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Abstract

Facial expression recognition on head-mounted devices (HMDs) is an intriguing
research field because of its potential in various applications, such as interact-
ive virtual reality video meetings. Existing work focuses on building a super-
vised learning pipeline that utilizes a vast amount of labeled periocular images
taken by the built-in cameras. However, the labeling process requires intens-
ive manual work, which is costly and time-consuming. In this thesis, we apply
self-supervised learning techniques that leverage unlabeled periocular images to
learn representations for facial expression recognition tasks. When the model is
trained through self-supervised learning, it is transferred as a feature extractor
to form multiple individual inference models. In addition, as most deep-learning
models only accept low-resolution images due to heavy computing overload with
large input sizes, images taken by modern cameras on HMDs are often aggress-
ively down-sampled to match the model input. To improve the model’s usability
and speed performance, we train the models using the frequency representations
of images rather than conventional RGB pixel arrays. We conducted extensive
evaluation experiments with a dataset of 23 invited volunteers. The results show
that the self-supervised models achieve comparable performance with existing
approaches, and, at the same time, the number of labels used is reduced by
approximately 99%. By training in the frequency domain, the model is 1.89
times faster in training and 1.23 times faster in inference with reduced input
size.
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Chapter 1

Introduction

Facial expressions are an essential component of human communication. They
serve as means to convey people’s intentions and internal states in a non-verbal
manner. Due to the increasing popularity of mobile and embedded devices, it
is desirable to implement a facial expression recognition (FER) platform with
head-mounted devices (HMDs), such as virtual reality (VR). By directly using
periocular images taken by the built-in cameras, FER on HMDs serves as a way
for more immersive and interactive applications such as VR games [76], and re-
mote communication [38]. Empowered by deep learning, FER gains promising
performance by learning from massive labeled data. However, many deep learn-
ing models have been focusing on a supervised pipeline where much effort has
been put into building a dataset with clean expression labels [38, 47, 50]. The
requirement for massive labels limits the adoption of deep learning models as
the annotation process is expensive and labor-intensive. Hence, it is imperative
to investigate alternative methods that realize FER without numerous manual
annotations while maintaining comparable performance.

Among the approaches to FER, convolutional neural networks (CNNs) have
shown promising performance by learning directly from input images without
building hand-craft features [8, 28, 53]. However, limited by computing resources
and memory capacity, most CNN models only accept low-resolution images, for
example, 224 × 224 × 3 for Residual Neural Network (ResNet) [37]. Modern
cameras often produce images with much larger resolutions, e.g., 1024 x 1280.
As a result, the input images will be down-sampled to match the input size
accepted by most CNN models, which may cause information loss and perform-
ance drop. Therefore, it is essential to reduce the input size without sacrificing
performance and information to train an effective and efficient CNN model. In
addition, interactive scenarios on HMDs, for example, an online VR meeting,
are latency-sensitive. A delay in expression recognition may cause a mismatch
between the dialogue context and the non-verbal messages conveyed by the fa-
cial expressions. However, many solutions to faster FER often include extra
steps of extracting discriminative features [29, 75], which usually work well only
in specific conditions (e.g., fixed head pose and appropriate lighting). Hence,
it is beneficial to reduce the response latency of FER without extra design and
effort.

In this thesis, we will explore to answer the following research questions: a)
how can the FER using periocular images be realized without substantial manual
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annotations? b) how to achieve comparable performance with a reduction in
the input size and the response latency?
To tackle the challenge of data annotation, we apply self-supervised repres-

entation learning that utilizes unlabeled data for FER tasks. Self-supervised
learning models can learn general representations from massive periocular im-
ages without manual labeling. After the training, the models are calibrated
with small-scaled labeled samples to form individual inference models. Among
the self-supervised learning models, we apply contrastive learning to process the
unlabeled data. Contrastive learning is a discriminative method that learns fea-
tures to group similar samples and set apart dissimilar groups from each other.
Unlike the generative approach that learns by building a distribution from the
data, contrastive learning avoids the costly generation step and achieves state-
of-art performance in classification tasks [12, 13, 36, 63]. To reduce the input
size and accelerate CNN models, We train the CNN models in the frequency
domain to better preserve image information instead of the conventional RGB
color space. The frequency spectrum of an image is obtained by decomposing
the image into different frequency channels, which have different information
densities [71]. Instead of aggressively down-sampling the input in the RGB do-
main, we can reduce the input size by discarding frequency channels that are
low in information compaction.
To evaluate the effectiveness of our proposed solutions, we conduct experi-

ments with periocular images collected from 23 participants. We demonstrate
that our approach, based on self-supervised learning, reaches a close perform-
ance with its supervised counterpart in the subject-specific FER tasks. At the
same time, the usage of expression labels is reduced by approximately 99%. We
further evaluate the performance of the model in terms of latency and demon-
strate that when only using a subset of the frequency components as the input,
the model gains a boosted acceleration in 1.89 times faster training and 1.23
times faster inference while maintaining a comparable prediction accuracy with
its RGB counterpart.
In summary, the main contributions of the thesis are highlighted as follows:

• This thesis applies a discriminative self-supervised learning model (i.e.,
contrastive learning) that leverages massive unlabeled periocular images to
extract general features for FER tasks. After learning the features, several
subject-specific inference models are trained using small-scaled labeled
data, which significantly alleviates the work and cost of data annotations
in conventional supervised training.

• We collected a unique dataset of 23 subjects which contains periocular
images with expression labels. The dataset is made public and can be
used in future studies.

• We convert the learning input from the conventional RGB domain to the
frequency domain and train the CNN model only using a subset of the
frequency channels. The proposed method speeds up the training and
inference by 1.89 and 1.23 times respectively, while maintaining a com-
parable accuracy to the conventional RGB-based solutions.

The remainder of the thesis is structured as follows: Chapter 2 presents the
background concept of the study topic. Related work regarding FER and learn-
ing in the frequency domain is presented in Chapter 3. Chapter 4 describes the

2



main design of our training pipeline, methods, and algorithms. The evaluation
and results are presented in Chapter 5. Finally, Chapter 6 concludes the thesis
and discusses future work.
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Chapter 2

Background

This Chapter presents background information on the research field. Section
2.1 provides general information regarding self-supervised learning. Section 2.2
describes essential concepts of contrastive learning. Section 2.3 briefs the process
of converting images from the color space to the frequency domain (i.e., discrete
cosine transform (DCT)) and the properties of DCT coefficients.

2.1 Self-supervised Learning

Currently, the mainstream machine learning methods are supervised-based,
which relies much on manually annotated data. With a large annotated dataset
and increasingly complex neural network structures, supervised learning is per-
forming well in tasks such as image classification [16, 39], natural language pro-
cessing [17], and object detection [56]. However, compared with unlabeled data,
only a small part of data is labeled in the big data era, and it is costly to gather
data with clean labels. In tackling this challenge, self-supervised learning has
been developed to learn representations from unlabeled data. Self-supervised
learning has shown to be promising in computer vision tasks [10, 14, 31] as
it directly learns from data without hand-craft labels to explore inherent fea-
tures inside data, and the learned knowledge is transferable to various types of
downstream tasks.
Self-supervised learning is proceeded by solving a pretext task. A pretext task

is a task we set for the model to solve in order to learn visual representations
from data. Generally, the self-supervised learning process can be summarized
as follows:

• Produce pseudo-labels from data itself.

• Predict or recover part of the samples based on the transformed data.
This step is to build the pretext task. By solving this task, the model can
progress to learn features.

For example, a rotation is applied as the transformation function, and given
the rotated and original images, an encoder is tasked to predict the rotation
degrees [27]. The rotated degrees serve as the pseudo-labels generated randomly
by the transformation function. The encoder needs to ”recover” the image by
predicting the rotation. This state-of-the-art method has proven promising in
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object recognition, object detection, classification, etc. The instinct behind this
is that in order to predict the rotation angle, the encoder must learn to extract
object boundaries and visual representations invariant to the rotation.
Generative vs discriminative. Generally, self-supervised learning can

be categorized as either generative or discriminate methods [18]. Generative
methods train an encoder to encode the inputs into embedding features, from
which the encoder will reconstruct the original inputs. These methods approach
learning the internal data distribution with various mechanisms, including auto-
encoding models [42, 68] where an encoder and a decoder are used to reconstruct
inputs, auto-regressive models [65, 67], which aim to model images pixel by
pixel, and hybrid models [23, 72]. Generative methods are often computation-
ally costly because they require learning high-level details from the data. Unlike
generative models, discriminative models do not have the expensive generation
step and directly learn the boundaries among samples. Discriminative learning
uses an encoder to extract representations that can group similar samples and
spread out dissimilar ones by comparing them with each other. There are dis-
criminative methods in a context perspective [18, 49], which aim to compare
the feature from a local context with the global context, and in an instance
perspective [9, 12, 62], which focuses on the relationship between instance-level
representations.
Pretext Tasks. Unlike supervised learning, self-supervised learning employs

a pretext task to act as a task that an encoder network needs to solve using the
visual representation acquired in the training process. A well-designed pretext
task can train a model to learn more general features for downstream tasks.
Example pretext tasks are described as follows (visualized in Figure 2.1):

• Predicting image rotation [27]. The encoder needs to predict the ro-
tation degrees from the rotated image. The encoder learns to predict the
correct degrees by recognizing rotation-invariant content.

• Solving a jigsaw puzzle [51]. The jigsaw pretext task requires the en-
coder to recover a jigsaw puzzle to the original image. By solving this task,
the networks can learn the spatial relations of the patches by recognizing
the object.

