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Electron-vibron coupling effects on electron transport via a single-molecule magnet
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We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic
molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values
obtained from density-functional theory (DFT). The magnetic anisotropy parameters, vibrational energies, and
electron-vibron coupling strengths of the Fe4 are computed using DFT. A giant spin model is applied to the
Fe4 with only two charge states, specifically a neutral state with a total spin S = 5 and a singly charged state
with S = 9/2, which is consistent with our DFT result and experiments on Fe4 single-molecule transistors. In
sequential electron tunneling, we find that the magnetic anisotropy gives rise to new features in the conductance
peaks arising from vibrational excitations. In particular, the peak height shows a strong, unusual dependence on
the direction as well as magnitude of applied B field. The magnetic anisotropy also introduces vibrational satellite
peaks whose position and height are modified with the direction and magnitude of applied B field. Furthermore,
when multiple vibrational modes with considerable electron-vibron coupling have energies close to one another,
a low-bias current is suppressed, independently of gate voltage and applied B field, although that is not the case
for a single mode with a similar electron-vibron coupling. In the former case, the conductance peaks reveal a
stronger B-field dependence than in the latter case. The new features appear because the magnetic anisotropy
barrier is of the same order of magnitude as the energies of vibrational modes with significant electron-vibron
coupling. Our findings clearly show the interesting interplay between magnetic anisotropy and electron-vibron
coupling in electron transport via the Fe4. Similar behavior can be observed in transport via other anisotropic
magnetic molecules.
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I. INTRODUCTION

Recent experimental advances allow individual molecules
to be placed between electrodes, and their electron transport
properties to be measured in single-molecule junctions or tran-
sistors. One interesting family of molecules among them are
anisotropic magnetic molecules referred to as single-molecule
magnets (SMMs). An SMM comprises a few transition-metal
ions surrounded by several tens to hundreds of atoms, and
has a large spin and a large magnetic anisotropy barrier [1–3].
Crystals of SMMs have drawn attention due to unique quantum
properties such as quantum tunneling of magnetization [1,2]
and quantum interference or Berry-phase oscillations induced
by the magnetic anisotropy [4–6]. There have been studies of
the interplay between the quantum properties and the electron
transport of individual SMMs at the single-molecule level
[7–19].

Molecules trapped in single-molecule devices vibrate with
discrete frequencies characteristic to the molecules, and the
molecular vibrations can couple to electronic charge and/or
spin degrees of freedom. When this coupling is significant,
electrons may tunnel via the vibrational excitations unique
to the molecules, and the coupling can be tailored by external
means. Electron tunneling through vibrational excitations have
been observed in single-molecule devices based on carbon
nanotubes [16,20–23] and small molecules [24–27] including
SMMs such as Fe4 [28]. Interestingly, in some cases, a
pronounced suppression of a low-bias current was found,
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attributed to a strong coupling between electronic charge and
vibrations of nanosystems [21,22,28–30]. It was also shown
that the coupling strength could be modified at the nanometer
scale in carbon nanotube mechanical resonators [23]. For
a SMM TbPc2 grafted onto a carbon nanotube, a coupling
between the molecular spin and vibrations of the nanotube
was observed in conductance maps of the nanotube [16].

So far, theories of the electron-phonon or electron-vibron
coupling effects have been developed only for isotropic
molecules [30–39] in single-molecule junctions or transistors.
For example, for molecules weakly coupled to electrodes,
a model Hamiltonian approach is commonly used to in-
vestigate the coupling effects, while for molecules strongly
coupled to electrodes, a first-principles based method such
as density-functional theory (DFT) combined with nonequi-
librium Green’s function method, is applied [36]. Recently,
the coupling effects have been studied for isotropic molecules
weakly coupled to electrodes, by using both DFT and the
model Hamiltonian approach [39]. For anisotropic magnetic
molecules weakly coupled to electrodes, a combination of
DFT and a model Hamiltonian would be proper to examine the
coupling effects. The interplay between magnetic anisotropy
and vibron-assisted tunneling can provide interesting features
concerning vibrational conductance peaks.

The SMM Fe4 has been shown to form stable single-
molecule transistors without linker groups [13,28,40]. The
Fe4 consists of four Fe3+ ions (each ion with spin Si = 5/2),
among which the center Fe3+ ion is weakly antiferromagnet-
ically coupled to the outer Fe3+ ions via O anions, as shown
in Fig. 1(a). The neutral Fe4 has a total ground-state spin
S = 5 with a magnetic anisotropy barrier of 16.2 K [Fig. 1(b)]
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FIG. 1. (Color online) (a) Top view of the Fe4 molecule with C2 symmetry axis along the vertical axis, where Fe (orange), O (red), C
(gray), and H (white). Simplified from Ref. [41]. (b) Magnetic energy levels of the Fe4 with S = 5 where the zero-field splitting is 0.50 meV.
(c) Schematic view of sequential tunneling from the left electrode to a molecular level (n = 0: vibrational ground state, n = 1: vibrational
first-excited state), where V is a bias voltage and Vg is a gate voltage. The magnetic levels in each vibrational state are not shown. The chemical
potentials of the left and right electrodes are +eV/2 and −eV/2, respectively.

[28,40,41], while its doubly degenerate excited spin multiplets
S = 4 are located at 4.8 meV above the ground-state spin
multiplet S = 5 [41]. The negatively singly charged Fe4 has
a total spin S = 9/2 well separated from the excited spin
multiplet S = 11/2. The previous DFT calculations suggest
that the Fe4 has only three vibrational modes with the electron-
vibron coupling greater than unity [28].

Here, we present three electron-vibron coupling effects on
electron transport via the SMM Fe4 at low temperatures, in
a sequential electron tunneling limit [Fig. 1(c)], by using a
model Hamiltonian with DFT-calculated magnetic anisotropy
parameters, vibrational energies, and electron-vibron coupling
strengths. Firstly, the height of vibrational conductance peaks
shows a strong, unusual dependence on the direction and
magnitude of applied B field. This B-field dependence is
attributed to the magnetic anisotropy barrier that is of the
same order of magnitude as the energies of the vibrational
modes with significant electron-vibron coupling. Without the
magnetic anisotropy, the conductance peaks would be insen-
sitive to the B-field direction. Secondly, satellite conductance
peaks of magnetic origin exhibit a unique B-field evolution
depending on the direction of B field. At low B fields, the
low-bias satellite peak arises from the magnetic levels in
the vibrational ground state only, while at high B fields,
the levels in the vibrational excited states contribute to the
satellite peak as much as those in the vibrational ground state,
because the separation between the levels becomes comparable
to the vibrational excitations. Thirdly, when multiple modes
with significant electron-vibron coupling (1 < λ < 2) have
energies close to one another, the low-bias conductance peak
and the B-field dependence of the conductance peaks reveal
qualitatively different features from the case of a single mode
with a similar electron-vibron coupling. A similar trend to
our findings may be observed for any anisotropic magnetic
molecules as long as the magnetic anisotropy is comparable to
the vibrational energies. This work can be viewed as a starting
point for an understanding of magnetic anisotropy effects on
electron tunneling via vibrational excitations, by using the
combined method.

The outline of this work is as follows. We present the DFT
method in Sec. II, and show our DFT results on electronic
structure and magnetic and vibrational properties of the Fe4 in

Sec. III. We introduce the model Hamiltonian and a formalism
for solving the master equation in Sec. IV, and discuss
calculated transport properties of the Fe4 as a function of gate
voltage, temperature, and applied B field in Sec. V. Finally,
we make a conclusion in Sec. VI.

II. DFT CALCULATION METHOD

We perform electronic structure calculations of an iso-
lated Fe4 molecule using the DFT code, NRLMOL [42],
considering all electrons with Gaussian basis sets within
the generalized-gradient approximation (GGA) [43] for the
exchange-correlation functional. To reduce the computational
cost, the Fe4 molecule [41] is simplified by replacing the
terminating CH3 groups by H atoms, and by substituting
the phenyl rings (above and below the plane where the
Fe ions are located) with H atoms. Figure 1(a) shows the
simplified Fe4 molecule with C2 symmetry. Without such
simplification, vibrational modes would not be obtained within
a reasonable computation time. It is confirmed that this
simplification does not affect much the electronic and magnetic
properties of the Fe4 molecule (Sec. III A). The phenyl rings
are known to have high-frequency vibrational modes (about
600–1000 cm−1) [44], while the electron-vibron coupling is
significant for low-frequency vibrational modes. Therefore
the replacement of the phenyl rings by H would not affect
our calculation of electron-vibron coupling strengths for low-
frequency vibrational modes. The total magnetic moments of
the neutral and charged Fe4 molecules are initially set to 10μB

and 9μB , respectively, and they remain the same after geometry
relaxation. The geometries of the neutral and charged Fe4

molecules are relaxed with C2 symmetry, until the maximum
force is less than 0.009 eV/Å, or 0.000 18 Ha/aB , where aB is
the Bohr radius. For the relaxed geometry of the neutral Fe4,
we calculate vibrational or normal modes within the harmonic
oscillator approximation, using the frozen phonon method
[42]. We also calculate the magnetic anisotropy parameters
for the neutral Fe4 molecule by considering spin-orbit coupling
perturbatively to the converged Kohn-Sham orbitals and orbital
energies obtained from DFT, as implemented in NRLMOL

[42,45].
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FIG. 2. (a) Majority- and (b) minority-spin total and projected
density of states onto the center Fe and outer Fe sites and onto all O
atoms of the Fe4 molecule shown in Fig. 1(a). The midpoint between
the HOMO and the LUMO levels is set to zero. The arrows in the
bottom panel of (b) indicate the HOMO and LUMO levels. Obtained
from the neutral Fe4.

