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Abstract
In the field of Information Retrieval (IR), the reliable evaluation of systems is a key component in order
to progress the state-of-the-art. Much of IR research focuses on optimizing the various aspects of
evaluation. Stochastic simulation is one technique that can be used to assist this kind of research. It
allows researchers to overcome certain limitations associated with IR data, such as limited size, and
lack of control. Recently, there have been two parallel lines of work that use stochastic simulation to
study the question of ”which statistical significance test is optimal for IR evaluation data?”. Surprisingly,
the authors reach different conclusions, despite the fact that both use stochastic simulation. One line
of work, lead by Urbano et al., simulates scores for a fixed set of systems on new random topics, and
concluded that the t-test is optimal. Another line of work, lead by Parapar et al., simulates new random
retrieval runs for a fixed set of topics, and concluded that theWilcoxon test is optimal. Interestingly these
two tests are the most popular in IR literature. In an attempt to shed some light on this disagreement
between the two conclusions, we made a first attempt at providing some empirical evidence regarding
the quality of the simulation approach that was used by Urbano et al. Our main findings is that the
quality of the simulation is moderately good, and also discovered some opportunities to refine it. In
addition, we proposed a new model selection criterion, that showed some promising results, and in
many cases managed to select models more optimally than other, more established criteria, such as
AIC.
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1
Introduction

1.1. Stochastic Simulation for IR Research
In the field of Information Retrieval (IR), the reliable evaluation of systems is a key component in order
to progress the state-of-the-art. One method of evaluation, is through the use of test-collections, which
are composed of three main components: a set of documents, a set of topics and a set of relevance
judgments (the ground truth). The Text REtrieval Conference (TREC1) provides such collections to the
IR research community, as well as evaluation software which allows researchers to evaluate their (text
retrieval) systems, in an offline setting. The evaluation results of a system are given in the form of
per-topic scores and by then averaging these scores, a single system-score can be obtained.

Much of IR research focuses on optimizing the various aspects of such offline experiments. Stochas-
tic simulation is one technique that can be used to assist this kind of research, and it allows us to over-
come some limitations associated with IR data. Firstly, through simulation it is possible to generate
endless amounts of data. This is generally helpful because IR data tends to be limited in size, for
example due to the high costs associated with judging the relevance of documents on topics, which
is typically done manually by human assessors. Secondly, simulation relies on statistical models that
are fitted on data and describe some underlying population (i.e., the scores of systems on topics, or
the clicks of users on hyperlinks). The advantage of drawing samples from statistical models, is that
not only do we generate 𝑁 observations, but now we also know some true characteristics about the
underlying population from which these observations came from, i.e., the true mean value or the vari-
ance. Knowledge of such true characteristics would have otherwise been impossible, given the fact
that the set of documents and queries can potentially be infinite. Thirdly, if we use models that are
flexible enough, it is possible to generate data under some given condition, so that the resulting data
have specific, desired characteristics. For example, we might want to study two systems that have a
target difference in overall performance. In such cases, simulation can be useful, especially when our
data contains a few (or no) observations with the desired characteristics we are looking for.

Simulation in IR is not a new concept. In the early days of IR, prior to the development and avail-
ability of large test-collections, simulation was used in an attempt to generate the entire test-collections
themselves [11, 28]. In more recent years, simulation has been used to model various aspects of
human interaction with the IR systems [36, 35, 4, 5, 16]. The term human interaction refers to how
the user interacts with the system, for example formulating queries, clicking on results, re-formulating
queries and so on. In [3], simulation was used to generate queries by selecting a document, the known-
item, and producing a query for that known-item. This approach has the advantage that no additional
relevance judgments are required, since the relevant document is simply the specified known-item. In
[21], document scores are simulated in order to study the inherent noise that the per-topic evaluation
scores carry due to the fact that test-collections contain a mere sample of documents rather than the
entire population of documents.

In this thesis, we focus on a specific kind of simulation, which is the simulation of evaluation scores
of systems on topics. More specifically, we explore the method proposed by Urbano and Nagler in [33].
This particular simulation approach, uses existing collections of system scores, to build a model for the
1https://trec.nist.gov/overview.html
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2 1. Introduction

joint distribution of system scores on topics, which can then be used to endlessly simulate scores by the
same systems, but on random new topics. The simulation has two separate components: onemarginal
model for each system, which models the individual distribution of scores of the system (regardless of
the other systems) and a copula that models the dependence among systems, meaning, how they tend
to perform on the same topic. The main advantage of a copula approach, over classical multivariate
models (i.e., the multivariate Gaussian distribution), is flexibility. For example, the marginal distribution
of scores of each system, can bemodeled with an entirely different distribution family. This is particularly
useful for IR data, since not all systems follow the same distribution. Furthermore, it allows flexibility on
the modeling of the dependence as well. For example, in one case the dependence could be stronger
for small values of the system scores, and weaker for large values, and in another case it could be the
other way around. Or, in different case, the dependence could be highly symmetric.

One application of this stochastic simulation, is to help researchers answer questions such as ”how
many topics do we need to achieve a certain level of confidence in our evaluation results?” [9, 29].
Previous work has largely relied on data-oriented approaches that repeatedly split the topic set in two
halves and treat one of the halves as the ground truth and the other half as the actual test-collection.
Then, a statistic of agreement between the evaluation results on each of the two splits is computed, for
example Kendall’s 𝜏 [38, 34, 32]. By extrapolating these observations, it is possible to obtain empirical
estimates regarding the reliability of a test-collection, at a target number of topics. This so called split-
half approach is limited due to the small amounts of available data, the fact that the ground truth is not
actual ground truth, and that extrapolation is required. Beyond this approach, there is another one that
relies on statistical theory, for example, test theory [6]. This kind of work is limited as well, due to the
fact that it relies on various assumptions, that are typically not satisfied by IR data.

A second application of this stochastic simulation is to help researchers answer questions such as
”which statistical significance test is optimal for IR evaluation data?”. Statistical significance tests can
be used to determine if a small observed difference in mean system performance has occurred due to
chance, or not. This is because random errors can occur due to the fact that systems are evaluated
on a mere sample of topics, rather than the entire (possibly infinite) population of topics. Even though
these tests are heavily used in IR related research papers [22, 8], it is still quite unclear which test is
optimal for IR, and a lot of previous work contradicts each other. Statistical significance tests rely on
various assumptions that are not actually satisfied by IR evaluation data. Earlier research argued on
theoretical grounds about the robustness of statistical significance tests to having their assumptions
violated [20, 13], but did not provide any empirical evidence. In later years, works such as [38, 23, 32],
provided empirical results, by splitting the topic set in half, running a test on each split, and computing
the agreement rate of the tests between splits. However, their results are limited by the fact that the
tests can be consistently wrong on both splits. In [27], the authors compared various statistical signifi-
cance tests, by measuring their agreement with the permutation test. This work is also limited since its
conclusions are based on the assumption that the permutation test is optimal.

Stochastic simulation is a useful tool that can be used to overcome many of these aforementioned
limitations that are found in previous work. With regards to the second example application that we
mentioned (about finding the optimal statistical significance test for IR evaluation data), stochastic sim-
ulation has been employed in earlier works such as [37, 10, 7], however the models were simplistic and
likely unrealistic. More recently, there have been two parallel lines of work that use more sophisticated
simulation approaches. On the one hand, Urbano et al. [31] use a simplified version of the simulation
model proposed in [33, 29], to generate paired scores for a given pair of systems, on new random
topics. The reason why they focus on only two systems is because they only study paired statistical
significance tests, which is the most common use case. On the other hand, Parapar et al. [19, 18]
study the same problem, but instead simulate new random system runs2 for the same topics.

1.2. Motivation
Surprisingly, the two aforementioned parallel lines of work of Urbano et al. and Parapar et al. reach
different conclusions, despite the fact that both perform stochastic simulation.

In short, the works of Urbano et al. point in the direction of t-test being optimal and advocate for

2The run of system s on topic t refers to the resulting ranked list of documents that is produced when s is queried about 𝑡.
However, the authors actually generate relevance profiles, not runs. The difference is that instead of providing ranked lists of
documents, they only provide ranked lists of (binary) relevance values.
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the discontinuation of the Wilcoxon test. Whereas the works of Parapar et al. make almost the exact
opposite recommendations, advocating in favor of the Wilcoxon test. Interestingly, those two tests
appear to be the most popular tests [8], with the t-test being used about 65% of time and the Wilcoxon
about 25%. It is therefore important to investigate the reason why these two studies reach opposite
conclusions and determine which of the tests is actually optimal.

On the one side, themain criticism of Urbano et al. aimed at Parapar et al. is that in order to study the
tests ”one needs to simulate new topics for the same systems” [31]. This is because the significance
tests are essentially trying to deal with the errors due to the sampling of topics. Another concern is
that the simulation of Parapar et al. simulates retrieval scores3 (as opposed to directly simulating
effectiveness scores), which are then used to compute the effectiveness scores. As a consequence,
the error of the simulation of retrieval scores, propagates to the effectiveness scores, to an extent that
we do not know. Moreover, in the experiments of Parapar et al., the performance of a retrieval system is
shifted across all topics, to obtain a better or worse system. However, in reality, systems may improve
on some topics, but may not on others. Lastly, the coverage and scale of the study of Parapar et al.
was small, and because we are interested in the behavioral trends of the systems (rather than specific
cases), a wide range of factors needs to be studied.