• Context prediction task [18]. The encoder solves the task by predicting
the relative position of a patch. Given a central patch of an image, the
encoder should predict the relative positions of other patches to the central
one. This task works similarly to solving a jigsaw puzzle, except context
prediction is more straightforward.

• Contrastive prediction task. In this task, the encoder should differ-
entiate similar/dissimilar samples. Through this task, the encoder learns
representations that bring similar samples close to each other and max-
imize the distance between dissimilar groups. A commonly used task is
Instance discrimination, where each instance in the dataset is regarded
as a separate class. The motivation of instance discrimination is based
on the observation that the top classification responses from a network
trained with supervision are visually correlated, which reveals that su-
pervised learning can capture visual similarity among classes even though
they are annotated as different classes [70]. This suggests that neural
networks can obtain similar class-invariant visual representations.
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(a) Rotation

(b) Jigsaw

(c) Context prediction
(d) Contrastive predic-
tion task

Figure 2.1: Examples of 4 pretext tasks: (a) The original image is ro-
tated around a set of degrees (90, 180, 270, degrees, etc.). (b) A
Jigsaw puzzle is generated from an image, and the puzzle should be
recovered to the original image. (c) An image is divided into nine
patches. The task is to predict their relative position to the central
patch. (d) The original and its augmented version are considered pos-
itive samples. The task is to predict similar samples or discriminate
against dissimilar samples given a list of pairs.

2.2 Contrastive Learning

Contrastive learning is a typical discriminative self-supervised learning method
that achieves state-of-the-art performance. It trains the encoder to learn general
features from unlabeled data by differentiating the representation vectors of
similar/dissimilar samples.
Figure 2.2 illustrates an overview of the contrastive learning process. It starts

by selecting a data sample as the anchor. By definition, data points in the same
distribution of the anchor are called positive samples, whereas those from a dif-
ferent distribution are called negative samples. The samples are generated by
applying image augmentation to the original samples. The main goal of aug-
mentation is to make the model learn transformation-invariant features. During
the training process, the model learns to minimize the distance between posit-
ive samples and, at the same time, maximize the distance between the anchor
and its negative samples. This can be achieved using a contrastive loss func-
tion. The model is trained by minimizing the contrastive loss function and
backpropagating the gradients.
The design of contrastive loss is essential to the training, and it varies based on

pretext tasks. Instance discrimination is an effective and commonly used task,
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Figure 2.2: Principal workflow of contrastive learning. Augmentation
will first be applied to the anchor images to generate positive and
negative samples. The samples are fed into CNNs to produce repres-
entations. A contrastive loss is obtained by contrasting the repres-
entations. The CNNs will be updated by optimizing the loss.

where contrastive learning has been shown to achieve strong generalization in
transfer learning [78]. In instance discrimination, the loss is calculated at the
instance level by treating each sample as a unique class. Good results have been
obtained in work such as SimCLR [12] and MoCo [36].

2.2.1 Image Augmentation

In self-supervised learning, image augmentation serves as a way to produce pos-
itive/negative samples by generating different views of images. Study shows that
a good selection of augmentation functions is essential to learn good representa-
tions in contrastive learning [12]. In the thesis, there are two used augmentation
functions: appearance and geometric transformations (visualized in Figure 2.3
), which are described as follows:

• Appearance Transformation. Appearance transformation revolves around
pixel-level color adjustments, including but not limited to Gaussian blur,
noise, and color jitter (including color dropping, change of hue, bright-
ness, contrast, and saturation). This transformation trains the networks
to learn appearance-invariant features.

• Geometric Transformation. Geometric transformation changes the
spatial alignment of pixels, including cropping and resizing, cutout, ro-
tating, and flipping (horizontally and vertically). It makes the encoder
extract invariant features from different geometric placement views.
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(a) Appearance Transformation: the original pixel-level
color distribution is changed.

(b) Geometric Transformation: the original geometric
alignment of pixels is changed.

Figure 2.3: Examples of image augmentation.

2.2.2 Contrastive Learning Architectures

The process of self-supervised learning can be seen as building a dynamic dic-
tionary that gives good representations of the input samples for the contrastive
learning goal [36]. Like a dictionary, similar keys (synonyms) are grouped closely
for easy reference, while dissimilar keys (antonyms) are separated clearly. De-
pending on how to build the dictionary, contrastive learning can be categorized
into three architectures: end-to-end, memory bank, and momentum. An over-
view of their comparison can be found in Figure 2.4.

End-to-end

In end-to-end learning (e.g., [52, 73]), the dictionary is comprised of encoded
samples from the current batch. Two encoders are used to extract representa-
tions from the input samples. Positive pairs are those from the same distribu-
tion (e.g., two augmented views of the same image). Negative samples are from
different data distributions (e.g., any augmented views of images from other
classes). The contrastive loss is calculated based on representations computed
by the two encoders, and the weights in the encoders are updated end-to-end
through backpropagation.

Even though end-to-end is the most natural and direct way to train encoders,
this architecture has one drawback: the dictionary size is coupled with the
training batch size. A larger dictionary contains more representations of negat-
ive samples, leading the encoder to a potentially better performance by learn-
ing from more negative samples. The ideal situation for the end-to-end method
would be to use the whole dataset as a batch. However, limited by GPU memory
size and significant computation overhead in large batch size, the end-to-end
method is always suboptimal and has a high demand for computing resources.
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(a) End-to-end (b) Memory Bank (c) Momentum

Figure 2.4: Conceptual comparison of three contrastive learning archi-
tectures. x1, x2 represent two input sample vectors while h1, h2 are
corresponding representation vectors. (a)Two encoders encode x1, x2

into representation vectors h1, h2. The dictionary only consists of h2.
Each encoder is updated through the gradient of the contrastive loss.
(b)A memory bank stores representations of all samples in a data-
set. Each batch randomly sampled representations from the memory
bank as a pool of negative samples. (c) The momentum encoder is
updated with a weighted average based on the encoder updated with
gradients.

Memory Bank

Using a large batch size remains an issue in end-to-end training. A memory
bank [70] provides a possible solution by separately storing the representations
of all samples in the dataset instead of building a dynamic encoder for mapping
the samples. Without the encoder that maps the sample to the dictionary, it
becomes possible to maintain a large dictionary since there are fewer parameters
to be updated using backpropagation. Unlike end-to-end, where the dictionary
is updated by optimizing the mapping encoder, the memory bank is updated
by replacing stored representations generated by the representation extractor.
A memory bank decouples batch size with dictionary size, allowing us to in-

clude more negative samples without increasing training batch size. However,
the representations in the bank are always outdated because only the representa-
tions of the current mini-batch can be updated, and the sampled representations
from a memory bank could be generated by the old representation extractor,
which is inconsistent with the current representation extractor.

Momentum

One way to accommodate a large dictionary while keeping the representations
consistent is using the momentum encoder [36]. It uses a queue as the diction-
ary in which the representations newly generated by the momentum encoder are
enqueued while the earliest representations will be eliminated. By constantly
updating the dictionary, the inconsistency issue of the memory bank is allevi-
ated.
The momentum encoder is updated with momentum by applying the weighted
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average of the old weights of the momentum encoder and the new weights of the
representation extractor. The momentum update keeps the momentum encoder
up-to-date without computing gradients, enabling support for a large dictionary.

2.2.3 Loss Function in Contrastive Learning

In this section, we review the basic concepts of contrastive loss. A contrastive
loss [34] is a metric that is small in value when the anchor is similar to its
positive samples and dissimilar to negative samples. The principle for designing
a contrastive loss function is that given an anchor image x, its positive samples
x+ and negative samples x−, and an encoder function f(.), the similarity for
positive pairs should be much greater than that with negative samples:

sim(f(x), f(x+))≫ sim(f(x), f(x−)) (2.1)

Firstly, we explore the similarity metric. In contrastive learning, the most
commonly used similarity metric is cosine similarity. Given two vectors a
and b, the cosine similarity is defined as:

cos sim(a, b) =
a · b
∥a∥∥b∥

(2.2)

Unlike Euclidean distance, which measures similarity based on the distance in
the Euclidean space, cosine similarity measures the cosine value of the angle
between two vectors regardless of the length. If the cos sim(a, b) is 1, a and
b point in the same direction and reach the maximum cosine similarity. In
contrastive learning for image tasks, the data are often very high in dimension.
It is more reasonable to use cosine similarity since it measures similarity in a
low-dimensional space based on orientation instead of magnitude.
Cross-entropy is the most common loss function in machine learning to

measure the difference between predictions and labels by capturing the difference
between two probability distributions. The idea is also used in contrastive loss
functions to express dissimilarity.
For a binary classification task, cross-entropy is defined:

Li = −[yi · log(pi) + (1− yi) · log(1− pi)], (2.3)

where yi is the label of samples i, and pi stands for the prediction probability
of sample i. For example, when sample i is true, and its prediction is true, then
we have LXent = 0, which means it predicts perfectly.
It can be extended to the multi-classification problem. The multi-class cross-

entropy loss for sample i is defined as:

Li,c = −
∑
i

[yi,c · log(pi,c)], (2.4)

where yi,c is a binary indicator (0 or 1) whose value is 1 when sample i is
correctly predicted as class c. yi,c denotes the probability of i being classified

as c. The total loss is
∑k

c=1 Li,c. When the class labels are denoted by one-hot
encoding, the total loss can be simplified as:

LXent = −
k∑

i=1

log(pi), (2.5)
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where pi denotes the probability of sample i being correctly predicted, and k
denotes the number of classes.
Cross-entropy is often combined with softmax function. The softmax for

output x+ is defined as:

softmax(x+) =
exp(x+)∑k
i=0 exp(xi)

, (2.6)

where k denotes the number of classes. Softmax converts the outputs of a dense
layer (logits) into probabilities. With the probability distribution of the outputs,
the cross-entropy loss for x+ based on softmax can be computed:

L+ = −log( exp(x+)∑k
i=0 exp(xi)

) (2.7)

Contrastive loss of two sample vectors is given by Chopra et al. [15] in a
siamese architecture. Given a pair of inputs (xi, xj) and their labels (yi, yj),
the loss would be minimized if their representations are from the same class and
maximized if they are from different classes:

ℓ(xi, xj) =

{
∥fθ(xi)− fθ(xj)∥22, yi = yj

max(0, (α− ∥fθ(xi)− fθ(xj)∥2)2), yi ̸= yj
(2.8)

where θ represents the parameters to be optimized in the encoder function fθ(.),
α is a hyperparameter that defines the lowest distance for a sample pair from
different classes.
Based on the siamese definition of contrastive loss, Schroff et al. [58] proposed

triplet loss that expresses contrastive loss by comparing the anchor input x
with its positive samples x+ and its negative sample x− at the same time:

ℓtriplet =

N∑
i

max(0, ∥f(xi)− f(x+
i )∥

2
2 − ∥f(xi)− f(x−

i )∥
2
2 + α) (2.9)

where α is a hyperparameter that defines the lower bound of the triplet loss for
triplet(x, x+, x−) and N is the number of triplets in the training set.