III. DFT RESULTS: ELECTRONIC, MAGNETIC,
AND VIBRATIONAL PROPERTIES

A. Electronic and magnetic properties

Our DFT calculations show that the neutral Fe4 molecule
with S = 5 has an energy gap of 0.87 eV between the
lowest unoccupied molecular orbital (LUMO) and the highest
occupied molecular orbital (HOMO) levels. The HOMO level
is doubly degenerate, while the doubly degenerate LUMO + 1
level is separated from the LUMO level by 0.05 eV. The
LUMO arises from the outer Fe ions with the minority spin
(spin down) at the vertices of the triangle [Fig. 1(a)], while
the HOMO from the center Fe ion with the minority spin,
as shown in Fig. 2. The O orbital levels are found at the

same energies as the Fe orbital levels. The contributions of
the C and H atoms to the HOMO and LUMO are negligible.
The majority-spin HOMO is 0.08 eV below the minority-spin
HOMO, and the majority-spin LUMO is 0.23 eV above
the minority-spin LUMO. The calculated electronic structure
suggests that when an extra electron is added to the Fe4

molecule, the electron is likely to go to the minority-spin outer
Fe sites. Thus the total spin of the charged Fe4 is expected to
be S = 9/2, which is consistent with our DFT calculation and
experimental data [40]. Furthermore, we calculate the uniaxial
(D) and transverse magnetic anisotropy (E) parameters for the
neutral Fe4, finding that D = 0.056 meV and E = 0.002 meV,
respectively. These values are in good agreement with the
experimental values, D = 0.056 and E = 0.003 meV [40]
and the previous DFT-calculated result [46]. The calculated
magnetic anisotropy barrier for the neutral Fe4 is 16.2 K
(∼1.4 meV) [Fig. 1(b)], in good agreement with experiment
[40,41]. The calculated zero-field splitting is 0.5 meV, which
is an energy difference between the two lowest doublets in the
absence of external B field.

The electronic structure study of the charged Fe4 molecule,
however, provides a HOMO-LUMO gap of 0.06 eV, which
agrees with the previous DFT result [46]. This small gap is
partially due to the degenerate LUMO levels and partially
attributed to delocalization of the extra electron over the Fe4 (or
difficulty in localization of the extra electron). The latter arises
from an inherent limitation of DFT caused by the absence
of self-interaction corrections [47]. The magnetic anisotropy
parameters are highly sensitive to the HOMO-LUMO gap and
the location of the extra electron in the Fe4. Therefore in our
transport calculations (Sec. V), for the charged Fe4 molecule,
we use the DFT-calculated relaxed geometry but not the DFT-
calculated magnetic anisotropy parameter values.

B. Vibrational spectra and electron-vibron coupling

We obtain total and projected Raman and infrared spectra
by applying the scheme in Ref. [48] to the DFT-calculated
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FIG. 3. Calculated (a) Raman and (b) infrared vibrational spectra of the neutral Fe4 molecule with projections onto all Fe, all O, all C and
H atoms replacing the phenyl rings, and the peripheral C and H atoms. The scales of the horizontal axes in (a) differ from those in (b).
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FIG. 4. (Color online) (a) Calculated electron-vibron coupling strength vs vibrational energy with an inset of several low-frequency
vibrational modes. (b) Vibrational mode “b” and (c) vibrational mode “c” marked in (a), where the arrows represent in-plane displacements and⊙

and
⊗

are the positive and negative out-of-plane displacements, respectively. In (b) and (c), the vertical dashed lines are the C2 symmetry
axes. (a) and (c) are adapted from Ref. [28].

vibrational modes of the neutral Fe4 (Fig. 3). There are 16
nonzero frequency normal modes below 50 cm−1 (or 6.2 meV),
among which the lowest-energy mode has a frequency of
14.7 cm−1. These low-frequency modes are all Raman active
[Fig. 3(a)], and they involve with vibrations of Fe atoms and O
and C atoms in the peripheral area. We compare our calculated
Raman spectra with experimental data in Ref. [49]. The
experimental Raman spectrum is for a crystal of Fe4 molecules
with slightly different ligands and only for high-frequency
modes (>200 cm−1). The experimental Raman peaks appear
at 257, 378, 401, 413, 511, 539, and 590 cm−1, and they
are all involved with Fe-O-Fe vibrations or stretch. The
corresponding DFT Raman peaks are found at 255, 345, 393,
414, 482, and 542 cm−1, except for 590 cm−1. Note that these
peaks have much lower intensities than the 16 lower-frequency
modes, so that some of them are not visible in the scales of
Fig. 3(a). Infrared-active modes [Fig. 3(b)] have much higher
frequencies than the Raman active modes.

For each vibrational mode, the dimensionless electron-
vibron coupling strength is given by [28,38,39]

λ =
√

ω

2�
�T M(R0 − R1), (1)

where ω is the angular frequency of the mode, M is a diagonal
square matrix of atomic masses, and �T is a transpose of
the mass-weighted normal-mode column eigenvector with
�T M� = 1. Here, R0 and R1 are column vectors representing
the coordinates of the neutral and charged Fe4 relaxed geome-
tries, respectively. The relaxed geometries are translated and
rotated such that |R0 − R1| is minimized. Figure 4(a) shows
the calculated value of λ as a function of vibrational energy �ω.
It is found that there are only three normal modes with λ > 1,
specifically modes of �ω = 2.0, 2.5, 3.7 meV with λ = 1.27,
1.33, 1.46, respectively [28]. The mode “b” in Fig. 4(b) is
antisymmetric about the C2 symmetry axis, while the mode
“c” in Fig. 4(c) is symmetric about the C2 symmetry axis.

IV. MODEL HAMILTONIAN AND MASTER EQUATION

In this section, we present the formalism to calculate
transport properties from the model Hamiltonian, adapted from

Refs. [30,31] to include the molecular spin Hamiltonian and
the multiple vibrational modes.

A. Model Hamiltonian

We consider the following model Hamiltonian H = Hel +
Hmol + Ht:

Hel =
∑

α=L,R

∑
k,σ

εα
k,σ a

α†
k,σ aα

k,σ ,

(2)
Ht =

∑
α=L,R

∑
k,σ

(
t�αc†σ aα

k,σ + tαa
α†
k,σ cσ

)
,

Hmol = −DN

(
S(N)

z

)2 + (ε − eVg)
∑

σ

c†σ cσ + gμB
�S(N) · �B

+
∑

i

�ωid
†
i di +

∑
i

λi�ωi(d
†
i + di)

∑
σ

c†σ cσ , (3)

where a
α†
k,σ and aα

k,σ are creation and annihilation operators for
an electron at the electrode α with energy εα

k,σ , momentum
�k, and spin σ . Here, c†σ and cσ are creation and annihilation
operators for an electron with spin σ at the molecular orbital
ε or the LUMO. The parameter t�α in Ht describes electron
tunneling from the electrode α to the SMM. Symmetric
tunneling is assumed such that tL = tR . InHmol, DN (>0) is the
uniaxial magnetic anisotropy parameter for the charge state N

with the total spin S(N). The transverse magnetic anisotropy
is neglected, since the uniaxial magnetic anisotropy and an
applied magnetic field are much greater than the transverse
anisotropy. A charging energy of the Fe4 is about 2.3 eV based
on our DFT calculation, and experimental conductance maps
show only two Coulomb diamonds [13,28,40]. Therefore we
consider only two charge states: the neutral (N = 0) state with
S = 5 and the singly charged (N = 1) state with S = 9/2.
The second and third terms in Hmol represent changing the
orbital energy by gate voltage Vg and the Zeeman energy with
g = 2, respectively. The second line in Hmol comprises (a) the
energies of independent harmonic oscillators with vibrational
angular frequencies ωi and (b) the coupling between electric
charge and vibrational modes with coupling strengths λi . Here,
d
†
i and di are creation and annihilation operators for the ith
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quantized vibrational mode or vibron. It is assumed that the
vibrational frequencies are not sensitive to the charge state of
the Fe4.

For a weak coupling between the electrodes and the SMM,
Ht is a small perturbation to Hel and Hmol. Thus a total wave
function |�〉 can be written as a direct product of a wave
function of the electrode α, |	α〉, and the molecular eigenstate
|q〉. Based on the Born-Oppenheimer approximation, the latter
can be given by |ψN

m,q〉 ⊗ |nq〉, where |ψN
m,q〉 describes an

electronic charge and magnetic state and |nq〉 is a vibrational
eigenstate of the SMM with nq vibrons. For p vibrational
modes, nq = n1 + n2 + · · · + np, where ni is a quantum
number of the ith vibrational mode.

When the SMM is charged, the electron-vibron coupling
gives rise to off-diagonal terms in the vibrational part of
the Hmol matrix. These terms can be eliminated by apply-
ing a canonical transformation [30,31] to the Hamiltonian,
such as eŶ Ôe−Ŷ , where Ô is an observable operator and
Ŷ ≡ −∑

i λi(d
†
i − di)

∑
σ c†σ cσ . After the transformation, the

molecular Hamiltonian becomes diagonal with respect to the
new vibron creation and annihilation operators d

′,†
i and d ′

i ,
where d ′

i = di + λi

∑
σ c†σ cσ . The canonical transformation

shifts ε to ε′ = ε − ∑
i λ

2
i �ωi , while tα is modified to

tαexp[−∑
i λi(d

†
i − di)]. This energy shift corresponds to a

shift of polaron energy caused by adjustment of the ions fol-
lowing the electron tunneled to the molecule. Henceforth, we
drop all primes in the operators, parameters, and Hamiltonians.

B. Transition rates

In the sequential tunneling limit [Fig. 1(c)], we write
transition rates Ri→f from the initial state |�i〉 to the final
state |�f 〉, to the lowest order in Ht, as

Ri→f = 2π

�
|〈�f |Ht|�i〉|2δ(Ef − Ei), (4)

Ht =
∑

α=L,R

∑
k,σ

(
t�αX̂†c†σ aα

k,σ + tαX̂a
α†
k,σ cσ

)
,

(5)

X̂ ≡ exp

[
−

∑
i

λi(d
†
i − di)

]
,

where Ef and Ei are the final and initial energies, andHt is the
new tunneling Hamiltonian after the canonical transformation.
In these rates, we integrate over the degrees of freedom of the
electrodes and take into account the thermal distributions of
the electrons in the electrodes by the Fermi-Dirac distribution
function f (E). Then the transition rates can be written in terms
of degrees of freedom of the SMM only [30].

