i c t [ ’ t imeeva l ’ ] = np . l i nspace (0 . 0 , 120.0 * 86400. , 20000)
# Set i n i t i a l value problem so lve r method − opt ions are [ de f au l t = ’RK45 ’ , ’LSODA ’ ,
# ’Radau ’ , ’BDF ’ , ’RK23 ’ ]
i n t e g r a t o r d i c t [ ’method ’ ] = ’DOP853 ’
# Set i n i t i a l value / s t a te vec to r

1http://scipy.github.io/devdocs/integrate.html#module­scipy.integrate
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i n t e g r a t o r d i c t [ ’ i v ’ ] = y0
# Set f unc t i on f o r r i g h t hand s ide of the d i f f e r e n t i a l equat ion
i n t e g r a t o r d i c t [ ’ func ’ ] = RHSfun
# Set r e l a t i v e to le rance f o r i n t e g r a t o r step e r r o r
i n t e g r a t o r d i c t [ ’ r t o l ’ ] = 2.3e−14
# Set absolu te to le rance f o r i n t e g r a t o r step e r r o r
i n t e g r a t o r d i c t [ ’ a t o l ’ ] = 1.0e−19� �

The three separate dictionaries are by itself subsequently added to the main dictionary inputdict.
If setInputsFromFile is set True, a previous run which has been saved to file is used for the input. The
dirPath and filename should define the directory and name of the previously run file, whereafter the
ResultReader() function imports the results including the inputdict. Only the input is then used for the
new run, the solution of the state variables is neglected. Some changes can be made to the input if
required.

� �
else :

# Path d i r e c t o r y
d i rPa th = ’ yourPath ’
f i lename = ’ yourFileName ’
i f f i lename . s p l i t ( ’ . ’ ) [ −1 ] == ’ p i c k l e ’ :

soltemp , i n p u t d i c t = ResultReader ( d i rPa th + f i lename )

else :
timestemp , statestemp , i n p u t d i c t = ResultReader ( d i rPa th + f i lename )� �

This concludes the problem definition and the setting of the inputs. Below this END OF PROBLEM
DEFINITION nothing has to be set or changed for the specific propagation. The remainder will still be
explained for clarity of the overall code.
Having set all input, the propagation can be performed. This is done with a single line and the single
function Integrator(). It checks the given input in the integratordict for correctness and then starts the
built­in solver solve_ivp() from the SciPy package. It returns a solution class object, with different
attributes. More on this again in the documentation for the SciPy package.

� �
so l = I n t e g r a t o r ( i n p u t d i c t )� �

If the saveOutput is set True, the output needs saving. This is done via the OutputWriter() function.
It writes to the previously specified path outputfile with an added date­time stamp if datestampbool
is True, stores the solution of all state variables at all timesteps and as well the input settings. The
outputway defines here the way of storing, where both a binary format (.pickle) and a ASCI text format
(.sol) are used to store the same solution. Both extension names are newly defined. The pickle package
is for storing and retrieving very convenient as it is able to dump entire objects or structures from the
Python environment and subsequently read the binary files again and restoring the dumped objects,
with a couple lines of code. It is only a very unsafe way of saving and reading. For example a simple
change in Python or package version could cause problems rendering the stored object. Moreover,
it is a unsecured way of opening a file, so only entirely known dumpfiles should be read. To be sure
data remains accessible, also a more elaborate write to text file is used. These .sol files can simply be
accessed by a simple text editor as Notepad.