Figure 2.5: Triplet loss is large if the anchor is close to its negative or
far from its positive. By optimizing triplet loss, the anchor will be
closer to the positives and farther to its negatives.

Computing triplet loss will become impractical if the number of classes is
large. Sohn et al. [60] proposed a generalized triplet loss called Multi-Class
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N-pair loss, which incorporates multiple negative samples in the loss function.
With (N+1) triplets in the training set {x, x+, x−

1 , ..., x
−
i , ..., x

−
N−1}, where x+ is

the positive sample to anchor x and x−
i are negatives, the N-pair loss is defined

as:

ℓ(x, x+, {x−
i }

N−1
i=1 ; f(.; θ)) = log(1 +

N−1∑
i=1

exp(f(x)⊤f(x−
i )− f(x)⊤f(x+)))

(2.10)
where f(.; θ) is the encoder function whose parameters θ need to be optimized.

If we define negative samples as noise samples, we are able to reduce the
computation complexity by using Noise Contrastive Estimation (NCE) [33]
to measure contrastive loss. The idea is to train a logistic regression classifier
to differentiate the target sample from noise samples. Given the target sample
x in distribution pθ(x) = P (x|C = 1; θ), and the noise sample x̃ in distribution
q(x̃) = P (x̃|C = 0). We will have P (x̃|C = 0)+P (x|C = 1; θ) = 1 by definition.

The logit in terms of parameters θ for the sample x in the target distribution
is:

logitθ(x) = log
pθ(x)

1− pθ(x)
= log

pθ(x)

q(x)
(2.11)

Based on the logits, we can calculate the probability with sigmoid function σ(.):

hθ(x) = σ(logitθ(x)) (2.12)

By applying binary-class cross-entropy loss on the probabilities of target sample
x and noise sample x̃, NCE loss is defined:

ℓNCE = − 1

N

N∑
i

[log(hθ(xi)) + log(1− hθ(x̃))] (2.13)

With NCE loss, van den Oord et al. proposed InfoNCE loss [52] to differ-
entiate the target sample from a list of noise samples, where noise samples will
be treated differently by applying multi-class cross-entropy.

Given context c and a sample set X = {x1, x2, ..., xN} of N − 1 negative
samples and one positive sample, the probability of drawing a positive sample
from the set can be obtained by:

p(x+|X, c) =
f(x+, c)∑N
i=1 f(xi, c)

where f(x, c) ∝ p(x|c)
p(x)

(2.14)

f(x, c) is a function that measures density ratio of sample x in context c and
expresses the mutual information between x and c. With the probability of a
positive sample, infoNCE is obtained by calculating multi-class cross-entropy
loss of correctly classifying the positive sample:

ℓInfoNCE = −E[log(p(x+|X, c))] (2.15)
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2.3 Discrete Cosine Transform

In computer vision, the typical inputs for CNNs are RGB pixels. An image can
be considered as points in the horizontal and vertical directions. The color of
each pixel can be decomposed into red, green, and blue elements, i.e., RGB. The
color of a pixel is a mixture of the three colors. Typically, two adjacent pixels
in an image will be very close in color. Compression is possible if we only store
the essential image information rather than every detail of the color alignment.
Most modern cameras in HMDs produce high-resolution images, which do not
match most CNN input sizes. Instead of aggressively down-sampling the images,
the frequency domain of the images provides a better way to preserve more
information while reducing the input size. The frequency domain of an image
lays the foundation for compression by separating the image into parts differing
in information density. The discrete cosine transform (DCT) [1] is the most
used method in converting an image to frequency representations.
The DCT (described in Figure 2.6) is similar to Fourier transform as it pro-

jects the blocks of color pixels onto the frequency domain. Before DCT, the
RGB color space is often converted to YCbCr space, where Y is the lumin-
ance component storing brightness information, while Cb and Cr are chroma
components representing colors. Each Y, Cb, and Cr channel is divided into
8 × 8 pixel blocks and undergoes block-wise DCT, where each block produces
an 8× 8 matrix called DCT coefficients. Each DCT coefficient matrix is a spa-
tial frequency spectrum of an 8 × 8 image block, and the up-left part is the
low-frequency area, and the bottom-right is the high-frequency area. DCT is a
no-loss process, and applying inverse DCT will restore the converted image to
the color space. In a practical view, down-sampling is often used on Cb and
Cr channels since the Y component is often more informative [71]. After DCT,
quantization can also be applied by discarding the trivial information in the
DCT coefficients.

Figure 2.6: Main process of DCT. The RGB space is converted to
YCbCr space. Each component in the YCbCr space will be divided
into multiple 8× 8 blocks, to which block-wise DCT is applied.
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Figure 2.7: Example visualization of DCT channels for luminance com-
ponent. The upper left stands for low-frequency channels, while the
bottom right stands for high-frequency channels.

The properties of DCT can be summarized as follows:

• Energy Compaction. DCT has proven to be an efficient way to extract
essential information due to its energy compaction property [1, 55]: a large
portion of signal energy is likely to be concentrated on a subset of the coef-
ficients, especially on the low frequencies. Figure 2.7 visualizes the DCT
channels of the luminance component from an example image. We can see
that the images expressed by lower frequencies are more discernible than
higher frequencies. This property allows it to preserve salient channels
that account for major information instead of the whole frequency spec-
trum. We can remove trivial information with a reduced input size for the
training and inference by discarding high-frequency channels.

• Orthogonality. DCT can also be regarded as a special process of 8 × 8
convolution with a stride of 8. The 64 unit filters decompose the pixel
blocks into vertical, horizontal, and composite frequency channels. Fig-
ure 2.8 shows a visualization of the filters. However, unlike convolutional
layers, the filters of DCT are always orthonormal [61] and are not ob-
tained through training, whereas the filters in a convolutional layer are
not guaranteed to learn orthonormal filters after training [32]. Based on
this property, it is possible to skip some convolutional layers in the models
using DCT coefficients as the input. In CNN models with RGB input, the
early layers often learn Gabor filters to extract basic features such as edge
and texture. Later layers normally learn latent and abstract high-level fea-
tures [74]. The conversion to the frequency domain through DCT filters
behaves similarly to Gabor filters [32]. Thus, it is reasonable to skip some
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layers since DCT already serves a similar function as early CNN layers
and the output representations are orthonormal. This makes it possible
to obtain a smaller model without significant detriment.

Figure 2.8: The 64 DCT basic filters for a combination of vertical and
horizontal frequencies for an 8 × 8 image block. Starting from zero,
the frequency increases from up to bottom and left to right. The
white block (the one in the upper-left corner) represents the DC
component.
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Chapter 3

Related Work

This chapter presents related approaches to FER in Section 3.1.1, followed by
FER based on periocular images in Section 3.1.2. Section 3.2 reviews related
work on training neural networks with image frequency representations.

3.1 Facial Expression Recognition

Facial expression is an indispensable component of interpersonal communica-
tion. Existing studies show that linguistic elements comprise one-third of hu-
man communication while non-linguistic convey two-thirds [48]. As a popular
research field, FER has already been applied in cognitive science, health [4],
entertainment [76], and Human-Computer Interaction (HCI) [5], as facial ex-
pressions convey visual clues containing implicit messages of human internal
state. Various FER systems have been developed to decipher expression-related
information from different types of images as input.

3.1.1 Approaches to FER

The conventional FER methods work by means of detecting well-designed ex-
pression features. In recent years, more advanced techniques, such as deep
learning, have been introduced for automatic feature extraction.

FER with hand-craft features. The conventional FER focused on con-
structing hand-craft features based on geometric features from face images to
train an expression classifier [25, 35]. The common standard to categorize fa-
cial expressions based on geometric features is the facial action coding sys-
tem (FACS) [21]. FACS characterizes facial expressions anatomically as muscle
change on the face by encoding facial expressions into a specific combination
of movements of action units (AUs), which are the independent definition of
expression-related muscles on the human face. The AUs of seven basic facial
expressions (Anger, Disgust, Fear, Happiness, Neutral, Sadness, and Surprise)
defined by Ekman [20] can be found in Table 3.1. FACS allows us to study
facial expressions, collect datasets systematically, and build features, such as
local binary patterns (LBP) [59, 77] and histogram of oriented gradient (HOG)
[26], for the FER tasks. Even though FER with hand-craft features has been
demonstrated to reach good performance, these approaches heavily rely on the
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facial expression AUs
Happy Cheek Raiser, Lip Corner Puller

Fear
Inner Brow Raiser, Outer Brow Raiser, Brow Lowerer,

Upper Lid Raiser, Lid Tightener, Lip Stretcher, Jaw Drop

Sadness
Inner Brow Raiser, Brow Lowerer,

Lip Corner Depressor

Surprise
Inner Brow Raiser, Outer Brow Raiser,

Upper Lid Raiser, Jaw Drop

Anger
Brow Lowerer, Upper Lid Raiser,
Lid Tightener, Lip Tightener

Disgust
Nose Wrinkler, Lip Corner Depressor,

Lower Lip Depressor

Table 3.1: Example of AUs defined by FACS.

preprocessing step to build discriminative features for a well-performed model,
making them often less accurate compared to approaches with automatic feature
extraction [22].

