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Abstract 
In this thesis, we present an interactive remote volume-rendering system. Our system tries to bridge the gap 

between complex medical volume data and the patient. The user can easily upload their own data, which they 

receive from the clinician after a scan, which they can then visualize. Our application does not require any 

medical or volume visualization background, and can run from any device with a working internet connection 

and an internet browser. We also introduce a technique to use multiple machines in order to combine the 

computing power into one very fast renderer and the other way around: multiple concurrent users on one 

machine by distributing the workload efficiently. 
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1 Introduction and motivation 
3D medical images from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are typically 

used to acquire a patient’s anatomy and can be used for volume visualization. These images are often employed 

in clinical practice by doctors to perform diagnosis, plan surgeries and monitor the outcome of medical 

interventions. These scans produce sets of parallel slices that form a volumetric data set. Clinicians typically 

explore this type of data by analyzing 2D slices. Given their knowledge in human anatomy, and experience in 

perceiving these kind of images, they construct a mental 3D image easily. Patients often lack this ability due to a 

lack of experience. Nonetheless, it is becoming more common that patients receive a copy of their own medical 

data. However in most cases the data is of no use to them, because the tools that accompany the data are 

typically aimed at clinicians and do not provide easily-interpretable 3D representations of the images.  

The goal of the proposed system is to bridge the gap between complex medical volume data and patients. One of 

the most important requirements of the system is accessibility; everyone with access to the internet must be able 

to use this system. Therefore, we developed an easily accessible online volume visualization system, which 

allows patients to explore their own medical volume data without any medical or volume 

visualization background.  

A major challenge in making medical volume visualization accessible to the greater public is the need for 

powerful hard- and software. Our solution is to delegate all volume visualization tasks to a dedicated server that 

provides an online visualization, independent on the capacities of the patient’s device. The data set stays at the 

server, only the images are send over to the patient. Hereby the generally large data sets do not have to be send 

over to the client, which saves a lot of network traffic. Moreover, the original data set stay confidential on the 

server, which is, due to the privacy, a requirement of such a system. 

The system we propose can be used for a wide range of applications. First, doctor-patient communication can be 

simplified. The conversation can be done remotely if a physical meeting is not required. The patient and doctor 

log into the system, the doctor loads the data set and can interact or change visualization settings. The patient 

can see the same real-time streamed output. 

More and more patients receive their volumetric data of the CT or MRI scan from the hospital on a CD or usb-

stick. The system is designed to upload and visualize these personal medical scans. The patient can upload their 

own data to the server and can fully interact with the data set to get an insight of his or her own scan. For 

example, the patients can show their renders to friends and family to explain what the doctor told them. 

Since the system produces photo-realistic images, the system also can be used for anatomy education. If the 

parameters are set correctly, a realistic anatomical insight can be given. For example the body can be “cut” open 

in order to visualize internal organs which are normally occluded. 

This project was initiated and executed inside the group of Computer Graphics and Visualization at the TU 

Delft. PhD student Thomas Kroes and Matthijs Neven worked together on this project under the supervision of 

Prof. Dr. Elmar Eisemann. 

This thesis describes the design and implementation of this interactive remote rendering system. Section 2 starts 

the thesis with previous and related work, followed by some technical background in Section 3. An overview of 

the architecture is described in Section 4, the next section contains some implementation details. Section 6 

describes two user studies, which made use of the proposed system. The final sections contain the discussion 

and concludes the thesis and discusses the future work. 
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2 Related work 
In the past years, a lot of remote rendering techniques are presented. These techniques try to overcome the 

limitations of lightweight devices (e.g. laptops, tablets and other handheld devices) or the lack of hard or 

software to render 3D data sets. A workstation with enough resources is use as a server. However, issues like 

bandwidth limitation, large 3D data sets, confidentiality of the data and the lack of sufficient computing power, 

have to be overcome. Those issues can be tackled in various ways, because different applications can have other 

priorities. The approaches can be classified into two major categories: model-based and image-based approach, 

see Figure 1. A remote visualization system that sends complete 3D data sets to the client is a model-based 

approach. The client needs sufficient hardware to render the 3D data sets. In an image-based approach, the 

server does all the actual rendering and sends images to the client. In the next sections, some examples of the 

two approaches are described. 

 

Figure 1: Classify remote rendering and remote visualization systems based on data types [1] 

2.1 Image-based approach 
Image-based remote rendering systems render all the 3D data on the server and send the images to the client, 

therefore the client does not need any graphical hardware. The client only displays the received images and send 

the interaction requests back to the server.  

ParaViewWeb [1] is such a remote rendering system, based on the open source parallel data visualization 

framework ParaView. This approach makes use of a server-side rendering technique, provided by the ParaView 

engine. The images are sent to a client application, which can be JavaScript, Java or Flash-based. In [2] a similar 

system is presented.  

An architecture that can be used for real-time exploration and management of large medical data sets was 

presented in [3]. The prototype system shows that it is possible to use mobile devices as remote interfaces for 

exploration of large volumetric medical data sets. During interaction the system limits the resolution in order to 

maintain a frame rate of 30 fps. After one second the client receives the full-resolution image. In case of medical 

data, lossy compression is forbidden, because changes in the frequency domain may affect the overall clinician’s 

diagnosis [3]. The system is implemented as a JAVA application for Android OS, which does not meet our 

requirement of hardware, software and plugins independency. Furthermore it states that lossy compression in 

medical visualization is forbidden, because it can influence the clinician’s diagnosis. However, our system 

features slice planes, which visualizes the data exactly, without any interpretation. The lossy compression can be 

overcome by only using P-frames during streaming. 

The image-based approach can be adjusted in order to reduce the interaction latency; i.e. the time from the 

generation of user interaction request till the appearance of the first updated frame on the client. In [4] 
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environment maps are used to simplify the background objects. A partial panoramic, based on the viewpoint and 

last movement of the camera, is generated by the server. The server warps the image’s coordinates into 

cylindrical coordinates and streams the warped images to the client, which will use a simple translation to build 

the partial panorama for the user. The idea is to have all possible viewpoints to which the user can go, available 

on the client. The buffer will be filled with images according the camera position and direction in the virtual 

environment. This allows the user to freely pan the virtual camera without further assistance from the server. 

The interaction latency for panning only depends on the time of running view projection on the client. For other 

type of interactions, the server have to send new environment maps. This solution improves the latency 

significantly, when a complex 3D scene is used. However, in our application, only one object is present in the 

data: a part of the human body. Furthermore, our application makes use of a progressive renderer, which means 

it is not trivial to render multiple images during the rendering of the current viewpoint. 