� �
# Wri te inpu ts and r e su l t s to dumpf i le ( b inary ) and to t e x t f i l e
OutputWr i te r ( o u t p u t f i l e , sol , i n pu t d i c t , outputway = ’ Sol ’ , datestampbool = True )
OutputWr i te r ( o u t p u t f i l e , sol , i n pu t d i c t , outputway = ’ P i ck le ’ , datestampbool = True )� �
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The analysis is performed next. This includes the transformation of the propagated Cartesian position
and velocity back to a form of osculating elements, the analysis of the behaviour of these elements
over time, and the determination of the possible tidal geometric lag angle. The results are displayed
in the form of mean derivative values determined in different ways, so the mean change in semi­major
axis and eccentricity determined via forward difference, backward difference and by making a linear fit
of all results. Different variables and or solution characteristics could be determined in this part of the
script, but it is recommended to do this in different files after importing the previous solution.
After the analysis, the solution is shown in multiple plots via the plottingfunc() function, which shows
the behaviour of the position, velocity, rotation vector, quaternions, and possible tidal geopotential
coefficients and tidal lag.

� �
i f i n p u t d i c t [ ’ p e r t u r b a t i o n sd i c t ’ ] [ ’ t i d e s_cen t r a l ’ ] == ’ Coupled ’ :

i f pe r t u r b a t i o n sd i c t [ ’ t i d e s_cen t r a l ’ ] != None :
P l o t t i n g f un c ( so l . t , so l . y [ 0 : 6 , : ] , kepsol , so l . y [ 6 : 9 , : ] , so l . y [ 9 :13 , : ] , \

so l . y [13 :16 , : ] , np . append ( [ a _ d i f f L i t ] , [ e _ d i f f L i t ] , ax is =0) , \
np . concatenate ( ( [ azimuthalAngleBulge ] , [ azimuthalAngleSat ] , [ angleTidalLag ] )

, ax is =0) )
else :

P l o t t i n g f un c ( so l . t , so l . y [ 0 : 6 , : ] , kepsol , so l . y [ 6 : 9 , : ] , so l . y [ 9 :13 , : ] ,
so l . y [13 :16 , : ] )

else :
i f pe r t u r b a t i o n sd i c t [ ’ t i d e s_cen t r a l ’ ] != None :

P l o t t i n g f un c ( so l . t , so l . y [ 0 : 6 , : ] , kepsol , so l . y [ 6 : 9 , : ] , so l . y [ 9 :13 , : ] , \
de rSVkep l i t = np . append ( [ a _ d i f f L i t ] , [ e _ d i f f L i t ] , ax is = 0 ) )

else :
P l o t t i n g f un c ( so l . t , so l . y [ 0 : 6 , : ] , kepsol , so l . y [ 6 : 9 , : ] , so l . y [ 9 :13 , : ] )� �

This concludes the script.
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C. Verification
This appendix contains the important verification performed for the different dynamical models. It veri­
fies that the propagations performed are correct and that the code is without major errors. As the model
is entirely build from ground up in Python, this verification is necessary to state whether the research
is valid. Unittest functionality developed with the model has been used during the research to verify
the ongoing results. The current verification is divided into three parts, namely the verification of the
translational model, the rotational model, and the tidal model.

C.1. The translational dynamical model
First of all, for verification it is easiest to compare the propagation of the state with already verified other
tools and software. In this case, this is done with the TU Delft Astrodynamics toolbox (Tudat)2. The
same initial state is propagated with only a point mass model with both the newly made software and
the existing Tudat toolbox. The differences for the position are displayed below in Figure C.4.
The difference between the propagations is small after 1 day. The relative difference is at least in the
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Figure C.4: Normalized position state differences between a point mass propagation performed by the newly developed Python
code and the existing Tudat software.

order of 1.0 × 10−10. Furthermore, the 𝑍­position is for both equal to zero, which is expected as it is
a 2D model. The velocity differences are displayed in Figure C.5. The same relative differences are
seen and as well the velocity in the 𝑧­direction is zero.
As the validation inside the paper is performed by comparing orbital element changes it is necessary
to investigated their behaviour too. In Figure C.6 the normalized semi­major axis, the eccentricity and
the inclination are shown for the Python and the Tudat propagation. The correct value is added, which
is of course the initial value, because the propagations only include point mass bodies. The figure
shows the expected behaviour. The semi­major axis as well as the eccentricity for the coupled run
are constant in the figure. No slope can be seen for both, and if a linear least­squares fit is performed
a derivative of 8.2 × 10−4 nms−1 and −7.0 × 10−13 /yr are retrieved for the semi­major axis and the
eccentricity change respectively. This is in both cases three orders of magnitude smaller than the tidal
secular change calculated in the paper. Consequently, the secular changes as seen in the paper are
2http://tudat.tudelft.nl/