FER with automatic feature extraction. Empowered by the advance
in deep neural network architectures in recent decades, studies on FER have
been put on automatic FER feature extraction. Convolutional neural networks
(CNNs) have proven to reach state-of-the-art results in FER tasks [19, 40, 41].
Compared with traditional methods using hand-crafted features, well-designed
CNNs can levitate the work on feature engineering by automatically extracting
visual representations directly from input images. With effective network struc-
tures and sufficient labeled data, deep learning models reach high accuracy and
can extract features invariant across datasets for FER tasks [7]. In the field of
deep-learning-based FER, several publicly open datasets are used for extensive
research and experiments. For instance, the Extended Cohn-Kanade Dataset
(CK+) [46] includes video sequences of 123 subjects aged from 18 to 30 years
old. The images are 640×480 in resolution. The MUG Facial Expression Data-
base [2] includes RGB 896× 896 pixels images taken from recorded videos of 86
subjects. FER2013 [30] contains approximately 30,000 full-facial images with
48× 48 resolution. These datasets facilitate the work on building deep learning
FER models by including many facial-expression-unrelated variations.

3.1.2 FER with Periocular Images

The common approach for FER is to use full-face images [57]. Due to the in-
creasing popularity of HMDs, exploration has been done to realize FER using
periocular images since the models can be trained and implemented using peri-
ocular images taken by the cameras already integrated into the devices. Studies
show that the periocular area contains emotional information and can be con-
sidered a strong indicator of human internal emotional state [45]. The pupil
state is shown to be strongly related to the human nervous system and has been
associated with cognitive process [6]. The distance between the sclera and iris
has been shown to be correlated to emotional state [54]. Based on these indic-
ators, researchers have explored implementing FER using the periocular region.
Ghimire et al. [24] divided the full face into different domains and extracted
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Figure 3.1: Exemplar images of seven basic facial expressions from
MUG dataset.

features only from a subset of the regions. They found the eye and mouth re-
gions provide the most discriminant features for facial expressions. Alghowinem
et al. showed the possibility of performing expression classification based only
on eye movement [3].
However, the periocular areas are sensitively subject to external stimuli. The

main challenge of recognizing facial expressions from periocular images is the
reduced potential features as we lose input from other facial areas whose move-
ment is also strongly related to the facial expressions. The loss of visual repres-
entations makes it more complex to generalize the expression classifiers due to
intra-subject variances among users.
Some work has been done to overcome these constraints. Chen et al. [11]

reconstruct the whole face to detect facial gestures based on eye and mouth
gestures captured by a set of biopotential sensors. Katsutoshi et al. [47] imple-
mented a smart eyewear device that recognizes facial expressions by leveraging
sensing skin deformation on the wearer’s face. Nie et al. [50] utilize bio-signals
from multiple sensors to detect landmarks of facial expression features. How-
ever, most of the solutions require additional sensors, demanding more hardware
alignment and design work. Some of these sensors are intrusive to human skin,
making a long-time use undesirable. In tackling these issues, Hickson et al. [38]
demonstrate that eye images captured by the cameras in HMDs already con-
tain enough information to infer a specific set of facial expressions, making it
possible to build FER algorithms on HMDs without any additional sensors.

3.2 Learning in the Frequency Domain

Even though FER with RGB images has reached great success, most images
taken by HMD cameras have a larger size than the CNN input size. As a sub-
stitute for sloppily down-sampling the RGB images, converting representations
to frequency domain is effective in filtering out redundant information with little
accuracy loss. By applying quantization to the frequency representations, we
are able to train a model with a smaller input size and faster training speed.
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The quantization process reduces the size of DCT coefficients based on its
energy compaction property in the low-frequency channels. The idea has been
applied in image compression algorithms such as JPEG. JPEG applies a quant-
ization table to the DCT coefficients, and usually, more weights are put onto
low-frequency parts. JPEG is the most widely used image compression standard
so far because of its compression ratio unmatched by other traditional compres-
sion algorithms without noticeable image quality loss in human eyes. Many
datasets are stored in the format of JPEG such as CIFAR-10 [43], ImageNet
[16], and MNIST [44].
Conventionally, when our training dataset comprises compressed images, the

images will be decoded to arrays of RGB values before being fed into the net-
works, which takes extra computation in the decoding phase. However, some
work has been done in exploring training neural networks by directly using en-
coded images as the input. Robert et al. bypass the decoding phase by integrat-
ing trainable decoder networks into inference networks, and the jointly trained
networks reach a comparable performance while heavily reducing computational
cost [64]. Wu et al. demonstrate that the compression process eliminates trivial
information and can be used for directly training neural networks with acceler-
ated speed [69]. Gueguen et al. explore directly extracting features from DCT
coefficients of encoded images. The networks outperform its counterpart with
RGB input in speed while remaining the same or even higher accuracy [32].
Xu et al. experimentally prove that in the frequency domain, the luminance
component of the YCbCr space and low-frequency channels are higher in in-
formation density, and neural networks can learn good representation only from
a subset of the DCT coefficients [71].
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Chapter 4

Approach

In this chapter, we present the pipeline for training our model, followed by a
detailed description of processing in the frequency domain, contrastive learning
algorithms, and the design of encoder architectures.

4.1 Overview of Design

The framework of our design is shown in Figure 4.1, which consists of two
phases: pre-training and personalized fine-tuning. The encoder is first trained
through contrastive learning with unlabeled periocular images. After learning
the representations, the trained encoder is transferred as a feature extractor for
subject-specific tasks.

Figure 4.1: Overview of the training pipeline. In the pre-training
phase, a large pool of unlabeled data will be provided as the training
set. The pre-trained encoder will be transferred to subject-specific
tasks, in which a few labeled samples are used for personalization.

Pre-training. The unlabeled RGB images are first fed into an image aug-
mentation function to generate positive and negative samples for contrastive
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learning. Then, the augmented images are converted into DCT coefficients with
64 frequency channels, based on which a static frequency channel selection is
applied by discarding a set of high-frequency channels. After undergoing con-
trastive learning with the images expressed in the frequency domain, the encoder
learns general representations.
Personalized fine-tuning. After the encoder goes through the pre-training

stage, it is transferred to the personalization phase as a feature extractor. A
dense layer is added to the feature extractor to make predictions of facial ex-
pressions. The individual inference models (including the feature extractor and
the classification head) are fine-tuned with a small number of labeled subject-
specific data to lessen intra-subject variance caused by subject diversity.

4.2 Channel Selection

When the images are converted into the frequency domain through DCT (refer-
ring to Section 3.2), we further apply channel selection to prune the input.
Figure 4.2 illustrates the channel selection procedure, where high-frequency
channels are discarded as low-frequency channels in the DCT coefficients are
likely to be more salient.

Figure 4.2: Channel selection

4.3 Pre-training with Contrastive Learning

This section describes the state-of-the-art contrastive learning methods we use
in the thesis: SimCLR, MoCo, and BYOL.

4.3.1 SimCLR

SimCLR [12] is an end-to-end contrastive learning method with a high demand
for hardware to support a larger batch size to contrast against more negative
samples.

Training

An overview of the training can be found in Figure 4.3.

• Augmentation. Data augmentation is first applied for each image in the
current mini-batch. We apply geometric and appearance transformation
(described in Section 2.2.1) as the augmentation functions to produce
positive and negative samples. For the image x, the function produces two
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randomly augmented images x1 and x2, which are considered a positive
pair. Samples derived from other images in the mini-batch are negative.

• Forward pass. x1 and x2 are then fed into the encoder through forward
pass and representations h1 and h2 are obtained. The encoder is a CNN
model that learns to extract discriminative visual representations during
the training. The two visual representations h1 and h2 will be forwarded
into a two-layer multilayer perceptron (MLP) projection head to further
extract features z1 and z2.

• Contrastive loss optimization. The representations z1 and z2 will be
computed against negative samples in the current mini-batch for contrast-
ive loss. The encoder is updated with gradients based on the loss.

The projection head is a two-layer MLP (described in Figure 4.4), which includes
a batch normalization layer after each dense layer and projects the represent-
ations to a lower dimensional space. After training, the projection head will
be discarded, and the trained encoder can be used as a feature extractor for
downstream tasks.

Figure 4.3: SimCLR

Loss Function

Given the batch size N , 2N data points are obtained after augmentation. For
each data point, its augmented counterparts are the positive samples, and the
rest 2(N − 1) samples are regarded as negative. The cosine similarity of zi and
zj is represented as cos sim(zi, zj). Based on InfoNCE (Equation 2.15), the loss
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function for positive pair(i, j) is defined as:

ℓi,j = −log
exp(cos sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i]exp(cos sim(zi, zk))/τ
, (4.1)

where 1[k ̸=i] is a function equal to 1 if k ̸= i and is 0 when k = i. τ denotes
the temperature parameter that controls the distribution concentration of the
input vector [70]. The temperature coefficient τ controls how well the model
can discriminate against negative samples. If τ is set large, the output logits
distribution will show less variance, and the contrast loss tends to treat all
negative samples more equally and neglect small differences. In contrast, if
the temperature coefficient is set too small, the contrastive loss will focus on
the nuanced difference between samples, making the model tend to diverge and
perform poorer in terms of generalization.
The total contrastive loss for one mini-batch with size N is defined as:

L =
1

2N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)], (4.2)

where ℓ(2k − 1, 2k) denotes the loss of one positive pair. The total loss is
termed NT-Xent (Normalized temperature-scaled cross-entropy), computed by
averaging the loss of all positive pairs in the mini-batch.