On the other side, the main criticism of Parapar et al. aimed at Urbano et al. is that the quality of
the simulation is unknown. It is argued that the simulated data could be biased towards specific tests,
due to the fact that ”models are fitted from pre-selected classes of distributions” [18]. For example,
if the simulated data come from a statistical model whose assumptions align with the assumptions
of a certain test, that would favor the said test. So the results could be an artifact of the simulation.
Furthermore, it is argued that, ”the best fit for each combination of measure and retrieval system might
be still a poor fit”. In other words, they argue that the statistical models used to perform the simulation,
despite their flexibility, may still be not good enough to describe IR evaluation data.

To some extend the concerns of Parapar et al. have been addressed in [30], arguing that a variety
of both parametric and non-parametric families were used, including distributions based on Kernel
Smoothing, which are as free of assumptions as they can be. Furthermore, it was shown that if some
of the marginal distribution or copula families were in fact biased towards some tests; that bias would
actually favor the Wilcoxon test. However, the authors did not provide any empirical results regarding
the quality of the simulation, which is precisely the objective of this thesis.

1.3. Research Goals
In this thesis, we try to shed some light on this disagreement between the conclusions of the lines of
work of Urbano et al. and Parapar et al. Our main goal is to provide empirical evidence regarding
the quality of the simulation proposed in [33]. The idea is that if the simulation is of high quality, then
this should further validate the recommendations made in [31], advocating for the use of the t-test and
discontinuation of the Wilcoxon test.

We essentially try to answer the question: ”how good is the stochastic simulation proposed in [33]?”.
To this end, we evaluate the statistical models used to perform the simulation, in terms of how well they
fit (or describe) the data; we call this: goodness-of-fit.

We explore the following:

• How well can copula-based models capture the joint distribution of IR system scores on topics?

• How can we improve the quality of a copula-based simulation approach, for the purposes of
stochastically simulating scores of IR systems on new random topics?

1.4. Main Findings
• Overall, both the marginal models and the copulas (to a lesser extent) fit the data moderately
well.

• All marginal and copula families perform fairly consistently when they are selected (by AIC), with
the exception of Beta Kernel Smoothing.

3The term retrieval score refers to the score that the system itself gives to each document, in order to rank the documents from
best to worst, during the retrieval process.
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• The high appearance of zero scores in the data, is a special case where none of our marginal
candidate families appear to be flexible enough to describe well.

• We proposed a new model selection criterion, inspired by the split-half approach, that is able to
select copulamodels more optimally than other criteria such as AIC, BIC and LL. This is consistent
across all effectiveness measures.

1.5. Thesis Outline
The remainder of this thesis is structured as follows. In Chapter 2, we provide a description of the
particular stochastic simulation approach which we explore in this thesis, as well as how it was used
in previous work. In Chapter 3, we study the marginal models (separately from the copulas). We de-
scribe the approach we devised for measuring goodness-of-fit, and then employ the said approach.
We present and discuss our results, and proceed to explore outliers. We explore ways of improving
the quality of the margins, and propose a new selection criterion. Lastly, we provide some empirical
evidence, that addresses a limitation of our methodology. In Chapter 4, we study the copula models
(separately from the margins), by employing approaches analogous with the ones used in the case of
the margins. In Chapter 5, we conclude this thesis by discussing our main findings and their implica-
tions, and provide future work directions.



2
Background

2.1. Description of the Simulation
In this section we summarize the simulation proposed in [33], which as we mentioned is the one we
explore in this thesis. This particular simulation builds on previous work done in [29].

Given an existing collection of evaluation scores of systems on topics, the objective is to build a
model that captures the joint distribution of scores of those systems on the underlying population of
topics. Using this model, it is then possible to endlessly simulate scores that come from the same
systems, on new random topics. It is worth noting that the model built does not represent the exact
systems of the existing collection, but rather systems similar to those.

In order to capture this joint distribution of system scores on topics, copulas are used, because
they have an important advantage over classical multivariate models such as the multivariate Gaus-
sian distribution, which is that they are generally more flexible. This is because copulas allow us to
separate the modeling of the: i)marginal distribution of each individual system; meaning the univariate
distribution of topic-scores of a system regardless of all other systems and ii) the dependence among
systems; meaning how they tend to behave on the same topic.

The theoretical foundation behind copulas is the theorem of Sklar [25], which states that every
multivariate cumulative distribution function can be expressed in terms of its marginals and a copula.
For example, in the bi-variate case where we have two continuous random variables X and Y, with
joint cumulative distribution function 𝐹(𝑥, 𝑦) = 𝑃𝑟[𝑋 <= 𝑥, 𝑌 <= 𝑦], according to Sklar’s theorem the
function 𝐹 can be expressed in term of its marginals 𝐹𝑋(𝑥) = 𝑃𝑟[𝑋 <= 𝑥], 𝐹𝑦(𝑦) = 𝑃𝑟[𝑌 <= 𝑦] and a
copula 𝐶, like so:

𝐹(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) (2.1)

It further holds that if 𝐹 has a density 𝑓, then the density can be expressed as:

𝑓(𝑥, 𝑦) = 𝑐(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) ∗ 𝑓𝑋(𝑥) ∗ 𝑓𝑌(𝑦), (2.2)

where 𝑐, 𝑓𝑋 and 𝑓𝑌 are the densities corresponding to 𝐶, 𝐹𝑋 and 𝐹𝑌 respectively.
The simulation procedure is schematically shown in Figure 2.1. For simplicity, we illustrate and

discuss the case of only two systems. The cases of three or more systems are completely analogous.
However there is one important difference. In the case of only two systems, the dependencies are mod-
eled using bi-variate copulas. In the case of three or more systems, vine copulas are used instead.
Vine copulas are a generalization of bi-variate copulas, because they combine several bi-variate cop-
ulas in a tree structure, in order to build a dependence structure for arbitrarily high dimensions (i.e. 𝑁
systems instead of 2).

For any two given systems 𝐴 and 𝐵, three separate models need to be fitted, in order to be able
to simulate. Two marginal models that model the marginal distribution of system 𝐴 and 𝐵 respectively,
and one bi-variate copula that models the dependence between 𝐴 and 𝐵. These three models can be
fitted in any order, since they are separate.

5
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simulate

scores 𝑿 =

𝑋𝐴1 𝑋𝐵1

𝑋𝐴2 𝑋𝐵2

… …

𝑋𝐴𝑛 𝑋𝐵𝑛

pseudoscores 𝑼 =

margin 𝐹𝐴
∗

margin 𝐹𝐵
∗

empirical 𝐹𝐵empirical 𝐹𝐴

𝐹𝐴(𝑋𝐴) 𝐹𝐵(𝑋𝐵)

fit

fit

define convert to

pseudoscores

𝑅𝐴
′ 𝑅𝐵

′
𝐹𝐴
∗−1(𝑅𝐴

′ ) 𝐹𝐵
∗−1 (𝑅𝐵

′ )
convert

to scores
𝑅𝐴 𝑅𝐵

final output

copula

𝑈𝐴1 𝑈𝐵1

𝑈𝐴2 𝑈𝐵2

… …

𝑈𝐴𝑛 𝑈𝐵𝑛

Figure 2.1: Schematic outline of the simulation.

The simulation works as follows: Let X denote the 𝑛 × 2 matrix of evaluation scores of two given
systems 𝐴 and 𝐵 on 𝑛 topics of some test collection. Let 𝑋𝐴 and 𝑋𝐵 denote the column vectors with the
scores of system 𝐴 and 𝐵 respectively. To model the marginal distribution of system 𝐴, fit a marginal
model on 𝑋𝐴. Similarly for system 𝐵. Let 𝐹∗𝐴 and 𝐹∗𝐵 denote the cumulative distribution function CDF of
the newly fitted marginal models of system 𝐴 and 𝐵 respectively. Let 𝐹𝐴 and 𝐹𝐵 denote the empirical
cumulative distribution function ECDF (Equation 2.3) of system 𝐴 and 𝐵 respectively.

𝐸𝐶𝐷𝐹(𝑥) = number of elements in the sample <= 𝑥
sample size (2.3)

To model the dependence between systems 𝐴 and 𝐵 a copula needs to be fitted. Copulas are
actually fitted on so-called pseudo-scores. Let U denote the 𝑛×2matrix of pseudo-scores, and 𝑈𝐴 and
𝑈𝐵 the column vectors with the pseudo-scores of system 𝐴 and 𝐵 respectively. Scores are converted
to pseudo-scores like so: 𝑈𝐴 = 𝐹𝐴(𝑋𝐴) and 𝑈𝐵 = 𝐹𝐵(𝑋𝐵). A copula model is then fitted on U.

The copula model can be used to generate paired pseudo-observations {𝑅′𝐴, 𝑅′𝐵} of system 𝐴 and
𝐵 on a new random topic. Those two pseudo-observations are then converted to actual observations
using the inverse CDF of the (previously) fitted margins, like so: 𝑅𝐴 = 𝐹∗𝐴

−1(𝑅′𝐴) and 𝑅𝐵 = 𝐹∗𝐵
−1(𝑅′𝐵).

{𝑅𝐴, 𝑅𝐵} is the generated pair of scores of system 𝐴 and 𝐵 on a new random topic. This procedure
can be endlessly repeated to generate scores for an arbitrarily large number of new random topics.