Let us first discuss transition rates γ
q→r
α from a magnetic

level in the N = 0 state |q〉 = |ψN=0
M,q ,nq〉 to a level in the

N = 1 state |r〉 = |ψN=1
m,r ,nr〉, i.e., electron tunneling from the

electrode α to the SMM. The rates are given by

γ q→r
α =

∑
σ

Wσ,α
q→rf (ε̄ − μα)Fnq ,nr

, (6)

where Wσ,α
q→r and Fnq ,nr

represent transition rates associated
with the electronic and nuclear degrees of freedom, respec-
tively. Here, ε̄ is defined to be εN=1

m − εN=0
M + (nr − nq)�ω

for a single vibrational mode, where εN
m,M contain orbital and

magnetic energies of the SMM for the charge state N . For
multiple vibrational modes, indices for individual modes are
introduced in nq and nr , following the scheme in Refs. [50–52].
The chemical potential of the left and right electrodes are
μL = −μR = eV/2, where V is a bias voltage. In Eq. (6),
f (ε̄ − μα) is included in the transition rates since electrons
tunnel from the electrode α. We discuss the electronic and
nuclear parts of the rates separately.

The electronic part of the rates is given by

Wσ,α
q→r = 2π

�
Dα

σ |tα|2∣∣〈ψN=1
m,r

∣∣c†σ ∣∣ψN=0
M,q

〉∣∣2
, (7)

∣∣ψN=0
M,q

〉 =
∑

l

ul|S = 5,Ml〉, Ml = −5,−4, . . . ,4,5, (8)

∣∣ψN=1
m,r

〉 =
∑

j

vj |S = 9/2,mj 〉,
(9)

mj = −9/2,−7/2, . . . ,7/2,9/2,

where Dα
σ is the density of states of the electrode α near

the Fermi level EF , which is assumed to be constant and
is independent of α and σ . The initial and final electronic
states of the SMM, |ψN=0

M,q 〉 and |ψN=1
m,r 〉, can be expressed as a

linear combination of the eigenstates of Sz for S = 5 and 9/2,
respectively. The matrix elements 〈ψN=1

m,r |c†σ |ψN=0
M,q 〉 in Wσ,α

q→r

dictate selection rules such as |M − m| = 1/2 and �N =
±1, and they are evaluated by using the Clebsch-Gordon
coefficients.

The nuclear part of the rates, Fnq ,nr
, is called the Franck-

Condon factor [30], and it is symmetric with respect to the
indices. The factor is defined to be |Jnq ,nr

|2, where Jnq ,nr
is

an overlap matrix between the nuclear wave functions of the
N = 0 and N = 1 states [30,39,50], i.e.,

Jnq ,nr
= 〈nr |X̂|nq〉. (10)

In the case of p vibrational modes, for nq = nr = 0, it is known
that

J0,0 = exp

(
−

p∑
k=1

λ2
k

/
2

)
, F0,0 = exp

(
−

p∑
k=1

λ2
k

)
. (11)

For the rest of nq and nr values, the overlap matrix elements
can be found by applying the following recursion relations
[51,52]:

Jn,n′ = − λi√
ni

Jni−1 +
√

n′
i√

ni

Jni−1,n′
i−1 (ni > 0), (12)

Jn,n′ = λi√
n′

i

Jn′
i−1 +

√
ni√
n′

i

Jni−1,n′
i−1 (n′

i > 0), (13)

where n = (n1, . . . ,np) and n′ = (n′
1, . . . ,n

′
p). In Jni−1, the

quantum number ni is lowered by one with the rest of the
quantum numbers fixed, while in Jni−1,n′

i−1, both quantum
numbers ni and n′

i are lowered by one with the rest fixed. For
example, for a single vibrational mode, we find that J0,1 =
λe−λ2/2 and F0,1 = λ2e−λ2

.
Now we discuss the transition rates γ

r→q
α from the N = 1

state |r〉 = |ψN=1
m,r ,nr〉 to the N = 0 state |q〉 = |ψN=0

M,q ,nq〉,
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i.e., electron tunneling from the SMM to the electrode α.
Similarly to Eq. (6), the rates are given by

γ r→q
α =

∑
σ

Wσ,α
r→q[1 − f (ε̄ − μα)]Fnr ,nq

, (14)

where 1 − f (ε̄ − μα) appears since an energy level ε̄ − μα

must be unoccupied for an electron to tunnel back to the
electrode α.

C. Master equation

A probability Pq of the molecular state |q〉 being occupied,
satisfies the master equation

dPq

dt
= −Pq

∑
α=L,R

∑
r

γ q→r
α +

∑
α=L,R

∑
r

γ r→q
α Pr, (15)

where the summation over r runs for the orbital, magnetic,
and vibrational degrees of freedom. The first (second) term
sums up all allowed transitions from (to) the state |q〉.
We assume that the vibrons are not equilibrated, in other
words, they have a long relaxation time. For steady-state
probabilities Pq , we solve dPq/dt = 0 by applying the
bi-conjugate gradient stabilized method [50,53]. Starting with
the Boltzmann distribution at V = 0 as initial probabilities,
we achieve a fast convergence to the steady-state solution for
nonzero bias voltages. Finally, we compute the current Iα from
the electrode α to the SMM using the steady-state probabilities
and transition rates,

Iα=L,R = e
∑
q,r

γ |N=0,q〉→|N=1,r〉
α Pq

− e
∑
q,r

γ |N=1,r〉→|N=0,q〉
α Pr, (16)

where the sums over q and r run for all the orbital, magnetic,
and vibrational indices. In our setup, the current is positive
when an electron tunnels from the left electrode to the
SMM (or from the SMM to the right electrode), while it
is negative when an electron tunnels from the SMM to
the left electrode (or from the right electrode to the SMM). The
total current I = (IL − IR)/2. For symmetric coupling to the
electrodes, we have that IL = −IR . A differential conductance
dI/dV is computed numerically from current-voltage (I -V )
characteristics by using a small bias interval of �V = 0.01 or
0.05 mV.

V. RESULTS AND DISCUSSION:
TRANSPORT PROPERTIES

We present the I -V characteristics and dI/dV versus V as a
function of Vg , temperature T , and applied B field, obtained by
solving the master equation Eq. (15) with the DFT-calculated
parameter values. We use DN=0 = 0.056 meV and DN=1 =
0.062 meV. The value of DN=1 is chosen to be 10% greater than
the value of DN=0, which is consistent with the experimental
data [40]. We consider up to 9 vibrons (n = 9), which is large
enough that the transport properties do not change with a
further increase of n in the ranges of V and Vg of interest. The
level broadening � = 2πD|t |2 is taken as 0.01 meV, which

satisfies that � � kBT , �ω. In the sequential tunneling limit,
the � value plays a role of units in the current and conductance.

Regarding the electron-vibron coupling, we consider two
cases: (i) a single vibrational mode with λ > 1, such as �ω =
2.0 meV with λ = 1.27 [Fig. 4(c)], and (ii) three vibrational
modes with λ > 1, such as �ω1,2,3 = 2.0, 2.5, 3.7 meV with
λ1,2,3 = 1.27, 1.33, 1.46 [inset of Fig. 4(a)], which are only
modes with λ > 1 from the DFT calculation (Sec. III B).
The case (i) is an instructive example of the electron-vibron
coupling. The case (ii) approximates to the case that all of
the vibrational modes are included in Hmol, Eq. (3), since the
modes with λ < 1 would not significantly contribute to the
sequential tunneling at low bias. This is justified because of
their exponential contributions to the Franck-Condon factor,
Eq. (11). We also confirm that this is the case from actual
calculations of the I -V and dI/dV with an additional low-λ
normal mode to the case (ii). We first present the basic features
and magnetic-field dependencies of the conductance peaks for
the case (i) and then those for the case (ii).

A. Case (i): Basic features

Figures 5(a)–5(d) show the I -V curve and dI/dV vs V

for the case (i) at T = 1.16 and 0.58 K (∼0.05 meV), for
the gate voltage where the lowest magnetic levels of the
N = 0 and 1 charge states are degenerate at zero bias, i.e.,
charge degeneracy point. This gate voltage is set to zero.
The steps in the current and the dI/dV peaks appear at
V = 2n�ω (n = 0,1,2, . . .), where the factor of 2 is due to
the symmetric bias application [Fig. 1(c)]. The first peak at
V = 0 arises from the vibrational ground state (n = 0), while
the second and third peaks at V = 4.0 and 8.0 mV come from
vibrational excitations (n = 1 and 2), respectively. Figures 6(a)
and 6(b) reveal dI/dV (=G) maps as a function of V and
Vg , i.e., stability diagrams, at 1.16 and 0.58 K, respectively.
Here, the Coulomb diamond edges arise from the sequential
tunneling via the lowest doublets in the n = 0 state, while the
evenly spaced peaks parallel to the Coulomb diamond edges
originate from the vibrational excitations. As T is lowered,
overall features of the peaks do not change, while the peaks
become sharper with more apparent fine structures.

We now analyze the heights of the dI/dV peaks at 0.58 K
in detail [Fig. 5(d)]. The dI/dV peak height decreases
as n increases. This implies that the sequential tunneling
via the vibrational ground states is dominant over the
tunneling via the vibrational excitations for λ = 1.27. This
feature qualitatively differs from the case (ii) (Sec. V C).
A peak height at a fixed temperature is determined by the
Franck-Condon factor, the electronic part of the transition
rates, and the occupation probabilities. We introduce
simplified notations for transitions between the N = 0
and 1 states: (n,n′) ≡ {|ψN=0

M 〉 ⊗ |n〉 → |ψN=1
m 〉 ⊗ |n′〉,

|ψN=0
M 〉 ⊗ |n〉 ← |ψN=1

m 〉 ⊗ |n′〉, |ψN=0
M 〉 ⊗ |n′〉 →

|ψN=1
m 〉 ⊗ |n〉, |ψN=0

M 〉 ⊗ |n′〉 ← |ψN=1
m 〉 ⊗ |n〉} ≡ {(n →

n′),(n ← n′),(n′ → n),(n′ ← n)}. Here, (n,n′) contain all
possible tunneling paths including all magnetic levels allowed
by the selection rules. Several values of the Franck-Condon
factor for (n,n′), are listed in Table III in Appendix.