Algorithm 1 Main algorithm for SimCLR

Input: N : batch size; τ : temperature; f : encoder; g: projection head; T : data
augmentation;

Output: encoder f(.)
1: for each minibatch x do
2: Instantiate two augmentation functions t1 ∼ T , t2 ∼ T
3: x̃1 = t1(x), x̃2 = t2(x)
4: h1 = f(x̃1), h2 = f(x̃2)
5: z1 = g(h1), z2 = g(h2)
6: for i ∈ {1, 2, ..., 2N} and j ∈ {1, 2, ..., 2N} do
7: cos simi,j = (zi · zj)/(∥zi∥∥zj∥)
8: end for
9: Define ℓi,j = −log exp(cos simi,j/τ)∑2N

k=1 1[k!=i]exp(cos simi,k)/τ

10: L = 1
2N

∑N
k=1[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)]

11: Optimize L and backpropagate to update f and g
12: end for

Figure 4.4: Projection Head in SimCLR
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4.3.2 Momentum Contrastive Learning

Momentum Contrastive (MoCo) learning [36] is a memory-efficient way to learn
good visual representations without a large batch size. A larger dictionary can
be supported through momentum update on the momentum encoder instead
of gradients. Before MoCo, people tended to use a memory bank (described in
Section 2.2.2) to keep a large dictionary, which tends to be inconsistent with the
newly updated encoder. Moco solves the inconsistency issue by using a queue
dictionary and momentum update.

Training

An overview of the training procedure is depicted in 4.5.

• Augmentation. For each mini-batch, two augmented views, xk and xq,
are obtained through the transformation function.

• Forward pass. xk and xq are respectively forwarded into the key and
query encoders that are initialized with the same weights. The extracted
key and query are passed into the projection head. Like SimCLR, the
projection head is used for further feature extraction and will be discarded
after training.

• Computing loss. Based on zk and zq, which are produced by the pro-
jection head, the contrastive loss for the current mini-batch is computed
against key representations in the dictionary.

• Updating encoders. The query encoder is updated through gradients.
The key encoder is updated by weighted average:

θk ← mθk + (1−m)θq, (4.3)

where θk denotes parameters of the key encoder, and θq demotes those of
the query encoder. m ∈ [0, 1) is the momentum coefficient to determine
how fast the key encoder progresses.

• Updating dictionary. With the newest zk, the dictionary is updated
by pushing in zk and removing the oldest representations.

MoCo applies a two-layer projection head (shown in Figure 4.6)to lower the
output dimension. It should also be discarded after training, and the trained
query encoder can be transferred to other tasks.
MoCo supports a large dictionary, enabling encoders to learn with a large set

of negative samples. The loss will show an evident increase at the beginning of
training because the dictionary is being filled with new keys, decreasing after
enough training epochs. The larger the dictionary size, the more time the
dictionary needs to be filled up.
Momentum update makes it possible to generate consistent keys with a small

batch size while maintaining a large pool of negative samples. One of the critical
parameters in MoCo is the momentum coefficient. To the extreme, it is pos-
sible to set the momentum coefficient m = 1 [36]: the key and query encoders
sharing the weights. The method has proven to fail because of loss oscillation.
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Figure 4.5: MoCo

Figure 4.6: Projection Head in MoCo

The reason is that the constant and sudden change of parameter values by back-
propagation makes the key encoder inconsistent concerning the new mini-batch.
It suggests that the smooth progress of the key encoder is beneficial.

Loss Function

MoCo employs InfoNCE (Equation 2.15) as the loss function. For query q (or
anchor), the InfoNCE loss is defined:

ℓq = −log exp(zq · zk+/τ)∑K
i=0 exp(zq · zki/τ)

, (4.4)

where zq represents the normalized representation of query q, zk+ denotes the
normalized representation of k+, which is positive to q, and τ is a temperature
parameter to control the logits distribution. The dictionary contains K+1 rep-
resentations, including one positive and K negatives. MoCo uses a dot product
to measure the similarity of two sample representations.
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Algorithm 2 Main algorithm for MoCo

Input: queue: queue dictionary τ : temperature; fk: key encoder; fq: query
encoder; gk: projection head for key encoder; gq: projection head for query
encoder; m: momentum coefficient; T : data augmentation;

Output: query encoder fq(.)
1: for each minibatch x do
2: Instantiate two augmentation functions t1 ∼ T , t2 ∼ T
3: x̃k = t1(x), x̃q = t2(x)
4: hk = fk(x̃k), hq = fq(x̃q)
5: k = gk(hk), q = gq(hq)
6: k = k.stop gradient()
7: l pos = einsum(′nc, nc− > n′, q, k)
8: l neg = einsum(′nc, kc− > nk′, q, queue)
9: logits = concat([l pos, l neg], axis = 1)

10: loss = log(softmax(logits/τ))
11: Optimize loss and backpropagate to update fq and gq
12: fk.params = m ∗ fk.params+ (1−m) ∗ fq.params
13: gk.params = m ∗ gk.params+ (1−m) ∗ gq.params
14: queue.dequeue(length(k))
15: queue.enqueue(k)
16: end for

4.3.3 Bootstrap Your Own Latent

Most contrastive learning methods train the encoder by optimizing a loss func-
tion calculated by comparing positive and negative samples, such as SimCLR
and MoCo. However, it is also possible to ”bootstrap” the representations from
data by ”predicting itself” without building negative samples. Bootstrap Your
Own Latent (BYOL) [31] is an effective approach for self-supervised learning
without building negative samples. It contains two networks, referred to as on-
line and target networks. The online network uses gradients to update weights,
while the target network is trained by momentum update. Unlike SimCLR and
MoCo, BYOL has an extra prediction layer to predict the output of the online
network.

Training

The training process (described in Figure 4.7) is as follows:

• Augmentation. Two augmented views xξ and xθ from the anchor are
generated.

• Forward pass. The augmented data xξ and xθ are fed into target and
online networks respectively to get representations: zθ = gθ(fθ(xθ)) and
zξ = gξ(fξ(xξ)). The prediction qθ(zθ) is obtained in online network.

• Computing loss. The loss is computed based on ℓ2 normalized loss of
prediction qθ(zθ) and representation zξ

• Network update. After the online network is updated with gradients,
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Figure 4.7: BYOL

the momentum update is applied to the target network:

ξ ← τξ + (1− τ)θ, (4.5)

where ξ denotes parameters in the target network and θ those in the online
network. The momentum coefficient τ is used to control the update rate.

BYOL uses a two-layer MLP with batch normalization as the project head
to project representations to a lower dimensional space. The online network
employs a two-layer MLP as the prediction head. Figure 4.8 describes the
projection and prediction heads.

Figure 4.8: Projection and prediction head in BYOL
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Algorithm 3 Main algorithm for BYOL

Input: ft: target encoder; fo: online encoder; gt: projection head for target
encoder; go: projection head for online encoder; qo: prediction head for
online encoder; ξ: momentum coefficient; T : data augmentation;

Output: query encoder fq(.)
1: for each minibatch x do
2: Instantiate two augmentation functions t1 ∼ T , t2 ∼ T
3: x̃1 = t1(x), x̃2 = t2(x)
4: zt = gt(ft(x̃1)), zt = zt.stop gradient()
5: zo = go(fo(x̃2)), pred = qo(zo)
6: zt = normalize(zt), pred = normalize(pred)
7: loss = ∥pred− zt∥22
8: Optimize loss and backpropagate to update fo, go, and qo
9: ft.params = ξ ∗ ft.params+ (1− ξ) ∗ fo.params

10: gt.params = ξ ∗ gt.params+ (1− ξ) ∗ go.params
11: end for

Loss Function

In BYOL, the contrastive loss in calculated using the normalized prediction
qθ(zθ) from the online network and the representation zξ from the target net-
work:

ℓθ,ξ = ∥qθ(zθ)− zξ∥22, (4.6)

where qθ(zθ) = qθ(zθ)/∥qθ(zθ)∥2, and zξ = zξ/∥zξ∥2.
Since no gradient is applied to target parameters ξ, BYOL would avoid con-

verging to a minimum loss of ℓθ,ξ with regard to both θ and ξ. In other words,
the stop-gradient of the target network works as a regularization term to pre-
vent model collapse. Furthermore, a slow momentum update ensures the target
is updated while keeping different from the online network, which means the
momentum update also serves as a regularization technique.
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4.4 Encoder Architectures

We use ResNet-18 as our baseline encoder architecture with RGB input in the
thesis. ResNet-18 is a residual network that comprises shortcuts that bypass
some network layers [37]. Figure 4.9 visualize an example basic block that
incorporates shortcut. The shortcuts enable the gradients to propagate easily
to early layers, preventing the neural networks from degradation caused by
deepened networks and making it possible to train a deeper network for more
difficult tasks.
We modify the original ResNet-18 model with RGB inputs to meet the spatial

dimension of DCT inputs. Figure 4.10 illustrates our encoder architectures. For
the input data in the frequency domain, only the luminance components are used
since the chroma components are zero in value.
The modification principle is to keep the input size comparable to the baseline

model while keeping the number of CNNs the same or reduced. The modified
encoders form our baseline models in the evaluation experiments.