2.1.1. Marginal and Copula Families
In order to fit a margin or a copula, several distribution families are considered, which are listed in Table
2.1.
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Margins
for continuous measures

(AP, nDCG@20, ERR@20)

⎧

⎨
⎩

Truncated1 Normal
Truncated Normal Kernel Smoothing
Beta
Beta Kernel Smoothing

for discrete measures
(P@10, RR) {

Beta-Binomial
Discrete Kernel Smoothing2

Copulas Gaussian
Student t
Frank

including their 90, 180
and 270 degree rotations

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

Clayton
Gumbel
Joe
BB1
BB6
BB7
BB8
Tawn 1
Tawn 2

Table 2.1: List of the family distribution candidates that are considered when fitting the marginal and copula models.

For modeling the marginal distribution of a system, a simple approach that does not require model
fitting would have been to use the empirical cumulative distribution function (ECDF) of the given data.
However, the problem with simply using the ECDF is that the scores which were not present in the
data, would never come up in the simulation. For this reason, a model is required. Furthermore, a
distinction is made depending on whether or not the evaluation scores are continuous or discrete. This
is because there are multiple effectiveness measures (i.e., AP, nDCG@20, ERR@20, P@10 and RR)
and even though all of them are technically discrete, some of them have a much larger set of possible
values, which makes it reasonable to treat them as continuous.

Figure 2.2 shows a visual comparison of all candidate models for modeling the marginal distribution,
in two examples. The left-hand side plot, shows all the candidate models (according to Table 2.1) that
could be selected for modeling the marginal distribution of AP (Average Precision) scores of a system
on the population of topics. Similarly, the right-hand side plot, all the candidate models that could be
selected for modeling the marginal distribution of P@10 scores of another system. The original data are
shown in gray color. Note that sometimes models may fail to fit, in cases where the fit is particularly bad.
For example, on the right-hand side plot, two models are missing because they failed to fit. Only three
models were fitted successfully, even though five models were considered (namely, the Beta-Binomial
distribution plus four variations of the Discrete Kernel Smoothing distribution).

For modeling the dependence between the two systems, 12 copula families are considered, in-
cluding some rotations. The Tawn 1 and 2 copulas are asymmetric copulas, whereas all others are
symmetric. The main difference between these two categories is that when a symmetric copula is
used, the distribution of the generated per-topic score differences tend to be symmetric. In contrast,
asymmetric copulas may yield distributions with non-zero skewness.

Figure 2.3 shows a visual comparison of three candidate copulas for modeling the dependence
between two systems, in one example. The left-hand side plot, shows the visual difference between
a symmetric (Gaussian) and an asymmetric (Tawn) copula. The right-hand side plot, shows the Inde-
pendence copula for comparison, which assumes no dependency between the two systems, and the
contours are perfect circles. These copulas were selected for illustration purposes, even though many
more are considered (as per Table 2.1). The contour plots show the joint probability density function
𝑓(𝑥, 𝑦) (Equation 2.2) that is modeled with a Tawn, Gaussian and Independence copula. The reason
why the joint density 𝑓 is plotted, as opposed to the copula density 𝑐, is because copula densities usu-
ally explode at some corners, which makes it difficult to visualize. A common approach is to combine

1The distributions are truncated, so that the simulated scores are within the [0, 1] range, as all IR evaluation scores are.
2Four different variations of this distribution are considered by manipulating the smoothing parameter.



8 2. Background

Continuous

AP

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Tr.Norm
Beta
Tr.Norm KS
Beta KS

(a) System 52 from the Ad-hoc 2007 Track.

●

●

●

●

●

●

●

● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

Discrete

P@10

M
as

s

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
● ●

● ●
● ●

● ● ●
●

●

●
●

● ●

● ●

● ● ●

●

Beta−Binom
Disc. KS (2)
Disc. KS

(b) System 29 from the Ad-hoc 2007 Track.

Figure 2.2: Visual comparison of the candidate marginal models. Original data in gray.
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Figure 2.3: Visual comparison of three candidate copulas, fitted from the (paired) AP scores of systems 52 and 29 from the
Ad-hoc 2007 Track. These contour plots show the joint densities, by combining the copulas with standard normal margins.

Original data in gray.

the copula with standard normal margins, and plot the joint density instead, as we have done.

2.1.2. Model Selection Criteria
In order to fit a model, all candidate families of Table 2.1 are fitted first and then the best model has to
be selected based on some model selection criterion. To this end, several options are available:

Log-likelihood (LL) is a basic criterion that can be used, and it is defined as the natural logarithm of
the likelihood that the fitted model would have generated the observed data. Based on LL, two more
criteria are defined, namely the Akaike Information Criterion (AIC) [1] and the Bayesian Information
Criterion (BIC) [24]:

𝐿𝐿 = log (𝑝 (𝑋|𝜃)) (2.4)

𝐴𝐼𝐶 = −2𝐿𝐿 + 2𝜅 (2.5)

𝐵𝐼𝐶 = −2𝐿𝐿 + 𝜅 log (𝑛) (2.6)

where 𝑋 is the observed data, 𝜃 is the vector of parameters of the model, 𝜅 is the number of pa-
rameters of the model (or the effective degrees of freedom in case the model is non-parametric) and 𝑛
is the sample size (the number of topics).
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For the case of LL, the model with the highest value is selected. The opposite is true for the case
of AIC and BIC, where the model with the lowest value is selected. All three criteria are probabilistic
measures that estimate a model’s performance on the same data that was used to fit that model. This
means that their computation does not require a hold-out set. The main difference between the three
criteria is that AIC and BIC penalize complex models, and therefore favor simple models. LL can be
problematic because it might favor models that are overly complex, and those models are often the
result of overfitting. BIC penalizes models harsher than AIC, if 𝑛 ≥ 8.

2.2. Related Work
One application of the aforementioned simulation is that it can be used as a tool to study which statistical
significance test is optimal for IR evaluation data. Statistical significance tests are used to assess if an
observed difference in mean system performance is real, as opposed to an error due to the sampling
of topics. This is because systems are evaluated on a mere sample of topics rather than the entire
population of topics, and for this reason there is some random noise associated with evaluation results.
There are various statistical significance tests, for example the Student’s t-test, Wilcoxon test, Sign
test, Bootstrap test and Permutation test. Every test relies on certain assumptions that are typically not
satisfied by IR evaluation data. For example, the t-test assumes that the data are normally distributed,
which is not true.

Most commonly, researchers are interested in comparing only two systems; an experimental system
against a baseline system. To achieve this, the two systems are typically evaluated on the same test
collection and as a consequence on the same set of topics. For this reason, the evaluation results are in
the form of paired per-topic scores. After the results are obtained, if it is observed that the experimental
system outperformed the baseline system, then a so-called paired statistical significance test is run, to
determine if this observed difference in mean system performance is statistically significant or not. In
other, rarer cases where a researcher wants to compare 𝑁 systems as opposed to only two, ANOVA
models are used instead.

The simulation approach we discussed in Section 2.1, was applied in [31], in order to study how
well statistical significance tests really behave on IR evaluation data. The authors studied an extensive
range of different factors, while focusing on the specific (but popular) case of paired tests. In such tests,
only two systems (as opposed to 𝑛 systems) are compared. In order to compare the various statistical
significance tests, the main requirement is to estimate their Type I and Type II error rates. One way of
accomplishing this, is by employing stochastic simulation.

In order to study Type I error rates, the following process is repeated. For a target effectiveness
measure and topic set size, two systems 𝐵 and 𝐸 are randomly selected from the same collection.
Then, two marginal models (𝐹𝐵 and 𝐹𝐸) and a copula are fitted on the data. The model selection is
done using AIC. For computing Type I error rates, the data are generated under the null hypothesis
𝐻0 ∶ 𝜇𝐸 = 𝜇𝐵. This is achieved by assigning 𝐹𝐸 ← 𝐹𝐵 after the margins have been fitted. After the
simulation, the significance tests are then run on the newly generated data. Any statistically significant
result counts as a Type I error, due to the fact that the data were generated under the null hypothesis.

In order to study Type II error rates, the process is similar. However, this time the data need to
be generated under the alternative hypothesis 𝐻𝐴 ∶ 𝜇𝐸 = 𝜇𝐵 + 𝛿. This requirement is achieved in two
steps. Firstly, system 𝐵 is selected from the bottom 75% performing systems, and system 𝐸 is selected
at random from the set of 10 systems whose mean is closest to the target 𝜇𝐵 + 𝛿. Secondly, after the
margins have been fitted, a small transformation is performed on 𝐹𝐸, such that the condition 𝜇𝐸 = 𝜇𝐵+𝛿
holds true. After the simulation, the significance tests are then run on the newly generated data. Any
result that does not come up as statistically significant, counts as a Type II error, due to the fact that
the data were generated under a false null hypothesis.

Their findings suggest that the t-test and Permutation tests are the most optimal, whereas the
Wilcoxon, Sign and Bootstrap-Shift test are the least optimal. The authors’ top recommendation is
the t-test.

Beyond the line of work of Urbano et al., there is another recent line of work by Parapar et al. [19,
18], that also relies on simulation. In [19], for every system-topic pair, a model is built that models
the retrieval score distribution (SD) [15]. The term retrieval score refers to the score that the system
itself gives to each document, in order to rank the documents from best to worst, during the retrieval
process. The model used is a mixture of two log-normal distributions: one for relevant and the other
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for non-relevant documents.
In order to study Type I error rates, the following process is repeated. A system is randomly selected,

and all (50) of its mixture models are used to generate two outputs each. The outputs are synthetic
lists of 1000 retrieval scores and corresponding relevance values, sorted from best to worst retrieval
score. For each output, Average Precision (AP) is computed. The statistical significance tests are then
run on the two resulting sequences of 50 AP scores. Any statistically significant result is a Type I error,
because the data were generated under the null hypothesis, since they come from the same system.