http://tudat.tudelft.nl/
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not caused by the point mass propagation and similarly not by the integrator, which is now validated.
The variations seen in the figure are caused by the polynomial used to retrieve the state at the required
epochs. The integrator in the Python code used is as mentioned a 8th order Runge­Kutta method
(DOP8533) with varying stepsize. Because of the varying stepsize a 7th order polynomial is fitted to re­
trieve the required epochs. The integrator used in the Tudat verification run is a 4th order Runge­Kutta
method with fixed stepsize of 5 s. A last thing to note is that the inclination remains zero as expected
as well. It is another reason to state that the problem created is in fact truly 2­dimensional.

Subsequently, the gravity model needs verification. In both the Python code as the Tudat toolbox a
propagation is performed while using a second degree gravity field with static parameters for 𝐽2, 𝐶22,
and 𝑆22. The position differences are plotted in Figure C.7. The propagation after 1 day displays the
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Figure C.7: Normalized position state differences between a propagation performed by the newly developed Python code and
the existing Tudat software, both with a second degree gravity field for the central body.

same relative differences in the order of 1.0 × 10−10 as for the point mass run, and the gravity model
is verified for the position. The velocity components are shown in Figure C.8. The velocity difference
can as well be neglected. Next, the behaviour of the orbital elements is plotted in Figure C.9. This time
the relative difference is plotted for the semi­major axis and the difference for the eccentricity. It shows
a very minor difference of up to the order of 1.0 × 10−13, and again the inclination remains zero. This
shows that the Python code is correct. The minor error is due to the differences in integrator and its
settings.

C.2. The rotational dynamical model
The rotational model is verified by comparing with a propagation performed by Tudat. This time the
rotation and orientation are propagated as well as the position and velocity state. A propagation with
a second degree gravity field of Phobos and a point mass Mars is performed on both tools, and the
angular velocity state vector as well as the quaternion state are compared. To see the influence of the
propagation of the rotation on the orbital elements evolution, also the semi­major axis, eccentricity and
inclination are compared. The physical libration angle is determined by subtracting a linear fit from the

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.DOP853.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.DOP853.html


C. Verification 57

−5

0

Vx
 d

iff
/V

x0
 [-

]

1e−10

−1

0

1

Vy
 d

iff
/V

y0
 [-

]

1e−12

0.0 0.2 0.4 0.6 0.8 1.0
t [days]

−5

0

5

Vz
 d

iff
 [m

/s
]

1e−2

Figure C.8: Normalized velocity state differences between a propagation performed by the newly developed Python code and
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unwrapped rotation angle. The rotation angle is defined as the angle between the inertial and the fixed
rotating frame, and is obtained by retrieving the unit axis of the rotating frame. See the derivation in
the paper. First, the angular velocity vector of the secondary body is shown in Figure C.10.
Because a 2D system is regarded, no rotation rate is expected in the 𝑥 and 𝑦 direction, as they lie in the

−1
0
1

Om
eg

aX
 d

iff
 [r

ad
/s

] 1e−19

−2.5

0.0

2.5

Om
eg

aY
 d

iff
 [r

ad
/s

] 1e−19

0 50 100 150 200 250 300 350
t [days]

−5

0

5

Om
eg

aZ
 d

iff
/O

m
eg

aZ
0 

[-]

1e−9

Figure C.10: Differences in the rotation vector state of the secondary body between a propagation performed by the newly
developed Python code and the existing Tudat software, both with a second degree gravity field for the secondary.