Figure 4.9: Basic block stage 1 of ResNet-18. A shortcut from the input
layer is added to the output layer before the activation function.
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(a) ResNet-18 (b) DCT-18

(c) DCT-14 (d) DCT-12

Figure 4.10: Encoder architectures. a) ResNet-18 as the baseline en-
coder with RGB inputs. (The last dense layer is excluded.) b) En-
coder for DCT inputs that are comparable to ResNet-18 in terms of
the number of convolutional layers. c) Encoder obtained by removing
4 convolutional layers from DCT-18. d) Encoder obtained by remov-
ing 2 convolutional layers from DCT-14. For DCT models, the input
size displayed in the graph includes all channels. When channel se-
lection is applied, the input size will change accordingly.
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Chapter 5

Evaluation

This chapter presents the evaluation experiments and results using approaches
and settings described in Section 4. Section 5.1 describes the experimental
settings and implementation details. Section 5.3, 5.4, and 5.5 present the results
in terms of the accuracy and the latency performance.

5.1 Methodology

This section describes the approach to collecting and processing data and the
tools we use in the evaluation experiments.

5.1.1 Data Preparation

Data Collection

For data collection, 23 volunteers were invited to perform seven basic facial
expressions: anger, disgust, fear, happiness, neutral, sadness, and surprise. The
volunteers are between 22 and 32, with 13 males and 10 females. They were
required to wear a Pupil Core headset shown in Figure 5.1, which has two
infrared cameras to record left and right eyes separately. Prior to each recording,
an exemplar video was played to the participants as the visual guidance of the
corresponding facial expression. Then, they had enough time to experience
and practice the facial expression before they were ready to be recorded. The
recording lasted for four sessions, where each of the seven basic facial expressions
were recorded for 3-4 seconds for 4 times. The recorded videos are 60 FPS with
400×400 pixels. Figure 5.2 shows an example of the data collection experiment.

The data collection aimed to exclude bias and errors as much as possible
while keeping the volunteers performing comfortably. To avoid potential bias
from instructions provided to the volunteers, we gave little verbal guidance on
how to perform the expressions. In addition, to lessen erroneous expressions
caused by physical muscle fatigue, the volunteers were allowed to take a break
of 10-30 seconds after each recording and 40-60 seconds after each session. They
were also allowed to stop at any time during the experiments.

In total, we gathered around 65,000 images labeled with the seven expressions
after the data cleaning process. Exemplar images are given in Figure 5.3.
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Figure 5.1: Pupil Lab Core eye-tracker for data collection.

Figure 5.2: Data collection experiment

Figure 5.3: Exemplar eye images for seven facial expressions taken by
infrared cameras from the eye-tracker.
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Figure 5.4: Examplar images of (near)closed eyes to be cleaned

Data Cleaning

The images in the dataset are obtained by extracting frames from the recorded
videos. In order to keep participants relaxed, they were allowed to blink during
the recording. To eliminate the variance caused by blinking, we manually remove
images of (near)closed eyes from the extracted images. Examples of images to
be cleaned are shown in Figure 5.4.

Data Preprocessing

When converting the images to the frequency domain, we only use DCT coeffi-
cients of the luminance component since all values in the chroma channels are
zero. The images are down-sampled from 400× 400 to 224× 244 with normal-
ization.
Data from 15 randomly selected subjects are used for pre-training, and the

remaining 8 subjects are for fine-tuning the individual inference models. The
dataset splitting is illustrated in Figure 5.5. In total, we have approximately
36,000 periocular images in the pre-training stage.
In the personalization phase, the training set is composed of sampled data

from two sessions. The remaining two sessions consist of validation and test sets
separately. We split the train, test, and validation sets by session to avoid the
high similarity between these sets because the images are extracted sequentially
from the recorded videos, and images from a video can possibly be distributed to
different sets by random splitting. In the fine-tuning stage, a small training set
may lead to performance variance with varying selections of samples because
small datasets tend to be more biased from the actual data distribution. To
smoothen the performance variance, we conduct fine-tuning with five different
sampled training sets to calculate the average and quantify the variance using
the standard deviation.
As for cross-dataset tasks, we develop a pipeline to crop periocular images

from full-face images in the target MUG dataset [2]. An illustration of the
pipeline is depicted in Figure 5.6. First, the original RGB images are converted
to greyscale, followed by a binarization process where the pixel values above 100
will be set to 255, and the values below 100 will be set to 0. Then, each binarized
image undergoes a horizontal projection process, producing a curve representing
the added pixel values of the image horizontally as we scan from top to bottom.
The curve will show an abrupt decrease as we begin to scan the eye area, and
an abrupt increase will be shown as we finish scanning the eye area. Based on
this phenomenon, we can select the two peak points in the left part of the curve
as the cropping points, with which we crop the image horizontally and obtain
an image with two eyes. The cropped images are further fed into a pre-trained
eye detection model, and we can obtain two single-eye images from each image.
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Figure 5.5: Dataset splitting

Figure 5.6: Preprocessing on the MUG dataset: 1. The image is bin-
arized. 2. Horizontal projection is applied to the binarized image,
producing a curve representing pixel value horizontally. 3. The image
undergoes cropping based on the points selected from the two peaks
in the left part of the curve. 4. A pre-trained model detects the eyes
from the cropped images.

This pipeline only works well when the images have a clean background and
fixed face position. We observe that the subjects in the MUG dataset are
recorded with a relatively fixed position, and the eyes’ positions are mainly in
the upper half part of the image. In total, we obtain approximately 25,000
periocular images for the cross-dataset task.

5.1.2 Data Augmentation

We apply random crop with resize and color distortion as the data augment-
ation functions. In the random crop step, the original value for the minimum
covered object is 0.1: at least 10% of the original image will be covered after
cropping. With this value, the cropped images may only contain trivial features,
for example, the upper part of the eyebrows (shown in Figure 5.7). To avoid

Figure 5.7: Possible results with the original augmentation function.
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this potential issue, we increase the minimum percentage of the image to be
covered to 0.4 to ensure more salient features can be included.

We also observe that some augmentation techniques in the color distortion
function do not influence the pixel values of the images. Thus, we remove the
unnecessary random saturation, random hue, and color drop from the color
distortion step. Examples of the data augmentation are depicted in Figure 5.8.

Figure 5.8: Example results with our augmentation function.

5.1.3 Implementation and Training

Our models are implemented with Tensorflow and Keras in Python. The data
augmentation functions we use in contrastive learning are random crop&resize
and color distortions. The processing in the frequency domain is realized by us-
ing jpeg2dct Library [32], which can directly read DCT coefficients from JPEG
images. The specifications of the system where we conduct the experiments are
described in Table 5.1 and Table 5.2. Following are the parameters we set for
each contrastive learning algorithm:

SimCLR. We use an Adam optimizer with a learning rate of 0.1. The model
is trained for 100 epochs with a batch size of 128. The temperature parameter
is 0.1.

MoCo. An Adam optimizer with a learning rate of 0.1 is applied. We train
the model for 100 epochs with a batch size of 128 and a dictionary size of 6000.
The temperature parameter is set to 0.07. The key encoder is updated with a
momentum coefficient of 0.999.

BYOL. We apply an Adam optimizer with a learning rate of 0.1. The model
is trained for 100 epochs with a batch size of 128. The momentum coefficient is
set to 0.999.

In the fine-tuning phase, the models are trained for 500 epochs, and the batch
size is the size of the training set. For randomly initialized models without
undergoing any pre-training, we fine-tune them for 1000 epochs.

Component Description
CPU Intel Xeon(R) Gold 6126 @ 2.60GHz
GPU NVIDIA GeForce RTX 2080 Ti x 4

Memory 128GB
OS Ubuntu 18.04.6 LTS

Table 5.1: System specifications for training
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Component Description
CPU Intel(R) i7-8550U @ 1.80GHz
GPU NVIDIA GeForce 940MX

Memory 8GB
OS Ubuntu 18.04.6 LTS

Table 5.2: System specifications for inference

5.2 Baseline Models

The experiments are conducted by comparing our proposed model-DCT-14-
SimCLR-with the baseline models. This section describes the models we use for
comparison.

• ResNet-18-based. ResNet-18 [37] is a CNN model based on residual
blocks. The input type is RGB pixel arrays with the size of 224× 224× 3.
By comparing our DCT models with ResNet-18, we can evaluate the
efficiency of switching to learning in the frequency domain. Based on
ResNet-18, we have multiple baseline models that differ in training meth-
ods. a). ResNet-18-supervised is pre-trained with supervised learning
with RGB images. b). ResNet-18-SimCLR is pre-trained with Sim-
CLR with RGB images. c). ResNet-18-random is randomly initialized
without any training.

• DCT-18-based. DCT-18 is a DCT model with the same number of
convolutional layers as ResNet-18. It is implemented to compare varying
input domains (RGB or DCT) and to evaluate how much performance loss
there will be if we remove some layers from DCT-18. The baseline models
based on DCT-18 include a). DCT-18-supervised is pre-trained with
labeled data. b). DCT-18-SimCLR uses SimCLR as the pre-training
method .

• DCT-14-based. DCT-14 is developed by removing 4 convolutional layers
from DCT-18. We implemented several baselines based on DCT-14: a).
DCT-14-supervised is trained with supervision. b). DCT-14-random
is randomly initialized without training. c). DCT-14-MoCo is trained
with MoCo. d). DCT-14-BYOL is trained with BYOL.

• DCT-12-based. We remove 2 convolutional layers from DCT-14 to ob-
tain DCT-12. The baseline based on DCT-12 is DCT-12-SimCLR,
which is pre-trained through SimCLR.