In order to study Type II error rates, the approach is similar. The difference is that instead of generat-
ing two outputs per mixture model, one output is generated instead. Then, the parameter of the model
is altered, and the second output is generated. The model is altered by increasing the true mean of
the (log-normal) distribution for the relevant documents. This way, the data are generated under some
alternative hypothesis.

In a more recent paper [18], the work done in [19] was improved by the same authors. The ap-
proaches used in the two papers are very similar. The main difference is in the simulation methodology.
Given a system-topic pair, a model is build that captures the relationship between document ranks and
relevance. More specifically, for a system-topic pair, a logistic regression model is fitted, where the
target variable is relevance, and the only predictor is the position of the document in the ranking. In
order to simulate a new ranking, for every position 𝑝 in {1, 2, ..., 1000}, the value ℎ𝜃(𝑝) is obtained (from
the fitted Logistic model ℎ𝜃). The relevance value of the new ranking at position 𝑝 is determined by
drawing a sample from a Bernoulli distribution with parameter ℎ𝜃(𝑝). This way a sequence of 0s and 1s
is generated, which is sufficient for computing Average Precision. Studying Type I and Type II errors is
done in the same manner. One difference is in regard to studying Type II errors, where the parameters
𝜃0 and 𝜃1 of the logistic regression model are manipulated in order to simulate under some alternative
hypothesis.

Surprisingly, the authors reach opposite conclusions. The biggest disagreement in terms of recom-
mendations is regarding the Wilcoxon test and the t-test, where the conclusions are opposite.

Parapar et al., in [18], provide some empirical results regarding the quality of the simulation used in
that paper. This was done by computing the average correlation between original ranking and simulated
rankings of the system-topic pairs. Their results showed that the simulated rankings only differ slightly
compared to the original, and it is argued that this is a good sign of quality, because the generated
rankings should represent the original. However, this is arguably not a very comprehensive analysis,
because according to this comparison, adding a small noise to the rankings would be considered a
simulation of high quality.

Thus far, no empirical evidence have been produced regarding the quality of the simulation used in
the line of work of Urbano et al., which is the main objective of this thesis.
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Margins

As already mentioned, the main goal of this thesis is to provide empirical evidence regarding the quality
of the simulation proposed in [33]. To this end, we can evaluate the statistical models that are used to
perform the simulation, in terms of how well they fit (or describe) the data. We refer to this concept as
goodness-of-fit. If the models describe the data well, then consequently the simulation should be fairly
realistic.

As we discussed, the simulation relies on three models that are fitted separately: two margins and
a copula. Conveniently, this also allows us to evaluate the margins separately from the copula. In this
chapter, we explore how well the marginal distribution of system scores is modeled, independent of the
copulas.

3.1. Defining Goodness-of-Fit
One simple approach for measuring the goodness-of-fit of a model would be to compute its Log-
Likelihood (Equation 2.4). However this statistical measure is meaningful only for comparing two or
more models. The absolute Log-Likelihood value in isolation is mostly meaningless. Furthermore,
Log-Likelihood only measures how well the model fits the observed data; not how well it describes the
underlying population. In other words, it does not measure the model’s predictive power on unseen
data.

Ideally, the best way to measure the goodness-of-fit of a fitted model 𝐹∗ is to compute its similarity
to the true distribution 𝐹 (the distribution of scores on the entire population of topics), also known as the
ground truth. Assuming that we have knowledge of the true distribution, there are several options for
computing this similarity. We have considered three metrics that actually measure dissimilarity, which
means that low values equate to high similarity. Namely, the i) Kolmogorov–Smirnov (KS) statistic, ii)
Cramér–von Mises (CvM) criterion and iii) Anderson–Darling (AD) statistic. All three of these metrics
essentially define a distance Δ between the two cumulative distribution functions: 𝐹∗ and 𝐹.

The Kolmogorov–Smirnov (KS) statistic [14, 26] is a simple metric which is defined as the largest
absolute difference between two cumulative distribution functions across all 𝑥-values. The left plot of
Figure 3.1 shows the computed value of the KS statistic in one example. The value is the length of the
red line.

KS (𝐹∗, 𝐹) = sup
𝑥
|𝐹∗(𝑥) − 𝐹(𝑥)| (3.1)

The Cramér–von Mises (CvM) criterion [17] is defined as the squared area between the two curves.
The right plot of Figure 3.1 shows the computed value of the CvM statistic in one example. The value
is the square of the red area.

CvM (𝐹∗, 𝐹) = ∫
∞

−∞
[𝐹∗(𝑥) − 𝐹(𝑥)]2 𝑑𝐹∗(𝑥) (3.2)

Finally, the Anderson–Darling (AD) statistic [2] is defined similar to the CvM criterion. The main
difference is that it places more weight on observations at the tails of the distribution, due to the 𝑤(𝑥)

11
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Figure 3.1: Visualization of Kolmogorov–Smirnov statistic (left) and Cramér–von Mises criterion (right).

weighting function. When the weighting function is 𝑤(𝑥) = 1, the statistic is identical to the CvM
criterion.

AD (𝐹∗, 𝐹) = ∫
∞

−∞
[𝐹∗(𝑥) − 𝐹(𝑥)]2𝑤(𝑥)𝑑𝐹∗(𝑥),

where 𝑤(𝑥) = 1
𝐹∗(𝑥) (1 − 𝐹∗(𝑥)) (3.3)

In practice, having knowledge of the true distribution of a system’s scores is not feasible, because
it would imply that the system has been evaluated on the entire (possibly infinite) population of topics.
This is either impractical due to the enormous amount of relevance judgments required, or even im-
possible if the potential set of topics is infinite or not well-defined. For this reason, some estimate of
this true distribution is required.

To this end, the so-called split-half approach can be utilized, as schematically outlined in Figure
3.2. This approach is fairly common in the field of IR research [38, 34, 32, 23, 12, 27], and it is used in
cases where obtaining ground truth data is too expensive or not feasible. Following this approach, the
observations (in our case, the 50 topic-scores of a given system) are randomly split in two halves. The
first half is treated as ’the sample’ (the actual observations) and the second half as ’the population’ (the
ground truth). This means that for the purposes of measuring goodness-of-fit, the models are actually
fitted on only the first half of the data. The empirical cumulative distribution ECDF of the second half
of the data is used as an estimate of the true distribution (the ground truth). We use 𝐹∗1 to denote the
distribution of the fitted model and 𝐹2 to denote the estimated true distribution. In order to measure
the goodness-of-fit of the model 𝐹∗1 , we can use any of the three aforementioned metrics (Equations
3.1-3.3).

For our purposes, there is likely no benefit in placing more weight on the tails of the distribution, or
only considering the largest distance. Therefore, the CvM criterion (Equation 3.2) can be safely chosen
as the measure of choice. We use Δobs to denote the observed distance (or dissimilarity) between a
fitted model and the estimated ground truth, that corresponds to a given random split. Intuitively, it
represents the area between the two curves.

Δobs = √CvM (𝐹∗1 , 𝐹2) (3.4)

Utilizing Δobs, the goodness-of-fit of a model 𝐹∗1 can simply be defined as its −Δobs. The minus sign
is due to the fact that the goodness-of-fit of a model and its deviation from the ground truth are inversely
related.

As an example, in Figure 3.3a we show the computed Δobs values of two models in one particular
split. One limitation regarding the interpretation of these measurements, is that it is not obvious which
specific range of values constitute a good fit. In relative terms, we could say that the model with the
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Figure 3.2: Diagrammatic representation of the Split-Half approach.
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Figure 3.3: Visualization of: (a) the Δobs of two models on the same split, and (b) corresponding Δexp.

lowest Δobs, in this case 0.05, is better. However, in absolute terms, it is not obvious how to assess if
the model that measured Δobs = 0.05 constitutes a good fit or not. To overcome this problem, we need
to determine what value we should approximately expect from a good fit. We use Δexp to denote this
value.

One way of calculating this Δexp, is to measure the distance that would have been observed if the
empirical distribution of the first half of the data (𝐹1) was used instead of the fitted model, as shown in
Figure 3.4.

Δexp = √CvM (𝐹1, 𝐹2) (3.5)

The advantage of using the empirical distribution as a reference, is that it gives us an unbiased
measurement, because it is not based on any model. Using this definition, in this particular example,
Δexp was measured to be 0.56 (Figure 3.3b), which is actually higher than 0.05. This implies that the fit
was slightly better than our expectation. In general, a model that fits the data well should measure a
Δobs that is about the same as its corresponding expectation Δexp.

3.2. Experiments
For our experiments, we require existing collections of evaluation scores of systems on topics, so that
models can be fitted on real data. The collections we use throughout this thesis come from actual
results of systems that TREC participants submitted in previous years, in the Ad-hoc and Web track,
as detailed in Table 3.1. This dataset contains a large number of systems, as well as a wide range
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TREC Track Years #Systems #Topics Effectiveness Measures

Ad-hoc 2005 to 2008 363 50 {AP, RR, P@10}
Web 2010 to 2013 216 50 {nDCG@20, ERR@20}

Table 3.1: Some descriptive statistics about the data collections.

of effectiveness measures, namely: AP, nDCG@20, ERR@20, P@10 and RR. This ensures that the
quality of the stochastic simulation is explored on a variety of IR data. We pre-process the data by
removing the bottom 10% performing systems, to avoid erroneous system implementations, so the
final number of systems is slightly smaller.