Depth images can also be used to improve the interaction latency. In [5] the server not only send color images, 

but also depth images to the client. The client can display the present color images if the viewpoint stay 

unchanged, otherwise the client can synthesize the displayed image from the depth image using 3D image 

warping. This technique generates novel views from the color image by performing a per-pixel reprojection, 

based on the depth image. Now the interaction latency is reduced to the time of image synthesis on the client, 

which is independent of the network. However, image warping can reduce the image quality, due to missing 

image information. In [6] the previous technique is extended to multiple depth images, in order to increase the 

quality of the synthesized images. The server renders from multiple, carefully selected viewpoints and sends the 

depth images to the client. This extra information allows the client to create high images when the viewpoint is 

changed. This is at the cost of extra computation on the server and more network traffic for streaming the extra 

depth images. Different techniques are presented to reduce the amount of generated depth images to save 

bandwidth.  

Overall, the image-based approach is a good solution for our application; the data set is kept on the server, 

which is important with respect to confidentiality. The user also does not need powerful hardware to visualize 

the data. However, for a remote rendering framework the problem of interaction latency arise. As can be read 

above, 3D warping can partly solve this problem, but in our application we use a progressive rendering 

framework, which will be explained in Section 3.1. Second, 3D warping techniques are based on depth images, 

which are not trivial for semi-transparent volume data sets. 

2.2 Model-based approach 
In the model-based approaches, the complete 3D data set is sent to the client. As a consequence, the client needs 

sufficient hardware for rendering the 3D data set. Marion et al. [7] present an architecture of a remote scientific 

visualization system, which is based on WebGL and WebSocket technology. The system focuses on 

collaborative data visualization and implements it by distributing the visualization states via a web socket 

server. The interaction is done by one user on a master page and can be shown on the spectator page. First, the 

spectators receive the complete data set on their local machine, after which they receive updates about the 

visualization states and render the data according to the current state of the master page. The reactivity and 

fluidity of the system are good, for the web socket protocol can handle a lot of messages per second.  

In [8] a remote volume renderer, based on the volume ray-casting algorithm, is presented. All the graphical 

computations are done on the client side, using WebGL. The need for specially customized hardware or plugins 

is eliminated for WebGL is present in current main web browsers. However, tests (in 2011) show that portable 

devices are not suitable to render medical volumes in real time and interactively. Noguera et al. introduces in [9] 

a novel technique to overcome the limitations of volume-rendering on mobile devices and WebGL. This 

technique is able to render up to 5123 data set, without decreasing the render speed compared to the 

comparative technique using 1283 data sets. The technique also works for WebGL, because WebGL shares at 

least the same limitations that mobile devices have. Hu et al. present a web-based remote laboratory in [10]. The 

system allows users to perform remote experiments in a virtual environment. The laboratory setup is modeled in 

3D and reconstructed in a web-based interface using Flash 3D engines. The user can interact freely, and can do 
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similar experiments as in a hands-on laboratory. During the experiments, the 3D models are synchronized with 

the real laboratory setup. The experiment can be watched by different users from any angle, because the entire 

3D model is continually synchronized with all the clients. 

The solutions described above are sending the complete 3D data set to the client, which renders the images. This 

is useful for applications that require heavy computation in generating rather than rendering the 3D data sets. 

However, some modification on this approach can be done, in order to make the workload distribution more 

efficient. Is some situations only a subset of the original data set is actually needed. In [11] a remote walk-

through system is presented. The 3D data set is divided into zones, the zone which is directly viewable is 

transmitted at full resolution; the zones close to the directly viewable zone can be send at reduced resolution; the 

other zones can be transmitted in a later point of time, when the network bandwidth is sufficient. Compared to 

the previous solutions, the start time can be reduced, due to the smaller sub data sets. However, the server have 

to perform extra computations to divide the data set into different zones. 

In [12] the workload of rendering is distributed over both the server and client. The client generates new views 

by extrapolating, based on the locally available data. This data contains previous images, camera position and 

range data. The server needs to transmit corrections (difference images between the extrapolation and the exact 

view) to the client, because the extrapolation introduces small errors. These difference images are better 

compressible than the normal color images, and therefore reduces the network traffic. Moreover, the server does 

not need to correct the extrapolation every frame, but at a lower frequency. The latency is only dependent on the 

locally executed extrapolation. 

Pajak et al. [13] present a technique developed for remote rendering in order to better balance the server/client 

workload. The approach improves the current methods, by making use of the computing power of the client 

machine combined with an image-based remote rendering system. The problem of image-based rendering is the 

scalability with respect of the number of clients. Their solution makes use of an augmented stream containing 

supplementary information, e.g. depth and motion, to reduce transfer costs. This information is used to produce 

a high-resolution image on the client side from a low-resolution frame rendered on the server. Hereby, the server 

workload and bandwidth is reduced and the auxiliary information can be used for stereo vision or various other 

client-side applications. As earlier said, depth images are not trivial to render for semi-transparent volume data 

sets. 

For all the solutions described above, the data set have to be (partly) transmitted to the client, which may cost a 

lot of traffic and in the medical case, you often do not want to share data. 

2.3 Conclusion 
Our system is not the first to provide remote rendering for complex volume data. Still we developed our own 

system for several reasons. First, there does not exists a complete framework to upload and render patient 

medical data. Second, there is no realistic rendering approach, which helps average users to better understand 

the information, while we can benefit from all characteristics of Exposure Render. Third, most server-side 

approaches are not implemented in HTML5 and JavaScript and often dependent on specialized plugins or other 

software, while our solution runs off the shelf. The client side approaches do not meet our requirement of 

confidentially, for the complete data set is first transferred to the client.  

For our system architecture we use the setup of Wessels et al. [14], which describe a remote visualization 

system architecture using web sockets. This architecture makes uses of modern browser techniques, i.e. 

HTML5.  

Finally, the low hardware bar of our system allows us to record interaction information from a large set of users, 

which we will harvest for the purpose of developing more effective visualization schemes that render medical 

data more accessible to the greater public.  
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3 Technical background 

3.1 Volume rendering 
3D medical images are often used in clinical practice [15]. In general, a 3D representation of a 3D spatial region 

has more significance than 2D images of the same region acquired by methods, such as x-ray and ultrasound. 

Direct Volume Rendering techniques visualize the volumetric data set directly without changing its 

representation, e.g. extracting the surface of the model. Ray tracing is a technique commonly used in direct 

volume-rendering. This is used for complex light interaction and is based on the idea that you can model 

reflection and refraction by following the path of the light.  

3.1.1 Ray tracing 

Ray tracing in volume-rendering makes use of a so-called transfer function which basically defines the optical 

properties, like color, opacity and glossiness. Each scalar value in the 3D data set is mapped to those properties. 