When learning in the frequency domain, we apply different channel selection
strategies to prune the input DCT coefficients (visualized in Figure 5.9). The
strategies are described as follows:

• Direct Current (DC) Channel. DC channel is channel 0, whose fre-
quency is zero. We assume the DC channel contains a large portion of
information about the original image. This can be tested by comparing
the DC channel with other channels.
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Figure 5.9: Channel selection strategies. a). DC channel: channel 0.
b). Channel 0,1,2: the upper-left triangle that includes the three
lowest frequencies. c). Channel 0-5: the upper-left triangle that
includes the six lowest frequencies. d). AC channels: all channels
excluding the DC channel.

• Channel 0,1,2. Channels 0, 1, and 2 are placed in the upper-left triangle
of the DCT coefficient matrix. The triangle represents the three channels
with the lowest frequency and may include most of the critical information.

• Channel 0-5. We extend the upper-left triangle to include the five lowest
frequency channels for better comparison

• Alternating Current (AC) Channel. AC channels include all channels
except DC channels. We can test whether the DC channel is critical by
comparing AC channels with all channels.

5.3 Representation Visualization

To better understand whether the models have learned good features through
contrastive learning, we employ t-distributed Stochastic Neighbor Embedding
(t-SNE) [66] to visualize the high-dimensional feature maps for the pre-trained
models without undergoing the personalization phase. To achieve this, we ran-
domly sample 2000 images from one subject not included in the pre-training
phase and feed their frequency representations into different models. The out-
put dimension of the models is 512. Figure 5.10a and Figure 5.10b depict the
original samples.
The models we select for t-SNE visualization are DCT-14-supervised and

DCT-14-SimCLR, and channel selection is applied to these models. Both the
projection and prediction heads are removed before extracting prior to the visu-
alization. Figure 5.10 displays the feature map visualization of the models. It
is observed that in supervised models, the clusters tend to overlap with each
other in the representation space. In comparison, the clusters in the SimCLR
models tend to be separated. Interestingly, we notice that the representations
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(a) Original, channel 0,1,2 (b) Original, channel 0-5

(c) DCT-14-sup, channel 0,1,2 (d) DCT-14-Sup, channel 0-5

(e) DCT-14-SimCLR, channel 0,1,2 (f) DCT-14-SimCLR, channel 0-5

Figure 5.10: t-SNE Visualization of the original data sample and the
learned feature maps by supervised learning and SimCLR. Legend: 0-
anger, 1-disgust, 2-fear, 3-happiness, 4-neutral, 5-sadness, 6-surprise.
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of 2 (fear) and 6 (surprise) tend to be close in the visualization. This aligns
with our understanding that these expressions are similar in appearance and
have shared periocular AUs based on the facial action coding system described
in Table 3.1.

5.4 Evaluation of Accuracy

This section presents the evaluation results of prediction accuracy in different
scenarios, including varying the personalization sample size, channel selection
strategies, input domain (RGB versus frequency representations), encoder ar-
chitectures, and contrastive learning algorithms.

5.4.1 Performance overview

Table 5.3 gives an overview of the performance comparison of DCT-14-SimCLR
with other baselines. The sample size in the fine-tuning state is 20. SimCLR
models show relatively equivalent results with the supervised model while the
number of labels used is reduced from approximately 36,000 to 140 (about 99%
reduction). When randomly initialized, DCT-14 has the worst performance and
is improved by approximately 50% after pre-trained with SimCLR. It is also
shown that DCT-14-SimCLR has reached a comparable performance with big-
ger models (ResNet-18 and DCT-18), suggesting a smaller model is sufficient
for the FER task. We also observe that the performance gap between DCT-18-
SimCLR and ResNet-18-SimCLR is very marginal, and there is an insignificant
performance drop when only using channels 0, 1, 2 instead of all channels in
DCT-14-SimCLR. The result suggests that utilizing frequency representations
and applying the channel selection strategies do not generate significant per-
formance loss.

Input Accuracy (%)
DCT-14-SimCLR DCT 0,1,2 83.1
DCT-14-SimCLR DCT all 83.5
DCT-14-Random DCT all 30.8
DCT-12-SimCLR DCT 0,1,2 80.7
DCT-18-SimCLR DCT 0,1,2 83.6

ResNet-18-supervised RGB 86.3
ResNet-18-SimCLR RGB 83.8
ResNet-18-random RGB 78.3

Table 5.3: Performance comparison with personalization sample size
of 20.

5.4.2 Varying Personalization Sample Size

We investigate how the models perform with different sample sizes in the fine-
tuning stage. The number of samples for each expression class ranges from 2
to 50. The models are fine-tuned with five training sets for each sample size
and obtain the average accuracy. The results, depicted in Figure 5.11, are
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the average accuracy results of 8 subjects and the standard deviation in the
different fine-tuning training sets. We observe that the models will generally
perform better as we increase the sample size because the training set brings
more features and less bias for the learning. The performance may drop as
more data are added to the training set. This may be due to a covariance shift
caused by newly added data. Supervised learning with RGB input reaches the
highest performance, while the DCT model without pre-training has the worst
performance. In Figure 5.11b, we can see that our data augmentation function
performs better than the one with original parameters. Figure 5.11c depicts
the standard deviation with respect to different sample sizes. The performance
deviation decreases as we increase the training sample size. Another observation
is that the models with RGB inputs show greater decreases in variance than their
DCT counterparts. We choose the sample size of 20 for the rest of the evaluation
experiments since the performance increase becomes marginal at this poin

5.4.3 Varying Input Channels

The ResNet-18 encoder has an input size of 224×224 with three RGB channels.
The values in the three RGB channels are the same for each image in our dataset.
We want to test if it is possible to modify the input size into 224× 224× 1 and
only use the unique values in one channel. We run experiments to see the
performance of the two models. It can be observed in the results shown in
Table 5.4 that the RGB model with three channels performs better than that
with only one channel.

Number of channel(s) 3 1
Accuracy(%) 83.8 81.9

std 0.023 0.029

Table 5.4: Results varying RGB channel number. Encoder: ResNet-
18-SimCLR.

In the frequency domain, low-frequency channels tend to contain more crucial
information about the original image. Channel selection is applied by preserving
critical channels to reduce the data size. We run experiments to probe the per-
formance sacrifice with different channel selection strategies. An overview of
the results is shown in Figure 5.12 and Table 5.5. Comparing AC with all chan-
nels, we observe that when the DC channel is removed, there is a significant
performance drop, suggesting the DC channel has the most information for the
classification task. As more low-frequency channels are included, the accuracy
tends to increase, but the increase is gradually marginal and becomes insigni-
ficant when sufficient channels are included. In terms of standard deviation,
it is observed that the DC channel alone brings higher performance variation,
and the variation becomes smaller as more channels are incorporated. The
performance variation remains high when the DC channel is not included.
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(a) Accuracy comparison of different pre-training methods

(b) Accuracy comparison of different augmentation

(c) Standard deviation comparison

Figure 5.11: Performance comparison in the personalization stage w.r.t
varying sample size. The RGB models are ResNet-18 while the
DCT models are based on DCT-14. Notation: sup-supervised, sim-
SimCLR, rand-random, ori-original data augmentation. The DCT
models are trained with all frequency channels.
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Channel selection DC 0,1,2 0-5 AC All
Accuracy(%) 78.2 83.1 83.6 78.0 83.5

std 0.064 0.041 0.039 0.0531 0.038

Table 5.5: Results of channel selection in the frequency domain. En-
coder used: DCT-14-SimCLR.

Figure 5.12: Result comparison of different channel selection strategies
in the frequency domain. The model used is DCT-14-SimCLR. The
training sample size is 20 images per class.

5.4.4 Varying Input Domain

We investigate the performance difference when switching from training with
RGB pixels to frequency channels. Table 5.6 and Figure 5.13 compare the
performances of the models trained in the RGB and frequency domains. It can
be observed that the model trained with RGB pixels has better performance
and less variance. Models trained in DCT channels also perform relatively well
when pre-trained with supervision or contrastive learning.

Input Accuracy (%) std
ResNet-18-supervised RGB 86.3 0.019
DCT-18-supervised DCT 0,1,2 82.1 0.031
DCT-18-supervised DCT 0-5 83.2 0.024
ResNet-18-SimCLR RGB 83.8 0.023
DCT-18-SimCLR DCT 0,1,2 83.6 0.035
DCT-18-SimCLR DCT 0-5 83.9 0.029

Table 5.6: Results with different input domains.
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Figure 5.13: Result comparison of different input domains.

5.4.5 Varying Encoder Architectures

We compare encoders with different architectures varying in the number of con-
volutional layers. The encoders are designed by removing layers from ResNet-18
and are pre-trained with SimCLR. The results are displayed in Table 5.7 and
Figure 5.14. It suggests a bigger encoder brings higher accuracy and less vari-
ance in performance. However, the benefits are marginal after a threshold,
implying a smaller DCT model is sufficient to perform the task. Besides the
performance gain by the bigger models, the increased training and inference
time should also be considered a trade-off. We will explore the response latency
in Section 5.5.

Input Accuracy(%) std
DCT-12-SimCLR DCT 0,1,2 80.7 0.052
DCT-14-SimCLR DCT 0,1,2 83.1 0.041
DCT-18-SimCLR DCT 0,1,2 83.6 0.035
DCT-12-SimCLR DCT 0-5 81.0 0.049
DCT-14-SimCLR DCT 0-5 83.5 0.038
DCT-18-SimCLR DCT 0-5 83.9 0.024

Table 5.7: Results of different encoder architectures.
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Figure 5.14: Result comparison of different encoder architectures.