Our primary objective is to measure how well can we capture the marginal distribution of scores, of a
given system. To this end, for each effectiveness measure, we select a random system from a random
collection and perform the aforementioned split-half approach using the system’s scores on all (50)
topics. In total, 250,000 splits were performed; 50,000 for each effectiveness measure. This amount
of splits seems to be sufficient, judging from the narrow confidence intervals we obtain for most of our
results. For each split, we calculate a corresponding Δexp (Equation 3.5). Then, using the data in the
first half of the split, we fit all possible models according to Table 2.1 and compute their corresponding
Δobs (Equation 3.4).

Figure 3.5 shows the Δobs (left) and Δexp (right) for two example random splits. The approach
used for computing these values is slightly different depending on whether the data are continuous
(AP, nDCG@20, ERR@20) or discrete (P@10, RR). For the case of continuous measures, we use
an estimation approach by averaging the absolute differences between the two curves across 1000
equally spaced 𝑥-values in the [0, 1] range. For the case of discrete measures, we average the abso-
lute differences between the two curves across all possible 𝑥-values. P@10 has 11 possible values:
{0, 0.1, 0.2, … , 1}, whereas RR has 1001. In the first example (Figure 3.5a), the effectiveness measure
was AP (continuous metric) and the Truncated Normal Kernel Smoothing distribution was selected.
The model performed worse than the expectation (0.064 > 0.048). In the second example (Figure
3.5b), the effectiveness measure was P@10 (discrete metric) and the Beta-Binomial distribution was
selected. The model performed better than our expectation (0.04 < 0.047).

In Figure 3.6 we report the results across all 250,000 random splits, separately for each effectiveness
measure and family of distribution. All model selections were made according to AIC, as done in [31].
The left plot shows the mean values of Δobs and Δexp. In general, models that fit the data well should
give us Δobs values about the same as their corresponding expected value Δexp. In order to make it
easier to visually interpret the results, we have defined a goodness-of-fit metric, denoted as GoF, that
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(a) Example random split using the AP scores of system 91 on the 50 topics of the Ad-hoc 2008 test collection.
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(b) Example random split using the P@10 scores of system 107 on the 50 topics of the Ad-hoc 2008 test collection.

Figure 3.5: Visualization of Δobs (left) and Δexp (right) for: (a) the continuous case using AP scores, and (b) the discrete case
using P@10 scores.

combines Δobs and Δexp in a single formula, as the (negative1 of the) percentage deviation of Δobs from
the corresponding expected value Δexp:

GoF = −
Δobs − Δexp

Δexp
(3.6)

The interpretation of GoF is quite straightforward. For example, when GoF is -0.333 (Figure 3.5a),
this means that Δobs is 33.3% higher than the expectation. Similarly, when GoF is 0.149 (Figure 3.5b),
this means that Δobs is 14.9% lower than the expectation.

Overall, our results show that the average GoF is slightly less than zero across the board, with
the exception of the Beta Kernel Smoothing distribution family. Ideally, we want to observe values
close to zero. These results suggest that the models provide a moderately good fit, however there is
certainly room for improvement. Moreover, we notice that the models fit discrete metrics (P@10 and
RR) noticeably better than continuous (AP, nDCG@20 and ERR@20).

Figure 3.7 shows the frequency with which each candidate family is selected. One side-effect of
employing a split-half approach is that the data are being halved, which means that our marginal models
are actually fitted on only 25 topic-scores, instead of the entire set of 50 topic-scores. However, we are
truly interested in measuring the goodness-of-fit of models that are fitted on 50 scores, as opposed to
25. For this reason, our plot shows the frequency with which each candidate family is selected, when the
models are fitted on i) 25, as well as ii) 50 scores. It appears that the models are selected very similarly
in both cases, except for two Discrete Kernel Smoothing variants in the case of P@10. This increases
1This is because the goodness-of-fit of a model and its deviation from the ground truth are inversely related.
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Figure 3.6: How well does each family of marginal distributions perform, when it is selected by AIC? Mean values are reported,
along with 95% bootstrap confidence intervals. The dotted vertical lines (on the right plot) indicate the overall means across

each effectiveness measure.
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Figure 3.7: Frequency with which each candidate family of marginal distributions is selected by AIC. We consider the case
where models are fitted on 25 and 50 topics respectively.

our level of confidence regarding the accuracy of our estimates of goodness-of-fit. Furthermore, since
all candidate families get selected, and no particular family gets chosen with a significantly higher
frequency than the rest; this reaffirms the idea that IR data are quite complex, as it implies that a
variety of marginal models is required, to describe IR data.

The Beta KS distribution family is an obvious outlier with an average GoF of about -1; which means
that the average Δobs is twice what we expected. This would not be a problem, if that average Δobs was
a very low value, but as we can see in the left plot this is not the case. It is actually the highest across
all (continuous) effectiveness measures. There are two possible explanations for this. One possible
explanation is that our model selection criterion (AIC) made a poor choice by choosing this particular
distribution family, which means that some other candidate family would have performed better if it
had been properly selected. Another possible explanation is that this particular set of random splits
is a corner case where none of the candidate families that are incorporated in the simulation would
have performed well, and Beta KS just happened to be the lesser bad choice. As we can see in Table
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25 topics 50 topics

AP 6.43% 8.58%
nDCG@20 11.9% 18.6%
ERR@20 3.96% 1.56%

Overall 7.44% 9.59%

Table 3.2: How often is Beta KS selected by AIC? We consider the case where models are fitted on 25 and 50 topics
respectively.
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Figure 3.8: Visualization of two example Beta KS fits: a good fit (left), and a bad fit (right).

3.2, Beta KS is not selected very frequently. Overall, it is selected 9.59% of the times where it is
eligible for selection. Even though this not a particularly high percentage, dealing with this outlier could
considerably improve the quality of the simulation. It is therefore meaningful to explore this further.

In an effort to explain why the Beta KS distribution performs poorly on average, even though AIC
ranks it 1st, we experimented by comparing a few cases where it performed well, with cases where
it performed poorly, at the extremes. Figure 3.8 illustrates two of those example cases, where Beta
KS provided a good fit (left) and a bad fit (right), respectively. These examples were hand-selected to
demonstrate a noticeable pattern that we observed through our exploratory experimentation. In both
examples, we see that Beta KS has trouble fitting the data, when the number of zero values (in this
case, nDCG@20 scores) is too large. This is because the fitted models tend to be too simple, as
evident by the low effective degrees of freedom (edf) of 2.5 and 2.4 respectively. In other words, Beta
KS is not a complex enough model to capture the high appearance of zeros in the data. Despite this,
in both examples, AIC selected these simple yet seriously underfitted Beta KS models. Looking at
the right-hand side plot, we see that Beta KS does not describe the ground truth data well, measuring
Δobs = 0.16. In contrast, Log-Likelihood would have made a better choice, namely Truncated Normal
KS, that would have measured Δobs = 0.07. However, since none of the model selection criteria are
perfect, this is not entirely surprising. Looking at the left-hand side plot, we see that the reason why
Beta KS sometimes performs well, in this case measuring Δobs = 0.04, is simply due to chance. More
specifically, due to the randomness of splitting the data in half, sometimes one of the data halves
contains many more zero values than the other half. If the zeros are present mostly in the first half, the
underfitted Beta KS model describes the ground truth data well, due to chance. In summary, we found
that in certain corner cases (i.e., when the appearance of zeros in the data is high), AIC tends to select
Beta KS due to its low complexity, despite the model being underfitted, which often results in high Δobs
measurements.

Based on our exploratory experimentation, we speculated that the large number of zero scores in
the data causes outliers in our results. To further verify this, in Figure 3.9 we compare those specific
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Figure 3.9: Comparing the cases where AIC ranked Beta KS 1st, with all other cases.

random splits where AIC selected Beta KS (we refer to those cases as ’corner cases’), with all other
cases. In the top plot, we see that for the case of nDCG@20 (which is actually the most common
case, as per Table 3.2), the number of zeros in the data is significantly larger in these corner cases,
compared to all other cases. This is in line with our previous findings. However, this is not true for AP
and ERR@20, which means that there are other particularities about these corner cases, beyond the
high appearance of zeros, which we did not manage to identify through our exploratory experimentation.
In the middle and bottom plots, we show the theoretical minimum Δobs and maximum GoF, that would
have been achieved if the candidate models had been selected in an optimal manner. This was done
by simply selecting the model with the lowest Δobs in each random split. It appears that even the best
possible candidate would not have performed well in the corner cases; in both absolute terms (Δobs),
and terms relative to the expectation (GoF). This suggests that additional candidate models would have
been required, to achieve a good fit. One possible addition of such candidate could be a mixture model,
that models the zero scores separately from non-zeros. However, we leave this for future work.

In Figure 3.10, we see a clear correlation between the appearance of zeros in the data, and goodness-
of-fit; both in absolute terms (Δobs), and terms relative to the expectation (GoF). This further verifies our
hypothesis that data containing a high number of zeros are not modeled properly.