The algorithm starts by tracing view rays, which begin at the camera and are cast through the image plane (the 

pixels), into the scene, see Figure 2. Each ray has to be tested for intersection with an object. When hitting an 

object, three types of rays can be generated: a shadow, reflection and refraction ray. The shadow ray starts at the 

point of intersection and travels directly to the light source. If the ray hits another object in between, the first 

object will be in shadow. A reflection ray is traced in the mirrored reflection direction. Refraction rays travel 

through semitransparent materials and can be refracted when entering an exiting the material. By adding 

recursion to this algorithm, i.e. for indirect illumination, the images can be more realistic. 

 

Figure 2: Ray tracing technique2 

The render engine we use, Exposure Render, is based on a physically-based, unbiased rendering algorithm, i.e. 

physically-based renderers solve complex equations describing the light paths within a scene, unbiased means 

that no systematic error or bias is introduced during the rendering. The Monte Carlo Ray Tracing (MCRT) is 

often used to implement this type of rendering, which is based on random sampling. The statistical variance is 

the only source of error in the unbiased Monte Carlo algorithm. This means that multiple images of the same 

scene can be averaged, this would lead to a more accurate result. MCRT implements indirect illumination by 

integrating over all the illumination arriving at a single point on a surface. The accuracy of the images will 

always increase by continuing the algorithm, so a stopping condition have to be defined beforehand. 

                                                        
2 http://en.wikipedia.org/wiki/Ray_tracing_(graphics) 

http://en.wikipedia.org/wiki/Ray_tracing_(graphics)
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3.1.1 Transfer function 

In our application we use a channel-based transfer function, because then you can define for each material a 

separate channel. For every channel the intensity range and the corresponding representation of the material 

(opacity, color and glossiness) can be adjusted. The intensity range defines the values in the volumetric data set, 

which are activated in the particular channel. The color is represented in two values, a specular and a diffuse 

color. Specular color defines the color of the light reflected at one angle, like a mirror, diffuse color defines the 

color of the light reflected in at many angles, due to the roughness of the surface.  

The transfer function needs to be stored in such a way that it can be transmitted easily in a bit stream. We chose 

to store the transfer function in two 1D textures; one diffuse and one specular texture. These contain all the color 

and opacity information of all the channels combined. Since the channels can overlap, the combination of all the 

channels has to be done carefully. Therefore a weighted average of the separated RGB color channels is done, 

whereby the weights are defined by the opacity of each channel. For every intensity value the separated RGB 

values are multiplied by the corresponding opacity and added to the individual R,G or B-sum. The sum is then 

divided by the sum of all opacities for the corresponding intensity value, which result in a weighted averaged 

RGB value. The overall opacity value for the corresponding intensity value is defined by the maximum opacity 

value of the individual channels. 

The bidirectional reflectance distribution function (BRDF) defines how the light is reflected at an opaque 

surface. The function takes the incoming and outgoing light direction with respect to the surface normal and 

returns the amount of reflected light. The BRDF is dependent of the material and can be controlled by 

parameters in the transfer function, e.g. diffuse refection, specular reflection. 

3.1.2 Exposure render 

Exposure Render [16] is based on a MCRT framework, which integrates physically-based lighting in order to 

achieve photorealistic volume renderings. This framework enables simulation of an arbitrary number of shaped 

and textured lights, realistic shadows, and a realistic camera model. This results in high-quality images at 

interactive speed, due to a progressive buildup of the images. All scene parameters, e.g., transfer function, 

camera interaction and settings of the virtual light sources, can be modified interactively. The stochastic MC-

based simulation of light transport enables the framework to render physically-based effects without being 

limited by number of lights, the shape of lights, the camera model, and so forth. Exposure Render implements a 

camera model which acts like a real-world camera, e.g., aperture controls depth of field, i.e., the distance in 

which objects appear to be sharp. This realistic camera model enables even artistic image generation and allows 

the user to produce photorealistic DVR in which attention can be drawn to particular regions by skilfully 

adjusting depth of field, camera position, transfer functions and more. Furthermore, due to its sampling 

approach, problems with aliasing and stepping artifacts are easily dealt with. 

The images with its realistic features are rendered at interactive speed. This is important for the proposed 

system, since the clinicians and patients want to interact with a data set by looking at a realistic and easily 

interpretable visualization. One aspect of our work investigates these possibilities and we rely on crowd-

sourcing to investigate the potential. Exposure Render runs on CUDA3 enabled graphics hardware. 

3.2 Visualization techniques 

3.2.1 Slicing 

Slicing entails creating a cross-section of the 3D data set. In Figure 3 two examples can be seen, the first is one 

2D plane along one of the spatial dimensions, the second is one plane for each spatial dimension. Clinicians are 

familiar with such representations, since they are used to 2D representations like x-ray and ultrasound. 

Moreover this technique represent the values as they are, without any interpretation, such as a transfer function. 

                                                        
3 https://developer.nvidia.com/about-cuda 
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Figure 3: slice visualization, on the left one 2D slice, on the right three slices each along one spatial dimension 

3.2.1 Clipping 

Clipping is a visualization technique which enables the user to cut away parts of the 3D data set. In Figure 4 a 

2D clipping plane is showed, which gives an insight in the internal structure of the 3D model, without the 

occlusion present in the original 3D data set. 

 

Figure 4: the use of a 2D clipping plane, to show the inside of the 3D volume 4 

3.3 Statistics 
Interquartile range (IQR) is a measure of statistical dispersion. By ordering a sequence of values and splitting it 

in quartiles, the IQR can be calculated by subtracting the 1st quartile from the 3rd quartile5. 

The average linkage clustering is a method for calculating distance between. The linkage function specifying the 

distance between two clusters, is computed as the average distance between objects from the first cluster and 

objects from the second cluster. The averaging is performed over all pairs (x, y) of objects, where x is an object 

from the first cluster, y is an object from the second cluster6. 

  

                                                        
4 http://www.bu.edu/tech/support/research/training-consulting/online-tutorials/paraview/ 
5 http://www.statistics.com/glossary&term_id=325 
6 http://www.statistics.com/glossary&term_id=714 

http://www.statistics.com/index.php?page=glossary&term_id=789
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4 Overview 
The system we developed is designed in such a way, that the computational expensive tasks are done on a 

remote server, i.e. the image-based approach. The actual volume data is kept on the server and the video stream 

is sent to the client, which results in no requirements of specialized hard- and software and is an important 

property to ensure confidentiality of the data. A photo-realistic image stream is sent to the user, who can send 

interaction requests back to the server. The system requires little to no prior knowledge and therefore comes 

with a large selection of standard settings. In our system, the patient interacts with the remote volume 

visualization system through an intuitive website, on which all important aspects of the volume visualization are 

accessible. 