Figure 5(f) shows contributions of different transitions
(n,n′) to the first, second, and third peak heights, G(n,n′)

p . For the

125419-6



ELECTRON-VIBRON COUPLING EFFECTS ON ELECTRON . . . PHYSICAL REVIEW B 91, 125419 (2015)

0

1

2

En
er

gy
 (m

eV
)

0

1

2

0.2

0.24

0.28

+5-5 +9/2-9/2

+4

-4

+7/2-7/2

+4

-4

+5-5
+9/2-9/2

+7/2-7/2

N=0,n=0 N=1,n=0

N=0,n=1 N=1,n=1

N=0,n=0
-5 +5

-4 +4

+9/2-9/2

+7/2-7/2

+9/2-9/2

+7/2-7/2

N=1,n=1N=0,n=1
-4 +4

-5 +5

Transition k
(0  1)

N=1,n=0
(0  1) (1  0) (1  0)

G
pk /Σ

kG
pk

(g) (h) (i)

0 4 8
0

0.2

0.4

0.6

cu
rr

en
t (

nA
)

0 4 8
0

0.2

0.4

0.6

0 4 8
bias (mV)

0

400

800

G
 =

 d
I/d

V
 (n

S)

(0,0)(0,1)(0,2)(1,1)(1,2)(2,2)(1,3)
-400

0

400

800
1st main
2nd main
3rd main

0

2

4

En
er

gy
 (m

eV
)

0 4 8
bias (mV)

0

400

800

(a)

(b) (d)

(c) (e)

(f)

Transition j

N=0, n=0

n=2

n=1

n=2

n=1

N=1, n=0

G
pj  (n

S)

-5

-5

-5

5

5

5

9/2

9/2

9/2

-9/2

-9/2

-9/2

FIG. 5. (Color online) Calculated I -V and dI/dV vs V at the charge degeneracy point for the case (i) at T = 1.16 K [(a) and (b)] and
T = 0.58 K [(c) and (d)]. (e) Magnetic energy levels in the vibrational n = 0, 1, and 2 states for the two charge states N = 0 and 1. For each
set of the magnetic levels, the left column, the center, and the right column correspond to the levels M < 0, M = 0, and M > 0, respectively.
(f) Contributions of different transitions j to the first (leftmost), second, and third main dI/dV peak heights in (d). See the main text for the
definitions of the transitions (n,n′). (g) and (h) Dominant transition pathways for the transitions (0 → 1) and (1 → 0). (i) Contributions of
transitions k within the transitions (n = 0, n′ = 1) to the height of the second main peak in (d).

first peak height, only transitions (n = 0,n′ = 0) contribute.
Resonant tunneling occurs via the lowest doublets (M = ±5
and m = ±9/2) in the n = 0 state because they are only

FIG. 6. (Color online) Calculated dI/dV maps as a function of
V and Vg for the case (i) at (a) T = 1.16 and (b) 0.58 K.

occupied levels at 0.58 K. The zero-field splitting is one order
of magnitude larger than the thermal energy, and so levels
other than the doublets are not occupied [Figs. 1(b) and 5(e)].

Regarding the second peak height, transitions (n = 0, n′ =
1) dominantly contribute, while transitions (n = 1, n′ = 1)
slightly involve in the tunneling [Fig. 5(f)]. In this case,
all the levels in the n = 0 state and some low-lying levels
in the n = 1 are occupied. At V = 4.0 mV, the transitions
(n = 0, n′ = 0) lower the second peak height because the
occupation probabilities of the levels in the n = 0 state differ
from those in the case of zero bias. When all the contributions
are summed, the second peak is found to have a smaller height
than the first peak. Let us discuss in detail the tunneling
via (n = 0, n′ = 1) at V = 4.0 mV. The contributions of
(n = 0, n′ = 1) can be decomposed into those of (0 → 1),
(0 ← 1), (1 → 0), and (1 ← 0), as shown in Fig. 5(i). The
transition (0 ← 1) gives the highest peak value Gp among
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the four transitions. In the case of (0 → 1), as shown in Fig.
5(g), each of the levels M = ±4,±3,±2,±1,0 in the n = 0
state can tunnel to two m levels in the n = 1 state, such as
M = −4 in the n = 0 state to m = −7/2,−9/2 in the n = 1
state, but the lowest level M = 5 (M = −5) in the n = 0
state can transit only to one m level in the n = 1 state such
as m = 9/2(m = −9/2). However, for the reverse transition,
(0 ← 1), each of all levels in the n = 1 state can tunnel to
two M levels in the n = 0 state. In addition, the separation
between the level m = −9/2 in the n = 1 state and the level
M = −4 in the n = 0 state is �ω − 9D0, which is less than
�ω. These two factors are the reasons that the contribution
of (0 ← 1) to the Gp is higher than that of (0 → 1). An
interesting case is the transition (1 → 0) shown in Fig. 5(h).
In this case, two of the allowed transitions require a higher
bias voltage than 4.0 mV. The energy difference between the
level M = −4 (M = 4) in the n = 1 state and the level m =
−9/2 (m = 9/2) in the n = 0 state is �ω + 9D0. This energy
difference prevents the levels M = ±4 in the n = 1 state from
being significantly occupied at eV/2 = �ω. As a consequence,
the transition (1 → 0) participates in the tunneling much less
than the other three transitions, as confirmed in Fig. 5(i).

For the third peak height, transitions (n = 0, n′ = 2) play
a leading role, with considerable contributions of transitions
(n = 1, n′ = 3) and (n = 2, n′ = 2) [Fig. 5(f)]. At V =
8.0 mV, all the levels in the n = 0 and 1 states as well as some
low-lying levels in the n = 2 and 3 states are involved in the
tunneling. The occupation of the levels in the n = 2 and 3 states
significantly modifies the occupation of the levels in n = 0 and
1 states compared to the case of V = 4.0 mV. Accordingly, this
modification causes the transitions (n = 0, n′ = 0) and (n = 0,
n′ = 1) to contribute to the third peak height less than in the
case of V = 4.0 mV. Overall, when all the contributions are
added, the third peak has a smaller height than the second peak.

We now examine the magnetic anisotropy effect on the
dI/dV map at 0.58 K, as shown in Figs. 5(d) and 6(b). The
small (or satellite) peak at 1.0 mV and the flat shoulders
around the second and third main peaks in Fig. 5(d), are
signatures of the magnetic anisotropy. Since the zero-field
splitting (0.5 meV) is a maximum energy difference between
adjacent levels for a given N and n state, at a bias voltage of 1.0
mV, all M and m levels in the n = 0 state are accessible. Thus
all the levels in the n = 0 state are equally occupied and they
contribute to the satellite peak at 1.0 mV. Additional satellite
peaks are not found despite increasing a bias voltage, until
some low-lying levels in the n = 1 state become occupied.
The left-hand (right-hand) shoulder of the second main peak
in Fig. 5(d) is attributed to tunneling to the lowest doublet in
the n = 1 (n = 2) state barely occupied.

B. Case (i): Magnetic field dependence

Figures 7(a) and 7(b) are stability diagrams for the case
(i) at 0.58 K for Bz = 8.0 T and Bx = 8.0 T, respectively. The
zero-bias charge degeneracy for Bz = 8.0 T and Bx = 8.0 T
occurs at the gate voltage of 0.61 and 0.46 mV, respectively,
due to the Zeeman energy. With an external B field, it is found
that the Coulomb diamonds are simply horizontally shifted
from the zero B-field case, in other words, that the positions
of the main dI/dV peaks remain the same relative to the
charge degeneracy point. Compare Figs. 7(a) and 7(b) with
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FIG. 7. (Color online) Calculated dI/dV values as a function of
V and Vg for the case (i) at T = 0.58 K for Bz = 8 T (a) and Bx = 8
T (b). (c) and (d) Computed dI/dV vs V at the charge degeneracy
point in (a) and (b), respectively.

Fig. 6(b). Figures 7(c) and 7(d) exhibit the dI/dV vs V at
the charge degeneracy point for Bz = 8.0 T and Bx = 8.0 T,
respectively. Compare Figs. 7(c) and 7(d) with Fig. 5(d). The
shift of the main peaks was observed in experiment [28], and
it is consistent with the vibrational origin of the main peaks.

A further comparison between Figs. 7(c) and 7(d) with
Fig. 5(d) reveals two interesting aspects of the B-field
dependence of the peaks. (1) The heights of the main peaks
are greatly modified with the direction as well as magnitude of
applied B field, which is a signature of the magnetic anisotropy.
(2) Both the positions and the heights of the satellite peaks
strongly depend on the direction and magnitude of applied B

field. Note that the two effects are found because the magnetic
anisotropy barrier or the zero-field splitting is on the same
order of magnitude as the vibrational energy. In this section,
we present features of the main peak height for the case (i) as
a function of B field followed by those of the positions and the
heights of the satellite peaks, by considering two B-field ori-
entations (z and x axes) for 0 � B � 24.0 T. Our calculations
are carried out at 0.58 K and at a gate voltage corresponding
to the charge degeneracy point for each B-field value.

1. Bz-field dependence of main peaks

Figure 8(a) shows a ratio of the peak height Gp at Bz = 0 to
that at zero B, Gp(B)/Gp(0), as a function of Bz, for the first,
second, and third main peaks. The heights of the second and
third main peaks decrease abruptly at low B and they remain
unchanged until about 12.0 T, above which there appear large
steep rises in the heights. The effect of Bz is greater on the ratio
of the third peak height than on the ratio of the second peak
height. However, the first peak height does not change with Bz

field because only the lowest levels (M = −5, m = −9/2) in
the n = 0 state participate in the tunneling even for Bz = 0.