In an attempt to correct the outliers in our results, we continue to focus on these corner cases where
AIC determined that Beta KS was the best candidate model. One possible starting point (that does not
involve expanding the list of candidate models) is to investigate if the removal of the Beta KS distribution
from the list of candidates, would have resulted in an overall improvement, in terms of overall mean
Δobs. This is the equivalent of selecting the 2nd best model according to AIC, since we are now only
focusing on the specific splits where Beta KS was ranked 1st. We also include the 3rd best model in
the comparison, to verify if it is indeed worse than the 2nd best. Figure 3.11a verifies that the 2nd best
model is indeed better than the 3rd best, by a significant margin. However, Beta KS does not provide a
good fit on average. In fact, surprisingly, both the 2nd best and 3rd best models provide a better fit, with
only one exception in the case of ERR@20. Moreover, we see that the 2nd best model measures a Δobs
that is about as good as it could have been (’best-case Δobs’), without the addition of more models to
the current list of candidates. In Figure 3.11b we break down the results based on the alternative model
that would have been selected. It appears that, on average, Beta KS is the worst candidate model,
except for only Beta models that are ranked 3rd. In summary, these results suggest that the removal
of the Beta KS distribution from the list of candidates would have resulted in an overall improvement,
in terms of overall mean Δobs. In Figure 3.12, we visualize this improvement. We see that it is mostly
noticeable for the case of nDCG@20 (which is the most frequent case, as per Table 3.2).
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Figure 3.10: Correlation between the appearance of zeros in the data, and goodness-of-fit. Best model was selected according
to AIC.
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Figure 3.11: For those cases where AIC ranked Beta KS 1st, how would the 2nd or 3rd best models perform, if they had been
selected?
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3.2.1. Comparing Model Selection Criteria
So far we have solely focused on AIC as a model selection criterion, as done in [31]. This criterion pro-
vides a balance between simple and underfitted models, and complex and overfitted models. However,
we found that this selection is not always satisfactory, as we identified a specific set of corner cases
where AIC tends to make poor choices. Moreover, our findings regarding the quality of the margins
do suggest that there could be room for improvement. In the top plot of Figure 3.13, we see that our
overall Δobs measurements, even with the improvement that we achieved by removing Beta KS from
the list of candidates, is higher than the expectation across all continuous metrics. More specifically,
looking at the bottom plot, we see that the Δobs is about 10% higher than the expectation, for the case
of continuous metrics. Ideally we would have hoped for values slightly closer to zero, which means
that the quality can be improved. Moreover, we demonstrate that if the models had been selected
optimally (shown as ’best-case’), the GoF would have been much better. Of course, selecting models
in an optimal manner is virtually impossible, however, it does show some potential for improving the
quality of the margins, without adding new distributions families to the current list of candidate models.
It is therefore meaningful to explore alternative ways of selecting the models that we already have.

In this context, we developed and experimented with a new model selection criterion, which we
propose in this thesis. Our proposed criterion, is inspired by the split-half approach, and we denote it
as SHC (Split-Half Criterion). In Figure 3.14, we illustrate how this criterion works, through an example.
Starting with a set of scores (in this case 25 AP scores), we repeatedly split the data in half, 𝑛 times.
If the original data contain 25 scores, then the first half will contain 12 scores, and the second half will
contain the remaining 13. For each split, we fit all possible models on the first half of the data, and
then, using the empirical distribution of the second half of the data as ground-truth, we compute a Δobs
for each model. For example, in the first trial split, we observed a delta of 0.21 for Beta KS, and 0.18
for the Truncated Normal distribution respectively. In total, we repeat this process 𝑛 times. In the end,
to compute the SHC of a model that is fitted on the entire set of 25 scores, say Beta KS, we simply
average the Δobs values that we measured for Beta KS across all 𝑛 splits. For example, for the case
of Beta KS, we compute its value like so: 𝑆𝐻𝐶Beta KS = (0.21 + ... + 0.05) /𝑛. Essentially, the purpose
of each split, is to give us an estimate of what the performance might look like for a given marginal
distribution family, on the entire set of 25 scores. The more splits we perform, the better our estimate
should be. In the end, the best model according to SHC, is the one with the lowest SHC value.

In Figure 3.15, we compare the performance of well established model selection criteria, namely LL,
AIC and BIC (Equations 2.4-2.6), in terms of the overall mean GoF that we measured with them. On
top of these criteria, we also include our newly proposed criterion, SHC, and set its parameter for the
number of splits at 𝑛 = 10. This comparison was performed on the same 250,000 random splits that
we previously created. The results for Δobs, are completely analogous, however we plot GoF values to
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TREC Track Years #Systems #Topics Effectiveness Measures

Terabyte 2006 61 149 {AP, RR, P@10}

Table 3.3: Some descriptive statistics about the Terabyte collection.

make the visual interpretation of the results easier, due to the fact that changes in absolute Δobs can
be difficult to distinguish. In the top plot, Beta KS was included in the list of candidates, whereas in the
bottom plot it was excluded; meaning, that in any event where some selection criteria ranked Beta KS
1st, we simply selected the 2nd best model. The exclusion of Beta KS improves the overall mean GoF,
regardless of the criterion that was used. In the top plot, we see that for the case of discrete metrics
(P@10 and RR) all criteria perform well, with only one exception for SHC in the case of RR. For the case
of continuous metrics (AP, nDCG@20 and ERR@20), SHC performs the best overall. In the bottom
plot, we see that when Beta KS is excluded (which is something that affects all continuous metrics),
all criteria perform very similarly, with the exception of LL. In summary, these results suggests that, the
overall goodness-of-fit is maximized by excluding Beta KS from the list of candidates, in combination
with using AIC or BIC. Furthermore, we can conclude that, since we did not observe a significant
improvement with any of these criteria, to further improve the goodness-of-fit of the margins, beyond
the exclusion of Beta KS, would likely require to enrich to the list of candidates with additional models.

3.2.2. Extrapolating Results to Larger Topic Set Sizes
Even though the split-half approach has the advantage that it remains true to the data, it suffers from
the fact that the data are being halved. For example, in our case, the main goal is to measure the
goodness-of-fit of marginal models that are fitted on the entire set of (50) topic-scores, however, in a
split-half approach, half of the data are held-out to provide an estimate of the ground truth. This means
that we actually measure the goodness-of-fit of models that are fitted on only half (25) of those topic-
scores. For this reason, we want to know if we underestimate or overestimate the goodness-of-fit,
and by how much. In other words, we want to extrapolate our findings to a larger topic set size. To
accomplish this, we require data collections that contain more topics. One of those collections is the
one from the Terabyte TREC Track of 2006 (Table 3.3), which contains the scores of various systems on
149 topics. The large number of topic-scores that is present in this collection, allows us to repeatedly
split the data in three sets of scores, as shown in Figure 3.16. The first two sets are obtained by
randomly splitting the entire set of scores in two, so that one split contains 50 scores (𝑆50), and the
other split contains the remaining 99 scores (𝑆99). The third set, 𝑆25, is obtained by randomly sampling
25 scores from 𝑆50. By doing so, we can fit one model (𝐹∗25) on 𝑆25 and another model (𝐹∗50) on 𝑆50.
Then, using the empirical distribution of 𝑆99 as an estimate of the ground truth, we can compute Δ25obs
and Δ50obs, respectively, for the two models.

In Figure 3.17 we report the Δ25obs and Δ50obs values that we measured, in 150,000 trials. All models
were selected according to AIC. Overall, our results show that when models are fitted on 50 topics, as
opposed to 25, they measure a Δobs that is slightly lower. This suggests that our split-half approach
actually tends to underestimate the goodness-of-fit of the marginal models, by a small amount. This
occurrence seems to be consistent across all distribution families, however, we notice an outlier, that
once again involves the Beta KS distribution. In those particular cases where this distribution is chosen
(in the case of 25 topics), the performance is underestimated by a large amount. Interestingly, in this
particular dataset, Beta KS is actually never selected in the case of 50 topics; although, this is not the
case with other datasets, as we saw earlier in Figure 3.7. Table 3.4 shows that, on average, for the
case of AP and P@10, Δ50obs is 7.6% and 2.8% smaller than Δ25obs, respectively. For the case of RR,
it is 63.8% larger; however, in absolute terms, this difference is quite negligible, since both Δ50obs and
Δ25obs tend to be very low. In summary, these results show that our split-half approach tends to slightly
underestimate the goodness-of-fit of the marginal models.
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Figure 3.17: How different would our Δobs measurements be, if the marginal models had been fitted on 50 topics, as opposed
to 25?
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(Δ
50
obs−Δ25obs
Δ25obs

)

AP -0.076
P@10 -0.028
RR 0.638

Table 3.4: How different is Δ50obs compared to Δ25obs?

3.2.3. Summary of Results
Summarizing our results, we found that the marginal models fit the data moderately well, when they
are selected by AIC, with the exception of the Beta Kernel Smoothing distribution. The goodness-of-fit
of the models that are fitted on discrete metrics (P@10 and RR) is noticeably better than those fitted on
continuous metrics (AP, nDCG@20 and ERR@20). Also, the models are selected similarly in 25 topics,
compared to 50 topics, which gives us some confidence regarding the accuracy of our goodness-of-fit
estimates. Moreover, due to the fact that all candidate families get selected, and no particular family
gets chosen with a significantly higher frequency than the rest; this implies that IR data are indeed
complex.

The Beta Kernel Smoothing distribution is an obvious outlier, that on average, measures a Δobs
twice that of our expectation. We explored this further and found that part of the explanation behind
this is the high appearance of zero scores in the data. Although, there are other particularities about
those corner case, which we did not manage to detect. It appears that Beta KS models tend to be too
simple and underfitted to capture these types of data, yet they are still selected by AIC.