This results in a system which is divided into two parts, a server part and a user part (front end). The server part 

again consists of two sections, the server node and the render node. 

By design, the system is built in such a way that the different components are replaceable. The modularity is 

realized by using socket connections between the components using a TCP-communication protocol. For 

example, the rendering engine could easily be replaced. This principle also holds for the front-end, e.g. in the 

first prototype version of the system, we used a dedicated C++ application to visualize the images and handle 

the interaction requests. Later on we wanted the system to be totally independent of any specialized hard- or 

software, so we replaced this application by a standardized HTML5 / JavaScript website. 

Figure 5 shows the overview of the system. This diagram clearly shows the modularity of the system and the 

communications between the different modules. 

 

Figure 5: System overview 

4.1 Components 
This section will discuss the three components of the system: the server node, render node and the interface. 
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The server node is the centralized part of the system. This node manages all the connections, data storage, 

uploading process and user logins. After the user logs in, he or she can choose to upload their own medical data, 

which is explained in section 4.2, or can choose to render another available data set, their own, or a public one. 

When the user select a data set to render, a render node is started. For every concurrent user a render node is 

running, this node can be running on a different server, and multiple nodes can be active on a servers. Different 

approaches of distributing the workload will be explained in Section 5.1. 

The render node is responsible for producing and streaming images of the 3D data set and communicating with 

the front end. The render node contains an instance of Exposure Render, which produces the image stream. 

Via the interface, the user can access all the features available in the system. The main item in the interface is 

the output screen, where the image steam is outputted on. The settings to change the appearance of the render or 

open the visualization techniques can be accessed via a menu on the left. This menu gives remotely access to the 

settings and functions of Exposure render on the server. A list of the settings are stated below: 

 Shading settings: change the appearance of the data set by adjusting the transfer function; 

 Lighting settings: change the amount, position, size and color of the light sources; 

 Advanced settings: adjust quality parameters of the renderer; 

 Slicing: access the slicing module; 

 Clipping: access the clipping module; 

 Save preset: save the current settings, in order to continue with the same appearance when the user 

visualizes the current data set again; 

 Save screenshot: a screenshot of the current image will be saved, this can for example be used for 

sharing interesting representations of the data set. 

In Figure 6 a screenshot of the interface with all the menu items can be seen. 
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Figure 6: Screenshot of the interface; the model setting window for clipping is shown 

4.2 Uploading 
The system let allow the user to upload their own volumetric data set. The standard for volumetric data in the 

medical domain is Digital Imaging and Communications in Medicine (DICOM). These DICOM files contain 

meta data about the patient: scan device, study, etc. and slice images of the 3D volume. The images can be raw 

RGB images or compressed with jpeg or jpeg2000. In order to make uploading data sets as simple as possible 

for the user, the upload process is almost automated. In Paragraph 5.2 the implementation of this process will be 

discussed. 

After uploading, the user can choose to make their uploaded data set public to the other users. Most users do not 

want to be recognized on a public data set, so it is preferable that they are able to anonymize their data set. The 

system enables the user to clip the volume to remove for example their head or other private sections. 
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5 Implementation 

5.1 Workload distribution 
Initially the system was able to serve one user per server, but this situation is not practical, as each user would 

then need one dedicated machine. Therefore, we developed an algorithm to redistribute the work efficiently, in 

order to serve multiple concurrent users. Specifically, we concentrate on multiple users connecting to a single 

server, this technique is explained in Paragraph 5.1.1; multi-server rendering will be addressed in Paragraph 

5.1.2. 

5.1.1 Multi-client error-based work redistribution on one server 

A simple method to redistribute the work would be to let each render node work as fast as it can without having 

any notice of the other nodes on the same machine. In consequence, the same resources of the GPU are used by 

different render nodes. This can have a negative influence on the performance, or can even lead to memory 

errors. A solution is to take turn, every render node starts when the previous one finishes. If the last one finishes, 

the first one starts again. This solution is far from optimal, as the quality of the Monte Carlo Ray Tracer is 

increasing with every extra sample, i.e. the quality is related to the number of samples according the formula 

(√𝑛) [16]. In consequence, the frequency of rendering can be reduced when the number of iterations increases. 

 

Figure 7: The three figures above show a snapshot of a render of the same data set at three different frames: 3rd, 8th 

and 50th frame. Note the large amount of noise in the first image and the (almost) prefect integrated figure of the 50th 
frame 
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Figure 8: The corresponding errors of the figures shown in  are given in the chart above. This chart shows the fast 
decay at the beginning of the rendering and slow convergence towards the end 

Figure 7 and Figure 8 show the error of a rendering at three different frames. As can be seen, the first image (3rd 

frame) is very noisy and needs a lot of integration steps to reduce the noise, the 50th frame is almost perfect.  

Our solution is based on the expected error (noise) of the current render frames, which is estimated by 𝑂(
1

√𝑛
), 

where n is the number of iterations. This is based on the formula of the incident light, i.e. the light that falls on a 

subject, either directly or indirectly, 𝐼𝑖 =  
1

𝑁
∑

𝑓𝑖(𝐶𝑗)

𝑝(𝑋𝑗)

𝑁
𝑗=1  defined in [16]. The number of iterations is reset every 

time an interaction request is received. The system decides which render node to execute based on the 

probability density function of the remaining error of the render nodes. The priority is then proportional to the 

error (
1

√𝑛
). This results in a high priority of render nodes with a low iteration number, i.e. the node will render 

significantly more samples during the starting phase of the rendering process. In consequence, the rendering 

process converges quickly for individual renderings, without losing the flexibility of handling multiple 

concurrent users. 

A manager application delegates the work distribution by sending a message to the render node which have to 

render at that time. The render node performs one iteration and send the resulting image. After receiving the 

image, the server node calculates, according the mechanism above, which render node has to render next, and 

the process starts again from the beginning. 

The result of the algorithm above is illustrated in Figure 9. All tests are done on one machine, whereby all of the 

individual render nodes use the same data set to visualize. First, we tested two concurrent clients, shown in the 

left three columns of the image. When interacting with one render node, it has priority over the second one. As 

said, the distribution depends on the amount of estimated error, which results in very few render iterations of 

node two in the two left sessions. The rendering workload is more evenly distributed when both nodes are 

interacting, as can be seen in the third column. The same principle holds for more render nodes; in the right four 

columns we used four render nodes on one machine. The similar result are clearly visible, especially the right-

most column is interesting; the session was a very extreme situation, i.e. a constant interaction of all four render 

nodes. Here, every render node needs maximum computing power of the machine, as the error of all nodes after 
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interaction is relatively high. In theory, in this situation, the convergence is a factor corresponding to the amount 

of concurrent users slower, compared to one concurrent user per machine. However this is worst case scenario, 

i.e. it is unlikely that all the nodes receive interaction requests continuously. In this scenario, the algorithm acts 

like the take turn approach, but in any other case it handles the work load much more efficiently. 