Firstly, we study the Bz-field dependence of the second peak
height by understanding how the contributions of transitions
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peaks at zero B, Gp(0), computed at Bz = 1.0, 13.0, and 15.0 T. (c) Contributions of transitions k within the transitions (n = 0,n′ = 1) to the
second peak at Bz = 0,1.0,8.0,13.0, and 14.0 T. (d) Evolution of the magnetic levels of S = 5 with Bz. (e) Dominant transition pathways for
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j to the height are modified with Bz relative to the B = 0
case, i.e., by computing [Gj

p(B) − G
j
p(B = 0)]/Gp(0), where

j = (n,n′), as shown in Fig. 8(b). It is found that the sharp
decrease of the height at low B (∼1.0 T) is mainly caused by a
large decrease of the transitions (n = 0,n′ = 1) at V = 4.0 mV.
For further analysis, we compute Gk

p(B)/
∑

k Gk
p(0) at several

Bz values, where k = (0 → 1), (0 ← 1), (1 → 0), (1 ← 0).
As shown in Fig. 8(c), the large decrease of the transitions
(n = 0,n′ = 1) at low Bz is attributed to a large decrease
of the transition (1 → 0) compared to the B = 0 case. This
decrease can be understood by examining the evolution of
the magnetic levels with Bz. At zero B, within V = 4.0 mV,
several low-lying levels, such as M = ±5, ±4 in the n =
0 (n = 1) state and m = ±9/2, ±7/2 in the n = 1 (n = 0)
state, dominantly participate in the transitions (n = 0,n′ = 1).
As Bz > 0 increases, the M,m < 0 levels are shifted down,
while the M,m > 0 levels are lifted up in energy [Fig. 8(d)].
At B field somewhat above Bz = D1/gμB = 0.54 T, the
M = 5, 4 and m = 9/2, 7/2 levels are located quite above
the M = −5, −4 and m = −9/2, −7/2 levels. Hence, within
the bias window, the M = −5, −4 levels in the n = 0 (n = 1)
state and the m = −9/2, −7/2 levels in the n = 1 (n = 0) state
dominantly contribute to the transitions (n = 0,n′ = 1), as
shown in Fig. 8(e). The separation between the M = −4 level
in the n = 1 state and the m = −9/2 level in the n = 0 state,
equals �ω + (gμBBz + 9D0). Since this separation is greater
than V/2, the occupation of the M = −4 level in the n = 1
state decreases, and the transition (1 → 0) also decreases. As

a result, the transition (n = 0,n′ = 1) considerably decreases,
which leads to the drop of the second peak height at low
B (∼1.0 T). As Bz field increases beyond 1.0 T, the separation
between the two lowest levels in a given N and n state grows.
Considering the occupation probabilities and the transition
rates, within V = 4.0 mV, the contributions of transitions
(0 → 1), (0 ← 1), (1 → 0), and (1 ← 0) remain almost the
same as the case of Bz = 1.0 T [Fig. 8(c)]. Thus the second
peak height does not decrease beyond Bz = 1.0 T. However,
the situation dramatically changes when the Bz field is high
enough that the spacing between the two lowest levels for a
given N and n state equals �ω [Fig. 8(f)]. This occurs at B =
(�ω − 9D0)/(gμB), which is 12.9 T. In this case, the M =
−4 (m = −7/2) level in the n = 0 state is degenerate with the
M = −5 (m = −9/2) level in the n = 1 state. Thus, at V =
2�ω, the occupation of the six levels within the bias window
increases compared to the case of lower Bz fields, which results
in an increase of the transition (0 → 1). Dominant tunneling
pathways are indicated in Fig. 8(f). More contributions from
the transition (0 → 1) lead to a large increase of the transitions
(n = 0,n′ = 1) at high B fields (>12.0 T). Therefore the peak
height sharply rises above 12.0 T.

Secondly, we examine the height of the third peak.
Figure 8(b) reveals that within V = 8.0 mV, at low Bz, there
appear a large decrease of transitions (n = 0, n′ = 2) and
a small decrease of transitions (n = 1, n′ = 3) and (n = 2,
n′ = 2), despite an increase of (n = 0, n′ = 1). The overall
height is governed by the transitions (n = 0, n′ = 2). Similarly
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FIG. 9. (Color online) (a) Ratio Gp(B)/Gp(B = 0) for the first, second, and third main peaks as a function of Bx for the case (i) at 0.58 K.
(b) and (c) [Gj

p(B) − Gj
p(B = 0)]/Gp(0) vs transitions j for the second and third peaks at 1.0, 3.5, 10.0, and 19.3 T. (d) Contributions of

transitions k within the transitions (n = 0, n′ = 1) to the second peak at Bx = 0,1.0,3.5,10.0, and 19.3 T. (e) Dominant transition pathways
for the second peak (V/2 = 2.0 mV) at Bz = 19.3 T, where the solid arrow indicates the pathway contributing most to the abrupt increase of
the second peak height in (a) and (b). (f) Evolution of the magnetic levels of S = 5 with Bx .

to the second peak height, (n = 0, n′ = 2) can be decomposed
into four sets such as (0 → 2), (0 ← 2), (2 → 0), and (2 ← 0).
The trend of the contribution of each of the four sets is similar
to the case of the second peak if the n = 1 state is replaced by
the n = 2 state in the explanation. At low Bz, the lift of the
degeneracy in the low-lying levels above Bz = 0.54 T drives
a large reduction of the transition (2 → 0), which results in
the rapid drop in the peak height. The peak height does not
change beyond Bz = 2.0 T, until the Bz field is increased to
the field where the spacing between the two lowest levels for
a given N and n state is comparable to �ω, similarly to the
second peak. At this B field (12.9 T), the second excited level
in the n = 0 state (M = −3 or m = −5/2) and the first excited
level in the n = 1 state (M = −4 or m = −7/2) are almost
degenerate with the lowest level in the n = 2 state (M = −5 or
m = −9/2) [Fig. 8(f)]. Hence, at V = 8.0 mV, the occupation
of the levels within the bias window substantially increases,
which gives rise to a significant increase of the transition
(0 → 2) compared to the zero B-field and low-B cases, in
other words, an increase of the transitions (n = 0, n′ = 2)
[Fig. 8(b)]. Consequently, the height of the third peak sharply
rises with Bz field before its saturation.

2. Bx-field dependence of main peaks

Figure 9(a) shows the ratio Gp(B)/Gp(B = 0) as a function
of Bx , for the first, second, and third main peaks. As Bx field
increases, the first peak height slightly decreases at low B

(2.0–3.5 T) and it returns to the value Gp(0). The heights of the
second and third main peaks have a complex Bx dependence.

The heights initially increase somewhat and they slightly
decrease at low Bx (2.0–3.5 T). Then they gradually increase
and jump up from ∼17.0 T. After reaching maxima near 19.3 T,
the heights slightly go down before saturation. The Bx-field
dependence qualitatively differs from the Bz-field dependence,
which is due to the magnetic anisotropy. Compare Fig. 9(a)
with Fig. 8(a).

Firstly, we discuss the first peak height. With a Bx field,
the magnetic eigenstates are admixtures of different Ml levels
(ml levels) for N = 0 state (N = 1 state), where Ml and ml

are the eigenstates of Sz. In contrast to the case of Bz field,
for small Bx fields, several low-lying levels for a given N and
n state remain degenerate within the thermal energy, kBT =
0.05 meV (∼0.58 K) [Fig. 9(f)]. For example, around Bx = 1.0
T (2.0 T), there are three (two) low-lying doublets for a given N

and n state [Fig. 9(f)]. However, when the Bx field increases
above 3.0 T, the degeneracy of all the levels is lifted, and
the separation between the adjacent levels grows with Bx . At
V = 0, for zero B, only the lowest doublet in the N and n = 0
state participate in the tunneling, while for Bx = 2.0–3.0 T, the
first-excited level in the N and n = 0 state slightly contributes
to the peak, which causes the small decrease of the peak height.
When the first-excited level is well separated from the lowest
level in the n = 0 state at higher Bx fields, the peak height
resumes to the Gp(0) value.

Secondly, let us examine the second peak height by
computing [Gj

p(B) − G
j
p(0)]/Gp(0), where j = (n,n′), as

shown in Fig. 9(b). It is found that the Bx-field dependence of
the peak height is mainly determined by a Bx-field dependence
of the transitions (n = 0,n′ = 1). At low Bx (∼1.0 T), for
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FIG. 10. (Color online) (a) Bz-field and (b) Bx-field evolution of the satellite conductance peaks between the first and second main peaks.
(c) and (d) Height and position of the leftmost satellite peak vs Bz with and without the electron-vibron coupling. (e) Dominant tunneling
pathways for the leftmost satellite peak at Bz = 5.0 T, where the solid magenta arrow indicates the transition determining the peak bias. (f) and
(g) Height and position of the leftmost satellite peak vs Bx with and without the electron-vibron coupling. (h) Dominant tunneling pathways
for the leftmost satellite peak at Bx = 8.0 T, where the vertical arrows indicate half of the peak bias.

V = 4.0 mV, the peak height slightly goes up, since there are
still a few degenerate pairs for a given N and n state within the
bias window. As Bx increases above 3.5 T, the degeneracy of
the levels is completely lifted, but the strong mixing between
different Ml or ml levels in the eigenstates open up more
tunneling pathways within the bias window than the Bz case.
As a result, the transition (1 → 0) used to be suppressed at
zero B field and Bz fields now increases [Fig. 9(d)]. With a
further increase of Bx , the three transitions other than (1 → 0)
increase, and so the peak height goes up. As Bx field increases
above 17.0 T, the spacing between the first-excited and the
lowest levels for a given N and n state becomes close to �ω,
which creates more tunneling paths, as indicated in Fig. 9(e).