In an attempt to correct this outlier, we found that the exclusion of Beta KS from the list of candidates,
notably improves the overall GoF, from -0.22 to -0.11, for the case of nDCG@20, which is the case
where Beta KS is selected the most. Interestingly, we discovered that even if the models were selected
optimally, none of the candidate families would have performed up to standard, in those particular cases
where AIC selected Beta KS. This implies that in order to further improve the quality of the margins
in those specific cases, beyond the exclusion of Beta KS, more candidate models would have to be
considered. One of such models, could be a mixture model that models the zero scores separately
from non-zeros. We leave this for future work.

In an attempt to refine the quality of the margins, instead of focusing on expanding the list of candi-
date models with additional ones, we experimented with alternative ways of selecting them, including
AIC, BIC and LL. We also proposed a new selection criterion that is inspired by the split-half approach,
which we denote as SHC (Split-Half Criterion). We found that for the case of continuous metrics (es-
pecially nDCG@20), SHC selects models considerable better than the other criteria, although, for the
case of discrete metrics (especially RR), it performs considerably worse. However, we found that the
best approach for maximizing the overall goodness-of-fit of the margins, is to simply exclude Beta KS
from the list of candidates, and select models based on either AIC or BIC. This approach works more
consistently across the different effectiveness metrics.

In a separate, smaller scale experiment, we determined that our estimates regarding Δobs are un-
derestimated by 7.6%, 2.8% for AP and P@10 respectively. For the case of RR we overestimate by
63.8%, however, in absolute terms, it is a negligible value.





4
Copulas

In this chapter, we explore howwell the dependence among systems is modeled by the copulas, regard-
less of their marginal distributions. The methodologies used in this chapter are analogous to Chapter
3. In this thesis, we focus specifically on the case of only two systems, as done in [31]. This means
that we deal with the specific case of bi-variate copulas.

4.1. Experiments
In order to measure the goodness-of-fit of the copulas, we once again utilize the split-half approach, as
shown in Figure 4.1. The approach is slightly different in the case of copulas, compared to the case of
the margins, for two reasons. Firstly, the distributions are joint instead of univariate. Joint distributions
are visually represented as surfaces instead of curves. For this reason, Δobs and Δexp are computed
by measuring the volume between surfaces, as opposed to the area between curves. Secondly, the
scores need to be converted to pseudoscores, as we previously discussed (see Figure 2.1).
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Figure 4.1: Diagrammatic representation of the split-half approach for the case of bi-variate copula models. The Δobs and Δexp
are computed by measuring the volume between the two surfaces.
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Figure 4.2: Visualization of Δobs (left) and Δexp (right) for an example random split that was performed on the AP scores of
systems 16 and 43, on the 50 topics of the Ad-hoc 2007 test collection. Each Δ is the volume between two surfaces.

Our primary objective is to measure how well can copulas capture the dependence between two
given systems. To this end, for each effectiveness measure, we select two random systems from
a random collection and perform the aforementioned split-half approach using the scores of those
systems on the entire set of 50 topics. Once again, a total of 250,000 splits were performed; 50,000
for each effectiveness measure. This amount of splits seems to be sufficient, judging from the narrow
confidence intervals we obtain for most of our results. The data collections we used are the same as
those in the case of the margins (Table 3.1). For each split, we calculate a corresponding Δexp. Then,
using the data in the first half of the split, we fit all copulas (according to Table 2.1), and compute their
corresponding Δobs.

Figure 4.2 shows the Δobs (left) and Δexp (right), in one example random split. The approach we
use for computing these Δobs and Δexp values, is to average the absolute differences between the two
surfaces (in the Z-axis), across 100𝑥100 equally spaced points. In this example, the best copula model
according to AIC, was a Joe copula, that measured Δobs = 0.02. The expected Δ was measured at
0.026.

In Figure 4.3, we report the results across all 250,000 random splits, separately for each effective-
ness measure and copula family. All model selections were made according to AIC. In the right plot,
we have removed the copulas BB1 and BB6, to make it easier to view the results, due to the fact that
those copulas are outliers in terms of their GoF. This occurrence is simply due to chance. In those par-
ticular splits, where BB1 or BB6 are selected, the Δexp values are much lower than usual. This implies
that in those particular random splits, the two data halves are much more similar than usual. In those
cases, the GoF value is low, due to the division with Δexp. This phenomenon is mostly inconsequential,
because, as we can see in Table 4.1, the copulas BB1 and BB6 are almost never selected. Overall, the
copula families measure a Δobs that is strictly larger than Δexp, on average. To make it easier to interpret
the results, looking at the right plot, we see that GoF is mostly negative, at around -0.23, which implies
that, on average, we measure Δobs values that are about 23% higher than the expectation. This is
somewhat higher than we would ideally wish for, although it is still within reason. Moreover, in contrast
to the case of the margins, we do not detect any obvious outliers, as the performance appears to be
spread somewhat evenly across the different copula models.

Figure 4.4, shows the frequency with which each candidate copula family is selected, when the
models are fitted on i) 25, as well as ii) 50 topics. It appears that the copulas are selected somewhat
similarly between these two cases. This adds a degree of confidence regarding the accuracy of our
estimates of goodness-of-fit. Moreover, it reaffirms the idea that IR data are quite complex, since all
candidate families get selected, and no particular family gets chosen with a disproportionately higher
frequency than the rest. In other words, this implies that a variety of copula models is required, to
describe IR data.

One possible explanation for these results could be that our list of candidate copulas contains an
insufficient selection of asymmetric copula families. In Figure 4.4, we see that the Tawn copula is se-
lected with the most frequency, almost consistently across all metrics. The Tawn copula is actually the



4.1. Experiments 29

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A
P

P
@

10
R

R
nD

C
G

@
20

E
R

R
@

20

0.00 0.01 0.02 0.03 0.04

Gaussian
Student t

Frank
Clayton
Gumbel

Joe
BB1
BB6
BB7
BB8

Tawn
Indep.

Gaussian
Student t

Frank
Clayton
Gumbel

Joe
BB1
BB7
BB8

Tawn
Indep.

Gaussian
Student t

Frank
Clayton
Gumbel

Joe
BB7
BB8

Tawn
Indep.

Gaussian
Student t

Frank
Clayton
Gumbel

Joe
BB1
BB6
BB7
BB8

Tawn
Indep.

Gaussian
Student t

Frank
Clayton
Gumbel

Joe
BB1
BB6
BB7
BB8

Tawn
Indep.

B
es

t m
od

el
 (

A
IC

)

●●∆obs ∆exp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A
P

P
@

10
R

R
nD

C
G

@
20

E
R

R
@

20

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

Gaussian
Student t

Frank
Clayton
Gumbel

Joe
BB7
BB8

Tawn
Indep.

Gaussian
Student t

Frank
Clayton
Gumbel

Joe
BB7
BB8

Tawn
Indep.

Gaussian
Student t

Frank
Clayton
Gumbel

Joe
BB7
BB8

Tawn
Indep.

Gaussian
Student t

Frank
Clayton
Gumbel

Joe
BB7
BB8

Tawn
Indep.

Gaussian
Student t

Frank
Clayton
Gumbel

Joe
BB7
BB8

Tawn
Indep.

B
es

t m
od

el
 (

A
IC

)

● GoF

Figure 4.3: How well does each copula family perform, when it is selected by AIC? In the right plot, outliers BB1 and BB6, are
excluded from the list of candidates.
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BB1 BB6
25 topics 50 topics 25 topics 50 topics

0.04% 0.36% 0.01% 0.02%

Table 4.1: How often is BB1 and BB6 selected by AIC? We consider the case where models are fitted on 25 and 50 topics
respectively.

Figure 4.5: (Copy of Figure 5 from [30].) Skewness of the distribution of per-topic score differences, in the case of actual TREC
data, compared to simulated data. Only the Tawn copula is able to produce skewed distributions.

only asymmetric copula that is included in our list of candidates. It could be the case that asymmetric
copulas capture the dependence among systems well, but there is simply not a diverse enough selec-
tion of them in our list of candidates to cover all scenarios. Figure 4.5 illustrates that the distribution
of per-topic score differences, in the case of actual TREC data, is often asymmetric. Furthermore, it
shows that only the Tawn copula is able to produce skewed distributions. In many cases, the skewness
that is present in actual TREC data is not maintained in the simulated data. This supports the idea that
the simulation could potentially be improved by expanding the list of candidates with more asymmetric
copulas.

4.1.1. Comparing Model Selection Criteria
In view of our findings regarding the lower than expected goodness-of-fit of the copula models, it is
meaningful to experiment with alternative ways of selecting models, in an attempt to improve the overall
performance. It is possible that some model selection criteria, other than AIC, might be able to select
the candidate copulas more optimally.

In Figure 4.6, we compare the performance of LL, AIC, BIC, as well as our proposed criterion SHC,
where we set its parameter for the number of splits at 𝑛 = 10. This comparison was performed on
the same 250,000 random splits that we previously created. Interestingly, our criterion selects the
models more optimally, consistently across all effectiveness measures; in both absolute terms (Δobs),
and terms relative to the expectation (GoF). Although, all criteria perform quite similarly. AIC appears
to be the second best criterion, followed by BIC, and finally by LL. Overall, selecting the copulas with
SHC compared to AIC, improves the GoF from approximately −0.23 to −0.19. Because a variety of
criteria was compared, this implies that in order to further improve the goodness-of-fit by a significant
amount, beyond the use of SHC, would likely require to enrich the list of candidates with additional
copula families. These results further support the hypothesis we previously proposed, regarding the
lack of asymmetric copulas in the list of candidates.