1 1 1 1 1 1 1  1 1  1 1  1 3 1

1 2 1 2 2 77 1  2 2  45 1  2 3 2

1 3 1 3 1 2 2  804 1  2 1  3 4 14

1 4 1 4 1 3 1  3 2  46 1  4 1 8

1 5 1 5 1 4 2  805 3  29 1  5 4 15

1 6 1 6 1 5 1  4 1  3 1  6 1 9

2 851 1 7 1 6 1  5 1  1 1  7 3 3

1 7 1 8 1 7 1  6 4  72 1  8 2 17

1 8 1 9 1 8 1  7 4  73 1  9 2 18

1 1 1 10 2 78 1  1 4  74 1  10 3 4

1 2 1 11 2 79 1  2 4  75 1  11 1 1

1 3 1 12 1 9 2  806 3  30 1  12 1 2

1 4 1 13 1 10 1  3 1  2 1  13 1 3

1 5 1 14 1 11 1  4 2  47 2  2687 1 4

1 6 1 15 1 12 1  5 1  3 2  2688 1 5

1 7 1 16 2 80 1  6 1  4 1  14 4 16

1 8 1 17 1 13 1  7 2  48 1  15 4 17

1 9 1 18 1 14 1  1 1  5 3  2595 3 5

1 10 1 19 1 15 1  2 2  49 1  16 1 6

1 11 1 20 1 16 1  3 1  6 1  17 4 18

1 12 1 21 1 17 2  807 2  50 1  18 3 1

1 13 1 22 1 18 3  682 1  7 1  19 1 7

1 14 1 23 2 81 2  808 2  51 1  20 1 8

1 15 1 24 2 82 1  4 1  8 1  21 3 2

1 16 1 25 1 19 1  5 1  9 1  22 4 1

1 17 1 26 2 83 3  683 4  76 3  2596 2 19

2 852 2 2259 2 84 1  1 1  10 3  2597 1 9

1 18 1 27 1 20 1  2 1  11 1  23 3 3

1 19 1 28 2 85 3  684 4  77 1  24 2 20

1 20 1 29 1 21 1  3 2  52 1  25 2 21

1 21 1 30 2 86 4  1024 1  12 1  26 2 22

1 22 1 31 1 22 1  4 4  78 1  27 4 2

1 23 2 2260 1 23 2  809 2  53 1  28 2 1

1 24 1 32 2 87 1  5 2  54 1  29 3 4

1 25 1 33 1 24 3  685 2  55 1  30 2 2

1 26 1 34 1 25 1  6 2  56 1  31 2 3

1 27 1 35 1 26 1  7 4  79 2  2689 3 5

1 28 1 36 1 27 1  8 3  31 1  32 3 6

1 29 1 37 1 28 1  9 3  32 1  33 4 3

2 853 1 38 1 29 4  1025 1  13 1  34 2 4

2 render nodes 4 render nodes

 

Figure 9: Snapshot of the work scheduling of the render nodes. Left three columns are sessions with two concurrent 

users, and the right four columns with four concurrent users. The colors indicated the different render nodes, and the 
right column shows the iteration number for that specific render node 

In the case of multiple servers, this technique can be applied on each individual server. If a new user logs into 

the system, the user is redirected to the server with the least amount of concurrent users. In this way the work is 

distributed evenly among the different servers. 

5.1.2 Multi-server rendering 

Due to the fact that the system is modular and communicates via sockets, the render nodes on different machines 

can be combined to one rendering system. This is the opposite of the technique described in the previous 

section. Now we can combine the power of the different machines into one very fast converging renderer. 
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Figure 10: System overview of the compositing setup. As an example three render nodes are displayed, but it can be 
any arbitrary number. The render nodes send every frame to the compositor which combines it into one image 

As said earlier, the render node makes use of the Monte Carlo Ray Tracer algorithm, which is based on random 

sampling. Rendering one data set with multiple render nodes, results in slightly differing images due to 

statistical variance. These different images are all unbiased and therefore can be combined by averaging the 

result images of the different render nodes.  

As can be seen in Figure 10, the individual render nodes send their results to the compositing node. The 

compositor combines those images into one final image. The result of the compositing setup, is a speed up by 

the factor of k and the error will be reduced by a factor of √𝑘, where k is the number of render nodes. 

Combining with the error of a single render node, 𝑂(
1

√𝑛
), it makes the formula of the error: 𝑂(

1

√𝑛𝑘
). Figure 11 

shows the error for a different number of render nodes, the significant decrease of error in the initial phase can 

be seen clearly in this diagram. 

Due to the asynchronous implementation of the communication, ghosting can occur during camera interaction. 

When the user sends an interaction request, an update to all render nodes will be transmitted. These render 

nodes will not receive the message at exactly the same time, consequently some render nodes are not up to date. 

When the representation of the model is modified, initially some nodes will send images of the unmodified 

model, which is called ghosting. In our system we keep track of the interaction inside the compositing node; 

when an interaction request is received from the GUI, an iterator is increased and sent to each render node. 

Along with the rendered frame, the iteration number is sent back. With this number the compositor can check if 

the interaction on each render node is up to date. If not, the frame of the specific render node will be skipped. 

Now it can happen that the compositor has less frames to average, but this results in a better image than the 

ghosted version. 
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Figure 11: This chart shows the error decay for 3 different setups: 1, 2 and 4 render nodes. As can be seen, the extra 
nodes result in a significant decrease of error in the beginning of the integration 

Figure 12 shows the result of the compositing algorithm at different snapshots during the starting phase of the 

rendering. As can be seen, the composited versions on the right have significantly less noise compared to the 

single-rendered ones on the left. In theory, the composed version with 4 nodes at iteration 1 should result in the 

same image as the single version in iteration 4. Figure 12 show that after 10 iterations most of the noise is gone, 

while this would take 40 iterations in the normal setup. 
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Figure 12: Three snapshots during rendering. The left images are the result of a single render node, the right images 
are the result of four render nodes. From top to bottom: 1st, 4th and 10th frame 
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5.2 Uploading data sets 
As mentioned in Section 4.2, uploading of a data set should be very easy and intuitive. In this section we will 

describe how we implemented this process. 