orbital plane. The difference seen in these directions is completely caused by the Tudat propagation.
The rotation rate in the 𝑥 and 𝑦 directions remains zero for the Python tool. Furthermore, the difference
in the 𝑧 direction is stable and does not grow above a value of 1.0 × 10−8 in relative difference. It is
assumed that this error follows from the difference in integrator and not from any bug in the code.
The next thing to verify is the orientation of the system, for the propagations kept in the quaternion
vector. The state differences are displayed in Figure C.11. The 2­dimensional system should lead to
a zero second and third quaternion vector entry. The difference seen in the second and third plot is a
direct link with the nonzero rotation rate in the 𝑥 and 𝑦 direction. The Tudat propagation is not entirely
2­dimensional, while the Python propagation shows the correct zero value. It must be stated that these
magnitudes are not causing any differences in results, as they lie close to or below the machine error.
The impact on the orbital elements is not substantial, as can be seen in Figure C.12. The relative dif­
ference of the semi­major axis remains in the order of 1.0 × 10−12 after a year of propagation, though a
minor trend of −5.5 × 10−4 nms−1 can be observed. This trend is at least an order of 1.0 × 103 smaller
than the observed trends in the paper. The eccentricity comparison shows a difference in the order of
1.0 × 10−13 and a small slope of −6.6 × 10−14 /yr, which is as well an order of 1.0 × 103 smaller than
the smallest trend obtained in the paper. The inclination is as expected zero.
Figure C.13 shows the physical libration angle difference divided by the maximum value it reaches in
the propagation. The relative difference remains in the order of 1.0 × 10−7, however a clear trend is
seen. This is undoubtedly caused by the nonzero quaternion and rotation vector of the Tudat propa­
gation, this difference does not influence the results in the paper in any way.

C.3. The tidal dynamical model
The larger part of the verification for the tidal part is performed in the paper. That includes the com­
parison with literature approximations stating the evolution of the orbital elements. What definitely still
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developed Python code and the existing Tudat software, both with a second degree gravity field for the secondary.
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Figure C.13: The difference in the physical longitudinal libration angle of the secondary between a propagation performed by
the newly developed Python code and the existing Tudat software, both with a second degree gravity field for the secondary.

can be verified is the behaviour of the direct tidal dissipation model from Lainey et al. (2007). This tidal
model is included in Tudat and a run with the same initial state and constants is performed on both
software tools. This includes only a point mass system with the addition of the direct tidal force on the
primary as calculated by Lainey et al. (2007). The difference in the position state is plotted in Figure
C.14. The difference remains small in all directions, and is similar to the differences in the comparison
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Figure C.14: Normalized position state differences between a propagation performed by the newly developed Python code and
the existing Tudat software, both with a direct tidal force on the primary as given in Lainey et al. (2007).

of the gravity field and point mass propagations. The velocity state is displayed in Figure C.15.
As well for the velocity state, differences remain within the order of 1.0 × 10−10 and are verified.
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Figure C.15: Normalized velocity state differences between a propagation performed by the newly developed Python code and
the existing Tudat software, both with a direct tidal force on the primary as given in Lainey et al. (2007).

The last verification is done by comparing the effect on the evolution of the orbital elements. This is
shown in Figure C.16. Although a relatively large evolution is present in both propagations, namely of
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Figure C.16: Normalized orbital elements state differences between a propagation performed by the newly developed Python
code and the existing Tudat software, both with a direct tidal force on the primary as given in Lainey et al. (2007).



62 Appendices

−1.23nms−1 and 3.61 × 10−9 /yr for the semi­major axis and eccentricity respectively, the difference
in between the Python and Tudat propagations remains similar to the point mass and gravity field com­
parisons. The inclination is as expected equal to zero.
This verifies the results achieved by the Python code. All important state and dependent variables are
similar to those obtained from a different toolbox. The differences seen do not result in significant other
results. This verifies the equations of motion for the translational and rotational dynamics (Equations
37­40 in the paper), as well as the direct tidal force model (Equation 21 in the paper).
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