Thirdly, we examine the height of the third peak. The
Bx-field dependence of the peak height dominantly arises
from a Bx-field dependence of the transitions (n = 0, n′ = 2),
as shown in Fig. 9(c). Within V = 8.0 mV, at Bx = 3.5 T,
the transitions (0 ← 2) and (2 ← 0) decrease as much as

transitions (0 → 2) and (2 → 0) increase, among the tran-
sitions (n = 0,n′ = 2), so that the peak height is close to the
Gp(0) value. As Bx field increases further, the low-lying levels
in the n = 0 state become close to the low-lying levels in the
n = 2 state. At 19.3 T, the second-excited level in the n = 0
state and the first-excited level in the n = 1 state are almost
degenerate with the lowest level in the n = 2 state [Fig. 9(e)].
Thus, for V = 8.0 mV, the increase in the occupation of the
levels within the bias window greatly enhances the tunneling
via the transitions (n = 0, n′ = 2) and somewhat increases
the transitions (n = 1, n′ = 3) and (n = 2, n′ = 2). Thus, the
overall peak height becomes the maximum.

3. Bz-field dependence of satellite peaks

The Bz-field evolution of the satellite peaks is shown in
Fig. 10(a). As Bz increases, interestingly, the leftmost satellite
peak and the satellite peak on the right side of the second main
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peak move toward a higher bias voltage, while the satellite peak
on the left side of the second main peak is shifted toward a
lower bias voltage. Starting from the leftmost one, the satellite
peaks are referred to as first, second, and third. Around 4.5 T,
the first and the second satellite peaks merge into one peak,
and the merged peak moves toward a higher bias voltage. The
merged satellite peak disappears above 10.0 T.

Let us focus on the field evolution of the heights and
positions of the first and the second satellite peaks. For
Bz > 0.5 T, the peak bias Vp for the leftmost satellite peak
is dictated by the separation between the two lowest levels
M = −4 and −5 (or m = −7/2 and −9/2) in the n = 0 state,
which grows linearly with Bz, i.e., Vp(B)/2 = min{(9D0 +
gμB |Bz|),(8D1 + gμB |Bz|)}, as shown in Fig. 10(d). How-
ever, the second satellite peak is governed by a bias voltage
where a few low-lying levels in the n = 1 state are just about to
be populated. The low-lying levels of the n = 1 state become
closer to the first-excited level in the n = 0 state, as Bz

increases. Therefore, with an increase of Bz, a smaller bias
voltage can induce a tiny occupation in the low-lying levels
of the n = 1 state, shifting the position of the second satellite
peak to the opposite direction to the first satellite peak. More
specifically, for Bz � 4.0 T, the tunneling between the levels in
the n = 0 state and the levels n = 1 states is prevented within
the first satellite peak bias. However, at Bz � 4.5 T, several
low-lying levels in the n = 0 and n = 1 states are sufficiently
close to one another, and so the transitions (n = 0,n′ = 1)
are allowed within the bias window [Fig. 10(e)]. Thus, for
Bz ∼ 4.5 T, the first and second satellite peaks merge, and
the transitions (n = 0,n′ = 1) begin to significantly contribute
to the merged satellite peak in addition to the transitions
(n = 0,n′ = 0). For higher Bz fields, the contributions of the
transitions (n = 0,n′ = 1) to the merged peak outweigh those
of the transitions (n = 0,n′ = 0). This explains the abrupt
large increase of the height of the merged peak and the
sudden small jump in the intercept of the Vp curve starting
from 4.5-5.0 T. Thus, the position and the height of the
leftmost satellite peak become largely deviated from the case
of without electron-vibron coupling, as shown in Figs. 10(c)
and 10(d).

We can estimate the Bz value from which the satellite peaks
begin to merge. According to the analysis of the transitions
(n = 0, n′ = 1) similar to that in Sec. V B 1, at low and
intermediate Bz fields, the transitions (0 → 1) and (0 ← 1)
contribute more than the transitions (1 → 0) and (1 ← 0),
within the bias window [Fig. 8(c)]. Therefore the minimum Bz

value where the satellite peaks merge can be determined by the
minimum bias window, which allows the transition between
the level M = −4 in the n = 0 state and the level m = −9/2
in the n = 1 state, that is, Bz = [�ω/2 − 9D0]/gμB [the solid
arrow in Fig. 10(e)]. This value is 4.3 T, which agrees with
what we find from the actual calculation of the dI/dV vs
V . The merged satellite peak, however, disappears when the
spacing between the two lowest levels for a given N and n state
is comparable to �ω, since in this case the second main peak
appears at the same bias voltage. Even though the first-excited
level in the n = 0 state is degenerate with the lowest level in
the n = 1 state at 12.9 T, the merged satellite peak cannot be
identified above 10.0 T due to the broadening of the second
main peak.

4. Bx-field dependence of satellite peaks

With a Bx field, similarly to the case of Bz field, the first
and second satellite peaks are shifted toward the opposite
directions, merging into one, until the merged peak disappears
Bx � 16.0 T, as shown in Fig. 10(b). However, the leftmost
satellite peak has the following distinctive features from the
case of Bz field. (1) The peak height forms a large protrusion
for 7.5 � Bx � 11.0 T after which it decreases to the Gp(0)
value. (2) The peak voltage remains almost flat for 7.0 � Bx <

11.0 T. (3) The peak disappears at a higher Bx field than in the
case of Bz field. Compare Figs. 10(f) and 10(g) with Figs. 10(c)
and 10(d).

We discuss the leftmost satellite peak first for Bx � 11.0 T
and then for higher Bx fields. The unique features of the Bx

dependence can be understood by examining how the Bx-field
evolution of the magnetic levels affects the satellite peaks.
For Bx � 2.0 T, several low-lying levels are still degenerate
[Fig. 9(f)], and the first satellite peak occurs when a bias
voltage is twice as large as the separation between the two
lowest doublets in the n = 0 state. For such low Bx fields,
this separation decreases with increasing Bx , and so do the
height and bias voltage of the peak. However, above 3.0 T,
the degeneracy of all the levels is lifted, and the peak voltage
is much greater than twice the separation between the two
lowest levels in the n = 0 state. This implies that above 3.0 T,
within the bias window, high-energy levels in the n = 0 state
significantly contribute to the tunneling and the peak height
increases with increasing Bx . When Bx is increased above
7.5 T, some levels in the n = 0 and n = 1 states appear close to
one another [Fig. 10(h)], and they can be accessible within the
bias window. The transitions (n = 0, n′ = 1) are now allowed
in the tunneling. Then the first and second satellite peaks merge
and the transitions (n = 0, n′ = 1) dominantly contribute to
the merged peak in addition to (n = 0, n′ = 0). We observe
the sudden large increase in the peak height. The peak height
and position are strikingly deviated from those in the case of
without electron-vibron coupling.

However, the trend of the peak height drastically changes,
as Bx field increases even further, in contrast to the case of Bz.
The level spacing continues to grow with increasing Bx . For
Bx > 11.0 T, the separation is so large that the intermediate-
energy levels in the n = 0 and 1 states used to be accessible at
lower Bx do not participate in the tunneling anymore within the
bias window. Hence, the contributions of both the transitions
(n = 0, n′ = 1) and (n = 0,n′ = 0) to the peak are highly
reduced. Therefore the peak height drops abruptly, and the
peak position is about twice as large as the spacing between
the two lowest levels in a given N and n state. Similarly to the
case of Bz, when the spacing between the two lowest levels in
the n = 0 state is comparable to �ω, the merged satellite peak
disappears. With Bx = 0, the former situation occurs around
18.0 T. Due to the broadening of the second main peak, the
satellite peak is not distinguishable above 16.0 T.

C. Case (ii): Basic features

Figures 11(a)–11(d) exhibit the I -V curve and dI/dV vs
V for the case (ii) at the charge degeneracy point for 1.16
and 0.58 K, respectively. In contrast to the case (i), we find
that the current is significantly suppressed at a low bias,
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FIG. 11. (Color online) Calculated I -V and dI/dV vs V at the charge degeneracy point for the case (ii) at 1.16 K [(a) and (b)] and 0.58 K
[(c) and (d)]. The arrows in (d) point out the peaks M2, M3, M6, M7, M9, and M11 in Table II. (e) Magnetic levels in the vibrational
ground (n = 0) and excited states p1, p2, p3, q5, and q6 for the N = 0 and 1 states. The excited states are defined in Table I. Some dominant
tunneling pathways for the second peak at V/2 = 2.0 mV are indicated as the dashed arrows. Not all dominant pathways are drawn for clarity.
(f) Contributions of different transitions j to the second and third peaks. Calculated dI/dV maps as a function of V and Vg for the case (ii) at
(g) 1.16 and (h) 0.58 K.

and that the dI/dV peak at zero bias is considerably lower
than the peaks arising from vibrational excitations marked by
arrows in Figs. 11(b) and 11(d). Compare Fig. 11(d) with 5(d).
This feature is found at both 1.16 and 0.58 K. Henceforth,
we consider the case at 0.58 K. The peaks from vibrational
excitations occur at V = 4.0, 5.0, 7.5, 8.0, 9.0, and 10.0 mV
for 0 � V � 10.0 mV, which correspond to 2�ω1, 2�ω2, 2�ω3,
4�ω2, 2(�ω1 + �ω2), and 4�ω2, respectively. In general, peaks
from vibrational excitations are found at V = ∑3

i=1 2ni�ωi ,
where n1 + n2 + n3 = n > 0. All possible vibrational states
for n = 0,1,2,3 are listed in Table I. Each of the peaks at
V = 4.0, 5.0, 7.5, 8.0, 9.0, and 10.0 mV dominantly originates
from transitions between the vibrational ground state and a
vibrational excited state, as shown in Table II. Among the
six peaks, the peak at V = 4.0 mV has the largest height.
In the bias range of interest, except for the zero-bias peak,
four additional main peaks are identified at V = 6.0, 6.5, 8.5,
and 9.5 mV [Fig. 11(d)], each of which arises dominantly

from transitions between a vibrational excited state to another
vibrational excited state, as listed in Table II. The heights of
these peaks are smaller than those of the previous six peaks,
because the vibrational excited states are poorly occupied. The
stability diagrams shown in Figs. 11(g) and 11(h) also support
the suppression of the low-bias current and its robustness with
varying Vg and T . The diagrams clearly reveal the peaks from
the vibrational excitations parallel to the Coulomb diamond
edges in the conduction region. Note that the values of λ1,2,3

do not differ much from the value of λ for the case (i), and that
the ratio of the Franck-Condon factor for the peak at 4.0 mV
to the factor at zero bias is the same for both cases, such
as F0,p3/F0,0 = F0,1/F0,0 = λ2 = λ2

1. [Several values of the
Franck-Condon factor for the case (ii) are listed in Table IV
in Appendix.] Nonetheless, the case (ii) produces an effect
similar to what was shown for a single mode with stronger
electron-vibron coupling, referred to as the Franck-Condon
blockade effect [29,30].
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TABLE I. List of all vibrational states (n1,n2,n3) and their
energies E(n1,n2,n3) (meV) for n = 0,1,2,3, where E(n1,n2,n3) =∑3

i=1 ni�ωi .