First, the user has to select the directory or device, e.g. CD or USB-stick, which is automatically scanned 

entirely for suitable data sets. All the containing files are checked for the DICOM tag and marked if so, after 

which they are categorized into separate scans. The result is a list of scans available in the directory. However, 

the system is not able to visualize some of those scans, e.g. time dependent series. These scans are filtered from 

the list and not shown to the user. Scout images are another example. Usually the output DICOM files are 

images in the transverse plane (see Figure 13), but sometimes extra slices (scouts) have been acquired to align 

the main DICOM files. These scout images are aligned according the sagittal or coronal plane and should be 

removed from the data set. 

The two problems described above, results in the necessity of reading the metadata of the DICOM files on the 

client side. Every DICOM file in the selected folder is read and sorted by the series ID. For every series the 

origin of all slices are checked, if the origins are translated in one direction for every slice, the series is a suitable 

series, i.e. no time series. The scout images are removed by comparing the image positions: scouts have a 

different orientation than the main slices. 

After all these checks, the suitable data sets are shown, after which the user can select one to upload to the 

server. On the server, the DICOM files are combined into a volume by using the vtkGDCMImageReader 

module. After creating the volume and some post processing the DICOM files are deleted, so the original data 

and all private information is deleted. 

 

Figure 13: Sagittal, coronal and transverse plane 

 

5.3 Interface 
We required the interface not to be overwhelming, because the application should be intuitive and easy to use. 

Therefore, we placed a menu on the left, which gives access to the settings windows, as described in Section 

4.1. The windows are modal, so can be dragged to any position the user wants.  
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The interface is built in HTML5 and JavaScript, since most of the devices have an HTML5 capable browses; 

even tablets and cellphones. In our application two features, which are introduced in the HTML5 standard, are 

used: the canvas element and directory uploading. We use the canvas element to capture the user’s camera 

interaction. Second is the ability to process an entire directory on the front-end, instead of selecting multiple 

files, which we use in the uploading process. This is important, because the data set can consists of multiple files 

in multiple folders. Section 5.2 explains the benefit of selecting a complete directory to upload. 

5.4 Visualization techniques and render settings 

5.4.1 Clipping 

In our system a clipping functionality is present. As can be seen in Figure 14, the clipping box can be set using 

three sliders, one slider per spatial dimension. Using clipping, the inner structure of a data set can be shown, 

without occlusion of other material, which can be seen in Figure 15. The VTK reslice module is used to clip the 

volume to the desired output. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Clipping settings; a clipping box can 

be set, using the three sliders 

 

Figure 15: Clipped visualization of the Manix 
data set, clipped along the X-axis 

5.4.2 Slicing 

Another technique often used in render frameworks is slicing. The system can handle three slices at the same 

time, each along one of the three spatial dimensions, see Figure 3. The standard coloring of the slices is in 

grayscale, for the original values are one-dimensional. Nonetheless, an added feature in our system is the 

transfer color projected on the slices, the result can be seen in Figure 16. As already mentioned, slicing is 

especially common to clinicians, they use this visualization technique to perform diagnosis, plan surgeries and 

monitor the outcome of medical interventions. Therefore, it is useful to give the clinician the possibility to this 

visualization technique.  
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Figure 16: Slicing using transfer function colors 

5.4.1 Transfer function 

In our application we make use of the channel-based transfer function, as described in Paragraph 3.1.1. In Figure 

17 the transfer function editor is shown, where can be seen the different channels on the top and the individual 

settings in the rest of the window. The channels can be enabled, the intensity range on which the channel applies 

on and the appearance of the channel, e.g. color and opacity, can be adjusted. 

 

Figure 17: Transfer function editor 

5.5 Interaction 
Every data set has a corresponding preset file, encoded in XML, which contains all settings, e.g. transfer 

function, camera and light positions. These presets are copied from a default preset file and saved on the server 

node. The presets are decoded when the data set is loaded into Exposure Render, after which all render 

parameters are set according to the preset. At the same time the XML file is sent to the front-end HTML page 

via base64 encoding, where the presets are loaded into the user interface. During interaction requests, e.g. 
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camera interaction, transfer function editing, an XML representation in the render node is kept up to date. At 

every moment of the session the user can save the current preset in order to continue later on, without setting all 

the parameters by hand.  

The XML representation can be of use with a general user study. If we want to gain information about camera 

interaction and settings changes of the user, the updates can be send via this XML representation. On the server 

information can be deduced to give an insight in the way the user interact with the system, e.g. do they make use 

of standard presets, or do they change individual settings. 

5.6 Implementation details 
Since the application consist of multiple modules, different languages and scripts are used. For the server and 

render nodes we chose to use Python, using the libraries PyQT and Tornado9. The latter is used to communicate 

via WebSockets with the front-end. The render engine we used, Exposure Render, is written in C++. Some 

modifications were needed in order to remove the GUI and attach the remote controls, implemented via 

communication sockets. 

The HTML5 webpage is several JavaScript libraries. One of them is jQWidgets10, a jQuery11 based library, 

which we used for building the interface. The Three.js13 library has built-in camera controls which can be 

applied on the HTML5 canvas. The resulting camera parameters are sent to the server in order to update the 

model.  

As explained in Section 5.2, HTML5 is used to process an entire directory. This feature is implemented by 

WebKit14 and is called webkitdirectory. For now, this implementation is only available in a Chrome browser, so 

the upload module is only functional in this specific browser. All other features are functional in current main 

web-browsers. 

The output of Exposure Render are raw RGB-images. The conversion to a stream and encoding is performed by 

a standard audio/video codec library: FFmpeg15. The stream of images are encoded using MPEG1 compression 

and transmitted via sockets to a web-socket server. This setup results in a reasonable performance regarding 

latency and quality. The stream is received by the front-end and is decoded by jsmpeg16, a JavaScript based 

MPEG1 decoder. The decoded result is displayed on the HTML5 canvas. This implementation of streaming 

holds the requirement of device or plugin independency, for it makes use of standard HTML and JavaScript 

libraries. 

Since the introduction of WebSockets in the W3C standard, full-duplex communication via the JavaScript 

interface is accessible. This technology allows us to develop real-time synchronization between multiple users 

over the internet via the web browser. The message headers have been kept small and due to the persistent 

connection for a single user, the latency is reduced. This connection makes it possible for the server and client to 

push messages to each other at any given time. This behavior is essential for our application, for we are dealing 

with a real-time interactive bi-directional system. 

  

                                                        
9 http://www.tornadoweb.org/ 
10 http://www.jqwidgets.com/ 
11 http://jquery.com/ 
13 http://threejs.org/ 
14 http://www.webkit.org/ 
15 http://www.ffmpeg.org/ 
16 https://github.com/phoboslab/jsmpeg 

https://github.com/phoboslab/jsmpeg


 

 

33 
 

 

6 User study 
The system is very well suited to perform user studies. Therefore we performed two user studies, one to 

investigate the influence of the color of a material on the comfort level of the user. In the other study we try to 

extract general view points for specific regions in a 3D data set out of crowd generated data. 