In the left plot of Figure 4.7, we show how SHC selects models differently than AIC. In the right plot,
we show how BIC selects models differently than AIC. We convert counts to percentages by averaging
per row. We can see that AIC and BIC select models similarly, by looking at the diagonal values, where
the percentage of agreement is consistently close to 1. In contrast SHC does appear to select models
much differently. It appears to be favoring the Clayton, Joe, BB8 and Tawn copulas. This does show
that our criterion is not redundant, and that it differs from other criteria.
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Figure 4.7: Left: How does SHC select models differently than AIC? Right: How does BIC select models differently than AIC?
Percentages are computed per row.

4.1.2. Extrapolating Results to Larger Topic Set Sizes
Similar to the case of the margins, we want to know if we underestimate or overestimate the goodness-
of-fit of the copulas, and by how much. This is because, due to the inherent limitations of a split-half
approach, we fit copulas on only 25 topics, as opposed to 50, since half of the data are used to provide
an estimate of the ground truth. We follow an approach that is analogous to the one shown in Figure
3.16 to repeatedly split the data in three sets of topics. A set of 25 topics, a set of 50, and a set of 99
topics. The first two sets are used to fit two copula models respectively: 𝐹∗25 and 𝐹∗50. Using the final
set of 99 topics as an estimate of the ground truth, we then compute a Δ25obs and Δ50obs, respectively, for
the two copula models.

In Figure 4.8 we report the Δ25obs and Δ50obs values that we measured, in 150,000 trials. All models
were selected according to AIC. Overall, our results show that when models are fitted on 50 topics,
as opposed to 25, they measure a Δobs that is slightly lower, which means that the goodness-of-fit of
the copula models is underestimated. Moreover, we see that this occurrence is consistent across all
copula families. These findings are consistent with the case of the margins.

Table 4.2 shows that, on average, Δ50obs is only 2.6% and 3.9% smaller than Δ25obs, for the case of AP
and P@10 respectively. However, for the case of RR it is 10.3% smaller, which is notable.

In summary, these results show that our split-half approach tends to underestimate the goodness-
of-fit of the copula models, only by a small amount.
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Figure 4.8: How different would our Δobs measurements be, if the copula models had been fitted on 50 topics, as opposed to
25?.

(Δ
50
obs−Δ25obs
Δ25obs

)

AP -0.026
P@10 -0.039
RR -0.103

Table 4.2: How different is Δ50obs compared to Δ25obs?

4.1.3. Summary of Results
Summarizing our results, we found that the copula models measure a Δobs that is about 23% higher
than our expectation, when they are selected by AIC. These results are somewhat worse compared to
the case of the margins, but still within reason. We did not detect any obvious outliers.

Looking at the frequency with which each copula family is selected, we see that they are selected
quite similarly, between the case of 25 and 50 topics. The Tawn copula gets selected with the highest
frequency. Due to the fact that this is the only asymmetric family that is incorporated in the simulation,
coupled with the fact that the distribution of per-topic score differences tends to be skewed; we specu-
late that the goodness-of-fit of the copulas would likely improve, if additional asymmetric families were
included in the list of candidates. However, we leave this for future work.

Looking for ways of refining the quality of the models, we experimented with alternative ways of
selecting them, including AIC, BIC, LL as well as our criterion (SHC), and found that our criterion im-
proves the overall mean GoF, consistently across all effectiveness measures. The overall change over
AIC (the next best criterion) is from around -0.23 to -0.19, which is notable. Moreover, the selections
that SHC makes are significantly different from those of AIC, BIC or LL. Since a large selection of
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criteria was considered, it is likely that to further improve the goodness-of-fit, would require additional
candidate copulas to be considered.

In a separate, smaller scale experiment, we determined that our estimates regarding Δobs are un-
derestimated by 2.6%, 3.9% and 10.3% for AP, P@10 and RR respectively, which is quite low.





5
Conclusion

In this thesis, we made a first attempt at providing empirical evidence regarding the quality of the
stochastic simulation used in [31]. This particular simulation approach, uses existing collections of
system scores, to build a model for the joint distribution of system scores on topics, which can then be
used to endlessly simulate scores by the same systems, but on random new topics. The simulation is
based on two separate components: onemarginal model for each system, which models the individual
distribution of scores of the system, and a copula that models the dependence among systems. This
allows us to study the marginal models and the copulas separately.

Measuring the quality of a stochastic simulation is not a trivial or one dimensional task. We focus
on one, but highly important aspect of simulation, which is the goodness-of-fit of the models; meaning,
how well do the models describe the data. Ideally, this would be measured by computing some sim-
ilarity metric between a model 𝐹∗ and the true distribution 𝐹. However, having knowledge of the true
distribution of a system’s scores is not feasible.

For this reason, we resort to the split-half approach, which works by repeatedly splitting the data in
half, and treating the first half as the sample, and the second half as the population. Using the first half
of the data to fit a model (𝐹∗1 ), and the empirical distribution of the second half (𝐹2) as an estimate of the
ground truth, we can compute a measure of distance Δ between 𝐹∗1 and 𝐹2. The goodness-of-fit can be
defined as the negative of that Δ. In addition, we devised a method for calculating a reference value
which we should approximately expect from a good fit, by computing the Δ between the two empirical
distributions of the data. We performed a total of 250,000 random splits for the margins and the copulas
respectively, using a variety of IR data.

For the case of the margins, our results show that the models fit the data moderately well, when
they are selected by AIC, with the exception of the Beta Kernel Smoothing distribution, which is an
outlier. We explored this outlier further, and discovered that part of the explanation behind this is the
high appearance of zero scores in the data. It appears that Beta KS models tend to be too simple and
underfitted to capture those types of data, yet they are still selected by AIC. We found that the exclusion
of Beta KS from the list of candidates, notably improves the overall goodness-of-fit, but not as much
as we would have hoped. In fact, we discovered that none of the considered candidate families would
have performed well enough in those particular corner cases, even if they were selected optimally. This
implies that in order to further improve the quality of the margins in those specific cases, beyond the
exclusion of Beta KS, more candidate models would need to be considered. One of such models, could
be a mixture model that models the zero scores separately from non-zeros. We leave this for future
work.

In view of the fact that there is room for improvement with regards to the quality of the margins,
we shift our focus on refining it. In this work, instead of focusing on expanding the list of candidate
models with additional ones, we chose to focus on how to select them in a more optimal manner. Our
motivation behind this is the fact that we previously identified some cases where AIC tends to make
poor choices, as well as the fact that the list of candidates is quite diverse as is; including a variety of
both parametric and non-parametric distributions. We proposed a new selection criterion that is inspired
by the split-half approach, which we denote as SHC (Split-Half Criterion), and also considered some
other well established model selection criteria beyond AIC, such as BIC and LL. We found that for the
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case of continuous metrics (especially nDCG@20), SHC selects models considerable better than the
rest criteria; although, for the case of discrete metrics (especially RR), it performs considerably worse.
However, we found that the best approach for maximizing the overall goodness-of-fit of the margins, is
to simply exclude Beta KS from the list of candidates, and select models based on either AIC or BIC.
This approach works more consistently across the different effectiveness metrics.

For the case of the copulas, our results show that the models fit the data somewhat worse than the
margins, but still within reason, when they are selected by AIC. We experimented with other criteria,
such as BIC, LL as well as our proposed criterion. Interesting, we found that our criterion provides the
best overall goodness-of-fit, consistently across all effectiveness measures. Although, the improve-
ment over AIC is relatively small. To further improve the performance of the copulas, more candidate
copula families would need to be considered. Due to the fact that the copula which is selected with the
highest frequency (Tawn copula) happens to be the only asymmetric copula in the list of candidates,
we speculate that the inclusion of more asymmetric copulas in the simulation, may improve the quality.
We also found some evidence that support this hypothesis. This is something we do not experiment
with however, leaving it for future work.

Due to the inherent limitation of the split-half approach, of halving the data; we can only measure
the goodness-of-fit of models that are fitted on half the data. However, we are interested on models
that are fitted on the entire set of data. For this reason, we also investigated if we underestimate or
overestimate goodness-of-fit, and by howmuch. This was explored using a data collection that contains
a larger set of topics, which allowed us to extrapolate our findings to larger topic set sizes. We found
that we underestimate the performance of the margins as well as the copulas, but only slightly. Another
consequence of halving the data, is that the candidate margin and copula distribution families, are not
selected with the same frequency when the models are fitted on half the data, compared to the whole
data. We explored this matter as well, and found that the differences are fairly minor. These findings
suggest that our goodness-of-fit estimates should be quite accurate.

One highly important implication of our findings, is that due to the fact that both the marginal models,
and the copula models (to a lesser extent), describe the data moderately well, this adds a high degree
of reliability in the findings of Urbano et al. in [31]. More specifically, the conclusions reached, regarding
the t-test and the permutation tests being the most optimal, and the sign, Wilcoxon and bootstrap-shift
being the least optimal, for IR evaluation data.

At the same time, due to the fact that the concerns of Parapar et al. with regards to the quality of the
simulation used by Urbano et al. have largely been addressed in this thesis, the question remains as to
precisely why are their conclusions not in accordance. This requires further investigation. As suggested
in [30], an important direction for future work is to compare the two simulation approaches, and their
findings, in a controlled setting. This is important, not only for helping us determine which statistical
significance test is optimal in IR and when, but also, for deepening our knowledge with regards to the
properties of IR evaluation data.
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