5.4.6 Varying Contrastive Learning Algorithms

There are different algorithms for contrastive learning. SimCLR is an end-to-
end method that learns by comparing samples in the current batch. MoCo uses
momentum update and a queue dictionary to support a larger pool of negative
representations. BYOL learns without negative samples by predicting repres-
entations in a bootstrap manner. We run experiments with different choices of
contrastive techniques to see whether similar performance can be realized with
a different algorithm. Figure 5.15 compares the accuracy and standard devi-
ation of the models pre-trained with the three contrastive learning methods. We
observe that SimCLR has the highest accuracy, and BYOL also performs well.
MoCo has the lowest performance variance. The results show that our approach
is model-agnostic and can work with different contrastive learning algorithms.

Input Accuracy (%) std
DCT-14-SimCLR DCT 0,1,2 83.1 0.041
DCT-14-MoCo DCT 0,1,2 70.1 0.031
DCT-14-BYOL DCT 0,1,2 80.0 0.043
DCT-14-SimCLR DCT 0-5 83.5 0.038
DCT-14-MoCo DCT 0-5 71.8 0.023
DCT-14-BYOL DCT 0-5 80.7 0.040

Table 5.8: Results of differen contrastive learning methods.
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Figure 5.15: Result comparison of different contrastive learning al-
gorithms. Encoder used: DCT-14.

Input
Model DCT 0,1,2 DCT 0-5

DCT-14-random 61.78 73.86
DCT-14-SimCLR 94.90 95.64
DCT-14-Supervised 83.78 87.08

Table 5.9: Accuracy (%) on cross-dataset tasks. Source dataset: our
collected dataset. Destination dataset: MUG dataset.

5.4.7 Cross Dataset

To investigate how our models perform in terms of generalization, we run exper-
iments on cross-dataset tasks. A DCT-14 encoder is pre-trained on our collected
dataset and fine-tuned and tested on the MUG dataset. Table 5.9 shows the
results on the personalized fine-tuning tasks. It is observed that SimCLR has
higher accuracy on the task than supervised learning, suggesting that contrast-
ive learning can learn features that are transferable on different datasets. The
performance discrepancy indicates that contrastive learning shows better gen-
eralizability than supervised learning in the task.

5.5 Evaluation of Latency

The merit of learning in the frequency domain is reducing computational load
with trivial accuracy loss. On the one hand, this technique shows practical
potential in accelerated training and faster inference response. On the other
hand, this allows us to conduct fine-tuning or inference on a platform where
RGB inputs cannot work because of limited hardware resources. To evaluate
the speed gain provided by channel selection, we investigate the fine-tuning
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time and inference time on a local machine. As a basic measurement of model
complexity, we list each architecture’s floating point operations (FLOPs) in
Table 5.10.

Encoder ResNet-18 DCT-18
Input size 224,224,3 224,224,1 28,28,64 28,28,3
FLOPs (G) 1.82 1.74 1.40 1.37

Encoder DCT-14 DCT-12
Input size 28,28,64 28,28,3 28,28,64 28,28,3
FLOPs (G) 1.10 1.07 0.86 0.84

Table 5.10: FLOPs of the encoders

5.5.1 Fine-tuning Time

The training time is tested with a fixed dataset with two samples per class,
i.e., 14 images. All models are trained for 100 epochs. Table 5.11 and Figure
5.16a compare our DCT model with the baseline RGB model. Compared with
ResNet-18, we see DCT-18 is approximately 1.58 faster in training time. This
implies that training in the frequency domain takes much less time than in RGB
space. The training time gradually decreases when the models become smaller.
DCT-14 can be 1.71 times faster, while DCT-12 is 2.19 times faster than the
baseline model.

ResNet-18 DCT-18 all DCT-14 all DCT-12 all
Load 0.03 0.02 0.02 0.02
Train 45.49 28.83 26.54 20.78
Sum 45.52 28.86 26.56 20.80

Table 5.11: Training time (s) comparison for different encoders.

RGB DCT-14 all DCT-14 0,1,2 DCT-14 0-5
Load 0.03 0.02 0.02 0.02
Train 45.49 26.54 24.06 24.06
Sum 45.52 26.56 24.08 24.08

Table 5.12: Training time (s) comparison for different inputs.

Table 5.12 and Figure 5.16b show the result of fine-tuning time for DCT-14
model with different channel selection strategies in the frequency domain. With
channels 0,1,2 or channels 0-5 as input, the fine-tuning is approximately 1.89
times faster than the RGB baseline model.
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(a) Training time varying encoders. (b) Training time varying inputs.

Figure 5.16: Comparison of training time (data loading time included)
for 100 epochs with a batch size of 14. Encoder used for DCT models
in (b): DCT-14.

5.5.2 Inference Time

The inference time is recorded while the models run inference for a single image
10,000 times. Data loading time and the actual inference time are recorded
separately. The given results are the inference time for a single image on average.
Table 5.13 and Figure 5.17a display the comparison result of inference time

with different CNN encoders. We observe that DCT-18 is 1.14 faster than the
ResNet-18 baseline model. The inference time can be further reduced by making
the architecture smaller. DCT-14 is 1.21 faster than the baseline, while DCT-12
is 1.26 faster.

ResNet-18 DCT-18 all DCT-14 all DCT-12 all
Load 3.12 1.17 1.09 1.10

Inference 64.14 57.90 54.45 52.37
Sum 67.25 59.07 55.54 53.47

Table 5.13: Inference time (ms) of different encoders.

If channel selection is applied in the frequency domain, the inference time can
be further reduced, referring to Table 5.14 and Figure 5.17b. If we switch from
ResNet-18 with RGB to DCT-14 with frequency channels 0,1,2, the inference
speed can be 1.23 faster.

RGB DCT-14 all DCT-14 0,1,2 DCT-14 0-5
Load 3.12 1.09 0.93 0.93

Inference 64.14 54.45 53.85 54.03
Sum 67.25 55.54 54.78 54.96

Table 5.14: Inference time (ms) with different inputs.
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(a) Inference time varying encoders. (b) Inference time varying inputs.

Figure 5.17: Comparison of inference time with a single image as input,
data loading time included. Encoder used for DCT models in (b):
DCT-14.

5.6 Overall Comparison

With the results presented in the previous sections, we can compare our pro-
posed model with the baseline models. A trade-off will be considered in terms of
accuracy and latency. Figure 5.18 depicts the results in a 2-D plane. The time
in the x-axis is the average result of the training time and inference time after
min-max normalization. It is observed that ResNet-18 with supervised learning
in the RGB domain has a higher accuracy while the latency performance is the
worst. DCT-12 models have the best latency results while performing poorly
in accuracy. A good trade-off will be sacrificing some accuracy performance
for a big acceleration boost. DCT-14 encoder with frequency channels of 0,1,2
and 0-5 give a good result when pre-trained with SimCLR compared to other
baseline models.
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Figure 5.18: Overall comparison as to accuracy and latency.
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Chapter 6

Conclusion and Discussion

6.1 Conclusion

In the thesis, we apply contrastive learning techniques to learn representations
from unlabeled periocular images for FER tasks. In addition, we train the en-
coders using a subset of the image frequency representations instead of the con-
ventional RGB pixel arrays to reduce the input size and accelerate the encoder
in the fine-tuning and inference stages. For the evaluation, We collect a dataset
of periocular images labeled with emotional expressions, and we conduct several
comparison experiments to validate the effectiveness of our proposed methods.
Our contrastive learning models have reached a reasonably good performance

only using a small scale of labeled data, saving massive manual annotation work
required by supervised learning. Models trained with frequency input have
comparable performance with their RGB counterparts, whereas the training
and inference time show a promising reduction. By comparing different encoder
architectures in the frequency domain, we also show that a smaller encoder is
sufficient to perform the FER tasks. This implies that removing some CNN
layers from the frequency models is reasonable.

6.2 Future Work

Contrastive learning models have given promising results in facial expression
recognition using the periocular image. However, there is still room for im-
provement in terms of usability and generalizability. We have proposed the
following topics for future study:

• Diversity of dataset for pre-training. We only collected data from 23
volunteers to validate our proposed model. A more diverse dataset enables
contrastive learning to exclude expression-irrelevant features such as age,
skin color, ethnicity, etc. Thus, more data are needed for a larger pool of
subjects if we consider designing an engineering or commercial product.

• Dynamic channel selection. Although, in general, low-frequency chan-
nels are likely to be more informative, some high-frequency channels may
contain information that is beneficial for the task [71]. Unlike static chan-
nel selection strategies, a dynamic channel selection strategy can help
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quantitatively identify each channel’s importance in the specific task. Dy-
namic channel selection adds a tensor that outputs a binary value to con-
trol each channel’s ”on-off” state. The times of being switched to ”on”
represent the channel’s importance. This technique can estimate chan-
nel importance based on which static channel selection can be applied,
allowing us to adjust the channel selection strategy to a specific task.

• Versatility. Besides facial-expression-responsive avatars in a remote VR
meeting, facial expression detection can be used for other purposes, such
as authentication assisted with facial expressions. If our model is incorpor-
ated into an embedded platform, signals from other built-in sensors can
be combined to create multiple possibilities. For example, inertial meas-
urement unit (IMU)-based gesture detection and camera-based FER can
jointly generate a smiling and nodding avatar for VR meeting on HMDs.

• Detection of irrelevant events. In a realistic view, blinking is unavoid-
able for users of HMDs. Predicting facial expressions using a blinking eye
image will cause a false result. Since our model is sensitive to samples in
the personalization stage, images of blinking eyes are likely to make the
model mix up the prediction classes. Additional steps to avoid unwanted
events will increase the usability of the FER platform as an engineering
product.
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