6.1 Comfort level 
The proposed system is supposed to be used by patients without a medical background, who are not used to 

realistic volume renders of the body. Therefore, we want to find a way to adjust the comfort level represented by 

one metric. To check whether color of a certain material influences the comfort level of a user, we performed a 

user study. 

6.1.1 Setup 

First the reference color of bone and blood are shown on the Manix18 data set as can be seen in Figure 18. The 

user first can indicate how comfortable they feel about the visualization. After this rating, the colors of the bone 

and blood can be changed, in order to make the visualization more comfortable to them. 

                                                        
18 http://www.osirix-viewer.com/datasets/ 
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Figure 18: Manix data set is used for comfort level 
user study 

 

Figure 19: Settings of comfort level user study 

6.1.2 Results 

In this study 43 persons participated. The results of the study have to be processed to deduce information. The 

samples of the participants who feel really uncomfortable have to be strongly count, therefore the samples are 

weighted by the inverse of the comfort rating. The results can be seen in Table 1. 

Material Measurement Number of 

participants 

Mean Standard deviation 

Bone Difference 43 r: -24, g: 5, b: 7 r: 55, g: 50, b: 67 

Bone Weighted difference 43 r: -30, g: 7, b: 6 r: 84, g: 52, b: 84 

Veins Difference 43 r: 36, g: 20, b: 29 r: 62, g: 29, b: 53 

Veins Weighted difference 43 r: 34, g: 21, b: 32 r: 76, g: 33, b: 62 
Table 1: Results of the comfortable level user study 

Now a grossness scale can be extracted from the weighted average by linearly interpolating between the 

reference color and the average. The color in Figure 20 show the result of the colors of the reference setting and 

the more comfortable setting. 

 

Figure 20: The colors above indicate the colors of the transfer function. The left images correspond to the color of the 

bone, and the right images to the veins and arteries. The upper part represent the original coloring, the lower part 
the interpolated more comfortable color. 

In order to use this information in the transfer function, we linearly extrapolated the difference compared to the 

reference color and used these values to change the comfort level of the visualization. The result of the five 
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different settings can be seen in Figure 21. The images are ranged between -2 times the weighted difference and 

+2 times the weighted difference. 

 

Figure 21: Left image is the most uncomfortable setting, compared to the right, which is the most comfortable setting 

6.1.3 Validation study 

In order to validate the results above, we performed a validation study with 16 participants. We asked them to 

order the images in Figure 21 from uncomfortable to comfortable. The initial order of the images was randomly 

chosen, to prevent any bias.  

We do not make a difference between the 1st and 2nd because they are should both be less comfortable than the 

reference image, the same holds for the 4th and 5th. Since the data is in an ordinal scale, we can check for every 

participant if the 1st and 2nd are rated as less comfortable than the reference image and if the 4th and 5th are rated 

as more comfortable. On average 63% of the participants rated the first to images as less comfortable and 59% 

rated the last two images as more comfortable. Those numbers are not very convincing, so a follow up study is 

required to verify the earlier results. 

6.2 Viewpoint 
In general a part of the body can be visualized form 

different angles and distances, however most likely there 

exists for those regions several major viewpoints which 

form a representation of that specific body part. These 

viewpoints can for example be used for initial 

investigation of a data set by an inexperienced user, or a 

roundtrip along those viewpoints for educational purposes. 

In order to find suitable viewpoints of volume-rendered 

medical data sets, we performed a user study. As in [17] 

we designed a subjective experiment to analyze users’ 

view preferences. We hope to find so-called canonical 

views of different parts of the body. Canonical views have 

several factors which are described in [18]:  

 Goodness of recognition: salience and 

significance of features, stability with respect to small transformations and the number of occluded 

features. 

 Familiarity: the views that are most frequently encountered. 

 Functionality: the views that are most relevant for how we use the object. 

 Aesthetic criteria: geometric proportions can have influence regarding the view we prefer. 

This user study is a proof of concept in order to show the possibility of crowd generated viewpoint selection. 

Figure 22: Vix data set 
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6.2.1 Setup 

The users have to choose the best view by changing the camera position. We 

chose to visualize the Aneurix and Vix19 data set, which can be seen in Figure 22 

and Figure 23. The Aneurix data set is used when defining camera positions 

representing specific regions and the vix data set to get camera positions for the 

data set as a whole. The Aneurix data set is clipped along the sagittal plane in 

order to prevent confusion between the left and right part of the body. The hip 

joint and knee are the items to choose the best view point for. In order to explain 

which parts they have to show, the corresponding areas are highlighted, which 

will be explained in Paragraph 6.2.2.  

Every time a participant switches to another data set, the camera change to a 

randomized position, in order to keep the test unbiased.  

6.2.2 Implementation 

The regions of interest have to be highlighted in order to visualize the body part 

which the user have to select. This is implemented by using VTK modules in 

DeVIDE21. The part to be highlighted is covered by a (manually positioned) 

sphere created by vtkSphereSource, which is transformed to image data by 

vtkPolyDataToImageStencil and vtkImageReslice. The result of this 

transformation is a sphere which contains high values, i.e. the values are in the 

order of the maximum value of the original image. This image is added to the 

original using vtkImageMathematics to create an offset on the region of interest. 

The result is saved to a file which again can be loaded by the system. We can use 

these high values to separate the region of interest using the transfer function, i.e. 

we use a highlight channel which is applied to the high values in the region of 

interest. We use the color blue because in a realistic rendering, this color does 

not occur naturally. The results can be seen in Figure 24. 

 

Figure 24: Highlighted items in the data set. The pelvis on the left and the knee cap on the right 

                                                        
19 http://www.osirix-viewer.com/datasets/ 
21 http://www.cg.its.tudelft.nl/Projects/DeVIDE 

Figure 23: Aneurix data set 
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6.2.3 Results 

After acquiring this user study data, some post processing is needed. First outliers have to be removed, because 

these positions are probably made by accident. Secondly, we have to determine the amount of clusters, which 

will be the basis of the canonical viewpoints. The last step is connection the points into a path, i.e. a virtual 

roundtrip.  

First, we use a combination of hierarchical clustering and an interquartile range to remove single, strong 

outliers. A sample is considered a single and strong outlier, if the sample is by oneself in a cluster and the 

distance to the other clusters is large. The bounds of the distance to the other clusters is defined 

by [𝑓𝑖𝑟𝑠𝑡 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 − 3 ∗ 𝐼𝑄𝑅, 𝑡ℎ𝑖𝑟𝑑 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 + 3 ∗ 𝐼𝑄𝑅 ]. We consider the sample as a strong outlier if it is 

outside these bounds. This process is repeated until the stated condition is not met anymore. An example can be 

seen in Figure 25, where one outlier is present in the data. By only removing the single outliers, the (most 

probable) error samples are removed. However, the viewpoints which are selected by a few (at least more than 

one) are kept, because those can give an interesting variant viewpoint. 