Label n1 n2 n3 n E(n1,n2,n3) 2E(n1,n2,n3)

0 0 0 0 0 0 0
p1 0 0 1 1 3.75 7.5
p2 0 1 0 1 2.5 5.0
p3 1 0 0 1 2.0 4.0
q1 0 0 2 2 7.5 15.0
q2 0 1 1 2 6.25 12.5
q3 0 2 0 2 5.0 10.0
q4 1 0 1 2 5.75 11.5
q5 1 1 0 2 4.5 9.0
q6 2 0 0 2 4.0 8.0
r1 0 0 3 3 11.25 22.5
r2 0 1 2 3 10.0 20.0
r3 0 2 1 3 8.75 17.5
r4 0 3 0 3 7.5 15.0
r5 1 0 2 3 9.5 19.0
r6 1 1 1 3 8.25 16.5
r7 1 2 0 3 7.0 14.0
r8 2 0 1 3 7.75 15.5
r9 2 1 0 3 6.5 13.0
r10 3 0 0 3 6.0 12.0

To analyze the dI/dV peak height, we separate contribu-
tions of different transitions j to the first, second, and third
main peaks (M1, M2, M3) at 0, 4.0, and 5.0 mV. As shown
in Fig. 11(f), at V = 4.0 mV, the height of the peak M2

arising solely from transitions (0,0), (0,p3), and (p3,p3), is
about 9.5 nS, and this height is smaller than the height of the
zero-bias peak M1 (∼22 nS). The fact that the former height is
smaller than the latter height, is similar to the case (i). However,
interestingly, transitions (p1,p3), (p2,p3), (p1,p2), and (p1,q5)
considerably contribute to the peak M2 with additional 22 nS,
and so the total height of the peak M2 becomes larger than
the height of the peak M1. This strikingly differs from the
case (i) where the transitions (n = 1, n′ = 1) provide only a
tiny increase of the height of the second peak [Fig. 5(f) in
Sec. V A]. The key difference between the cases (i) and (ii)
is that the latter has two additional modes whose energies
are close to that of the lowest-energy mode. At V/2 = �ω1,
the lowest levels M = ±5 or m = ±9/2 in the p3 state are
significantly occupied. Hence, for (�ω2 − �ω1) < �ω1 and
(�ω3 − �ω1) < �ω1, the transitions (p1,p3) and (p2,p3) are
also allowed [Fig. 11(e)]. Accordingly, the levels M = ±5 or
m = ±9/2 in the p2 and p1 states are somewhat occupied,
and so the transitions (p1,p2) and (p1,q5) are possible within

the bias window. A similar analysis can be carried out for
the third peak height. In this case, at V = 5.0 mV, transitions
(0,p2) play a major role in the peak height, while transitions
(p1,p2), (p2,p3), (p2,q6), and (p1,q5) provide considerable
contributions to the height [Fig. 11(f)]. The overall height of
the third peak turns out to be greater than the height of the
zero-bias peak, although it is smaller than the second peak
height. Similarly to the case (i), a satellite peak occurs at
1.0 mV and a flat shoulder appears on the left side of the second
main peak [Fig. 11(d)], which is attributed to the magnetic
anisotropy. The first (leftmost) satellite peak can be explained
similarly to the case (i).

The Franck-Condon blockade effect has recently been
observed in single-molecule transistors made of individual
Fe4 molecules [28], where the experimental data were fitted
to vibrational excitations from a single normal mode of a
nonmagnetic molecule. The experimental values of λ and
�ω were 2.0 ± 0.2 and 2.3–2.6 meV, respectively [28], and
they are in reasonable agreement with the corresponding DFT-
calculated values. With the experimental level broadening � ∼
1.0 meV, the vibrational excitations may not be individually
identified, and the calculated peaks at 4.0 and 5.0 mV could
be viewed as a single peak in the experimental data.

D. Case (ii): Magnetic field dependence

The heights of the main peaks and the heights and positions
of the satellite peaks show strong B-field dependencies
(Fig. 12), while the positions of the main peaks relative to
the charge degeneracy point do not change with B field, which
is similar to the case (i). The main peaks from the tunneling
between the levels in the n = 0 state and the low-energy vibra-
tional excited state, such as M2, M3, M6, and M9 (marked
by the arrows in Fig. 12), have still a larger height than the
zero-bias peak, independently of the orientation and magnitude
of B field. Some main peaks involved with either high-energy
vibrational excited states or close to the other main peaks, are
smeared out at some B fields. In this section, we focus on the
first, second, and third main peaks (M1, M2, M3) and the
satellite peaks between the first and second main peaks, in the
presence of Bz or Bx field at 0.58 K for the charge degeneracy
point. The height of the third main peak reveals a B-field
dependence qualitatively different from that in the case (i).
Note that the former peak dominantly arises from the tunneling
between the levels in the n = 0 state and in one of the n = 1
states (p2 state), while the latter peak mainly originates from
the tunneling between the levels in the n = 0 and 2 states. Since
some conductance features in the case (ii) are similar to those in
the case (i), we underscore results distinctive from the case (i).

TABLE II. Eleven identified main dI/dV peaks shown in Fig. 11(d) with the peak voltages Vp (in meV) and the dominant transitions. The
peak M11 at 10.0 mV arises from equally dominant two transitions (p2,q1) and (0,q3). Here, (0,p3) represents all allowed transitions such
as {|ψN=0

M 〉 ⊗ |0〉 ↔ |ψN=1
m 〉 ⊗ |p3〉} and {|ψN=0

M 〉 ⊗ |p3〉 ↔ |ψN=1
m 〉 ⊗ |0〉}. Refer to Table I for the definitions of the vibrational states in the

dominant transitions.

Label M1 M2 M3 M�
4 M�

5 M6 M7 M�
8 M9 M�

10 M11

Vp 0 4.0 5.0 6.0 6.5 7.5 8.0 8.5 9.0 9.5 10.0
Tran. (0,0) (0,p3) (0,p2) (p3,q3) (p2,q4) (0,p1) (0,q6) (p3,q2) (0,q5) (q6,r3) (0,q3)
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FIG. 12. (a)–(c) Bz-field and (d)–(f) Bx-field dependence of dI/dV vs V in the case (ii) for the charge degeneracy point at 0.58 K. The
arrows in (a) and (d) correspond to the peaks M2, M3, M6, and M9 in Table II.

1. Main peaks

As Bz field increases, the heights of the second and third
main peaks sharply decrease near 1.0 T, and then they rapidly
rise well above the Gp(B = 0) values [Fig. 13(a)]. This is in
contrast to the case (i), where the heights remain saturated
to much lower values than the Gp(0) values until about
12.0 T. Compare Fig. 13(a) with Fig. 8(a). To understand this
difference, we examine [Gj

p(Bz) − G
j
p(0)]/Gp(0) for different

transitions j = (n,n′). At 1.0 T, similarly to the case (i), the
abrupt drops of the heights of the peaks are due to the lift
of the level degeneracy, which brings a large decrease of
the dominant transitions (0,p3) at V = 4.0 mV and a large
decrease of (0,p2) for V = 5.0 mV, as shown in Figs. 13(b)
and 13(c). However, as Bz field increases, the transitions
(0,p3) [(0,p2)] and other transitions begin to contribute more
to the second (third) peak than at zero B field, since new
tunneling pathways are available from the three vibrational
modes, compared to the case (i). More specifically, within
V = 4.0 mV, the transitions (0,p3) and (p2,p3) participate in
the tunneling more at 4.0 T than at zero B, while the transitions
(0,p3) and (p1,p3) involve more at 8.0 T than at 4.0 T. Within
V = 5.0 mV, the transitions (0,p2) contribute to the third peak
more at 4.0 T than at zero B, while the transitions (0,p2),
(p1,p2), and (p2,p3) participate in the peak more at 8.0 T than
at 4.0 T.

The small bumps in the heights of the second and third
peaks at Bz = 12.9 T appear due to the same reason as
in the case (i) (Sec. V B 1). At this Bz field, the spacing
between the lowest and the first-excited levels for a given N

and n state is comparable to �ω1, such that the first-excited

level in the n = 0 state is degenerate with the lowest level in
the p3 state [Fig. 13(d)]. For V = 2�ω1, this gives rise to an
additional boost of the contributions of (0,p3) and (p1,p3) to
the second peak compared to lower Bz fields. For V = 2�ω2,
there is an increase of the contributions of (0,p2) and (p2,p3)
to the third peak. Another bump in the height of the third peak
occurs at 17.2 T, where the spacing between the lowest and the
first-excited levels for a given N and n state is now comparable
to �ω2, i.e., (�ω2/2 − 9D0)/gμB = 17.2 T.

With a Bx field, the third peak height shows an interesting
feature, although the field dependence of the heights of the
first and second main peaks is similar to that for the case (i).
The height of the third main peak drops until 3.3 T, and as
Bx increases, it goes up with three apparent bumps at 12.8,
19.3, and 23.8 T, as shown in Fig. 13(f). At the first bump,
the spacing between the second-excited level and the lowest
level for a given N and n state is comparable to �ω2, and so
the second-excited level in the n = 0 state is degenerate with
the lowest level in the p2 state [Fig. 13(e)]. For V = 2�ω2,
this leads to an increase of the transitions (0,p2), (p1,p2),
and (p2,p3), as indicated in Fig. 13(h). At the second bump,
similarly to the case (i), the first-excited level in the n = 0
state has the same energy as the lowest level in the p3 state,
giving rise to a slight increase of contributions of the transitions
(p2,p3) to the third peak, compared to lower Bx fields. At this
Bx field, a bump also appears in the height of the second peak
[Fig. 13(g)], similarly to the case (i) (Sec. V B 2). At the third
bump, the first-excited level in the n = 0 state is degenerate
with the lowest level in the p2 state. A slight increase of
transitions (0,0) brings the small bump in the third peak.
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FIG. 13. (Color online) (a) Ratio Gp(B)/Gp(0) for the first (black), second (red), and third (blue) main peaks vs Bz field for the case
(ii) at 0.58 K. Normalized changes of contributions of different transitions j , [Gj

p(Bz) − Gj
p(0)]/Gp(0), for the second (b) and the third peaks

(c) at different Bz fields. Magnetic levels of the n = 0, p1, p2, p3, q5, and q6 states for the N = 0 and 1 states at Bz = 12.9 T (d) and at
Bx = 12.8 T (e). Only the low-energy levels are shown to emphasize the low-energy region. The vertical arrow in (d) represents half of the
bias voltage for the second peak with Bz field, while the vertical arrow in (e) indicates half of the bias voltage for the third peak with Bx field.
(f) Ratio Gp(B)/Gp(0) for the first, second, and third main peaks vs Bx field for the case (ii) at 0.58 K. Changes of contributions of transitions
j , [Gj

p(Bz) − Gj
p(0)]/Gp(0), at various Bx fields for the second (g) and the third peaks (h).

2. Satellite peaks

We first discuss the case of Bz field. Figure 14(a) shows how
the satellite peaks between the first and second main peaks
evolve with Bz field. Compare Figs. 14(a), 14(c), 14(d) with
Figs. 10(a), 10(c), 10(d). Similarly to the case (i), near 4.5 T,
the leftmost satellite peak merges with the second satellite
peak, and the merged satellite peak has a large height which
is strongly deviated from the case of without electron-vibron
coupling. We find that at 5.0 T, the transitions (0,p3) and
(p2,p3) contribute to the first satellite peak as much as the
transitions (0,0) [Fig. 14(e)]. The energy difference between
the lowest levels in the p3 and p2 states is only 0.5 meV,
and the low-lying levels in the p3 state are occupied from the
transitions (0,p3). Thus the transitions (p2,p3) can participate
in the tunneling for a bias window of 2.2 mV at 5.0 T. As
Bz field further increases, more diverse types of transitions
contribute to the merged satellite peak. The merged peak height
increases to a much higher value than the case (i), although the
peak position is the same as that for the case (i). The merged
satellite peak eventually disappears above 10.0 T at 0.58 K,
attributed to the same reason as in the case (i) (Sec. V B 3).

With a Bx field, below 7.0 T, the evolution of the satellite
peaks [Fig. 14(b)] is similar to the case (i) (Sec. V B 4).

As Bx field increases, the leftmost satellite peak is shifted
toward a higher bias, while the second satellite peak moves
toward a lower bias. Interestingly, around 7.0 T, three satellite
peaks appear instead of two, while around 9.0 T, the first two
satellite peaks become merged but the third peak still survives
[Fig. 14(b)]. Then at 13.0 T, the survived two satellite peaks
are completely merged. The merged peak is shifted toward
a higher bias at higher B fields. Compare Fig. 14(b) with
Fig. 10(b) at 7.0 T and 9.0 T. Comparing with the case (i),
the leftmost peak height does not drop to the Gp(0) value
above 11.5 T. Instead it resumes to grow and reaches to a
local maximum at 13.0 T. Then the height undergoes a slight
decrease with another upturn until the merged peak disappears
above 16.0 T [Fig. 14(f)]. At the Bx fields where the height of
the leftmost satellite peak reaches to local maxima, the peak
position remains almost flat [Fig. 14(g)].

Above Bx = 7.0 T, the vibrational excited states play
an important role even in the satellite peaks. At 7.5 T,
the transitions (0,p3) contribute substantially to the leftmost
satellite peak, while at 9.0 T (at the maximum peak height),
there is a great increase of the transitions (0,p3) and (p2,p3)
compared to lower Bx fields [Fig. 14(h)]. Some dominant
transition pathways within (0,p3) are shown in Fig. 14(i).
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FIG. 14. (Color online) (a) Bz-field and (b) Bx-field evolution of the satellite peaks for the case (ii) at 0.58 K. The height (c) and position
(d) of the leftmost satellite peak vs Bz field. (e) Gj

p(B)/Gp(0) vs transitions j for the leftmost satellite peak at various Bz fields. The height
(f) and position (g) of the leftmost satellite peak vs Bx field. In (f), the arrows indicate the local minima and maxima in the height of the
leftmost satellite peak. (h) Gj

p(B)/Gp(0) vs transitions j for the leftmost satellite peak at various Bx fields. Dominant tunneling pathways for
the leftmost satellite peak at (i) Bx = 9.0 and (j) 13.0 T, where the vertical arrows indicate half of the peak bias. Only low-energy magnetic
levels are shown to emphasize the transitions in the low-energy region.

As Bx increases to 11.5 T, the transitions (0,p3) and (p2,p3)
greatly decrease, which gives rise to a drop in the peak height
[Figs. 14(f) and 14(h)]. As discussed in the case (i), above
11.5 T, the peak bias is determined by the spacing between the
two lowest levels in the n = 0 state. At 13.0 T (at the local
maximum height), the spacing between the lowest and the
first-excited level in the n = 0 state is comparable to the energy

difference between the first-excited level in the n = 0 state and
the lowest-level in the p2 state [vertical arrows in Fig. 14(j)].
Thus, at this B field, the transitions (0,p2) and (p1,p2) increase
and they contribute to the satellite peak height. Dominant
transition pathways among (0,p2) and (p1,p2) are shown
in Fig. 14(j). The merged satellite peak disappears above
16.0 T.
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VI. CONCLUSION

We have shown that magnetic anisotropy provides new fea-
tures concerning electron-vibron coupling in electron transport
through single anisotropic molecules such as the SMM Fe4.
The heights of the vibrational conductance peaks show an
unusual B-field dependence at low temperatures. When the
current flows via the vibrational excited states of the Fe4,
the magnetic levels in the vibrational ground and excited
states participate in the tunneling. The separation between
the magnetic levels strongly depends on the direction and
magnitude of applied B field, and so the occupation of the
levels and transition rates between them are accordingly
modified with B field. As a result, the vibrational conductance
peaks are highly influenced by the direction as well as
magnitude of the applied B field. Interestingly, when the two
lowest levels in the n = 0 state are separated by about the
vibrational energies at high B fields, a sudden large jump in
the peak height is expected. Moreover, the magnetic anisotropy
introduces satellite conductance peaks whose position and
height are varied with the direction and magnitude of the
applied B field. At zero B field, the low-bias satellite peak
originates from the current via the magnetic levels in the
vibrational ground states only, while at intermediate B fields,
the levels in the vibrational first-excited state start to contribute
to the satellite peak. Another interesting point is the effect
of multiple strong electron-vibron coupled modes whose
energies are close to one another. For such multiple modes, the
vibrational conductance peaks are greatly enhanced compared
to a single mode with the similar electron-vibron coupling.
Our findings may be extended to studies of spin-vibron
coupling effects, higher-order tunneling processes, and many-
spin model Hamiltonian in transport via individual anisotropic
molecules.

So far, there are no available experimental data to compare
with our calculated features of the B-field dependence of the
differential conductance peaks. Our theoretical predictions
would serve as a guideline for future experiments and to
stimulate experimental research. For comparison with future
experiments, two factors are worthwhile to be mentioned.
The first is the effect of the apparent difference between
the experimental [28,40] and theoretical level broadening.
The features of transport characteristics are determined by
the occupation of the levels, the transition rates, and the
Franck-Condon factors, rather than the level broadening.
This is supported by experimental observation of dominant
sequential tunneling [28,40], and it was also theoretically
shown in the case of without electron-vibron coupling [54].
In addition, the vibrational excitation energies of interest
are larger than the experimental level broadening. Therefore,
despite the apparent difference in the level broadening,
the calculated features of the conductance peaks in this
work are relevant to experimental observation. The second
factor is the effect of excited spin multiplets on transport
properties. These multiplets may play a role on transport
properties only at very high magnetic fields (∼20 T). Thus our
calculated transport properties can be compared with future
experiments.

TABLE III. Franck-Condon factors for several transitions (n,n′)
for the case (i).

(n,n′) Fn,n′

(0,0) 0.199
(0,1) 0.321
(0,2) 0.259
(0,3) 0.139
(1,1) 0.075
(1,2) 0.024
(1,3) 0.166
(2,2) 0.171
(2,3) 0.031
(3,3) 0.081
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APPENDIX: FRANCK-CONDON FACTORS FOR SEVERAL
TRANSITIONS IN THE CASES (I) AND (II).

The Franck-Condon factors for several transitions are
computing for the cases (i) and (ii), by applying the recursion
relations [51,52] to the overlap matrices (Sec. IV B).

TABLE IV. Franck-Condon factors for several transitions (n,n′)
for the case (ii).

(n,n′) Fn,n′

(0,0) 0.004 03
(0,p1) 0.008 60
(0,p2) 0.007 13
(0,p3) 0.006 50
(p1,p1) 0.005 16
(p1,p2) 0.0152
(p1,p3) 0.0139
(p1,q5) 0.0245
(p1,q6) 0.0112
(p2,p2) 0.002 38
(p2,p3) 0.0115
(p2,q5) 0.003 85
(p2,q6) 0.009 28
(p3,p3) 0.001 51
(p3,q5) 0.002 68
(p3,q6) 0.000 487
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