 

 

 

Figure 25: Clustering dendrogram example, clearly can be seen that sample 1 is an outlier 

After removing the outliers, the amount of clusters have to be determined. Therefore we use a cluster evaluation 

method, called silhouette evaluation [19]. This criterion is composed of two scores: 

 

 The mean distance between a sample and all other points in the same class; 

 The mean distance between a sample and all other points in the next nearest cluster. 

 

We chose to set the range of number of clusters from 1 to half the number of samples n, because we want to 

prevent the algorithm to stuck in the local optimum of one cluster per sample. Now, an optimal number of 

clusters can be chosen, using the Gaussian mixture distribution. The distribution can handle the different size 

and denseness of the distributions, which probably will be the case in our data: one or two high-density clusters 

and some low density clusters corresponding with the non-trivial viewpoints. This number is used as input for 

the actual clustering, again based on the Gaussian mixture distribution.   

The centroids of the clusters are the basis of a virtual roundtrip around the item of interest. The path is created 

by interpolating the cluster centroids. But first the cluster centroids have to be ordered, to make the roundtrip 

smoother. We chose to order the centroids by the angle to the center (average) of the data in the xy-plane. The 

result of the ordering can be seen in Figure 26, the unordered centroids create a far from efficient roundtrip, 

compared to the smoothed trip based on the ordered centroids. We used spline interpolation introduced by [20] 
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and implemented by W. Robertson22. The interpolated curve is used as an input for our system, which changes 

the camera position every time step, following the interpolated curve.  

 

Figure 26: Interpolating cluster centroids using spline interpolation. The left part of the image is generated by using 
unordered points compared to the right part using order points 

The cluster centroids do make sense if you look to the actual animation, e.g. the pelvis is visualized from several 

angles; details and overviews, as can be seen in Figure 27. These positions have to be transformed in relative 

positions according to the data set in order to make these positions generally applicable. The viewpoints can 

serve as canonical views, which for example can be used as a starting point of an investigation of a data set.  

This user study method can be repeated for most body parts in order to gain information about canonical views 

of all body parts. The study have to be extended to a lot of participants to deduce more accurate statistical 

information.  

 

Figure 27: Six viewpoints clusters for the pelvis, extracted from user study data 

                                                        
22 https://github.com/wspr/splines-matlab 
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7 Discussion 
The two different setups of the system regarding the workload distribution serves two different purposes. First, 

the multi-server rendering setup can be used when the output have to converge extremely fast. The system is 

modular, so can be extended with extra render servers to meet the given requirement of convergence time. The 

second setup, the multi-client error-based setup, is most likely to be used in most cases. Due to prioritizing, one 

render server can handle multiple concurrent users. The number of users per server is not unlimited, so in order 

to run the system for a vast amount of users, an appropriate number of servers have to be connected. But adding 

an extra server to the system does not have a major impact.  

The latency of the camera interaction is not extremely low, but acceptable. A coarse measurement of the 

latency, whereby the server is a desktop computer i7 Nvidia with a GeForce GTX 680 graphics card and the 

client a desktop i5 2.8 GHz, running in a different network, results in latency values from 250 to 350 ms. A user 

evaluation study have to be performed to verify the hypothesis that the latency of the system is acceptable.  
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8 Conclusion and future work 
In this work, an interactive remote rendering system has been presented. This system is able to render 

photorealistic images at interactive speed without the use of a powerful machine or device on the client side. 

The goal of bridging the gap between complex medical data and the patient is met by this system, since the user 

can easily upload and visualize the data acquired by a scan. The visualization parameters can easily be changed, 

e.g. camera interaction, transfer function editing, clipping, slicing, etc..  

The proposed system is a perfect test-bed for user studies, which we have shown in Section 6. The information 

acquired in these studies is meaningful and can easily be extended due to the remote set up of the system. 

Therefore future work can be very promising, e.g. obtaining large quantities of data in a variety of data. 

The access is free to anyone that registers for an account and anyone can upload their own data. Initially the data 

is for personal use, however our system promotes data sharing for scientific purposes, to this extent, data can 

also be easily anonymized. The application can be used for future projects and research, since the system is 

designed to be modular.  

The system presented is a prototype version including all main features, which we required based on Section 1. 

There are still some aspects which can be improved or extended, which will be discussed in the following 

sections. 

8.1 Stream encoder 
First we could replace the FFmpeg – MPEG1 module by a more sophisticated encoder which can do a better 

encoding with respect to the quality and compression. CUDA could be used to encode images to an H264 

stream, using hardware accelerated techniques. The client sides’ webpage can handle such a stream by itself, 

without the need for an external library, as HTML5 browsers support h264 decoding. Probably latency and 

quality would be reduced significantly. 

The render application generates a different series of images than video-based streams, i.e. after interaction the 

image contains a lot of noise, which means that it is hard to compress and only after a few iterations, the image 

‘smoothes’ out. Based on this observation, a more clever encoding algorithm could be developed. After 

interaction the images are progressively increasing in quality. So a first step would be sending difference images 

encoded in JPEG, which make use of DCT algorithm to approach the image. After a couple of iterations, the 

JPEG images with their lossy compression algorithm could be switched to PNGs to encode the residual 

difference images. This approach seems reasonable as these images are usually sparse and can be compressed in 

a lossless manner without producing large files sizes.  

8.2 Compositor 
In the compositor setup, the strategy is now based on averaging the individual results of all images coming from 

different render nodes. An alternative approach would be to split the render canvas into an arbitrary number of 

sub images, e.g. four quartiles, as can be seen in Figure 28. The only thing the compositor has to do, is to 

combine the images into a single result. The benefit of this approach is that graphical resources are used more 

efficiently, i.e. each render node renders to less pixels (in this case a factor of four), which results in lower 

transmission load and better cache performance on the GPU.  
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Figure 28: Compositor combines the output of four render nodes into one composed image 

8.3 Extra features 
An addition to the system would be a better collaboration framework. The different users can visualize the same 

data set, with the same parameter settings, but can interact with the camera freely. Now the collaboration can be 

more interactive, for the multiple users can investigate the data set by themselves. 

Multiple presets per data set would be a beneficial feature. When the public data sets are viewed by more 

people, multiple presets will be stored for the same data set, e.g. one to visualize the skeleton, the other for the 

arteries. Eventually a crowd-generated set of presets can evolve, which could be used in future research on 

medical volume visualization.  
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